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Chapter 1

Introduction

One of the major challenges in the field of computational linguistics is to transform
text from the native natural language representation to representations which can be
fed as an input to the computer. The computer would then be using this to perform
various tasks. The transformation of representations from natural language to well-
defined formal languages involves several layers of processing. Among these, parsing
is one of the most important and the most difficult of them. Parsing of a natural lan-
guage can be defined as the process of mapping sentences in the natural language to
their syntactic representations. Parsing also lays an important foundation for under-
standing the natural language syntax and semantics. Recently, statistical parsing has
taken precedence over other forms of parsing due to its highly efficient parsing capa-
bilities [Marcus et al.1993]. While parsing accuracy of these parsers are mostly rising,
this is still not enough for integration with the practically implementable natural lan-
guage processing applications and hence there is a pressing need for better accuracy
[Merlo et al.2011]. This is also due to the highly ambiguous nature of the natural lan-
guage. High accuracy natural language parsing would be very useful for modern NLP
applications which include machine translation, question answering systems, informa-
tion extraction, text summarization, semantic role labeling, etc..

The syntactic structure of the natural language is formalized into a certain syntactic
representation, this is also known as the grammatical formalisms. There are several
syntactic representations which are used in computational linguistics. In this thesis,
we would be focusing on one of the most important representations which is based on
the notion of dependency [Tesnière1959]. This formalism is now formally known as
the “Dependency Grammar” (DG) Framework. Also, we would be concerned with a
particular type of parsing for the DG called the data-driven discriminative graph based
dependency parsing, also known more frequently as graph based dependency parsing
formalism. This is a type of statistical parsing.The rest of the thesis will set the very
basic premise of the thesis.
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1.1 DependencyGrammar: Definition andCurrent
Status

A dependency tree can be defined in the most basic way as a directed acyclic graph
in which all the words in the given sentence are connected together by grammatical
relations. For example, the subject and object depend on the main verb; adjectives
depend on the nouns that they modify; etc.. In each pair of connected words, one is
called the ‘dependent’ which is basically a modifier and the other is called the ‘head’.
That is, the modifier modifies the head. Simply, an analysis based on DG can be ex-
plained as a tree where, each token in the sentence is a node in the tree, and each arc
connects a head to its modifier. A more detailed discussion on the dependency gram-
mar will be made in the following chapter. DG is an increasingly important grammar
representation in modern computational linguistics. It is particularly well-suited for
languages with approximately free word order [Covington2001]. Also, dependency
representations are emerging as the standard for comparing the result of syntactic anal-
ysis across different grammar formalisms and parsing approaches. In a way, the DG
formalizes the syntactic structure as a directed tree of dependencies. The classical
phrase-structure [Chomsky1956] models have been of less help in exploring the joint
‘syntactic and semantic’ phenomena, especially with a cross-linguistic perspective.
[Mel’čuk et al.1987] and [Covington2001] claimed that one of the advantages of DG
over approaches based on phrase based or constituent structures is that it allows for a
more adequate treatment of languages with variable word order, where discontinuous
syntactic constructions are more common than in languages like English. Also, note
that, dependency links are close to the semantic relationships needed for the next stage
of interpretation.

There are two dominant and mostly studied approaches to dependency parsing:
graph-based and transition-based, where graph-based parsing is understood to be slower
but exhaustive, and often more accurate.

DGs have been at the forefront of computational linguistics since last two decades.
This can be seen by its application to functional description of grammar [Sgall1984],
possibilities of extracting rich lexical information from corpora [Bangalore et al.2009],
applications related to semantic graphs [Marneffe et al.2007] and adaptability to vari-
ous languages with the same formalism [Bourdon et al.1998].

1.2 Dependency Parsing: Status Quo
Highly efficient parsers have made DG to be one of the most explored grammar for-
malisms in the last decade [Merlo et al.2011]. One of the major hurdles in understand-
ing natural languages is mostly concerned with producing an optimized natural lan-
guage system. Implementations of efficient grammar formalisms form one of the basic
components of these systems. Current data driven dependency parsing formalisms can
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be divided into three different types:

• Local-and-greedy transition based parsers (e.g., MALTPARSER and similar parsers
[Nilsson et al.2006], [Yamada and Matsumoto2003]),

• Globally optimized graph-based parsers which are also known as discriminative
graph based dependency parsers. (e.g., MSTPARSER [McDonald et al.2005] ;
[Koo and Collins2010] and [Carreras et al.2006]), and

• Hybrid systems (e.g., ( [Sagae and Lavie2006] and [Nivre and McDonald2008])),
which combine the output of various parsers into a new and improved parse.

Transition based parsers basically scan the input from left to right. They usually
have linear complexity and mostly make use of a big list of features. Most of their their
decisions are local. Some of the transition based parsers have the restriction of sticking
to the ‘left to right’ direction [Nilsson et al.2006]. [Nilsson et al.2006] also states that
the transition based parsers have O(n) complexity, that is, it has a ‘linear complexity’.
Also note, even if they can use the big list of features, which can basically include
the rich structural information, it is basically restricted, as only the next two or three
lexemes are available to the parser. This implies that it has a very small look-ahead
window, and hence, it is right to predict the relatively less rich contextual information.
This usually results in error propagation and relatively bad performance on root and
long distance dependencies when compared to graph based or discriminative depen-
dency parsers [McDonald and Nivre2007].

The graph based dependency parsers on the other hand, have a better contextual
information. They usually perform an ‘exhaustive’ search over all the probable parse
trees for a given sentence, and hence are globally optimized. Once they do an ‘exhaus-
tive’ search they sum all the possible tree structures (this will be discussed in length
in the following) to find the best scoring tree for a given sentence. But then, an in-
crease in the feature sets actually makes it a hard problem, hence the feature sets are
mostly restricted to the single edges - (which is the first order parsing model) or edges
pairs (second order parsers - ( [McDonald et al.2006]; [Carreras2007]) or edge triplets
(third order [Koo and Collins2010]). There have been efforts on incorporating arbi-
trary tree-based features, but then these adversely affect the overall complexity of the
parser. These models have at least O(n3) complexity when being highly greedy. In
this thesis, we will concentrate on this family of parsers and explore mostly the higher
order parsers - second and higher.

1.3 Research Objective
The major focus of the research presented in this thesis is to the investigate the effects
of semantic and morphological features on the discriminative data driven dependency
parsing. Especially, we will be concentrating on the graph based dependency parsing.
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One powerful aspect of discriminative models is their ability to incorporate rich sets
of highly dependent features (this will be discussed in the next chapter). The question
that we seek an answer for in this thesis is: “How do these features effect parsing?”.
[Bikel2004a] has done a detailed analysis on each class of distribution of features for
generative models. But a similar analysis seems to be missing for discriminative mod-
els, especially the graph based parsing models. This thesis is a step ahead into a similar
analysis.



Chapter 2

The Premise

In this section, we review the background concepts of Dependency Grammar and de-
pendency parsing. We will then provide a succinct description of the research orien-
tation adopted. We will also present a holistic view of the graph based dependency
parsing models.

2.1 Why Parsing?
Natural languages like English is hard to define in exact terms and is ambiguous in
many situations, while a formal language is mostly well defined and less ambiguous.
A natural language has often evolved during thousands of years and yet it continues to
evolve. This makes it impossible to state an exact definition at a given time. It is also
hard to draw boundaries between natural languages, and whether a particular language
is counted as an independent language is usually dependent on historical events and
culture, seldom only on the linguistic criteria. These properties not only make natural
language processing a challenging task but also a very interesting research topic. Es-
pecially with the increasing use of information technology in combination with natural
languages. Many computer applications that involve natural languages like machine
translation, question answering and information extraction are dependent on modeling
natural language in an easier representation. Moreover, these applications usually have
to deal with unrestricted text, including grammatically correct text, ungrammatical text
and foreign expressions.

Thus, parsing of natural languages can be seen as the process of mapping an input
string or a sentence to its syntactic representation. We assume that every sentence in the
given set of sentences (or in other words the corpus) has a single correct analysis which
the speakers of the language generally agree that this analysis is preferable. We do not
necessarily assume that a formal grammar defines the relationship between sentences
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and their preferred interpretations. [Nilsson et al.2006] in his paper uses the concept
of text analysis to characterize this problem that can only be evaluated with respect to
the empirical evidence of a language text.

Several attempts have been made to formalize the grammar of the language over a
long period. The first records of such an attempt dates back to 400 BC, when Panini
described and formalized the Sanskrit grammar. The first computational study of gram-
mar could be dated back to the early 1950swith the seminal work of CFG [Chomsky1956].
Since then, there have been a very large set of grammatical formalisms, which have ex-
isted and which have been used and implemented in several domain of computational
linguistics. These plethora of grammar formalisms help the objective of parsing in sev-
eral ways for different applications. In the next section we would solely concentrate on
the Dependency Grammar formalism that forms the backbone of the formal structure
in our work.

2.2 The Dependency Grammar
Syntactic representations based on word-to-word dependencies have a long tradition in
general linguistics. The basic assumptions behind the notion of dependencies are sum-
marized in the following sentences from the seminal work of [Tesnière1959]: (trans-
lated from French verbatim)

“The sentence is an organized whole; its constituent parts are the words. Every
word that functions as part of a sentence is no longer isolated as in the dictionary: the
mind perceives connections between the word and its neighbors; the totality of these
connections forms the scaffolding of the sentence. The structural connections establish
relations of dependency among the words. Each such connection in principle links a
superior term and an inferior term. The superior term receives the name governor; the
inferior term receives the name dependent”

The very basic dependency structure can be viewed as shown in 2.1.

Figure 2.1: Basic dependency structure - A head and a modifier

As we have explained before, we usually represent the dependency relations among
the words of a sentence as a graph. A dependency representation is a labeled directed
graph, where the nodes are the lexical items and the labeled arcs represent dependency
relations from heads to dependents.

It is these binary dependents - the head and the modifier that play a major role in
the structure. Let us have a quick glance at a dependency structure in 2.2.
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Figure 2.2: A simple example;please note that we are adding an extra root here

The dependency structure for a sentence x with words x⃗ ∈ [x1...xn], is the directed
graph on the set of positions of x⃗ that contains an edge from i to j if and only if xj

depends on xi . In this way, the dependency structures can capture information about
certain aspects of the linguistic structure of a sentence. This notion allows us to express
linguistic concepts as structural constraints on graphs. In practice, the dependencies are
usually required to form a well defined and well formed tree. There are well formed
rules for the retention of the tree order for a dependency tree.

Figure 2.3: The directed graph for previous example

2.3 Projectivity and Non-Projectivity Constraints
Projectivity is concerned with the restriction of the span of the dependency relation. It
requires each dependency subtree to cover a contiguous region of the sentence, hence,
making sure that there is no crossing in dependency relations. Or in other words, the
dependency spans don’t cross each other. This is a very important constraint and it
makes sure that there is no shuffle in the word order, which acts as a boon for the
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dependency algorithms, since, it adds a constraint. These have been strongly exploited
with dependency parsers like [Eisner and Satta1999].

However, there are many languages where the dependency subtree may be spread
out over a discontinuous region of a sentence, which usually results in the crossing of
the spans. [Kuboň et al.1998] have mentioned that such representations mostly occur
due to the linguistic phenomena such as extraction of entailment, topicalization and
extrapolation. These are particularly common in languages with flexible word-order.
Unfortunately, dependency parsing of non-projective structures using graph-based de-
pendency parsing is found to be NP-Complete [McDonald and Nivre2007]. Let us
investigate this quickly by venturing into the two diagrams here. 2.4 represents a pro-
jective dependency structure. 2.5 represents a non-projective dependency structure.

Figure 2.4: Projective Structure: none of the edges are crossing each other.

For English, projective trees are sufficient to analyze most sentence types, this is
also stated in [Sleator and Temperley1993]. However, there are certain examples in
which a non-projective tree is preferable. We consider one of those examples here in
the next sentence. But, in general, most of the free-word-order based languages have
non-projective structures more often than for English.

Figure 2.5: Non-Projective Structure: the red edge is basically crossing.

In this thesis all our algorithms are following the above definition of projectivity.
Also note that, the parsing algorithms that we would discuss ahead in the thesis corre-
spond to the the projective structures.
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2.4 DiscriminativeGraphBasedDependency Pars-
ing

Let us now shift our focus to the type of dependency parsing upon which we will con-
centrate in this thesis. Graph based parsers are parsers which implement a discrim-
inative learning technique. In this sub-section we will try to explain the theory of
discriminative parsing.

2.5 Notational Conventions
Let us consider that a dependency parser gets as an input a sentence x of n tokens
and outputs a labeled dependency tree y. A labeled dependency would be the triplet
< h,m, l >, where the index of the head token is represented as h ∈ [0...n], the index
of the modifier token is represented as m ∈ [1...n] and the label for each dependency
pair (h,m) is represented as l ∈ [1...L] (here, L is the set of all possible dependency
labels in the given dataset). Also note that, the total number of sentences in the corpus
is assumed to be χ and the number of possible trees for the sentences in the whole
corpus is assumed to be γ.

The head of the sentence is assigned a value h = 0, in this thesis, we represent
it by a special root symbol, which is as represented in the previous figures. D(x)
represents all possible dependencies and the set (x⃗) represents all possible dependency
structures for a sentence x. (x⃗) for projective parsing algorithms and non-projective
parsing algorithms differ.

Before we proceed ahead to define the parsing algorithms, let us first explore the
discriminative modeling.

y∗(x⃗; w⃗) = arg max
y∈γ(x)

w⃗ · ϕ(x⃗, y) (2.1)

In the above equation: please note that, χ is the set of all the sentences in the
corpus and γ. Here, ϕ(x⃗, y) produces a d-dimensional (where the d is dimensionality
of (χ, γ)) → Rd) vector representation of the event that dependency tree y is assigned
to sentence x. Each dimension in ϕ(x⃗, y) is a feature that measures some quantifiable
aspect of x and y. Hence we call ϕ(x⃗, y) as the feature vectors. The parameter vector
w⃗ contains d weights corresponding to the d separate features; these parameters are
learned on a training corpus of examples.

The maximization is performed over the set (x), the size of this set increases expo-
nentially with the length of the sentence. This makes the enumeration intractable. To
take care of this situation we factor the dependencies in the following way.
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2.6 Factoring Structures
Factorization constrains the feature representation so that each feature is only sensitive
to a limited region of y. Essentially, the factorization breaks each structure into sets of
parts, which are local substructures of y with well-defined interactions.

Consider, for a given sentence x, with parameter vector w, and parts p, we have a
modified and reduced version of the equation mentioned in the last subsection:

y∗(x⃗; w⃗) = arg max
y∈γ(x)

∑
p∈y

w⃗ · ϕ(x⃗, p) (2.2)

Let us consider an example to illustrate this, the simplest type of factorization is the
generic factorization, that is, the first order factorization, which is also implemented by
[McDonald et al.2006]. In this case a tree y is broken into n component dependencies.
If this is the case, the equation would then transform to:

y∗(x⃗; w⃗) = arg max
y∈γ(x)

∑
(h,m)∈y

w⃗ · ϕ(x⃗, h,m) (2.3)

since - (h,m) would represent the head and modifier indices of a dependency in y.
We can then apply dynamic programming algorithms efficiently to solve the parsing
problem. This is well described in [Eisner2000]. We will briefly explore this shortly.

The leftmost component i.e., the arg max function is referred to as the factorization.
This method is used to decompose the tree into parts. The ϕ() corresponds to the
features. In theory, every component can result in an opportunity for improvement, we
would restrict ourselves to the feature section.

Now, if the above problem also considers non-projective structures, then a simple
dynamic-programming would not suffice. But it could, still be efficiently solved by
using directed maximum spanning tree algorithms as shown by [McDonald et al.2005].

Consider a case where the dependency trees are factored into larger parts, i.e., scor-
ing groups of two or more neighboring dependencies with a shared head. This is known
as higher-order factorizations, and parsers which implement this are known as higher
order dependency parsers. This forms one of the seminal parts of this thesis. We shall
explore later the different approaches to the higher order dependency parsing and the
advantages and disadvantages of the higher order dependency parsing.

Let us now switch our focus back to the previous mentioned equations, especially
the concept of estimating the parameters w.

2.6.1 Parameter Estimation using Structured Perceptron
Aparameter estimation problem is usually formulated as an optimization problem. This
is mostly because of different optimization criteria and also several possible parameter-
izations, a given problem can be solved in many ways. In this thesis we use one of the
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simplest parameter estimation methods - the structured perceptron algorithm, which is
the generalization of the perceptron algorithm.

This algorithm was introduced by [Collins2002] in his seminal work of discrimi-
native training models for Hidden-Markov-Models (HMM). The perceptron is one of
the easiest and the simplest parameter estimation algorithms.

The averaged perceptron begins with a parameter vector, which is initialized to
0. It is then proceeds in a series of T iterations, which are basically divided into a
series of estimations. Each estimation step involves selecting a random example from
the training set, parsing that example, and checking the parsers prediction against the
standard structure. If the structures differ, then the parameters w⃗ are updated with the
difference between the feature vectors of the gold standard and model prediction. The
output of the algorithm is not the final parameter vector, but the average of all parameter
vectors across every trial in the training run. Henceforth, it is also called the averaged
perceptron for parameter estimation. The parameters are basically updated in the case
of a mistake. We can see the pseudocode of the algorithm in the here:

Input: Training Data = (x⃗, y⃗) where i ∈ [1...n]
w⃗ = 0
v⃗ = 0
for t = 1 → T do
for j = 1 → n do
i = Random[1, n]
y′ = y′′(xi; w⃗)
if y′ ̸= yi then

w⃗ = w⃗ + ϕ(xi, yi)− ϕ(xi, y
′)

end if
v⃗ = v⃗ + w⃗

end for
end for
v⃗ = v⃗/Tn

Algorithm 1: Pseudocode for average perceptron algorithm: In this algorithm w⃗ is the
normal parameters and v⃗ is the summed parameters. Also note that the resultant output
as described here is v⃗.

The difference computed in the algorithm, i.e., w⃗ = w⃗ + ϕ(xi, yi)− ϕ(xi, y
′), has

an additional property: if the model prediction y’ is mostly correct, then only a few of
its parts will differ from the parts in the gold standard yi. Thus, the update performed
on the parameter vector will only modify features pertaining to incorrect or missing
parts.

The averaging of parameter vectors is crucial for obtaining best results with the per-
ceptron algorithm. As pointed out by [Carreras2007] the actual perceptron parameters
yield only mediocre parsing performance, while the averaged parameters v resulting
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from the same run are of much higher quality. This seems to generate desirable per-
formance for our parsers. We are only sticking to this form of parameter estimation.

We now seem to have the necessary background to understand higher order dis-
criminative parsing models.

What we have described above is just a formalization of the tree factored into parts,
that is, we have describe the score of the tree to be the sum of the edge scores. A detailed
account on the factorization is explained in [McDonald et al.2005]. In the process of
factorization, the whole problem of finding the dependency tree of a particular sentence
has been reduced to the problem of finding maximum spanning trees. In this section
we restrict the definition to the more refined, projective dependency trees.

[Koo and Collins2010] defines order of a part as the number of dependencies a part
contains. In the following sub-sections we shall see explore the different projective
algorithms and then we would concentrate on the existing feature structure and the
proposed changes in the feature structure.

2.7 Parsing Algorithms
In this section we briefly describe the current research on graph based dependency al-
gorithms. We have briefly described the algorithms which are one of the most essential
parts for the justification of our hypothesis.

Before we go further with the description of the dynamic programming structures,
let us understand the terminology which is generally accepted:

• Simple Dependency: The simple dependency as we have been defining since the
beginning, is made of a head (h) and a modifier (m) relationship.

Figure 2.6: The basic dependency structure.

• Sibling Structure: A sibling is defined as the relation where the modifiers share
the same head. We consider here one as the main modifier (m), while the other
as the sibling (s).

• Grandchild Structure: In case of a grandchild structure, the head has a parent, that
is the grandparent (g). The structure is depicted in the figure here.

• Grandsibling Structure: Here, the sibling structure defined above is headed by a
grandparent. Hence, forth a grand-sibling structure.
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Figure 2.7: Sibling structure.

Figure 2.8: Grandchild Structure

Let us now understand the basic dynamic programming structures. The algorithms
in detail would not be mentioned, but the relevant reference would be made for each
of the algorithmic formulation.

First-Order Factored Parsing Algorithm
One of the earliest implementation of discriminative dependency parsing was intro-
duced in the seminal work by [Eisner2000] who used dynamic programming for first
order parsing. This laid the foundation to other parsing algorithms in the area of graph
based dependency parsing.

The most important part of the algorithm is that it has two main components - the
complete span and the incomplete span. The complete span on one hand consists of a
headword and its modifiers, while the incomplete span consists of the region between
the head and the modifier.

A slightly modified version of CKY [Eisner and Smith2010] chart parsing algo-
rithm would generate and represent the dependency trees in less than O(n5) (which is
the standard time complexity of CKYalgorithm) time to create. However, [Eisner2000]
parses left and right dependents of a word independently and then combines them at a
later stage. This reduces the time complexity from the standard - O(n5) to O(n3) as
each derivation is defined by fixed boundaries of a ‘span (which is two)’ and ‘a split
point’.

We can think about a complete span as a ‘half-constituent’ of a dependency tree
part. This half-constituent is headed by a head ‘h′ and is modified by a modifier ‘m′.
Similarly, an incomplete span can be thought of as a ‘partial half-constituent’, be-
cause, this is extended by adding modifiers to m.

Let us consider a complete span as Ch,e where h and e are the indices of the span’s
headword and endpoint. An incomplete span may then be written as Ih,m, where m is
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Figure 2.9: Grandsibling Structure

the modifier of h. As we have seen above, with the Eisner’s independent combination
strategy, again, each span is created by recursive combination of smaller spans. An
incomplete span is constructed from a pair of complete spans, while a complete span
is created by combining the incomplete span with the other half of the constituent.

Figure 2.10: First-Order dynamic programming structures
Kindly note here that complete spans are triangles and incomplete spans are

trapezoids.

The above process is a recursive process. Also in the figure, the span combines at a
point m (in (a)) and at a point r (in (b)) is the free index that must be enumerated to find
the optimal construction. This is also split point. The point of concatenation is found
to infer the optimal construction. This is exactly accomplished by modifying the CKY
parsing techniques as mentioned in [Cocke and Schwartz1970] and [Kasami1965].

2.7.1 Second-Order Factored Parsing Algorithm
In a second order factored algorithm a part contains 2 dependencies. The implementa-
tion of second order parsing algorithms have beenmajorly done in the belowmentioned
ways:

• Sibling factorization - This was introduced by [McDonald et al.2006] where the
dynamic programming structures were modified to explore the possibility of ex-
tending the parts to include the sibling information. That is two words with a
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shared head word. In this case, a sibling information is a triplet < h,m, s >.
Extending from the previous algorithm, (h,m) and (h, s) are dependencies and s
and m are successive modifiers to the same side of h. For this case, the dynamic
programming structure has been augmented to include an extra structure: sibling
spans. Sibling span represents the region between successive modifiers and of
a head. Let us consider a sibling span as Ss,m, here s and m are the successive
modifiers involved in the relationship.

Figure 2.11: Second order dynamic programming structure
This shows the sibling spans

In this case, the incomplete spans are constructed in a completely different way
as opposed the earlier case. Here, the parser combines incomplete span, that rep-
resents the innermost dependency with a sibling span. Even in this case, each
derivation is still defined by a span and split point only. Hence, even here the
parser requires O(n3) time.

• Grandchild factorization - The grandchild factorizationwas introduced by [Carreras2007]
in which parser tries to exploit the grandchild parts, that is, the part includes the
children of head and modifier. So, in this case, a grandchild information is a
triplet < h,m, c >. Extending from the same first order factorization, (h,m)
and (m, c) are now the dependencies. Again, for this case, the dynamic program-
ming structure is modified to include the identity of the outermostmodifier of the
head of the complete span. These also make use of the aforementioned sibling
parts - (h,m, s) but then s and c are effectively independent of each other and
hence the algorithm is optimized to deal with each index separately. Here, please
note that the grand child relation changes the parsing algorithm now, in terms of
the computational complexity. That is the complexity increases from O(n3) to
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Figure 2.12: Second order dynamic programming structures
Grandchild spans

O(n4).

2.7.2 Third-Order Factored Parsing Algorithm
Third order parsing algorithms was introduced by [Koo and Collins2010] which basi-
cally extends the above approaches. This is mostly by augmenting the grand-parent
index. [Koo and Collins2010] remarks that the efficiency of the third order algorithms
is due to sa fundamental asymmetry in the structure of a directed tree, i.e., a head can
have any number of modifiers but a modifier always has a single head. So in a way,
this exploits the structural asymmetry. [Koo and Collins2010] specifically divides the
parsing algorithms into three different models, the important two are mentioned below,
which we have tried to experiment on:

• Include all grandchildren In [Koo and Collins2010]’s structures a grandchild is a
part contains the information of the triplet < g, h,m >, where (g, h) and (h,m)
are dependencies. For this both complete and incomplete spans are augmented
with g-spans. Hence, in other words, it basically represents the same first-order
algorithm, but now it includes the indices of the grandparent. Please do note that
here each derivation copies the grandparent index g into smaller g-spans. This
actually causes each g-span to have non-contiguous structure. This is basically
an extension of the second order grand-child factorization
Even with this algorithm the time complexity is O(n3) as each derivation is de-
fined by three fixed indices and one split point.

• Include all grand-siblings In this case, we decomposed each tree into a set of
grand-sibling parts which consist of the sibling parts and the grandchild parts.
i.e., a grand-sibling is a quadruple < g, h,m, s > where (h,m, s) is basically the
sibling part from above and (g, h,m) is the grandchild parts. Its almost like a
hybrid of the aforementioned approaches.
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Figure 2.13: Third order dynamic programming structures
Grandchild

2.8 Feature Space
All through the previous sections we defined the score of an edge, but we intrinsically
made an assumption about the feature space. We supposed that we have a high dimen-
sional feature representation for each edge. The feature set description in the above im-
plementations maintain the successful previous work in first order dependency parsing
[McDonald et al.2005], [McDonald et al.2006], [Carreras2007].

Let us understand feature space with an example from [McDonald et al.2005]. Let
us consider a feature selection from the form of the words, the lemma of the words, the
pos tags of the words. The features are basically the indicatory functions (most often
binary), each of the functions evaluate the presence of a certain pattern in a dependency.
Consider a feature pattern which takes into account part-of-speech tag and the form of
the word into consideration. There is an implicit direction on each dependency part -
the left or the right. Let us assume that if |h| <|m| then the direction is right and it is left
otherwise. If these are the given conditions, then the part ϕ(x, h,m, c) can be defined
as:

• dir.pos (h).pos (m)
• dir.form (h).pos (m)
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Figure 2.14: third order dynamic programming structures
grand-sibling.

• dir.form (m).pos (h)
• dir.form (h).pos (m)
• dir.form (h).form (m)
The most basic feature patterns consider the surface form, part-of-speech, lemma

and other morphosyntactic attributes of the head or the modifier of a dependency. The
representation also considers complex features that use a variety of part-of-speech tags
of the following items: the head and modifier; the head, modifier, and any token in
between them; the head, modifier, and the two tokens following or preceding them.
Most of the above implementations of the parsing algorithms involve using the syntac-
tic features.

In our experiments we are experimenting with a deprived tree, by depriving it of
the dependency-labels. This is because the addition of labels actually increases feature
space. For simplicity and computational reasons, we have restricted the experiments to
unlabeled parsing. Just like the concept of direction defined above, the label is actually
dependent on both head and modifier.

2.9 Effect of Features in Dependency Parsing
[Bikel2004b] provided a detailed analysis of the contribution of each class of distribu-
tion to the generative power of the model for generative parsing models. But, unfor-
tunately the non-probabilistic nature of our models prevents that detailed analysis. In
this thesis we investigate the effective improvement of certain features and also explain
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their importance.

2.9.1 Effect of Semantic Features
Semantic information basically focuses on the relation between signifiers, like words,
phrases, signs and symbols, and what they stand for. Use of semantic information
to improve parsing accuracy has been an interesting but difficult goal since the early
days of NLP [Ratnaparkhi et al.1994], [Hektoen1997], [Xiong2005]. There have been
some good results as shown by [Ratnaparkhi et al.1994] but the overall integration
has been a tough challenge. Recently [Agirre et al.2011] made an attempt to inte-
grated semantic word classes with transition based data driven dependency parser - the
Maltparser [Nivre and Hall2005] using basic semantic representations using WordNet
[Fellbaum1998a]. Recently, [Agirre et al.2011] concludes that semantic information
gives an improvement on a transition-based deterministic dependency parsing. Also,
he mentions that feature combinations give an improvement over using a single fea-
ture. Semantic information can be further classified according to its exactness to its
intended meaning.

2.9.2 Morphosyntactic and Morphosemantics with Depen-
dency Parsing

Morphosyntactic feature is a feature which is involved in either syntactic agreement
or government. A typical example is the gender, number and person are involved in
agreement. In languages like English and many other languages, syntax is not sen-
sitive to the tense value of the verb. But in languages, especially, highly inflected
languages, the tense plays a major. This is a very important attribute for languages
with rich morphology and inflections. The relationship of the concept of ‘gender’ i.e.,
the concepts ‘masculine’, ‘feminine’, ‘neuter’; or between the concept ‘case’ i.e., the
concepts ‘nominative’, ‘accusative’, ‘genitive’, etc., with many languages also play
a major role in deciding the sentence structure. There are some interesting results
about integrating Tense, Aspect, Modality and Minimal Semantics with a dependency
parser to obtain better results for parsing morphologically rich free word order lan-
guage [Ambati et al.2010] [Ambati et al.2009]. They claim that with the introduction
of semantic features there is a significant improvement in the performance of both the
parsers. They further state that adding semantic features for nouns helps with label
identification more than head identification.

Most of the current research on dependency parsing is focussed on the algorithms
employed by the parsers, in this thesis we would concentrate on the issue of the relevant
information to the parsing algorithm. That is experimenting on extending the feature
structure, the problem of relevant and important feature extraction is as important as
the research on parsing algorithms. Feature structures provide information for the



Chapter 3

State-of-the-Art and Current
Research

The research in the field of dependency parsing was boosted by the successful results in
the open shared tasks of the Conference on Computational Natural Language Learning
(CoNLL) which concentrated on the task of dependency parsing. The relevant shared
tasks which concerns this thesis and the field of dependency parsing directly are shared
tasks in CoNLL-2006 [Buchholz and Marsi2006], CoNLL-2007 [Nivre et al.2007b],
CoNLL-2008 [Surdeanu et al.2008] and CoNLL-2009 [Hajič et al.2009]. Most of the
participating teams had novel and highly competitive methods. Though, CoNLL-2008
and CoNLL-2009 shared tasks were joint assignment of syntactic and semantic depen-
dencies.

This thesis focuses on the aspect of pure dependency parsing rather than the task
of joint assignment of syntactic and semantic dependencies, hence we will be more
concerned with the systems with exclusive dependency parsing results. The results of
the CoNLL 2007 shared task is presented in 3.1.

Parsing Algorithm English Czech Type of Parser
Carreras 90.63 85.16 Discriminative Graph Based
Nakagawa 90.13 84.19 Probabilistic based on Gibbs Sampling
Sagae 89.87 81.27 Transition Based
Nilsson 88.93 83.59 Inductive Transition
Titov 89.73 81.20 Probabilistic

Table 3.1: CoNLL 2007 Shared Task Results. Unlabeled Attachment Score.
The parsers are - [Carreras2007], [Shimizu2007], [Sagae and Tsujii2007],
[Nivre et al.2007a], [Titov and Henderson2007].
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We can see that shift-reduce (or transition based parsers) and [Eisner2000] based
techniques are the most used as parsing approaches and have a very good performance.
Eisner-based parsers use edge-factorizations, which are usually simple to approach.
Very recently, the new parsing algorithms have been trying to extract maximum number
of context by considering more number of words in a part - that is the concept of higher
order [Koo and Collins2010]. Let us now see some of themost important developments
in the field of dependency parsing in the recent past which has inspired this thesis
directly and indirectly.

[Carreras et al.2008] introduced a dependency parsing algorithm inspired by TAG
formalism [Joshi1969]. The main advantage of this algorithm is the ability to use fea-
tures from dependency trigrams. This approach uses the splittable grammar formalism
- TAG into maximum usage and also produces accurate results.

[Koo et al.2008] used an interesting approach by using semi-supervised learning.
They use Brown clustering algorithm as features and achieve some very interesting
results. This is specifically useful method when small amount of training data is avail-
able. This is one such research where the use of feature has shown a relatively big
improvement in the parsing accuracy. This thesis is totally exploiting the work done
by [Koo and Collins2010] where he introduced the parsers with third order. These al-
gorithms have been previously explained.

Noticeable research in the field of dependency parsing, especially in the area of
exploring the feature set has been rather less and not as exhaustive as with other con-
stituent parsers. Some of the recent work that concentrates with exploiting the features
are mentioned here.

[Agirre et al.2011] introduces semantic classes using WordNet, but for transition
based parser. The work shows an improvement in the retrieval of labeled accuracies.
But, the work does not provide an exhaustive analysis of the semantics on parsing.

[Kitagawa and Tanaka-Ishii2010] have augmented the selection of parsing actions
by using a tree based approach. They build a model that considers all the considers
all words necessary for selection of parsing actions by including words in the form of
trees. It chooses the most probable head candidate from among the trees and uses this
candidate to select a parsing action. This is a very new and interesting approach, but,
it is restricted to transition based parsers.

[Song et al.2011] demonstrates a method in which a classifier is used to determine
whether a pair of words forms a dependency edge. The classifier trained on the pro-
jected classification instances significantly outperforms previous projected dependency
parsers when augmented with graph based dependency parsers.

[Novák and Žabokrtský2007] have showed that optimizing feature templates, there
is a chance of getting a better parse structure in state-of-the art graph based dependency
parsing algorithms. This work also makes a comparison to the resources spent v/s the
improvement in the obtained result.



Chapter 4

System Configuration

4.1 In Focus
The parsing algorithms used in the parsers are fine tuned on the framework of averaged
perceptron [Koo and Collins2010]. The parser basically scores the part as shown here:

Part(x⃗, p) = w⃗ · ϕ(x⃗, p) (4.1)

In the above equation, ϕ is a feature vector mapping and w⃗ is a vector of re-
lated parameters. As described before, following the standard approaches here from
[Koo and Collins2010], [Carreras2007] and [McDonald et al.2006], the model scores
for all of the parsers follow a generic pattern. Please note that, it is not only the higher
order parts that the parser are mapped, but even the lower order parts are evaluated. For
example, let us consider the third order grandsibling parser. This parser evaluates the
mappings for dependencies, siblings, grandchildren and all the grandsiblings as well.

The score is calculated as:

Score(x⃗, y) =
∑

(h,m)∈y

w⃗ · ϕ(x⃗, h,m) +
∑

(h,m,s)∈y

w⃗ · ϕ(x⃗, h,m, s)+

∑
(g,h,m)∈y

w⃗ · ϕ(x⃗, g, h,m) +
∑

(g,h,m,s)∈y

w⃗ · ϕ(x⃗, g, h,m, s)
(4.2)

In this equation, we have defined the dependency- (x⃗, h,m), the siblings - (x⃗, h,m, s),
the grandchildren - (x⃗, g, h,m) and the grandsiblings - (x⃗, g, h,m, s) as the different
parts which are actually the decomposed part structures.

The speciality in this parsing approach is not just the consideration of all the lower
order parse structures, but the way the feature combinations take place. In this parsing
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substructure, we can have 4-gram context features - consisting of 4-gram POS aug-
mented with adjacent POS tags (when using POS as the feature). Consider an exam-
ple of ϕ(x⃗, g, h,m, s). This basically includes the POS features at these positions -
(g, h,m, s, g + 1, h+ 1,m+ 1), this means a POS 7-gram feature structure.

Figure 4.1: Example Structure where Sense information is included

Consider a simple example as shown in figure 4.1. In this example we can see that
given the sense the information with the parser increases the amount of information
required for the parser to parse the sentence structure correctly. This is, in general,
more pronounced when we talk about higher order structures. [Koo et al.2008] has
mostly tried to augment structures which are either syntactic or approaches like the
brown clustering. In this thesis, we try to experiment with a linguistic analysis of
feature addition.

4.2 System Information
A large number experiments were performed through the development process. As
we stated at the start of this work, our main point of interest is to compare the scores
with different features and see if there any significant effect on the score. We re-ran
some experiments with the latest system configuration to facilitate a comparison across
experiments. Some experiments are really expensive and hence were done using a
reduced corpus, which will be explained below.

4.2.1 Input Format
The input format for our experiments is using the CoNLL-X format 1 [Nivre and Hall2005].

The data format is as follows:
• The data files contain sentences separated by a blank line.
• A sentence consists of one or more tokens and the information for each token is
represented on a separate line.

1This can be accessed here http://ilk.uvt.nl/conll/
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• A token consists of at least 11 fields, described in the table below. The fields are
separated by one or more whitespace characters. Whitespace characters are not
allowed within fields.

The CoNLL format which we used for our experimentation looks something like
this:
1. ID - Token counter, starting at 1 for each new sentence.
2. FORM - Word form or punctuation symbol.
3. LEMMA - Lemma or stem (depending on particular data set) of word form, or an

underscore if not available.
4. CPOSTAG - Coarse-grained part-of-speech tag, where tagset depends on the lan-

guage.
5. POSTAG - Fine-grained part-of-speech tag, where the tagset depends on the lan-

guage, or identical to the coarse-grained part-of-speech tag if not available.
6. FEATS - Unordered set of syntactic and/or morphological features (depending

on the particular language), separated by a vertical bar (|), or an underscore if not
available.

7. HEAD - Head of the current token, which is either a value of ID or zero (’0’).
8. DEPREL - Dependency relation to the HEAD. The set of dependency relations

depends on the particular language.

4.2.2 Corpus Used
We are experimenting with two languages - English and Czechwhich are widely used
in shared tasks and are also widely experimented. This is also largely because of the
ready availability of finely tagged standard corpora. In this section we will describe
about the corpora which were used in the process of experimentation.

English
The corpus consisted of Penn Treebank (PTB) [Marcus et al.1993] corpus and it was
converted to the required format by using Penn2Malt constituency-to-dependency con-
verter. We used a subset of this corpus that consisted of:
1. 15, 000 Sentences - Training
2. 1000 Sentences - Validation
3. 2000 Sentences - testing

We used a reduced version (i.e., reduced state) as these experiments are heavily com-
putationally intensive and need a lot of resources for different experiments.

For English, the interest in dependency parsing has been a bit weaker than for other
languages. This is probably because of the strong tradition of constituent analysis in
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Anglo-American linguistics, this is reinforced by the creation of a big treebank for
American English, the Penn Treebank [Marcus et al.1993], that is annotated with con-
stituent analyses. At the same time, there has been increasing interest in using depen-
dency parses for a range of NLP tasks, frommachine translation to question answering.
This is one of the reasons, why most of the other languages have shifted to building
treebanks natively with a dependency grammar formalism. Even in this work, we use
Penn2Malt [Johansson and Nugues2007] for the process of conversion from the con-
stituency tagged corpus format to a dependency tagged corpus.

Czech
We used the Prague Dependency Treebank (PDT) [Böhmová et al.2001] for Czech,
which was converted by using some scripts provided in the TectoMT. Though the data
consisted of a big set of sentences, unfortunately generatingmodels for all of the them is
a very expensive task. Hence we reduced this by extracting a set of thousand sentences
from each of these corpora. Since the result was computed with several models with
similar dataset, we believe that the results still holds merit as these were comparative
results.

Again the division of the sets were:
1. 15, 000 Sentences - Training
2. 1000 Sentences - Validation
3. 2000 Sentences - testing
The Prague Dependency Treebank [Böhmová et al.2001] consist of Czech texts an-

notated with syntactical information consisting mainly of dependency relationships.
Unlike English, PragueDependency Treebank is natively a corpus following the depen-
dency grammar formalism. One of the most popular benchmarks for evaluating parser
quality is by evaluating against the surface-syntactic trees provided by the Prague De-
pendency Treebank.

4.2.3 Tools
Dependency Parser
We use [Koo and Collins2010]’s higher order dependency parser dpo32 which is freely
available with a GPL license. This parser already builds algorithms for all the higher
order parsers and provides the ideal basis to experiment. This lets us use the ideal base
to experiment with different dynamic algorithms and test our hypotheses.

2This can be accessed here http://groups.csail.mit.edu/nlp/dpo3/
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4.3 Word Sense Extraction
• Fine-grained Word Sense ExtractionWe use the standard word sense disam-
biguation [Pedersen and Kolhatkar2009] algorithm to do the basic word sense
disambiguation. What it does is, finds the sense of each word that is most re-
lated to the senses of the surrounding words based on a similarity measure. It
proceeds word by word from left to right, centering each content word in a bal-
anced window of context, whose size is determined by the user, of surrounding
words. At each stage, the token being disambiguated is called “the target”, and the
surrounding tokens “the context window”. The size of the context is determined
by the user and will be referred to as window size. . A balanced context is chosen
according to the size of the window. The goal of the algorithm is to select one of
the senses from the set of possible senses. This is done by measuring the semantic
relatedness between the possible senses of the target and the possible senses of
each of the tokens in the context window. Consider a sense pair (sk, s′il), where
sk is the kth sense of the word being considered and s′il represents the lth sense of
the ith word in the context window. A ‘relatedness’ function takes as input two
senses, and outputs a real number. It is assumed that this real number is indica-
tive of the degree of semantic similarity between the two input senses. A larger
number denotes high relatedness between the two senses and a smaller number
denotes low relatedness between the senses. In simple terms the equation that is
used to calculate the sense is given below:

Sk =
∑
1ton

(max(sk, s′il)) (4.3)

Here, Sk is the final-chosen sense for the given word in the context. WordNet is
used to fetch the number of possible senses.

• Coarse-grainedWord Sense Extraction [Fellbaum1998b] describes that the or-
ganization of words in the WordNet are done as sets of synonyms, called synsets.
Each synset in turn belongs to a unique semantic file (SF). There are total of 45
SFs (1 for adverbs, 3 for adjectives, 15 for verbs, and 26 for nouns), based on syn-
tactic and semantic categories. A script is written in order to fetch coarse-sense
disambiguation. This script also uses [Pedersen and Kolhatkar2009]’s word sense
disambiguation tool, but then makes it more coarse grained for our experiments.
The tags are SF00...SF44.

In both cases for Czech we obtain these by from the Prague Dependency treebank,
since these are already annotated.

4.4 Morphosyntactic Feature Extraction
These were exclusively done for the Czech language since we had the corpus already
tagged, also these were of GOLD standard. The morphosyntactic features are the basic
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Category Number of Values
POS 10

SUBPOS 75
GENDER 8
NUMBER 4
CASE 9

POSSGENDER 4
POSSNUMBER 3

PERSON 5
TENSE 4
GRADE 5

NEGATION 3
VOICE 3
VAR 3

Table 4.1: Morphological Tagset for Czech

morphological features in the Prague Dependency Treebank which are extracted from
the m-layer.

There are 13 categories in the Czechmorphological tagset with 4452 plausible com-
binations. These are briefly mentioned in the table 4.1. We extract the morphosyntactic
features out of this table - both full and take specific morphosyntactic features into con-
sideration and try to experiment with different possible combinations. Some of these
tags are very important and are mostly specific for an inflectional language as these
contain a lot of information which is essential to build a good sentence. This inspires
us to embed these features into the various dependency parsing algorithms and gain an
insight into these feature structures.



Chapter 5

Experiments

In this chapter we systematically explore the experiments that were conducted con-
ducted and finally we conclude with a result.

5.1 Experiment 1
5.1.1 Research Question
What is the effect of using the fine-grained semantic word-sense as a feature with dif-
ferent graph based dependency parsing algorithms?

5.1.2 Theoretical Plausibility
English
As explained in the previous chapters, we can see that dependency parsing, in general,
is very useful for semantic analyses. This draws us closer to the question of whether
there is any effect on the parsing accuracy if semantic information is available. We
investigate the possibility by including specific word-senses. This becomes especially
interesting with the higher order parsing algorithms, since, these have better context
information. We use the technique as explained in the previous chapter to extract the
wordsense extraction by disambiguation.

To explain the possibility of wordsense let us consider an example as shown in
5.1. Now, given the word form and the part of speech tag, “cricket” has exactly the
same pos tag in both ‘cricket as an insect’ and ‘cricket as a sport’. We can see that
the possibilities, given several parses with the same form and POS information, would
make it ambiguous. This would change if we have more information. In this example,
the sense can be useful to distinguish between the two different forms of the word.



5.1 EXPERIMENT 1 / 29

A sense tagged corpus would clearly give better set of information to the parsing
algorithm. Also, if we consider, second and higher order parsing algorithms, then the
amount of information would be significant and hence theoretically the accuracy in
predicting the structure would be considerably higher. In the past, there have been ap-
proaches, like [Agirre et al.2011], where they have experimented with a coarse grained
tagset. This we would explore in the forthcoming experiment.

Figure 5.1: Effect of Wordsense

Czech
Following the same logic as for English, for Czech, there is a well defined Seman-
tic POS tag in the t-layer of the Prague dependency treebank. We have symbolically
treated this as the coarse grained semantic tagset. But one interesting issue is that, these
are GOLD standard tagsets and hence we can have a clearer look at the results.The
tagset for the Czech has been explained in the following section.

5.1.3 Experimentation
Research Question

English
As explained before, we use [Pedersen and Kolhatkar2009]’s algorithm to disambiguate
and associate senses for each word in a given sentence. Now, given a target word and
its part of speech, the algorithm chooses the best possible sense. Consider an example
sentence “I enjoy watching a cricket match”, in this case cricket as a game would in the
WordNet would belong to the sense number 1. Hence, the output would be n1 when
tagged. A sample sentence from the training dataset is mentioned below:
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1 Ms. - NN n2 - 2 NMOD
2 Haag - NN - - 3 SUB
3 plays - VB v3 - 0 ROOT
4 Elianti - NN - - 3 OBJ
5 . - . - - 3 P

Table 5.1: A sample set from the Penn Treebank tagged with fine-grained word-sense
tags for English

Czech
The t-layer of the PDT [Böhmová et al.2001] is tagged with the grammateme semantic
postags or sempos. We have extracted the sempos from the PDT and we are have
experimented with the sempos. The tagset of the sempos is given in 5.2.

5.1.4 Results
English
As we have stated above, for this experiment, we evaluated the performance of our
system using 15, 000 sentences from the penn treebank corpus which are converted by
the “pennconverter” into the CoNLL format. This is a tool to automatically convert
the constituent format used in the Penn Treebank into dependency trees. This was also
used in the previous versions of the CoNLL shared task. We tagged the corpus with the
fine-grained semantic tags, i.e., these tags actually mention the possible sense number
from the list of senses retrieved from the WordNet. Kindly note that, the corpus was
tagged with coarse grained TagSet which was the same as was present in the Penn
Treebank. Seeing table 5.3 we notice a gradual improvement in the parsers accuracy
for unlabeled attachment score.

Czech
The table 5.4 shows the result for the Prague Dependency treebank.

5.1.5 Discussion
One basic difference between our approach and the other previous approaches on aug-
menting wordsense is that here, we use relatively a ‘more specific’ wordsense of the
word. This provides more specific information to the parsing algorithm. The grand-
sibling based parsing algorithm shows better performance than the grandchild based
parsing algorithm. A close analysis reveals that the sibling based interactions that are
local, are easily retrieved. While, the farther sibling interactions don’t necessarily give
better results.
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Type Explanation
n.denot denominating semantic noun

n.denot.neg denominating semantic noun with separately represented negation
n.pron.def.demon definite pronominal semantic noun: demonstrative
n.pron.def.pers definite pronominal semantic noun: personal
n.pron.indef indefinite pronominal semantic noun
n.quant.def definite quantificational semantic noun
adj.denot denominating semantic adjective

adj.pron.def.demon definite pronominal semantic adjective: demonstrative
adj.pron.indef indefinite pronominal semantic adjective
adj.quant.def definite quantificational semantic adjective
adj.quant.indef indefinite quantificational semantic adjective
adj.quant.grad gradable quantificational semantic adjective

adv.denot.ngrad.nneg nongradable denominating semantic adverb, impossible to negate
adv.denot.ngrad.neg nongradable denominating semantic adverb, possible to negate
adv.denot.grad.nneg gradable denominating semantic adverb, impossible to negate
adv.denot.grad.neg gradable denominating semantic adverb, possible to negate

adv.pron.def definite pronominal semantic adverb
adv.pron.indef indefinite pronominal semantic adverb

v semantic verb

Table 5.2: Semantic POS-Tags for Czech from the Prague Dependency Treebank

Dependency Parsing Algorithm Add Semantic Tags Original Score Difference
Third order grand-sibling 91.10 90.29 +0.81
Third order GrandChild 90.72 90.57 +0.15

Second order grand-sibling 88.22 87.45 +0.77
Second order GrandChild 88.48 88.34 +0.14

Table 5.3: Results for Penn Treebank

Dependency Parsing Algorithm Add Semantic Tags Original Score Difference
Third order grand-sibling 86.87 85.67 +1.20
Third order GrandChild 86.82 86.03 +0.79

Second order grand-sibling 85.19 84.32 +0.87
Second order GrandChild 85.23 84.79 +0.44

Table 5.4: Results for Prague Dependency Treebank
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If we closely look at the results we find that for both the languages, there is a generic
uplift in performance for all the different kind of algorithms. But, the statistically sig-
nificant results can be seen especially in the sibling-based parsing algorithms. Both in
English and in Czech the grand-sibling based algorithm show a good improvement.

In this particular case you see the difference, there is a big difference for the Czech
language, where the third order sibling parser differs from the original score by a differ-
ence of +1.20. The other differences are of the similar magnitude, but more pronounced
with sibling parsers.

5.2 Experiment 2
5.2.1 Research Question
What is the effect of using the coarse-grained semantic word-sense as a feature with
different graph based dependency parsing algorithms?

5.2.2 Theoretical Plausibility
Before we justify the cause of the hypothesis, let us try to understand what coarse-
grained semantic word-sense tags are. For English, these tags are basically, a very high
level representation of the possible semantic orientation of the word. For example,
an animate noun which denotes action or acts would be classified in a particular set
containing all of the animated nouns.

For English, a similar approach has been tried for transition based dependency pars-
ing by [Agirre et al.2011]. We approximately approach in a similar manner and work
on the level of semantic files to extract the details of the coarse-grained wordsenses.
Though, in our case, due to the lack of gold tagged data, we use just WordNet to tag
our corpus.There has been some improvement with the transition based parsing, we
experiment if at all there is an effect with graph based dependency parsing algorithms.

Unfortunately, we couldn’t extend the same results to Czech. This was primarily
due a problem in fetching a similar structural source like the WordNet due to several
practical constraints.

5.2.3 Experimentation
As we have explained before, these were basically the semantic files and out tag rep-
resentations were the closed set [SF00...SF45].

5.2.4 Results
The results for the experiment is mentioned in table 5.5.
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Dependency Parsing Algorithm Add Semantic Tags Original Score Difference
Third order grand-sibling 91.10 90.29 +0.81
Third order GrandChild 90.72 90.57 +0.15

Second order grand-sibling 88.54 87.45 +1.09
Second order GrandChild 88.62 88.34 +0.28

Table 5.5: Results for Penn Treebank

5.2.5 Discussion
Again, in this case, we see that the sibling based parsers perform better than the other
forms of parsing algorithms. Also, please note that the second order parser shows a
better performance than the third order sibling parser with an improvement of +1.09
units.

The improvement in the performance of the parser is a very encouraging result.
Given the nature of semantic classes and word sense disambiguation algorithms, there
seems to be room for a lot of improvement. This gives us the possibility of exploring
information like WordNet concepts, wikipedia concepts and other related concepts,
which could be essentially important for various Natural Language Processing tasks
like Semantic Role Labeling, etc., also, these results are very interesting for fields of
Machine Translation and other related fields.

5.3 Experiment-3
5.3.1 Research Question
What is the effect of using the morphosyntactic tags as a feature with different graph
based dependency parsing algorithms?

5.3.2 Theoretical Plausibility
Czech
Czech is a morphologically rich language [Horák et al.2007]. The morphological tags
are known to contain a lot of significant syntactic information. These information
seemingly play an important role in the parsing of morphologically rich free order
languages. With a big window of contexts, the amount of useful information could
be extended.

English
For English, though morphological information is important, but the amount of contri-
bution of the morphology might not be as great as the contribution from the Czech. We
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also could tag the corpus from Fine-Grained POS tags directly from the Penn Treebanks
tagged corpus. We found out that the Fine-Grained POS contains a lot of morphological
information.

5.3.3 Experimentation
Czech
We initially tried with the 15-letter tags as individual features to and exploit the whole
tagset with the parsing algorithm. But unfortunately, it couldn’t give better results
mostly due to the problem of overfitting of the feature space. This made us make
experimentation on linguistically coherent choices with respect to the parsing decision.
Later, we chose a subset of these morphological features, the subset was chosen on
the basis of relative importance of the particular morphological tag in providing the
relevant information which might be helpful. The tags that we considered were specific
tags like:

• POSSGender - Gender is an inherent feature of nouns and is also a contextual
feature. Gender in basically determined through agreement. Gender is lexically
prodsuced and its value is fixed for the noun.

• Number - It is a morphosyntactic feature if it participates in agreement or as a
government in the language

• Case - Case is a feature that expresses a syntactic or semantic function of the
element that carries the particular case value.

• Person - Person as a morphosyntactic feature is typically a feature of agreement.
• Tense - It denotes the semantic feature of location in time.
• Voice - The temporal feature between the subject and the verb.

English
As explained before, for english we use the standard Penn Treebank’s fine grained
tagset. The fine grained tagset also contains a lot of morphological information.

5.3.4 Results
Czech
As explained in the previous section, preliminary tests on a portion of train data showed
that the complete morphological tagset feature templates decrease the accuracy. Hence
we concentrated on experimenting with the smaller morphological tagset. 5.6 shows
the result.
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Dependency Parsing Algorithm Add Morph. Tags Original Score Difference
Third order grand-sibling 86.12 85.67 +0.45
Third order GrandChild 87.75 86.03 +1.72

Second order grand-sibling 84.88 84.32 +0.56
Second order GrandChild 85.51 84.79 +0.72

Table 5.6: Results for Prague Dependency Treebank

Dependency Parsing Algorithm Add Morph. Tags Original Score Difference
Third order grand-sibling 90.50 90.29 +0.21
Third order GrandChild 91.78 90.57 +1.21

Second order grand-sibling 87.67 87.45 +0.22
Second order GrandChild 89.32 88.34 +0.98

Table 5.7: Results for Penn Treebank

English
As explained before, we are using the fine-grained tagset here.

5.3.5 Discussion
Third order grandchild shows a significant improvement of about 1.72% for Czech.
This is an important result, since grandchild based parsing algorithms seem to be better
than their counterparts when included with the morphological tags. Also, please note
that, this corroborates the linguistic assumption about morphological information, an
important factor for the morphologically rich languages.

In case of English, the fine-grained POS tags, basically these tags are enriched with
morphological information, also show a very interesting improvement. The third-order
grandchild based parser shows +1.21 improvement.
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Discussion

Ideally it is desirable to use many features collectively and perform the process of
parsing, eventually arriving at an optimal solution. But, each feature increases the
search space quite remarkably and hence, there are two important problems here -
1. Problem ofOverfittingOverfitting generally occurs when amodel is excessively

complex, such as having too many parameters. This works in a contra-productive
way most of the time.

2. Parsing Time The amount of parsing time increases with increase features too.
This is again because of the increase in the search space which might act in a
negative way to reduce the parsing accuracy.

Also, please note that the current tagging of the wordsense was done using a sim-
ple algorithm [Pedersen and Kolhatkar2009]. There are better algorithms which could
give better tagging accuracies. This might have a direct effect on the parsers’ perfor-
mance. Another important thing to note is that, the morphological taggers have better
accuracies in practical applications. Hence the proposed approach would be useful, if,
we are able to carefully combine the accurate features.

POS tags provide very basic linguistic information in the form of broad grained
categories. Among all the parsing structures, we saw that an augmentation of the spe-
cific wordsenses has improved the unlabeled accuracy scores. Its evident that one of
the parsing algorithms - is performing much better than other parsing algorithms. It
is more important to note that, it is the type of the parsing algorithm along with the
features that makes makes a noticeable change in the score.

Also, after a close investigation when we introduced morphological tags, we found
that we have a very strong problem with the agreement. The agreement problem is bad
whenever there is a coordination conjunct or when there is a complex verb.

There is still a lot of work to be done with the parsing structures and on the observe
the correct set of features to take full advantage of the dependency grammar in practical
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application of NLP.



Chapter 7

Future Work

One of the most important things that we would be working next would be to experi-
ment with the labelled accuracy score and augment parser withwordsenses. The current
parser doesn’t score the labels. We would extending the parser to score both the labels
and also integrate wordsenses in the parsing structure.

The overall approach is to augment each part and each dynamic-programming struc-
ture with senses and labels. Let us assume that the word senses can be represented as
indices in the set 1, ..., S∗ while dependency labels can be represented as indices in
1, ..., L; here, S∗ and L denote the total number of senses and labels. For every part
now, we will have (h,m, l, sh, sm) (that is shandsm ∈ S∗andl ∈ L that is we need to
embed both labels and senses with the parse structures.

A natural idea for future work is to evaluate the effects of combining several se-
mantic features with the different parsing algorithms and building the specific set of
features which increase the parsing accuracy for each language.

We can also investigate if increasing the order of the parsers - that is 4th order and
higher would be interesting. Primarily because these would give us a range of order for
optimal parses. Though, this might be a difficult task due to the inherent complexity
of both space and time problems.

Another interesting dimension of approach would be about application of these
parsers in several fields. The field of Machine Translation and automated summariza-
tion would especially need high end results. Also, since semantics plays an important
role in these parsing frameworks, it might help to experiment with higher order parsers.
Based on the interesting work by [Popel et al.2011], it would be interesting to use these
higher order parsers for Czech in TectoMT framework to extract better parse informa-
tion.

As the higher order parsers are better in extracting the structural information, we
could use these for the preliminary stages of various kinds of treebank tagging. Also,
even if the performance of the dependency parsers have been seeing a positive change,
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the best parsing techniques still fall short of almost accurate performance obtained by
part of speech tagging etc., and hence an area of potential research.



Chapter 8

Conclusion

In this work we provide some of the insights into extension of feature set by augmenting
some lesser known features. With the introduction of semantic and morphological
features there is a significant improvement in the performance of parsing algorithms.
We have seen the importance of some of these features individually.

We have shown in this thesis that, the feature set in the dependency parsing algo-
rithm need not be restricted to syntactic features only, the semantic features also add
a lot of information to the parsing structure. This provides evidence that there is a
relative improvement in unlabeled accuracy score whenever there is an inclusion of se-
mantic features. The effects of semantic features are visible with higher order parsing
structures.

Also, we see from the results that order plays an important part with languages
which have rich morphology or inflectional languages, especially the grandchild pars-
ing algorithms. Although we worked and presented our results only on two languages,
our approach can be generalized to any language and to any framework.

Finally, we hope that the work done in this thesis inspires the use of dependency
parsers, especially the higher order dependency parsers in several tasks in the field of
NLP. We also hope, this further increases the interest in research for better features.



Appendix A

An appendix

The graphs below show the performance of various parsers with the 10 runs on the
validation dataset.

Figure A.1: Result for experimentation with fine-grained wordsenses with English
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Figure A.2: Result for experimentation with fine-grained wordsenses with Czech
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Figure A.3: Result for experimentation with coarse-grained wordsense with English
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Figure A.4: Result for experimentation with morphological tags for Czech
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Figure A.5: Result for experimentation with morphological tags for English
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