
Charles University in Prague Faculty of Mathematics and Physics

MASTER THESIS

Matúš Dekánek

Recognition algorithms for image viewers

Kabinet software a výuky informatiky

Supervisor of the master thesis: RNDr. Michal Šorel Ph.D.

Study programme: Informatics

Specialization: Software systems

Prague 2012

I would like to thank my supervisor RNDr. Michal Šorel, Ph.D. for all the
valuable advice he gave me and his optimism. I also thank Matej Vitásek for
his concern and help. And last but not least I must thank my parents for all
the support during my studies.

i

I declare that I carried out this master thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the
fact that the Charles University in Prague has the right to conclude a license
agreement on the use of this work as a school work pursuant to Section 60
paragraph 1 of the Copyright Act.

In Prague 12.04.2012

ii

Název práce: Rozpoznávací algoritmy pro prohlížeče obrázků
Autor: Matúš Dekánek
Katedra / Ústav: Kabinet software a výuky informatiky
Vedoucí diplomové práce: RNDr. Michal Šorel, Ph.D.
Abstrakt: Nedávné období přineslo rozšíření digitální fotografie mezi jak am-
atéry tak profesionály. To s sebou nese také vznik velkých kolekcí fotografií.
Tagování, neboli digitální označování, obrázků je jeden ze spůsobů jak udržovat
tyto kolekce uspořádané, je však časově náročné a tak mnoho uživatelů svoje
fotografie neoznačuje. Cílem této práce je navrhnout algoritmus pro automat-
ické označování obrázků za použití vizuálních znaků a modelu bag-of-words.
Vyzkoušeny byly algoritmy pro získavání jak bodových (SURF) tak plošných
(MSER) znaků využívajíc taky informaci o barvě. Ty se pak za pomocí zhluko-
vacího algoritmu CLARA převedou na “vizuální slova”. Navrhnutý algoritmus
běží v reálnem čase a v obrázku může detekovat několik objektů. Pro praktické
užití by bylo nutné ho vyladit a jěště zvýšit úspěšnost, výsledky však naznačují
možný potenciál.
Klíčová slova: označování obrázků, bag-of-words model, SURF, rozpoznávání
obrazu

Title: Recognition algorithms for image viewers
Author: Matúš Dekánek
Department / Institute:
Supervisor of the master thesis: RNDr. Michal Šorel, Ph.D.
Abstract: Last decade brought wide spread of the digital photography among
both amateurs and professionals, what resulted in huge photo collections. Im-
age tagging is one way to bring an order to the photos, however doing this
by hand is time consuming and most users simply do not tag most of their
photos. This work aims on automated image tagging using the bag-of-words
model. Attempts were made both with point-based (SURF) and area-based
(MSER) visual features including also the colour information. CLARA clus-
tering algorithm is then used to create a discrete mapping of the features to
’visual words’. Proposed object recognition algorithm can run in real time and
is designed to recognize several objects on an image. The algorithm is currently
not fit for practical use, as it would need higher success rate, but the results
are promising.
Keywords: image tagging, bag-of-words, SURF, object recognition

iii

Contents

Contents iv

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1

Typical use case . 2
1.3 Analysis and requirements . 2

Problem formulation and decomposition 2

2 Approach 4
2.1 Related work . 4
2.2 Image retrieval and object recognition problem 5
2.3 Using non-spatial file information 5

3 Object recognition problem 6
3.1 Image and object description 6

Common techniques . 7
Descriptors of keypoints . 8
Area-based features . 11

3.2 Descriptor equivalence classes 13
Single descriptors . 13
Clusters . 14
Hierarchically organized clusters 14
Distance from cluster mean . 16
Clusters with specified cluster size 17
Merging clusters . 17

3.3 Probabilistic model . 19
Count-based solution . 20

iv

4 Using timestamp information 25
4.1 Usage of already designed algorithms 25
4.2 Approach for the timestamp processing 26
4.3 Assumptions . 26
4.4 The decision algorithm . 27

5 Solution implementation 29
5.1 Platform and libraries used . 29
5.2 Library modules . 30
5.3 Descriptor extraction implementation 30

BaseDescriptor . 30
SURF implementations and its variants 31
MSER implementation . 31

5.4 GenDesc module . 34
Clustering . 34
Count and relevance matrix . 34
Bag of words algorithms . 35
Probability module . 35

5.5 Image database library . 35

6 Results 37
6.1 Descriptor extraction and clustering 37

Descriptor extraction . 37
Clustering . 38

6.2 Success rate . 39

7 Future development and improvements 47

8 Conclusion 49

Bibliography 50

List of Figures 52

List of Tables 54

A Unsuccessful attempts 55
A.1 Image description algorithms 55
A.2 Probabilistic models . 55

v

A.3 Use of refined descriptors . 56

B Technology demonstrator 58
B.1 User interface . 58
B.2 Program design . 59

vi

1 Introduction

1.1 Motivation

Invention of the digital photography together with the high capacities of hard
disks brought the possibility to have photos in amounts not possible before.
People have galleries of thousands of photographs, there are specialized pro-
grams just to manage picture galleries, thousands of photos are shared on the
web image storages such as Picassa. One of the features of the image viewing
software and web galleries is image tagging. Tag is additional text information
that describes what is on the picture, be it objects, people, scenery, almost
anything worth the photographer’s attention.

If the user has most of his photographs tagged, he can really put the tags
in use, he might for instance want to view only the images with a particular
object. However tagging photographs by hand is time consuming. With several
thousands of photos it is hard to have them all tagged and the user then of
course looses the motivation to tag his images. This is where the automatic
image tagging comes to use.

1.2 Goals

The goal of this work is to become familiar with image description methods
and try to design an algorithm that would simplify the tagging of the images by
detecting the objects. For this purpose both spatial information in the image
and the file timestamp information will be used. We will not use methods
based on spatial geometric information.

It should be noted in advance that this work is not focused on the face
recognition. This field is already extensively studied and a serious work on
this would require several years just to understand current development in the

1

field1. Nor is it focused on image categorization - this is again a different
problem and used methods are not suitable for that.

Typical use case

Typically a user has a few hundreds or thousands of photos of various content.
We may suppose that a non-trivial part of them is tagged. Then the user adds
to his collection several new photos, some of them can be photos of already
known objects. Then the user wants to have new photos tagged. He could let
the program guess the tags of the new images from the information it already
has. Or he may tag a few of the new images first, mainly those with not yet
known objects and then let the program guess the tags on the rest of the images
in the collection.

1.3 Analysis and requirements

The program will have to quickly guess tags for a new image using the stored
information from the already known images.

It is obvious that the program will have to hold a database of the already
known images and tags associated with them. In addition to these data, the
program should also store data extracted from the images and cached learn-
ing data. The algorithm will use the spatial information calculated from the
images. Obtaining these information is difficult and time-consuming, it is there-
fore clear that it is better to store such information instead of calculating it
each time it is needed.

Problem formulation and decomposition

The algorithm will be given n images I1..In. On each image are objects that
represent the tags the photographer has assigned to the picture. The image
I1 contains objects O1,1..O1,m1 , the image I2 objects O2,1..O2,m2 etc. The
same object can occur in more images. The algorithm is then given a new
image I and it should decide which objects from O1..On the image contains.
The algorithm may use the information about objects detected in previous
image(s).

The problem can be decomposed to several sub-problems:
1see http://www.face-rec.org/

2

• image and visual objects information representation and

• probabilistic model that would describe the problem based on the ex-
tracted visual information.

Design of the algorithm should also take into account that all these tasks need
to be executed in a reasonable time. The size of the database with description
of known images should not exceed the size of the images.

3

2 Approach

2.1 Related work

The field of digital image processing is immensely large and automated image
tagging or annotation is just a small part of it. However, a lot of work has
been done on this field in last decades.

Studied field is closely related to the field of the image retrieval. In the sur-
veys [6] and [7] the authors mention lot of works and trends in this area. Both
surveys put strong emphasis on image feature retrieval, in [6] highly focused
on area and texture description. Both surveys mention advanced probabilistic
models and algorithms such as multi-resolution hidden Markov model [20]and
machine learning systems such as support vector machines (SVM) [4].

We will mention just a few works closely related to ours. Algorithm pro-
posed in [13] extracts colour and texture features from the image. The texture
information is retrieved using Daubechies 4 wavelet transform [8]. The fea-
ture descriptors distributions for each category are clustered using k-means
clustering [14]and from these are created the concept models used to identify
particular objects.

Wang et al. in [19] again proposed features extracted by a wavelet trans-
form. For statistical modeling it proposes 2-dimensional hidden Markov model.

This work is also inspired by [16] and [3]. These works are more related to
the scenery recognition problem however they contain several useful ideas.

Níster and Stevenius in [16] proposed iteratively built vocabulary tree, the
algorithm proposed by [3] uses histogram based maximum likehood method
based on the bag-of-words (also explained by Tirilly et al. [18]) probabilistic
model of visual features extracted from an image.

4

2.2 Image retrieval and object recognition problem

Our design similarly to many other related works is based on typical work flow
of first extracting visual features from the image (or in other words describing
the image for the computer) and then creating a statistical model for the visual
features.

The extracted features and their representation should be repeatable, quickly
extracted and invariant to most the common image transformations such as
scale change, rotation or affine transformation. This is further discussed in
Section 3.1. We tried to work with both keypoint and area descriptors.

Paper [3] proposes for feature processing the bag-of-words model. This
model understands the image as a set of extracted features, not considering
their mutual position. We did not decide for a machine learning system such
as the SVM or a neural network because that would require a lot of training
input which is unlikely to be supplied by a typical user1.

To apply this model we must be able to compare descriptors. Most of related
works do this by assigning descriptors to the equivalence classes, many of them
using some clustering algorithm. This is further discussed in Section 3.2.

The statistics used on the images is based on descriptors relation to a par-
ticular object. The guessing algorithm is trying to find subset of descriptors
fitting to a known object as further explained in Section 3.3.

2.3 Using non-spatial file information

Besides the spatial information from the image this work also aims to to use
non-spacial information from image file context; if an image contains a certain
object, the next one taken a few seconds after is likely to contain it as well. This
can be combined with image retrieval algorithms to further increase efficiency
of the algorithm.

Most people do not adjust most of the photos they have taken and therefore
the timestamp is unchanged, what makes it a good information source for
probabilistic analysis of a photo collection. Many images also contain the EXIF
tag that might contain the same information, and typically is not changed even
when editing the image. It is simple to design variety of quite straight-forward
probabilistic models that would put this information to use, some of them being
discussed in Section 4.

1see Section 1.2

5

3 Object recognition problem

This chapter discusses the solutions for the object recognition problem in the
images. It is partly influenced by papers [3] and [16] but our problem is more
complicated, because mentioned works recognize the scenery while our algo-
rithm is expected to recognize the presence of an object or objects. Also on
the input the algorithm may get more objects per an image. That causes fur-
ther problems, because there is no general way to tell which part of the image
relates to which object.

The problem can be decomposed into several parts:

• image description and representation by feature descriptors,

• comparing and grouping the descriptors and

• probabilistic model, based on the bag-of-words concept.

These are to be used as described on Figure 3.1.
As was mentioned earlier, we did not use machine learning algorithms. This

is due to the limited user input that would be used for learning. Typical self-
learning algorithm would then have problem with correct generalization. Also
the fact that each image can have multiple tags would lead to even higher
complexity of these methods.

3.1 Image and object description

Objects that are to be tagged are hard to define: it can be a building, a tree
or almost anything, it only has to be significant to the user. It is even harder
to define them in the image - the same object can be larger or smaller on to
different photos. It is nearly impossible to decide what is an important object
on the image and what not, even though there were attempts to do so such as
method proposed in [9]. And it still does not solve the problem of the object

6

Figure 3.1: Learning and guessing algorithm design

representation as such. To describe contents of an image we need to extract
the visual features and represent them, if possible in a way that would be
invariant to most common image transformation. And of course these features
are needed to be extracted quickly, typically in a grade of seconds.

Visual features can be in general divided to points of interest and areas.
Interest point-based features are extracted and described by algorithms such
as SIFT (see [17] chapter 4.1.2 (page 223) or Section 3.1) or SURF([10] or
Section 3.1). There are also algorithms to extract areas such as MSER([17]
page 220 or Section 3.1), which are used in image registration [2].

Common techniques

These algorithms use several techniques that should be explained or mentioned
before describing the algorithms that use them. It is expected that the reader
is already familiar with the term convolution. This is widely used in image
processing area. Especially the convolution with Gaussian kernel will be often
mentioned and used.

Laplacian of the Gaussian kernel, usually addressed as Laplacian of Gaus-
sian (LoG) is curl of the 2nd differential of Gaussian. It is used to find peaks
of differential image which are usually on corners and edges. These are later
used as points of interest or keypoints. Approximation of the LoG is Difference
of Gaussian (DoG) which is a kernel representing difference of two Gaussian
kernels with different sigma parameter.

7

To achieve scale invariance the keypoints are being found in several scales.
The keypoints found in the scale space are then containing information about
both the position in the image and the scale. To avoid creating the image in
different scales, different sizes of the same convolution kernel is used instead,
for example the Gaussian kernel with different sigma parameter.

The important property of image feature descriptors is repeatability. Key-
points and descriptors extracted from two images of the same object pho-
tographed from only slightly different position should be very similar. To
achieve this the keypoint positions are usually calculated with sub-pixel ac-
curacy using numeric techniques based on Taylor expansion.

Descriptors of keypoints

Both SIFT and SURF are algorithms to extract and describe points of interest
from a picture.

The SIFT algorithm first creates scale space of images blurred by convolu-
tion with different Gaussian kernels. By subtracting the values of the neighbour
scale images the Difference of Gaussian(DoG) images are created. Keypoints
are then identified as local maxima/minima in scale space of DoG images.
This way the scale-invariance is achieved. The keypoints are then localized
with sub-pixel accuracy using quadratic Taylor expansion of the DoG image.
If the offset of the interpolated position from the original position of the key-
point is larger than 0.5 pixel, the keypoint is rejected as unstable. Also the low
contrast keypoints and the points on the edges are discarded.

Each keypoint is then assigned orientation from the surrounding points.
Gradient directions of the surrounding points are added to a histogram with
36 bins, taking into consideration also the magnitude of the gradient. Peaks
in this histogram are said to be the dominant orientations. For each domi-
nant orientation is created a keypoint with the same position. The keypoints
are then described. Surrounding of each keypoint is divided into 4x4 16 pixel
squares, for each this square is created 8 bins orientation histogram with gra-
dient directions of points in each 16 pixel square creating a vector with 128
elements. These values are then normalized to reduce effect of illumination
changes. Resultant descriptors are scale and rotation invariant and are robust
even to affine transformation while being one of the most distinctive known
descriptors.

SURF descriptors are an alternative to SIFT descriptors. The main differ-

8

Figure 3.2: The sum of values in the rectangle area is A + D -(C + B)

ence from SIFT algorithm is that the SURF descriptor extraction algorithm
uses the integral image [5] created from the original one and is based on the 2D
Haar wavelet responses while the SIFT extraction algorithm uses the original
spatial information and responses of DoG in scale space.

Integral image is used to rapidly calculate of upright rectangular area.
Given the original image I value of any point in the integral image I∑ is
the sum of the values between the point and the origin. Calculating the sum of
pixels in an upright rectangular area bounded by vertices A,B,C,D as in Fig 3.2
can be in the integral image performed in constant time by:

∑
= A + D − (C + B) (3.1)

where each of A,B,C,D represents value of the points in the integral image
IΣ.

Haar wavelets are here used as simple convolution filters that can be used to
calculate gradient in particular direction. Their advantage for this algorithm
is, that they fully utilize the capabilities of the integral image because they can
be calculated as difference of summed pixel values in two upright rectangular
areas.

9

Figure 3.3: Haar wavelets calculating gradient in x and y direction respectively.
Weights are 1 for the white and -1 for the black colour.

The algorithm first creates the integral image from the original one. The
keypoints are then detected by a fast-hessian detector. This detector algorithm
is based on the determinant of the Hessian matrix containing second order par-
tial derivations of values in the image. Value of the determinant of the Hessian
matrix, which is also the product of eigenvalues, is used to classify points - if
the value is positive, the point is a local extreme; otherwise it is clearly not,
because the eigenvalues have different sign. The values of the Hessian matrix
would normally be calculated using Laplacian of Gaussian(LoG) or its approxi-
mation by Difference of Gaussians(DoG). SURF algorithm, however, calculates
them by approximated convolution kernel consisting of a few rectangles, thus
effectively using the properties of the integral image. Keypoint positions are
then interpolated with sub-pixel accuracy using the quadratic Taylor expansion
of the Hessian determinant. If the offset of the interpolated position is larger
than 0.5 pixel the keypoint position is adjusted and the position interpolation
procedure is repeated, until the offset is less than 0.5.

For each keypoint orientation is calculated. For points in the surround-
ings of the keypoints the Haar wavelet responses in x and y directions are
calculated. These are then used to obtain the dominant orientation1. A
square window in size corresponding to the scale at which it was detected
oriented in the dominant orientation is created and divided into 4x4 squares

1for details see [10]

10

Figure 3.4: Description windows with size 20 times of the detected scale. The
dominant direction is shown by a green line.

each containing 25 points. From each of these these are extracted four values∑
dx,

∑
dy,

∑
|dx| ,

∑
|dy|,thus creating a vector with (4x4x4)=64 values.

SURF algorithm is claimed to be significantly faster than SIFT while being
more robust to scale change and rotation. It is not however designed to be
invariant to affine transformation. Both these feature description algorithms
are implemented in the Open-CV library2. There is also another open-source
SURF implementation3.

Area-based features

The MSER features are areas that are supposed to be repeatably detected re-
gardless of scale change and rotation. It stands for Maximally Stable Extremal
Regions.

2http://opencv.willowgarage.com/wiki/
3http://www.chrisevansdev.com/computer-vision-opensurf.html

11

Figure 3.5: detected MSER in an image

A maximum intensity extremal region is a region in the image where for
any point p in the area and any point q in the boundary of the area the
intensity of p is higher than the intensity of q. Similar definition is for the
minimum intensity extremal region. Maximally stable extremal region can
be then described as the one in the sequence of nested extremal regions with
smallest relative boundary. Extraction of these features is considerably fast4.
These areas can be described similarly as interest point surroundings in SIFT
or SURF algorithms as mentioned in [11].

For the purpose of this work SURF descriptors were chosen, mainly because
they can be calculated quickly, what is the key advantage for this work. This
algorithm was enhanced to include colour information into the descriptor and
the hue histogram of significant point surroundings (in scale-space) is taken.
According to [3] this should significantly increase the distinguishing power of
descriptors.

MSER algorithm was used too and an algorithm for their effective descrip-
4[15]

12

tion invariant to the most common continuous transformations was proposed5.
However the results were better with the SURF descriptors.

3.2 Descriptor equivalence classes

A method for dividing a set of descriptors into equivalence classes is needed
together with a method for assigning a descriptor to the correct equivalence
class. That is because any probabilistic method based on the descriptors will
need to match the known descriptors and the descriptors in an unknown image.

The method to create the equivalence classes should be fast and reflect
the distribution of the descriptors in the space. It should allow to discrimi-
nate between objects in the images by assigning different equivalence classes
to descriptors from different objects. The generalization ability6 should be
considered as well.

Single descriptors

One way to solve this problem is to take each descriptor from known images as
the only single representative of its equivalence class. The descriptors would
not be matched at all in the learning phase. A descriptor from a new image
will then be matched to the nearest known descriptor.

Using this approach we get excellent discriminability, however the general-
ization ability of this method is weak. Two almost equal descriptors on two
different images will not be considered the same and if we then match a new
descriptor to one of these, we will loose information about the second one. This
is likely to negatively affect the results especially if in these two images were
two different objects.

Another problem is related to the performance. The number of descriptors
extracted from the images can easily exceed a million. That would mean more
than a million equivalence classes. Each new descriptor in a new image would
have to be assigned to the nearest known descriptor. Searching in all those
equivalence classes for each extracted descriptor can last non-trivial time even
if we consider a fast structure for searching in the equivalence classes. Not to
mention the time required to create such a structure.

5There are many possibilities to do that, let’s name just the possibility to copy the
intensities of the points in the area after it’s normalization. Used implementation is further
explained in Section 5.3

6ability to recognize and group similar descriptors

13

Clusters

Authors of both [16] and [3] proposed matching visual "words" by dividing the
set of descriptors into several clusters, in other words by clustering. Many
other works mention clustering as well. Known words can be split into clusters
that would reflect their distribution in the descriptor space. This problem
is well-known and there are suitable solutions. Both mentioned works used
clustering into predefined count of clusters. Their results show, that about
10,000 clusters have good distinguishing power while still having reasonable
generalization ability for teir purposes.

Clustering seems to solve most problems that would be encountered while
trying to implement direct single-descriptor matching approach. Most known
algorithms more or less reflect the distribution of descriptors in the descriptor
space. Even the most basic algorithms give reasonably good results.

One of the simplest clustering algorithms is Loyd’s algorithm known also
as k-means clustering. This algorithm is iterative and partitions the clustered
space into Voronoi cells7. It starts with fixed count of clusters. In each iteration
it calculates center of each cluster an then assigns the nearest cluster to each
point in the clustered set. If the assigned clusters did not change, the algorithm
ends; otherwise the loop continues. It’s main disadvantage is that it returns
only constant number of clusters. This count can be estimated and it can still
give reasonable results for some applications, but this could be problem in our
problem where the image gallery could contain 100 images as well as 20,000.
We would need algorithm that scales with the number of known descriptors.

Another problem is that partitioning something like a 1,000,000 items into
several thousands clusters is incredibly computationally complex. In this most
basic form this took (with 64-dimensional descriptors) several hours.

Hierarchically organized clusters

In [16] the authors proposed clusters hierarchically organized into a tree-like
structure. On each level the clusters are divided into smaller and smaller
groups. This vastly increases the speed of the process. The paper[3] men-
tions further evolution of this algorithm, the Clustering LARge Applications
(CLARA)8 which takes only a small subset of the clustered points in the upper
levels to avoid working with huge descriptor sets.

7see [1]
8described by [12]

14

Algorithm 3.1 K-means clustering

input : Vectors s e t o f vector s , K number o f c l u s t e r s
output : s e t o f c l u s t e r means
Result <−− c r e a t e K random vec to r s
ChangeOccured <−− t rue
whi l e ChangeOccured do

ChangeOccured <−− f a l s e
f o r each Vector in Vectors

a s s i gn Vector to the nea r e s t vec to r in Result
i f the a s s i gned vec to r index i s d i f f e r e n t then

ChangeOccured <−− t rue
fo r each ClusterMean in Result

r e c a l c u l a t e p o s i t i o n o f ClusterMean from a l l
v e c t o r s a s s i gned to ClusterMean

endwhile
re turn Result

Our first implementation of the hierarchical clustering had constant number
of levels and therefore created constant number of clusters.

Figure 3.6: Hierarchy structure of clusters

15

Algorithm 3.2 Hierarchical clustering

input : Vectors l i s t o f vector s , K number o f d i v i s i o n s on
each l e v e l , D depth o f r e s u l t a n t c l u s t e r h i e ra r chy

output : h i e r a r c h i c a l y organ ized c l u s t e r s
i f D = 0

return mean o f v e c t o r s
end i f
VectorSubsets <−− array o f K vecto r s e t s
Means <−− K−means c l u s t e r i n g (Vectors , K)
fo r each Vector in Vectors

MeanIndex <−− f i nd nea r e s t vec to r in Means to Vector
VectorSubsets [MeanIndex] . add (Vector)

endforeach
Result <−− c l u s t e r s t r u c tu r e
Result .Mean <−− mean o f Vectors
f o r Subc lus te r Index <−− 0 to K

Subc lus t e r <−− Hi e r a r c h i c a l c l u s t e r i n g (VectorSubsets
[Subc lus te r Index])

Result . Subc lu s t e r s . add (Subc lu s t e r)
endfor
re turn Result

Distance from cluster mean

Once the algorithm created the equivalence classes of the known descriptors it
will eventually be given a new image. This image will be described by a set of
descriptors, some of them are representing already known features, some not.
If the algorithm is given a new descriptor it will assign it to some cluster even
if the descriptor is quite distant from the assigned cluster. Such descriptor
would be considered to be as relevant as another descriptor that is fitting to
its cluster much better. A method was needed to counter this effect.

This method should take into consideration the distance from cluster center
and the distribution of the known descriptor within the cluster. One solution
for this would be weighting the descriptor in the image by value between 0 and
1 given by a weighting function. The value of this function would rise with
average distance of the descriptors in the cluster from the center and decrease
with distance from descriptors distance from the center. A simple example of
such a function might be weight multiplier equal to

16

1
1 + dist//

√
V ar(dst)

(3.2)

This measure was implemented. In the end each descriptor assigned to a
cluster has its weight and this is used in all calculations.

Clusters with specified cluster size

When experimenting with various types of descriptors it was concluded that
it would be much better if it was possible to set the maximum size of each
equivalence class. When using this approach, a node in the cluster hierarchy
has sub-nodes if and only if it contains a point(s) with distance from the mean
greater than a specified threshold. This way the cluster hierarchy tree has no
longer constant height and reflects the distribution of the clusters in the space
much better.

The cluster structure also assigns a cluster to a descriptor only if the de-
scriptor is near enough to the nearest cluster’s center; otherwise no cluster is
assigned to the descriptor at all. This approach eliminates outliers that would
otherwise affect the outcome.

This solution scales much better with the number of clustered descriptors
as shown in the Section 6.1. In our solution we use simple euclidean distance.

Merging clusters

Practical tests have shown that the position of the starting clusters means may
have significant effect on the results. It became clear that further analysis on
the effect of clustering on resultant success rate of the algorithm should be
done.

That has led to the idea that for each tag the descriptors should be clustered
separately and then merged. This way the descriptors related to one object are
kept together and more importantly it is probable, that they would remain sep-
arated from descriptors related to other objects thus increasing discriminability
power of the equivalence classes.

When merging two cluster structures, all leaf clusters from one structure
are iteratively merged into the other cluster structure. This is described by
Alg. 3.3. For each cluster to be merged into a set of clusters a nearest leaf
cluster is found. If these are too far from each other, a new node is created

17

Figure 3.7: Merging will result in a smaller cluster effectively excluding previ-
ously assigned descriptors from the cluster.

in the tree cluster structure that will replace the nearest cluster. The merged
cluster and the nearest cluster will then become it’s sub-nodes. If the nearest
cluster and the merged cluster are near enough, a new cluster is created to
replace the nearest cluster.

However this may cause that resultant merged cluster set will not cover all
the descriptors that were covered by the original sets of clusters, as shown in
Fig. 3.7. To compensate this, after the merging of all cluster sets created for
each known object also each descriptor has to be merged alone as a stand-alone
cluster to make sure that each descriptor is covered by a clusters in the cluster
set.

This clustering method performed well on smaller data sets, but the process
of merging took too much time on larger image sets.

18

Algorithm 3.3 Cluster merging

input : This c l u s t e r set , Other c l u s t e r s e t to be merged
output : the re i s no output , c l u s t e r s are merged in to

This s t r u c tu r e
f o r each Clus te r in Other begin

MyCluster <−− This . n ea r e s tLea fC lu s t e r (C lus te r)
i f MyCluster .Mean . d i s t ance (C lus te r .Mean)>This .

C lu s t e rS i z e begin
NewCluster <−− copy o f MyCluster
MyCluster .Mean <−− mean o f NewCluster .

Mean and Clus te r .Mean
MyCluster . addChild (NewCluster)
MyCluster . addChild (C lus te r)

end e l s e begin
MyCluster .Mean <−− mean o f MyCluster .

Mean and Clus te r .Mean
end i f

end fo r each

3.3 Probabilistic model

A probabilistic model was needed to assign a tag to a new image represented
again by a set of visual features. It was decided to use the bag-of-words model.
This model is used in the text analysis to match documents and topics. It
considers a document as an unsorted set of words which may be assigned a
certain topic(s). Once there is an efficient way to extract visual features from
the images it can be aplied to the image-tag matching problem as well, because
then we can consider each image a document and each visual feature a word.

There are however several drawbacks to this model. The bag-of-words
model does not take into account the position of the words. On the other
hand this can be also an advantage - working with position in the image is not
as simple as in a sequence of text. There are some algorithms and methods
to work with the position but in general it can be assumed that they are not
simple. Also these algorithm will become even more complicated if the aim is
to detect more objects in each image. We therefore decided not to include in
this work algorithms using the geometric information of the image features.

Using bag-of-words model clearly leads to use of the Bayesian statistics.
Let’s have a set of images I = {i1..in}. Each image ij is said to contain m

objects from the set of known objects O = {o1..ok} (related to the tags) and

19

a set of descriptors Dj = {dj1..djmj} has been detected on it. Generally it is
not possible to decide which descriptors from Dj are related to one particular
object contained in the image, especially if the image is known to contain more
objects. The best assumption that can be done is, that each descriptor from Dj

is with probability p = 1/m related to a particular object object o contained
in the image.

Count-based solution

Let M be a matrix of weighted counts of occurrence of descriptors d1..dN for
objects o1..ok. These counts will take into account the probability that the
descriptor is related to the object meaning that if there are k objects in an
image I then each descriptor found on this image is in the matrix M counted
as 1/k for each of the objects. Each column vector in this matrix representing a
certain descriptors relevance distribution is normalized so that the sum of this
vector’s values is 1. This way each such normalized vector represents estimated
probability distribution of the relevance between the descriptor and the objects.

This way we can obtain estimation of the probability distribution of the
relation of each descriptor to the known objects. Using this information the
algorithm should decide whether an image represented by a set of descriptors D

contains particular object o. The number of objects in the image is unknown,
the number of descriptors in an image is variable. A scoring system independent
of count of descriptors or objects is needed. This scoring system must also
reflect the probabilities that each descriptor is related to an object with a
certain probability.

The simplest way might be to calculate likehood score for each object and
pick one or a few most probable objects or pick those whose likehood is more
than a specified threshold, which would depend on the maximum likehood
score. This method is lacking some elegance, but it is invariant to the count of
descriptors and objects. The main drawback is the threshold and the fact, that
it actually does not give the answer to the question “is this object there?”. It
more likely answers the question “what objects are the ones most likely to be
in the image?”, what implies that there surely is at least one known object in
the image. That does not involve possibility that there are no known objects.
It could be possible to solve each of these problems, but in the end we would
have an algorithm that has probably nothing common with the original idea
of maximum likehood as such and definitely would be overly complicated.

20

Algorithm 3.4 calculateRelevances

input : M re l evance matrix , I nd i c e s l i s t o f d e s c r i p t o r
i n d i c e s with t h e i r weights , tagCount supp l i ed by M

output : vec to r o f r e l e vanc e s to the tags
Result <−− vec to r with tagCount va lue s s e t to 0
fo r each WeightedIdx in Ind i c e s

Desc r ip torRe l evances <−− M. getColumn (WeightedIdx
. index)

Desc r ip torRe l evances . MultipleBy (WeightedIdx .
weight)

Result .Add(Desc r ip to rRe l evances)

Another approach was proposed instead. The algorithm should not directly
say which objects are the most probable ones to be on the image but confirm
or deny object’s occurrence in the image. In other words it should give answer
to the question “is this tag in the image?”.

Algorithm 3.5 guessTag

input : I nd i c e s l i s t o f d e s c r i p t o r i n d i c e s with t h e i r
weights , M re l evance matrix , tagCount supp l i ed by M,
TresholdRatio

output : guessed tag index or NULL
Relevances <−− ca l cu l a t eRe l evanc e s (Ind i c e s , M,

tagCount)
MostRelevant <−− index o f the h i ghe s t va lue in

Relevances
MaxRelevance <−− Relevances [MostRelevant]
SecondMostRelevant <−− index o f the 2nd h ighe s t

va lue in Relevances
SecondMaxRelevance <−− Relevances [SecondMostRelevant

]
i f MaxRelevance >= TresholdRatio ∗SecondMaxRelevance

re turn MostRelevant
e l s e

re turn NULL
end i f

In each of the images there are descriptors that are related to an object that
is in it and then there are descriptors related to its surroundings or to other
objects on the image. We presume that similar objects will contain similar

21

descriptors that can be distinguished from other descriptors. We may then
assume that if an image contains a certain object then the set of descriptors
that represents this image will contain a subset, that is related to this object far
more than to any other known object. In other words, the proposed solution
is based on finding the subset of descriptors “most likely related” to a certain
object.

Unfortunately the size of such subset cannot be estimated exactly, even
relative to size of descriptor set for one image. The object can be bigger or
smaller and also its complexity may vary. Both of these properties contribute
to the resultant count of descriptors describing it.

Fortunately this is not as significant problem as it looks like. Photographers
have their habits of taking photos and therefore the objects size will not vary
too much. More importantly, they do not usually take photos of more than two
significant objects at once. And of course, not all of the descriptors describing
an object are needed, a fraction of them with non-trivial size would suffice as
well. Therefore a good estimate of the most-relevant subset size can be done
for most cases.

The algorithm first sorts the descriptors from the image according to their
relevance to a certain object. Then it selects the first m = n/k descriptors
where n is the number of the descriptors in the image and k is a parameter
for the algorithm. Then the likehoods for all known objects are calculated.
If the likehood of the examined object is far higher than any other then the
object is accepted. Otherwise the most related not yet inserted descriptor is
inserted into the subset and the procedure of calculating likehood is repeated
again. This is iterated until the object is accepted or all descriptors have been
inserted into the subset9.

There are two parameters that have to be set - the threshold difference
between likehoods to accept an object and the size of the starting subset. It
is not as much a problem even if it makes the concept unclean because of the
dependence on a certain parameter. But this is acceptable and the parameters
can be experimentally set to fit the real world data.

This method can be prone to have many false positive hits, because it just
allows it. The simplest maximum likehood method can have only limited count
of false positive hits, because it guesses only one object. On the other hand its

9it was expected that the iterations would solve special situations where two different
objects would share several descriptors. However it appears that such cases are very rare. If
the object was not initially accepted then it was rejected in most cases

22

Algorithm 3.6 isTagThere

input : Idx tag index , I nd i c e s weighted d e s c r i p t o r
i nd i c e s , M re l evance matrix , R t r e sho l d ra t i o , K s e t
d i v i s i o n parameter

output : boolean
s o r t I nd i c e s by t h e i r r e l evance to tag Idx us ing M
N <−− I nd i c e s . s i z e /K
whi le N < Ind i c e s . s i z e

Subset <−− f i r s t N i nd i c e s from Ind i c e s
Relevances <−− ca l cu l a t eRe l evanc e s (Ind i c e s , M,

tagCount)
TagRelevance <−− Relevances [Idx]

SecondMostRelevant <−− index o f the 2nd
h ighe s t va lue in Relevances

SecondMaxRelevance <−− Relevances [
SecondMostRelevant]

i f TagRelevance > R∗SecondMaxRelevance
re turn true

end whi le
re turn f a l s e

higher acceptance allows it to find also the correct objects that the maximum
likehood method would not find.

Another important matter to discuss is, whether such solution is acceptable
in the means of performance. The computational time of the process of guessing
the tags on an image should not be in linear or worse dependency with the
number of descriptors in the database.

Considering that user has about 1,000 tags in the database and a few thou-
sands descriptor equivalence classes, his descriptor-tag relevance matrix will
have dimension of about 1,000x10,000. New image has a bit less then 1,000
descriptors. Using the right structures each descriptor can be assigned to a
known descriptor equivalence class in logarithmic time (to the count of the
descriptor equivalence classes), thus this is not an issue.

Building the most relevant descriptor subset of the descriptors extracted
from an image for each possible tag is even with used heuristic unacceptably
slow. If we define the maximum size of the most relevant descriptor subset,
we can significantly increase the performance. The first guess might be, that
the maximum size of the subset is 100. This will have only negligible effect on
the accuracy of the algorithm – if the subset of maximum size is not “relevant”

23

enough, it is unlikely that a bigger subset will.
For a simple guess on one image only the “most related subset” method

was used. However for solution that included also file timestamp was used the
maximum likehod method as well as explained in section 4.

24

4 Using timestamp information

The algorithm already described is capable to guess tags in an unknown image
using only the spatial information. Or, more precisely, it is designed to answer
the question “is this object in this image?”. However, user might want to
tag a whole set of photos. These photos may or may not have a relation with
previous ones. More importantly, they are taken in a time sequence and usually
there is a relation between an image and an image taken shortly after it. This
information can be used to achieve higher success rate of the algorithm while
keeping the false positives rate on a reasonable level.

Using this information is meaningful only when guessing tags for a whole
new image collection. Using it for single image guessing might cause that the
new image will be put into a completely unrelated image sequence, what would
lead to wrong results.

It should be noted that this approach will surely put objects that are not
photographed in a sequence in disadvantage. The algorithm should be self-
adjusting for the user that uses him - some users may take 20 or more photos
of an object in a row and some may take at most three photos of the same
object.

4.1 Usage of already designed algorithms

So far the algorithm design was highly modular - it is possible to choose from
a variety of feature extraction algorithms, the descriptor equivalence problem
is solved as an independent problem as well as the the descriptor-object rela-
tion mapping. The solutions to these sub-problems were partially chosen with
respect to each other, but as such they do not depend on each other.

To sustain this modularity it was decided to incorporate the timestamp
information processing independently of the spatial data. Current design allows

25

to use several variants of the image recognition algorithm and to combine them
with each other and with the timestamp-based processing methods.

4.2 Approach for the timestamp processing

The experiments with proposed algorithm have shown that the spatial informa-
tion based algorithm is not perfect and it either has low recall or low precision
depending on its configuration. If the algorithm is set to refuse most tags in
an image, then it is likely to guess the tags correctly, but it will refuse most
tags leaving the new collection correctly but only sparsely tagged.

On the other hand if the algorithm is set to accept tags it will guess the
correct tags on most of the images, but it will also have many false positives.
We needed a way to decide in advance which tag should even be considered
on an image before running this algorithm. That would significantly lower the
false positives rate.

To do this, the timestamp information is used. The algorithm will be given
a sequence of images and their tags and the next image in the sequence and it
will decide whether possibility that an object is there should be considered.

The algorithm will first use the guessing algorithm with low acceptance set-
ting on all images1. This will result in a few newly tagged images with relatively
few mistakes. Then the algorithm will go trough all the new images sorted by
the timestamp and for each decide whether to try the guessing algorithm with
high acceptance rate or not.

4.3 Assumptions

We assumed that there are no timestamp collisions between photo collections
of the user. That means users collections can be, after being sorted by times-
tamp, distinguished purely by specifying the right timestamp interval. This
is important, because to study and process the photo and tag sequences it is
needed not to have sequences mixed together.

This assumption is not always met in the real world - user may for example
collect photos from several people that were on the same trip or occasion. How-
ever this is more problem of final application design than a research problem.

1This algorithm is also combined with the maximum likehood algorithm to further in-
crease the precision.

26

The workaround that would take this into consideration is not complicated2,
but it would unnecessarily increase the complexity of the design process.

Another assumption is that timestamps of the photos are really related to
the time when they were taken. This can be expected to be met in real world.
Timestamps usually represent the last file modification and in most cases it
is the time of creating the photo. If the user has changed the photo, most
probably by adjusting it in a graphic editor, he will most probably take the
effort to tag the photo by hand.

4.4 The decision algorithm

Using the information about the previous images in the sequence and objects
in them the algorithm should decide whether the next image in the sequence is
likely to contain a certain object or not. For each object the algorithm sees the
sequence of the images as a sequence of boolean values representing occurrence
of the object in an image.

The relationship between occurrences of different objects are not considered.
It is unclear whether such approach would be really effective. Moreover, a new
image collection usually contains new images with not yet known objects and
thus the algorithm does not have enough information about their occurrence
relations.

There are many models and many statistics that can be used to solve this
problem, some more sophisticated, some very simple. Because the problem is
based on a sequence of boolean values, it leads to Markov chain model with
two states isomorphic to the boolean states of occurrence of an object in the
sequence of the images. Or it may use the statistics for time difference between
subsequent images containing the object and between an image that contains
the object and a subsequent image that does not. Or statistics of the length of
an uninterrupted sequence of images that contain the object.

Problem with discrete statistics is that they would consider the gap between
two neighbouring images in the image sequence to be the same regardless of the
timestamp difference which could be one minute or one day. Thus any used
model should be either directly built on the timestamp difference or altered
to take them into consideration. However such a change in originally discrete

2Instead of analyzing sequence of all known photos, the algorithm may analyze only
sequences representing the collections.

27

model would make it much more complex while the real positive effect to the
performance cannot be estimated.

It was therefore decided to consider the timestamp differences between im-
ages. A statistics can be created for the differences between files that contain
the object and for the differences between the files that contain the object and
subsequent images that do not. This statistic is very simple and still effective.

From these statistics a threshold that will be used to decide between the
answers will be calculated. First the time differences that will be used in
the statistics are collected. There are two types of the differences - between
subsequent files when both files contain the object and between image that
contains the object and subsequent one that does not. They are then sorted
and the time difference interval that best distinguishes between the mentioned
difference types is chosen. The threshold will be the middle of this interval.
Then when assigning tags to a new image, if the last image contains the tag and
its time difference from the new image is less than the threshold the algorithm
will give the answer yes.

This timestamp difference can be taken for each tag separately. If there is
not enough data for such a statistics for a particular object, average values are
used instead.

28

5 Solution implementation

The algorithm has been implemented in a form of a dynamic library, so that it
can be used by various programs. The interface had to be simple and straight-
forward, and the internal structure should allow to modify one part of the
algorithm independently of the others.

Also a technology demonstrator in a form of a simple image viewer was
created to demonstrate the use of the library. This is described in the appendix
Section B.

5.1 Platform and libraries used

We decided to implement the algorithm in C++ language. Programs written in
this language are fast and the language provides object oriented programming
structures. It is compiled by the open-source GCC compiler.

The library and the technology demonstrator are implemented for Win-
dows platform. It uses Qt toolkit1 and open-source image processing library
OpenCV2, thus porting to other platforms should be simple. However, that
was not tried yet.

Qt is a multiplatform toolkit intended originally for GUI programming but
currently implementing a variety of functions that are otherwise different on
each system. It was decided to use this library to load image files even in the
algorithm implementation library. This makes sure that any image that will
be loaded by a Qt application3 is also loaded by the algorithm. It is also better
to use only one library for a certain functionality in entire project.

OpenCV is an open-source library aimed at image-processing. It imple-
ments many various image processing algorithms from Fourier transform to

1http://qt.nokia.com/products/qt-sdk
2http://opencv.willowgarage.com/wiki/
3such as the technology demonstrator

29

feature extraction. Our implementation is however trying not to depend on
this library in the future because it forces developers to download and build
yet another extensive library while using only a small part of it.

5.2 Library modules

The implementation covers all the mentioned algorithms parts into a library
that offers a simple and user friendly interface and handle tasks such as storing
the image and descriptor information.

The sources of the library are divided into several namespaces each repre-
senting different functionality.

5.3 Descriptor extraction implementation

Several ways of image feature extraction based on SURF and MSER extrac-
tion were implemented or used. Because it was not clear which descriptor
implementation would be the most suitable one, several variants of each were
implemented.

Figure 5.1: Class diagram of implemented descriptor algorithms

BaseDescriptor

This is just a simple abstract class that specifies the interface for other descrip-
tor classes. Each descriptor class has a static method to extract descriptors
from an image and also methods accessing the descriptor values and

30

SURF implementations and its variants

The SurfDescriptor is the basic SURF descriptor extractor. It is based on the
OpenSURF implementation, but it was completely rewritten to make its in-
terface friendlier and more object-oriented. Also it does much less rely on the
OpenCV library and uses Qt library to load the image. Original implemen-
tation uses threshold to filter low-response interest points. We added a tweak
to filter from these also the points whose response is less than the average
response. This lowers the count of extracted descriptors by 2/3 and slightly
improves the performance.

Original SURF descriptor does not take into consideration the colour in-
formation. According to [3] the colour information can be used to significantly
increase the discriminative power of interest point surroundings descriptor,
while its computation cost can be almost neglected compared to the calculation
of SURF descriptor. The SurfPlusDescriptor implementing this enhancement
creates 9 values hue histogram of the 10x10 pixel surrounding of the interest
point.

The CVSurfDescriptor is a wrapper class over the OpenCV SURF imple-
mentation which was used to compare the implementations and their results.
The CVSurfPlusDescriptor is evolution of this class adding the hue histogram
of keypoint’s surroundings. These OpenCV wrapper classes seem to be faster
(see Section 6.1) than our implementation. Originally they were only created
to compare them to OpenSURF based classes, but currently we use them in
the final solution.

MSER implementation

The MSER algorithm is an algorithm to extract an area in the image, but
as such it does not describe the area. This had to be developed, either from
scratch or by using already known algorithms as suggested by [11]. It was de-
cided to try to propose and implement a new description algorithm that would
be straightforward and simple yet with useful properties such as invariance
to rotation and scale. If that would give reasonably good results hopefully
outperforming the SURF descriptors then implementation of a more elaborate
algorithm using techniques from SIFT or SURF description algorithms would
have sense.

It was decided to describe the area without its surroundings. This is sup-
posed to be one of the advantages - it describes a part of an object and not its

31

surroundings, so that the object can be recognized even with different back-
ground. The point-based descriptors such as SURF and SIFT are describing
the surrounding of the interest point so they may often depend on the back-
ground.

First of all the area has to be normalized (see fig. 5.2). The same area may
be of different sizes and photographed under different angles, but it should be
repeatably detected and described. For this we first calculate the position of
the centroid of the area C. From this we find the most distant point and the
direction from the centroid to this point will be used as the area’s orientation.
The distance between these points is d1.

Then the most perpendicularly distant point from the line passing trough
the centroid and the most distant point is found. The perpendicular distance
between this point and the line is d2. After that a rectangle centered on the
area’s centroid with dimensions (2d1)× (2d2) oriented from the centroid to the
most distant point is taken from the image4 using a simple bilinear resampling
for the rectangle rotation. This ensures the invariance to rotation.

After this an integral image from the extracted rectangle is created. This
simplifies achieving scale invariance because no rescaling of the rectangle is
needed. The contents of the extracted rectangle is then described.

Figure 5.2: Area normalization

First the centroid of the area C is found, then the most distant point p and
point q most distant from the line passing trough C and p. These are used as

boundaries for the extracted rectangle. The rightmost image is the area
normalized to a 100x100 image.

The simplest method is to divide it into NxN5 squares and use the summed
4or the binary image containing only the area, as is explained later
5N being some reasonable constant chosen so that the descriptor is not too large

32

intensities in them as values of the descriptor. The values are of course normal-
ized, because they would be otherwise affected by the size of the area. Another
method is to calculate the Haar wavelet responses in the middle of each of
the NxN squares. Both these variants were implemented together with some
attempts to combine them.

Figure 5.3: Extracted and normalized MSER areas

The first implemented variant was the MSER shape descriptor (class MSERDe-
scriptor) which was taken from a binary image containing only the extracted
MSER area. Similarly to the SURF-based classes it was decided to extract the
colour information. From the pixels in the original image belonging to the area
is extracted colour hue histogram. This histogram is then added to the original
MSER descriptor (class MSERPlusDescriptor). The last variant describes not
the MSER area shape, but the (greyscaled) pixels from the original image and
adds also the colour histogram information (class MSERTextureDescriptor).

It was expected that these descriptor will preform similarly to the SURF
descriptors with potential to even outperform them. However, the experiments
have shown that these descriptors have been outperformed by the SURF de-
scriptors (see Section A.1) and therefore they were not used. However their
implementation has been left in the library for a case a new, much more efficient
description method is proposed.

33

5.4 GenDesc module

This module contains the algorithms for clustering and statistical processing
of the descriptors. It also contains a standalone descriptor structure indepen-
dent of the descriptor structures in the image description module. For most
structures it also implements the methods for serialization, so that they can be
stored into a file.

Clustering

All clustering algorithms use the k-means clustering algorithm. This algorithm
does not require any additional classes, it only returns a list of cluster means.
It works in several threads to take the advantage of multi-core processors. Even
with this tweak the algorithm was too slow for the hundreds of thousands of
descriptors extracted from the images in a small gallery.

Base class for clustering algorithm classes is the AbstractClustering class,
which is an abstract class specifying the interface for other clustering algorithm
implementing classes. This includes mainly the methods to assign a cluster to
a descriptor and to code the clusters into a buffer or decode them from a buffer.

HierarchicalClustering is a class implementing basic hierarchical clustering
algorithm as described in the Section 3.2. On each level it uses the basic
k-means algorithm. It also can assign a weight to a descriptor, so that the
descriptor weights mentioned in the Section 3.2 can be used.

The HierarchicalEquivalenceClustering contains an implementation of the
clustering algorithm with specified maximum cluster size (explained in the Sec-
tion 3.2). The MergeableHEClustering contains the same data as the Hierar-
chicalEquivalenceClustering class, but contains methods to merge two clusters
together and to merge a cluster with a single descriptor. Another evolution of
this structure is MergeableHECLARA which builds the cluster hierarchy using
the CLARA[12] algorithm increasing the speed of the process.

Count and relevance matrix

A special class to hold matrix data and process them was implemented. For
various reasons it is named IncidenceMatrix, but the user should use it as
any other matrix. Except for the fact that it has several methods used to
transform it into transposed matrix normalized either by columns or rows.
This is used to transform the count matrix into the maximum likehood ma-

34

trix (createMaximumLikehoodMatrix() method) or into the relevance matrix
(createOpositeDirectionMatrix() method).

The semantics of this class is that the count matrix is an n×m (columns and
rows respectively) matrix where n is number of descriptor equivalence classes
and m is the number of the known objects. The relevance and maximum
likehood matrix is then obviously an m× n matrix.

The class also implements methods to calculate likehood scores for a his-
togram of descriptor equivalence classes (getLikehoodProbabilities) or weighted
row set sum (sumOfWeightedRowSubset) used in the bag-of-words algorithms.

Bag of words algorithms

There are several important functions named isTagThere. These are implemen-
tation of the algorithm based on constructing the most related descriptor set
(explained in Section 3.3). It contains also the same algorithm using weighted
descriptor relevances and also another algorithms explained later in Section A.2
and A.3 that are not currently used at all.

Probability module

The probability module contains the algorithm to calculate the threshold times-
tamp distance mentioned in Section 4.4. It is not a part of the genDesc names-
pace. Originally it was planned to implement several algorithms and therefore
a separate module was needed, but finally only one algorithm was implemented.

5.5 Image database library

This is the module that uses all the previously mentioned modules and puts
them to use. It is responsible for storing and loading the information about
known images, gathering descriptors from images or guessing the image tags
using the other modules.

The ImageInfo class contained in this module holds all needed informa-
tion about an image such as file name, timestamp, assigned tags and most
importantly the descriptors.

The most important is the Gallery class. It is responsible for loading and
storing the image database information. Besides the image information stored
in the ImageInfo objects, it contains the clustering (currently the Mergeable-
HECLARA), the descriptor-tag count matrix, relevance matrix and maximum

35

likehood matrix and some more data used by tag-guessing algorithms. And of
course, all the functionality to insert new images, tag them, guess tags on them
and to learn from gathered information.

36

6 Results

6.1 Descriptor extraction and clustering

The extraction of the descriptors from an image and their clustering are the
two most time consuming tasks in the solution. All the other tasks are executed
fairly quickly in comparison with these.

Descriptor extraction

We measured the time needed to extract descriptor from images and also the
number of extracted descriptors. If different descriptors had similar perfor-
mance for tag guessing, this would be the next important criterion to consider
when choosing the right implementation.

To reduce measurement errors the files were first loaded into the memory
and resized1. Only the subsequent descriptor extraction process time was mea-
sured. We measured the time to extract descriptors from image sets with of 1
to 25 images.

It is important to mention that the time needed to extract descriptors
from a real image would include also the time needed to read and parse the
image file. That however depends on the size of the image and image parser
implementation (in our case the qImage class in Qt framework).

The measurements were taken for SURF2 and MSER descriptors.

The time to extract one MSER descriptor is on average about one-third
longer than the time to extract one SURF descriptor (Figure 6.1). On the

1480,000 pixels or less (800x600 pixels)
2SURF, SURFPlus and OpenCV SURF implementation

37

Figure 6.1: Time needed to extract descriptors

other hand, the number of extracted MSER descriptors is much lower and thus
the overall time for describing one image is shorter.

We can see in Figure 6.2 that describing an image using our SURF imple-
mentation takes a bit less than two seconds.

Clustering

The time for clustering was measured as well. We wanted to measure it on real
data, so the clustering was run on descriptors3 extracted from real images. We
measured the time for all clustering algorithms used.

The duration of the clustering with specified cluster size and clustering with
specified depth is almost the same. The CLARA algorithm clearly outperforms

3SURFPlus descriptors

38

Figure 6.2: Time for descriptor extraction from the images

both of these. Not surprisingly, the clustering with specified cluster size scales
much better with respect to the number of clusters.

6.2 Success rate

We performed measurements of the success rate on two different image sets.
One was the benchmark image set used in [16] (later referred as NS set4). This
set contains of 10,000 images, however while tuning the algorithm we used a
subset of only 504 of these - tuning the algorithm using the full-scale test would
simply take too long. This image set was however not suited for guessing with
the timestamp information. To test the improvement gained by the timestamp
information we needed to create our own testing set, one that would be based
on some real photo collection. This set was used to test the algorithm both
with and without the timestamp information to make the results comparable.

The NS set was used to test both the algorithm for guessing one (later
4freely available at http://www.vis.uky.edu/~stewe/ukbench/

39

Figure 6.3: comparison of clustering with specified depth and specified cluster
size

referred as single-guess-algorithm) and multiple tags(later referred as multiple-
guess-algorithm) per image. Images in the set are numbered and grouped by
objects they represent in quadruples. One image of each group was used as a
member of the training set. The testing set consisted of all the images thus the
algorithm will have to recognize the images from the training set as well (this
was the methodics used in [16]).

The guessing performance was measured with different descriptors and sev-
eral cluster sizes. We measured the precision5 and recall6 of the algorithms.

We can see in Fig 6.4 that the single-guess-algorithm algorithm has very
high precision - almost each guess it takes is correct, however it accepts so few
guesses, that the recall is at best only about 50% (training set being part of
the testing set).

The multiple-guess-algorithm algorithm it is quite the opposite - it guesses
about 90% of the tags (training set included), however the precision is poor.
In both tests the OpenSURF-based descriptor implementation slightly out-

5ratio of correctly guessed tags and number of guesses
6ratio of correctly guessed tags and total number of tags to be guessed

40

Figure 6.4: Precision and recall of the restrictive algorithm

41

Figure 6.5: Precision and recall of the algorithm for multiple tags per image

42

performed the OpenCV implementation. Also the cluster size has significant
impact on the tag acceptance rate. After tuning the cluster size7, we ran the
same experiments on a larger subset of the NS set consisting of 1252 images,
results are in the Tab. 6.1 and Tab. 6.2.

The second image set (later referred as timestamped set) is based on a real
photo collection. This was needed for the measurements of the algorithm using
the timestamp information, because the timestamp information would be hard
to simulate. It was divided into training and test set.

The training set contains 43 tagged images with 8 tags that did not occur
in the testing set8, 5 not tagged images and 30 images with tags that will occur
in the testing set. The testing set then contains 116 images, 22 of which do not
contain any object that should be recognized by the algorithm. It contains 26
different tags.

On the timestamped set we first ran test of the algorithm without use of
the timestamp.We ran only the multiple-guess-algorithm test with wider range
of threshold ratio to accept a tag. We used cluster size of 0.15. In Fig 6.6
can be seen that the precision rises almost linearly with acceptance ratio and
the implementation with OpenSURF based descriptors performs slightly better
that the one using OpenCV SURF descriptors. Similarly to the tests with the
NS set, the algorithm has reasonable recall but weaker precision.

After that we ran the algorithm using the timestamp.
We can see in the Fig. 6.7 that applying the timestamp information in the

probably most basic form significantly improved the precision.
The results for real data are promising, but despite the improvement achieved

by the use of the timestamp, the results are not fully satisfactory. The algo-
rithm has reasonable precision, but the recall is at best only about 50%. It
should be noted, that this heavily depends on the image set used. The gallery
we used consists of many pictures of historical buildings, which are often very
similar.

7used cluster size was 0.15
8used to create timestamp statistics used by the algorithm

43

Figure 6.6: Precision and recall of the multiple tag guessing algorithm running
on second test set

44

Figure 6.7: Precision and recall with use of the timestamp information

45

Threshold ratio Precision Recall
1.0 90% 36%
1.5 95% 34%
2.0 97% 31%
2.5 99% 28%
3.0 100% 26%

Table 6.1: Results for 1252 images from NS set, using single-guess-algrithm,
cluster size 0.15

Threshold ratio Precision Recall
1.0 3% 92%
2.0 7% 82%
3.0 16% 74%
4.0 29% 66%

Table 6.2: Results for 1252 images from NS set, using multiple-guess-algorithm,
cluster size 0.15

46

7 Future development and
improvements

Paper [7] mentions use of segmentation and texture description. Our attempts
to describe areas extracted by MSER algorithm did not bring much success,
but with more sophisticated approach the result could be much better. Also we
did not try to describe the texture of these areas. As was mentioned earlier, the
area-based features have the advantage of ignoring their surroundings which
can be different on each image.

Many extracted descriptors are actually not related to the tagged object
but to other objects in the image or to its background. That might be a
problem, because they will still affect the results. If we could eliminate such
descriptors by filtering out those that are not important we could significantly
decrease false positive rate. However it is difficult to define descriptor impor-
tance. There was attempt to do so by using only the descriptors occurring more
than once in images with a certain tags but the results were not promising and
the development in this area did not continue.

Also introducing some geometric constraints for descriptor matching might
improve the matching precision. However, such methods are rather complex
and in our case even more because of the fact that the learning algorithm does
not know the correspondence between the features and the tags.

A bigger dataset with timestamps of the images would be needed for further
development. Dataset used in this work is relatively small and it is hard to
tell how successful the algorithm would be when applied to image sets with
different type of objects.

Proposed use of timestamp is very simple but even this significantly im-
proved the results. However more complex and robust system would be useful,

47

for example information from more recent images could be considered instead
of just one.

If we discuss the use of additional information about the image files, we
should also mention the geolocation information. Many digital cameras are
able to obtain geolocation coordinates using a GPS module and to include
them into the digital photography. However this information is only useful for
some kind of objects, mainly buildings.

48

8 Conclusion

Aim of this work was to propose an algorithm for automatic image tagging
based on the bag-of-words model and known spatial feature descriptors. We
partially adapted the approach used in [3] original designed for recognition of
whole image or scenery to fit our needs. This approach was designed to work in
real time and to be fast. We used the SURF descriptors with additional colour
information, CLARA clustering algorithm and the bag-of-words modeling.

To fit our needs a probabilistic model was designed to gather information
from images with multiple tags and to allow to tag several objects in an image.
Besides spatial information we successfully used the timestamp information to
further enhance the algorithm. We also developed several algorithms that in
the end were not very successful but brought several useful ideas which were
later used in the proposed solution.

After tuning several parameters the algorithm is giving promising results,
although it is still not fit for practical use. The results with synthetic bench-
mark image set are even more optimistic. Experiments have shown that using
additional information about the image file such as the timestamp can signifi-
cantly increase success rate of the algorithm even when used in the most basic
models. Using more complex and robust models could even more enhance the
automatic tagging system.

49

Bibliography

[1] Aurenhammer, F. (1991). Voronoi diagrams - a survey of a fundamental
geometric data structure. ACM Computing Surveys, 23.

[2] Barbara Zitová, J. F., J. F. (2003). Image registration methods: a survey.
Image Vision Comput. 21(11), 21:977–1000.

[3] Botterill, T.; Mills, S. G. R. (2008). Speeded-up bag-of-words algorithm for
robot localisation through scene recognition. In Image and Vision Computing
New Zealand, 2008. IVCNZ 2008. 23rd International Conference.

[4] Cortes, C. and Vapnik, V. (1995). Support-vector networks. In Machine
Learning, pages 273–297.

[5] Crow, F. C. (1984). Summed-area tables for texture mapping. SIGGRAPH
Comput. Graph., 18:207–212.

[6] Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2008). Image retrieval: Ideas,
influences, and trends of the new age. ACM Comput. Surv., 40:5:1–5:60.

[7] Datta, R., Li, J., and Wang, J. Z. (2005). Content-based image retrieval:
approaches and trends of the new age. In Proceedings of the 7th ACM
SIGMM international workshop on Multimedia information retrieval, MIR
’05, pages 253–262, New York, NY, USA. ACM.

[8] Daubechies, I. (1992). Ten lectures on wavelets. Society for Industrial and
Applied Mathematics, 1 edition.

[9] Dirk Walthera, Ueli Rutishausera, C. K. P. P. (2004). Selective visual
attention enables learning and recognition of multiple objects in cluttered
scenes. Comput. and Neural Syst. Prog, 139-74.

[10] Evans, C. (2009). Notes on the opensurf library. Technical Report CSTR-
09-001, University of Bristol.

50

[11] Forssen, P.-E. and Lowe, D. (2007). Shape descriptors for maximally stable
extremal regions. In IEEE International Conference on Computer Vision,
volume CFP07198-CDR, Rio de Janeiro, Brazil. IEEE Computer Society.

[12] Kaufman, L. and Rousseeuw, P. (1990). Finding Groups in Data An In-
troduction to Cluster Analysis. Wiley Interscience, New York.

[13] Li, J. and Wang, J. Z. (2008). Real-time computerized annotation of
pictures. IEEE Trans. Pattern Anal. Mach. Intell., 30:985–1002.

[14] Lloyd, S. (1982). Least squares quantization in pcm. Information Theory,
IEEE Transactions on, 28 issue: 2:129 – 137.

[15] Nister, D. and Stewenius, H. (2008). Linear time maximally stable ex-
tremal regions.

[16] Nister, D.; Stewenius, H. (2006). Scalable recognition with a vocabulary
tree. In Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on.

[17] Szeliski, R. (2010). Computer Vision, Algorithms and Applications.
Springer-Verlag New York, LLC.

[18] Tirilly, P., Claveau, V., and Gros, P. (2008). Language modeling for bag-of-
visual words image categorization. In Proceedings of the 2008 international
conference on Content-based image and video retrieval, CIVR ’08, pages 249–
258, New York, NY, USA. ACM.

[19] Wang, J. Z. and Li, J. (2002). Learning-based linguistic indexing of pic-
tures with 2–d mhmms. In Proceedings of the tenth ACM international
conference on Multimedia, MULTIMEDIA ’02, pages 436–445, New York,
NY, USA. ACM.

[20] Willsky, A. S. (2002). Multiresolution markov models for signal and image
processing. In Proceedings of the IEEE, pages 1396–1458.

51

List of Figures

3.1 Learning and guessing algorithm design 7
3.2 The sum of values in the rectangle area is A + D -(C + B) 9
3.3 Haar wavelets calculating gradient in x and y direction respectively.

Weights are 1 for the white and -1 for the black colour. 10
3.4 Description windows with size 20 times of the detected scale. The

dominant direction is shown by a green line. 11
3.5 detected MSER in an image . 12
3.6 Hierarchy structure of clusters . 15
3.7 Merging will result in a smaller cluster effectively excluding previ-

ously assigned descriptors from the cluster. 18

5.1 Class diagram of implemented descriptor algorithms 30
5.2 Area normalization . 32
5.3 Extracted and normalized MSER areas 33

6.1 Time needed to extract descriptors 38
6.2 Time for descriptor extraction from the images 39
6.3 comparison of clustering with specified depth and specified cluster

size . 40
6.4 Precision and recall of the restrictive algorithm 41
6.5 Precision and recall of the algorithm for multiple tags per image . 42
6.6 Precision and recall of the multiple tag guessing algorithm running

on second test set . 44
6.7 Precision and recall with use of the timestamp information 45

A.1 Tags guessed using MSER descriptors (single-tag guessing) 57

52

B.1 Application screenshot, on left is the directory tree, on the right the
view of selected directory, together with sub-directories 59

53

List of Tables

6.1 Results for 1252 images from NS set, using single-guess-algrithm,
cluster size 0.15 . 46

6.2 Results for 1252 images from NS set, using multiple-guess-algorithm,
cluster size 0.15 . 46

54

A Unsuccessful attempts

A.1 Image description algorithms

We developed and implemented MSER descriptors as was mentioned earlier
in 5.3 but the results with the used standard approach were not not very
promising (as can be seen in fig. A.1).

A.2 Probabilistic models

After implementing the MSER descriptors, they were tested and tried for their
ability to create matches on different images of the same object or scenery.
The results were not very optimistic, either there were only a few matches or
there were too many matches in images of different objects thus making the
descriptors unusable. It turned out that the probabilistic algorithm used for
SURF descriptors cannot be used here and another one had to be developed.
Also the clustering (originally only the basic hierarchically organized was used)
had to be changed - only the descriptors near enough to each other should be
matched and thus considered to be in the same equivalence classes.

The need for a new clustering has led to a clustering with specified cluster
size. This was later considered to be useful property of the clustering algorithm
and was used in the final solution.

The probabilistic algorithm is based on the assumption that between similar
images should be more matches than between the different ones. These counts
are expected to be in grade of ones, independently of the count of detected
MSER areas.

In each image’s extracted descriptors are created clusters, so for two image
it can be quickly said how many descriptors do they have in common. It was
considered to be more suitable to have separate clusters for each image instead
of having global descriptor equivalence classes.

55

Then there are two important statistics calculated for each of the object.
One is the average count of common (or matched) descriptors between two
images containing the object. The second is the average number of matched
descriptors between an image with the object in it and one without. The
midpoint of the interval between these boundaries is used as a threshold for
the decision algorithm. It is expected that in a new image with the object the
average count of descriptors matched with other images containing the object
is higher than the threshold.

Experiments have shown that these numbers are on average different and
this algorithm could have good results. However the variance of the data was
too high, therefore the threshold based on the average counts could not be
really precise measure to accept or deny a tag and the results were in the end
not really promising.

Another drawback was that the learning was extremely slow - this algorithm
compares each image to all the other images.. Global descriptor equivalence
classes could be used to counter this.

A.3 Use of refined descriptors

There was an attempt to filter less important descriptors and not to use them
at all. Several methods to do so were proposed.

One was to use only descriptors whichs equivalence classes are represented
by more than one descriptor. Another used only the descriptors that occur in
more than one picture. Other were based on using only descriptors that are
significantly more often related to one particular object. Also their combination
was tried. However none of these attempts was really successful and therefore
no descriptor filtering method was used in the end.

56

Figure A.1: Tags guessed using MSER descriptors (single-tag guessing)

57

B Technology demonstrator

To demonstrate use of designed algorithm a technology demonstrator in the
form of a simple image viewer was created. It has the most simple user interface,
but it allows to view images, tag them and to guess tags on them or on a whole
directory.

B.1 User interface

User interface is as simple as possible. The user may either browse a directory
or view an image.

When browsing a directory, the user sees the image thumbnails in it. If
a file in directory is not an image file, it is represented by a blank file icon.
Directories are represented by a directory icon. By clicking on a directory the
user changes current directory, by clicking on an image he switches to image
view.

In the image view the user views only one image. He can return to the
browsing view by pressing the appropriate button or by pressing the “Escape”
key. In the lower bar he can see the text area with tags assigned to the image.
These are delimited by a semicolon. User may freely enter new or delete them
and confirm changes by pressing the “Tag” button.

After pressing the “Guess tags” button the program will run the tag guess-
ing algorithm (without timestamp information) and add the tags to the text
area. The user may then accept the changes.

In both views the user may invoke learning of the algorithm from new
image database information and also let the program guess tags on images in
the current directory.

58

Figure B.1: Application screenshot, on left is the directory tree, on the right
the view of selected directory, together with sub-directories

B.2 Program design

The program uses the smartGalleryLib library for all image processing algo-
rithms. Besides that its code is divided into gui and logic modules. The gui
module contains classes related user interface and classes for threads that are
used to load images. The logic module contains class used for communicating
with smartGalleryLib classes and classes representing threads that are respon-
sible for running algorithms in the smartGalleryLib.

All the time-consuming operations such as gallery learning and image load-
ing are executed in separate threads. After the threads finish they emit corre-
sponding event which is then propagated to the user interface thread. This is
reason why access to the gallery is wrapped by the class SafeGalleryWrapper
which handles locking of this class to avoid concurrent accesses of the gallery.

59

	Contents
	Introduction
	Motivation
	Goals
	Typical use case

	Analysis and requirements
	Problem formulation and decomposition

	Approach
	Related work
	Image retrieval and object recognition problem
	Using non-spatial file information

	Object recognition problem
	Image and object description
	Common techniques
	Descriptors of keypoints
	Area-based features

	Descriptor equivalence classes
	Single descriptors
	Clusters
	Hierarchically organized clusters
	Distance from cluster mean
	Clusters with specified cluster size
	Merging clusters

	Probabilistic model
	Count-based solution

	Using timestamp information
	Usage of already designed algorithms
	Approach for the timestamp processing
	Assumptions
	The decision algorithm

	Solution implementation
	Platform and libraries used
	Library modules
	Descriptor extraction implementation
	BaseDescriptor
	SURF implementations and its variants
	MSER implementation

	GenDesc module
	Clustering
	Count and relevance matrix
	Bag of words algorithms
	Probability module

	Image database library

	Results
	Descriptor extraction and clustering
	Descriptor extraction
	Clustering

	Success rate

	Future development and improvements
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Unsuccessful attempts
	Image description algorithms
	Probabilistic models
	Use of refined descriptors

	Technology demonstrator
	User interface
	Program design

