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Introduction

Compactness conditions appear in various parts of topology and algebra and
the general idea behind them is the possibility to deal with properties involving
infinitely many objects using only some finite subset of them.

In the first chapter we focus on the category of right modules Mod-R over
an associative ring R with identity 1R. Here we introduce a dually slender right
module as the compact object. From the categorical point it is one whose induced
covariant Hom functor preserves all direct sums. It turns out that this is equiva-
lent to not being a countably infinite sum of its own submodules. Consequently,
a finitely generated R-module is a natural representative of a compactness. We
will also observe the amount of dually slender modules present in a particu-
lar category of modules. If they only coincide with finitely generated ones, the
category of modules seems not to be a rich supply. The situation is complete-
ly different if they are closed under arbitrary direct products (moreover, dually
slender modules are closed under factormodules). The main result states that for
a particular non-artinian Von Neumann regular ring this happens, taking some
set-theoretic assumption consistent with Zermelo-Fraenkel set theory with the
Axiom of Choice.

In the second chapter we make another generalization for right R-modules.
For a moduleM we weaken the categorical condition forHomR(M,−) to preserve
only direct sums of copies of some fixed module N . In caseM = N we say thatM
is self-dually slender. Again we take a look on direct products of these modules.

The third chapter is a purely categorical point of view on compact objects. We
state the characterization for Grothendieck categories. Then we step out of these
and we describe compact objects in a stable module category over a right perfect
rings. Recall that stable module category is a factor category where projective
morphisms are killed.

Finally we study when countably generated projective modules are finitely
generated (and therefore compact), assuming the finite generation of some factor
over a submodule generated by an ideal contained in the Jacobson radical of a
ring. We use the notion of Grothendieck monoid of countably generated projective
modules which is a set of their isomorphism classes endowed with a commutative
binary operation + imposed by taking the isomorphism class of direct sum of its
arguments and zero module as a zero constant.

The very basic notation and results could be found in [AndFul92] in the first
place or in [Lam99] in the second.
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Chapter 1

Dually Slender Modules

The are two fundamental isomorphisms of (abelian) homomorphism groups re-
lating the direct sum and the direct product over a family (Ai | i ∈ I) of R-
modules of an arbitrary cardinality I. Let M be a right R-module. The functor
HomR(M,−) : Mod-R → AB preserves direct products via the canonical iso-
morphism:

τ1 :
∏
i∈I

HomR(M,Ai) → HomR(M,
∏
i∈I

Ai) (1.1)

and the contravariant functor HomR(−,M) : Mod-R → AB converts coproducts
into products via the isomorphism:

τ2 :
∏
i∈I

HomR(Ai,M) → HomR(
⊕
i∈I

Ai,M) (1.2)

Let us exchange the direct product with the direct sum in the equation (1.1)
and we consider the canonical mapping:

ρ :
⊕
λ∈Λ

HomR(M,Aλ) → HomR(M,
⊕
λ∈Λ

Aλ) (1.3)

defined by ρ((· · · , fλ, · · · ))(m) = (· · · , fλ(m), · · · ) for fλ ∈ HomR(M,Aλ), λ ∈ Λ.
The mapping ρ is always injective but we will see that generally it is not

an isomorphism and therefore it will make a sense to establish the following
definition:

Definition 1. We call a right R-moduleMR dually slender if the mapping ρ is an
isomorphism, i.e. the covariant functor HomR(MR,−) commutes with arbitrary
direct sums of modules.

Dually slender modules are known under various names (module of type Σ,
Σ-compact, ∪-compact and small). The notion small module is quite common
but we will rather not use it because of the similarity with small (superfluous)
submodules.

First we observe that for a dually slender R-module it is enough to consider
preservations of direct sums of families of countable cardinality. Now we provide
the basic characterization.

Theorem 1. Let R be a ring. For a right R-moduleM the following is equivalent:
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(D1) M is dually slender,

(D2) for every countable family of R-submodules (Mi | i ∈ ω) of M such that∑
i∈ω

Mi =M there is an n ∈ ω with
n∑
i=0

Mi =M ,

(D2’) for every countable increasing chain of R-submodules (Mi | i ∈ ω) such that∪
i∈ω

Mi =M there is an n ∈ ω with Mn =M ,

(D3’) for every countable family of R-modules (Ai | i ∈ I) and every R-homomor-

phism φ :M →
⊕
i∈ω

Ai there is an n ∈ ω with im (φ) ⊆
n⊕
i=0

Ai.

Proof. (D1) → (D2): Let Nn :=
∑n

i=0Mi. Denote by πn : M → M/Nn the
canonical projection and define φ :=

⊕
n<ω

πn. Then φ ∈ HomR(M,
⊕
n<ω

M/Nn), so

by (D1) φ has an inverse by ρ in
⊕
n<ω

HomR(M,Nn). Because the sum is direct,

there exists some m ∈ ω such that M = Nm.
(D2) → (D2′): Let M =

∪
n<ω

Mn for an increasing chain (Mn | n < ω) of

submodules of M . Then Mn =
∑

0≤i≤nMi. By (D2) there exists m ∈ ω such
that M =Mm.

(D2′) → (D3′): The inverse image of a submodule under R-homomorphism is
a submodule so if (D3’) is not true than there exists a countably infinite strictly
increasing chain of Mn := φ−1[

⊕
j≤n], n < ω such that the union of Mn, n < ω is

M and (D2’) is not true.
(D3′) → (D1): Let φ ∈ HomR(M,

⊕
i<ω) By (D3’) it follows that there is

some n < ω such that πk ◦ φ = 0 for all k ≥ n. Denote ψ :=
⊕n

j=0 πj ◦ φ. Then
ψ ∈

⊕
i<ω HomR(M,Ai) and ρ(ψ) = φ.

As a corollary we get that the class of dually slender modules are closed under
factormodules. The usual characterization of finitely generated module M is
following: for every set of submodules (Mλ | λ ∈ Λ) of M such that

∑
λMλ =M

there is a finite subset Λ0 such that
∑

λ∈Λ0
Mλ =M . Now it is obvious that every

finitely generated module is dually slender. Let us provide an example that the
converse is not true:

We call a right R-module M uniserial if the submodules of M are linerly
ordered by inclusion. These provide a trivial source of dually slender modules
that are not finitely generated.

Example 1. Every uncountably generated uniserial module is dually slender.

Some classes of rings represent the least possible source of dually slender
modules, i.e. only the finitely generated ones. We call these rings right resp. left
steady depending on the category of modules involved. Examples of right steady
rings are classes satisfying some finitness conditions. Recall that a ring R is right
perfect if every right R-module M has a projective cover and that the following
characterize them.

Fact 2. Let R be a ring and J (R) be its Jacobson radical. Then R is left perfect
if and only if R/J (R) is semisimple and J (R) is left T-nilpotent if and only if
MJ (R) is superfluous for every nonzero R-module M . In particular for every
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right R-module M , if the radical factor M/RadM is finitely generated, then M
is finitely generated.

Proof. Proved in [[AndFul92], Lemma 28.3, Theorem 28.4(Bass)]. The additional
statement follows from [[AndFul92], Corolary 15.18] which states that MJ (R) =
Rad(M).

Proposition 3. If R is a right perfect ring. Then R is right steady.

Proof. Let M be a dually slender module and let 0 → K → P → M → 0 be
its projective cover. Assume that M is not finitely generated. Thus, P is not
finitely generated and P is a countable union of strictly increasing chain of its
submodules, P =

∪
i<ω

Pi. Because π is surjective, M =
∪
i<ω

π[Pi] so there is some

n < ω such that M = π[Pn]. Then P = kerπ + Pn. Because ker π is superfluous,
P = Pn, a contradiction.

Let S be a representative set of all simple R-modules. We say thatM has a S-
socle filtration (Sα | α ≤ σ), if it is an increasing continuous chain of submodules
of M starting with S0 = 0, ending in S(σ) =M satisfying Sα+1/Sα is isomorphic
to a direct sum of modules from S for all α < σ. The ordinal σ we call the S-socle
length of M .

A ring is R called right semiartinian if RR has a S-socle filtration, where S
is a representative set of simple modules. It is proved in [EGT97], Proposition
2.1, that every right semiartinian ring with the countable S-socle length is right
steady.

Proposition 4. If R is right noetherian, then R is right steady.

Proof. The proof is based on the fact that any category of modules has a cogen-
erator K :=

⊕
i∈I E(Si) which is injective in this case, because injective modules

are closed under direct sums in right noetherian rings and it is a characterization
of them [AndFul92], Proposition 18.13. It is located in [[Ren67], 70].

Let us provide some definitions of cardinals that will be useful in the sequel.

Definition 2. We say that a cardinal κ is

• Ulam-measurable if there is a countably complete (i.e. σ-complete) non-
principal ultrafilter on κ

• measurable if there is a κ-complete nonprincipal ultrafilter on κ

• strongly inaccesible if κ = cf(κ) and for all λ < κ, 2λ < κ

We say that a R-module M is ω1-reducing (also countably finite or (ω, ω)-
reducing)if every countably generated submodule N ofM is contained in a finitely
generated submodule. The class of ω1-reducing modules lies strictly between
finitely generated ones and dually slender. Let us provide an example of dually
slender module that is not ω1-reducing. Recall that for an infinite set X with
a discrete topology the Čech-Stone compactification β(X) is a set of ultrafilters
on X with the basis B given {O(Y ) | Y ⊆ X} where O(Y ) = {p ∈ β(X) |
Y ∈ p}. Then β(X) with the topology generated by B is a compact Hausdorff
topological space satisfying that the closure of any open set in β(X) is open (so
called extremely disconnected space) [Eng89], 6.2.28.
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Lemma 5. Let X be an infinite set with the discrete topology and let U be an
ultrafilter on X. If p =

∪
i<ω Fi for an increasing chain of subfilters of p, then

there is some n < ω such that p = Fn.

Proof. For a contradiction assume that there is a strictly increasing chain (Fi | i <
ω) of filters such that p =

∪
n<ω Fi. For every i < ω define a setW ′

i := {X\A}∪Fi
for a choise of a set A such that A ∈ Fi+1\Fi. Then all W ′

i have an finite
intersection property so for all i < ω there exist an ultrafilter Wi extending W

′
i

such that Fi+1 ̸⊆ Wi. Define:

U := p ∪ {Wi | i < ω}

Then U is a countably inifinite subset of Čech-Stone compactification β(X). In-
deed, we show that U is closed in β(X). Let q ∈ β(X)\U and we find an open
neighborough of q that is disjoint with U . Because β(X) is Hausdorff, there is
an open subset O(Y ) ⊆ β(X) for some Y containing q but not containing p.
Hence X\Y ∈ p and there is k0 < ω such that X\Y ∈ Fk for all k > k0. Then
Wi ̸∈ O(Y ) for every k > k0. Set B := O(Y ) ∩

∩k
i=0 β(X)\Wi, then B is an open

neighborough containing q and it is disjoint with U .
We have found a countably infinite closed subset of β(X). Recall that every

infinite closed subset of an infinite Hausdorff space contains a copy of the set of
natural numbers with the discrete topology. Because it is closed it contains also
a copy of β(N) and by [[Eng89], Proposition 3.6.12], it has the cardinality 2ℵ0 ,
which leads to a contradiction.

Example 2. Let K be a field. Let κ > ℵ0 be not a Ulam-measurable cardinal.
Then there is a dually slender right Kκ-module that is ω1-reducing.

Proof. The proof is in [Trl95]. The idea is following:
First, denote by F be the lattice of all filters on κ and by I the lattice of all

two-sided ideals of Kκ. Define φ : F → I by

F 7→ {k := (kα | α < κ) ∈ Kκ | ∃ X ∈ F : πα(k) = 0 ∀α ∈ X}

for all F ∈ F . Then φ is an injective lattice homomorphism.
Let p ∈ F be a non-principal ultrafilter on κ. By Lemma 5 p is not a strictly

increasing countably infinite chain of its subfilters. By [Trl95], Lemma 2.4(i),
φ(p) is dually slender. Because κ is not Ulam-measurable, the non-principal
ultrafilter p is not countably complete and by [Trl95], Lemma 2.2(ii) φ(p) is not
ω1-reducing.

Now we study rings with larger classes of dually slender modules. Let us start
with a question.

Question 1. Does there exist a ring R such that dually slender right R-modules
are closed under direct products? (definitely not right steady). Denote it as the
condition (DS-P).

The question has also an another reason, because an analogical statement
holds in the categorically dual situation for so called slender modules (if the
coproduct is exchanged with the product and vice versa in equation 1.2) - slender
modules are closed under arbitrary direct sums.

For a ring Q we observe that every dually slender Q-module keeps this prop-
erty in the module category over any subring of Q in which Q is dually slender.
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Lemma 6. Let R be a unital subring of a ring Q, M be a right Q-module and
suppose that QR is dually slender as an R-module. Then M is a dually slender
Q-module if and only if it is dually slender as an R-module.

Proof. Assume that M is a dually slender Q-module. Let M =
∪
i<ωMi for

a countable chain of R-submodules M0 ⊆ M1 ⊆ . . . . For each i < ω define
Ni = {m ∈ M | mQ ⊆ Mi}. Obviously, N0 ⊆ N1 ⊆ . . . forms a chain of Q-
submodules of M and Ni ⊆ Mi for every i < ω. For every m ∈ M , (mQ)R as
the homomorphic image of dually slender module QR is dually slender so there
exists k < ω such that mQ ⊆Mk, hence M =

∪
i<ωNi. Now, by the assumption

there exists n < ω such that Nn =M , hence Mn =M .
The converse is clear, because every Q-module is also an R-module.

Proposition 7. Let R be a subring of simple Von Neumann regular non-artinian
ring Q such that QR is finitely generated as a right R-module.

Then every injective Q-module is dually slender as an R-module.

Proof. By Lemma 6 it is enough to prove that every injective Q- module is dually
slender (or ω1-reducing). Let EQ be any injective right Q-module and EQ =∪
n<ω

Nn. For a contradiction assume that (Nn | n ∈ ω) is strictly increasing chain

of submodules of E, i.e. Nn ( Nn+1 for all n ∈ ω. The ring Q contains an infinite
set (ei | i < ω) of orthogonal idempotents and because Q is simple QenQ = Q
for all n < ω. Then EenQ = E and for all n ∈ ω there exists xn ∈ E such that
xnenQ ̸⊆ Nn. Define φ :

⊕
n<ω enQ → E by enq 7→ xnenq. By Baer’s Criterion

applied for the injective module EQ the following diagram commutes for some φ̃:

0 //
⊕
n∈ω

enQ
ι //

φ

��

QQ

φ̃

||
|<
|<
|<
|<
|<
|<

EQ

and there is some m ∈ E such that φ̃(q) = mq for all q ∈ Q. Hence
∑

n<ω xnenQ
is contained in a cyclic Q-module mQ ⊆ E and therefore in Nn for some n < ω,
a contradiction.

The class of projective modules sis not a rich source of dually slender modules.
By Kaplansky’s Theorem every projective module is a direct sum of countably
generated projective modules [AndFul92], Corollary 26.2. and those are not du-
ally slender unless finitely generated.

For a right R-module define:

Z(MR) := {m ∈M | rannR(m) essential in R }

where submodule U of V is essential in V if U ∩W = 0 implies W = 0 for a
submodule W of V .

We say that ring R is right non-singular, if Z(RR) = 0. We observe that
simple rings are an example of a class of non-singular rings and as a fact we state
a deep statement about their maximal right rings of quotients.

Proposition 8. (i) Every simple ring is right and left non-singular.
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(ii) if R is a right non-singular ring, then Qmax(R) the maximal right ring of
quotients of R is Von Neumann regular and right self-injective.

Proof. (i) First we prove that Z(RR) is two-sided ideal. It is an abelian group
because rannR(u) ∩ rannR(v) ⊆ rannR(u − v) for all u, v ∈ RR and essential
right ideals are closed under finite intersections and oversets.

Let u ∈ Z(RR) and r ∈ R be arbitrary. We can assume ur ̸= 0. Let a
be arbitrary and we want to prove rannR(ur) ∩ aR ̸= 0. If ura = 0, then
there is nothing to prove so assume ura ̸= 0. Therefore ra ̸∈ rannR(u), but
raR ∩ rannR(u) ̸= 0 from the essentiality of rannR(u). It follows uras = 0 for
some ras ̸= 0. Then 0 ̸= as ∈ aR∩ rannR(ur). On the other hand, rannR(u) ⊆
rannR(ru), so we are done.

Assume R is not right singular. Then Z(R) ̸= 0 and Z(R) = R by simplicity
of R. But rannR(1R) = 0 is not an essential right ideal, a contradiction.

(ii) Proved in [[Ste75], Proposition XII.2.1].

Lemma 9. Let R satisfy (DS - P). Denote Q = Qmax(R) the maximal right ring
of quotients of R.

(i) Every injective right R-module is dually slender.

(ii) If R is a non-singular ring, then Q satisfies (DS - P).

(iii) Every factorring of R satisfies (DS - P)

Proof. (i) Let ER be an injective R-module and let π : R(κ) → E be an epi-
morphism. Since the canonical injection R(κ) → Rκ is a monomorphism, by the
injectivity of E, π can be extended to an epimorphism Rκ → E. Because (RR)

κ

is dually slender by the hypothesis, the module E is a homomorphic image of a
dually slender module and therefore also dually slender.

(ii) By Proposition 8(ii) QR is injective, so by (i) it is dually slender as an R-
module. Thus every product of dually slender Q-modules is dually slender as an
R-module by the hypothesis and Lemma 6, hence it is a dually slender Q-module.

(iii) Modules over any factor ring have a natural structure of R-modules.

Corollary 10. If a ring R satisfies (DS - P) and I is a maximal two-sided ideal,
then R/I is (right) non-singular and Qmax(R/I) is a non-artinian self-injective
simple ring satisfying (DS - P).

Definition 3. A ring S is said to be Dedekind finite if for all r, s ∈ S, rs = 1
implies sr = 1. We say that a ring R is right purely infinite if R has no nonzero
idempotent e = e2 such that eRe is Dedekind finite.

Lemma 11. Let κ be an infinite cardinal, R be a non-artinian self-injective purely
infinite ring and (Mα | α < κ) be a system of R-modules.

(i) if every Mα in the system is ω1-reducing, then
∏
α<κ

Mα is ω1-reducing as

well.

(ii) the product of any system of finitely generated modules is ω1-reducing.

(iii) if κ = ω, then
∏
α<ω

Mα/
⊕
α<ω

Mα is ω1-reducing.
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Proof. Put M =
∏
α<κ

Mα. For any product
∏

αMα denote by να : Mα →
∏

αMα

the natural embedding and πα :
∏

αMα →Mα the natural projection.
Similarly we define νJ and πJ for any subset of {α}.
(i) First we show that for every injective module M is ω1-reducing. Because

R is right purely infinite we can form a sequence 0 → K(≃ R(ω)) → R with
K ≤ R a right ideal of R. Choose C = {mi | i < ω} ⊆ M arbitrary. Let
(xi | i < ω) be a free basis of K and define φ : K → M,xi 7→ mi. So φ is
an R-homomorphism and by injectivity of M we can extend it to φ̃ : R → M
such that mi = φ̃(xi) = φ̃(1Rxi) = φ̃(1R)xi for all i < ω, so C ⊆ φ̃(1R)R is
ω1-reducing. [[Trl95], Example 2.8].

Note that
∏
α<κ

R(nα) ∼= Rκ is injective for all finite nα, hence ω1-reducing.

Fix a countable set D := {mn | n < ω} ⊆ M . By hypothesis on Mα, for
each α < κ there is some finitely generated submodule Fα of Mα such that
{πα(mn) | n < ω} ⊆ Fα and there is some nα such that we can write Fα as a
factormodule of a finitely generated free R-module R(nα). Hence D ⊆

∏
α<κ Fα

and the exact sequence
∏

α<κR
(nα) →

∏
α<κ Fα → 0 shows that the middle term

is a factor-module of an ω1-reducing R-module and it is itself ω1-reducing. Then
there exists a finitely generated R-module F of

∏
α<κ Fα such that D ⊆ F (⊆M).

(ii) As finitely generated R-modules are ω1-reducing, (ii) is a consequence of
(i).

(iii) Put S =
⊕

α<ωMα. Fix a countable set D′ := {mn | n < ω} ⊆ M and
for each α < ω define (a finitely generated) R-module Gα =

∑
j≤α πα(mj)R .

Observe that D′ ⊆
∏

α<ω Gα. By (ii)
∏

α<ω Gα is ω1-reducing, hence a factor-
module

∏
α<ω Gα+S/S is also ω1-reducing. Then there exists a finitely generated

module F ⊆
∏

α<ω Gα(⊆M) such that mn + S ∈ F + S/S for all n < ω.

Definition 4. For a set X, we call a system I of subsets of X an (set-theoretic)
ideal if it is

• closed under subsets, i.e. if A ∈ I and B ⊆ A, then B ∈ I.

• closed under finite unions, i.e. if A,B ∈ I , then A ∪B ∈ I.

Moreover, we call a system I a prime ideal if it is an ideal and for all subsets
A, B of X, A ∩ B ∈ I implies A ∈ I or B ∈ I. It is easy to seet that this is
equivalent to statement that for every A ⊆ X, A ∈ I or X\A ∈ I. If Y ⊆ X we
say that the set I | Y := {Y ∩A | A ∈ I} is a trace of I on Y . Observe that the
trace of an ideal is also an ideal.

Remark 1. Let X be a set. Then there is a dual corresponcence between ultrafil-
ters and prime ideals on X defined by I 7→ P(X)\I for an ideal I.

Lemma 12. Let R be a non-artinian self-injective purely infinite ring and let
(Mα | α ∈ I) be a family of dually slender modules. Let M =

∏
α∈IMα be the

direct product of the family and let M =
∪
n<ωNn be a union of a countable

increasing chain of submodules (Nn | n < ω). Denote An = {J ⊆ I |
∏
α∈J

Mα ⊆

Nn} and A =
∪
n<ω

An. Assume M is not dually slender. Then the following holds:

(i) An is an (set-theoretic) ideal
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(ii) A is closed under countable unions of sets

(iii) There exists n < ω for which A = An.

(iv) there exists a subset I0 ⊆ I such that the trace of A on I0 is prime

Proof. (i) Obviously ∅ ∈ A and because M is not dually slender, I ̸∈ A. The
closure of An under subsets is obvious by the definition. The closure of An

under finite unions follows from the decomposition
∏

α∈J∪KMα =
∏

α∈JMα ⊕∏
α∈K\JMα ⊆ Nn.

(ii) First we show that A is closed under countable unions of pairwise disjoint
unions. Let Kj ∈ A be pairwisely disjoint subsets of I for all j < ω. We
show that there exists k < ω such that Kj ∈ Ak for each j < ω. Assume by
contradiction that for every n < ω there exists (possibly distinct) i(n) such that
Ki(n) /∈ An. Hence there is fn ∈

∏
α∈Ki(n)

Mα for which νKi(n)
(fn) /∈ Nn. Since∏

j<ω fjR =
∪
n<ω (fjR ∩Nj) is dually slender by Lemma 11(ii) there is k < ω

such that νKi(k)
(fk) ∈

∏
j<ω fjR ⊆ Nk, a contradiction.

Put Pj =
∏

α∈Kj
Mα for j < ω. Observe that there is some k < ω such that

Pj ⊆ Nk and it follows that
⊕

j<ω Pj ⊆ Nk. Let P =
∏

j<ω Pj =
∏
{Mα | α ∈∪

j<ωKj} be a countably generated module. As P/
⊕

j<ω Pj is dually slender by
Lemma 11(iii) there exists some l ≥ k such that P =

∪
j<ω(P ∩Nj) ⊆ Nl.

Now let Jj, j < ω be any subsets of I and put J0 = K0 and Ji = Ki\
∪
j<iKj

for i > 0. So
∪
j<ω Jj =

∪
j<ωKj and by the preceding we get the result.

(iii) Assume that A ̸= An. Then there exists a sequence (Jn ∈ A\An | n ∈ ω).
Since

∪
j<ω Jj ∈ A, we obtain a contradiction with (ii).

(vi) There exists I0 ⊆ I such that for every K ⊆ I0, K ∈ AorI0\K ∈ A.
Assume that such I0 does not exist. Then we may construct a countably infinite
sequence of disjoint sets (Ki | i < ω) (Ki non-empty for i > 0) in the following
way: Put K0 = ∅ and J0 = I0. There exist disjoint sets Ji+1, Ki+1 ⊂ Ji such
that Ji = Ji+1 ∪ Ki+1 where Ji+1, Ki+1 /∈ A. Now, for each n ≥ 1 there exists
gn ∈

∏
α∈Kn

Mα such that νKn(gn) /∈ Nn which contradicts to the fact that∏
j≥1 gjR ⊆ Nm for some m < ω (cf. the proof of (iii)).

Proposition 13. Let R be a non-artinian self-injective purely infinite ring. Then
the following holds:

(i) A countable product of dually slender R-modules is dually slender.

(ii) If there exists a system (Mα | α < κ) of dually slender R-modules such that
the product

∏
α<κMα is not dually slender, then there exists an uncountable

cardinal λ < κ and an σ-complete ultrafilter on λ.

Proof. (i) Follows immediatelly from Lemma 12(iii).
(ii) If we take M =

∏
α∈I

Mα which is not dually slender and a set-theoretic

ideal A and I0 ⊆ I from Lemma 12 and if we define F = {I0 \ A | A ∈ A} then
from Lemma 12(i),(iii) it follows that F is an ultrafilter and by Lemma 12(ii) it
is σ-complete.

The relation to the set theory is established in the following proposition.
Recall that Goedels Second Incompleteness Theorem states that a consistent
axiomatizable theory containing a fragment of arithmetic (like ZFC set theory)
does not prove its own consistency.
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Proposition 14. The following is true:

(i) every Ulam-measurable cardinal is greater or equal to the first measurable
cardinal

(ii) every measurable cardinal is strongly inaccesible.

(iii) it is consistent with ZFC that there is no strongly inaccesible cardinal

Proof. (i) because every cardinal greater then Ulam-measurable is also Ulam-
measurable, it is enough to show that the first Ulam-measurable cardinal is mea-
surable. Denote it κ and let p ∈ U(κ) be a nonprincipal countably complete
ultrafilter on κ.

Assume that p is not κ-complete. Then there is µ0 < κ and a partition
(Aα | α < µ0) such that Aα ̸∈ p for all Aα, α < µ0. Indeed, let

A := {µ < κ | ∃ {Cα ∈ p | α < µ} such that
∩
α<µ

Cα ̸∈ p}

Then by the assuption A is nonempty and therefore it has the smallest element,
denote it µ0. Because Cα′\

∩
α<µ0,α̸=α′

Cα ∈ p for all α′ < µ0 we can assume∩
α<µ0

Cα = ∅. Define B0 := κ and Bα :=
∩
β<α

Cβ for all 0 < α < µ0 and set

Aα := Bα\Bα+1 for all α < µ0. Then the system (Aα | α < µ0) forms a partition
of κ (because sets Bα form a chain) and Aα ̸∈ F for all α < µ0, because Bα+1 ∈ F
by minimality of µ0 and so κ\Bα+1 (an overset of Aα) is not in F by the ultrafilter
property.

Define a function f : κ → µ0 that maps very element of κ to the index of a
member of the partition it belong to, i.e. β 7→ α if β ∈ Aα for all β < κ. Observe
that f [F ] is a nonprincipal countably complete ultrafilter on µ0, a contradiction
with minimality of κ.

(ii) let κ be measurable and let F be a nonprincipal κ-complete ultrafilter on
κ.

First assume that cf(κ) < κ and let (κα | α < cf(κ)) be a cofinal sequence
of cardinals in κ. If κ\κα ∈ F for every α < cf(κ), then ∅ =

∩
α<cf(κ)

κ\κα ∈ F

because F is κ-complete. So there is some α < cf(κ) such that κα ∈ F . Obviously∩
β<κα

κα\{β} = ∅. Since F is nonprincipal, κα\{β} ∈ F for all β < κα (otherwise

{β} = kα ∩ (κ\κα ∪ {β}) ∈ F ) and since F is κ-complete,
∩

β<κα

κα\{β} ∈ F .

Let λ < κ be a cardinal such that κ < 2λ. Then there exists an injective
function F : κ→ 2λ. For every i < 2 and every γ < λ define:

Aiγ := {α < κ | F (α)(γ) = i}

Observe that (A0
γ ∈ p or (A1

γ ∈ p for every γ < λ. Pick the function g ∈λ 2 such

that A
g(γ)
γ ∈ p for all γ < λ. Because κ is κ-complete

∩
γ<λA

g(γ)
γ ∈ p and∩

γ<λ

Ag(γ)γ = {α < κ | F (α)(γ) = g(γ)∀γ < λ} =

= {α < κ | F (α) = g} = F−1[g]

11



By injectivity of F it follows that the intersection of all Aγ, γ < λ is a singleton
and p is not a principal ultrafilter, a contradiction.

(iii) Define V0 := ∅ and by induction VS(α) := P(Vα) for a successor ordinal
S(α) and Vα :=

∪
β<α

Vβ for a limit ordinal α. The proof will follow from the

fact ([Jec97], Lemma 12.13) that Vκ is a model of ZFC for a strongly inaccesible
cardinal κ. Let κ be a strongly inaccesible cardinal.

Let Inac denote a statement ”there is a strongly inaccesible cardinal”. Assume
the consistency of ZFC implies the consistency of ZFC + Inac. By ([Jec97],
Lemma 12.13) the theory ZFC + Inac proves the existence of a model Vκ of ZFC
and therefore a consistency of ZFC. So we have that ZFC + Inac is consistent.
But we got that ZFC + Inac proves its own consistency, a contradiction with
Goedel’s Second Incompleteness Theorem.

Using Proposition 14(iii) and Corolary 13 we can state our main result:

Corollary 15. Let R be a non-artinian self-injective, purely infinite ring.
If we assume that there is no inaccesible cardinal, then the class of dually

slender R-modules is closed under direct products.
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Chapter 2

Self-Dually Slender Modules

It this chapter we will step even farther from finitely generated modules. Recall
that the HomR(M,−) functor with a dually slender moduleM commutes with all
direct sums. If we weaken the property such that we want the canonical isomor-
phism only with all direct sums of some fixed module N we get a generalization of
dually slender modules and we will call the moduleM a N-dually slender module.
In the case M = N we speak about self-dually slender (or self-small) modules
and they are precisely the compact objects in the category of Add(M).

Let M be a R-module. For a subset X ⊆ M define X∗ := {f ∈ EndR(M) |
f [X] = 0} and for a subset D ⊆ E the set D∗ := {m ∈ M | f(m) =
0 for all f ∈ D }. Obviously, X∗ is a left ideal of E, D∗ is a submodule of M and
X ⊆ X∗∗ and D ⊆ D∗∗. We call a left ideal L 0 EndR(M) an annihilator left
ideal if L = L∗∗ and a submodule N of M a kernel submodule if N = N∗∗. We
say that a system of morphism (fλ ∈ HomR(M,Mλ) | λ ∈ Λ) is summable if for
every m ∈M there is only finitely many λ ∈ Λ such that fλ(m) ̸= 0.

Theorem 16. Let R be a ring, M a right R-module. The following is equivalent:

(1) M is self-dually slender

(2) every summable family S ⊆ EndR(M) of endomorphisms of M is finite

(3) for every decreasing chain of left annihilator ideals (Li | i ∈ ω) of End(M)
such that M =

∪
i<ω

L∗
i there is an n ∈ ω such that Ln = 0

(4) for every countable increasing chain of kernel submodules (Ki | i ∈ ω) of M
such that

∪
i∈ω

Ki =M there is an n ∈ ω with Kn =M

Proof. (1) → (2) : assume there is an infinite summable system S ⊆ EndR(M)
and define a mapping φ : M →

⊕
α∈S

Mα by m 7→
∑
α∈S

α(m). The system S is

summable so φ is a correctly defined homomorphism. But im φ ̸⊆
⊕
α∈S0

Mα for

any finite subset S0 ⊆ S and M is not self-dually slender.
(2) → (3): for every i ∈ ω choose some fi ∈ Li\Li+1 or fi = 0 if no such

exists. This forms a system S := (fi | i ∈ ω). Choose m ∈M . Then there exists
some n ∈ ω such that m ∈ L∗

n and so f(m) = 0 for all f ∈ Ln′ , for all n′ ≥ n.
By (2) S is finite, so only finitely many nonzero fi were posible to choose and
Ll = Ll+1 for some l. But this should be zero, because every element of M could
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be otherwise annihilated by a nonzero function from the least annihilator ideal,
a contradiction with the assumption that M is union of the sets L∗

i .
(3) → (4): Let (Ki | i ∈ ω) is an increasing chain of kernel submodules such

that A =
∪
i∈ω

Ki; Then (K∗
i | i ∈ ω) is a decreasing chain of left annihilator ideals.

By (3) there is some n ∈ ω such that K∗
n = 0. But Kn is a kernel submodule, so

there is some L ⊆ EndR(A) such that L∗ = Kn. Then L∗∗ = K∗
n = 0, so L = 0

and it follows that L∗ =M .
(4) → (1): Assume M is not self-dually slender. Then there is some φ :

M →
⊕
i∈ω

A such that πi ◦ φ ̸= 0 for all i ∈ ω. Define Ai := {x ∈ M | πi ◦ φ ̸=

0 for all j > i }. Then A0 ⊆ A1 ⊆ A2 ⊆ · · ·An ⊆ · · · is an increasing chain of
submodules of M such that M =

∩
i∈ω

Ai. Because An ⊆ A∗∗
n , we get an increasing

chain of kernel submodules such that M =
∩
i∈ω

A∗∗
i . By (4) then there is some

n ∈ ω with A∗∗
n = M . Then A∗

n = 0, a contradiction with the strictly increasing
chain of Ai.

It is known that a countable generated self-dually slender projective R-module
is necessary finitely generated.

Here we have a sufficient condition (which is relatively strong) when the prod-
uct of a system of self-dually slender modules stays self-dually slender.

Proposition 17 ([Zem08], Proposition 1.6). Let (Mi | i ∈ I) be a system of
self-dually slender modules satisfying the condition HomR(

∏
j∈I\{i}

Mj,Mi) = 0 for

every i ∈ I. Then
∏
i∈I
Mi is self-dually slender.

Proof. Denote the product of the system by M and suppose M =
∪
n∈ω

Nn for an

increasing chain of submodules of M .
For each i ∈ I consider the set Si := {n ∈ ω | f [πi[Nn]] = 0 implies f = 0}.

Observe that Mi =
∪
n∈ω

πi[Nn]. Then Mi =
∪
n∈ω

(πi[Nn])
∗∗ and (πi[Nn]

∗ | n ∈ ω) is

a decreasing chain of left annihilator ideals. By assumption then there is n ∈ ω
such that πi[Nn]

∗ = 0, Si is nonempty and has the least element. Form a sequence
of integers (ni | i ∈ I).

If it is unbounded, by minimality of its elements, for every n ∈ ω there is
some in ∈ I, in < ni with (πin [Nn])

∗ ̸= 0. But then πin [Nn] ̸= Min so we can
choose m ∈M such that m ̸∈ Nn for every n ∈ ω, a contradiction.

So the sequence is bounded with an upper bound say n. We consider
∏

i∈I\{j}
Mi

as a submodule of
∏
i∈I
Mi. Let φ ∈ EndR(M) be such that φ[Nn] = 0. We

want to show that φ = 0. By assumption, for every i ∈ I, πi ◦ φ[
∏

i∈I\{j}
Mi] =

0. Let us observe that for every m ∈ M , m − (ιj ◦ πj)(m) ∈
∏

i∈I\{j}
Mi, so

(πi ◦φ) ◦ (ιi ◦ πi(m)−m) = 0 for every m ∈M , i.e. πi ◦φ = πi ◦φ ◦ ιi ◦ πi. Since
for every i ∈ I, (πi[Nn])

∗ and πi ◦ φ ◦ ιi ∈ EndR(Mi), it follows πi ◦ φ ◦ ιi = 0 for
every i ∈ I, hence πi ◦ φ = 0 for every i ∈ I and finally it implies φ = 0.

Remark 2. Let S be a co-abstract set of simple R-modules, i.e. all members of S
are pairwisely non-isomorphic. Let T ∈ S and denote P :=

∏
S∈S\{T} S. If R is a
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principle ideal domain then HomR(P, T ) = 0. Indeed, let f ∈ HomR(P, T ). It is
known that annihilator of a module is an ideal hence annR(T ) = Ra for some a ∈
R. Fix an arbitrary simple R-module S ∈ S, S ̸≃ T . Then annR(S) ̸⊆ annR(T )
and annR(T ) ̸⊆ annR(S) so Sa ̸= 0. Because S is simple, S = Sa = SaR.
Finally P = PaR = PannR(T ) ⊆ ker f , f = 0.

Now let us provide an example of a self-dually slender module that is not
dually slender. Denote by P the set of all positive primes and let (Zp | p ∈ P)
be a system of abelian groups. Then HomZ(

∏
p∈P\q Zp,Zq) = 0 by the previous

part. By previous theorem
∏

p∈P Zp is self-dually slender Z-module that is not
dually slender, because Z is noetherian and hence (right) steady.
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Chapter 3

Compact objects in Grothendieck
Categories

Let C be a category. A category is locally small if for every object C ∈ C the class
of subobjects is a set. We say that C is an additive category if it is locally small
with an abelian group operation on HomC(A,B) for all pairs if objects A,B of C
such that composition is biadditive:

(α + β) ◦ γ = α ◦ γ + β ◦ γ
α ◦ (γ + δ) = α ◦ γ + α ◦ δ

whenever the sums and compositions are defined.
The category C is an abelian if it is an additive category with a zero object,

biproducts, kernels, and cokernels, in which every monomorphism is a kernel and
every epimorphism is a cokernel.

We call a cocomplete abelian category C Grothendieck category if direct limits
are exact in C and C has a generator. A Grothendieck category is an example of
a locally small category, because it contains a generator and by [Ste75], Propo-
sition IV.6.6 every such a category is locally small. We say that a category is
pseudo-complemented if for every object C ∈ C the lattice of subobjects of C is
pseudocomplemented, i.e. for every subobject A of C there is a subobject M of
C such that A ∩M = 0 and A ∩B = 0 implies B ≤M for every subobject B of
C. A Grothendieck category is an example of a pseudo-complemented category
by [Ste75], Proposition III.6.3.

Let C be an abelian category with arbitrary coproducts. We call an object M
of C dually slender if the functor HomC(M,−) preserves arbitrary direct sums.
By [Ste75], Exercise V.3.13 it is enough to consider only countable direct sums.
Let N be an object of C. It is said that an object M in C is N -dually slender if
the functor HomC(M,−) preserves direct sums of N . For M,N ∈ C and any X a
subobject ofM denote VM,N(X) = {f ∈ HomC(M,N) | X ⊆ ker f}. A subobject
X0 of X is essential if X0∩Y = 0 implies Y = 0 for every Y subobject of X. We
say that a monomorphism α ∈ HomC(X,Y ) is essential if im α is an essential
subobject in Y . Recall that an essential monomorphism µ : 0 → M → Q with
Q injective is called injective envelope of M . The following two facts imply the
existence of injective envelopes in Grothendieck categories.

Fact 18 ([Ste75], Proposition V.2.5). Let C be a locally small, pseudocomple-
mented abelian category. Then if C is a subobject of an injective object then C
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has an injective envelope.

Fact 19 ([Ste75], Proposition X.4.3). Let C be a Grothendieck category. Then
every object is a subobject of an injective object.

Now we are able to formulate a generalization of compact objects for Grothen-
dieck categories.

Proposition 20. Let C be a Grothendieck category and let M be an object of C
Then M is dually slender if and only if M is Q-dually slender for every injective
objects Q in C.

Proof. Let (Ai | i < ω) be a countable family of objects of C and denote A :=∏
i<ω Ai. Let f ∈ HomC(M,A) be a morphism. Because C is a Grothendieck

category, for every i < ω there exists an injective envelope νi ∈ HomC(Ai, E(Ai)).
Let Q := E(A) and let µi ∈ HomC(E(Ai), Q) be the canonical inclusion for every
i < ω. By the assuption the morphism

⊕
i<ω νi ◦

⊕
i<ω µi ◦ f ∈ HomC(M,Q(ω))

factors through a finite coproduct Qn for some n < ω and so im (
⊕

i<ω µi ◦ f) ⊆⊕
i<nE(Ai). By essentiality of the morphism νi, i < ω it follows that f factors

through a finite coproduct, which concludes the proof.

Proposition 21. Let C be a Grothendieck category and let M , N be objects of
C. Then

(1) M is N-dually slender

(2) for every increasing chain M0 ⊆ M1 ⊆ M2 · · · ⊆ M of proper subobjects of
M , either

∑
i∈ω

Mi is proper subobject of M or there is some n < ω such that

VM,N(Mn) = 0.

Proof. (1) → (2): let M0 ⊆ M1 ⊆ M2 · · · ⊆ M be an increasing chain of proper
subobjects of M such that

∑
i<ω

Mi = M and V (Mi) ̸= 0 for all i < ω. Then

for every i ∈ ω exists a nonzero homomorphism fi ∈ HomC(M,N) such that
fi[Mi] = 0. Let φ ∈ HomC(M,Nω) be a morphism such that πi ◦ φ = fi, i < ω
where πk ∈ HomC(N

(ω), N) is a natural projection. Since fk[Mn] = 0 for all
k ≥ n, it follows (πk ◦ φ)[Mn] = 0 for all k ≥ n and im φ ⊆ N (ω). Then there
is a morphism φ ∈ HomC(M,N (ω)) such that πi ◦ φ = fi, i < ω. By (1) f factors
through a finite coproduct and so there exists some n < ω such that πk ◦ φ = 0
for all k ≥ n, a contradiction.

(2) → (1): assume there exists f ∈ HomC(M,N (ω)) such that πi ◦ f ̸= 0
for all i ∈ ω, where πi ∈ HomC(N

(ω), N) is a natural projection. Define Mn :=∩
i<ω

ker(πi ◦ f). Then M0 ⊆ M1 ⊆ M2 · · · is an increasing chain of subobjects of

M . Observe that if X is a finitely generated subobject of M , then there exists
n < ω with (πk ◦ f)[X] = 0 for every k ≥ n and so X ⊆

∩
i>n

ker(πi ◦ f). Hence

M =
∑
i<ω

Mi.

An easy example of a Grothendieck category is the category of R-modules over
a ring R. But the previous theorem provides a characterization of dually slender
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objects also for another Grothendieck categories like the category of all abelian p-
groups (with group homomorphisms between its objects) or the functor category
between an additive category and abelian groups ([Ste75], V.1. Examples).

Let C be an additive category and let T be a full additive subcategory. The
stable category C obtained from C is the category whose objects are the same as
C and whose morphisms HomC(X, Y ) are the equivalence classes with equivalence
defined on HomC(X,Y ) such that two morphisms are equivalent if their difference
factors through an object of T .

Recall that a pushout (in a category theory) (P, u, v) of (B, f) and (C, g) is a
colimit of the diagram

A
f

//

g
��

B

u
��
�O
�O
�O

C
v ///o/o/o P

Later we will need to know how epimorphisms look in a stable category C.
The next lemma shows that they can be represented by epimorphisms of C. For
a morphism f ∈ HomC(X,Y ) we denote fk the kernel of f .

Lemma 22. Let f ∈ HomC(X, Y ) be an epimorphism in an abelian category C
and assume that also f ∈ HomC(X, Y ) is also an epimorphism. Then for every

h ∈ HomC(X,T ) with T ∈ T there is a morphism h̃ ∈ HomC(X, im (h ◦ fk))
such that h and h̃ coincide on ker(f)

Proof. Let (P, u, v) be a pushout of (h, T ) and (f, Y ) by X. Then 0 = u◦h = v◦f
in C. Because f is an epimorphism it follows that v = 0 and v factors through
some T ′ ∈ T , say via v2 and v1. By projectivity of T ′ we get a homomorphism
φ ∈ HomC(T

′, T ) such that u ◦φ = v2.From the equality v = v2 ◦ v1 = (u ◦φ) ◦ v1
we get 0 = u ◦h− v ◦ f = u(h−φ ◦ v1 ◦ f). Denote h′ := h−φ ◦ v1 ◦ f . From the

universal property of the kernel of u we get a morphism h̃ ∈ C(X, ker(u)) such

that uk ◦ h̃ = h′:

0 // ker(f)
fk

// X

h̃

��

f
//

h

��

h′

��

Y

v

��

v1
�� �?
�?
�?
�?
�?

// 0

T ′

v2

��
�_

�_
�_

�_
�_

φ
���
�
�
�

0 // ker(u)
uk

// T u
// P // 0

It follows that uk ◦ h̃ ◦ fk = h ◦ fk.

Recall that a split epimorphism (monomorphism) f ∈ HomC(X, Y ) is a mor-
phism such that there is g ∈ HomC(B,A) such that f ◦ g = 1X (g ◦ f = 1X), i.e f
has a left (right) inverse.

Theorem 23. Let C be an abelian category and let f ∈ HomC(X, Y ) be an epi-
morphism. Then the following is equivalent:

(1) f is an isomorphism in C
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(2) f is a split epimorphism in C with ker(f) ∈ T

(3) f is a split epimorphism in C whose kernel map fk factors through an object
of T

Proof. (1) → (3): f is an isomorphism, so we can choose some g ∈ C(Y,X) such
that g = f−1. Then 1X − g ◦ f = 1− 1 = 0, so the morphism 1X − g ◦ f factors
through some object T ′ ∈ T via some h and v:

X
1X−g◦f

//

h   
 `

 `
 `

 `
X

T ′
v

>>
>~

>~
>~

>~

We have that (v ◦ h) ◦ fk = (1X − g ◦ f) ◦ fk = fk − g ◦ f ◦ fk = fk − g ◦ 0 = fk,
so fk factors through an object T ′ ∈ T with morphisms h ◦ fk and v.

There exists v̂ ∈ HomC( im h◦fk, ker f) such that and fk ◦ v̂ = v ◦m. Indeed,
by the universal property of the kernel fk we need to show f ◦ (v ◦m) = 0. We
have

f ◦ (v ◦m) ◦ e = f ◦ v ◦ (h ◦ fk) = f ◦ (1− g ◦ f) ◦ fk = 0

and e is an epimorphism so the result follows.
Let h ◦ fk = m ◦ e be the epi-mono factorization of h ◦ fk through im h ◦ fk.

Because f is an epimorphism in C, so applying Lemma 22 for h there is some h̃
such that m ◦ h̃ ◦ fk = h ◦ fk in the diagram:

0 // ker(f)
fk

//

e

((QQ
QQQ

QQQ
QQQ

QQ
X

1−g◦f

��

h
����
��
��
��

h̃

uu u5
u5 u5

u5 u5
u5 u5

u5 u5
u5

f
// Y // 0

im (h ◦ fk)

v̂vvmmm
mmm

mmm
mmm

m m
// T ′

v

��
>>

>>
>>

>>

0 // im (v ◦ h ◦ fk) fk
// X

Finally, fk ◦ (v̂ ◦ h̃◦fk) = (fk ◦ v̂)◦ h̃◦fk = (v ◦m)◦ h̃◦fk = v ◦ (m◦ h̃◦fk) =
v ◦ (h ◦ fk) = fk. But fk is a monomorphism, so (v̂ ◦ h̃) ◦ fk = 1ker(f) and f

k is a
split monomorphism.

(3) → (2) : By (3) fk is a split monomorphism so there exists a morphism t
such that t ◦ fk = 1ker(g). But fk also factors through an object T ∈ T , lets say
fk = b◦a. Then 1ker(f) = t◦ (b◦a) = (t◦ b)◦a, so a is a split monomorphism and
ker(f) is a direct summand of T . The class T is closed under direct summands,
so ker(f) ∈ T .

(2) → (1): We have that X ≃ Y ⊕ ker(f) via g = [g1, g2]
T with ker(f) ∈ T so

f = [1Y , 0] ◦ [g1, g2]T = 1 ◦ g1 + 0 ◦ g2 is an isomorphism.

Let R be a ring and let C = Mod-R the corresponding category of right R-
modules. Consider T the subcategory of all projective right R-modules. We will
call the category C the stable module category of R and denote it Mod-R.

The following theorem describes a method how compact objects transfer from
the category of modules over a left perfect ring R to the stable module category
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of R. The assumption on the ring is relatively strong and the proof is not so
obvious as in the case of the particular category of modules.

Theorem 24 ([Miy07], Theorem 3). Let R be a perfect ring, M ∈ Mod-R a
compact object. Then there is a finitely generated module M ′ ∈ Mod-R such that
M ≃M ′ in Mod-R.

Proof. Because R is a perfect ring M := M/MJ (R) is semisimple i.e. it is
isomorphic to

⊕
i∈I
Si via ϕ with Si simple for every i ∈ I. Let p be a composition

of ϕ with the canonical projection π :M →M/MJ (R). BecauseM is a compact
object in Mod-R, there is an R-homomorphism f : M → T1, where T1 ≃

⊕
i∈I0

Si

for a finite subset I0 ⊆ I and T2 is a complement of T1 in M such that p− (f, 0)

factors through a projective R-module, say Q. Write (M
p→
⊕
i∈I
Si) = (M

(p1p2)−→

T1 ⊕ T2). So we have a commutative diagram:

Q
(g1g2)//___

b $$
$d

$d
$d

$d
$d

$d
P1 ⊕ P2

(π1 0
0 π2

)
��

M
(p1−f
p2−0)

//

a
??
?�

?�
?�

?�

T1 ⊕ T2

��

0

because b ◦ a = p − f and b =
(
π1◦g1
π2◦g2

)
for a R-homomorphism g (exists by the

projectivity of Q).
Epimorphism π2 is superfluous and π2 ◦ (g2 ◦ a) (= p2) is an epimorphism, so

by [AndFul92][Corollary 5.15] g2 ◦ a is also an epimorphism. By the projectivity

of P2 it follows that M
g2◦a→ P2 → 0 splits (i.e. there is a R-homomorphism z such

that (g2 ◦ a) ◦ z = 1P2 . We have M ≃ ker(g2 ◦ a)⊕ P2.

We show thatM ′ := ker(g2 ◦a) is finitely generated. Write (M
(p1p2)→ T1⊕T2) =

(M ′ ⊕ P2

(p11p12p21p22
)

−→ T1 ⊕ T2). We get commutative diagrams:

M ′ ⊕ P2

(p11p12p21p22
)
//

(0 1)

��

T1 ⊕ T2

(0 1)

��

M ′ ⊕ P2

(p11p12p21p22
)
//

(1 0)
��

T1 ⊕ T2

(1 0)

��

P2 π2
// T2 M ′

p11
// T1

i.e. equations (π2 ◦ 0, π2 ◦ 1) = (0 ◦ p11 + p21, 0 ◦ p12 + p22) imply p21 = 0 and
p22 = π2. So 0 → ker(p11) → M ′ → T1 → 0 is a short exact sequence with T1
finitely generated and ker(p11) ⊆ M ′J (R) which si superfluous in M ′ by Fact 2
and we conclude the proof.
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Chapter 4

Grothendieck monoids of
projective modules

Let R be a ring with identity. We consider a commutative monoid (V ∗(RR),⊕, 0)
where V ∗(RR) is a set of isomorphism classes of countably generated projectives
and ⊕ is a binary operation of taking direct sums and 0 is the zero module
and we call it a Grothendieck monoid of countably generated projective right
R-modules. Denote V(RR) the analogical monoid of finitely generated projective
right R-modules.

Let I be a two-sided ideal of R. Then we define

VI(RR) := {⟨P ⟩ | P projective, P/PI is finitely generated}

Observe that V (RR) = V0(RR), V
∗(RR) = VR(RR).

Let φ : R → S be a ring homomorphism. Then V (φ) : V (R) → V (S) induced
via the functor −⊗R S by ⟨P ⟩ 7→ ⟨P ⊗R S⟩ for every finitely generated projective
module P is a monoid homomorphism of corresponding Grothendieck monoids.
In case S = R/I we have one more expression for elements of V (S), because R/I
is an R-R/I-bimodule and PR ⊗R R/I is isomorphic to P/PI in Mod-R/I via
p⊗ (r + I) 7→ pr + AI. Let π : R → R/I be a canonical ring isomorphism, then
V (π) is an injective monoid homomorphism.

We are interested in a situation when VI(RR) = V (R), i.e. if a projective
module is finitely generated modulo some ideal factor then it is itself finitely
generated. First observe that VI(RR) ⊆ V ∗(RR) if I is contained in J (R). Indeed,
by Kaplansky’s Theorem P ≃

⊕
λ∈Λ

Pλ with Pλ countably generated for all λ ∈ Λ.

Then

P/PI ≃ P ⊗R R/I =

(⊕
λ∈Λ

Pλ

)
⊗R R/I ≃

⊕
λ∈Λ

(Pλ ⊗R R/I) ≃
⊕
λ∈Λ

Pλ/PλI

By the assuption there is a finite subset Λ0 ⊆ Λ such that Pλ/PλI = 0 for all
λ ∈ Λ\Λ0. By an analogical statement of [[Pri07], Theorem 2.2] for I ⊆ J (R) it
follows Pλ ≃ 0 for such all λ ∈ Λ\Λ0. So P ≃

⊕
λ∈Λ0

Pλ is countably generated.

We say that a submodule N of an R-moduleM is pure inM if N∩MP = NP
for every right ideal K of R. It is known that M/N is flat if and only if N is pure
in M . There is a useful criterion how to test if a module is flat.
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Fact 25. Let R be a ring and let 0 → K
α→ F → C → 0 be a short exact sequence

of R-modules with F free with the basis (ei | i ∈ I). Then C is flat if and only
if for every finite set u1, u2, · · · , un ∈ K there is a homomorphism φ : F → K
identical on the given elements.

Proof. Proved in [Lam99], Proposition 4.23.

Definition 5 (Ideal-supplement, Ideal projectivity). Let R be a ring and let I
be a two-sided ideal of R. Then an R-module P is I-projective if for all right
R-modules X and Y with Y I = 0, every R-epimorphism f : X → Y and every
homomorphism φ : P → Y there exists a homomorphism g : P → X such that
f ◦ g = φ, i.e. the diagram

P

φ
��

∃ g

~~
~>
~>
~>
~>

X
f

// Y // 0

commutes.
We call a submodule N of an R-module M an I-supplement if there is a

submodule G in M such that N + G = M and N ∩ G ⊆ NI. (Note that direct
summands are exactly 0-supplements.)

Denote

TI(M) = {f ∈ EndR(M) | im f ⊆MI}
fEndR(M) := {f ∈ EndR(M) | ∃a :M → Rn, b : Rn →M with f = b ◦ a}

A property of being I-projective can be for a special case of finitely generated
modules characterized like this:

Lemma 26. Let I E R be a two-sided ideal and let M be a finitely generated
right R-module. Then the following is equivalent:

(1) M is I-projective

(2) for every epimorphism A
f→ B and every morphism φ : M → B there is a

morphism g :M → A such that im (φ− f ◦ g) ⊆ BI

(3) for the canonical projection π : M → M/MI there are homomorphisms φ,
ψ such that the diagram

M
π //

∃φ
��
�O
�O
�O

M/MI

F
∃ψ

///o/o/o/o/o M

π

OO

commutes for some finitely generated free R-module F .

(4) fEndR(M) + TI(M) = EndR(M)

22



Proof. (1) → (2): We get the following commutative diagram:

M
g

##G
GG

GG
GG

GG

h
~~ ~>
~>
~>
~>
~>

k ///o/o/o/o BI

πk

��

A
f

//

π◦f
((Q

QQQQQQQ B

π
��

// 0

B/BI

Indeed, by I-projectivity of M there is a homomorphism h : M → A such that
π◦g = (π◦f)◦h, so π◦(g−f◦h) = 0. Obviously π◦πk = 0 where πk is a kernel map
of π and so by the universal property of the cokernel there is a homomorphism
k :M → BI such that πk ◦ k = g − f ◦ h. Then im (g − f ◦ h) ⊆ im (πk) = BI
and (2) follows.

(2) → (1) : Let A
f→ B → 0 be an exact sequence with BI = 0 and let

g : M → B be arbitrary. By (2) there is a homomorphism h : M → A such that
im (f ◦ h− g) ⊆ BI = 0, so h is also a witness of I-projectivity of M .

(1) → (4): It is enough to prove that 1M ∈ fEndR(M) + TI(M). Write M
as the homomorphic image of some finitely generated free right module F , i.e.
F

g→ M → 0. Because (M/MI)I = 0, by (1) there is some homomorphism
f : M → F such that π = (π ◦ g) ◦ f , i.e. π ◦ (1M − g ◦ f) = 0. It follows that
im (1M − g ◦ f) ⊆MI and of course g ◦ f ∈ fEndR(M).

(3) → (1) Let g : A→ B → 0 be an epimorphism withBI = 0 and φ :M → B
some homomorphism. Let π : M → M/MI be a canonical projection. Because
φ(MI) ⊆ φ(M)I = 0 by the Homomorphism Theorem φ = φ̃ ◦ π for some
φ̃ : M/MI → B. By (3) there is a free module F and some homomorphisms
a : M → F ,b : F → M such that π = π ◦ b ◦ a. By projectivity of F we get a
homomorphism c : F → A such that g ◦ c = φ ◦ b. Then g ◦ (c ◦ a) = (g ◦ c) ◦ a =
(φ ◦ b) ◦ a = ((φ̃ ◦ π) ◦ b) ◦ a = φ̃ ◦ (π ◦ b ◦ a) = φ̃ ◦ π = φ.

(4) → (3): Let 1M = x+ y with x ∈ fEndR(M) and y ∈ TI(M). So x factors
through a finitely generated free R-module F via homomorphisms a : M → F
and b : F → M . Then 0 = π ◦ y = π ◦ (1M − x) = π ◦ (1M − a ◦ b) and (3)
follows.

A finitely generated R-module P is projective if and only if fEndR(P ) =
EndR(P ). Indeed, fEndR(P ) is an ideal, hence a finitely generated module P is
projective if and only if 1P ∈ fEndR(P ). Similarly like in the case of modules,
we say that an ideal I of a ring R is superfluous in R if I + J = R implies J = 0
for every two-sided ideal J of R. It would be interesting to know whether the
ideal TI(R) is superfluous in EndR(M).

Remark 3. Let R be a ring and K E R a nonzero ideal. Denote by G(R) the
Brown-McCoy radical of R. Recall that a Brown-McCoy radical is the intersection
of all maximal two-sided ideals of R or the intersection of all two-sided ideals K
such that R/K is a simple ring. Then K is superfluous in R if and only if K ⊆ G.

Proof. Let K ⊆ G(R). Assume that I is not superfluous in R, i.e. K+L = R for
some proper nonzero ideal L of R. Then L is contained in some maximal idealM
of R, hence K +M = R. Then R/M is simple and G(R) ⊆ M , a contradiction
with K +M = R.
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Let K be superfluous in R and assume K ̸⊆ G(R). Then there is some ideal
L of R such that K ̸⊆ L with R/L a simple ring, so L is a maximal ideal and
K + L = R. But by the assumption L = R, a contradiction.

Fact 27 ([AndFul92], Theorem 10.4). A right R-module M is finitely generated
if and only if Rad(M) is superfluous in M and M/Rad(M) is finitely generated.

If P ,Q are projective modules and f : P → Q is a R-homomorphism, then
by the induced homomorphism f : P/PI → Q/QI it is meant the natural map
defined by p + PI 7→ f(p) + QI for all p ∈ P . For any R/I-homomorphism
α : P/PI → Q/QI there exists an R-homomorphism f : P → Q such that the
induced homomorphism f equals α and we say that f is a lift of α.

Proposition 28 ([FacHerSak05], Proposition 6.1). Let R be a ring and I E R
be an ideal contained in J (R). Let P , Q be projective right R-modules and let
α : P/PI → Q/QI be an R/I-homomorphism. Let f be a lift of α. If α is a pure
monomorphism, then f is a pure monomorphism.

Proof. First choose an R-module P ′ such that P⊕P ′ is free, then an R-module Q′

such that (Q⊕P ′)⊕Q′ is free. Let ϵ : P ′ → P ′⊕Q′ denote the inclusion onto the
direct summand. Without lack of generality we now suppose that P and Q are
free, because if f ⊕ ϵ is a pure monomorphism then f is a pure monomorphism.

Fix a finitely generated free direct summand M of P with a complement M ′.
We show that the image f [M ] is a direct summand ofQ. We find a free submodule
N of Q such that f [M ] ⊆ N and N is a direct summand with a complement N ′.
Denote j : N → Q and i : M → P be the inclusions, fM the restriction of f on
M and let q : Q → N and p : P → M be homomorphisms such that p ◦ i = 1M
and q ◦ j = 1N . Then we have a commutative diagram with exact rows:

0 //M i //

fM
��
�O
�O
�O

P

p
zz f&j*o/t4x8

//

f
��

M ′ //

��

0

0 // N
j

// Q

q

bb r_L
// N ′ // 0

Inducing with −⊗R R/I we get a commutative diagram in Mod-R/I with split
exact rows:

0 //M/MI
i //

fM
��

P/PI //

α

��

M ′/M ′I //

��

0

0 // N/NI
j

//

��

Q/QI // N ′/N ′I // 0

Coker fM

Both α, i are pure monomorphisms so α ◦ i is also a pure monomorphism. Hence
j ◦ fM is a pure monomorphism. It follows that fM is a pure monomorphism and
Coker fM is a finitely presented flat R/I-module, so there is a homomorphism
β : N/NI →M/MI such that β ◦ fM = 1M/MI . Let g be any lift of β.
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We get that g ◦ fM is an automorphism of M . In particular, fM is a split
monomorphism. This concludes the observation that f [M ] = fM [M ] is a direct
summand in Q.

We show that f injective. Let x ∈ ker f be arbitrary. Then there is a finitely
generated free summand fM [M ] of Q containing f(x) for some M , hence x ∈
ker(fM) = 0.

Now f is a direct limit of split short exact sequences arising from fM , M
finitely generated so by [Lam99], Examples 4.84(c), f is pure exact.

Recall that a projective dimension of a module M equals one if there exists a
projective presentation 0 → K → P →M → 0 of M with K projective.

Lemma 29. Let R be a ring and let M be a right R-module. Then the following
holds

(i) (Schanuel Lemma) Assume we have two presentations 0 → K
i→ P

π→
M → 0 and 0 → L

j→ Q
ρ→M → 0 of M with P projective. Then we have

a short exact sequence 0 → K → L⊕ P → Q→ 0.

(ii) every countably presented flat R-module has the projective dimension ≤ 1.

In particular, if a countably presented flat R-module has a presentation 0 → K →
P →M → 0 with P projective, then K is also projective.

Proof. (i) Proved in [Lam99], Lemma 5.1.
(ii) Proved in [Laz69], Théoreme 3.2.

Lemma 30. For a commutative diagram in Mod-R with exact rows

0 // A i //

α
��

B
p

//

β
��

φ

~~|
|
|
|

C //

γ
��ψ~~|

|
|
|

0

0 // A′
j

// B′
q

// C ′ // 0

holds that there exists φ : B → A′ such that φ ◦ i = α if and only if there exists
ψ : C → B′ such that ψ ◦ q = γ. In particular, if γ is an isomorphism and the
first commutative square admits a diagonal fill-in from B to A′ then the lower
row splits.

Proof. We show only one direction, the second is categorically dual. Assume that
there exists φ : B → A′ such that φ ◦ i = α. Then

0 = β ◦ i− j ◦ α = β ◦ i− j ◦ (φ ◦ i) = (β − j ◦ φ) ◦ i

By the universal property of cokernel C there exists a homomorphism ψ : C → B′

such that ψ ◦ p = β− j ◦φ. We show that ψ is required homomorphism. Because
p is an epimorphisms it is enough to show that γ ◦ p = q ◦ ψ ◦ p. Indeed,

q ◦ (ψ ◦ p) = q ◦ (β − j ◦ φ) = q ◦ β − (q ◦ j) ◦ φ = q ◦ β = γ ◦ p
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Now we give an equivalent conditions connecting ideal supplements and ideal
projectivity with the equality VI(RR) = V (RR) for an ideal I contained in the
Jacobson radical. Recall that a homomorphism π : P → M is a projective cover
of M if and only if π is a P-cover where P is a class of all projective modules,
i.e. P ∈ P two conditions holds: the first, for every Q ∈ P and every φ : Q→M
there is ψ : G → P such that π ◦ ψ = φ and the second, if Q = P and φ = π
then every endomorphism ψ is an automorphism.

Theorem 31. Let R be a ring and I E R be an ideal contained in J (R). Then
the following is equivalent:

(A) for every finitely generated projective R-module P , every finitely generated
I-supplement in P is 0-supplement

(B) every finitely generated (presented) I-projective R-module is projective

(C) every finitely generated flat R-moduleM with projective R/I-moduleM/MI
is projective

(D) for every projective R-module Q, if the factor-module Q/QI is finitely gen-
erated then Q is finitely generated

Proof. (A) → (B) : LetK be a finitely generated I-projective right R-module and
let π : K → K/KI be the canonical projection. Then by Proposition 26(1) → (3)
there are homomorphisms p : K → P and q : P → K such that π ◦ (q ◦ p) =
π for some finitely generated projective (free) R-module P . Then we have a
commutative diagram:

0 // K
p

//

π

��

P //

π

��

Coker(p) //

≃
��

0

0 // K/KI

��

p̃
// P/KI

��

// (P/KI)))/(K/KI) // 0

0 0

Choosing φ := π ◦ q, by Lemma 30 we get that the lower row is split exact and so
there is some submodule C of P such that p(K) + C = P and p(K) ∩ C ⊆ KI.
This just means that p(K) is an I-supplement of C in P . By the condition
(A) it means that p[K] is a direct summand of a projective module, hence it is
projective.

(B) → (C) : Let M be a finitely generated flat right R-module. Then there

is a short exact sequence 0 → ker(p) → F
p→ M → 0 with F finitely generated

free. Denote K := ker(p). By assumption on M the induced sequence 0 →
K/KI → F/FI → M/MI → 0 splits in Mod-R/I. Then K/KI is finitely
generated and so K = K0 +KI for a finitely generated submodule K0 of K. By
Lemma 25 applied on M there is a homomorphism f : F → K that is identical
on generators of K0 and therefore on the whole K0. Define a (finitely presented)
module P := F/K0. Because K0 ⊆ ker(1F − f) we have some homomorphism g
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that makes the diagram commuting:

F
1−f

//

πK0

��

F

F/K0

g
<<
<|

<|
<|

<|
<|

We want to show that P is I-projective. By characterization of I-projectivity
it is enough to show that the square commutes:

F/K0

g

��
�O
�O
�O

πI // F/K0

(K0+FI)/K0

F
πK0 ///o/o/o/o/o/o F/K0

πI

OO

Observe that

πI ◦ πK0 ◦ (g ◦ πK0) = (πI ◦ πK0) ◦ (1− f) = πI ◦ πK0 ,

because im f ⊆ K ⊆ K0 + FI. Because πK0 is an epimorphism the square
commutes.

By (B) P is projective and so K0 is a direct summand of F . Denote by
G a complement of K0 in F , which is obviously projective, because it is also a
direct summand of F . Then the factormodule G/(G∩K) ≃ (K +G)/K = F/K
is isomorphic to M and therefore it is flat. Denote by q : G → G/(G ∩ K)
the canonical projection and let x ∈ G ∩ K be arbitrary. Because G is finitely
generated Rad(G) is superfluous in G. We have the inclusion

G ∩K ⊆ G ∩ (K0 + (K0 +G)I) = G ∩ (K0 +HG) = (G ∩K0) +GI = GI

and GI ⊆ GJ (R) ⊆ Rad(G) so by Fact 27 it follows that G ∩K is superfluous
in G, i.e. q is a projective cover of G/(G ∩ K). Now by Lemma 25 applied on
G/G∩K there is a homomorphism fx : G→ G∩K identical on x and it follows
q ◦ (1− fx) = q. Because q is a projective cover, (1− fx) is an automorphism so
ker(1− fx) = 0 and x = 0. This is true for all x ∈ G ∩K and G ∩K = 0. Then
G ≃M and M is projective.

(C) → (D) : Let Q be projective and the ideal factor Q/QI be finitely gener-
ated. Then there is an embedding 0 → Q/QI

α→ (R/I)(n) such that α is a split
monomorphism. By Proposition 28 there exists f : Q → R(n) such that f = α
and it is a pure monomorphism. Denote M := Coker f . Then M is a finitely
generated flat R-module such that M ⊗RR/I is isomorphic to a direct summand
of (R/I)(n) so by the condition (C) M is projective. We have that f is a split
monomorphism and Q is finitely generated.

(D) → (A): Let P be a finitely generated projective R-module and N be
a finitely generated submodule of P such that it is an I-supplement, denote
by ι the embedding N into P . That means there exists a submodule G of P
such that N + G = P and N ∩ G ⊆ PI and the short exact sequence 0 →
N/(N ∩ G) → P/(N ∩ G) → G/(N ∩ G) → 0 is split exact. Let M := P/N .
Because P is projective, there is some γ ∈ EndR(P ) such that im γ ⊆ N and
im (1P − γ) ⊆ G.
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Observe that im γ2 = im γ = N . Indeed, im γ2+ im (γ ◦ (1−γ))+G = P .
But im (γ ◦ (1− γ)) = im (1− γ) ◦ γ ⊆ N ∩G ⊆ NI which is superfluous in P ,
hence im γ2+G = P . Then N = ( im γ2+G)∩N = im γ2+(G∩N) = im γ2

by modularity of modules and because N ∩G is superfluous in N . By induction
we get that N = im γn for all n ∈ N.

By projectivity of P there exists a homomorphism τ ∈ EndR(P ) such that
the diagram commutes:

P

γ
��

∃ τ

~~
~>
~>
~>
~>

P
γ2

// N // 0

By induction we get that γ = γn+1 ◦ τn for every n ∈ N.
Define G1 :=

∑∞
i=1 ker γ

i. Then G1 ⊆ G and N +G1 = P . We claim that G1

is pure in P . We show that P/G1 is flat using Lemma 25. Let x ∈ G1, so there is
somem ∈ N depending on x such thatm ∈ ker γm. Define αn := 1P−τn◦γn for all
n ∈ N. Then im αm ⊆ G1. Indeed, γ

m+1◦(1P−τm◦γm) = γm+1−γ◦γm = 0 and
so im αm ⊆ ker γm+1 and G1 =

∑∞
n=1 im αn. Finally, α(x) = 1P − τm ◦γm(x) =

x.
Observe that G1/G1I is finitely generated. Indeed, from N ∩G1 ⊆ PI we get

N + PI

PI
⊕ G1 + PI

PI
= P/PI

Because G1 is pure in P we have G1 ∩ PI = G1I. Then

G1 + PI/PI ≃ G1/G1 ∩ PI = G1/G1I

andG1/G1I is isomorphic to a direct summand of a finitely generatedR/I-module
P/PI.

The factormodule P/G1 is countably presented, finitely generated and flat,
so by Lemma 29 G1 is projective. By the condition (D) G1 is finitely generated,
hence G1 = ker γm for some m ∈ N. Let y ∈ G1 ∩N . Then y = γm(z) for some
z ∈ P and γm(y) = 0. It follows that z ∈ ker γ2m = ker γm and so y = 0. We
have showed that N = im γm is a direct summand of P .

We say that a subset X of R is locally nilpotent if for every finite subset X0

of X there exists k = k(X0) ∈ N depending on X0 such that every product of k
elements from X0 is zero. Now we show that VL(R)(RR) = V (RR) where L(R) is
the Levitzki radical of the ring R which is the set of all x ∈ R such that xR is
locally nilpotent subset of R. Observe that the sum of two locally nilpotent right
ideals are locally nilpotent. Let A ∈ Mn(L(R)) and X0 = {x1, x2, · · · , xn2} be

the set of entries of A. Then X0 is a finite subset of a locally nilpotent
∑n2

i=1 xiR
and Ak(X0) = 0.

Proposition 32 (based on [MohSan89], Corollary 3.5). Let R be a ring and
I E R be an ideal contained in J (R). If the ideal Mn(I) contains only nilpotent
elements, then VI(R) = V (R).

Proof. We check the condition (B) from the previous theorem. Let P =
n∑
i=1

Ryi

be n-generated left R-module and denote E := EndR(P ). Since P is I-projective,
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it is enough to show that TI(P ) contains only nilpotent elements because then it
is trivially contained in the Brown-McCoy radical of EndR(P ) and so TI(P ) is
superfluous in E which concludes that P is projective.

Let t ∈ TI(P ) and write t(yi) =
n∑
j=1

aijyj for i = 1, 2, . . . , n and aij ∈ I, write

them in a matrix A. Let F be a finitely generated free R-module with a basis
{e1, e2, . . . , en} and define g : F → P by ei 7→ yi. Then we have a commutative
diagram:

F

g
��

A // F

g
��

A // F

g
��

A // . . .

P t // P t // P t // . . .

because g(Aei) = g(
n∑
j=1

aijei) =
n∑
j=1

aijg(ei) =
n∑
j=1

aijyi = t(yi) = (t ◦ g)(ei) for

i = 1, 2, . . . , n and by induction we get (tm ◦ g) = g ◦Am for all m ∈ N. But A is
contained in Mn(I) that contains only nilpotent elements by the assumption, so
there is an index m0 ∈ N such that tm0 ◦ g = 0. Because g is an epimorphism, it
follows tm0 = 0.

There is a construction of a ring R such that VJ (R)(RR) ̸= V (RR) [GerSak84].
Together with the last proposition it makes a sense to state the following question.

Question 2. Let I be a nil ideal. Does it hold that VI(R) = V (R)?
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