
Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta

BAKALÁŘSKÁ PRÁCE

Kateřina Sládková

Integrace po částech polynomiálńıch
funkćı na śıt́ıch typu

”
non-matching“

Katedra numerické matematiky

Vedoućı bakalářské práce: prof. RNDr. Vı́t Doleǰśı, Ph.D., DSc.

Studijńı program: Matematika

Studijńı obor: Obecná matematika

Praha 2012

Ráda bych poděkovala své rodině za podporu nejen při tvorbě této práce, ale
i při celém studiu. Zvláštńı poděkováńı patř́ı Robinu Pokornému za d̊ukladnou
recenzi a v neposledńı řadě Elvisu Presleymu za hudbu, při jej́ımž poslechu se
i nefunkčńı algoritmus zdá být skvělým. Posledńı d́ıky věnuji člověku, který
zavedl bakalářské studium a t́ım mi umožnil sepsat tuto bakalářskou práci.

Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně a výhradně
s použit́ım citovaných pramen̊u, literatury a daľśıch odborných zdroj̊u.

Beru na vědomı́, že se na moji práci vztahuj́ı práva a povinnosti vyplývaj́ıćı ze
zákona č. 121/2000 Sb., autorského zákona v platném zněńı, zejména skutečnost,
že Univerzita Karlova v Praze má právo na uzavřeńı licenčńı smlouvy o užit́ı této
práce jako školńıho d́ıla podle §60 odst. 1 autorského zákona.

V Praze dne 2.8.2012 Kateřina Sládková

Název práce: Integrace po částech polynomiálńıch funkćı na śıt́ıch typu
”
non-

matching“

Autor: Kateřina Sládková, kackasladkova@gmail.com

Katedra: Katedra numerické matematiky

Vedoućı bakalářské práce: prof. RNDr. Vı́t Doleǰśı, Ph.D., DSc., Katedra nume-
rické matematiky, dolejsi@karlin.mff.cuni.cz

Abstrakt: Náplńı této práce je numerické řešeńı časově závislých parcialńıch di-
ferenciálńıch rovnic pomoćı numerických metod. Pozornost věnujeme zejména
př́ıpadu, kdy se využ́ıvaj́ı śıtě typu

”
non-matching“ definované v r̊uzných časových

kroćıch. V tomto př́ıpadě je potřeba přepoč́ıtat přibližné po částech polynomiálńı
řešeńı z jedné śıtě na druhou. Představujeme algoritmus vyvinutý k tomuto účelu
a také několik numerických test̊u.

Kĺıčová slova: Integrace, po částech polynomiáńı funkce, překrývaj́ıćı se śıtě

Title: Integration of piecewise polynomial functions on non-matching grids

Author: Kateřina Sládková, kackasladkova@gmail.com

Department: Department of Numerical Mathematics

Supervisor: prof. RNDr. Vı́t Doleǰśı, Ph.D., DSc., Department of Numerical
Mathematics, dolejsi@karlin.mff.cuni.cz

Abstract: In this thesis we deal with a numerical solution of time-dependent
partial differential equations with the aid of numerical methods. Particularly, we
focus on case, when different non-matching grids are employed on different time
steps. Then piecewise polynomial approximate solution has to be recomputed
from one mesh to the second one. We present the developed algorithm as well as
several numerical tests.

Keywords: Integration, piecewise polynomial functions, overlapping grids

Contents

Preface 2

1 Theoretical introduction 3
1.1 Convection-diffusion problem . 3
1.2 Weak solution . 3
1.3 Triangulations . 4
1.4 Function spaces . 4
1.5 Space semidiscretization . 5
1.6 Volume integration . 6

2 The algorithm 8
2.1 The separation to independent problems 8
2.2 Specification of variables . 9

2.2.1 General structures . 9
2.2.2 Local structures . 10

2.3 The explanation of the alghoritm 11
2.3.1 Step 1 . 11
2.3.2 Step 2 . 14
2.3.3 Steps 3 & 4 . 15

3 Numerical verification 21

Bibliography 27

1

Preface

In this thesis we deal with the numerical solution of a scalar nonstationary non-
linear convection-diffusion equation with the aid of the discontinuos Galerkin
finite element method (DGFEM). Solution of industrial problems leads to ne-
cessity of employing different unstructured non-nested grids for each time level.
An example is the so-called full space-time DGFEM. This method requires an
evaluation of volume integrals of a product of two functions which are piecewise
polynomial on different grids.

In the first chapter we present the convection-diffusion problem as well as
DGFEM. By this chapter we prepare theoretical bases for introducing the pro-
grammed solution of the volume integration.

Second chapter presents the algorithm of integration we obtained in the pre-
vious chapter. This section of thesis is divided into four parts. The first one is
devoted to the separation of the task into several independent problems. In the
second part we present structures, variables and their use. In the last section we
explain the algorithm and code themselves.

Finally third chapter is dedicated to presentation of numerical and graphical
verification of our work. Our task is not to connect to whole DGFEM method but
to calculate (some kind of) mass conservation by volume integrals over different
grids. By this mass conservation we can also prove the funcionality of our method.

2

1. Theoretical introduction

In this chapter we recall some results from [1] and [2] to briefly remind selected
facts from the the theory of convection-diffusion problems and a weak solution.
We also present triangulation and semi-discretization (as it was presented in [1]
and [2]), which leads us to volume integration of two functions which are piecewise
polynomial on different grids.

We would also like to note that we use the standard notation for function
spaces (see [3]). Therefore, L2(Ω) denote the Lebesgue space and H1(Ω) =
W k,2(Ω) are the Sobolev spaces. After all, by H1

0 we denote the subspace of
all functions from H1(Ω) with zero traces on ∂Ω.

1.1 Convection-diffusion problem

We present the nonlinear convection-diffusion problem. Let Ω ∈ Rd (d = 2, 3) be
polygonal bounded domain and let us denote its nonempty boundary by ∂Ω. This
boundary consists of two disjoint parts and we assume ∅ 6= ∂Ω = ∂ΩD ∪ ∂ΩN .
Moreover, T > 0 and we set QT = Ω× (0, T).

Furthermore, for the function F, which represents the convective term, we as-
sume that F(u) = (F1(u), . . . , Fd(u)) : R→ Rd, d = 2, 3, where Fs ∈ C1(R), Fs(0) =
0, s = 1, . . . , d. For nonlinear function K(u) = {Kij(u)}di,j=1 : R → Rd×d, which
represents diffusion term, we assume that K is bounded and positively definite.
In addition n is outer normal to ∂Ω, f ∈ L2(Ω × (0, T)), uD is trace of some
u∗ ∈ H1(Ω)∩L∞(Ω) on ∂ΩD, u

0 ∈ L2(Ω), fN ∈ L2(∂Ω). Finally, we assume that
the Dirichlet boundary condition is constant with respect to time.

Let us consider following problem: Find u : QT → R such that

∂u

∂t
+∇ · F(u)−∇ · (K(u)∇u) = f(x, t),

u(x, 0) = u0(x), x ∈ Ω

u
∣∣
∂ΩD×(0,T) = uD,

K(u)
∂u

∂n

∣∣
∂ΩN×(0,T) = fN ,

(1.1)

where symbol ∇ means gradient operator and symbol ∇· represents divergence
operator.

1.2 Weak solution

Definition 1.1. We say that function u is the weak solution of 1.1, if the follow-
ing conditions are satisfied:

3

a)u− u∗ ∈ L2(0, T ;H1
0 (Ω)), u ∈ L∞(QT),

b)
d

dt

(∫
Ω

u(t)w dx
)

+

∫
Ω

∇ · F(u)w dx+

∫
Ω

[K(u(t))∇u(t)]∇w dx =

∫
Ω

f(t)w dx,

∀w ∈ H1
0 (Ω) in the sense of distributions on (0, T)

c)u(0) = u0 in Ω.

(1.2)

By u(t) we denote the function on Ω such that u(t)(x) = u(x, t), x ∈ Ω.

Let us note that the assumption u ∈ L∞(QT) in 1.2a) quarantees the bounded-
nessw of functions F(u) and K(u); thus it assures the existence of integrals in
1.2b). This assumption can be weakened if functions F(u) and K(u) satisfy some
growth conditions.

1.3 Triangulations

Let us consider QT = Ω × (0, T) as it was defined above. Let 0 = t0 <
t1 < . . . < tr = T be a partition of (0, T), which generates time intervals
Im = (tm−1, tm], m = 1, . . . , r of the length |Im| = τm and let us define τ sub-
sequently τ = maxm=1,...,rτm. At every time level tm, m = 0, . . . , r, we consider
generally different space partition Th,m. Each of this space partition consists of
a finite number of closed d-dimensional simplices K with mutually disjoint interi-
ors. These simplices covers whole closure Ω, i.e., Ω =

⋃
K∈Th,m K, m = 0, . . . , r.

Furthermore, we consider two elements K and K ′ as neighbours if (d − 1)-
dimensional measure of K ∩ K ′ is positive. By ∂K we denote the boundary
of element K ∈ Th,m and we set hK = diam(K), hm = maxK∈Th,mhK , h =
maxm=0,...,rhm. By Γh,m we denote a union of all edges of partition Th,m, i.e.,
Γh,m =

⋃
K∈Th,m ∂K. At almost every point of Γh,m it is possible to define a unit

normal vector n = (n1, . . . , nd). For the points in the interior of Ω the orientation
of normals is arbitrary. But for the points on the boundary ∂Ω we assume that
the corresponding normals are outer to Ω.

Finally, we denote by

Th,τ := {Th,m, m = 0, . . . , r} (1.3)

the set of triangulations on all time levels.

1.4 Function spaces

We define the so-called broken Sobolev spaces over the triangulations Th,m, m =
0, . . . , r by

Hs(Ω, Th,m) = {w;w|K ∈ Hs(K) ∀K ∈ Th,m}, m = 0, . . . , r (1.4)

and let there be the norm ‖w‖2
Hs(Ω,Th,m) :=

∑
K∈Th,m ‖w‖

2
Hs(K) and the seminorm

|w|2Hs(Ω,Th,m) :=
∑

K∈Th,m |w|
2
Hs(K).

4

For w ∈ H1(Ω, Th,m), m = 0, . . . , r, we introduce the following notation on
Γh,m \ ∂Ω:

wR(x) = lim
δ→0+

w(x+ δn), wL(x) = lim
δ→0−

w(x+ δn),

〈w〉 =
1

2
(wR + wL) , [w] = wL − wR.

On ∂Ω we simply put 〈w〉 = [w] = wL(x) = limδ→0−w(x + δn). The previous
limits are considered in the sense of traces.

Finally, we define the spaces of discontinuous piecewise polynomial functions

Sh,p,m = Sp,−1(Ω, Th,m) = {w;w|K ∈ Pp(K) ∀K ∈ Th,m}, (1.5)

m = 0, . . . , r, where Pp(K) denotes the space of all polynomials on K of de-
gree ≤ p, where p ≥ 1 is a given degree of approximation. Obviously, Sh,p,m ⊂
H1(Ω, Th,m), m = 1, . . . , r.

1.5 Space semidiscretization

We present the space semi-discretization of equation (1.1) with the aid of the non-
symmetric interior penalty Galerkin variant of DGFEM method. Form = 1, . . . , r
and u,w ∈ H2(Ω, Th,m) we define the forms

Ah(u,w) :=
∑

K∈Th,m

∫
K

K(u)∇u · ∇w dx

−
∫

Γh,m

K(u)
(
〈∇u〉 · n[w]− 〈∇w〉 · n[u]

)
dS +

∫
Γh,m

σ[u][w]dS,

bh(u,w) :=

∫
Γh,m

H(uL, uR,n)[w]dS −
∑

K∈Th,m

∫
K

d∑
s=1

Fs(u)
∂w

∂xs
dx

lh(w) (t) := (f(t), w) +

∫
∂Ω

(K(u)∇w · nuD + σ uD w) dS

(1.6)

The forms Ah and bh depend on m, but for simplicity we omit the index. The func-
tion H in definition of bh is the so-called numerical flux, which approximates the
convective flux by F(u) ·n ≈ H(uL, uR,n) on an element face. Here uL, uR form-
ally denotes the traces of u on ∂K from the left-hand and right-hand sides of
the face from Γh,m. On ∂Ω the values uR is taken from the boundary condition
in the equation 1.1. We shall assume that the numerical flux has the following
properties:

1. H(u,w,n) is Lipschitz-continuous with respect to u,w,

2. H(u,w,n) is consistent, i.e., H(u, u,n) = F(u) · n,

3. H(u,w,n) is conservative, i.e., H(u,w,n) = −H(w, u,n)

5

The weight function σ : Γh,m → R in 1.6 is given by

σ(x) = (hK + hK′)
−1, (1.7)

where K,K ′ ∈ Th,m are neighbouring elements sharing x, i.e., x ∈ K ∩K ′.
Using the consistency of H, we find that the exact solution u satisfies the

identity (∂u
∂t
, wh

)
+ Ah(u(t), wh) + bh(u(t), wh) = lh(wh)(t) (1.8)

for all wh ∈ Sh,p,m and all t ∈ Im,m = 1, . . . , r.

1.6 Volume integration

In order to carry out the full discontinuous Galerkin (DG) space-time discretiza-
tion, we define the space of space-time piecewise polynomial functions by

Sτ,qh,p =

{
w ∈ L2(QT) : w|Im =

q∑
s=0

tszs, t ∈ Im, zs ∈ Sh,p,m, m = 1, . . . , r

}
,

(1.9)
where q ≥ 0 is an integer. Moreover, we put

{w}m = wm+ − wm− , wm± = lim
δ→0±

w(tm + δ), (1.10)

denoting a jump of w ∈ Sτ,qh,p.
To derive the definition of approximate solution U ∈ Sτ,qh,p of 1.2, we integrate

equation 1.8 over time interval Im. We focus on term
(
∂u
∂t
, wh

)
.∫

Im

(u′, wh)dt = −
∫
Im

(u,w′h) + (u,wh)|−tm − (u,wh)|+tm−1
(1.11)

As you can see, we have integrated the term (u′, wh) over the interval Im and
afterwards we have used the integration by parts. Consequently, we use the
thought of upwinding and we approximate the value of u in tm−1 from the right
by the value in the same point from the left, i.e., u|+tm−1

:= u|−tm−1
. Thus we have∫

Im

(u′, wh)dt = −
∫
Im

(u,w′h) dt+ (u,wh)|−tm − (u,wh)|−tm−1

= −
∫
Im

(u,w′h) dt+ (u,wh)|−tm − (u,wh)|+tm−1
+ (u,wh)|+tm−1

− (u,wh)|−tm−1

=

∫
Im

(u′, wh) dt+ (u,wh)|+tm−1
− (u,wh)|−tm−1

=

∫
Im

(u′, wh) + (u|+tm−1
− u|−tm−1

, w′h)

(1.12)

In the second equality we have just added and taken away same term ((u,wh)|+tm−1
),

in the third equality we have used the integration by parts once more but in in-

6

verse direction. Thus by integration of the equation 1.8 we obtain∫
Im

(
(u′, w)− Ah(u,w) + bh(u,w)

)
dt+ ({u}m−1, w

m−1
+)

=

∫
Im

lh(w)dt

(1.13)

Definition 1.2. We define approximate solution U ∈ Sτ,qh,p of 1.2 by∫
Im

(
(U ′, w)− Ah(U,w) + bh(U,w)

)
dt+ ({U}m−1, w

m−1
+)

=

∫
Im

lh(w)dt ∀w ∈ Sτ,qh,p, m = 1, . . . , r.

(1.14)

In the equation 1.14, more precisely in the term ({U}m−1, w
m−1
+), we finally get

to volume integration of product of two functions which are piecewise polynomial
on different grids. By this definition we have prepared the theoretical bases for
explaining the algorithm.

7

2. The algorithm

In this chapter we will explain the programming solution of the volume integ-
ration. Our task is to calculate volume integral of a product of two functions
which are piecewise polynomial on different grids. To evaluate this integral, we
have to do severeal independent steps; thus further in this chapter we present the
algorithm step by step.

Let us briefly remind the problem. We have polygonal domain Ω, T > 0 and
we define QT = Ω× (0, T). Let 0 = t0 < t1 < . . . < tr = T be a partition of (0, T)
which generates time intervals Im = (tm−1, tm], m = 1, . . . , r. At every time level
tm we consider generally different triangulation Th,m. Each of these triangula-
tions covers whole closure Ω. We define two triangulations which are adjacent
in time, i.e., we can denote these two triangulations Th,m−1, Th,m. Without loss
of generality we put m = 2; therefore we have two grids Th,1, Th,2. Hereafter the
names of variables are the same as in the code.

2.1 The separation to independent problems

First, we have to find the intersection of two grids and describe them as a set
of polygons which will be afterwards separated into triangles. Consecutively, we
evaluate the product of the polynomial functions and we integrate this product
over the triangles.

We have two grids which consist of particular elements, in our case the ele-
ments are triangles. Grids Th,1 and Th,2 are composed of finite number of tri-
angles. Let us denote this number by nelem1 in Th,1 and by nelem2 in Th,2 . In
the code itself every triangle in each grid has its own integer identificator which
describes it uniquely and sufficiently. As a result of this fact we can obtain any
information about the triangle by only knowing the grid and the identificator.

Now, we divide our task into several parts which will be explained further:

1. Find and describe the intersection of one concrete triangle from Th,1 , let it
have number K (hereafter triangle K), and whole Th,2 . More precisely:

(a) Find one triangle (let it have indentificator equal to I) from Th,2 which
have a non-empty intersection withtriangle K.

(b) Create linked list link. Add all neighbours of triangle with identificator
I (hereafter triangle I) to link. We remind that two elements I and I ′

are neighbours if (d− 1)-dimensional measure of I ∩ I ′ is positive.

(c) Take a triangle from link. Delete it from link. Count intersection of this
triangle and triangle K, if it hasn’t been done yet. If the intersection
is non-empty add his neighbours to link.

(d) Repeate (c) until the list is empty.

2. The counted intersections are polygons. Separate these polygons into tri-
angles.

3. Count product of the polynomial functions in quadrature nodes.

8

4. Integrate the product over the triangles.

All this steps are repeated for every triangle in Th,1 , that means nelem1 times.

2.2 Specification of variables

In order to help reader understand our algorithm, we introduce some important
structures and variables in this module. It is not the task of our work to connect
our module to the code which is applying the DGFEM (ADGFEM code). But
we try to make the module in such a way that it will be possible to connect it
later and we are also using some parts of this program. So that we present two
types of structures. First, these which are used both in the ADGFEM code and
our module. As they were prepared for and used in the part of program, which
precedes ours, we have no need to use all parts of these structures. Thus we
shall present only the parts of these structures which we consider necessary for
understanding. Second, we introduce the structures used only in our module and
made only for our purpose. So in that case we use the entire structure and we
shall explain whole structure.

2.2.1 General structures

This subsection concerns of important common structures such as structure to
represent a grid (derived data type mesh) and structure to represent a triangle
(derived data type element).

At first, let us pay attention to type element. This type contains several useful
data objects, such as i, face, xc, diam, dof, Qnum. We can observe all used data
objects of element and their use in the following table.

Data object Sense
i index of element

face - neigh indices of neighbours
face - idx indices of nodes

xc coordinates of barycentre
diam diameter
dof number of quadr. functions

Qnum type of quadrature

Table 2.1: Element’s data objects

Next we should observe type mesh and it’s data objects nelem, element, x.

Data object Sense
nelem number of elements

element array of elements
x coordinates of nodes

Table 2.2: Mesh’s data objects

9

2.2.2 Local structures

The most important and probably the only interesting local structures are these
which we use to record counted intersections. Different types of linked lists are
also more or less important because we use them for storing numbers of triangles
which should be counted. But these linked lists are well-known; thus there is no
need to introduce them.

However, let us introduce one derived type in which we store intersections of
triangle K from Th,1 and whole Th,2 as it was described in section 2.1. We call this
derived type intersect (hereafter only intersect). From this type we can read all
necessary information about the intersection. But for better use of this structure
there are defined two more structures to help us with the using of intersect.

First, it is integer NumTri which stores the count of triangles from Th,2 which
have nonempty intersection with triangle K. Second, it is an array of integers
called triangles which stores identificator of every triangle which has a non-empty
intersection with triangle K.

Therefore, we can easily move in intersect from one triangle with a non-
empty intersection to another. From the intersect itself we can easily read several
information for every triangle of Th,2 : whether the intersection with triangle K
has been counted; whether it is a non-empty intersection; how many points define
this intersection and the points which they are. To study derived type intersect
more precisely, please see table 2.3.

Data object Sense
arrays: (1–nelem)of logical variables

done(j) Has the intersection with the j-th
triangle been counted?

had(j) Has the j-th triangle a non-empty
intersection with triangle K?

array: (1–nelem) of {1, . . . , 6}

NumPnt(j) number of points defining
the intersection with the j-th triangle

array: (1–nelem)x(1–NumPnt)x(1–2)

IntPnt Intersection points
1st position is the identificator

of the triangle
2nd is the number of intersection point,

3rd are the physical
coordinates of intersection point

Table 2.3: Intersect’s data object

10

2.3 The explanation of the alghoritm

In this section we explain more deeply all steps of our solution. Individual parts
will correspond with the separation in section 2.1.

2.3.1 Step 1

Let us focus on the problem of finding the intersection of one triangle K from
Th,1 and whole Th,2. This part is calculated in the module by subroutine called
IntersectGridTri. Once we will have this problem solved then it will be sufficient
to repeat this part for all triangles from Th,1. That is to substitute all integers
from 1 to nelem1 for K. To figure out this problem, we have to, at first, know for
which triangles we should count the intersection, because counting intersection for
every triangle of Th,2 would be inefficient. That means we need to find triangles
which have a non-empty intersection, or at least these which have high probability
to have a non-empty intersection.

Our first ideas led to make some kind of square grid where every square
would remember which triangles have nonempty intersection with it. Then we
would find in which squares triangle K is and we would count the intersections of
triangle K and all triangles laying in these squares. This solution would probably
work, but it will be quite inefficient because we would have to go through whole
Th,2 which is necessary anyway. But we would also have to go through whole
square grid for every triangle K which is needless in our solution of this particular
problem.

The main thought of our solution is to somehow mark out the area where
triangle K lies so that we can easily and quickly find triangles from Th,2 which lie
in this marked area. Suprisingly, it is sufficient to find only one triangle which
satisfies the condition of nonempty intersection with triangle K and afterwards to
focus our attention only on his neighbours and on neighbours of his neighbours.

More precisely, we find maximum diameter of triangles lying in Th,2; let us
denote this maximum diameter by MaxDiam. Then we make something like
imaginary circle with radius equal to MaxDiam and centre lying in the bary-
centre of triangle K and we focus on every triangle whose barycentre lies in this
circle. Therefore, we go through whole Th,2 element by element (Let us denote
current element by triangle I.) and we compare the distance from barycentre of
triangle I to barycentre of triangle K with the radius of the circle. If the dis-
tance is less than or equal to radius then we count intersection of triangle I and
triangle K (subroutine which counts this intersection will be described further in
this chapter). If the distance is greater than radius then we move on to next
triangle from Th,2.

Moreover, if the counted intersection is nonempty1 then we increase NumTri
by one and we also add triangle I to array triangles. Finally, we add all neighbours
of triangle I to link and we stop “the going through” of whole Th,2 there.

1In this part we consider everything except empty set as a nonempty intersection. Even one
point which has measure equal to zero; thus, the volume integral over this intersection would
be equal to zero, too. It’s important to add these types of intersections too, because despite
the fact that triangle with intersection containing only one point isn’t important at all, his
neighbours could be important and it can possibly happen that we wouldn’t add them to link
by different mean.

11

Therefore there ends the part of finding the triangle with nonempty inter-
section with triangle K. But if the intersection of triangle I and triangle K was
empty then we move on to next triangle and continue with “the going through”
the grid Th,2 until we find triangle with nonempty intersection with triangle K or
until we run out of triangles from Th,2. If it happens, it is probable that some mis-
take has occured because the range of MaxDiam from the barycentre should be
sufficient. But we have implemented something like “the backup parachute” just
in case of some peripheral problem. In that case we multiply actual radius of the
circle by two and we start up whole part of finding one triangle with nonempty
intersection with triangle K once more. If it won’t help then we dare to say that
triangle K is not in domain which is covered by Th,2.

Now we are situated in the stage when we found 1st triangle from Th,2 which
has nonempty intersection with triangle K and we added its neighbours to linked
list link. Further follows several steps which are repeated until link is empty.
Here they are:

1. We take 1st triangle from link.

2. We count the intersection of this triangle and triangle K and fill appropriate
variables.

3. If the intersection is non-empty we add neighbours of this triangle.

4. If the link isn’t empty go to 1 otherwise end.

By emptying out the link we have finished Step 1. There’s just one more thing to
be done in this section and that’s to explain the counting of intersection of two
triangles. We will do so in next section.

The intersection of 2 triangles

Let us explain the most difficult part of our task: Finding and describing of
intersection of two triangles (triangle I and triangle K). In the code subroutine
IntersectTris was done to do this job. To count the intersection, we pass following
arguments to the subroutine: integers I and K, 2 variables of derived data type
mesh gridK, grid representing both Th,2 and Th,1, variable of type intersect to
be filled by evaluated intersection and logical variable fin. The variable fin can
end whole subroutine. If its value is “truth” then we have covered whole area of
triangle K and we can end the subroutine).

The main idea of this subroutine is to figure out where the vertices of tri-
angle I lie with respect to triangle K, i.e., how many vertices of triangle I is out-
side, inside, on the edge or are similar with a vertice of triangle K. According
to this information we have a rough idea of what the intersection looks like and
which edges of the triangle should have intersection with triangle K. Thus we
know which edges of triangle I and triangle K would cross and therefore, should
be counted their intersection.

Probably the most thorny problem of all was to add the points which define
intersection in right order so that, they make polygons. It was also tough not to
forget all peripheral problems, e.g. these, when vertex of triangle I (point B in
figure2.1) is really closed to edge of triangle K but it can be still judge as inside

12

vertex. Despite the fact that intersection with line-made from this vertex to some
vertex outside triangle K-and some edge of triangle K should exist, we cannot
find any because this intersection is pretty much similar to the vertex inside.
Hence as intersection we consider only points 1, A, III from figure 2.1 and there
appears a small loss of volume in the results. But as the numerical verification
shows the loss is small enough not to influence the evaluation too much.

Figure 2.1: Error in case B

Now let us present subroutine PosNodes which finds out where vertices of
triangle I lie in view of triangle K. Let us denote vertices of triangle I by nodesi
and vertices of triangle K by nodesK (both of these are in the program arrays of
real numbers with size (1 : 3, 1 : 2)). Subroutine PosNodes also fills appropriate
variables, i.e., array post which records position of every vertex of triangle I and
other four variables (derived data type pos, variables: edg, ver, ous, ins) which
remember how many of nodesi is of the corresponding type (edge, vertex, outside,
inside) and which number does this particular vertex has.

This subroutine finds out where all three vertices of triangle I lie but the
important part is to find the position of one vertex then it is just repeating
of the same thing three times. So let us consider one vertex of the triangle I
and let us call it D. First, we compare D with 3rd vertex of nodesK. If they’re
similar we fill appropriate variables and we’re done. Otherwise we count the
point where two lines intersect. It is the line from 3rd vertex of nodesK to D
and line from 1st to 2nd vertex of nodesK. But for now the important thing isn’t
the intersection point, not even if the abscissae has the intersection or just the
line has it; the important things are the parameters (the unknowns in the system
of linear equations) which we use to count the intersection. According to values
of these parameters we can decide where D lies. To know which value of the
parameters means which position, please observe table 2.4, where the parameters
are denoted by t(1), t(2) and nodesK by A, B, C, respectively.

Moreover, we present three other important subroutines: SwapNodes, Inside,
FillInOrder. We pass nodesi and integer i as arguments to subroutine SwapNodes
and this subroutine swaps the order of nodesi so that the node which was on
the j-th position is 1st and the node which was on the 1st position is j-th. To
the subroutine Inside we pass physical coordinates of point x, physical coordinates

13

t(1) t(2) position

(0, 1) (1,∞) inside
(−∞, 0); (1,∞) R outside

R (−∞, 0); (0, 1)
R 1 line AB
1 R line BC
0 R line CA
0 1 vertex A
1 1 vertex B

eliminated before vertex C

Table 2.4: Position of D in dependence on values of t

of triangle (array (1:3,1:2)) triang and logical variable ins. With the aid of
barycentric coordinates subroutine returns TRUE if the point x lies in triang.
The subroutine evaluates the barycentric coordinates of x in view of triang and
if they belong to interval (0, 1) then x lies inside the triangle. We have also
implemented subroutine Inside2 which is similar to Inside but it returns TRUE
also when x lies on the edge of the triangle. The last important is subroutine
FillInOrder which fills variables inter%IntPnt and inter%NumPnt with points
x1, x2 in “right order.” Besides mentioned variables we pass to FillInOrder edges
of triangle K on which the intersections points x1, x2 lie. This subroutine places
the intersections points so that they are ordered anticlockwise, e.g. first one is
the intersection lying on edge which conects vertices 1 and 2 and second one is
the intersection lying on edge from vertex 2 to 3. This is important because we
hold this direction through whole code so that the intersections create polygons.

We explain the algorithm of intersection of two triangles with aid of flowchart
which you can observe on figure 2.3. We carry some special marking in the
flowchart. Firstly, ”nodesi(j:k)” means j-th and k-th vertex of triangle I. Then we
denote the edge of triangle I , i.e., abscissae from nodesi(1) to nodesi(2), by 1&2.
In some cases instead of numbers 1 and 2 there can be placed variables restoring
integers from 1 to 3. For all figures in flowchart red is reserved for nodesi, green
for nodesK and yellow marks the intersection of two triangles.

2.3.2 Step 2

In this subsection we should explain how to make triangles from polygons. Gen-
erally, the intersection can contain from one to six points. The interesting in-
tersections are of course these which are composed from three and more points.
Because two points make line and one point or line have both measure equal to
zero, thus volume integration over them is equal to zero, too. If the intersection
is made from three points then it is a triangle and there is no need to separate it
into more triangles. The case of four and more points is described on figures 2.2.
The vertices of polygon are inscribed by arabic numerals, i.e. 1, 2, . . . , 6 and the
triangles are inscribed by roman numerals, i.e. I,. . . ,IV. As you can see count of
triangles is equal to count of vertices of polygon minus two.

14

Figure 2.2: The division of polygons into triangles

2.3.3 Steps 3 & 4

Steps 3 and 4 aren’t too complicated. In Step 3 we just have to convert one
barycentric coordinates to another. In every triangle of Th,1 and Th,2 we have
points in which quadrature functions are known. Let us denote these points by
xi. But after counting the intersections and separating these intersections into
triangles we have new triangles. Let us denote them tris and the triangles from
Th,1 and Th,2 which contains them I and K, respectively. In tris we don’t know
what the values of these quadrature functions are. But tris are subsets of triangles
from Th,1 and Th,2. So that we take the barycentric coordinates of xi in tris and
we calculate the barycentric coordinates of xi in triangle I and triangle K. Let
us denote new barycentric coordinates in triangle I xii and in triangle KxiK .
Afterwards we count the product of these two quadrature functions (defined in
xii and xiK) and we multiply it by the weight function and in the end we count
integral of the result over tris.

15

Figure 2.3: The flowchart of the algorithm

Nodesi is
different from

nodesK?
Add nodesi(1:3) STOP

NO

YES

Is the
count of inside
vertices equal

to 3?

Add nodesi(1:3) STOP

YES

Is the
count of inside
vertices equal

to 2?

Is the
count of

inside vertices
equal
to 1?

Is the
count of

edge + vertex
vertices equal

to 1?

YES
Add nodesi(1:3)

YES

Find out which
vertex is outside,

denote it by j.

Call
SwapNodes

(nodesi,j)

Find intersections:
x1: nodesK and 1&2
x2: nodesK and 1&3

Add:
1) intersection x1
2) nodesi(2)
3) nodes(3)
4) intersection x2

Is any
nodesK inside

nodesi?

Is
nodesK(j)

different from all
already
added?

YES-
nodesK(j)

Add
NodesK(j)

YES

STOP

STOP

NO

NO

STOP

STOP

NO

Is the
count of

edge + vertex
vertices equal

to 2?

Add nodesi(1:3)

STOP

YES

Find out which
vertex is outside,

denote it by j

Call
SwapNodes

(nodesi,j)

Add nodesi(2:3)

Find intersections:
x1: nodesK and 1&2
x2: nodesK and 1&3

x1
exists and is
different from
already added

points?

Add x1

x2
exists and is
different from
already added

points?

Add x2

STOP

x2 exists and is
different from
already added

points
Add x2

STOP

STOPNONO

YES

YES

YES

Is the
count of

edge + vertex
vertices equal

to 1?

NO

YES

NO

NO

We have 1 inside, 2
outside vertices.

Find the one inside,
denote it by j.

Call
1)SwapNodes

(nodesi,j)
2)SwapNodesKJ

(nodesi,2,3)

Add nodesi(1)

Find out how
many intersections

of NodesK and
2&3 exist,

remember them.
Denote this

integer by cnt.

NO

NO

NO

16

Is
cnt equal

to 0?

Find intersection (x1) of nodesK and 1&2
which is different from added points and
remember edge of nodesK (denoted by
edge) on which the intersection lies

Same for 1&3,
intersection-x2,

edge-edge2

x1 exists?

Error in caseB

x2 exists? Error in caseB

Add x2.

Is any
nodesK inside

nodesi?

Add this
nodesK.

Is this
nodesK different

from the last
added
point?

STOP

STOP

STOP

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

Add x1.

x2 exists?

NO

Edge
equal to
edge2?

Add x2.

STOP

YES

Is
 first

vertex of edge of
nodesK inside

nodesi?

YES

Add that
nodesK.

Is
second

vertex of edge of
nodesK inside

nodesi?

Add that
nodesK.

Is
the remaining

vertex of nodesK
inside

nodesi?

Add that
nodesK.

YES

YES

YES

NO

NO

NO

Add x2. STOP

Is
cnt equal

to 1?

Find intersection
(x) of nodesK and
1&2, which differs

from already
added points.

1) Add x.
2) Add the intersection
of nodesK and 2&3.

Find intersect (x)
of nodesK and

1&3, which differs
from already
added points.

Add this
intersection.

STOP

YES

NO

cnt=2
1) Find intersection
(x) of nodesK and
1&2, which differs

from already added
points and

remember the edge
of nodesK(denoted
by edge) on which
the intersection is.

2) Add x.

Find intersection
of 2&3 and edge
from above(x1)

x1
exists?

Add x1.

Is
the vertex(V)

of edge, which lies
further in the triangle
anticlockwise, inside

nodesi and differs
 from already

added?

YES

NO

Add this vertex.

Denote by n the
number of

intersections of
nodesK and 2&3,

which has not
been added yet.

n equal to 2?
Call FillInOrder

to add these
intersections.

n equal to 1?

Add the only
intersection.

Is
the vertex of

nodesK folowing vertex V
anticlockwise inside
nodesi and differs

from already added
points?

Add that
vertex.

Is
the only untest

vertex of
nodesK inside

nodesi?

Add that
vertex.

Add the
intersection of

nodesK and 1&3.

STOP

NO

NO NO

NO

YES

YES

YES YES

YES

NO

NO

NO

17

Is the
count of

edge + vertex
vertices equal

to 3?

Add nodesi(1:3) STOP
YES

Is the
count of

edge + vertex
vertices equal

to 2?

NO

Is the
count of

edge
vertices equal

to 2?

Find out which are
on which

edges(edgi(1),edgi
(2)) and which is

outside.(ou)

Are
these on edges

on the same
edge?

Add
nodesi(edgi(1))

and
nodesi(edgi(2))

Find the intersections with K
and:

x1: nodesi(edgi(1))&nodesi(ou)
x2: nodesi(edgi(2))&nodesi(ou)

STOPExist
x1 and x2?

Add x1 and x2.

STOP

YESYES YES

YES

NO

Find out which one
is the outside.
Denote it by j.

Call
SwapNode
s (nodesi,j)

Add nodesi(2:3)

Find the intersection of>
x1)nodesK and 1&3
x2]nodesk and 1&2

x1 exists? x2 exists? Add x1, x2.

STOP
Add x1.x2 exists?

1)add shared vertex
of edgi(1), edgi(2)

2)add x2

STOP

Is any
 nodesK inside

nodesi?

Add that nodesK.

STOP

Is any nodesK
inside nodesi?

Add that nodesK.

Add x2.

STOP

YES YES

YES

YES
STOP

STOP
YES

NO

NO

NO

NO

NO

Is the
number of

edge
vertices equal

to 1?

Find out which vertex is on
vertex(vr), outside(ous), on

edge(edge)

Add nodesi(ed),
nodesi(vr)

Find intersection of:
x1: nodesK and ou&ed
x2: nodesK and ou &vr,

which differs from already
added points.

x1 exists?

x2 exists?

Add x1, x2.

STOP

Add x1.

x2 exists?

Add x2.

STOP

Is any
 nodesK inside nodesi

and different from
already added

points?

STOP

Add this nodesK.

STOP

STOP

YES

YES

NO

NO
YES

NO

NO

YES

YES

Add the two
nodesi on vertices.

Find out which is
outside. Denote it by j.

Call SwapNodes
(nodesi,j)

Exist
intersection of
nodesK and

1&2(x1)?

Add x1.

STOP

Exist
intersection of
nodesK and

1&3(x2)?

Add x2.

STOP

Exist any
 nodesK inside nodesi

which differs from
already added

points?

Add this nodesK.
fin=.true.

STOP

STOP

NO

Is the
count of

edge
vertices equal

to 1?

Find the vertex
which is on the

edge. Denote it by j.

Call Swapnodes
(nodesi,j)

Find out how
many intersections

of nodesK and
2&3 exist. Denote
that integer by cnt.

YES

NO

Is
cnt equal to

1?

NO

Find the intersections of:
x1)1&2 and nodesK
x2) 1&3 and nodesK

which differ from already
added points.

x1 exist?

Add x1 and the
intersection of

nodesK with 2&3.

x2 exist?

Add x2 and the
intersection of

nodesK with 2&3.

STOP x2 exist?

Add x2.

STOP

YES

YES YES

YES

NO

NO

Is
the count of
edge+vertex

vertices equal
to 1? YES

NO

YES

YES

YES

NO

NO

NO

NO

NO

NO

18

Is
cnt equal to

2?

Find the intersection (x) of
nodesK and 1&2 which

differs from already added
points and remember the
edge of nodesK on which

x lies (edge).

x exists?

Add x.

Find and add the
intersection of 2&3

and edge.

Add the remaining
intersection of 2&3

and nodesK.

Find the intersection
(x1) of 1&3 and

nodesK which difffers
from already added.

STOP

YES

Find and add the
intersection (x2) of

nodesK and 1&š which
differs from already added
points and remember the
edge of nodesK on which

x lies (edge).

Find out on which
edges the

intersections of
nodesK and 2&3 lie.

Call FillInOrder
on these edges

and intersections.

STOP

x1 exists?

Add x1.

YES

NO

NOYES

cnt=0.
Find the intersection of:

x1) nodesK and 1&2
x2) nodesK and 1&3

And remember the edges of
nodesK on which the

intersections lie(edge1, edge2)

x1 exists?

Add x1.

x2 exists?

Edge1
is the same as

edge2?

Add:
1) shared vertex of
edge1 and edge2

2) x2

STOP

YES

YES

Add x2.

STOP

Are any
nodesK inside or on the

edge of nodesi and different
from already added points(can

be more than on such
a nodesK)

Add them. STOP

x2 exists?

Add x2.

Is any
nodesK inline
with 1&2 and

differ from
already
added?

Add it.

STOP

YES

YES

YES

YES
NO

NO

NO

NO

NO

NO

NOFind out which vertex
is on the vertex.
Denote it by j.

Call SwapNodes
(nodesi,j)

Add nodesi(1)

Find out how many
intersections of nodesK
with 2&3 exist. Denote

this count by cnt.

Is
cnt equal to

2?

Find the intersection of
nodesK and 1&2 (x) and the edge

of nodesK on which the inters.
lies(edge1)

YES

x exists?

Add x.

Find the intersection
of edge1 and 2&3(x1)

x1
exists?

Add x1.

Find the intersection of
nodesK and 1&3(x2).

x2
exists?

Add x2.

STOP

Add the remaining
intersection of

nodesK and 2&3.

NO

YES

YES

YES

Find and add the
intersection of

nodesK and 1&3
and the edge of

nodesK on which
the inters.

lies(edge2).

NO

Find the intersection
of edge2 and 2&3(x3)

NO
x3

exists?

Add x3. Add the remaining
intersection of

nodesK and 2&3.STOP

YES NO

STOP

STOP

Is
cnt equal to

1?

NO

Add all inside nodesK
which differs from

nodesi(1).

Count
of added points

<3?

Find out how
many intersections

of nodesK and
1&2 exist(cnt).

cnt>1?

Add the intersection
of 1&2 which differs
from already added

points.

STOP

Add the intersection
of 1&3 which differs
from already added

points.

STOP

STOP

YES

NO

YES

NO

YES

Add all inside nodesK
which differs from

nodesi(1).

Find out which vertex
is the one on the

vertex. Denote it by j.

Call SwapNodes
(nodesi,j)

Find and add all intersections
of nodesK(2) & nodesK(3)

with nodesi, which differ from
already added points.

STOP

NO

19

Find out how many
intersections of
nodesK with:
1) 1&2 (cnt1)
2) 2&3 (cnt2)
3) 1&3 (cnt3)

cnt:=cnt1+cnt2+cnt3

Cnt
is equal to

6?

Call FillInOrder on 2
intersections with

first edge od
nodesK, last added

was on edge of
nodesi which we

denote by ed.

Add:
1)the intersection of
the second edge of

nodesK with ed
2)add the remaining

intersection with second
edge of nodesK (denote
the edge of nodesi on
which this intersection

lies by ed2)

Add:
1)the intersection of

the third edge of nodesK
with ed2

2)add the remaining
intersection with third

edge of nodesK

STOP

YES

Cnt
is equal to

5?

Find out which of
cnt1,cnt2,cnt3 is

equal to 1. WLOG
it is cnt1.

Add the intersection
of nodesK and 1&2,
Denote the edge of
nodesK on which

this inter. lies by ed.

Add the intersection
of 2&3 and the edge

following after ed
clockwise.

Add the remaining
intersection of 2&3

and nodesK.
Denote the edge

od nodesK on
which this inter.

lies by ed2.

Add the intersection
of 1&3 and ed2.

Add the remaining
intersection of 1&3

and nodesK.

STOP

YES

NO

Cnt
is equal to

4?

Are
cnt1, cnt2, cnt3

all different
from 0?

Find out which of
cnt1, cnt2, cnt3 is
equal to 2, WLOG

cnt1.

Add the intersections of
1&2 and nodesK.

Denote the edge of
nodesK on which lies

the last added
intersection by ed.

Add the
intersection of
nodesi and ed.

Find and add the
vertice (V) of edge ed
which is inside nodesi.

Find the remaining
intersection(x).

Does
 x differs
from V?

Add x. STOP

STOP

YES

YES NO

Is any nodesK
inside nodesi?

NO

Add first
intersection and
denote by ed the
edge of nodesi on
which it lies and

by edg the edge of
nodesK on which

it lies.

Denote by ed2
edge following ed

anticlockwise.

Exist
intersection of

ed2 and
edg?

Add it.

Add the
intersections of

edg+1 and nodesi
if exist, if not add
the intersections

of edg+2 and
nodesi.

Add the fourth
intersection.

Find remaining
intersections. First
add the one which
is on ed2, then the

remaining.

STOP

YES
NO

Add the
vertex inside.

Add the
intersection of

nodesi with edge
following the
added vertex
anticlockwise.

Denote the edge
of nodesi on which

it lies by ed.

Add the intersection
of ed and nodesK.
Denote the edge of
nodesK on which it

lies by edg.

Add the
intersection of edg

and nodesi.
Denote the edge

of nodesi on which
it lies by ed2.

Add the
intersection of

nodesK and ed2.

STOP

STOP

YES

Cnt
is equal to

3?

One of nodesK is
on edge of nodesi.
For simplicity let it

be nodesK(1).

Add nodesK(1).

Find the
intersections of

nodesK(1)&nodes
K(2) and nodesi,
which differs from

nodesK(1).

Add the remaining
intersection.

STOP

NO

NO

YES

Cnt
is equal to

2?

NO

Find out how
many nodesK is
inside nodesi or

on the edge
ofnodesi. Denote
this count by in.

In
is equal to

3?

Add
nodesK(1:3).

STOP

In
is equal to

2?

Ed is the edge of
nodesK with no

intersection on it.

Add the found
intersection points.

If the vertices of
ed are inside and

differs from
already added
points then add

them.

Count
of added points

< 4?

Add the remaining
nodesK if it is

inside and differs
from already

added.

STOP

Add the found
intersection points.

There is one
inside nodesK.

Add it.

STOP

YES
NO

YES

NO

YES

YES

NO

Cnt
is equal to

1?

NO

Are
all nodesK inside
nodesi or on the

edge of
nodesi?

Add
nodesK(1:3))

STOP

Add the only
intersection point.

STOP

NO

YES

YES

Are all
nodesK inside

nodesi?

Add
nodesK(1:3)

The intersection of
nodesK and

nodesi is empty.

STOP

STOP

NO

NO

YES

NO

YES

20

3. Numerical verification

In this chapter we demonstrate the funcionality of the program and whole thought
of the volume integration of a product of two functions which are piecewise poly-
nomial on different grids. As it was presented in previous chapters, while applying
DGFEM it turns out to be neccesary to evaluate volume integrals product of two
functions which are piecewise polynomial on different grids. As we do not apply
DGFEM as entirity we found a different mean how to present the results of our
work. As main thought of proving the funcionality we take the law of conservation
mass.

For simplicity we consider little bit different equation from the one presented
in chapter 1. In this case we know the exact solution of this equation which is
useful for verification of our results. We present the scalar nonlinear convection-
diffusion equation

−∇ · (K(u)∇u)− ∂u2

∂x1

− ∂u2

∂x2

= f in Ω := (0, 1)2, (3.1)

where K(u) is nonsymmetric matrix given by

K(u) = ε

(
2 + arctan(u) (2-arctan(u))/4

0 (4 + arctan(u))/2

)
,

the parameter ε > 0 plays a role of an amount of diffusitivity and we put ε = 10−3.
We prescribe a Dirichlet boundary condition on ∂Ω and set the source term f
such that the exact solution is

u(x1, x2) = (x2
1 + x2

2)α/2x1x2(1− x1)(1− x2), α ∈ R. (3.2)

Please observe pictures 3.1 and 3.2 to see how the solution looks like with different
parameter α.

Figure 3.1: Exact solution with parameter α = −1.5 and α = −0.5

As it was presented before the main thought of verification of our results is
based on the law of conservation mass. This law says that the mass m of the
volume V (t) does not depend on time. The mass of the volume is defined as
an integral from density over volume, i.e., m(V (t), t) =

∫
V (t)

ρ(x, t)dx. We start

the computation with the aid of ADGFEM code on a mesh Th,1 and obtain a

21

Figure 3.2: Exact solution with parameter α = 0.5 and α = 1.5

piecewise polynomial approximate solution wh. Then by the ADGFEM code, we
generate a new grid Th,2 and interpolate function wh on the new grid Th,2 by the
L2-projection. In this projection we need to integrate two piecewise polynomial
functions given on different grids, hence we employ the algorithm developed in
previous chapters. We investigate the difference between piecewise polynomial
function wh given on Th,1 and its projection w̃h on Th,2 which in fact represents
a conservation of mass in the interpolation process (if the quantity w represents
a density).

We briefly remind that Th,1 consists of finite number of triangles, i.e. Th,1 =⋃nelem1
j=1 Kj, where nelem1 is number of triangles in Th,1. Let us define function

wh ∈ Sh,p,1, for the definition of this space see equation 1.5 in section 1.4. We
interpolate function wh on Th,2 ; interpolated function w̃h ∈ Sh,p,2 and therefore it
has form w̃h =

∑
j w̃jϕ̃j where ϕ̃j are functions which are piecewise polynomial

of degree p on elements of Th,2 . The interpolation is defined by L2 projections
subsequently:

(w̃h, ϕ̃i) = (wh, ϕ̃i) ∀ϕ̃i ∈ Sh,p,2. (3.3)

Moreover, we have ∑
j

w̃j(ϕ̃j, ϕ̃i) = (wh, ϕ̃i) =
∑
j

w̃j(ϕj, ϕ̃i). (3.4)

The equation 3.4 can be represented in the matrix form as M W̃ = R, where
R =

∑
j w̃j(ϕj, ϕ̃i), M is the so-called mass matrix with elements (ϕ̃j, ϕ̃i) and

W̃ is the vector consisting of coefficient w̃i of function w̃h. We have to solve
this equation for every testing function which means to count the product of two
piecewise polynomial functions ϕ̃j, ϕ̃i which are polynoms of degree p (functions
ϕ̃j are piecewise polynomial on Th,2 and functions ϕi on Th,1). Consequently, we
find out the inverse matrix and we evaluate the product of two matrices. Now we
have found the function w̃. Finally, we evaluate the integral of w̃ over Th,1 and
over Th,2 and denote these two results as w1 and w2:

w1 =
∑

K∈Th,1

1

|K|

∫
K

w dx; w2 =
∑
I∈Th,2

1

|I|

∫
I

w dx, (3.5)

where I, K are the elements of appropriate triangulations and |K|, |I| means
measure of element K and I.

22

As the result of the numerical verification we evaluate the difference between
these two functions and in the following tables we present the results of this
computation. Just for the tables let us denote the maximum diameter of all
elements by H and the minimum diameter by h. Furthermore nelem1 stays 288
constantly but nelem2 changes and you can observe these changes in the tables,
too.

We present results where the second grid Th,2 was obtained by two different
settings in the ANGENER code, namely setting numel = 1000 in the first table
and numel = 4000 in the second table.

α nelem2 H h p w1 w2 w1 − w2

-1.5 1405 7.578E-2 2.370E-2 1 1.140591E-1 1.140591E-1 -4.584444E-12
-1.5 1397 7.599E-2 2.525E-2 2 1.127597E-1 1.127597E-1 -4.163326E-17
-1.5 1388 7.623E-2 2.106E-2 3 1.123454E-1 1.123454E-1 -1.804112E-17

-0.5 978 8.463E-2 4.610E-2 1 6.717706E-2 6.717706E-2 9.714451E-17
-0.5 982 8.459E-2 4.457E-2 2 6.725752E-2 6.725752E-2 -4.163336E-2
-0.5 974 8.460E-2 4.475E-2 3 6.731427E-2 6.731427E-2 5.551115E-17

0.5 744 9.941E-2 4.83E-2 1 4.715243E-2 4.715243E-2 4.762960E-10
0.5 725 0.105 4.789E-2 2 4.724920E-2 4.724920E-2 6.245005E-17
0.5 750 0.105 4.702E-2 3 4.727498E-2 4.727498E-2 -6.245005E-17

1.5 505 0.136 4.783E-2 1 3.676470E-2 3.676470E-2 4.163336E-17
1.5 531 0.137 4.294E-2 2 3.676337E-2 3.676337E-2 6.245005E-17
1.5 517 0.137 4.282E-2 3 3.675132E-2 3.675132E-2 -1.387779E-16

Table 3.1: Results for grids with seting numel = 1000.

α nelem2 H h p w1 w2 w1 − w2

-1.5 3072 6.304E-2 1.234E-2 1 1.140591E-2 1.140591E-1 4.579670E-16
-1.5 3072 6.732E-2 1.368E-2 2 1.127597E-1 1.127597E-1 1.387779E-17
-1.5 3077 6.498E-2 1.603E-2 3 1.123454E-1 1.123454E-1 -4.163336E-16

-0.5 3071 5.151E-2 2.095E-2 1 6.717706E-2 6.717706E-1 -2.160494E-13
-0.5 3072 5.128E-2 2.057E-2 2 6.725752E-2 6.725752E-2 -1.110223E-16
-0.5 3073 5.308E-2 2.082E-2 3 6.731427E-2 6.731427E-2 -1.029593E-13

0.5 2828 5.289E-2 2.349E-2 1 4.715243E-2 4.715243E-2 -7.632783E-17
0.5 2826 5.057E-2 1.318E-2 2 4.724920E-2 4.724920E-2 1.318390E-16
0.5 2814 5.379E-2 2.392E-2 3 4.727498E-2 4.727498E-2 7.632783E-17

1.5 2114 7.510E-2 2.324E-2 2 3.676470E-2 3.676470E-2 2.081668E-17
1.5 2119 7.591E-2 2.102E-2 1 3.676337E-2 3.676337E-2 8.326673E-17
1.5 2136 7.410E-2 2.215E-2 3 3.675132E-2 3.675132E-2 -6.938894E-17

Table 3.2: Results for grids with setting numel = 4000.

Moreover we present some graphs of the solution. For all figures red is reserved
for Th,2 and green for Th,1 .

23

Figure 3.3: 3D graph of the solution, α = −1.5; p = 1, approximately nelem2 =
1000

Figure 3.4: Iso-curve of the solution, α = −1.5; p = 1

24

Figure 3.5: 3D graph of the solution, α = −0.5; p = 3, approximately nelem2 =
4000

Figure 3.6: 3D graph of the solution, α = 0.5; p = 3, approximately nelem2 =
1000

25

Figure 3.7: 3D graph of the solution, α = 1.5; p = 2, approximately nelem2 =
4000

Figure 3.8: Iso-curve of the solution, α = 1.5; p = 2

26

Bibliography

[1] Vlasák, M., Dolejš́ı, V., Hájek, J. A Priori Error Estimates
of an Extrapolated Space-Time Discontinuous Galerkin Method for Nonli-
near Convection-Diffusion Problems. Published online in Wiley InterScience
(www.interscience.wiley.com), 2010.

[2] Dolejš́ı, Vı́t hp-DGFEM for nonlinear convection diffusion problems. Pre-
print submitted to Mathematics and Computers in Simulation, 2012.

[3] Kufner, Alois, John, Oldřich, Fuč́ık, Svatopluk Function spaces. 1. vydáńı
Academia, Prague, 1977. 454p. ISBN 90 286 0015 9

27

	Preface
	Theoretical introduction
	Convection-diffusion problem
	Weak solution
	Triangulations
	Function spaces
	Space semidiscretization
	Volume integration

	The algorithm
	The separation to independent problems
	Specification of variables
	General structures
	Local structures

	The explanation of the alghoritm
	Step 1
	Step 2
	Steps 3 & 4

	Numerical verification
	Bibliography

