Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Peter Kálnai

Kompaktní objekty v kategoriích modulů

Department of Algebra

Supervisor of the master thesis: Mgr. Jan Žemlička, Ph.D.
Study programme: Mathematics
Specialization: Mathematical structures

In the first place I would like to thank the supervisor of this master thesis, Mgr. Jan Žemlička, Ph.D. who supported my work with valuable and motivating comments.

I declare that I carried out this master thesis independently, and only with the cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles University in Prague has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

Autor: Peter Kálnai

Katedra: Katedra algebry
Vedoucí diplomové práce: Mgr. Jan Žemlička, Ph.D., Katedra algebry
Abstrakt: V práci uvedeme základní přehled vlastností kompaktních objektů ve vhodných kategoriích ako např. kategorie modulů, stabilní faktor kategorie nad perfektním okruhem a Grothendieckovy kategorie. Najdeme okruh nad kterým je třída malých modulů za dodatečného množinově-teoretického předpokladu uzavřená na direktní součiny. Na závěr zkoumáme podmínky, kdy jsou spočetně generované projektivní moduly konečné, vyjádřené tvarem ich Grothendieckova monoidu.

Klíčová slova: kompaktní, malý modul, stabilní kategorie modulů, projektivní, samomalý

Title: Compact objects in categories of modules
Author: Peter Kálnai

Department: Department of Algebra
Supervisor: Mgr. Jan Žemlička, Ph.D., Department of Algebra
Abstract: In the thesis we state baic properties of compact objects in various appropriate categories like categories of modules, stable factor category over a perfect ring and Grothendieck categories. We find a ring R such that the class of dually slender R-modules is closed under direct products under some set-theoretic assumption. Finally, we characterize the conditions, when countably generated projective modules are finitely generated, expressed by their Grothendieck monoid.

Keywords: compact, dually slender module, stable module category, projective module, self-small

Contents

Introduction 2
1 Dually Slender Modules 3
2 Self-Dually Slender Modules 13
3 Compact objects in Grothendieck Categories 16
4 Grothendieck monoids of projective modules 21
Bibliography 30

Introduction

Compactness conditions appear in various parts of topology and algebra and the general idea behind them is the possibility to deal with properties involving infinitely many objects using only some finite subset of them.

In the first chapter we focus on the category of right modules Mod- R over an associative ring R with identity 1_{R}. Here we introduce a dually slender right module as the compact object. From the categorical point it is one whose induced covariant Hom functor preserves all direct sums. It turns out that this is equivalent to not being a countably infinite sum of its own submodules. Consequently, a finitely generated R-module is a natural representative of a compactness. We will also observe the amount of dually slender modules present in a particular category of modules. If they only coincide with finitely generated ones, the category of modules seems not to be a rich supply. The situation is completely different if they are closed under arbitrary direct products (moreover, dually slender modules are closed under factormodules). The main result states that for a particular non-artinian Von Neumann regular ring this happens, taking some set-theoretic assumption consistent with Zermelo-Fraenkel set theory with the Axiom of Choice.

In the second chapter we make another generalization for right R-modules. For a module M we weaken the categorical condition for $\operatorname{Hom}_{R}(M,-)$ to preserve only direct sums of copies of some fixed module N. In case $M=N$ we say that M is self-dually slender. Again we take a look on direct products of these modules.

The third chapter is a purely categorical point of view on compact objects. We state the characterization for Grothendieck categories. Then we step out of these and we describe compact objects in a stable module category over a right perfect rings. Recall that stable module category is a factor category where projective morphisms are killed.

Finally we study when countably generated projective modules are finitely generated (and therefore compact), assuming the finite generation of some factor over a submodule generated by an ideal contained in the Jacobson radical of a ring. We use the notion of Grothendieck monoid of countably generated projective modules which is a set of their isomorphism classes endowed with a commutative binary operation + imposed by taking the isomorphism class of direct sum of its arguments and zero module as a zero constant.

The very basic notation and results could be found in [AndFul92] in the first place or in [Lam99] in the second.

Chapter 1

Dually Slender Modules

The are two fundamental isomorphisms of (abelian) homomorphism groups relating the direct sum and the direct product over a family $\left(A_{i} \mid i \in I\right)$ of R modules of an arbitrary cardinality I. Let M be a right R-module. The functor $\operatorname{Hom}_{R}(M,-): \operatorname{Mod}-R \rightarrow \mathcal{A B}$ preserves direct products via the canonical isomorphism:

$$
\begin{equation*}
\tau_{1}: \prod_{i \in I} \operatorname{Hom}_{R}\left(M, A_{i}\right) \rightarrow \operatorname{Hom}_{R}\left(M, \prod_{i \in I} A_{i}\right) \tag{1.1}
\end{equation*}
$$

and the contravariant functor $\operatorname{Hom}_{R}(-, M): \operatorname{Mod}-R \rightarrow \mathcal{A B}$ converts coproducts into products via the isomorphism:

$$
\begin{equation*}
\tau_{2}: \prod_{i \in I} \operatorname{Hom}_{R}\left(A_{i}, M\right) \rightarrow \operatorname{Hom}_{R}\left(\bigoplus_{i \in I} A_{i}, M\right) \tag{1.2}
\end{equation*}
$$

Let us exchange the direct product with the direct sum in the equation (1.1) and we consider the canonical mapping:

$$
\begin{equation*}
\rho: \bigoplus_{\lambda \in \Lambda} \operatorname{Hom}_{R}\left(M, A_{\lambda}\right) \rightarrow \operatorname{Hom}_{R}\left(M, \bigoplus_{\lambda \in \Lambda} A_{\lambda}\right) \tag{1.3}
\end{equation*}
$$

defined by $\rho\left(\left(\cdots, f_{\lambda}, \cdots\right)\right)(m)=\left(\cdots, f_{\lambda}(m), \cdots\right)$ for $f_{\lambda} \in \operatorname{Hom}_{R}\left(M, A_{\lambda}\right), \lambda \in \Lambda$.
The mapping ρ is always injective but we will see that generally it is not an isomorphism and therefore it will make a sense to establish the following definition:

Definition 1. We call a right R-module M_{R} dually slender if the mapping ρ is an isomorphism, i.e. the covariant functor $\operatorname{Hom}_{R}\left(M_{R},-\right)$ commutes with arbitrary direct sums of modules.

Dually slender modules are known under various names (module of type Σ, Σ-compact, \cup-compact and small). The notion small module is quite common but we will rather not use it because of the similarity with small (superfluous) submodules.

First we observe that for a dually slender R-module it is enough to consider preservations of direct sums of families of countable cardinality. Now we provide the basic characterization.

Theorem 1. Let R be a ring. For a right R-module M the following is equivalent:
(D1) M is dually slender,
(D2) for every countable family of R-submodules $\left(M_{i} \mid i \in \omega\right)$ of M such that $\sum_{i \in \omega} M_{i}=M$ there is an $n \in \omega$ with $\sum_{i=0}^{n} M_{i}=M$,
(D2') for every countable increasing chain of R-submodules $\left(M_{i} \mid i \in \omega\right)$ such that $\bigcup_{i \in \omega} M_{i}=M$ there is an $n \in \omega$ with $M_{n}=M$,
(D3') for every countable family of R-modules $\left(A_{i} \mid i \in I\right)$ and every R-homomorphism $\varphi: M \rightarrow \bigoplus_{i \in \omega} A_{i}$ there is an $n \in \omega$ with $\operatorname{im}(\varphi) \subseteq \bigoplus_{i=0}^{n} A_{i}$.

Proof. $(D 1) \rightarrow(D 2)$: Let $N_{n}:=\sum_{i=0}^{n} M_{i}$. Denote by $\pi_{n}: M \rightarrow M / N_{n}$ the canonical projection and define $\varphi:=\bigoplus_{n<\omega} \pi_{n}$. Then $\varphi \in \operatorname{Hom}_{R}\left(M, \underset{n<\omega}{\bigoplus_{n}} M / N_{n}\right)$, so by (D1) φ has an inverse by ρ in $\bigoplus \operatorname{Hom}_{R}\left(M, N_{n}\right)$. Because the sum is direct, there exists some $m \in \omega$ such that $\stackrel{n<\omega}{M}=N_{m}$.
$(D 2) \rightarrow\left(D 2^{\prime}\right)$: Let $M=\bigcup_{n<\omega} M_{n}$ for an increasing chain $\left(M_{n} \mid n<\omega\right)$ of submodules of M. Then $M_{n}=\sum_{0 \leq i \leq n} M_{i}$. By (D2) there exists $m \in \omega$ such that $M=M_{m}$.
$\left(D 2^{\prime}\right) \rightarrow\left(D 3^{\prime}\right)$: The inverse image of a submodule under R-homomorphism is a submodule so if (D3') is not true than there exists a countably infinite strictly increasing chain of $M_{n}:=\varphi^{-1}\left[\bigoplus_{j \leq n}\right], n<\omega$ such that the union of $M_{n}, n<\omega$ is M and (D2') is not true.
$\left(D 3^{\prime}\right) \rightarrow(D 1)$: Let $\varphi \in \operatorname{Hom}_{R}\left(M, \bigoplus_{i<\omega}\right)$ By (D3') it follows that there is some $n<\omega$ such that $\pi_{k} \circ \varphi=0$ for all $k \geq n$. Denote $\psi:=\bigoplus_{j=0}^{n} \pi_{j} \circ \varphi$. Then $\psi \in \bigoplus_{i<\omega} \operatorname{Hom}_{R}\left(M, A_{i}\right)$ and $\rho(\psi)=\varphi$.

As a corollary we get that the class of dually slender modules are closed under factormodules. The usual characterization of finitely generated module M is following: for every set of submodules $\left(M_{\lambda} \mid \lambda \in \Lambda\right)$ of M such that $\sum_{\lambda} M_{\lambda}=M$ there is a finite subset Λ_{0} such that $\sum_{\lambda \in \Lambda_{0}} M_{\lambda}=M$. Now it is obvious that every finitely generated module is dually slender. Let us provide an example that the converse is not true:

We call a right R-module M uniserial if the submodules of M are linerly ordered by inclusion. These provide a trivial source of dually slender modules that are not finitely generated.

Example 1. Every uncountably generated uniserial module is dually slender.
Some classes of rings represent the least possible source of dually slender modules, i.e. only the finitely generated ones. We call these rings right resp. left steady depending on the category of modules involved. Examples of right steady rings are classes satisfying some finitness conditions. Recall that a ring R is right perfect if every right R-module M has a projective cover and that the following characterize them.

Fact 2. Let R be a ring and $\mathcal{J}(R)$ be its Jacobson radical. Then R is left perfect if and only if $R / \mathcal{J}(R)$ is semisimple and $\mathcal{J}(R)$ is left T-nilpotent if and only if $M \mathcal{J}(R)$ is superfluous for every nonzero R-module M. In particular for every
right R-module M, if the radical factor $M / R a d M$ is finitely generated, then M is finitely generated.

Proof. Proved in [[AndFul92], Lemma 28.3, Theorem 28.4(Bass)]. The additional statement follows from [[AndFul92], Corolary 15.18] which states that $M \mathcal{J}(R)=$ $\operatorname{Rad}(M)$.
Proposition 3. If R is a right perfect ring. Then R is right steady.
Proof. Let M be a dually slender module and let $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ be its projective cover. Assume that M is not finitely generated. Thus, P is not finitely generated and P is a countable union of strictly increasing chain of its submodules, $P=\bigcup_{i<\omega} P_{i}$. Because π is surjective, $M=\bigcup_{i<\omega} \pi\left[P_{i}\right]$ so there is some $n<\omega$ such that $M=\pi\left[P_{n}\right]$. Then $P=\operatorname{ker} \pi+P_{n}$. Because ker π is superfluous, $P=P_{n}$, a contradiction.

Let \mathcal{S} be a representative set of all simple R-modules. We say that M has a \mathcal{S} socle filtration ($S_{\alpha} \mid \alpha \leq \sigma$), if it is an increasing continuous chain of submodules of M starting with $S_{0}=0$, ending in $S(\sigma)=M$ satisfying $S_{\alpha+1} / S_{\alpha}$ is isomorphic to a direct sum of modules from \mathcal{S} for all $\alpha<\sigma$. The ordinal σ we call the \mathcal{S}-socle length of M.

A ring is R called right semiartinian if R_{R} has a \mathcal{S}-socle filtration, where \mathcal{S} is a representative set of simple modules. It is proved in [EGT97], Proposition 2.1 , that every right semiartinian ring with the countable \mathcal{S}-socle length is right steady.

Proposition 4. If R is right noetherian, then R is right steady.
Proof. The proof is based on the fact that any category of modules has a cogenerator $K:=\bigoplus_{i \in I} E\left(S_{i}\right)$ which is injective in this case, because injective modules are closed under direct sums in right noetherian rings and it is a characterization of them [AndFul92], Proposition 18.13. It is located in [[Ren67], $\left.7^{0}\right]$.

Let us provide some definitions of cardinals that will be useful in the sequel.
Definition 2. We say that a cardinal κ is

- Ulam-measurable if there is a countably complete (i.e. σ-complete) nonprincipal ultrafilter on κ
- measurable if there is a κ-complete nonprincipal ultrafilter on κ
- strongly inaccesible if $\kappa=c f(\kappa)$ and for all $\lambda<\kappa, 2^{\lambda}<\kappa$

We say that a R-module M is ω_{1}-reducing (also countably finite or (ω, ω)reducing) if every countably generated submodule N of M is contained in a finitely generated submodule. The class of ω_{1}-reducing modules lies strictly between finitely generated ones and dually slender. Let us provide an example of dually slender module that is not ω_{1}-reducing. Recall that for an infinite set X with a discrete topology the Cech-Stone compactification $\beta(X)$ is a set of ultrafilters on X with the basis \mathcal{B} given $\{O(Y) \mid Y \subseteq X\}$ where $O(Y)=\{p \in \beta(X) \mid$ $Y \in p\}$. Then $\beta(X)$ with the topology generated by \mathcal{B} is a compact Hausdorff topological space satisfying that the closure of any open set in $\beta(X)$ is open (so called extremely disconnected space) [Eng89], 6.2.28.

Lemma 5. Let X be an infinite set with the discrete topology and let U be an ultrafilter on X. If $p=\bigcup_{i<\omega} F_{i}$ for an increasing chain of subfilters of p, then there is some $n<\omega$ such that $p=F_{n}$.
Proof. For a contradiction assume that there is a strictly increasing chain ($F_{i} \mid i<$ $\omega)$ of filters such that $p=\bigcup_{n<\omega} F_{i}$. For every $i<\omega$ define a set $W_{i}^{\prime}:=\{X \backslash A\} \cup F_{i}$ for a choise of a set A such that $A \in F_{i+1} \backslash F_{i}$. Then all W_{i}^{\prime} have an finite intersection property so for all $i<\omega$ there exist an ultrafilter W_{i} extending W_{i}^{\prime} such that $F_{i+1} \nsubseteq W_{i}$. Define:

$$
\mathcal{U}:=p \cup\left\{W_{i} \mid i<\omega\right\}
$$

Then \mathcal{U} is a countably inifinite subset of Čech-Stone compactification $\beta(X)$. Indeed, we show that \mathcal{U} is closed in $\beta(X)$. Let $q \in \beta(X) \backslash \mathcal{U}$ and we find an open neighborough of q that is disjoint with \mathcal{U}. Because $\beta(X)$ is Hausdorff, there is an open subset $O(Y) \subseteq \beta(X)$ for some Y containing q but not containing p. Hence $X \backslash Y \in p$ and there is $k_{0}<\omega$ such that $X \backslash Y \in F_{k}$ for all $k>k_{0}$. Then $W_{i} \notin O(Y)$ for every $k>k_{0}$. Set $\mathcal{B}:=O(Y) \cap \bigcap_{i=0}^{k} \beta(X) \backslash W_{i}$, then \mathcal{B} is an open neighborough containing q and it is disjoint with \mathcal{U}.

We have found a countably infinite closed subset of $\beta(X)$. Recall that every infinite closed subset of an infinite Hausdorff space contains a copy of the set of natural numbers with the discrete topology. Because it is closed it contains also a copy of $\beta(\mathbb{N})$ and by [[Eng89], Proposition 3.6.12], it has the cardinality $2^{\aleph_{0}}$, which leads to a contradiction.

Example 2. Let K be a field. Let $\kappa>\aleph_{0}$ be not a Ulam-measurable cardinal.
Then there is a dually slender right K^{κ}-module that is ω_{1}-reducing.
Proof. The proof is in [Tr195]. The idea is following:
First, denote by \mathcal{F} be the lattice of all filters on κ and by \mathcal{I} the lattice of all two-sided ideals of K^{κ}. Define $\varphi: \mathcal{F} \rightarrow \mathcal{I}$ by

$$
F \mapsto\left\{\mathbf{k}:=\left(k_{\alpha} \mid \alpha<\kappa\right) \in K^{\kappa} \mid \exists X \in F: \pi_{\alpha}(\mathbf{k})=0 \forall \alpha \in X\right\}
$$

for all $F \in \mathcal{F}$. Then φ is an injective lattice homomorphism.
Let $p \in \mathcal{F}$ be a non-principal ultrafilter on κ. By Lemma $5 p$ is not a strictly increasing countably infinite chain of its subfilters. By [Tr195], Lemma 2.4(i), $\varphi(p)$ is dually slender. Because κ is not Ulam-measurable, the non-principal ultrafilter p is not countably complete and by [Tr195], Lemma 2.2(ii) $\varphi(p)$ is not ω_{1}-reducing.

Now we study rings with larger classes of dually slender modules. Let us start with a question.
Question 1. Does there exist a ring R such that dually slender right R-modules are closed under direct products? (definitely not right steady). Denote it as the condition ($D S-P$).

The question has also an another reason, because an analogical statement holds in the categorically dual situation for so called slender modules (if the coproduct is exchanged with the product and vice versa in equation 1.2) - slender modules are closed under arbitrary direct sums.

For a ring Q we observe that every dually slender Q-module keeps this property in the module category over any subring of Q in which Q is dually slender.

Lemma 6. Let R be a unital subring of a ring Q, M be a right Q-module and suppose that Q_{R} is dually slender as an R-module. Then M is a dually slender Q-module if and only if it is dually slender as an R-module.

Proof. Assume that M is a dually slender Q-module. Let $M=\bigcup_{i<\omega} M_{i}$ for a countable chain of R-submodules $M_{0} \subseteq M_{1} \subseteq \ldots$. For each $i<\omega$ define $N_{i}=\left\{m \in M \mid m Q \subseteq M_{i}\right\}$. Obviously, $N_{0} \subseteq N_{1} \subseteq \ldots$ forms a chain of Q submodules of M and $N_{i} \subseteq M_{i}$ for every $i<\omega$. For every $m \in M,(m Q)_{R}$ as the homomorphic image of dually slender module Q_{R} is dually slender so there exists $k<\omega$ such that $m Q \subseteq M_{k}$, hence $M=\bigcup_{i<\omega} N_{i}$. Now, by the assumption there exists $n<\omega$ such that $N_{n}=M$, hence $M_{n}=M$.

The converse is clear, because every Q-module is also an R-module.
Proposition 7. Let R be a subring of simple Von Neumann regular non-artinian ring Q such that Q_{R} is finitely generated as a right R-module.

Then every injective Q-module is dually slender as an R-module.
Proof. By Lemma 6 it is enough to prove that every injective Q - module is dually slender (or ω_{1}-reducing). Let E_{Q} be any injective right Q-module and $E_{Q}=$ $\bigcup_{n<\omega} N_{n}$. For a contradiction assume that $\left(N_{n} \mid n \in \omega\right)$ is strictly increasing chain of submodules of E, i.e. $N_{n} \subsetneq N_{n+1}$ for all $n \in \omega$. The ring Q contains an infinite set $\left(e_{i} \mid i<\omega\right)$ of orthogonal idempotents and because Q is simple $Q e_{n} Q=Q$ for all $n<\omega$. Then $E e_{n} Q=E$ and for all $n \in \omega$ there exists $x_{n} \in E$ such that $x_{n} e_{n} Q \nsubseteq N_{n}$. Define $\varphi: \bigoplus_{n<\omega} e_{n} Q \rightarrow E$ by $e_{n} q \mapsto x_{n} e_{n} q$. By Baer's Criterion applied for the injective module E_{Q} the following diagram commutes for some $\widetilde{\varphi}$:

and there is some $m \in E$ such that $\widetilde{\varphi}(q)=m q$ for all $q \in Q$. Hence $\sum_{n<\omega} x_{n} e_{n} Q$ is contained in a cyclic Q-module $m Q \subseteq E$ and therefore in N_{n} for some $n<\omega$, a contradiction.

The class of projective modules sis not a rich source of dually slender modules. By Kaplansky's Theorem every projective module is a direct sum of countably generated projective modules [AndFul92], Corollary 26.2. and those are not dually slender unless finitely generated.

For a right R-module define:

$$
Z\left(M_{R}\right):=\left\{m \in M \mid \operatorname{rann}_{R}(m) \text { essential in } R\right\}
$$

where submodule U of V is essential in V if $U \cap W=0$ implies $W=0$ for a submodule W of V.

We say that ring R is right non-singular, if $Z\left(R_{R}\right)=0$. We observe that simple rings are an example of a class of non-singular rings and as a fact we state a deep statement about their maximal right rings of quotients.

Proposition 8. (i) Every simple ring is right and left non-singular.
(ii) if R is a right non-singular ring, then $Q_{\max }(R)$ the maximal right ring of quotients of R is Von Neumann regular and right self-injective.

Proof. (i) First we prove that $Z\left(R_{R}\right)$ is two-sided ideal. It is an abelian group because $\operatorname{rann}_{R}(u) \cap \operatorname{rann}_{R}(v) \subseteq \operatorname{rann}_{R}(u-v)$ for all $u, v \in R_{R}$ and essential right ideals are closed under finite intersections and oversets.

Let $u \in Z\left(R_{R}\right)$ and $r \in R$ be arbitrary. We can assume $u r \neq 0$. Let a be arbitrary and we want to prove $\operatorname{rann}_{R}(u r) \cap a R \neq 0$. If ura $=0$, then there is nothing to prove so assume ura $\neq 0$. Therefore $r a \notin \operatorname{rann}_{R}(u)$, but $r a R \cap \operatorname{rann}_{R}(u) \neq 0$ from the essentiality of $\operatorname{rann}_{R}(u)$. It follows uras $=0$ for some $\operatorname{ras} \neq 0$. Then $0 \neq a s \in a R \cap \operatorname{rann}_{R}(u r)$. On the other hand, $\operatorname{rann}_{R}(u) \subseteq$ $\operatorname{rann}_{R}(r u)$, so we are done.

Assume R is not right singular. Then $Z(R) \neq 0$ and $Z(R)=R$ by simplicity of R. But $\operatorname{rann}_{R}\left(1_{R}\right)=0$ is not an essential right ideal, a contradiction.
(ii) Proved in [[Ste75], Proposition XII.2.1].

Lemma 9. Let R satisfy ($D S-P$). Denote $Q=Q_{\max }(R)$ the maximal right ring of quotients of R.
(i) Every injective right R-module is dually slender.
(ii) If R is a non-singular ring, then Q satisfies ($D S-P$).
(iii) Every factorring of R satisfies ($D S-P$)

Proof. (i) Let E_{R} be an injective R-module and let $\pi: R^{(\kappa)} \rightarrow E$ be an epimorphism. Since the canonical injection $R^{(\kappa)} \rightarrow R^{\kappa}$ is a monomorphism, by the injectivity of E, π can be extended to an epimorphism $R^{\kappa} \rightarrow E$. Because $\left(R_{R}\right)^{\kappa}$ is dually slender by the hypothesis, the module E is a homomorphic image of a dually slender module and therefore also dually slender.
(ii) By Proposition 8(ii) Q_{R} is injective, so by (i) it is dually slender as an R module. Thus every product of dually slender Q-modules is dually slender as an R-module by the hypothesis and Lemma 6, hence it is a dually slender Q-module.
(iii) Modules over any factor ring have a natural structure of R-modules.

Corollary 10. If a ring R satisfies ($D S-P$) and I is a maximal two-sided ideal, then R / I is (right) non-singular and $Q_{\max }(R / I)$ is a non-artinian self-injective simple ring satisfying ($D S-P$).

Definition 3. A ring S is said to be Dedekind finite if for all $r, s \in S$, $r s=1$ implies $s r=1$. We say that a ring R is right purely infinite if R has no nonzero idempotent $e=e^{2}$ such that eRe is Dedekind finite.

Lemma 11. Let κ be an infinite cardinal, R be a non-artinian self-injective purely infinite ring and ($\left.M_{\alpha} \mid \alpha<\kappa\right)$ be a system of R-modules.
(i) if every M_{α} in the system is ω_{1}-reducing, then $\prod_{\alpha<\kappa} M_{\alpha}$ is ω_{1}-reducing as well.
(ii) the product of any system of finitely generated modules is ω_{1}-reducing.
(iii) if $\kappa=\omega$, then $\prod_{\alpha<\omega} M_{\alpha} / \bigoplus_{\alpha<\omega} M_{\alpha}$ is ω_{1}-reducing.

Proof. Put $M=\prod_{\alpha<\kappa} M_{\alpha}$. For any product $\prod_{\alpha} M_{\alpha}$ denote by $\nu_{\alpha}: M_{\alpha} \rightarrow \prod_{\alpha} M_{\alpha}$ the natural embedding and $\pi_{\alpha}: \prod_{\alpha} M_{\alpha} \rightarrow M_{\alpha}$ the natural projection.

Similarly we define ν_{J} and π_{J} for any subset of $\{\alpha\}$.
(i) First we show that for every injective module M is ω_{1}-reducing. Because R is right purely infinite we can form a sequence $0 \rightarrow K\left(\simeq R^{(\omega)}\right) \rightarrow R$ with $K \leq R$ a right ideal of R. Choose $C=\left\{m_{i} \mid i<\omega\right\} \subseteq M$ arbitrary. Let $\left(x_{i} \mid i<\omega\right)$ be a free basis of K and define $\varphi: K \rightarrow M, x_{i} \mapsto m_{i}$. So φ is an R-homomorphism and by injectivity of M we can extend it to $\widetilde{\varphi}: R \rightarrow M$ such that $m_{i}=\widetilde{\varphi}\left(x_{i}\right)=\widetilde{\varphi}\left(1_{R} x_{i}\right)=\widetilde{\varphi}\left(1_{R}\right) x_{i}$ for all $i<\omega$, so $C \subseteq \widetilde{\varphi}\left(1_{R}\right) R$ is ω_{1}-reducing. [[Trl95], Example 2.8].

Note that $\prod_{\alpha<\kappa} R^{\left(n_{\alpha}\right)} \cong R^{\kappa}$ is injective for all finite n_{α}, hence ω_{1}-reducing. Fix a countable set $D:=\left\{m_{n} \mid n<\omega\right\} \subseteq M$. By hypothesis on M_{α}, for each $\alpha<\kappa$ there is some finitely generated submodule F_{α} of M_{α} such that $\left\{\pi_{\alpha}\left(m_{n}\right) \mid n<\omega\right\} \subseteq F_{\alpha}$ and there is some n_{α} such that we can write F_{α} as a factormodule of a finitely generated free R-module $R^{\left(n_{\alpha}\right)}$. Hence $D \subseteq \prod_{\alpha<\kappa} F_{\alpha}$ and the exact sequence $\prod_{\alpha<\kappa} R^{\left(n_{\alpha}\right)} \rightarrow \prod_{\alpha<\kappa} F_{\alpha} \rightarrow 0$ shows that the middle term is a factor-module of an ω_{1}-reducing R-module and it is itself ω_{1}-reducing. Then there exists a finitely generated R-module F of $\prod_{\alpha<\kappa} F_{\alpha}$ such that $D \subseteq F(\subseteq M)$.
(ii) As finitely generated R-modules are ω_{1}-reducing, (ii) is a consequence of (i).
(iii) Put $S=\bigoplus_{\alpha<\omega} M_{\alpha}$. Fix a countable set $D^{\prime}:=\left\{m_{n} \mid n<\omega\right\} \subseteq M$ and for each $\alpha<\omega$ define (a finitely generated) R-module $G_{\alpha}=\sum_{j \leq \alpha} \pi_{\alpha}\left(m_{j}\right) R$. Observe that $D^{\prime} \subseteq \prod_{\alpha<\omega} G_{\alpha}$. By (ii) $\prod_{\alpha<\omega} G_{\alpha}$ is ω_{1}-reducing, hence a factormodule $\prod_{\alpha<\omega} G_{\alpha}+S / S$ is also ω_{1}-reducing. Then there exists a finitely generated module $F \subseteq \prod_{\alpha<\omega} G_{\alpha}(\subseteq M)$ such that $m_{n}+S \in F+S / S$ for all $n<\omega$.

Definition 4. For a set X, we call a system \mathcal{I} of subsets of X an (set-theoretic) ideal if it is

- closed under subsets, i.e. if $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$.
- closed under finite unions, i.e. if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

Moreover, we call a system \mathcal{I} a prime ideal if it is an ideal and for all subsets A, B of $X, A \cap B \in \mathcal{I}$ implies $A \in \mathcal{I}$ or $B \in \mathcal{I}$. It is easy to seet that this is equivalent to statement that for every $A \subseteq X, A \in \mathcal{I}$ or $X \backslash A \in \mathcal{I}$. If $Y \subseteq X$ we say that the set $\mathcal{I} \mid Y:=\{Y \cap A \mid A \in \mathcal{I}\}$ is a trace of \mathcal{I} on Y. Observe that the trace of an ideal is also an ideal.

Remark 1. Let X be a set. Then there is a dual corresponcence between ultrafilters and prime ideals on X defined by $I \mapsto \mathcal{P}(X) \backslash I$ for an ideal I.

Lemma 12. Let R be a non-artinian self-injective purely infinite ring and let ($M_{\alpha} \mid \alpha \in I$) be a family of dually slender modules. Let $M=\prod_{\alpha \in I} M_{\alpha}$ be the direct product of the family and let $M=\bigcup_{n<\omega} N_{n}$ be a union of a countable increasing chain of submodules $\left(N_{n} \mid n<\omega\right)$. Denote $\mathcal{A}_{n}=\left\{J \subseteq I \mid \prod_{\alpha \in J} M_{\alpha} \subseteq\right.$ $\left.N_{n}\right\}$ and $\mathcal{A}=\bigcup_{n<\omega} \mathcal{A}_{n}$. Assume M is not dually slender. Then the following holds:
(i) \mathcal{A}_{n} is an (set-theoretic) ideal
(ii) \mathcal{A} is closed under countable unions of sets
(iii) There exists $n<\omega$ for which $\mathcal{A}=\mathcal{A}_{n}$.
(iv) there exists a subset $I_{0} \subseteq I$ such that the trace of \mathcal{A} on I_{0} is prime

Proof. (i) Obviously $\emptyset \in \mathcal{A}$ and because M is not dually slender, $I \notin \mathcal{A}$. The closure of \mathcal{A}_{n} under subsets is obvious by the definition. The closure of \mathcal{A}_{n} under finite unions follows from the decomposition $\prod_{\alpha \in J \cup K} M_{\alpha}=\prod_{\alpha \in J} M_{\alpha} \oplus$ $\prod_{\alpha \in K \backslash J} M_{\alpha} \subseteq N_{n}$.
(ii) First we show that \mathcal{A} is closed under countable unions of pairwise disjoint unions. Let $K_{j} \in \mathcal{A}$ be pairwisely disjoint subsets of I for all $j<\omega$. We show that there exists $k<\omega$ such that $K_{j} \in \mathcal{A}_{k}$ for each $j<\omega$. Assume by contradiction that for every $n<\omega$ there exists (possibly distinct) $i(n)$ such that $K_{i(n)} \notin \mathcal{A}_{n}$. Hence there is $f_{n} \in \prod_{\alpha \in K_{i(n)}} M_{\alpha}$ for which $\nu_{K_{i(n)}}\left(f_{n}\right) \notin N_{n}$. Since $\prod_{j<\omega} f_{j} R=\bigcup_{n<\omega}\left(f_{j} R \cap N_{j}\right)$ is dually slender by Lemma 11(ii) there is $k<\omega$ such that $\nu_{K_{i}(k)}\left(f_{k}\right) \in \prod_{j<\omega} f_{j} R \subseteq N_{k}$, a contradiction.

Put $P_{j}=\prod_{\alpha \in K_{j}} M_{\alpha}$ for $j<\omega$. Observe that there is some $k<\omega$ such that $P_{j} \subseteq N_{k}$ and it follows that $\bigoplus_{j<\omega} P_{j} \subseteq N_{k}$. Let $P=\prod_{j<\omega} P_{j}=\prod\left\{M_{\alpha} \mid \alpha \in\right.$ $\left.\bigcup_{j<\omega} K_{j}\right\}$ be a countably generated module. As $P / \bigoplus_{j<\omega} P_{j}$ is dually slender by Lemma 11(iii) there exists some $l \geq k$ such that $P=\bigcup_{j<\omega}\left(P \cap N_{j}\right) \subseteq N_{l}$.

Now let $J_{j}, j<\omega$ be any subsets of I and put $J_{0}=K_{0}$ and $J_{i}=K_{i} \backslash \bigcup_{j<i} K_{j}$ for $i>0$. So $\bigcup_{j<\omega} J_{j}=\bigcup_{j<\omega} K_{j}$ and by the preceding we get the result.
(iii) Assume that $\mathcal{A} \neq \mathcal{A}_{n}$. Then there exists a sequence ($\left.J_{n} \in \mathcal{A} \backslash \mathcal{A}_{n} \mid n \in \omega\right)$. Since $\bigcup_{j<\omega} J_{j} \in \mathcal{A}$, we obtain a contradiction with (ii).
(vi) There exists $I_{0} \subseteq I$ such that for every $K \subseteq I_{0}, K \in \mathcal{A}$ or $I_{0} \backslash K \in \mathcal{A}$. Assume that such I_{0} does not exist. Then we may construct a countably infinite sequence of disjoint sets $\left(K_{i} \mid i<\omega\right)\left(K_{i}\right.$ non-empty for $\left.i>0\right)$ in the following way: Put $K_{0}=\emptyset$ and $J_{0}=I_{0}$. There exist disjoint sets $J_{i+1}, K_{i+1} \subset J_{i}$ such that $J_{i}=J_{i+1} \cup K_{i+1}$ where $J_{i+1}, K_{i+1} \notin \mathcal{A}$. Now, for each $n \geq 1$ there exists $g_{n} \in \prod_{\alpha \in K_{n}} M_{\alpha}$ such that $\nu_{K_{n}}\left(g_{n}\right) \notin N_{n}$ which contradicts to the fact that $\prod_{j \geq 1} g_{j} R \subseteq N_{m}$ for some $m<\omega$ (cf. the proof of (iii)).
Proposition 13. Let R be a non-artinian self-injective purely infinite ring. Then the following holds:
(i) A countable product of dually slender R-modules is dually slender.
(ii) If there exists a system $\left(M_{\alpha} \mid \alpha<\kappa\right)$ of dually slender R-modules such that the product $\prod_{\alpha<\kappa} M_{\alpha}$ is not dually slender, then there exists an uncountable cardinal $\lambda<\kappa$ and an σ-complete ultrafilter on λ.

Proof. (i) Follows immediatelly from Lemma 12(iii).
(ii) If we take $M=\prod_{\alpha \in I} M_{\alpha}$ which is not dually slender and a set-theoretic ideal \mathcal{A} and $I_{0} \subseteq I$ from Lemma 12 and if we define $\mathcal{F}=\left\{I_{0} \backslash A \mid A \in \mathcal{A}\right\}$ then from Lemma 12(i),(iii) it follows that \mathcal{F} is an ultrafilter and by Lemma 12(ii) it is σ-complete.

The relation to the set theory is established in the following proposition. Recall that Goedels Second Incompleteness Theorem states that a consistent axiomatizable theory containing a fragment of arithmetic (like ZFC set theory) does not prove its own consistency.

Proposition 14. The following is true:
(i) every Ulam-measurable cardinal is greater or equal to the first measurable cardinal
(ii) every measurable cardinal is strongly inaccesible.
(iii) it is consistent with ZFC that there is no strongly inaccesible cardinal

Proof. (i) because every cardinal greater then Ulam-measurable is also Ulammeasurable, it is enough to show that the first Ulam-measurable cardinal is measurable. Denote it κ and let $p \in \mathcal{U}(\kappa)$ be a nonprincipal countably complete ultrafilter on κ.

Assume that p is not κ-complete. Then there is $\mu_{0}<\kappa$ and a partition ($A_{\alpha} \mid \alpha<\mu_{0}$) such that $A_{\alpha} \notin p$ for all $A_{\alpha}, \alpha<\mu_{0}$. Indeed, let

$$
\mathcal{A}:=\left\{\mu<\kappa \mid \exists\left\{C_{\alpha} \in p \mid \alpha<\mu\right\} \text { such that } \bigcap_{\alpha<\mu} C_{\alpha} \notin p\right\}
$$

Then by the assuption \mathcal{A} is nonempty and therefore it has the smallest element, denote it μ_{0}. Because $C_{\alpha^{\prime}} \backslash \bigcap_{\alpha<\mu_{0}, \alpha \neq \alpha^{\prime}} C_{\alpha} \in p$ for all $\alpha^{\prime}<\mu_{0}$ we can assume $\bigcap_{\alpha<\mu_{0}} C_{\alpha}=\emptyset$. Define $B_{0}:=\kappa$ and $B_{\alpha}:=\bigcap_{\beta<\alpha} C_{\beta}$ for all $0<\alpha<\mu_{0}$ and set $A_{\alpha}:=B_{\alpha} \backslash B_{\alpha+1}$ for all $\alpha<\mu_{0}$. Then the system $\left(A_{\alpha} \mid \alpha<\mu_{0}\right)$ forms a partition of κ (because sets B_{α} form a chain) and $A_{\alpha} \notin F$ for all $\alpha<\mu_{0}$, because $B_{\alpha+1} \in F$ by minimality of μ_{0} and so $\kappa \backslash B_{\alpha+1}$ (an overset of A_{α}) is not in F by the ultrafilter property.

Define a function $f: \kappa \rightarrow \mu_{0}$ that maps very element of κ to the index of a member of the partition it belong to, i.e. $\beta \mapsto \alpha$ if $\beta \in A_{\alpha}$ for all $\beta<\kappa$. Observe that $f[F]$ is a nonprincipal countably complete ultrafilter on μ_{0}, a contradiction with minimality of κ.
(ii) let κ be measurable and let F be a nonprincipal κ-complete ultrafilter on κ.

First assume that $c f(\kappa)<\kappa$ and let $\left(\kappa_{\alpha} \mid \alpha<c f(\kappa)\right)$ be a cofinal sequence of cardinals in κ. If $\kappa \backslash \kappa_{\alpha} \in F$ for every $\alpha<c f(\kappa)$, then $\emptyset=\bigcap_{\alpha<c f(\kappa)} \kappa \backslash \kappa_{\alpha} \in F$ because F is κ-complete. So there is some $\alpha<c f(\kappa)$ such that $\kappa_{\alpha} \in F$. Obviously $\bigcap_{\beta<\kappa_{\alpha}} \kappa_{\alpha} \backslash\{\beta\}=\emptyset$. Since F is nonprincipal, $\kappa_{\alpha} \backslash\{\beta\} \in F$ for all $\beta<\kappa_{\alpha}$ (otherwise $\left.\{\beta\}=k_{\alpha} \cap\left(\kappa \backslash \kappa_{\alpha} \cup\{\beta\}\right) \in F\right)$ and since F is κ-complete, $\bigcap_{\beta<\kappa_{\alpha}} \kappa_{\alpha} \backslash\{\beta\} \in F$.

Let $\lambda<\kappa$ be a cardinal such that $\kappa<2^{\lambda}$. Then there exists an injective function $F: \kappa \rightarrow 2^{\lambda}$. For every $i<2$ and every $\gamma<\lambda$ define:

$$
A_{\gamma}^{i}:=\{\alpha<\kappa \mid F(\alpha)(\gamma)=i\}
$$

Observe that $\left(A_{\gamma}^{0} \in p\right.$ or $\left(A_{\gamma}^{1} \in p\right.$ for every $\gamma<\lambda$. Pick the function $g \in^{\lambda} 2$ such that $A_{\gamma}^{g(\gamma)} \in p$ for all $\gamma<\lambda$. Because κ is κ-complete $\bigcap_{\gamma<\lambda} A_{\gamma}^{g(\gamma)} \in p$ and

$$
\begin{aligned}
\bigcap_{\gamma<\lambda} A_{\gamma}^{g(\gamma)} & =\{\alpha<\kappa \mid F(\alpha)(\gamma)=g(\gamma) \forall \gamma<\lambda\}= \\
& =\{\alpha<\kappa \mid F(\alpha)=g\}=F^{-1}[g]
\end{aligned}
$$

By injectivity of F it follows that the intersection of all $A_{\gamma}, \gamma<\lambda$ is a singleton and p is not a principal ultrafilter, a contradiction.
(iii) Define $V_{0}:=\emptyset$ and by induction $V_{S(\alpha)}:=\mathcal{P}\left(V_{\alpha}\right)$ for a successor ordinal $S(\alpha)$ and $V_{\alpha}:=\bigcup_{\beta<\alpha} V_{\beta}$ for a limit ordinal α. The proof will follow from the fact ([Jec97], Lemma 12.13) that V_{κ} is a model of ZFC for a strongly inaccesible cardinal κ. Let κ be a strongly inaccesible cardinal.

Let Inac denote a statement "there is a strongly inaccesible cardinal". Assume the consistency of ZFC implies the consistency of ZFC + Inac. By ([Jec97], Lemma 12.13) the theory ZFC + Inac proves the existence of a model V_{κ} of ZFC and therefore a consistency of ZFC. So we have that ZFC + Inac is consistent. But we got that ZFC + Inac proves its own consistency, a contradiction with Goedel's Second Incompleteness Theorem.

Using Proposition 14(iii) and Corolary 13 we can state our main result:
Corollary 15. Let R be a non-artinian self-injective, purely infinite ring.
If we assume that there is no inaccesible cardinal, then the class of dually slender R-modules is closed under direct products.

Chapter 2

Self-Dually Slender Modules

It this chapter we will step even farther from finitely generated modules. Recall that the $\operatorname{Hom}_{R}(M,-)$ functor with a dually slender module M commutes with all direct sums. If we weaken the property such that we want the canonical isomorphism only with all direct sums of some fixed module N we get a generalization of dually slender modules and we will call the module $M a N$-dually slender module. In the case $M=N$ we speak about self-dually slender (or self-small) modules and they are precisely the compact objects in the category of $\operatorname{Add}(M)$.

Let M be a R-module. For a subset $X \subseteq M$ define $X^{*}:=\left\{f \in \operatorname{End}_{R}(M) \mid\right.$ $f[X]=0\}$ and for a subset $D \subseteq E$ the set $D^{*}:=\{m \in M \mid f(m)=$ 0 for all $f \in D\}$. Obviously, X^{*} is a left ideal of E, D^{*} is a submodule of M and $X \subseteq X^{* *}$ and $D \subseteq D^{* *}$. We call a left ideal $L \gtrless \operatorname{End}_{R}(M)$ an annihilator left ideal if $L=L^{* *}$ and a submodule N of M a kernel submodule if $N=N^{* *}$. We say that a system of morphism $\left(f_{\lambda} \in \operatorname{Hom}_{R}\left(M, M_{\lambda}\right) \mid \lambda \in \Lambda\right)$ is summable if for every $m \in M$ there is only finitely many $\lambda \in \Lambda$ such that $f_{\lambda}(m) \neq 0$.

Theorem 16. Let R be a ring, M a right R-module. The following is equivalent:
(1) M is self-dually slender
(2) every summable family $S \subseteq \operatorname{End}_{R}(M)$ of endomorphisms of M is finite
(3) for every decreasing chain of left annihilator ideals $\left(L_{i} \mid i \in \omega\right)$ of $\operatorname{End}(M)$ such that $M=\bigcup_{i<\omega} L_{i}^{*}$ there is an $n \in \omega$ such that $L_{n}=0$
(4) for every countable increasing chain of kernel submodules ($K_{i} \mid i \in \omega$) of M such that $\bigcup_{i \in \omega} K_{i}=M$ there is an $n \in \omega$ with $K_{n}=M$

Proof. (1) \rightarrow (2) : assume there is an infinite summable system $S \subseteq \operatorname{End}_{R}(M)$ and define a mapping $\varphi: M \rightarrow \bigoplus_{\alpha \in S} M_{\alpha}$ by $m \mapsto \sum_{\alpha \in S} \alpha(m)$. The system S is summable so φ is a correctly defined homomorphism. But $\operatorname{im} \varphi \nsubseteq \bigoplus_{\alpha \in S_{0}} M_{\alpha}$ for any finite subset $S_{0} \subseteq S$ and M is not self-dually slender.
$(2) \rightarrow(3)$: for every $i \in \omega$ choose some $f_{i} \in L_{i} \backslash L_{i+1}$ or $f_{i}=0$ if no such exists. This forms a system $S:=\left(f_{i} \mid i \in \omega\right)$. Choose $m \in M$. Then there exists some $n \in \omega$ such that $m \in L_{n}^{*}$ and so $f(m)=0$ for all $f \in L_{n^{\prime}}$, for all $n^{\prime} \geq n$. By (2) S is finite, so only finitely many nonzero f_{i} were posible to choose and $L_{l}=L_{l+1}$ for some l. But this should be zero, because every element of M could
be otherwise annihilated by a nonzero function from the least annihilator ideal, a contradiction with the assumption that M is union of the sets L_{i}^{*}.
$(3) \rightarrow(4)$: Let $\left(K_{i} \mid i \in \omega\right)$ is an increasing chain of kernel submodules such that $A=\bigcup_{i \in \omega} K_{i}$; Then $\left(K_{i}^{*} \mid i \in \omega\right)$ is a decreasing chain of left annihilator ideals. By (3) there is some $n \in \omega$ such that $K_{n}^{*}=0$. But K_{n} is a kernel submodule, so there is some $L \subseteq \operatorname{End}_{R}(A)$ such that $L^{*}=K_{n}$. Then $L^{* *}=K_{n}^{*}=0$, so $L=0$ and it follows that $L^{*}=M$.
(4) \rightarrow (1): Assume M is not self-dually slender. Then there is some φ : $M \rightarrow \bigoplus_{i \in \omega} A$ such that $\pi_{i} \circ \varphi \neq 0$ for all $i \in \omega$. Define $A_{i}:=\left\{x \in M \mid \pi_{i} \circ \varphi \neq\right.$ 0 for all $j>i\}$. Then $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \cdots A_{n} \subseteq \cdots$ is an increasing chain of submodules of M such that $M=\bigcap_{i \in \omega} A_{i}$. Because $A_{n} \subseteq A_{n}^{* *}$, we get an increasing chain of kernel submodules such that $M=\bigcap_{i \in \omega} A_{i}^{* *}$. By (4) then there is some $n \in \omega$ with $A_{n}^{* *}=M$. Then $A_{n}^{*}=0$, a contradiction with the strictly increasing chain of A_{i}.

It is known that a countable generated self-dually slender projective R-module is necessary finitely generated.

Here we have a sufficient condition (which is relatively strong) when the product of a system of self-dually slender modules stays self-dually slender.
Proposition 17 ([Zem08], Proposition 1.6). Let $\left(M_{i} \mid i \in I\right)$ be a system of self-dually slender modules satisfying the condition $\operatorname{Hom}_{R}\left(\prod_{\in I G i\}} M_{j}, M_{i}\right)=0$ for every $i \in I$. Then $\prod_{i \in I} M_{i}$ is self-dually slender.
Proof. Denote the product of the system by M and suppose $M=\bigcup_{n \in \omega} N_{n}$ for an increasing chain of submodules of M.

For each $i \in I$ consider the set $S_{i}:=\left\{n \in \omega \mid f\left[\pi_{i}\left[N_{n}\right]\right]=0\right.$ implies $\left.f=0\right\}$. Observe that $M_{i}=\bigcup_{n \in \omega} \pi_{i}\left[N_{n}\right]$. Then $M_{i}=\bigcup_{n \in \omega}\left(\pi_{i}\left[N_{n}\right]\right)^{* *}$ and $\left(\pi_{i}\left[N_{n}\right]^{*} \mid n \in \omega\right)$ is a decreasing chain of left annihilator ideals. By assumption then there is $n \in \omega$ such that $\pi_{i}\left[N_{n}\right]^{*}=0, S_{i}$ is nonempty and has the least element. Form a sequence of integers ($n_{i} \mid i \in I$).

If it is unbounded, by minimality of its elements, for every $n \in \omega$ there is some $i_{n} \in I, i_{n}<n_{i}$ with $\left(\pi_{i_{n}}\left[N_{n}\right]\right)^{*} \neq 0$. But then $\pi_{i_{n}}\left[N_{n}\right] \neq M_{i_{n}}$ so we can choose $m \in M$ such that $m \notin N_{n}$ for every $n \in \omega$, a contradiction.

So the sequence is bounded with an upper bound say n. We consider $\prod_{i \in I \backslash\{j\}} M_{i}$ as a submodule of $\prod_{i \in I} M_{i}$. Let $\varphi \in \operatorname{End}_{R}(M)$ be such that $\varphi\left[N_{n}\right]=0$. We want to show that $\varphi=0$. By assumption, for every $i \in I, \pi_{i} \circ \varphi\left[\prod_{i}\right]=$ 0 . Let us observe that for every $m \in M, m-\left(\iota_{j} \circ \pi_{j}\right)(m) \in \prod_{i \in I \backslash\{j\}} M_{i}$, so $\left(\pi_{i} \circ \varphi\right) \circ\left(\iota_{i} \circ \pi_{i}(m)-m\right)=0$ for every $m \in M$, i.e. $\pi_{i} \circ \varphi=\pi_{i} \circ \varphi \circ \iota_{i} \circ \pi_{i}$. Since for every $i \in I,\left(\pi_{i}\left[N_{n}\right]\right)^{*}$ and $\pi_{i} \circ \varphi \circ \iota_{i} \in \operatorname{End}_{R}\left(M_{i}\right)$, it follows $\pi_{i} \circ \varphi \circ \iota_{i}=0$ for every $i \in I$, hence $\pi_{i} \circ \varphi=0$ for every $i \in I$ and finally it implies $\varphi=0$.

Remark 2. Let \mathcal{S} be a co-abstract set of simple R-modules, i.e. all members of \mathcal{S} are pairwisely non-isomorphic. Let $T \in \mathcal{S}$ and denote $P:=\prod_{S \in \mathcal{S} \backslash\{T\}} S$. If R is a
principle ideal domain then $\operatorname{Hom}_{R}(P, T)=0$. Indeed, let $f \in \operatorname{Hom}_{R}(P, T)$. It is known that annihilator of a module is an ideal hence $a n n_{R}(T)=R a$ for some $a \in$ R. Fix an arbitrary simple R-module $S \in \mathcal{S}, S \nsucceq T$. Then $a n n_{R}(S) \nsubseteq a n n_{R}(T)$ and $a n n_{R}(T) \nsubseteq a n n_{R}(S)$ so $S a \neq 0$. Because S is simple, $S=S a=S a R$. Finally $P=P a R=\operatorname{Pann}_{R}(T) \subseteq \operatorname{ker} f, f=0$.

Now let us provide an example of a self-dually slender module that is not dually slender. Denote by \mathbb{P} the set of all positive primes and let $\left(\mathbb{Z}_{p} \mid p \in \mathbb{P}\right)$ be a system of abelian groups. Then $\operatorname{Hom}_{\mathbb{Z}}\left(\prod_{p \in \mathbb{P} \backslash q} \mathbb{Z}_{p}, \mathbb{Z}_{q}\right)=0$ by the previous part. By previous theorem $\prod_{p \in \mathbb{P}} \mathbb{Z}_{p}$ is self-dually slender \mathbb{Z}-module that is not dually slender, because \mathbb{Z} is noetherian and hence (right) steady.

Chapter 3

Compact objects in Grothendieck Categories

Let \mathcal{C} be a category. A category is locally small if for every object $C \in \mathcal{C}$ the class of subobjects is a set. We say that \mathcal{C} is an additive category if it is locally small with an abelian group operation on $\operatorname{Hom}_{\mathcal{C}}(A, B)$ for all pairs if objects A, B of \mathcal{C} such that composition is biadditive:

$$
\begin{aligned}
& (\alpha+\beta) \circ \gamma=\alpha \circ \gamma+\beta \circ \gamma \\
& \alpha \circ(\gamma+\delta)=\alpha \circ \gamma+\alpha \circ \delta
\end{aligned}
$$

whenever the sums and compositions are defined.
The category \mathcal{C} is an abelian if it is an additive category with a zero object, biproducts, kernels, and cokernels, in which every monomorphism is a kernel and every epimorphism is a cokernel.

We call a cocomplete abelian category \mathcal{C} Grothendieck category if direct limits are exact in \mathcal{C} and \mathcal{C} has a generator. A Grothendieck category is an example of a locally small category, because it contains a generator and by [Ste75], Proposition IV.6.6 every such a category is locally small. We say that a category is pseudo-complemented if for every object $C \in \mathcal{C}$ the lattice of subobjects of C is pseudocomplemented, i.e. for every subobject A of C there is a subobject M of C such that $A \cap M=0$ and $A \cap B=0$ implies $B \leq M$ for every subobject B of C. A Grothendieck category is an example of a pseudo-complemented category by [Ste75], Proposition III.6.3.

Let \mathcal{C} be an abelian category with arbitrary coproducts. We call an object M of \mathcal{C} dually slender if the functor $\operatorname{Hom}_{\mathcal{C}}(M,-)$ preserves arbitrary direct sums. By [Ste75], Exercise V.3.13 it is enough to consider only countable direct sums. Let N be an object of \mathcal{C}. It is said that an object M in \mathcal{C} is N-dually slender if the functor $\operatorname{Hom}_{\mathcal{C}}(M,-)$ preserves direct sums of N. For $M, N \in \mathcal{C}$ and any X a subobject of M denote $V_{M, N}(X)=\left\{f \in \operatorname{Hom}_{\mathcal{C}}(M, N) \mid X \subseteq \operatorname{ker} f\right\}$. A subobject X_{0} of X is essential if $X_{0} \cap Y=0$ implies $Y=0$ for every Y subobject of X. We say that a monomorphism $\alpha \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ is essential if im α is an essential subobject in Y. Recall that an essential monomorphism $\mu: 0 \rightarrow M \rightarrow Q$ with Q injective is called injective envelope of M. The following two facts imply the existence of injective envelopes in Grothendieck categories.

Fact 18 ([Ste75], Proposition V.2.5). Let \mathcal{C} be a locally small, pseudocomplemented abelian category. Then if C is a subobject of an injective object then C
has an injective envelope.
Fact 19 ([Ste75], Proposition X.4.3). Let \mathcal{C} be a Grothendieck category. Then every object is a subobject of an injective object.

Now we are able to formulate a generalization of compact objects for Grothendieck categories.

Proposition 20. Let \mathcal{C} be a Grothendieck category and let M be an object of \mathcal{C} Then M is dually slender if and only if M is Q-dually slender for every injective objects Q in \mathcal{C}.

Proof. Let $\left(A_{i} \mid i<\omega\right)$ be a countable family of objects of \mathcal{C} and denote $A:=$ $\prod_{i<\omega} A_{i}$. Let $f \in \operatorname{Hom}_{\mathcal{C}}(M, A)$ be a morphism. Because \mathcal{C} is a Grothendieck category, for every $i<\omega$ there exists an injective envelope $\nu_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(A_{i}, E\left(A_{i}\right)\right)$. Let $Q:=E(A)$ and let $\mu_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(E\left(A_{i}\right), Q\right)$ be the canonical inclusion for every $i<\omega$. By the assuption the morphism $\bigoplus_{i<\omega} \nu_{i} \circ \bigoplus_{i<\omega} \mu_{i} \circ f \in \operatorname{Hom}_{\mathcal{C}}\left(M, Q^{(\omega)}\right)$ factors through a finite coproduct Q^{n} for some $n<\omega$ and so $\operatorname{im}\left(\bigoplus_{i<\omega} \mu_{i} \circ f\right) \subseteq$ $\bigoplus_{i<n} E\left(A_{i}\right)$. By essentiality of the morphism $\nu_{i}, i<\omega$ it follows that f factors through a finite coproduct, which concludes the proof.

Proposition 21. Let \mathcal{C} be a Grothendieck category and let M, N be objects of \mathcal{C}. Then
(1) M is N-dually slender
(2) for every increasing chain $M_{0} \subseteq M_{1} \subseteq M_{2} \cdots \subseteq M$ of proper subobjects of M, either $\sum_{i \in \omega} M_{i}$ is proper subobject of M or there is some $n<\omega$ such that $V_{M, N}\left(M_{n}\right)=0$.

Proof. (1) \rightarrow (2): let $M_{0} \subseteq M_{1} \subseteq M_{2} \cdots \subseteq M$ be an increasing chain of proper subobjects of M such that $\sum_{i<\omega} M_{i}=M$ and $V\left(M_{i}\right) \neq 0$ for all $i<\omega$. Then for every $i \in \omega$ exists a nonzero homomorphism $f_{i} \in \operatorname{Hom}_{\mathcal{C}}(M, N)$ such that $f_{i}\left[M_{i}\right]=0$. Let $\varphi \in \operatorname{Hom}_{\mathcal{C}}\left(M, N^{\omega}\right)$ be a morphism such that $\pi_{i} \circ \varphi=f_{i}, i<\omega$ where $\pi_{k} \in \operatorname{Hom}_{\mathcal{C}}\left(N^{(\omega)}, N\right)$ is a natural projection. Since $f_{k}\left[M_{n}\right]=0$ for all $k \geq n$, it follows $\left(\pi_{k} \circ \varphi\right)\left[M_{n}\right]=0$ for all $k \geq n$ and $\operatorname{im} \varphi \subseteq N^{(\omega)}$. Then there is a morphism $\bar{\varphi} \in \operatorname{Hom}_{\mathcal{C}}\left(M, N^{(\omega)}\right)$ such that $\pi_{i} \circ \varphi=f_{i}, i<\omega$. By (1) f factors through a finite coproduct and so there exists some $n<\omega$ such that $\pi_{k} \circ \varphi=0$ for all $k \geq n$, a contradiction.
$(2) \rightarrow(1)$: assume there exists $f \in \operatorname{Hom}_{\mathcal{C}}\left(M, N^{(\omega)}\right)$ such that $\pi_{i} \circ f \neq 0$ for all $i \in \omega$, where $\pi_{i} \in \operatorname{Hom}_{\mathcal{C}}\left(N^{(\omega)}, N\right)$ is a natural projection. Define $M_{n}:=$ $\bigcap \operatorname{ker}\left(\pi_{i} \circ f\right)$. Then $M_{0} \subseteq M_{1} \subseteq M_{2} \cdots$ is an increasing chain of subobjects of ${ }^{i<\omega}$. Observe that if X is a finitely generated subobject of M, then there exists $n<\omega$ with $\left(\pi_{k} \circ f\right)[X]=0$ for every $k \geq n$ and so $X \subseteq \bigcap_{i>n} \operatorname{ker}\left(\pi_{i} \circ f\right)$. Hence $M=\sum_{i<\omega} M_{i}$.

An easy example of a Grothendieck category is the category of R-modules over a ring R. But the previous theorem provides a characterization of dually slender
objects also for another Grothendieck categories like the category of all abelian pgroups (with group homomorphisms between its objects) or the functor category between an additive category and abelian groups ([Ste75], V.1. Examples).

Let \mathcal{C} be an additive category and let \mathcal{T} be a full additive subcategory. The stable category $\underline{\mathcal{C}}$ obtained from \mathcal{C} is the category whose objects are the same as \mathcal{C} and whose morphisms $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ are the equivalence classes with equivalence defined on $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ such that two morphisms are equivalent if their difference factors through an object of \mathcal{T}.

Recall that a pushout (in a category theory) (P, u, v) of (B, f) and (C, g) is a colimit of the diagram

Later we will need to know how epimorphisms look in a stable category $\underline{\mathcal{C}}$. The next lemma shows that they can be represented by epimorphisms of \mathcal{C}. For a morphism $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ we denote f^{k} the kernel of f.

Lemma 22. Let $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ be an epimorphism in an abelian category \mathcal{C} and assume that also $\bar{f} \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ is also an epimorphism. Then for every $h \in \operatorname{Hom}_{\mathcal{C}}(X, T)$ with $T \in \mathcal{T}$ there is a morphism $\widetilde{h} \in \operatorname{Hom}_{\mathcal{C}}\left(X, \operatorname{im}\left(h \circ f^{k}\right)\right)$ such that h and \widetilde{h} coincide on $\operatorname{ker}(f)$

Proof. Let (P, u, v) be a pushout of (h, T) and (f, Y) by X. Then $\overline{0}=\bar{u} \circ \bar{h}=\bar{v} \circ \bar{f}$ in $\underline{\mathcal{C}}$. Because \bar{f} is an epimorphism it follows that $\bar{v}=0$ and v factors through some $T^{\prime} \in \mathcal{T}$, say via v_{2} and v_{1}. By projectivity of T^{\prime} we get a homomorphism $\varphi \in \operatorname{Hom}_{\mathcal{C}}\left(T^{\prime}, T\right)$ such that $u \circ \varphi=v_{2}$. From the equality $v=v_{2} \circ v_{1}=(u \circ \varphi) \circ v_{1}$ we get $0=u \circ h-v \circ f=u\left(h-\varphi \circ v_{1} \circ f\right)$. Denote $h^{\prime}:=h-\varphi \circ v_{1} \circ f$. From the universal property of the kernel of u we get a morphism $\widetilde{h} \in \mathcal{C}(X, \operatorname{ker}(u))$ such that $u^{k} \circ \widetilde{h}=h^{\prime}$:

It follows that $u^{k} \circ \widetilde{h} \circ f^{k}=h \circ f^{k}$.
Recall that a split epimorphism (monomorphism) $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ is a morphism such that there is $g \in \operatorname{Hom}_{\mathcal{C}}(B, A)$ such that $f \circ g=1_{X}\left(g \circ f=1_{X}\right)$, i.e f has a left (right) inverse.

Theorem 23. Let \mathcal{C} be an abelian category and let $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ be an epimorphism. Then the following is equivalent:
(1) \bar{f} is an isomorphism in $\underline{\mathcal{C}}$
(2) f is a split epimorphism in \mathcal{C} with $\operatorname{ker}(f) \in \mathcal{T}$
(3) f is a split epimorphism in \mathcal{C} whose kernel map f^{k} factors through an object of \mathcal{T}

Proof. (1) \rightarrow (3): \bar{f} is an isomorphism, so we can choose some $g \in \mathcal{C}(Y, X)$ such that $\bar{g}=\overline{f^{-1}}$. Then $\overline{1_{X}-g \circ f}=\overline{1}-\overline{1}=\overline{0}$, so the morphism $1_{X}-g \circ f$ factors through some object $T^{\prime} \in \mathcal{T}$ via some h and v :

We have that $(v \circ h) \circ f^{k}=\left(1_{X}-g \circ f\right) \circ f^{k}=f^{k}-g \circ f \circ f^{k}=f^{k}-g \circ 0=f^{k}$, so f^{k} factors through an object $T^{\prime} \in \mathcal{T}$ with morphisms $h \circ f^{k}$ and v.

There exists $\widehat{v} \in \operatorname{Hom}_{\mathcal{C}}\left(\operatorname{im} h \circ f^{k}, \operatorname{ker} f\right)$ such that and $f^{k} \circ \widehat{v}=v \circ m$. Indeed, by the universal property of the kernel f^{k} we need to show $f \circ(v \circ m)=0$. We have

$$
f \circ(v \circ m) \circ e=f \circ v \circ\left(h \circ f^{k}\right)=f \circ(1-g \circ f) \circ f^{k}=0
$$

and e is an epimorphism so the result follows.
Let $h \circ f^{k}=m \circ e$ be the epi-mono factorization of $h \circ f^{k}$ through im $h \circ f_{\dot{\sim}}^{k}$ Because \bar{f} is an epimorphism in \mathcal{C}, so applying Lemma 22 for h there is some \widetilde{h} such that $m \circ \widetilde{h} \circ f^{k}=h \circ f^{k}$ in the diagram:

Finally, $f^{k} \circ\left(\widehat{v} \circ \widetilde{h} \circ f^{k}\right)=\left(f^{k} \circ \widehat{v}\right) \circ \widetilde{h} \circ f^{k}=(v \circ m) \circ \widetilde{h} \circ f^{k}=v \circ\left(m \circ \widetilde{h} \circ f^{k}\right)=$ $v \circ\left(h \circ f^{k}\right)=f^{k}$. But f^{k} is a monomorphism, so $(\widehat{v} \circ \widetilde{h}) \circ f^{k}=1_{\operatorname{ker}(f)}$ and f^{k} is a split monomorphism.
$(3) \rightarrow(2): \operatorname{By}(3) f^{k}$ is a split monomorphism so there exists a morphism t such that $t \circ f^{k}=1_{\operatorname{ker}(g)}$. But f^{k} also factors through an object $T \in \mathcal{T}$, lets say $f^{k}=b \circ a$. Then $1_{\operatorname{ker}(f)}=t \circ(b \circ a)=(t \circ b) \circ a$, so a is a split monomorphism and $\operatorname{ker}(f)$ is a direct summand of T. The class \mathcal{T} is closed under direct summands, so $\operatorname{ker}(f) \in \mathcal{T}$.
$(2) \rightarrow(1):$ We have that $X \simeq Y \oplus \operatorname{ker}(f)$ via $\bar{g}=\left[\overline{g_{1}}, \overline{g_{2}}\right]^{T}$ with $\operatorname{ker}(f) \in \mathcal{T}$ so $\bar{f}=\left[\overline{1}_{Y}, \overline{0}\right] \circ\left[\overline{g_{1}}, \overline{g_{2}}\right]^{T}=\overline{1} \circ \overline{g_{1}}+\overline{0} \circ \overline{g_{2}}$ is an isomorphism.

Let R be a ring and let $\mathcal{C}=\operatorname{Mod}-R$ the corresponding category of right R modules. Consider \mathcal{T} the subcategory of all projective right R-modules. We will call the category $\underline{\mathcal{C}}$ the stable module category of R and denote it Mod- R.

The following theorem describes a method how compact objects transfer from the category of modules over a left perfect ring R to the stable module category
of R. The assumption on the ring is relatively strong and the proof is not so obvious as in the case of the particular category of modules.

Theorem 24 ([Miy07], Theorem 3). Let R be a perfect ring, $M \in \operatorname{Mod}-R$ a compact object. Then there is a finitely generated module $M^{\prime} \in \operatorname{Mod}-R$ such that $M \simeq M^{\prime}$ in Mod-R.

Proof. Because R is a perfect ring $\bar{M}:=M / M \mathcal{J}(R)$ is semisimple i.e. it is isomorphic to $\bigoplus_{i \in I} S_{i}$ via ϕ with S_{i} simple for every $i \in I$. Let p be a composition of ϕ with the canonical projection $\pi: M \rightarrow M / M \mathcal{J}(R)$. Because M is a compact object in Mod- R, there is an R-homomorphism $f: M \rightarrow T_{1}$, where $T_{1} \simeq \underset{i \in I_{0}}{\bigoplus} S_{i}$ for a finite subset $I_{0} \subseteq I$ and T_{2} is a complement of T_{1} in \bar{M} such that $p-(f, 0)$ factors through a projective R-module, say Q. Write $\left(M \xrightarrow{p} \bigoplus_{i \in I} S_{i}\right)=\left(M \xrightarrow{\binom{p_{1}}{p_{2}}}\right.$ $\left.T_{1} \oplus T_{2}\right)$. So we have a commutative diagram:

because $b \circ a=p-f$ and $b=\binom{\pi_{1} \circ g_{1}}{\pi_{2} \circ g_{2}}$ for a R-homomorphism g (exists by the projectivity of Q).

Epimorphism π_{2} is superfluous and $\pi_{2} \circ\left(g_{2} \circ a\right)\left(=p_{2}\right)$ is an epimorphism, so by [AndFul92][Corollary 5.15] $g_{2} \circ a$ is also an epimorphism. By the projectivity of P_{2} it follows that $M \xrightarrow{g_{2} \circ a} P_{2} \rightarrow 0$ splits (i.e. there is a R-homomorphism z such that $\left(g_{2} \circ a\right) \circ z=1_{P_{2}}$. We have $M \simeq \operatorname{ker}\left(g_{2} \circ a\right) \oplus P_{2}$.

We show that $M^{\prime}:=\operatorname{ker}\left(g_{2} \circ a\right)$ is finitely generated. Write $\left(M \xrightarrow{\binom{p_{1}}{p_{2}}} T_{1} \oplus T_{2}\right)=$ $\left(M^{\prime} \oplus P_{2} \xrightarrow{\binom{p_{11} p_{12}}{p_{21} P_{2} 2}} T_{1} \oplus T_{2}\right)$. We get commutative diagrams:

i.e. equations $\left(\pi_{2} \circ 0, \pi_{2} \circ 1\right)=\left(0 \circ p_{11}+p_{21}, 0 \circ p_{12}+p_{22}\right)$ imply $p_{21}=0$ and $p_{22}=\pi_{2}$. So $0 \rightarrow \operatorname{ker}\left(p_{11}\right) \rightarrow M^{\prime} \rightarrow T_{1} \rightarrow 0$ is a short exact sequence with T_{1} finitely generated and $\operatorname{ker}\left(p_{11}\right) \subseteq M^{\prime} \mathcal{J}(R)$ which si superfluous in M^{\prime} by Fact 2 and we conclude the proof.

Chapter 4

Grothendieck monoids of projective modules

Let R be a ring with identity. We consider a commutative monoid $\left(V^{*}\left(R_{R}\right), \oplus, 0\right)$ where $V^{*}\left(R_{R}\right)$ is a set of isomorphism classes of countably generated projectives and \oplus is a binary operation of taking direct sums and 0 is the zero module and we call it a Grothendieck monoid of countably generated projective right R-modules. Denote $\left.V_{(} R_{R}\right)$ the analogical monoid of finitely generated projective right R-modules.

Let I be a two-sided ideal of R. Then we define

$$
V_{I}\left(R_{R}\right):=\{\langle P\rangle \mid P \text { projective, } P / P I \text { is finitely generated }\}
$$

Observe that $V\left(R_{R}\right)=V_{0}\left(R_{R}\right), V^{*}\left(R_{R}\right)=V_{R}\left(R_{R}\right)$.
Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then $V(\varphi): V(R) \rightarrow V(S)$ induced via the functor $-\otimes_{R} S$ by $\langle P\rangle \mapsto\left\langle P \otimes_{R} S\right\rangle$ for every finitely generated projective module P is a monoid homomorphism of corresponding Grothendieck monoids. In case $S=R / I$ we have one more expression for elements of $V(S)$, because R / I is an $R-R / I$-bimodule and $P_{R} \otimes_{R} R / I$ is isomorphic to $P / P I$ in Mod- R / I via $p \otimes(r+I) \mapsto p r+A I$. Let $\pi: R \rightarrow R / I$ be a canonical ring isomorphism, then $V(\pi)$ is an injective monoid homomorphism.

We are interested in a situation when $V_{I}\left(R_{R}\right)=V(R)$, i.e. if a projective module is finitely generated modulo some ideal factor then it is itself finitely generated. First observe that $V_{I}\left(R_{R}\right) \subseteq V^{*}\left(R_{R}\right)$ if I is contained in $\mathcal{J}(R)$. Indeed, by Kaplansky's Theorem $P \simeq \bigoplus_{\lambda \in \Lambda} P_{\lambda}$ with P_{λ} countably generated for all $\lambda \in \Lambda$. Then

$$
P / P I \simeq P \otimes_{R} R / I=\left(\bigoplus_{\lambda \in \Lambda} P_{\lambda}\right) \otimes_{R} R / I \simeq \bigoplus_{\lambda \in \Lambda}\left(P_{\lambda} \otimes_{R} R / I\right) \simeq \bigoplus_{\lambda \in \Lambda} P_{\lambda} / P_{\lambda} I
$$

By the assuption there is a finite subset $\Lambda_{0} \subseteq \Lambda$ such that $P_{\lambda} / P_{\lambda} I=0$ for all $\lambda \in \Lambda \backslash \Lambda_{0}$. By an analogical statement of [[Pri07], Theorem 2.2] for $I \subseteq \mathcal{J}(R)$ it follows $P_{\lambda} \simeq 0$ for such all $\lambda \in \Lambda \backslash \Lambda_{0}$. So $P \simeq \bigoplus_{\lambda \in \Lambda_{0}} P_{\lambda}$ is countably generated.

We say that a submodule N of an R-module M is pure in M if $N \cap M P=N P$ for every right ideal K of R. It is known that M / N is flat if and only if N is pure in M. There is a useful criterion how to test if a module is flat.

Fact 25. Let R be a ring and let $0 \rightarrow K \xrightarrow{\alpha} F \rightarrow C \rightarrow 0$ be a short exact sequence of R-modules with F free with the basis $\left(e_{i} \mid i \in I\right)$. Then C is flat if and only if for every finite set $u_{1}, u_{2}, \cdots, u_{n} \in K$ there is a homomorphism $\varphi: F \rightarrow K$ identical on the given elements.

Proof. Proved in [Lam99], Proposition 4.23.
Definition 5 (Ideal-supplement, Ideal projectivity). Let R be a ring and let I be a two-sided ideal of R. Then an R-module P is I-projective if for all right R-modules X and Y with $Y I=0$, every R-epimorphism $f: X \rightarrow Y$ and every homomorphism $\varphi: P \rightarrow Y$ there exists a homomorphism $g: P \rightarrow X$ such that $f \circ g=\varphi$, i.e. the diagram

commutes.
We call a submodule N of an R-module M an I-supplement if there is a submodule G in M such that $N+G=M$ and $N \cap G \subseteq N I$. (Note that direct summands are exactly 0 -supplements.)

Denote

$$
\begin{aligned}
T_{I}(M) & =\left\{f \in \operatorname{End}_{R}(M) \mid \operatorname{im} f \subseteq M I\right\} \\
f \operatorname{End}_{R}(M) & :=\left\{f \in \operatorname{End}_{R}(M) \mid \exists a: M \rightarrow R^{n}, b: R^{n} \rightarrow M \text { with } f=b \circ a\right\}
\end{aligned}
$$

A property of being I-projective can be for a special case of finitely generated modules characterized like this:

Lemma 26. Let $I \unlhd R$ be a two-sided ideal and let M be a finitely generated right R-module. Then the following is equivalent:
(1) M is I-projective
(2) for every epimorphism $A \xrightarrow{f} B$ and every morphism $\varphi: M \rightarrow B$ there is a morphism $g: M \rightarrow A$ such that $\operatorname{im}(\varphi-f \circ g) \subseteq B I$
(3) for the canonical projection $\pi: M \rightarrow M / M I$ there are homomorphisms φ, ψ such that the diagram

commutes for some finitely generated free R-module F.
(4) $f \operatorname{End}_{R}(M)+T_{I}(M)=\operatorname{End}_{R}(M)$

Proof. (1) \rightarrow (2): We get the following commutative diagram:

Indeed, by I-projectivity of M there is a homomorphism $h: M \rightarrow A$ such that $\pi \circ g=(\pi \circ f) \circ h$, so $\pi \circ(g-f \circ h)=0$. Obviously $\pi \circ \pi^{k}=0$ where π^{k} is a kernel map of π and so by the universal property of the cokernel there is a homomorphism $k: M \rightarrow B I$ such that $\pi^{k} \circ k=g-f \circ h$. Then $\operatorname{im}(g-f \circ h) \subseteq \operatorname{im}\left(\pi^{k}\right)=B I$ and (2) follows.
$(2) \rightarrow(1):$ Let $A \xrightarrow{f} B \rightarrow 0$ be an exact sequence with $B I=0$ and let $g: M \rightarrow B$ be arbitrary. By (2) there is a homomorphism $h: M \rightarrow A$ such that $\operatorname{im}(f \circ h-g) \subseteq B I=0$, so h is also a witness of I-projectivity of M.
$(1) \rightarrow(4)$: It is enough to prove that $1_{M} \in f \operatorname{End}_{R}(M)+T_{I}(M)$. Write M as the homomorphic image of some finitely generated free right module F, i.e. $F \xrightarrow{g} M \rightarrow 0$. Because $(M / M I) I=0$, by (1) there is some homomorphism $f: M \rightarrow F$ such that $\pi=(\pi \circ g) \circ f$, i.e. $\pi \circ\left(1_{M}-g \circ f\right)=0$. It follows that $\operatorname{im}\left(1_{M}-g \circ f\right) \subseteq M I$ and of course $g \circ f \in f E n d_{R}(M)$.
$(3) \rightarrow(1)$ Let $g: A \rightarrow B \rightarrow 0$ be an epimorphism with $B I=0$ and $\varphi: M \rightarrow B$ some homomorphism. Let $\pi: M \rightarrow M / M I$ be a canonical projection. Because $\varphi(M I) \subseteq \varphi(M) I=0$ by the Homomorphism Theorem $\varphi=\widetilde{\varphi} \circ \pi$ for some $\widetilde{\varphi}: M / M I \rightarrow B$. By (3) there is a free module F and some homomorphisms $a: M \rightarrow F, b: F \rightarrow M$ such that $\pi=\pi \circ b \circ a$. By projectivity of F we get a homomorphism $c: F \rightarrow A$ such that $g \circ c=\varphi \circ b$. Then $g \circ(c \circ a)=(g \circ c) \circ a=$ $(\varphi \circ b) \circ a=((\widetilde{\varphi} \circ \pi) \circ b) \circ a=\widetilde{\varphi} \circ(\pi \circ b \circ a)=\widetilde{\varphi} \circ \pi=\varphi$.
$(4) \rightarrow(3)$: Let $1_{M}=x+y$ with $x \in f \operatorname{End}_{R}(M)$ and $y \in T_{I}(M)$. So x factors through a finitely generated free R-module F via homomorphisms $a: M \rightarrow F$ and $b: F \rightarrow M$. Then $0=\pi \circ y=\pi \circ\left(1_{M}-x\right)=\pi \circ\left(1_{M}-a \circ b\right)$ and (3) follows.

A finitely generated R-module P is projective if and only if $f \operatorname{End}_{R}(P)=$ $E n d_{R}(P)$. Indeed, $f E n d_{R}(P)$ is an ideal, hence a finitely generated module P is projective if and only if $1_{P} \in f \operatorname{End}_{R}(P)$. Similarly like in the case of modules, we say that an ideal I of a ring R is superfluous in R if $I+J=R$ implies $J=0$ for every two-sided ideal J of R. It would be interesting to know whether the ideal $T_{I}(R)$ is superfluous in $\operatorname{End}_{R}(M)$.
Remark 3. Let R be a ring and $K \unlhd R$ a nonzero ideal. Denote by $\mathcal{G}(R)$ the Brown-McCoy radical of R. Recall that a Brown-McCoy radical is the intersection of all maximal two-sided ideals of R or the intersection of all two-sided ideals K such that R / K is a simple ring. Then K is superfluous in R if and only if $K \subseteq \mathcal{G}$.

Proof. Let $K \subseteq \mathcal{G}(R)$. Assume that I is not superfluous in R, i.e. $K+L=R$ for some proper nonzero ideal L of R. Then L is contained in some maximal ideal M of R, hence $K+M=R$. Then R / M is simple and $\mathcal{G}(R) \subseteq M$, a contradiction with $K+M=R$.

Let K be superfluous in R and assume $K \nsubseteq \mathcal{G}(R)$. Then there is some ideal L of R such that $K \nsubseteq L$ with R / L a simple ring, so L is a maximal ideal and $K+L=R$. But by the assumption $L=R$, a contradiction.

Fact 27 ([AndFul92], Theorem 10.4). A right R-module M is finitely generated if and only if $\operatorname{Rad}(M)$ is superfluous in M and $M / \operatorname{Rad}(M)$ is finitely generated.

If P, Q are projective modules and $f: P \rightarrow Q$ is a R-homomorphism, then by the induced homomorphism $\bar{f}: P / P I \rightarrow Q / Q I$ it is meant the natural map defined by $p+P I \mapsto f(p)+Q I$ for all $p \in P$. For any R / I-homomorphism $\alpha: P / P I \rightarrow Q / Q I$ there exists an R-homomorphism $f: P \rightarrow Q$ such that the induced homomorphism \bar{f} equals α and we say that f is a lift of α.

Proposition 28 ([FacHerSak05], Proposition 6.1). Let R be a ring and $I \unlhd R$ be an ideal contained in $\mathcal{J}(R)$. Let P, Q be projective right R-modules and let $\alpha: P / P I \rightarrow Q / Q I$ be an R / I-homomorphism. Let f be a lift of α. If α is a pure monomorphism, then f is a pure monomorphism.

Proof. First choose an R-module P^{\prime} such that $P \oplus P^{\prime}$ is free, then an R-module Q^{\prime} such that $\left(Q \oplus P^{\prime}\right) \oplus Q^{\prime}$ is free. Let $\epsilon: P^{\prime} \rightarrow P^{\prime} \oplus Q^{\prime}$ denote the inclusion onto the direct summand. Without lack of generality we now suppose that P and Q are free, because if $f \oplus \epsilon$ is a pure monomorphism then f is a pure monomorphism.

Fix a finitely generated free direct summand M of P with a complement M^{\prime}. We show that the image $f[M]$ is a direct summand of Q. We find a free submodule N of Q such that $f[M] \subseteq N$ and N is a direct summand with a complement N^{\prime}. Denote $j: N \rightarrow Q$ and $i: M \rightarrow P$ be the inclusions, f_{M} the restriction of f on M and let $q: Q \rightarrow N$ and $p: P \rightarrow M$ be homomorphisms such that $p \circ i=1_{M}$ and $q \circ j=1_{N}$. Then we have a commutative diagram with exact rows:

Inducing with $-\otimes_{R} R / I$ we get a commutative diagram in $\operatorname{Mod}-R / I$ with split exact rows:

Both α, \bar{i} are pure monomorphisms so $\alpha \circ \bar{i}$ is also a pure monomorphism. Hence $\bar{j} \circ \overline{f_{M}}$ is a pure monomorphism. It follows that $\overline{f_{M}}$ is a pure monomorphism and Coker $\overline{f_{M}}$ is a finitely presented flat R / I-module, so there is a homomorphism $\beta: N / N I \rightarrow M / M I$ such that $\beta \circ \overline{f_{M}}=1_{M / M I}$. Let g be any lift of β.

We get that $g \circ f_{M}$ is an automorphism of M. In particular, f_{M} is a split monomorphism. This concludes the observation that $f[M]=f_{M}[M]$ is a direct summand in Q.

We show that f injective. Let $x \in \operatorname{ker} f$ be arbitrary. Then there is a finitely generated free summand $f_{M}[M]$ of Q containing $f(x)$ for some M, hence $x \in$ $\operatorname{ker}\left(f_{M}\right)=0$.

Now f is a direct limit of split short exact sequences arising from f_{M}, M finitely generated so by [Lam99], Examples 4.84(c), f is pure exact.

Recall that a projective dimension of a module M equals one if there exists a projective presentation $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ of M with K projective.

Lemma 29. Let R be a ring and let M be a right R-module. Then the following holds
(i) (Schanuel Lemma) Assume we have two presentations $0 \rightarrow K \xrightarrow{i} P \xrightarrow{\pi}$ $M \rightarrow 0$ and $0 \rightarrow L \xrightarrow{j} Q \xrightarrow{\rho} M \rightarrow 0$ of M with P projective. Then we have a short exact sequence $0 \rightarrow K \rightarrow L \oplus P \rightarrow Q \rightarrow 0$.
(ii) every countably presented flat R-module has the projective dimension ≤ 1.

In particular, if a countably presented flat R-module has a presentation $0 \rightarrow K \rightarrow$ $P \rightarrow M \rightarrow 0$ with P projective, then K is also projective.

Proof. (i) Proved in [Lam99], Lemma 5.1.
(ii) Proved in [Laz69], Théoreme 3.2.

Lemma 30. For a commutative diagram in Mod- R with exact rows

holds that there exists $\varphi: B \rightarrow A^{\prime}$ such that $\varphi \circ i=\alpha$ if and only if there exists $\psi: C \rightarrow B^{\prime}$ such that $\psi \circ q=\gamma$. In particular, if γ is an isomorphism and the first commutative square admits a diagonal fill-in from B to A^{\prime} then the lower row splits.

Proof. We show only one direction, the second is categorically dual. Assume that there exists $\varphi: B \rightarrow A^{\prime}$ such that $\varphi \circ i=\alpha$. Then

$$
0=\beta \circ i-j \circ \alpha=\beta \circ i-j \circ(\varphi \circ i)=(\beta-j \circ \varphi) \circ i
$$

By the universal property of cokernel C there exists a homomorphism $\psi: C \rightarrow B^{\prime}$ such that $\psi \circ p=\beta-j \circ \varphi$. We show that ψ is required homomorphism. Because p is an epimorphisms it is enough to show that $\gamma \circ p=q \circ \psi \circ p$. Indeed,

$$
q \circ(\psi \circ p)=q \circ(\beta-j \circ \varphi)=q \circ \beta-(q \circ j) \circ \varphi=q \circ \beta=\gamma \circ p
$$

Now we give an equivalent conditions connecting ideal supplements and ideal projectivity with the equality $V_{I}\left(R_{R}\right)=V\left(R_{R}\right)$ for an ideal I contained in the Jacobson radical. Recall that a homomorphism $\pi: P \rightarrow M$ is a projective cover of M if and only if π is a \mathcal{P}-cover where \mathcal{P} is a class of all projective modules, i.e. $P \in \mathcal{P}$ two conditions holds: the first, for every $Q \in \mathcal{P}$ and every $\varphi: Q \rightarrow M$ there is $\psi: G \rightarrow P$ such that $\pi \circ \psi=\varphi$ and the second, if $Q=P$ and $\varphi=\pi$ then every endomorphism ψ is an automorphism.

Theorem 31. Let R be a ring and $I \unlhd R$ be an ideal contained in $\mathcal{J}(R)$. Then the following is equivalent:
(A) for every finitely generated projective R-module P, every finitely generated I-supplement in P is 0 -supplement
(B) every finitely generated (presented) I-projective R-module is projective
(C) every finitely generated flat R-module M with projective R / I-module $M / M I$ is projective
(D) for every projective R-module Q, if the factor-module $Q / Q I$ is finitely generated then Q is finitely generated

Proof. $(A) \rightarrow(B)$: Let K be a finitely generated I-projective right R-module and let $\pi: K \rightarrow K / K I$ be the canonical projection. Then by Proposition 26(1) \rightarrow (3) there are homomorphisms $p: K \rightarrow P$ and $q: P \rightarrow K$ such that $\pi \circ(q \circ p)=$ π for some finitely generated projective (free) R-module P. Then we have a commutative diagram:

Choosing $\varphi:=\pi \circ q$, by Lemma 30 we get that the lower row is split exact and so there is some submodule C of P such that $p(K)+C=P$ and $p(K) \cap C \subseteq K I$. This just means that $p(K)$ is an I-supplement of C in P. By the condition (A) it means that $p[K]$ is a direct summand of a projective module, hence it is projective.
$(B) \rightarrow(C):$ Let M be a finitely generated flat right R-module. Then there is a short exact sequence $0 \rightarrow \operatorname{ker}(p) \rightarrow F \xrightarrow{p} M \rightarrow 0$ with F finitely generated free. Denote $K:=\operatorname{ker}(p)$. By assumption on M the induced sequence $0 \rightarrow$ $K / K I \rightarrow F / F I \rightarrow M / M I \rightarrow 0$ splits in Mod- R / I. Then $K / K I$ is finitely generated and so $K=K_{0}+K I$ for a finitely generated submodule K_{0} of K. By Lemma 25 applied on M there is a homomorphism $f: F \rightarrow K$ that is identical on generators of K_{0} and therefore on the whole K_{0}. Define a (finitely presented) module $P:=F / K_{0}$. Because $K_{0} \subseteq \operatorname{ker}\left(1_{F}-f\right)$ we have some homomorphism g
that makes the diagram commuting:

We want to show that P is I-projective. By characterization of I-projectivity it is enough to show that the square commutes:

Observe that

$$
\pi_{I} \circ \pi_{K_{0}} \circ\left(g \circ \pi_{K_{0}}\right)=\left(\pi_{I} \circ \pi_{K_{0}}\right) \circ(1-f)=\pi_{I} \circ \pi_{K_{0}},
$$

because $\operatorname{im} f \subseteq K \subseteq K_{0}+F I$. Because $\pi_{K_{0}}$ is an epimorphism the square commutes.

By (B) P is projective and so K_{0} is a direct summand of F. Denote by G a complement of K_{0} in F, which is obviously projective, because it is also a direct summand of F. Then the factormodule $G /(G \cap K) \simeq(K+G) / K=F / K$ is isomorphic to M and therefore it is flat. Denote by $q: G \rightarrow G /(G \cap K)$ the canonical projection and let $x \in G \cap K$ be arbitrary. Because G is finitely generated $\operatorname{Rad}(G)$ is superfluous in G. We have the inclusion

$$
G \cap K \subseteq G \cap\left(K_{0}+\left(K_{0}+G\right) I\right)=G \cap\left(K_{0}+H G\right)=\left(G \cap K_{0}\right)+G I=G I
$$

and $G I \subseteq G \mathcal{J}(R) \subseteq \operatorname{Rad}(G)$ so by Fact 27 it follows that $G \cap K$ is superfluous in G, i.e. q is a projective cover of $G /(G \cap K)$. Now by Lemma 25 applied on $G / G \cap K$ there is a homomorphism $f_{x}: G \rightarrow G \cap K$ identical on x and it follows $q \circ\left(1-f_{x}\right)=q$. Because q is a projective cover, $\left(1-f_{x}\right)$ is an automorphism so $\operatorname{ker}\left(1-f_{x}\right)=0$ and $x=0$. This is true for all $x \in G \cap K$ and $G \cap K=0$. Then $G \simeq M$ and M is projective.
$(C) \rightarrow(D)$: Let Q be projective and the ideal factor $Q / Q I$ be finitely generated. Then there is an embedding $0 \rightarrow Q / Q I \xrightarrow{\alpha}(R / I)^{(n)}$ such that α is a split monomorphism. By Proposition 28 there exists $f: Q \rightarrow R^{(n)}$ such that $\bar{f}=\alpha$ and it is a pure monomorphism. Denote $M:=\operatorname{Coker} f$. Then M is a finitely generated flat R-module such that $M \otimes_{R} R / I$ is isomorphic to a direct summand of $(R / I)^{(n)}$ so by the condition (C) M is projective. We have that f is a split monomorphism and Q is finitely generated.
$(D) \rightarrow(A)$: Let P be a finitely generated projective R-module and N be a finitely generated submodule of P such that it is an I-supplement, denote by ι the embedding N into P. That means there exists a submodule G of P such that $N+G=P$ and $N \cap G \subseteq P I$ and the short exact sequence $0 \rightarrow$ $N /(N \cap G) \rightarrow P /(N \cap G) \rightarrow G /(N \cap G) \rightarrow 0$ is split exact. Let $M:=P / N$. Because P is projective, there is some $\gamma \in \operatorname{End}_{R}(P)$ such that im $\gamma \subseteq N$ and im $\left(1_{P}-\gamma\right) \subseteq G$.

Observe that im $\gamma^{2}=\operatorname{im} \gamma=N$. Indeed, im $\gamma^{2}+\operatorname{im}(\gamma \circ(1-\gamma))+G=P$. But $\operatorname{im}(\gamma \circ(1-\gamma))=\operatorname{im}(1-\gamma) \circ \gamma \subseteq N \cap G \subseteq N I$ which is superfluous in P, hence $\operatorname{im} \gamma^{2}+G=P$. Then $N=\left(\operatorname{im} \gamma^{2}+G\right) \cap N=\operatorname{im} \gamma^{2}+(G \cap N)=\operatorname{im} \gamma^{2}$ by modularity of modules and because $N \cap G$ is superfluous in N. By induction we get that $N=\operatorname{im} \gamma^{n}$ for all $n \in \mathbb{N}$.

By projectivity of P there exists a homomorphism $\tau \in \operatorname{End}_{R}(P)$ such that the diagram commutes:

By induction we get that $\gamma=\gamma^{n+1} \circ \tau^{n}$ for every $n \in \mathbb{N}$.
Define $G_{1}:=\sum_{i=1}^{\infty} \operatorname{ker} \gamma^{i}$. Then $G_{1} \subseteq G$ and $N+G_{1}=P$. We claim that G_{1} is pure in P. We show that P / G_{1} is flat using Lemma 25. Let $x \in G_{1}$, so there is some $m \in \mathbb{N}$ depending on x such that $m \in \operatorname{ker} \gamma^{m}$. Define $\alpha_{n}:=1_{P}-\tau^{n}$ o γ^{n} for all $n \in \mathbb{N}$. Then im $\alpha_{m} \subseteq G_{1}$. Indeed, $\gamma^{m+1} \circ\left(1_{P}-\tau^{m} \circ \gamma^{m}\right)=\gamma^{m+1}-\gamma \circ \gamma^{m}=0$ and so $\operatorname{im} \alpha_{m} \subseteq \operatorname{ker} \gamma^{m+1}$ and $G_{1}=\sum_{n=1}^{\infty}$ im α_{n}. Finally, $\alpha(x)=1_{P}-\tau^{m} \circ \gamma^{m}(x)=$ x.

Observe that $G_{1} / G_{1} I$ is finitely generated. Indeed, from $N \cap G_{1} \subseteq P I$ we get

$$
\frac{N+P I}{P I} \oplus \frac{G_{1}+P I}{P I}=P / P I
$$

Because G_{1} is pure in P we have $G_{1} \cap P I=G_{1} I$. Then

$$
G_{1}+P I / P I \simeq G_{1} / G_{1} \cap P I=G_{1} / G_{1} I
$$

and $G_{1} / G_{1} I$ is isomorphic to a direct summand of a finitely generated R / I-module $P / P I$.

The factormodule P / G_{1} is countably presented, finitely generated and flat, so by Lemma $29 G_{1}$ is projective. By the condition (D) G_{1} is finitely generated, hence $G_{1}=\operatorname{ker} \gamma^{m}$ for some $m \in \mathbb{N}$. Let $y \in G_{1} \cap N$. Then $y=\gamma^{m}(z)$ for some $z \in P$ and $\gamma^{m}(y)=0$. It follows that $z \in \operatorname{ker} \gamma^{2 m}=\operatorname{ker} \gamma^{m}$ and so $y=0$. We have showed that $N=\operatorname{im} \gamma^{m}$ is a direct summand of P.

We say that a subset X of R is locally nilpotent if for every finite subset X_{0} of X there exists $k=k\left(X_{0}\right) \in \mathbb{N}$ depending on X_{0} such that every product of k elements from X_{0} is zero. Now we show that $V_{\mathcal{L}(R)}\left(R_{R}\right)=V\left(R_{R}\right)$ where $\mathcal{L}(R)$ is the Levitzki radical of the ring R which is the set of all $x \in R$ such that $x R$ is locally nilpotent subset of R. Observe that the sum of two locally nilpotent right ideals are locally nilpotent. Let $\mathcal{A} \in M_{n}(\mathcal{L}(R))$ and $X_{0}=\left\{x_{1}, x_{2}, \cdots, x_{n^{2}}\right\}$ be the set of entries of \mathbb{A}. Then X_{0} is a finite subset of a locally nilpotent $\sum_{i=1}^{n^{2}} x_{i} R$ and $\mathbb{A}^{k\left(X_{0}\right)}=0$.

Proposition 32 (based on [MohSan89], Corollary 3.5). Let R be a ring and $I \unlhd R$ be an ideal contained in $\mathcal{J}(R)$. If the ideal $M_{n}(I)$ contains only nilpotent elements, then $V_{I}(R)=V(R)$.

Proof. We check the condition (B) from the previous theorem. Let $P=\sum_{i=1}^{n} R y_{i}$ be n-generated left R-module and denote $E:=\operatorname{End}_{R}(P)$. Since P is I-projective,
it is enough to show that $T_{I}(P)$ contains only nilpotent elements because then it is trivially contained in the Brown-McCoy radical of $E n d_{R}(P)$ and so $T_{I}(P)$ is superfluous in E which concludes that P is projective.

Let $t \in T_{I}(P)$ and write $t\left(y_{i}\right)=\sum_{j=1}^{n} a_{i j} y_{j}$ for $i=1,2, \ldots, n$ and $a_{i j} \in I$, write them in a matrix \mathbb{A}. Let F be a finitely generated free R-module with a basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and define $g: F \rightarrow P$ by $e_{i} \mapsto y_{i}$. Then we have a commutative diagram:

because $g\left(\mathbb{A} e_{i}\right)=g\left(\sum_{j=1}^{n} a_{i j} e_{i}\right)=\sum_{j=1}^{n} a_{i j} g\left(e_{i}\right)=\sum_{j=1}^{n} a_{i j} y_{i}=t\left(y_{i}\right)=(t \circ g)\left(e_{i}\right)$ for $i=1,2, \ldots, n$ and by induction we get $\left(t^{m} \circ g\right)=g \circ \mathbb{A}^{m}$ for all $m \in \mathbb{N}$. But \mathbb{A} is contained in $M_{n}(I)$ that contains only nilpotent elements by the assumption, so there is an index $m_{0} \in \mathbb{N}$ such that $t^{m_{0}} \circ g=0$. Because g is an epimorphism, it follows $t^{m_{0}}=0$.

There is a construction of a ring R such that $V_{\mathcal{J}(R)}\left(R_{R}\right) \neq V\left(R_{R}\right)$ [GerSak84]. Together with the last proposition it makes a sense to state the following question.

Question 2. Let I be a nil ideal. Does it hold that $V_{I}(R)=V(R)$?

Bibliography

[AndFul92] Anderson, Fuller: Rings and Categories of Modules, Springer (1992).
[BreZem07] Breaz S., Žemlička J. : When every self-small module is finitely generated Jour. Alg. 315 (2007), 885-893.
[Cha60] Chase S.U.: Direct Product of Modules Trans. Amer. Math. Soc. 97/3(1960) 457-473.
[EGT97] Eklof P., Goodearl K., Trlifaj J.: Dually slender modules and steady rings Forum Math. 9 (1997), 61-74
[Eng89] Engelking R.: General Topology (1989), Revised and completed edition, Heldermann Verlag, Berlin
[FacHerSak05] Facchini A., Herbera D., Sakhaev I.: Flat Modules and Lifting of Finitely Generated Projective Modules, Pac.J.Math. 220/1 (2005), 49-68.
[GerSak84] Gerasimov V., Sakhaev I.: A counterexample to two conjectures on projective and flat modules, Siberian Math. J. 24 (1984), 159-169.
[GoeGolKol07] Goebel R., Goldsmith B., Kolman O.: On Modules Which are Self-Slender
[HerbPrih] Herbera D., Prihoda P.: Infinitely Generated projective modules over pullbacks of rings
[Izu04] Izurdiaga M.C.: Supplement Submodules and Generalization of Projective Modules J.Alg. 277 (2004),
[Jec97] Jech T.: Set Theory, The third Millenium edition, Springer Verlag, 1997
[Jen66] Jensen Ch.U.: On Homological Dimensions of Rings with Countably Generated Ideals Math.Scand. 18 (1966), 97-105.
[Jon76] Jøndrup S.: Projective modules, Proc. Amer. Math. Soc. 59/2 (1976), 217-221.
[Lam99] Lam T.Y.: Lectures on Modules And Rings Springer (1999)
[Laz69] Lazard D.: Autour de la Platitude, Bull. S.M.F. 97 (1969), 81-128.
[Laz74] Lazard D.: Liberte des gros modules projectifs, J.Algebra 31 (1974), 437451.
[MohSan89] Mohammed A., Sandomierski F.L.: Complements in Projective Modules J.Alg. 127 (1989), 206-217.
[Miy07] Miyachi J.: Compact Objects in Stable Module Categories Arch. Math. 89 (2007) 47-51.
[NicSao09] Nicolas P., Saorín M.: Balance in Stable Categories, Alg.Repr.Th. (2009), 543-566.
[Pas04] Passman D.: A Course in Ring Theory, AMS Chelsea 348 (2004).
[Pri07] Příhoda P.: Projective modules are determined by their radical factors, J. Pure Appl. Alg. 210 (2007) 827-835.
[Pun04] Puninski G.: Projective modules over the endomorphism ring of a biuniform module, J. Pure Appl. Alg. 188 (2004) 227-246.
[Ren67] Rentschler R.: Die Vertauschbarkeit des Hom-Funktors mir direkten Summen, Dissertation, Ludwig-Maximilian-Univesitat Muenchen (1967)
[Ste75] Stenstroem B.: Rings of Quotients, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 217 1975, Springer Verlag
[Tr195] Trlifaj J.: Steady rings may contain large sets of orthogonal idempotents, Proc. Conf. Abelian Groups and Modules (Padova 1994), Kluwer, Dordrecht, 1995, 467-473.
[Wis91] Wisbauer R.: Foundation of Module and Ring Theory (1991), Gordon and Breach Philadelphia.
[Zem08] Žemlička J.: When products of self-small modules are self-small
[Zos81] Zoeschinger H.: Projektive Moduln mit endlich erzeugten Radikalfaktormodul, Math. Ann. 255 (1981) 199-206.

