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Introduction

0.1 Preface

Ray tracing is a rendering technique used in computer graphics. This technique
has a wide field of applications and is constant subject of research. In most of its
application to date it uses triangle meshes to define the geometry of the scene it
is rendering. These triangle meshes are comprised of a huge number of triangles.
Common scenes can be built out of over 100K triangles. To allow efficient render-
ing of these numbers of triangles sophisticated acceleration structures have been
developed. One of the more most successful acceleration structures is the KD-
tree. Since its introduction significant research was done into its application and
optimization. There are other acceleration structures besides the KD-tree that
are used to increase the rendering performance of ray tracing. Bounding volume
hierarchies (BVH) and grids are such structures. Each of the three structures
mentioned have different properties that make them more suitable in different
usage cases.

Triangle meshes are however not the only way to describe the geometry of
a scene. Constructive solid geometry (CSG) is an alternative way of scene de-
scription. It describes a model as a result of boolean operations on a given set
of primitives. CSG is commonly used for modeling scenes and objects, however
it is rarely used as a direct scene description for ray tracing. In most cases an
object modeled using CSG is converted into a triangle mesh and the mesh is
than ray traced. This is mostly done, because handling a scene with one type
of primitive, the triangle, is more convenient and arguably also more efficient in
many usage cases. The research presented in this thesis seems to indicate that
this assessment is actually not as clear-cut as once thought. Still, at least in the
past, this widespread assumption seems to have led to less research being invested
into making ray tracers using SCG as efficient as the ones using triangle meshes.

There is a potential advantage to using CSG. The number of primitives used
to describe a scene using CSG is orders of magnitude lower than the number of
triangles needed to describe the same scene. Still, real-life CSG scenes contain a
relatively high number of primitives. Considering that ray-primitive intersection
tests for these primitives are generally more costly than the ray-triangle intersec-
tion test, an acceleration structure is still warranted.

The goal of this thesis is to explore the possibility of adapting the acceleration
structures developed for triangle mesh ray tracing to serve as an acceleration
structure for CSG ray tracing. The most problematic part of this adaptation is
to make the acceleration structure work with the boolean operators present in
CSG. These operators make CSG a powerful modeling tool, however they do not
work well with acceleration structures.

To achieve this goal an adaptation of the KD-tree acceleration structure will
be show. The choice to explore this option was made based on the success of
the KD-tree as an acceleration structure. Also the implementation of the basic
form of KD-tree is relatively simple, while it provides high performance benefits,
which makes it perfect for testing purposes.
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0.2 Outline

This thesis consist of 4 chapters.
In the first chapter is an introduction into ray tracing. It explains the key

differences between triangle meshes and CSG and introduces some of the more
commonly used acceleration structures with emphasis on KD-trees.

The second chapter describes the adaptation of the KD-tree for CSG ray
tracing. It introduces the Operation KD-tree (OKD-tree). An adaptation of a
simple optimization for the KD-tree is also described here.

In the third chapter the need to include triangle meshes into CSG as a prim-
itive is discussed.

The fourth chapter deals with testing of the proposed algorithm. Test scenes
are discussed one-by-one showing the strengths and weaknesses of the algorithm.
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1. Ray tracing

1.1 What is ray tracing

Ray tracing is one of the image synthesis techniques used in computer graphics. It
generates the image by tracing the path of a light-ray. This technique is capable
of producing images with very high degree of visual realism. In almost all cases
the images created by ray tracing look more real than those created by z-buffer
or scan-line rendering methods. The drawback of the ray tracing method is that
it has high computational costs compared to some other methods.

Ray tracing constructs the image by tracing the path of a a light-ray sent
from the camera into the scene trough the pixels of the rendering plane. The
rendering plane is the actual image that is being constructed. Sending the ray
from the camera into the scene might seem contra-intuitive since in reality the
light travels from the scene into the camera. However, the vast majority of the
rays reflected by the scene never hit the camera. Reversing the direction of the
followed rays eliminates this problem.

Rendering an image using ray tracing has the following phases:

• The ray is tested for intersection with the scene. If there are any intersec-
tions the nearest one to the camera needs to be found, because this would
be the point visible from the camera. The basic way to find the inter-
sections between the ray and the scene is to do a ray-object intersection
for every object in the scene. This has a high computational cost, forcing
the ray tracer to spend the overwhelming majority of rendering time doing
intersection tests.

• When the nearest intersection to the camera has been found, the lighting
calculations are done. The reason for this is to estimate the incident light
from the intersection point. Different methods of doing lighting calculations
range in their complexity. Generally, more realistic images require more
complex lighting calculations.

Almost all lighting methods use secondary rays sent from the intersection
point to complete the lighting calculation. These rays are used to determine
shadow, specular reflections, refraction, etc. If true realism is required, the
secondary rays would be used to execute a monte-carlo approximation of the
rendering equation. This equation is an integral equation that determines
the equilibrium radiance leaving a point. It was simultaneously introduced
into computer graphics by David Immel et al. [6] and James Kajiya [7] in
1986.

The need to send secondary rays to complete the lighting calculation means
that there is a recursive property inherent to ray tracing. Again, more
realistic images require deeper recursion.

• Finally, based on the incident light the pixels of the rendering plane are
colored.

The recursion inherent to ray tracing can be controlled in different ways. The
simplest way is to use a non-adaptive method and stop, when the recursion has
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Figure 1.1: A diagram demonstrating ray tracing algorithm [15]

reached a certain fixed depth. A more sophisticated way stops the recursion
when the importance of the secondary rays gets below a given threshold. The
importance of the secondary rays is determined by the lighting method. Usually
reflective surfaces assign high importance to the secondary rays sent from them,
while diffuse surfaces assign less importance. This adaptive method still requires
a maximum recursion depth limitation, otherwise for very reflective surfaces it
might allow an extremely deep recursion.

Ray tracing has several advantages. The methods used to estimate incident
light from a given intersection create a realistic image. Effects that are difficult
to get from other rendering methods such as shadows, reflections, transparent
and translucent materials etc. are a natural result of the ray tracing algorithm.
However ray tracing has a significant drawback. The recursive nature of the
algorithm adds up to a very high computational complexity. These properties of
ray tracing make it an ideal method for applications where the image is rendered
ahead of time and great demands are placed on its accuracy.

1.2 Scene descriptions for ray tracing

There are several ways to describe the a scene for ray tracing. In this thesis we
will discuss the triangle mesh and the CSG tree.

1.2.1 Triangle meshes

Triangle meshes are the most commonly used method for describing the scene
geometry. They are a boundary representation structure in which the boundaries
of objects are represented by a high number of triangles. In computer graphics,
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triangle meshes are preferred for several reasons. One of the major reasons is
that the processing complexity of triangles is relatively small compared to any
higher order primitives. Also, having a scene where there is only one kind of
primitive is advantageous. Graphics hardware can be optimized to have fast
triangle processing. One can utilize parallel processing to a very high degree
with the assumption that every object in the scene can be handled the same
way. Using novel methods for storing triangle meshes and various level of detail
implementation strategies make triangle meshes a practical way to describe a
scene.

Triangle meshes have some properties that are interesting form the perspective
of this thesis.

• Every face in the triangle mesh is actually part of the resulting scene. A
face can be occluded by another face, however baring occlusion there are
no instances where a ray intersection with a given face would not create a
shaded point. A direct consequence of this is the fact that one can stop
testing for intersections once the nearest intersection is found.

• To create a good looking model using a triangle mesh, the number of trian-
gles has to be high. An obvious example for this is the sphere. To create a
convincing approximation of a sphere using triangles one needs to tessellate
the sphere into a lot of small triangles.

• The number of triangles needed to create a convincing approximation of any
object is dependent on the circumstances under which the object is viewed.
A specular object will need more triangles than an object that has a fully
diffuse material. An object viewed from far away need not be so finely
tessellated as an object that is close. This property of the triangle meshes
forces one to consider implementing level of detail strategies to counter the
rising number of triangles.

The second and third items mentioned on the list above have inspired the goal
of this thesis. The first item is mentioned because it is the main problem faced
when trying to use a different scene description method.

1.2.2 Constructive Solid Geometry

CSG is a method of constructing complex geometry by combining simple primi-
tives using boolean operators.

Modeling using CSG has some useful properties.

• Checking whether the model is a solid is very easy. As long as one uses solid
primitives, the models they create are also solid (water-tight). In contrast
modeling through some kind of boundary representation like meshes might
require consistency checks to make sure the resulting model is a closed solid.

• Determining whether an arbitrary point is inside a model is just a mat-
ter of determining this for every primitive used and running the boolean
operations.
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• No level of detail consideration needed. Finding ray intersections with these
primitives is done analytically. This is important, because it means that no
matter the scale one is working on, a precise intersection can be calculated.
This eliminates the need for level of detail considerations, which are present
when working with triangle meshes that are just approximations of an object
that is modeled.

• Complex models can be described using only a small number of primitives.
This is made possible by using boolean operations to combine different
primitives. In fact for many scenes the number of primitives required to
create them using CSG is orders of magnitude smaller than the number of
triangles required to model the same scene using triangle meshes. Fewer
primitives in the scene means fewer intersection test are executed during the
ray-scene intersection test, which is beneficial for the rendering performance.
This property of the CSG scenes is the focus of this thesis.

The above mentioned properties of CSG modeling are the reason why some
applications use this kind of scene description for creating models of complex
objects. For the actual rendering process however, the models created this way
are usually tessellated and only the resulting triangle meshes are rendered. In
this thesis we discuss the case when the CSG model is rendered directly.

CSG models use several different primitives. Every application has its own
set of primitives. We use the following primitives:

• Sphere

• Cube

• Torus

• Cylinder

• Cone

• Hyperboloid

• Paraboloid

The operations used in CSG modeling are shown in figure 1.2.

• OR operator is the union of two objects.

• AND operator is the intersection of two objects.

• SUB operator is the difference of two objects.

The CSG geometry is described by a tree structure, the semantic scene graph.
The leaves of this tree hold the primitives, while the intermediate nodes are
either the boolean operations or different attributes. The most commonly used
attributes are:

• Transformations. (rotation, translation, scaling etc.)

• Materials descriptions
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Figure 1.2: Boolean operations in CSG. Left to right: Union, Intersection, Dif-
ference [13, 12, 14]

• Surface descriptions (color, texture etc.)

The attributes are applied to the primitives in the subtree defined by the
attribute node. Some attributes, like the the transformations are combined, while
others supersede each other (a primitive should have only one material). In the
case of attributes that supersede each other the one closest to the primitive is
applied.

To execute the ray-scene intersection test the semantic scene graph is traversed
in a dept-first manner. During traversal the attributes are applied. When a
primitive is reached it is intersected and an intersection list is generated. This
intersection list is then combined in in the operation nodes with the intersection
lists generated by the other primitives. The intersection list that reaches the root
of the tree will contain the intersections with the whole scene. The rules by which
the intersections are combined are shown in figure 1.3.

Unfortunately ray tracing a CSG-tree directly gives rise to a problem that not
all intersections with primitives yield a point that can be shaded. An example
would be when the ray hits an object that is subtracted from another object.
In this case the intersections on the subtracted part are going to be eliminated
during the combination in the subtraction node. The direct consequence of this
is that one might need to continue the intersection tests even after the nearest
intersection to the eye or camera has been found.

1.3 Acceleration structures

As described the basic ray tracing algorithm needs to find the first intersection
point with the scene. The naive approach of this is to intersect all the primitives
in the scene with the ray, rank the intersections and chose the first one. This
naive approach has performance issues. Test have shown that the most time
consuming operation in ray tracing is indeed finding the intersection with the
scene. The cost of executing an intersection test for each one of the primitives in
the scene gets unreasonably high with the growing number of primitives in the
scene. Considering that a finely tessellated triangle mesh scene can have well over
100K triangles this problem needs solving.
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Figure 1.3: Combining Intersections in CSG

There are two ways of approaching the problem. The first one would be to
decrease the number of primitives in the scene. This could be done by directly ray
tracing the CSG scene, however even the relatively small number of primitives
in the CSG scene can be problematic. More so when one considers that for
some of the primitives used in CSG the intersection test involves more complex
calculations than for a simple triangle.

The second way to make finding the intersection between the ray and scene
more efficient is not to test every primitive in the scene. In every scene most of the
primitives do not intersect the ray. There are ways to classify the primitives in a
manner which makes it possible to decide for a large number of them whether any
of them needs to be considered for intersection testing, using only one intersection
test. The idea is to group primitives together according to some topological
criteria. When this is done the whole group could be surrounded by a bounding
volume (BV). When the ray-scene intersection test is being executed, this BV
is tested for intersection before the primitives within are tested. If the ray does
not intersect the bounding volume of the clump there is no reason to test the
individual objects in the group.

There are several structures that do just this. These acceleration structures
have been researched in detail in the past. Most of these structures have been
developed for use with triangle meshes and are optimized for such use. In the
following section a few of these structures will be described.

1.3.1 Bounding Volume Hierarchies

BVH is a tree structure. In this structures the primitives of the scene are sur-
rounded by a BV. These BVs are the leaves of the tree. The inner nodes of the
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Figure 1.4: Example of bounding volume hierarchy (BVH) in two dimensions,
where bounding volumes are AABB [16]

tree are BVs that encompass the BVs of their children. This results in the root
being the BV for the entire scene. A BHV is shown in figure 1.4.

In this structure when a ray is intersection tested against the BV of an internal
node of the tree and misses it, the children of this node need not be tested for
intersection.

The matter of what kind of bounding volume is to be used is a matter of
finding a balance. On the one hand a bounding volume that encompasses the
primitive as tightly as possible would eliminate more intersection tests. On the
other hand the intersection test for the bounding volume should be as cheap as
possible and also the memory required to store the parameters of the BV should
be as small as possible. The axis aligned bounding box (AABB) is good candidate
for such a BV. Most implementations of BVHs use AABBs as bounding volumes.

There are several ways to build the BVH. Top-down building starts with one
bounding volume for the entire scene. The primitives in the scenes are divided
into groups — mostly two groups, if a binary tree is used — according to some
criteria. BV for the groups are calculated and assigned as children to the node
that is being divided. The building algorithm is called recursively on the children,
each of them containing one of the groups.

Bottom-up methods start from the other end. In this case one starts with all
the leaves and starts to group them together until one single node is created for
the entire scene.

Top-down methods are more commonly used because they are easier to im-
plement, however they might yield less efficient trees. The efficiency of the tree
is greatly influenced by the strategy used to group the objects. Some of the
grouping strategies will be mentioned later, because they are also used by other
adaptive acceleration structures.

A BVH is an adaptive acceleration structure in the sense that the tree adapts
to the geometry of the scene. If a good grouping strategy is used, dense areas of
the scene produce their localized subtrees on higher levels of the tree. These dense
areas which could be standing apart of other dense areas are then eliminated from
ray intersection tests in the first few traversal steps through the tree.

A BVH groups its objects so that they belong into exactly one child of a node.
This attribute of the BVH makes it possible to estimate of the memory cost of
the tree which is useful. This same attribute however means that it is possible
for the child nodes of a given node to overlap significantly. Generally one would
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traverse the child that has been intersected first by the ray before the other child.
If the child nodes do not overlap any intersection found in the first child would be
the closest intersection to the camera. If the children do overlap this assumption
does not hold, thus one must traverse the other child too, if it is also intersected
by the ray. This precludes any early exit possibilities.

The traversal algorithms for BVH tend to be slower than for other acceleration
structures just because a the ray-AABB intersection test is more costly than a
ray-plane intersection test used by the KD-tree. Also storing the whole AABB is
more costly than storing a KD-tree node.

The BVH is mentioned here despite some of its flaws because a sort of BVH is
very easily implemented into SCG ray tracing and so forms a natural comparison
for the novel acceleration structure introduced in this thesis.

1.3.2 Surface Area Heuristic

There are several grouping strategies. Primitives are usually sorted according to
their centroids. One of the simplest way to divide them into two groups is to do
a median split. This grouping is however very inefficient. In most cases it fails
to isolate empty space. Isolating empty space close to the root of any tree based
acceleration structure stops the traversal of rays that miss the scene geometry as
soon as possible. To create a more efficient splitting strategy this consideration
was taken into account.

One of the most widely used grouping strategies is the surface area heuristic
(SAH) [2, 9, 4]. This heuristic considers the geometry of the node that is being
partitioned, and tries to chose the split that has the lowest cost of ray tracing. In
order to calculate the cost of a given split one makes the following assumptions:

• The rays are uniformly distributed, they are infinite and go trough the node
being partitioned.

• The cost of traversing a node Ct and the costs of intersecting the primitives
Cp are known.

With these assumptions in mind the cost of a given split is the cost of in-
tersecting the child nodes multiplied by the probability of hitting the child node
plus the traversal cost.

C = Ct + P1 ∗ C1 + P2 ∗ C2 (1.1)

The probability of hitting a child node when the parent node was hit is the
ratio between the surface area of the child node and the parent node. The cost of
intersecting a child node is the sum of the cost of intersecting the primitives in it.
For triangle meshes where all primitives are triangles it’s a simple multiplication.

C = Ct +
SA(B1)

SA(B)
∗N1 ∗ Cp +

SA(B2)

SA(B)
∗N2 ∗ Cp (1.2)

The SAH can be also used to determine when to stop subdividing groups. If
there is no split or grouping that has a lower cost than the intersection cost of
the current node, one can stop the subdividing process.
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With the use of the SAH the resulting acceleration structure can be very
efficient, however the implementation of the SAH might be costly. In its basic
form it calls for considering every possible grouping of primitives. However this
can be avoided. In the section about KD-trees one such implementation will be
shown.

1.3.3 Uniform Grid

Grids are a simple space partitioning data structures. They are discussed here to
introduce the idea of space partitioning.

Space partitioning structures do not group the primitives as BVHs do. These
structures divide the scene into areas while for every area they maintain a list of
objects that are at least partially in this area. This yields two major differences.
Unlike with BVHs the areas of the space partitioning structure do not overlap.
The primitives however are not limited to be part of only one area.

As a consequence if the space partitioning structure can be traversed in the
direction of the ray the first intersection achieved is the closest intersection to
the camera. This gives opportunities for early acceleration structure traversal
termination.

Uniform grids partition a the space into a uniform grid with a predetermined
resolution. Building a grid structure is then a simple matter of finding the cells
with which a given primitive overlaps and assigning the primitive to these cells.
Also the traversal algorithm developed for the uniform grid is extremely fast.
These two attributes are the main advantages of grid-like structures; fast building
and traversal.

Basic grids are however non-adaptive structures. This meas that their resolu-
tion is given beforehand, and usually does not change during their construction.
Because of their non-adaptive nature grids are susceptible to the ”teapot in the
stadium” problem. This problem arises when the scene has a high density or ge-
ometrically complex areas separated by relatively empty space. In this case the
empty space will force the grid to have either a too fine resolution, thus larger
primitives will be present in many cells to reasonably manage, or too coarse a
resolution to partition the primitives in the high density areas.

Still, grids and their extensions are used for applications where the need for
rebuilding the acceleration structure arises. These applications include dynamic
scenes.

1.3.4 KD-tree

KD-trees are adaptive binary space partitioning tree structures. The root of the
tree corresponds to the AABB of the whole scene. Each internal node of the tree
introduces an axis aligned splitting plane that splits the current area into two
non-overlapping areas, which are then considered the children of the node. The
leaves nodes of the tree hold a list of scene primitives that are at least partially
present in the area of space corresponding to the leaf.

The ray-scene intersection is solved by the KD-tree in the following manner.
Assuming a node gets hit by the ray the traversal continues in one of two ways.
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If the node is a leaf node, the list of the objects belonging to the leaf node
is tested for intersections. The closest intersection inside the area is chosen and
returned.

For internal nodes the child node bounding boxes are tested for intersection.
The child nodes that are hit are traversed recursively. This may be one or both
of the child nodes. It is important to note that it is possible to determine which
child node gets hit first. This child is the near child, the other child is the far
child. If the recursive traversal is then started with the near child early traversal
termination is possible as long as returning the first intersection is sufficient. This
is possible because the intersection returned by the near child will be always closer
to the camera than intersection returned by the far child.

For the KD-tree to work efficiently it has to be built well. A well built KD-tree
should split off empty space as close to its root as possible. This is advantageous
because all rays that go through this empty space are immediately qualified as
returning no intersections.

A KD-tree is built using the top-down method. One starts with a bounding
box for all the primitives and the list of the primitives. From here the subdivision
process starts. At every level the subdivision process has the following steps.

• Determine if another split is necessary. If no further split is necessary a leaf
node is created with the list of current primitives.

• According to a given splitting strategy a splitting plane is chosen.

• Create the child nodes.

• Sort the primitives into the child nodes according to their position in respect
to the splitting plane.

• Recursively subdivide the child nodes.

A combination of criteria is used to determine whether to split a node. The
basic criterion is a predetermined depth limit. Once the recursion depth reaches
this level no more splits are created. There is also no reason to split empty nodes.
A more complex termination criterion can be created using the SAH. When a new
split is no longer profitable in terms of traversal cost the recursive subdivision is
stopped.

To create a well built KD-tree the SAH is used predominantly to determine
the split plane. The SAH in its basic form is quite costly to implement, however
there are methods to implement it in O(N log N) complexity [11].

The main idea of this SAH implementation is that the only splitting planes
worth to consider are the planes given by the bounding boxes of the primitives
in the node being split. This is because the number of primitives on either side
of the splitting plane changes only in these positions. These possible split planes
can be sorted according to their position along the axis perpendicular to their
plane. The possible split planes are also flagged to determine whether the split
plane is the start of a primitive or the end. This way when the possible split
planes are visited in order, the number of the primitives left or right of the split
plane can be continually updated in constant time. The sorting of the possible
split planes, is needed only at the beginning of the whole building process. The
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sorted list of possible split planes can be divided into the child nodes without
breaking its ordering. This way the possible split list can be reused in the recursive
subdivision.

A fast traversal algorithm for KD-tree has also been presented [3]. This traver-
sal algorithm is based on the idea of having a simple and fast inner loop that does
not use true recursion but a stack to emulate it.

The nodes of the KD-tree can also be stored very efficiently [3]. In the node
of the KD-tree one has to store a flag determining whether the node is leaf, the
orientation and position of the splitting plane, pointer to child node or the list of
primitives. The efficient way to do this is:

• leaf node flag (1 bit)

• orientation flag (2 bits)

• array index of the child or primitive list (29 bits of a float)

• position of the split plane (32 bit float)

If the nodes of the tree are arranged in an array so that the children of a given
node are always next to each other, only the index of one of the children need be
stored. To store the index of the child only 29 bits are used to make place for
the flags. The 29 bits for storing the index of the child node still leaves enough
possible nodes. Using more nodes would fill the RAM anyway and the ray tracing
would stall. The size of the resulting data structure is only 64 bits. This allows
for a high number of nodes being loaded into the cache line of the CPU speeding
up the traversal of the tree.

To sum up, the KD-trees has a fast traversal algorithm, performs efficient
spatial split, thus speeds up ray tracing considerably. The building algorithm for
the KD-tree is still not suited for real-time rebuilding but creates a tree that can
be reused for viewing the scene from arbitrary angles as well as tracing rays of
general direction or origin.

Much research was done into KD-trees. There are several extensions to KD-
trees such as multi-level ray tracing [10]. To date they are the most often used
acceleration structure for ray tracing, however almost all the optimizations ap-
plicable to KD-trees use triangle meshes as the scene description method. The
apparent success of the KD-trees when working with triangle meshes has prompt-
ed this thesis to investigate their usefulness while trying to accelerate direct ray
tracing of a CSG scene.
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2. Acceleration Structure for
CSG

As described earlier a CSG scene has orders of magnitude less primitives than
a triangle mesh. These primitives are however more complex shapes which in
turn have more costly intersection tests and the CSG operations also require a
more complex ray intersection acceleration structure that is inherently slower to
traverse. This means that doing as few intersection tests as possible while finding
the intersection between a ray and the scene is still a good idea. To fill the role
of an acceleration structure that is capable to ensure that only the necessary
intersection tests are done, we will investigate some of the acceleration structures
discussed in the last section.

The acceleration structures developed and optimized for use with triangle
meshes should be able to handle other primitives as well without extensive mod-
ification. There are however some problems inherent to the CSG tree which will
require closer examination.

2.1 Native Bounding Volume Hierarchy

Building a BVH for the CSG scene is one of the ways to eliminate irrelevant
primitives from the intersection process. This BVH is not a strict implementation
of the method described earlier. It still groups primitives and creates BVs for
these groups until in the root there is only one BV for the entire scene. AABBs
are used as BVs in the implementation of this native bounding volume hierarchy
(NBVH).

The main difference here is in the method of construction. For ray tracing
purposes the CSG scene is stored in a tree structure. This tree structure can be
conveniently used as the basis of the BVH construction. One would start with the
bounding boxes for the leaves of the CSG tree. Every boolean operation would
be considered a grouping of primitives, thus for every operation a new node in the
BVH would be added. The children of this node would be the bounding boxes of
the operands.

The semantic scene graph is a very versatile data structure. It allows for nodes
that are not directly involved in the description of scene geometry to be attribute
nodes in the graph. Such nodes would be the material or surface attribute,
which do not modify the geometry as such and only supply data for the lighting
calculations done when an intersection is already found. A different kind of
additional data that can be inserted into the semantic scene graph could be
precomputed optimization data. An example for this would be a node that stores
the list of light sources in the scene, precomputed in some optimization step
before ray tracing. The bounding boxes for the primitives and the operations
could be inserted in the same manner directly into the semantic scene graph.
The traversal algorithm for the semantic scene graph is only modified to include
the BVH functionality. This means that when encountering a bounding box a
test is done whether the ray actually hits this box. If the ray does not hit the
box traversal in this branch is stopped.
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Figure 2.1: Illustration of bounding box clipping. Left to right: A and B, A sub B,
A or B

A trivial optimization executed on the NBVH is to clip the bounding boxes
according to the boolean operation. This means that the bounding boxes of the
operands can be clipped so that only those parts that have a chance of producing
relevant intersections are kept as shown in figure 2.1

• For the AND operation both operands bounding box would be clipped to
the intersection of the two operands. Only in this area yield the AND
operator non-empty results.

• For the SUB operation the left operand can be clipped to the part that
intersects with the right operand.

• For the OR operation there is no clipping available.

This application of BVH has the advantage of being a natural byproduct of
the CSG tree. Therefore implementing it is relatively easy. It does serve as a
valid acceleration structure and in most cases it provides a significant performance
enhancement.

There is however one drawback. The structure implemented this way is not
a real adaptive structure. This is because it depends on the topology of the
semantic scene graph, as it was modeled by the user. There are several cases
when a semantic scene graph is created in a very unbalanced fashion. An example
would be a procedurally created CSG model for a shell as seen in figure 2.2. A
model like this creates a lopsided semantic scene graph, because the segments of
the tree are strung together using a for loop. Using loops in the code creating the
semantic scene graph is an intuitive way to create objects with repeating patterns.
Code for such a shell is given in the attachments. In this case the depth of the
tree forces the BVH to do intersection test with bounding boxes that could be
avoided if a truly adaptive acceleration structure was used.
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Figure 2.2: Procedurally created shell. Left to right: Rendered shell. Semantic
scene graph for a segment of the shell. Lopsided semantic scene graph of the
complete shell, the OR operation nodes have as the right operand only a shallow
sub-tree, while the left operand is a deep tree with the same pattern repeating.

2.2 KD-tree

The non-adaptive nature of the natural application of BVH to CSG scenes has
lead to investigating the possible use of a truly adaptive structures. Since KD-
trees had been successful for triangle meshes. The choice was made to modify the
basic KD-tree and adapt it to work in a CSG environment. This presents several
challenges that need to be addressed.

A basic KD-tree is optimized to work for one kind of primitives. In the a
CSG scene one works with several different primitives. This has influence on
the building algorithm of the tree. The bounding boxes of the CSG primitives
however, can still be used for the KD-tree construction. The bounding planes of
the boxes are used as the split plane candidates. Even the bounding box clipping
optimization introduced by the NBVH is still very useful. The intersection cost
of a given primitive can be derived from the primitive directly or just use a global
intersection cost for all primitives.

There is an inefficiency inherent in working with multiple types of primitives.
Before the intersection test can be executed on the primitive its type has to be
determined. This sort of polymorphism is exactly the thing one would not want
in the core of a traversal algorithm. It slows down the KD-tree traversal by a
fraction however, the massively reduced number of primitives in the scene should
compensate for this inefficiency.

While the CSG primitives can be used as primitives for the KD-tree construc-
tion. It is important to note that the actual implementation of a semantic scene
graph allows for transformations and other attributes in the nodes of the tree.
These attributes have to be pushed to the leaves to make it possible to ray trace
these leaves directly, without going trough the whole scene graph traversal. This
is done by introducing a combined attribute node directly above the primitive.

Before the rendering an optimization step is executed on the scene graph, this
”push attributes step” traverses the scene graph the same way as the ray would
traverse the scene graph during ray tracing. The attribute nodes along the way
are accessed and executed, which means the state of the governing structure of
the traversal is changed accordingly. However, when a leaf node (a primitive)
is reached instead of executing the intersection test, the state of the traversal
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(transformation, material, surface etc.) is saved into a combined attribute node.
This combined attribute node is then inserted directly above the leaf. The ac-
cessed attribute nodes are deleted from the semantic scene graph, because their
effect is saved in the combined attribute node.

The combined attribute node is then used as the primitive in KD-tree con-
struction. When an intersection request is invoked on the combined attribute it
restores the attributes stored in it into the governing structure of the ray traver-
sal. Then the intersection test is executed on the primitive itself. The returned
intersection can now have the right material and surface attributes. This opti-
mization is useful even if no KD-tree is used. It eliminates the need to access and
execute attribute nodes during semantic scene graph traversal.

The more important difference is the fact that in CSG scenes not all inter-
sections of the ray with the primitive yield points that are actually shaded. This
fact not only precludes the use of early ray traversal termination, but introduces
the problem of tracking the boolean operations that need to be applied to the
intersections.

A KD-tree is a space subdivision that allows one to very efficiently traverse
a ray through space that is populated by geometric shapes. It is not possible,
though, to directly introduce CSG functionality into it, in the same way as a scene
graph can add BVH functionality directly into its CSG nodes. The information
about the boolean operations has to be accessed trough the semantic scene graph.
Accessing this information can be tricky, because of the order a KD-tree would
access the primitives in its leaves. A KD-tree inherently accesses the primitives in
random order with respect to the semantic scene graph. Pairing the intersected
primitives to execute the boolean operations is therefore not possible. This means
that the depth-first search used to combine intersections in the CSG tree can
no longer be applied. The boolean operations are however the essence of the
CSG scene and they need to be executed somehow. Solution for this problem is
presented in following sections.

The benefits of adapting a KD-tree to work in a CSG environment include not
just the performance enhancement of the basic KD-tree. It would also prove that
all the advanced techniques used to make KD-trees one of the most successful
acceleration structures could be used for CSG scenes as well.

2.3 Multiple KD-trees

One way to solve the problem of tracking the boolean operations is to use multiple
KD-trees inserted into the semantic scene graph as attributes. These attributes
would hold the data structure of the KD-tree and respond to the ray traversal by
doing their own traversal then return the intersections.

The idea is that every operation that combines intersection points in such a
manner that they eliminate some of them is considered as leaf primitive itself.
These new primitives are inserted into the building process of the KD-tree above
them. Sub KD-trees are then built for the primitives in the subtrees defined by
the operands of these operations.

The operations that need to be handled this way are the boolean intersection
and boolean difference.
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Figure 2.3: Left: A scene graph describing on object from which two different
objects were subtracted. Right: The same scene after the KD-trees were added
according to the Multiple KD-trees method.

Implementing this solution generally, creates problems. In many cases a
boolean difference is done by subtracting one simple primitive from a compound
object. The KD-tree created for the left operand of this operation would essen-
tially be empty.

This solution of the operation tracking problem does work, but the number of
KD-trees created for a realistic CSG model is high. For the shell model shown in
figure 2.2 it would be 4 KD-trees for every segment. The memory requirements
to maintain this high number of KD-trees seems unrealistic.

Other reasons why this solution is not optimal include the following. KD-
trees work best when there is a relatively high number of primitives to store in
them. In the figure 2.3 the wasteful nature of this approach is demonstrated.
The scene graph illustrated there could be describing a simple object such as
a single segment from the large shell model, figure 4.5. However even in this
case 4 KD-trees would be added to the scene graph and each of them would be
built over a single primitive. Also this use of multiple KD-trees conforms to the
semantic scene graph in the cases where subtrees are created giving up a some of
the adaptivity inherent in the KD-tree structure.

2.4 Operation KD-tree

The multiple KD-tree method was not implemented during the course of this the-
sis. The short theoretical analysis given in the previous section however, presents
a compelling reason for the use of one global KD-tree.

A global KD-tree is built the same way as any regular KD-tree over all ob-
jects that are present in the scene. The only difference is the possibility to use
different intersection cost values for different kinds of primitives. This different
cost function can be implemented by reusing the open/close flag in the possible
split data used in finding the best split plane with the SAH. This implementation
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Figure 2.4: Flowchart for the three phases of the OKD ray-scene intersection test

does not increase the computation complexity of building the KD-tree.
If a global KD-tree is used as an acceleration structure the information about

the CSG structure has to be maintained in addition to the KD-tree. The semantic
scene graph itself could be used for this, however the semantic scene graph has
many non-essential nodes in it. These nodes should be avoided in order to get as
fast traversal as possible. As solution to this a small compact single purpose data
structure with fast traversal is introduced, the operation tree. The operation tree
in conjunction with the KD-tree form the Operation KD-tree (OKD-tree).

The ray-scene intersection test as executed by the OKD-tree consists of three
phases. The three phases are illustrated on figure 2.4

• In the first phase the KD-tree is traversed using the classic traversal al-
gorithm down to a leaf. The fact that the whole traversal algorithm does
not have to be changed allows for an alternate perhaps better optimized
algorithm to be adapted as well.

• When the traversal reaches a leaf node in the KD-tree the second phase is
executed. In this phase one would normally do the intersection tests for the
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primitives in the list held by the node and return any intersections that are
found. In this case however, the intersection tests are not executed. The
execution of intersection tests is pushed back after the whole ray traversal
trough the KD-tree is done. Since the nature of CSG scene precludes any
early ray termination anyway, there is no harm in doing this. Instead of
executing the intersection tests the primitives in the list are just marked for
testing and the KD-tree traversal algorithm continues as if no intersections
were found in this leaf.

• The third phase of the traversal starts when the KD-tree traversal has fin-
ished completely. Now the intersection tests are executed by the operation
tree on the primitives marked by the KD-tree traversal algorithm. The op-
eration tree is responsible for combining the found intersection so that they
give the expected result.

The operation tree implemented in this thesis is a small tree structure op-
timized for a single task. The only task it has to fulfill is to get and combine
the intersection from the marked primitives. This operation tree is constructed
before ray tracing starts and is unchanged during ray tracing. The construction
of the operation tree mimics the ray traversal in the semantic scene graph. It
essentially creates a smaller version of the semantic scene graph, which contains
only the pure boolean operations. As a result the leaves of the operation tree are
pointing to the actual primitives in the scene.

For the representation of this operation tree a similar scheme has been chosen
as for the cache line optimized representation of the KD-tree nodes. There are
however some differences. The nodes in the operation tree have to implement a
limited form of polymorphism. The different operations handle the intersections
differently. To avoid the overhead of polymorphism a function pointer to a static
function that is supposed to handle the intersection combination is stored in the
node. This pointer is assigned during the construction of the operation tree. For
leaf nodes this function calls the intersection function on the primitive pointed
to from the leaf. This eliminates the overhead of figuring out the actual type o
the primitive, because this identification is done during the construction of the
operation tree. Storing the function pointer is possible because this structure has
only this one purpose and no other polymorphic functions are expected.

As a results all the nodes share the same structure. They are organized in
one sequential array where the children of a given node follow each other. Each
node stores the index of their parent node, the index of the first child or the
pointer to the primitive in the leaf and the function pointer for the combination
function. If the SCG scene has operation nodes that have more than two children
their number has to be saved in the node too. An example of such a node is the
UNION node which is a node that does the boolean union operation on variable
number of operands. The resulting structure is:

1 STRUCT OperationNode
2 {
3 int IndexOfParentNode
4 int NumberOfChildren
5
6 // shared space f o r two a t t r i b u t e s
7 int IndexOfFirstChi ldeNode | PointerToPr imit ive InLea f
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8
9 func t i onPo in t e r In t e r s e c t i onFunc t i on .
10 }

As is apparent the nodes have no flag that could be checked to mark nodes
for intersection testing. To allow for multiple threads to ray trace the structure
the marking has to be done in a structure belonging to only one thread. This
structure is in the case of this implementation the traversal structure itself. This
structure maintains the state of the traversal. This state incorporates the active
material, surface, transformation attributes and with the OKD-tree a structure
that can determine for an index in the operation tree if the corresponding node
is marked. In this case, it is an array of boolean values. It could be optimized to
use single bits as flags.

When a leaf node of the operation tree is marked by the KD-tree traversal
this mark is propagated upwards in the operation tree. This mark indicates that
a given node of the operation tree might be relevant to the intersection tests.
By propagating the mark upwards the tree, one can effectively ensure that whole
branches of the tree are ignored when the tree is later traversed. These would
be the branches that did not get marked by the KD-tree. Pseudo code for the
marking follows.

1 FUNCTION mark(
2 OperationNode nodeToMark ,
3 BoolArray f lagArray
4 )
5 {
6 Mark the nodeToMark in the f l agArray ;
7 Exit i f nodeToMark i s root ;
8 Exit i f parent o f nodeToMark a l r eady marked ;
9 Ca l l marking on the parent o f nodeToMark ;
10 }

When the operation tree is traversed in the third phase it does the depth-first
search as the semantic scene graph would do it. The one important difference is
that the nodes that are not marked by the KD-tree do not get traversed. This
eliminates the intersection test of the primitives that would not by tested by the
KD-tree. The intersection combination operations for nodes that have no marked
children are eliminated this way too. When a node is accessed during the third
phase of ray traversal it clears its flag. This ensures that after the traversal is
done the governing structure of the traversal is in consistent state with the flags
for the operation tree all unmarked. Pseudo code for operation tree ray traversal:

1 FUNCTION t r av e r s e (
2 OperationNode nodeToTraverse ,
3 BoolArray f lagArray
4 )
5 {
6 FOR a l l c h i l d r en o f nodeToTraverse
7 {
8 IF ch i l d i s marked in f l a g array
9 THAN t r av e r s e ch i l d ;
10 }
11 Execute i n t e r s e c t i o n func t i on s to r ed in nodeToTraverse
12 to combine i n t e r s e c t i o n returned by ch i l d r en ;
13 Unmark nodeToTraverse in f l agArray ;
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14 Return combined i n t e r s e c t i o n s ;
15 }

This acceleration method should fully utilize the spatial partitioning done by
the KD-tree and the efficient traversal algorithms developed for KD-trees. It does
impose a significant overhead required to maintain and traverse the operation tree,
but it is a trade-off for making the direct CSG ray tracing possible with global
adaptive acceleration structures.

As shown, the method is implemented for the KD-tree but in theory one
should be able to modify any acceleration structure to work on this basis.

2.5 Modified SAH and Mail-boxing

With spatial subdivision structures like the KD-tree, primitives can fall into more
than one of the subdivided space areas. This fact has been explained in previous
sections, however there is an implication that has not yet been explored here.
When a ray traverses multiple leaves of the subdivided space in which the same
primitive is present, this primitive gets tested for intersection in each of these
leaves.

These multiple ray intersection tests are counter-productive. The whole reason
to use a spatial subdivision structure is to eliminate intersection test on primitives
that are not going to be hit anyway, yet this same structure introduces multiple
intersection tests on the same primitive.

To solve this contradiction a method called Mail-boxing [1, 8] is used. This
adds a structure —the mail-box — to all primitives to track the last ray that
have been intersected with the primitive. If then a ray is about to be intersected
with the a given primitive multiple times, the mail-box can identify this ray and
no additional intersection tests are executed.

Mail-boxing has however significant hardware cache drawbacks. The mailbox
structure for the primitives can take up a large amount of memory. This memory
is accessed at completely random which causes cache line misses and is detrimental
to performance. In fact it has been determined that in some cases mail-boxing is
more harmful than useful for ray tracing performance.

Several improvements have been introduced to this method to make it viable.
Some of these aimed to minimize the size of the mail-boxing structure. Also the
inverse mail-boxing was introduced where the ray keeps track of a few primitives
that have been visited by it. Inverse mail-boxing was proved to be successful and
is in common use.

The method of adapting the KD-tree for CSG scenes described here does
not use mail-boxing directly. However, by pushing the intersection test of the
primitives back to be performed only after the whole KD-tree has been traversed,
the result is the same. No primitive gets tested more than once. This is the
result of the marking system, because marking an already marked primitive does
not introduce a new intersection test. In effect the marking system used to track
which primitives need to be tested during CSG traversal works as a mail-boxing
system.

Since mail-boxing is a natural byproduct of the operation tree, the construc-
tion of KD-tree should be adjusted to take this fact in account. Warren A. Hunt
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introduced a small modification to the SAH in respect to mail-boxing [5]. The
modification introduces the consideration that for rays that traverse both sides
of a split the primitives present in both children do not increase the split cost.
The resulting metric is:

C = Ct +
SA(B1)

SA(B)
∗N1 ∗ Cp +

SA(B2)

SA(B)
∗N2 ∗ Cp −

SA(Split)

SA(B)
∗N1,2 ∗ Cp (2.1)

Here SA(Split) denotes the the surface area common to the children of the
node. This is effectively the splitting plane. N1,2 denotes the number of primitives
present in both children.
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3. Triangle Meshes in CSG

3.1 Testing with Triangle Meshes

The new concept of using a KD-tree and tracking CSG operations in parallel had
to be tested in some working application. For the purposes of testing this concept
the Advanced Rendering Toolkit (ART) was used. This is a rendering toolkit in
which CSG scenes were already used as the main form of scene definition, however
it was not a toolkit built primarily for real-time ray tracing research purposes,
rather for photo-realistic and predictive rendering purposes.

Even under the premise of focusing on predictive rendering having an efficient
ray tracer is valuable. The rendering performance however can not be expected
to hold up to the standards set by modern rendering engines optimized toward
rendering speed. Comparing results with these engines would not yield a reason-
able comparison between ray tracing triangle meshes and ray tracing CSG scenes.
In this case the comparison between the two methods has to be made within the
same engine.

Since updating the ray tracing of ART was initially a goal of the work, instead
of implementing a full CSG scheme into any of the state-of-the-art ray tracers,
the ability to ray trace triangle meshes was implemented into ART itself. As long
as one limits the testing to the basic forms of the above mentioned acceleration
methods, the comparison between the results holds and has bearing on the relative
efficiency of the algorithms.

This introduces the problem of including triangle meshes into a full CSG
scheme. The variability of the SCG scheme however deals with this quite well.
In essence, one only needs to introduce a new primitive, the triangle mesh, into
the scene. When this primitive is implemented it is easy to create a scene that is
otherwise empty but contains a single triangle mesh primitive. The result of such
a scene is pure triangle mesh ray tracing, because the primitives in a CSG scene
effectively ray trace their own geometry once ray intersection tests are invoked on
them. Since the scene was empty to begin with except for the triangle mesh, the
only operations executed during ray tracing are the operations associated with
triangle mesh ray tracing.

On this basis any other operations done before and after the actual ray tracing
are executed in both triangle mesh or CSG cases thus bear no effect on relative
rendering time. These operations in a predictive rendering environment may be
more complex than in a real-time rendering environment which is why comparing
the two directly is undesirable.

3.2 Implementing the Triangle Mesh Primitive

As explained triangle meshes are implemented into the standing CSG scheme as
new primitives. They are a parametric primitive in contrast to the sphere or the
cube which are created without any parameters and manipulated only trough
transformations. A vertex array and an index array serve as the parameters of
the triangle mesh. These define their actual geometry.
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The vertex and index arrays are imported from a commonly used file format,
the Stanford PLY format. The reasoning behind this is the fact that most com-
monly used testing scenes are available from the Stanford 3D scanning repository
in this format. Also most of the commonly used modeling applications are able
to export into this format. This is a useful property. For testing purposes models
had to be created that can be defined using CSG modeling as well as triangle
meshes.

The PLY file format describes the scene in a simple manner. In the header
of the file the elements used in the file are defined. Different properties can
be attached to these elements beyond their position such as color, normals etc,
but they will be disregarded by the current implementation of the triangle mesh
primitive. For every element the number of its uses is provided in its description.
The header is than followed by the a simple listing of these elements.

During construction of the triangle mesh primitive the PLY file is read. To
read the PLY file format the simple lightweight RPly library is used. When
the data is extracted the actual triangles are created and stored in the data
structure of the primitive. Right at this point the data needed for fast triangle
ray intersection are calculated and stored.

To actually achieve the pure triangle mesh ray tracing the mesh primitive has
to be encapsulated so that it can be considered a scene in itself. This is achieved
by separating the internal ray tracing from the rest of the CSG scene. This means
that the outside scene does not know about the triangles in the mesh. In fact
from the outside the triangle mesh primitive is just another primitive. All the
information the outside scene may have is the bounding box of the whole mesh.

This separation of the mesh allows for local ray tracing acceleration to be
used within the mesh. To provide usable comparison between triangle mesh ray
tracing and CSG ray tracing a KD-tree is used as a local acceleration structure.
This KD-tree has the same optimizations implemented as the global KD-tree used
for the CSG scene. The local acceleration structure of the mesh is built when the
mesh is read from the file.

In the previous chapter an argument against local acceleration structures was
made. It was based on the fact that they would introduce unmanageable memory
costs, while possibly handling only a small number of primitives. In the case of
triangle meshes this argument does not hold. Every triangle mesh introduces only
one local acceleration structure, while this structure handles all the triangles in
the mesh.

The resulting primitive is in essence quite simple. It stores the set of triangles,
accessed trough the local acceleration structure. When ray intersection is invoked,
it executes the internal ray tracing. The intersections are however returned as if
they were intersections with a hull, not a solid object. This difference means that
the boolean operators will not work with this basic implementation.

3.3 Additions to the Triangle Mesh

While the previously described implementation of the triangle mesh primitive
is sufficient for testing purposes, the mesh can be adapted to serve as a fully
operational CSG primitive. This would mean that boolean operations should be
applicable to them.
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Figure 3.1: The stanford bunny rendered.

The main reason for implementing the triangle mesh in such way is to expand
the variability of the SCG scene. One must admit that CSG modeling while
powerful, has its own weaknesses. Architectural scenes or recursively defined
objects like the shell shown in figure ?? can be defined very well trough CSG
modeling. However some objects are too complex or irregular to be constructed
efficiently from CSG primitives. An example for this would be a human face, or
many of the objects in the Stanford 3D scanning repository. Figure 3.1 illustrates
the bunny.

Combining the two modeling schemes gives more freedom in creating scenes.
Of course using triangle meshes does increase the number of primitives in the CSG
scene even if they are encapsulated. On the other hand using CSG operations
allows for reusing one model several times. When a transformation is applied to a
primitive, the primitive is not modified. The transformation is applied to the ray
which is traversed trough the scene. In the same sense when two transformations
of the same primitive are coupled together by a boolean operation the primitive is
not duplicated. This means that if the same triangle mesh is transformed several
times over the scene, the memory requirements of the scene are not increased
significantly. Figure 3.2 shows how a bunny mesh can be reused.

The fact that reusing the triangle mesh does not increase memory require-
ments to store the scene, does not influence the ray tracing speed directly. How-
ever it allows for bigger geometry to be stored in memory.

To add full CSG functionality to the triangle mesh one must ensure that the
intersections returned by the triangle mesh are paired correctly to simulate a solid
object. Solid primitives of the CSG scene return intersections that are actually
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Figure 3.2: Reusing the bunny mesh.

dividers between different materials.
Pairing the intersections presents a problem. For most meshes used for this

work no additional information about the faces is available. If the back face or
front face information of the triangles were available it would be a simple matter
of checking the orientation of the face being intersected to determine whether it’s
an entering or leaving intersection.

In absence of the face information one is forced to use the heuristic that
entering end exiting intersections will alternate. Based on this observation the
intersections can be paired up and assigned the appropriate materials.

However the assumption that entering and exiting intersections will alternate
does not hold generally. When a ray grazes the mesh it creates only one inter-
section yet it still remains outside of the mesh. Multiple grazing hits of a ray on
the mesh might therefore misqualify inside and outside space.

The assumption of alternating intersections also fails if the triangle mesh is
not closed. In this case if the hole is hit either the entering or exiting intersection
will be missing. The cases of intersection pairing are shown in figure 3.3.

The problem of not-closed meshes is left to the user. The user is responsible
for supplying meshes that are closed if the full functionality of the CSG tree
is to be used. In other cases the implementation allows for the user to specify
primitive as a hull. This property can be specified for the meshes too, in which
case the basic version of the meshes is used, doing no intersection pairing and
thus rendering only the hull defined by the mesh. This hull based triangle mesh
intersection is used for testing purposes to avoid weighting down the triangle
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Figure 3.3: Pairing intersections on a triangle mesh. Gray are the rays outside the
objects. Red are the rays inside the object. A) shows the grazing ray problem,
B) shows a good pairing, C) shows problem with holes in the mesh.

meshes by the overhead of the pairing operations.
The problem of the grazing hits remains. These cases are however extremely

rare. Considering that in the current application of this method several rays are
sent for every pixel, if one of the rays is compromised its influence gets diluted.
Testing shows that this problem does not present itself in practice.
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4. Results

4.1 Testing

In the previous chapter it was established that the testing of the OKD-tree driven
acceleration structure will be done within ART with emphasis on relative render-
ing performance to triangle meshes. The rendering performance of the triangle
meshes will be used as the baseline.

The actual acceleration structures tested will be:

• Triangle meshes. These form the baseline for the testing. The implemented
acceleration structure for the triangle meshes is the basic KD-tree using the
cache line optimization, built using the modified SAH and traversed using
Vlastimil Havran’s traversal algorithm [3].

• CSG with NBVH. The NBVH is used as a control to the OKD-tree accel-
eration structure.

• CSG with OKD-tree, built with modifiead SAH (MSAH). This is the novel
acceleration structure to be tested. In this case the metric used to build
the KD-tree is the MSAH.

• CSG with OKD-tree, built with SAH. This test uses the original SAH as a
metric for building the KD-tree.

The testing is done for the acceleration structure built using SAH an MSAH
separately to investigate the assumption that improvements to the KD-tree can
be carried over into the CSG context. If there are cases where the tree built using
the MSAH outperforms the tree built using the SAH, it will suggest that one can
reap the benefits of improving the KD-tree algorithm in the traditional triangle
mesh context. This would mean that research into acceleration structures does
not need to be done separately for CSG and triangle mesh context, which would
be an interesting realization.

During testing the following data are recorded:

• Build time for the acceleration structure. This time is usually orders of
magnitude smaller than the rendering time itself. However it is still an
interesting data point. In certain applications for example ray tracing dy-
namic scenes it would play a greater role.

• The absolute render time. As explained earlier this time should not be
compared to the state-of-the-art ray tracer. ART is not designed to be a
real-time ray tracing platform, also the test scenes are rendered using full
path tracing not just first order visibility as is done by most RTRT tests.

• The relative improvement in render time compared to the triangle mesh ray
tracing.
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All data shown are an average of rendering a given scene 6 times. This is
done to mitigate factors beyond the control of the ray tracing software, mostly
the state of the system and to provide more accurate results.

All images are rendered in 640x480 resolution using 8 samples per pixel and
a maximal recursion of depth of 20. The testing is done on a MacBook Pro with
2,66GHz Intel Core 2 Duo processor, 3MB L2 cache, 4GB RAM.

4.2 Test Scenes

Finding or creating suitable scenes or even just models for testing purposes in
this thesis was a relatively complicated task. With triangle meshes being used
so dominantly in computer graphics, CSG scene definitions are hard to come by.
Finding scenes that are described in CSG and triangle mesh formats at the same
time is even harder.

As a result models had to be created from scratch. This means that the tests
are run only on a limited number of simple models. However these models were
chosen each to test a specific aspect of the algorithm, thus they should serve as
sufficient examples and testbeds. Each model will be discussed in depth in its
own section together with the rendering results that have been achieved using
them.

The models used for testing are:

• Grooved sphere. This is one sphere with 6 grooves. Shown in figure 4.2.

• Checkered cube. This is a cube that has a lot of small cubes subtracted
from its sides. Shown in figure 4.4.

• Large shell. A shell like model, with several turns. Shown in figure 4.5.

• Small shell. A shell like model, with only one turn. Shown in figure 4.6.

The reason for using two shell models stems from the way they are constructed.
A segment of the large shell is constructed by subtracting two slightly translated
spheres from a central sphere. A segment of the small shell is constructed by
subtracting a smaller sphere from a concentric larger sphere and the result is cut
by planes or in this case cubes to form a segment. The construction of these
segments is shown in figure 4.1. In both cases the shell itself is then constructed
by rotating and scaling the segments in a FOR loop. Note that this FOR loop is
a very intuitive way to describe the scene, but it creates an unbalanced semantic
scene graph.

The two different methods of constructing the shells were not chosen at ran-
dom. The method used for the large shell makes more sense in CSG context,
because less primitives are used in a less contrived way. However, the need for
the construction method used for the small shell arose from the need to create a
corresponding triangle mesh.

Triangle meshes for testing were created using the Netgen Mesh Generator.
Effort was made to use Blender or 3D Studio Max applications. The functionality
of boolean operator needed to create a shell model is however suspect in these
applications. Even the Netgen Mesh Generator created artifacts when the con-
struction method for the large shell was used. The problems there are the thin
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Figure 4.1: The two different modes of constructing a single segment of the shell.
Left is the large shell segment, right is the small shell segment. The segments
are displayed in cross section. Black outline is the original sphere, gray are the
subtracted parts, while red is the resulting segment.

edges created by the sphere subtraction. These edges came out jugged and un-
even. Using the small shell construction method results in an empty sphere with
constant wall width. Subtraction from this empty sphere is handled correctly by
the meshing software.

An observation here is in order. While an experienced graphic artist might
have been able to create even the shell object with far less trouble, the fact
remains that its description from the CSG scene is more intuitive and easier to
realize.

4.3 Grooved Sphere

The grooved sphere model is a sphere from which 6 toruses were subtracted to
form the grooves. The toruses are concentric with the sphere and in pair lay
in axis aligned planes. The model is shown in figure 4.2. The semantic scene
graph describing the scene is a completely balanced tree. The code describing
this model can be found in the attachments.

This model was chosen because it presents several worst case scenarios.
For the triangle meshes this model is a worst case scenario based on the fact

that spheres and toruses require a high number of triangle subdivisions to create
a relatively smooth surface. Combining these high polygon count primitives using
subtraction makes the resulting object even more expensive. For testing purposes
where a fully diffused surface was used a 15K triangle count mesh was used. For
surfaces with specular reflections an even higher polygon count would be needed.

This model also presents a worst case scenario for the OKD-tree acceleration
structure when rendering in CSG context. The bounding boxes of the toruses
and the sphere completely overlap in this model. The faces of these bounding
boxes are used as possible split planes by the SAH. As a result there is no way to
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Figure 4.2: Grooved sphere test image.

do space partitioning to reduce the number of primitives in any given partition of
the space. This problem is illustrated in figure 4.3. In this figure it is easy to see
that whichever split plane is chosen the number of primitives is reduced at most
by 2 for one side of the split but stays the same for the other side. During this
the surface area of the children does not decrease sufficiently to warrant a split.

In the figure 4.3 a split is shown which partitions of 2 primitives. This would
be the most likely split to keep, because there is no empty space to cut off. Even
in this case the cost of splitting is:

Csplit = Ct +
5

8
∗ 3 ∗ Cp +

7

8
∗ 5 ∗ Cp = Ct + 9

4

8
∗ Cp (4.1)

The cost of creating a leaf is:

Cleaf = 7 ∗ Cp (4.2)

It is clear that splitting the node which in this case is the root node is just
not cost-effective.

In this case modified SAH does calculate the cost of split lower than the
original SAH, but it still concludes that splitting would be too costly. As a result
for both SAH and MSAH heuristics the created KD-tree is a degenerated tree
with only one leaf that includes all the primitives.

The test result shown in table 4.1 indicate that the CSG scene outperforms
the triangle mesh quite clearly. It is also worthwhile to note that the acceleration
structure construction time is negligible for the CSG scene.
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Figure 4.3: Illustration of the most sensible split in grooved sphere.

The test results also show that in this worst case scenario the OKD-tree
preforms slightly worse than the NBVH. This has to do with the fact that there
is no way to partition this model, in which case the overhead introduced by
tracking the operations in addition to the KD-tree is just too high. The KD-
tree traversal is generally faster than the BVH traversal, however in this case it
does not yield any reduction in intersection test numbers thus it can not offset
the operation tree. The performance drop is however below 1% which is not so
significant.

Using the MSAH heuristic did not yield better partitioning of the model,
therefore the result are virtually the same as when the SAH was used.

4.4 Checkered Cube

The Checkered cube is a cube with a surface indentations. Form each of its faces
a 5 x 5 grid of small cubes is subtracted. The rendering of the model is shown
in figure 4.4. The semantic scene graph describing the scene is a completely
balanced tree, as implemented. The code describing this model can be found in
the attachments.

This model was chosen to present a best case scenario for the triangle mesh
approach, however this is also a good scene for the OKD-tree method.

This model is a best case scenario for the triangle mesh method because it
is full of flat surfaces which can be very well triangulated. For this model the
absolute minimum of triangles that can describe it is just as good as any finer
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Figure 4.4: Checkered cube test image.

subdivision. The mesh of this model contains only 2538 triangles. This might
still look like a lot of triangles, but one should considers the fact that just the
faces of the small cubes require 1500 triangles.

In contrast one needs only 151 primitives for the whole model (the number
of small cubes plus the big cube) when it is created using CSG modeling. This
simple calculation shows the real difference between the number of primitives
used in describing the scene by triangles or CSG, even if it is a best case scenario
for the triangle meshes.

The reason why this is a good scene for the OKD-tree is because even though
it uses quite a high number of CSG primitives, these primitives do not overlap to
a high degree. This should imply that a reasonably good KD-tree can be built
above it. The primitives in this scene are axis aligned cubes, which means no
empty space is wasted during space partitioning (cubes fit perfectly into their
bounding boxes).

The OKD-tree for this scene is built using the SAH as well as using the MSAH.
Building the scene using the MSAH creates an almost twice as deep tree as with
the original SAH. This implies a possible difference in rendering performance.

The test results for the checkered cube scene are shown in table 4.2. Even
thou this is a very good case for the triangle mesh all the CSG approaches do
outperform it. The improvement is not as big as with the grooved sphere scene,
but it is still there.

The more interesting result in this test is the comparison between OKD-tree
and the NBVH. The NBVH still outperforms the OKD-tree built using the SAH.
This is stemming from the fact that the KD-tree built is still not efficient enough
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Figure 4.5: Large shell test image.

to offset the overhead of tracing the operations. On the other hand the OKD-tree
built using the MSAH does outperform the NBVH. The improvement compared
to the NBHV is still only about 1.5%, but it proves that the OKD-tree is at least
a zero sum method. There are cases as this, where it is more efficient than the
NBVH. In other cases it might be less efficient then the NBVH, but the variance
is within tolerable limits.

Another interesting result is the fact that with this scene implementing a
simple optimization initially developed for triangle meshes ray tracing also en-
hances the performance of the OKD-tree. As mentioned at the beginning of this
chapter this gives credit to the assumption that transplanting optimizations de-
veloped for KD-trees in triangle mesh ray tracing does retain the benefits of these
optimizations.

In this scene the build time for the acceleration structure of the triangle mesh
is still one order of magnitude larger than the build times of any of the CSG
methods.

4.5 Shell

The shell is an example of a procedurally created model. It is created by defining
one segment of the shell in some way. Two of those ways were discussed earlier.
Once the segment is defined it is transformed and added to the already finished
shell in a loop. In this case the transformations required to make the shell are
rotation and scaling. The code describing both shells used for testing can be
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Figure 4.6: Small shell test image.

found the attachments.
Two different ways of constructing the shell are used. The small shell is

shown in figure 4.6, while the large shell is shown in figure 4.5. The reasons
for using two shell models stemming from the necessity of creating a triangle
mesh approximation of the shell have already been discussed. However, the shell
model has some properties that make it interesting just from the perspective of
comparing the NBVH and the OKD-tree.

Two attributes of the shell play a mayor role in the efficiency of ray tracing
it.

• A single segment of the shell is created using primitives that have bounding
boxes that overlap to a significant degree. As with the grooved sphere model
this will hinder the efficiency of the OKD-tree acceleration structure.

From this perspective the construction mode of the small shell is more
problematic. It uses 4 primitives and all of these primitives have almost fully
overlapping bounding boxes. In fact the planes are simulated by enlarged
and rotated cubes thus they do overlap fully with the main sphere. The
smaller sphere used in creating the hole in the shell does not overlap fully
but just by a little.

In contrast the segment created by the construction method of the large
shell uses 3 primitives that do not overlap to such a high degree.

• The FOR loop used to string the segments together creates a very unbal-
anced CSG-tree. Every OR node created by this loop has at least one leaf
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operand, the other is either another OR node or a leaf if it is the deepest OR
node. Traversing this semantic scene graph while using the NBVH acceler-
ation structure is inefficient. At every level a bounding volume intersection
test is done which can usually eliminate only a small number of primitives.

This property of the shell should favor the OKD-tree structure. The oper-
ation tree used in the OKD-tree will be unbalanced the same way as the
semantic scene graph itself. However, while traversing the operation tree
to do the intersection tests, no bounding volume intersection test are done.
The lookup in the marking array is cheaper than doing the full ray-AABB
intersection test. This however does not guarantee a more efficient ray trac-
ing, since if the KD-tree cannot separate space properly the operation tree
traversal will have to visit more branches.

The more dominant of the previous two properties will tip the rendering per-
formance in favor of either the NBHV or the OKD-tree.

Since there is no corresponding triangle mesh for the large shell, no tests could
be done there. However there is no reason these tests would give much different
results than the mesh for the small shell. The shell in general is a relatively high
polygon count model. If a suitable mesh could have been created for the large
shell the polygon count would be even higher that the polygon count of the small
shell mesh. The small shell mesh contains 28K triangles.

The test results for the shell scenes are shown in tables 4.3 and 4.4.
The triangle mesh is outperformed in these scenes by all CSG acceleration

methods.
The OKD-tree build using MSAH is outperforming the OKD-tree built using

original SAH. This further proves the validity of transplanting optimizations into
KD-trees.

As for the comparison between the NBVH and the OKD-tree, the tests show
that a deeper unbalanced semantic scene graph can be rendered more efficiently
by the OKD-tree. A deeper semantic scene graph in this case would be created
by a shell that has more turns. For a shell with only one turn the the overlapping
nature of the primitives favors the NBVH acceleration, but for a shell with two
or more turns the OKD-tree wins.

Subsequent testing showed that even if the more complex segment construc-
tion method of the small shell is used for a shell with at least two turns the
OKD-tree will render more efficiently. This is in spite of the fact that in this case
the overlapping of primitives creates a degenerated KD-tree which has leaves that
have over 90 primitives in them. The nature of the operation tree is such that
when it has to be traversed deeply then the single task orientation compensates
for all the faults of the other structures used.
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Table 4.1: Rendering results of the grooved sphere model
Acceleration
structure

Structure build
time

Absolute render
time

Improvement

Triangle Mesh 2.09 sec 44.85 sec 0%
CSG
with NBVH

0.0 sec 34.155 sec 23.84%

CSG with OKD-
tree (SAH)

0.0 sec 34.53 sec 23.01%

CSG with OKD-
tree (MSAH)

0.0 sec 34.52 sec 23.03%

Table 4.2: Rendering results of the checkered cube model
Acceleration
structure

Structure build
time

Absolute render
time

Improvement

Triangle Mesh 0.10 sec 51.26 sec 0%
CSG
with NBVH

0.03 sec 48.57 sec 5.27%

CSG with OKD-
tree (SAH)

0.04 sec 48.90 sec 4.62%

CSG with OKD-
tree (MSAH)

0.04 sec 47.72 sec 6.94%

Table 4.3: Rendering results of the large shell model
Acceleration
structure

Structure build
time

Absolute render
time

Improvement

CSG
with NBVH

0.17 sec 91.045 sec 0%

CSG with OKD-
tree (SAH)

0.18 sec 86.34 sec 5.1%

CSG with OKD-
tree (MSAH)

0.18 sec 85 sec 6.63%

Table 4.4: Rendering results of the small shell model
Acceleration
structure

Structure build
time

Absolute render
time

Improvement

Triangle Mesh 3.1 sec 134.21 sec 0%
CSG
with NBVH

0.02 sec 101.21 sec 24.62%

CSG with OKD-
tree (SAH)

0.02 sec 131.43 sec 2.071%

CSG with OKD-
tree (MSAH)

0.02 sec 121.32 sec 9.604%

39



Conclusion

In this thesis we investigated a method that combines the leading acceleration
structure developed for triangle mesh ray tracing with CSG scene description.
This was done on the basis that a lower number of primitives required for defining
a CSG scene coupled with the efficiency of this acceleration structure will achieve
better performance during ray tracing. The results shown in this thesis do suggest
that this proposition has its merits.

In all the test scenes the geometry defined by CSG outperformed the geom-
etry defined by triangle meshes. However, one has to note that the rendering
environment used to test the proposition while reasonably well optimized is not a
state-of-the-art real-time ray tracer. Real-time ray tracers are hardwired to per-
form operations on triangles as fast as possible. As a result their performance can
not be realistically compared to the performance of the renderer presented here,
as long as we are concerned with raw rendering speed. Still, the result can not be
dismissed because they show that on a level playing field the idea of minimizing
the number of primitives to ray trace is solid.

The results also show that the build times for the acceleration structures are
greatly reduced when they are used in CSG context. This reduction of build
times is at least by one order of magnitude. It is caused simply by the reduction
of the number of primitives. This result might seem self evident, nevertheless the
build times have to be factored in when considering time-to-image. In fact, even
though KD-trees are considered among the most efficient acceleration structures,
they come up short for some applications because of the time needed to build
them. These are usually dynamic scenes where the motion of the objects in the
scene forces a rebuild of the KD-tree after each frame. In this context the build
time reduction gained by using a CSG scene might be valuable.

We have also compared the performance of the OKD-tree introduced in this
thesis and the NBVH usually used as a go-to acceleration structure for CSG ray
tracing. In this comparison the OKD-tree appears to be on par with the NBVH.

We have identified the scenes that favor the NBVH. These are the scenes where
the primitives overlap to a significant degree. In these cases the KD-tree, used as
the main part of the OKD-tree, can not partition space efficiently enough. As a
result the overhead imposed by the Operation-tree, used to carry out the boolean
operations inherent in CSG ray tracing, hinders the efficiency of the OKD-tree.

We have also identified the scenes that favor the OKD-tree. These are the
scenes where the overlap is minimal or where the semantic scene graph is highly
unbalanced.

The scenes with minimally overlapping primitives can be efficiently partitioned
by the OKD-tree. This lets the fast traversal algorithms developed for KD-trees
to realize their full potential. As a result the overhead of the Operation-tree is
mitigated and the ray tracing performance is increased. Scenes that belong to this
category are not a rarity. Any time the surface of a large primitive is modified by
a number of relatively small primitives a scene like this is created. The checkered
cube shown in this thesis is but one of the possibilities.

In case of the scenes where the created semantic scene graph is unbalanced the
OKD-tree benefits from the one task orientation of the Operation tree. Some of
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these scenes may be partitioned well, other not so much. In any case the NBVH
has to traverse a large portion of the semantic scene graph, which is inefficient. In
contrast the OKD-tree once finished with the KD-tree traversal phase, traverses
only the Operation-tree. The traversal algorithm of the Operation tree is far
more efficient that the traversal algorithm of the NBVH. This efficiency is due to
the following reasons. Polymorphic behavior is excluded from the Operation tree.
Also the nodes of this tree are as small as possible, which serves as a cache-line
optimization.

The fact that unbalanced semantic scene graphs are no longer a hindrance
to the ray tracing performance relaxes the need to control their creation. This
makes automatic creation and manipulation with the scene that much easier.

In the thesis a basic optimization of the KD-tree has been transplanted to
the OKD-tree, namely the MSAH. The result show that this optimization has
maintained its benefits even after transplanting. The performance increase after
transplanting the MSAH has averaged on about 3%. In the paper which in-
troduces the MSAH the performance increase is comparable to the performance
increase experienced in this implementation. The implication of this is that this
combination of acceleration methods can benefit from the same optimizations as
the KD-tree.

In conclusion, the use of the KD-tree in a CSG environment is valid idea on par
with the existing acceleration structures for CSG. The possibility of transplanting
other more sophisticated optimizations is implied by the success of transplanting
the MSAH and could be subject to further research. The inability of partitioning
significantly overlapping primitives is another subject for further research.
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Nomenclature

AABB Axis aligned bounding box

BHV Bounding volume hierarchy

BV Bounding volume

CSG Constructive solid geometry

MSAH Modifiead SAH

NBVH Native bounding volume hierarchy

OKD-tree Operation KD-tree

SAH Surface area heuristic
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Attachments

1 Semantic Scene Graph Codes

The code to create the grooved sphere model:

1 ArNode ∗ createGroovedSphere (
2 ARTGV ∗ ar t gv
3 )
4 {
5 id sphere = SPHERE;
6
7 id torus = [ TORUS( 0 .1 ) apply
8 : USCALE( 0 . 9 )
9 : TRANSLATION( 0 , 0 . 0 , 0 .374 )
10 ] ;
11
12 id groovePair = [ to rus or : [ t o rus apply : ROT Y( 180 DEGREES )

] ] ;
13
14 id a l lGrooves = UNION(
15 groovePair ,
16 [ groovePair apply : ROT Y( 90 DEGREES ) ] ,
17 [ groovePair apply : ROT X( 90 DEGREES ) ] ,
18 UNION END
19 ) ;
20
21 id groovedSphere = [ sphere sub : a l lGrooves ] ;
22
23 return groovedSphere ;
24 }

Code to create the checkered cube model:

1 ArNode ∗ createCheckerCube (
2 ARTGV ∗ ar t gv
3 )
4 {
5 // This i s the b i g cube ;
6 id cube = [ CUBE apply :TRANSLATION(−0.5 , −0.5 , −0.5) :USCALE( 2 . 2 )

] ;
7
8 // This i s the ba s i c sma l l cube ;
9 id smal lcube = [ CUBE apply
10 :TRANSLATION(−0.5 , −0.5 , −0.5)
11 :USCALE( 0 . 2 )
12 :TRANSLATION( 0 . 8 , 0 . 8 , 1 . 1 )
13 ] ;
14
15 //Create a row o f sma l l cubes by t r a n s l a t i n g the one sma l l cube ;
16 id smallcubeRow = UNION(
17 smallcube ,
18 [ smal lcube apply :TRANSLATION(−0.4 ,0 ,0) ] ,
19 [ smal lcube apply :TRANSLATION(−0.8 ,0 ,0) ] ,
20 [ smal lcube apply :TRANSLATION(−1.2 ,0 ,0) ] ,
21 [ smal lcube apply :TRANSLATION(−1.6 ,0 ,0) ] ,
22 UNION END
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23 ) ;
24
25 //Create a g r i d o f sma l l cubes by t r a n s l a t i n g the row of sma l l

cubes ;
26 id smal lcubeGrid = UNION(
27 smallcubeRow ,
28 [ smallcubeRow apply :TRANSLATION(0 ,−0.4 ,0) ] ,
29 [ smallcubeRow apply :TRANSLATION(0 ,−0.8 ,0) ] ,
30 [ smallcubeRow apply :TRANSLATION(0 ,−1.2 ,0) ] ,
31 [ smallcubeRow apply :TRANSLATION(0 ,−1.6 ,0) ] ,
32 UNION END
33 ) ;
34
35 //Create a l a t t i c e o f sma l l cubes by r o t a t i n g the g r i d o f cubes ;
36 //This l a t t i c e i s not c rea t ed by t r an s l a t i on , because the r e i s no

need
37 // f o r sma l l cubes i n s i d e the b i g cube .
38 id sma l l cubeLat t i c e = UNION(
39 smallcubeGrid ,
40 [ smal lcubeGrid apply :ROT X(90 DEGREES) ] ,
41 [ smal lcubeGrid apply :ROT X(180 DEGREES) ] ,
42 [ smal lcubeGrid apply :ROT X(270 DEGREES) ] ,
43 [ smal lcubeGrid apply :ROT Y(90 DEGREES) ] ,
44 [ smal lcubeGrid apply :ROT Y(270 DEGREES) ] ,
45 UNION END
46 ) ;
47
48 // Sub t rac t the sma l l cubes from the b i g cube to ge t the checker

cube ;
49 id checkerCube = [ cube sub : sma l l cubeLat t i c e ] ;
50
51 return checkerCube ;
52 }

Code to create the small shell model:

1 ArNode ∗ c r e a t eSma l l Sh e l l (
2 ARTGV ∗ ar t gv
3 )
4 {
5 id mainSphere = [ SPHERE apply
6 :TRANSLATION(0 ,−2 ,0)
7 ] ;
8
9 id smal lSphere = [ SPHERE apply
10 :USCALE(0 . 9 5 )
11 :TRANSLATION(0 ,−2 ,0)
12 ] ;
13
14 id plane1 = [ CUBE apply
15 :TRANSLATION(0 . 0 , −0.5 , −0.5)
16 :SCALE(10 ,10 ,10)
17 :ROT Z(18 DEGREES)
18 ] ;
19
20 id plane2 = [ CUBE apply
21 :TRANSLATION(0 . 0 , −0.5 , −0.5)
22 :SCALE(10 ,10 ,10)
23 :ROT Z(162 DEGREES)
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24 ] ;
25
26 //To crea t e a more ba lanced graph f i r s t the union o f t h i n g s
27 // t ha t are going to be su b t r a c t e d i s c rea t ed .
28 id thingsToSubtract = UNION(
29 smal lSphere ,
30 plane1 ,
31 plane2 ,
32 UNION END
33 ) ;
34
35 //The important s u b t r a c t i on to form the segment .
36 id segment = [ mainSphere sub : th ingsToSubtract ] ;
37
38 //The s h e l l s t a r t s wi th one segment .
39 id s h e l l = segment ;
40
41 //Now the loop c r ea t e s the segments o f the s h e l l
42 //by trans forming the segment s e v e r a l t imes
43 for ( int i = 1 ; i< 16 ; ++i )
44 {
45 segment = [ segment apply
46 :ROT Z( 22 .5 DEGREES)
47 :USCALE(0 . 9 3 )
48 ] ;
49 //Each new segment i s added to the s h e l l .
50 //This i s what c r ea t e s the l o p s i d e d t r e e .
51 s h e l l = [ s h e l l or : segment ] ;
52 }
53
54 return s h e l l ;
55 }

Code to create the large shell model:

1 id c r e a t eLa rg eShe l l (
2 ARTGV ∗ ar t gv
3 )
4 {
5 id mainSphere = SPHERE;
6
7 id l e f t Sph e r e = [ SPHERE apply
8 :TRANSLATION(0 ,−0.02 ,0)
9 :USCALE(0 .989227963463)
10 ] ;
11
12 id r ightSphere = [ SPHERE apply
13 :TRANSLATION(0 , 0 . 0 2 , 0 )
14 :USCALE(0 .989227963463)
15 ] ;
16
17 id segment = [ mainSphere sub :
18 [ l e f t Sph e r e or : r i ghtSphere ]
19 ] ;
20
21 segment = [ segment apply : TRANSLATION (3 , 0 , 0 ) ] ;
22
23 //The s h e l l s t a r t s wi th one segment .
24 id s h e l l = segment ;
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25
26 //Now the loop c r ea t e s the segments o f the s h e l l
27 //by trans forming the segment s e v e r a l t imes
28 for ( int i = 0 ; i < 64 ; ++i )
29 {
30 segment = [ segment apply
31 : ROT Z( 12 DEGREES)
32 : USCALE(0 . 9 79 )
33 ] ;
34 //Each new segment i s added to the s h e l l .
35 //This i s what c r ea t e s the l o p s i d e d t r e e .
36 s h e l l = [ s h e l l or : segment ] ;
37 }
38
39 return s h e l l ;
40 }

2 Contents of the CD

The CD contains the source code for the ART rendering toolkit. As well as
the User manual for ART and some scene description files. Since this thesis was
implemented into a large toolkit there is no way of separating the code pertaining
to the thesis alone. There is a readme.txt file in the source directory. It lists the
most important files associated with this thesis.
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