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Introduction

Compact embeddings of Sobolev spaces into other function spaces play a very
important role in modern functional analysis and, especially, in its applications
to finding solutions of partial differential equations. Although Sobolev spaces on
Euclidean domains having a Lipschitz boundary are discussed the most frequently,
it turns out that Sobolev spaces on different measure spaces would be of interest
as well.

Suppose that Ω is an open connected subset of R
n endowed with a probability

measure ν fulfilling dν(x) = ω(x) dx, where ω is a strictly positive continuous
density. Let X(Ω, ν) and Y (Ω, ν) be rearrangement-invariant spaces, in the sense
described in the following chapter. Given m ∈ N, the Sobolev space V mX(Ω, ν)
consists of allm-times weakly differentiable functions in Ω whose m-th order weak
derivatives belongs to X(Ω, ν). Our main aim is to prove a sufficient condition
for

V mX(Ω, ν) →֒→֒ Y (Ω, ν)

given in terms of compactness of the one-dimensional operator

Hm
I f(t) =

∫ 1

t

f(s)

I(s)

(∫ s

t

dr

I(r)

)m−1

ds, f ∈ L1(0, 1), t ∈ (0, 1),

on representation spaces. This operator corresponds to a function I which should
be chosen in such a way that it is dominated by the isoperimetric function of
(Ω, ν) and satisfies some regularity assumptions. Our method is based on a
result which yields that boundedness of such an operator implies validity of the
corresponding Sobolev embedding. This result was proved in [10] for first-order
Sobolev embeddings and then it was generalized in [3] for Sobolev embeddings
of an arbitrary order m by iterating of first-order embeddings. In contrast with
this, in a big part of our proof we do not need to distinguish whether m = 1 or
m > 1, although there is an exception in the case when Y (Ω, ν) = L∞(Ω, ν).

Our method strongly depends on the use of so called almost-compact em-
beddings, called also absolutely continuous embeddings in some literature, which
were studied, e.g., in [6] and [13]. It is well known that such embeddings have a
great significance for deriving compact Sobolev embeddings.

Our key one-dimensional result which, in fact, provides a connection between
the one-dimensional and n-dimensional case, says that compactness of the op-
erator Hm

I from a rearrangement-invariant space X(0, 1) into a rearrangement-
invariant space Y (0, 1) 6= L∞(0, 1) is equivalent to an almost-compact embed-
ding of certain rearrangement-invariant space Xm,I(0, 1) into Y (0, 1). The space
Xm,I(0, 1) is related to X(0, 1) by the fact that it is the smallest rearrangement-
invariant space fulfilling that the operator Hm

I is bounded from X(0, 1) into this
space.

The case when Y (0, 1) = L∞(0, 1) is slightly different since here we first de-
rive the first-order result based on a certain almost-compact embedding, while
the higher-order result is transformed by iteration to the case when Y (0, 1) 6=
L∞(0, 1). However, in contrast with [3], this iteration is quite straightforward,
using only the well known Hardy-Littlewood-Pólya inequality instead of a non-
standard inequality needed in [3].
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Moreover, in most cases of possible interest the function I can be chosen in
such a way that compactness of the operator Hm

I is not only sufficient but also
necessary for compactness of the corresponding Sobolev embedding. This is the
case, e.g., when Ω is a John domain, that is, a bounded Euclidean domain whose
isoperimetric function is equivalent to s1/n′

near 0. Here, n′ = n/(n − 1). Note
that for the particular family of bounded domains having a Lipschitz boundary,
such a result is already known, see [7]. Also compact Sobolev embeddings on
more general Euclidean domains belonging to so called Maz’ya classes can be
characterized by compactness of certain one-dimensional operator, in the sense
that there is always one domain in each class for which we have the necessity.
Finally, the product probability spaces belong into this framework. Among them,
the Gauss space, i.e., R

n endowed with the probability measure

dγn(x) = (2π)−
n
2 e

−|x|2

2 dx,

is the most standard example.
The structure of the thesis is as follows. We start by recalling some basic

facts from the theory of rearrangement-invariant spaces and by describing mea-
sure spaces on which we will study compact Sobolev embeddings, see Chapter 1,
Section 1.1 and Section 1.2, respectively. In Chapter 2 we derive several char-
acterizations of compactness of the one-dimensional operator Hm

I , which will be
needed in Chapter 3 where we state and prove our main results. The last chapter
of the thesis, devoted to the study of compact Sobolev embeddings on concrete
measure spaces, starts with some technical results contained in Section 4.1. In
Section 4.2 we characterize compact Sobolev embeddings on John and Maz’ya
domains and in the final Section 4.3 we deal with compact Sobolev embeddings
on product probability spaces.
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1. Preliminaries

1.1 Rearrangement-invariant spaces

In this section we recall some basic facts from the theory of rearrangement-
invariant spaces.

Let (R, µ) be a nonatomic measure space satisfying µ(R) = 1. Denote by
M(R, µ) the set of all real valued µ-measurable functions in R.

Suppose that f ∈ M(R, µ). The nonincreasing rearrangement of f is the
function f ∗

µ defined by

f ∗
µ(t) = inf{λ ≥ 0 : µ ({x ∈ R : |f(x)| > λ}) ≤ t}, t ∈ (0,∞).

Observe that f ∗
µ(t) = 0 whenever t ≥ 1. For this reason, we sometimes consider

the function f ∗
µ to be defined on (0, 1) instead of on (0,∞).

Assume that a functional ‖ · ‖X(R,µ) : M(R, µ) → [0,∞] is such that for
all functions f , g ∈ M(R, µ), for all sequences (fk)

∞
k=1 in M(R, µ) and for all

constants a ≥ 0, the following conditions are satisfied:

(P1) ‖f‖X(R,µ) = 0 ⇔ f = 0 µ-a.e., ‖af‖X(R,µ) = a‖f‖X(R,µ),

‖f + g‖X(R,µ) ≤ ‖f‖X(R,µ) + ‖g‖X(R,µ);

(P2) 0 ≤ f ≤ g µ-a.e. ⇒ ‖f‖X(R,µ) ≤ ‖g‖X(R,µ);

(P3) 0 ≤ fk ↑ f µ-a.e. ⇒ ‖fk‖X(R,µ) ↑ ‖f‖X(R,µ);

(P4) ‖1‖X(R,µ) <∞;

(P5)
∫

R
|f | dµ ≤ C‖f‖X(R,µ) for some constant C > 0 independent of f ;

(P6) f ∗
µ = g∗µ ⇒ ‖f‖X(R,µ) = ‖g‖X(R,µ).

The collection of all functions f ∈ M(R, µ) for which ‖f‖X(R,µ) < ∞ is then
called the rearrangement-invariant space X(R, µ) and the functional ‖ · ‖X(R,µ) is
called the rearrangement-invariant norm of X(R, µ).

If X(R, µ) and Y (R, µ) are rearrangement-invariant spaces, the continuous
embedding X(R, µ) →֒ Y (R, µ) holds if and only if X(R, µ) ⊆ Y (R, µ), see [2,
Chapter 1, Theorem 1.8]. We shall write X(R, µ) = Y (R, µ) if the set of functions
belonging to X(R, µ) coincides with the set of functions belonging to Y (R, µ).
In this case, the norms on X(R, µ) and Y (R, µ) are equivalent, in the sense that
there are positive constants C1, C2 such that

C1‖f‖X(R,µ) ≤ ‖f‖Y (R,µ) ≤ C2‖f‖X(R,µ), f ∈ M(R, µ).

The Fatou lemma [2, Chapter 1, Lemma 1.5 (iii)] tells us that whenever (fk)
∞
k=1

is a sequence in X(R, µ) converging to some function f µ-a.e. and fulfilling that
lim infk→∞ ‖fk‖X(R,µ) <∞, then f ∈ X(R, µ) and

‖f‖X(R,µ) ≤ lim inf
k→∞

‖fk‖X(R,µ).
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Furthermore, the Hardy-Littlewood inequality [2, Chapter 2, Theorem 2.2] yields
that ∫

R

|fg| dµ ≤
∫ 1

0

f ∗
µ(s)g

∗
µ(s) ds (1.1)

is satisfied for all functions f , g ∈ M(R, µ).
Given a rearrangement-invariant space X(R, µ), the associate space X ′(R, µ)

is the rearrangement-invariant space consisting of all functions g ∈ M(R, µ) for
which

‖g‖X′(R,µ) = sup
‖f‖X(R,µ)≤1

∫

R

|fg| dµ <∞.

For every f ∈ X(R, µ) and g ∈ X ′(R, µ), we have the Hölder inequality
∫

R

|fg| dµ ≤ ‖f‖X(R,µ)‖g‖X′(R,µ),

see [2, Chapter 1, Theorem 2.4].
For each rearrangement-invariant space X(R, µ) there exists a rearrangement-

invariant space X((0, 1), λ1) such that

‖f‖X(R,µ) = ‖f ∗
µ‖X((0,1),λ1), f ∈ X(R, µ), (1.2)

see [2, Chapter 2, Theorem 4.10]. Here, λ1 denotes the one-dimensional Lebesgue
measure. The space X((0, 1), λ1) is called the representation space of the space
X(R, µ).

In other words, each rearrangement-invariant space X(R, µ) can be defined in
terms of a rearrangement-invariant spaceX((0, 1), λ1) by (1.2). We shall therefore
always start with a rearrangement-invariant space X((0, 1), λ1) and then denote
by X(R, µ) the rearrangement-invariant space whose norm is given by (1.2). For
simplicity, we shall write (0, 1) instead of ((0, 1), λ1) and, analogously, we shall
omit the lower index λ1 when dealing with nonincreasing rearrangements.

Let X(0, 1) be a rearrangement-invariant space. The function ϕX defined by

ϕX(s) = ‖χ(0,s)‖X(0,1), s ∈ (0, 1),

is called the fundamental function of X(0, 1) (or X(R, µ)). It is quasiconcave, i.e.,
it is nondecreasing in (0, 1) and ϕX(s)/s is nonincreasing in (0, 1). Furthermore,
each rearrangement-invariant space can be equivalently renormed such that its
fundamental function is concave.

We say that a function f ∈ M(R, µ) has an absolutely continuous norm
in X(R, µ) if for every sequence (Ek)

∞
k=1 of µ-measurable subsets of R fulfilling

χEk
→ 0 µ-a.e. we have

lim
k→∞

‖χEk
f‖X(R,µ) = 0.

An easy observation yields that this can be equivalently reformulated by

lim
a→0+

‖χ(0,a)f
∗
µ‖X(0,1) = 0.

Suppose that X(0, 1) and Y (0, 1) are rearrangement-invariant spaces. We say

that X(R, µ) is almost-compactly embedded into Y (R, µ) and write X(R, µ)
∗→֒

Y (R, µ) if
lim
k→∞

sup
‖f‖X(R,µ)≤1

‖χEk
f‖Y (R,µ) = 0
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is satisfied for every sequence (Ek)
∞
k=1 of µ-measurable subsets of R fulfilling

χEk
→ 0 µ-a.e. It can be deduced that this is the same as if

lim
a→0+

sup
‖f‖X(0,1)≤1

‖χ(0,a)f
∗‖Y (0,1).

Note that the relation X(R, µ)
∗→֒ Y (R, µ) always implies X(R, µ) →֒ Y (R, µ).

We shall now give some examples of rearrangement-invariant spaces over (0, 1).
A basic example are the Lebesgue spaces Lp(0, 1), p ∈ [1,∞], consisting of all
f ∈ M(0, 1) for which the functional

‖f‖Lp(0,1) =







(∫ 1

0
|f |p(s) ds

)1/p

p <∞;

ess sups∈(0,1) |f |(s) p = ∞

is finite. Recall that for each rearrangement-invariant space X(0, 1), we have

L∞(0, 1) →֒ X(0, 1) →֒ L1(0, 1). (1.3)

Since none of the conditions L∞(0, 1)
∗→֒ L∞(0, 1) and L1(0, 1)

∗→֒ L1(0, 1) is sat-
isfied (see [13, Remark 4.2]), it follows from (1.3) that there is no rearrangement-

invariant space X(0, 1) for which X(0, 1)
∗→֒ L∞(0, 1) or L1(0, 1)

∗→֒ X(0, 1).
Furthemore, it is well known that the fact that a rearrangement-invariant space
X(0, 1) is different from L∞(0, 1) can be characterized by lims→0+ ϕX(s) = 0.

One can consider also more general sets of functions Lp,q(0, 1) and Lp,q;α(0, 1)
which were studied, e.g., in [5] and [12]. They consists of all f ∈ M(0, 1) for
which

‖f‖Lp,q(0,1) =
∥
∥
∥f ∗(s)s

1
p
− 1

q

∥
∥
∥
Lq(0,1)

<∞

and
‖f‖Lp,q;α(0,1) =

∥
∥
∥f ∗(s)s

1
p
− 1

q (log(e/s))α
∥
∥
∥
Lq(0,1)

<∞,

respectively. Here, we assume that p ∈ [1,∞], q ∈ [1,∞], α ∈ R, and use the con-
vention that 1/∞ = 0. Note that Lp(0, 1) = Lp,p(0, 1) and Lp,q(0, 1) = Lp,q;0(0, 1)
for every such p and q. However, it turns out that under these assumptions on p, q
and α, Lp,q(0, 1) and Lp,q;α(0, 1) do not have to be rearrangement-invariant spaces.
To ensure that Lp,q;α(0, 1) is a rearrangement-invariant space (up to equivalent
norms), we need to assume that one of the following conditions is satisfied:

p = q = 1, α ≥ 0; (1.4)

1 < p <∞; (1.5)

p = ∞, q <∞, α +
1

q
< 0; (1.6)

p = q = ∞, α ≤ 0. (1.7)

In this case, Lp,q(0, 1) is called a Lorentz space and Lp,q;α(0, 1) is called a Lorentz-
Zygmund space.

Suppose that Lp1,q1;α1(0, 1) and Lp2,q2;α2(0, 1) are rearrangement-invariant spaces
(up to equivalent norms). Then

Lp1,q1;α1(0, 1) →֒ Lp2,q2;α2(0, 1)
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holds if and only if p1 > p2, or p1 = p2 and one of the following conditions is
satisfied:

p1 <∞, q1 ≤ q2, α1 ≥ α2;

p1 = ∞, q1 ≤ q2, α1 +
1

q1
≥ α2 +

1

q2
; (1.8)

q2 < q1, α1 +
1

q1
> α2 +

1

q2
.

Let ϕ be a nonnegative nondecreasing concave function in (0, 1). The Lorentz
endpoint space Λϕ(0, 1) is the rearrangement-invariant space consisting of all func-
tions f ∈ M(0, 1) for which

‖f‖Λϕ(0,1) = ϕ(0+)‖f‖L∞(0,1) +

∫ 1

0

f ∗(s)ϕ′(s) ds <∞.

Here, we use the convention 0 · ∞ = 0. Recall that Λϕ(0, 1) has fundamental
function ϕ and, moreover, it is the smallest rearrangement-invariant space having
this fundamental function.

Throughout the thesis we shall adopt the following convention. When a func-
tional ρ is defined on M(R, µ) and f : R → [0,∞] is a µ-measurable function
on R such that f = ∞ on a subset E of R satisfying µ(E) > 0, then we set
ρ(f) = ∞.

1.2 Measure spaces

In this section we describe measure spaces on which we will later study com-
pact Sobolev embeddings. Our most general results, namely those appering in
Chapter 3, correspond to the following situation.

Let n ∈ N and let Ω denote an open connected subset of R
n endowed with a

measure ν satisfying ν(Ω) = 1. Moreover, we assume that there exists a strictly
positive continuous function ω on Ω such that

ν(E) =

∫

E

ω(x) dx (1.9)

for every Lebesgue measurable subset E ⊆ Ω.
For every E as above we define its perimeter in (Ω, ν) by

Pν(E,Ω) =

∫

Ω∩∂ME

ω(x) dHn−1(x),

where ∂ME stands for the essential boundary of E, in the sense of geometric
measure theory (see [11]), and Hn−1 denotes the (n − 1)-dimensional Hausdorff
measure. The isoperimetric function I(Ω,ν) : [0, 1] → [0,∞) is then defined by

I(Ω,ν)(s) = inf

{

Pν(E,Ω) : E ⊆ Ω, s ≤ ν(E) ≤ 1

2

}
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if s ∈ [0, 1/2] and by I(Ω,ν)(s) = I(Ω,ν)(1−s) if s ∈ (1/2, 1]. Throughout the thesis
we shall assume that (Ω, ν) is such that there exists a constant C1 > 0 for which

I(Ω,ν)(s) ≥ C1s, s ∈ [0, 1/2]. (1.10)

Moreover, if we denote n′ = n/(n− 1) when n > 1 and n′ = ∞ when n = 1, we
have

C2s
1
n′ ≥ I(Ω,ν)(s), s ∈ [0, 1/2], (1.11)

for some constant C2 > 0 independent of s ∈ [0, 1/2], see [3, Proposition 5.1].
Throughout the thesis, λn denotes the n-dimensional Lebesgue measure. For

simplicity of notation we shall write Ω instead of (Ω, λn).

Let X(0, 1) be a rearrangement-invariant space. We denote

V mX(Ω, ν) = {u : u is an m-times weakly differentiable function in Ω

such that |∇mu| ∈ X(Ω, ν)},

where ∇mu is the vector of all m-th order weak derivatives of the function u.
According to [3, Proposition 5.2], the inclusion V mX(Ω, ν) ⊆ L1(Ω, ν) is satisfied.
Hence, the expression

‖u‖VmX(Ω,ν) = ‖u‖L1(Ω,ν) + ‖|∇mu|‖X(Ω,ν) (1.12)

defines a norm on V mX(Ω, ν).

Proposition 1.1. The Sobolev space V mX(Ω, ν) equipped with the norm (1.12)
is a Banach space.

Proof. Let (uk)
∞
k=1 be a Cauchy sequence in V mX(Ω, ν). If α = (α1, . . . , αn) is a

multiindex, denote by (Dαuk)
∞
k=1 the sequence consisting of weak derivatives with

respect to the multiindex α of elements of the sequence (uk)
∞
k=1. Furthermore, set

|α| = α1 + · · · + αn. Owing to the completeness of L1(Ω, ν) and X(Ω, ν), there
is a function u on Ω such that uk → u in L1(Ω, ν), and for each multiindex β
satisfying |β| = m there is a function vβ on Ω such that Dβuk → vβ in X(Ω, ν).

Suppose that Ω0 is an open subset of Ω such that Ω0 is compact in Ω. Since ω
is continuous and strictly positive in Ω, there is a constant c > 0 such that ω ≥ c
in Ω0. Hence, for every function w ∈ L1(Ω, ν) we have

‖w‖L1(Ω0) =

∫

Ω0

|w(x)| dx ≤ 1

c

∫

Ω0

|w(x)|ω(x) dx =
1

c
‖w‖L1(Ω0,ν) ≤

1

c
‖w‖L1(Ω,ν).

(1.13)
Thus, uk → u in L1(Ω0) and Dβuk → vβ in L1(Ω0) for each multiindex β fulfilling
|β| = m (in the latter case we are using the fact that X(Ω, ν) →֒ L1(Ω, ν)).

Let k, l ∈ N and let α be a multiindex satisfying 1 ≤ |α| < m. By [9, Remark
5.11.4], by inequality (1.13) and by embedding X(Ω, ν) →֒ L1(Ω, ν), we have

‖Dαuk −Dαul‖L1(Ω0) ≤ C1

(

‖uk − ul‖L1(Ω0) + ‖|∇muk −∇mul|‖L1(Ω0)

)

≤ C1

c

(

‖uk − ul‖L1(Ω,ν) + ‖|∇muk −∇mul|‖L1(Ω,ν)

)

≤ C2

(

‖uk − ul‖L1(Ω,ν) + ‖|∇muk −∇mul|‖X(Ω,ν)

)

= C2‖uk − ul‖VmX(Ω,ν),
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where C1 > 0, C2 > 0 are positive constants independent of k and l. Hence,
(Dαuk)

∞
k=1 is a Cauchy sequence in L1(Ω0). Owing to the completeness of L1(Ω0),

for every such α we can find a function vα such that Dαuk → vα in L1(Ω0).
Passing, if necessary, to a subsequence, we may assume that Dαuk → vα a.e. in
Ω0. Hence, by different choices of Ω0, it is correct to consider vα to be defined
a.e. in the entire Ω. Now, a standard argument (see, e.g., [11, Theorem 1.1.12])
yields that u is m-times weakly differentiable in Ω and Dαu = vα for every α
fulfilling that 1 ≤ |α| ≤ m. Hence, uk → u in V mX(Ω, ν), as required.

Note that it follows from [3, Proposition 5.2] that for every k = 1, 2, . . . , m−
1, we have the inclusion V mX(Ω, ν) ⊆ V kL1(Ω, ν). Hence, since the graph of
the indentity map from V mX(Ω, ν) into V kL1(Ω, ν) is closed, the closed graph
theorem yields that the inclusion is continuous, that is,

V mX(Ω, ν) →֒ V kL1(Ω, ν), k = 1, 2, . . . , m− 1. (1.14)

Thanks to the embedding X(Ω, ν) →֒ L1(Ω, ν), (1.14) holds also for k = m.

We now describe concrete measure spaces we will deal with in Chapter 4,
namely, John domains, Maz’ya classes of Euclidean domains and product proba-
bility spaces.

Let n ∈ N, n ≥ 2. A bounded domain Ω ⊆ R
n endowed with the n-

dimensional Lebesgue measure λn and fulfilling that λn(Ω) = 1 is called a John
domain if the reverse inequality to (1.11) is satisfied, i.e., if there is a constant
C3 > 0 such that

IΩ(s) ≥ C3s
1
n′ , s ∈ [0, 1/2].

Let α ∈ [1/n′, 1]. We denote by Jα the Maz’ya class of all bounded Euclidean
domains Ω ⊆ R

n with λn(Ω) = 1 fulfilling that there is a positive constant C4

such that
IΩ(s) ≥ C4s

α, s ∈ [0, 1/2].

Assume that Φ : [0,∞) → [0,∞) is a strictly increasing function such that it
is twice continuously differentiable and convex in (0,∞),

√
Φ is concave in (0,∞)

and Φ(0) = 0. Define the one-dimensional probability measure µΦ = µΦ,1 by

dµΦ(x) = cΦe
−Φ(|x|) dx, (1.15)

where the constant cΦ > 0 is chosen in such a way that µΦ(R) = 1. We also
define the product measure µΦ,n on R

n, n ≥ 2, by

µΦ,n = µΦ × · · · × µΦ
︸ ︷︷ ︸

n−times

. (1.16)

Then (Rn, µΦ,n) is a probability space for every n ∈ N and we have

dµΦ,n(x) = (cΦ)ne−(Φ(|x1|)+Φ(|x2|)+···+Φ(|xn|)) dx.

Define the function FΦ : R → (0, 1) by

FΦ(t) =

∫ ∞

t

cΦe
−Φ(|r|) dr, t ∈ R,

9



the function IΦ : [0, 1] → [0,∞) by

IΦ(t) = cΦe
−Φ(|F−1

Φ (t)|), t ∈ (0, 1),

and IΦ(0) = IΦ(1) = 0, and the function LΦ : [0, 1] → [0,∞) by

LΦ(t) = tΦ′

(

Φ−1

(

log
2

t

))

, t ∈ (0, 1],

and LΦ(0) = 0. Then the isoperimetric function of (Rn, µΦ,n) satisfies

I(Rn,µΦ,n)(t) ≈ IΦ(t) ≈ LΦ(t), t ∈ [0, 1/2], (1.17)

see [1, Proposition 13 and Theorem 15].
The main example of product probability measures we have just defined is

the n-dimensional Gauss measure

dγn(x) = (2π)−
n
2 e

−|x|2

2 dx,

which can be obtained by setting

Φ(t) =
1

2
t2, t ∈ [0,∞),

into (1.15) (if n=1) or (1.16) (if n > 1).
More generally, measures associated with

Φ(t) =
1

β
tβ , t ∈ [0,∞),

for some β ∈ [1, 2] are also examples of product probability measures. For each
β ∈ [1, 2], such n-dimensional measure is denoted by γn,β and satisfies

dγn,β(x) = cnβe
−|x|β

β dx,

where cβ > 0 is chosen in such a way that γ1,β(R) = 1. We of course have
γn,2 = γn.
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2. Compact operators

Let J : [0, 1] → [0,∞) be a measurable function satisfying

inf
t∈(0,1)

J(t)

t
> 0. (2.1)

We set
Ja = inf

t∈[a,1]
J(t), a ∈ (0, 1), (2.2)

and observe that for every a ∈ (0, 1),

Ja ≥ Ca > 0,

where C = inft∈(0,1) J(t)/t.
Let m ∈ N. We define the operator Hm

J by

Hm
J f(t) =

∫ 1

t

f(s)

J(s)

(∫ s

t

dr

J(r)

)m−1

ds, f ∈ L1(0, 1), t ∈ (0, 1). (2.3)

Consider also the operator HJ defined by

HJf(t) =

∫ 1

t

f(s)

J(s)
ds, f ∈ L1(0, 1), t ∈ (0, 1).

Then
Hm
J = (m− 1)!HJ ◦HJ ◦ · · · ◦HJ

︸ ︷︷ ︸

m−times

, (2.4)

see [3, Remarks 10.1]. Furthermore, observe that whenever f ∈ L1(0, 1) is non-
negative in (0, 1) then Hm

J f is nonincreasing in (0, 1).
Let X(0, 1) be a rearrangement-invariant space. For every f ∈ M(0, 1) define

the functional ‖ · ‖(Xm,J )′(0,1) by

‖f‖(Xm,J )′(0,1) =

∥
∥
∥
∥
∥

1

J(s)

∫ s

0

(∫ s

t

dr

J(r)

)m−1

f ∗(t) dt

∥
∥
∥
∥
∥
X′(0,1)

(2.5)

and let (Xm,J)
′(0, 1) be the collection of all f ∈ M(0, 1) for which ‖f‖(Xm,J )′(0,1) <

∞. Then, according to [3, Proposition 8.1], (Xm,J)
′(0, 1) is a rearrangement-

invariant space and
Hm
J : X(0, 1) → Xm,J(0, 1), (2.6)

where Xm,J(0, 1) denotes the associate space to the space (Xm,J)
′(0, 1). Moreover,

Xm,J(0, 1) is the optimal (i.e., the smallest) rearrangement-invariant space for
which (2.6) is satisfied.

Remark 2.1. (i) The function J defined above does not denote the class of
equivalence of all functions which coincide a.e. Instead of this, we suppose that
J is one particular representative defined everywhere in [0,1].

(ii) In [3], the function J is supposed to be nondecreasing in [0, 1]. However,
this additional assumption has no significance for the proof of (2.4) and (2.6).
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We start by proving that the image byHm
J of the unit ball of each rearrangement-

invariant space is compact in measure.

Lemma 2.2. Let J : [0, 1] → [0,∞) be a measurable function satisfying (2.1) and
let m ∈ N. Suppose that X(0, 1) is a rearrangement-invariant space and (fk)

∞
k=1

is a bounded sequence in X(0, 1). Then there is a subsequence (fkℓ
)∞ℓ=1 of (fk)

∞
k=1

such that (Hm
J fkℓ

)∞ℓ=1 converges pointwise a.e. in (0, 1).

Proof. Because every rearrangement-invariant space X(0, 1) is embedded into
L1(0, 1), the sequence (fk)

∞
k=1 is bounded in L1(0, 1). First, suppose that m = 1.

Let j > 1 be an integer. Thanks to (2.6) and (1.3), we have

HJ : L1(0, 1) → (L1)1,J(0, 1) →֒ L1(0, 1),

so the sequence (HJfk)
∞
k=1 is bounded in L1(0, 1). Therefore, in particular,

(χ(1/j,1)HJfk)
∞
k=1 is bounded in L1(1/j, 1). For every k ∈ N, we have that the

function χ(1/j,1)HJfk is absolutely continuous in (1/j, 1) and

∣
∣(χ(1/j,1)HJfk)

′(t)
∣
∣ =

|fk(t)|
J(t)

≤ |fk(t)|
J1/j

for a.e. t ∈ (1/j, 1). Since (fk)
∞
k=1 is bounded in L1(0, 1), ((χ(1/j,1)HJfk)

′)∞k=1 is
bounded in L1(1/j, 1) and (χ(1/j,1)HJfk)

∞
k=1 is therefore bounded in V 1L1(1/j, 1).

Denote f 1
k = fk, k ∈ N. By induction, for every integer j > 1 we will

construct a subsequence (f jk)
∞
k=1 of the sequence (f j−1

k )∞k=1 such that (HJf
j
k)

∞
k=1

converges a.e. in (1/j, 1). Suppose that, for some j > 1, we have already
found the sequence (f j−1

k )∞k=1. Due to the results of the previous paragraph,
(χ(1/j,1)HJf

j−1
k )∞k=1 is bounded in V 1L1(1/j, 1). Then, thanks to the compact

embedding V 1L1(1/j, 1) →֒→֒ L1(1/j, 1), we can find a subsequence (f jk)
∞
k=1 of

the sequence (f j−1
k )∞k=1 such that (HJf

j
k)

∞
k=1 converges a.e. in (1/j, 1), as required.

Now, the diagonal sequence (HJf
k
k )∞k=1 converges a.e. in (0, 1). This completes

the proof in the case that m = 1.
Finally, suppose that m > 1. Then, due to (2.6) and (1.3),

Hm−1
J : L1(0, 1) → (L1)m−1,J(0, 1) →֒ L1(0, 1),

so (Hm−1
J fk)

∞
k=1 is bounded in L1(0, 1) and the first part of the proof implies that

there is a subsequence (fkℓ
)∞ℓ=1 of (fk)

∞
k=1 such that (HJ(H

m−1
J fkℓ

))∞ℓ=1 converges
a.e. in (0, 1). But (2.4) gives

Hm
J = (m− 1)!HJ ◦HJ ◦ · · · ◦HJ

︸ ︷︷ ︸

m−times

(2.7)

= (m− 1)HJ ◦ ((m− 2)!Hj ◦HJ ◦ · · · ◦HJ
︸ ︷︷ ︸

(m−1)−times

) = (m− 1)HJ ◦Hm−1
J ,

i.e., (Hm
J fkℓ

)∞ℓ=1 converges a.e. in (0, 1).

The main result of this chapter is the following
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Theorem 2.3. Let J : [0, 1] → [0,∞) be a measurable function satisfying (2.1)
and let m ∈ N. Suppose that X(0, 1) and Y (0, 1) are rearrangement-invariant
spaces. Then, except of the case that X(0, 1) = L1(0, 1), Y (0, 1) = L∞(0, 1),
∫ 1

0
1/J(t) dt <∞ and m = 1, the following two conditions are equivalent:

(i) Hm
J : X(0, 1) →→ Y (0, 1);

(ii) lima→0+ sup‖f‖X(0,1)≤1 ‖Hm
J (χ(0,a)|f |)‖Y (0,1) = 0.

In the case that X(0, 1) = L1(0, 1), Y (0, 1) = L∞(0, 1),
∫ 1

0
1/J(t) dt < ∞ and

m = 1, the implication (i) ⇒ (ii) is still true.
Moreover, provided that

Y (0, 1) 6= L∞(0, 1) or

∫ 1

0

dt

J(t)
= ∞, (2.8)

conditions (i) and (ii) are equivalent to

(iii) lima→0+ sup‖f‖X(0,1)≤1 ‖χ(0,a)H
m
J |f |‖Y (0,1) = 0

and

(iv) Xm,J(0, 1)
∗→֒ Y (0, 1).

Proof. (i) ⇒ (ii) For every k ∈ N we can find a nonnegative measurable function
fk in (0, 1) such that ‖fk‖X(0,1) ≤ 1 and

sup
‖f‖X(0,1)≤1

‖Hm
J (χ(0,1/k)|f |)‖Y (0,1) < ‖Hm

J (χ(0,1/k)fk)‖Y (0,1) +
1

k
. (2.9)

Because the sequence (χ(0,1/k)fk)
∞
k=1 is bounded in X(0, 1), the assumption (i)

yields that there is a subsequence (fkℓ
)∞ℓ=1 of (fk)

∞
k=1 such that (Hm

J (χ(0,1/kℓ)fkℓ
))∞ℓ=1

converges to some function f in Y (0, 1). Moreover, the subsequence can be
found in such a way that (Hm

J (χ(0,1/kℓ)fkℓ
))∞ℓ=1 converges to f a.e. in (0, 1). But

Hm
J (χ(0,1/kℓ)fkℓ

) = 0 in (1/kℓ, 1), which implies that Hm
J (χ(0,1/kℓ)fkℓ

) → 0 point-
wise. Thus, f = 0 a.e. in (0, 1). This yields

lim
ℓ→∞

‖Hm
J (χ(0,1/kℓ)fkℓ

)‖Y (0,1) = 0.

Now, the inequality (2.9) gives

lim
ℓ→∞

sup
‖f‖X(0,1)≤1

‖Hm
J (χ(0,1/kℓ)|f |)‖Y (0,1) = 0.

Because the function

a 7→ sup
‖f‖X(0,1)≤1

‖Hm
J (χ(0,a)|f |)‖Y (0,1)

is nondecreasing in (0, 1), we obtain (ii), as required.
(ii) ⇒ (iii) We assume that (2.8) is satisfied. Let ε > 0. Due to (ii), we can

find a ∈ (0, 1) such that

sup
‖f‖X(0,1)≤1

‖Hm
J (χ(0,a)|f |)‖Y (0,1) <

ε

2
.
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Once we show that there is b ∈ (0, 1) such that

sup
‖f‖X(0,1)≤1

‖χ(0,b)H
m
J (χ(a,1)|f |)‖Y (0,1) <

ε

2
, (2.10)

it will be easy to complete the proof. Indeed, we have

sup
‖f‖X(0,1)≤1

‖χ(0,b)H
m
J |f |‖Y (0,1)

≤ sup
‖f‖X(0,1)≤1

‖χ(0,b)H
m
J (χ(0,a)|f |)‖Y (0,1) + sup

‖f‖X(0,1)≤1

‖χ(0,b)H
m
J (χ(a,1)|f |)‖Y (0,1) < ε.

Then, using that the function

b 7→ sup
‖f‖X(0,1)≤1

‖χ(0,b)H
m
J |f |‖Y (0,1)

is nondecreasing in (0, 1), we obtain (iii), as required.
It remains to find b ∈ (0, 1) such that (2.10) is satisfied. For every function

f ∈ M(0, 1) fulfilling ‖f‖X(0,1) ≤ 1 and for every t ∈ (0, a) we have

Hm
J (χ(a,1)|f |)(t) =

∫ 1

a

|f(s)|
J(s)

(∫ s

t

dr

J(r)

)m−1

ds

≤ 1

Ja

(∫ 1

t

dr

J(r)

)m−1 ∫ 1

a

|f(s)| ds

≤ 1

Ja

(∫ 1

t

dr

J(r)

)m−1

‖f‖L1(0,1)

≤ C

Ja

(∫ 1

t

dr

J(r)

)m−1

‖f‖X(0,1)

≤ C

Ja

(∫ 1

t

dr

J(r)

)m−1

, (2.11)

where C > 0 is the constant from the embedding X(0, 1) →֒ L1(0, 1).
Now, suppose that

∫ 1

0

dt

J(t)
<∞. (2.12)

Then for every f and t as above we have

Hm
J (χ(a,1)|f |)(t) ≤

C

Ja

(∫ 1

t

dr

J(r)

)m−1

≤ C

Ja

(∫ 1

0

dr

J(r)

)m−1

= D.

Since (2.12) is in progress, we necessarily have Y (0, 1) 6= L∞(0, 1). So, as it was
pointed out in Section 1.1, there is b ∈ (0, a) such that ‖χ(0,b)‖Y (0,1) < ε/2D. This
implies

sup
‖f‖X(0,1)≤1

‖χ(0,b)H
m
J (χ(a,1)|f |)‖Y (0,1) ≤ D‖χ(0,b)‖Y (0,1) <

ε

2
.

Finally, we will discuss the case when

∫ 1

0

dt

J(t)
= ∞. (2.13)
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We can find a1 ∈ (0, a) such that

∫ 1

t

dr

J(r)
≥ C

Ja

for every t ∈ (0, a1). Then, owing to (2.11), for any such t and for every f from
the unit ball of X(0, 1), we have

Hm
J (χ(a,1)|f |)(t) ≤

C

Ja

(∫ 1

t

dr

J(r)

)m−1

≤
(∫ 1

t

dr

J(r)

)m

. (2.14)

Choose c > 0 such that ‖χ(0,1)c‖X(0,1) = 1. Then

lim
d→0+

‖Hm
J (χ(0,d)c)‖Y (0,1) ≤ lim

d→0+

sup
‖f‖X(0,1)≤1

‖Hm
J (χ(0,d)|f |)‖Y (0,1) = 0,

so
lim
d→0+

‖Hm
J (χ(0,d))‖Y (0,1) = 0. (2.15)

Fix d ∈ (0, 1) and t ∈ (0, d). Denote

ϕ(s) =

∫ s

t

dy

J(y)
, s ∈ (t, d).

Then ϕ is an increasing Lipschitz function in (t, d), because |ϕ′(s)| = 1/J(s) ≤
1/Jt for a.e. s ∈ (t, d). So, due to the change of variables theorem,

Hm
J (χ(0,d))(t) = χ(0,d)(t)

∫ d

t

1

J(s)

(∫ s

t

dy

J(y)

)m−1

ds

= χ(0,d)(t)

∫ d

t

ϕ′(s) (ϕ(s))m−1 ds

= χ(0,d)(t)

∫ ϕ(d)

ϕ(t)

rm−1 dr

=
1

m
χ(0,d)(t)(ϕ(d))m =

1

m
χ(0,d)(t)

(∫ d

t

dy

J(y)

)m

. (2.16)

Combining this with (2.15), we obtain

lim
d→0+

∥
∥
∥
∥
∥
χ(0,d)(t)

(∫ d

t

dy

J(y)

)m
∥
∥
∥
∥
∥
Y (0,1)

= 0.

Thus, we can find a2 ∈ (0, a1) such that

∥
∥
∥
∥
χ(0,a2)(t)

(∫ a2

t

dy

J(y)

)m∥∥
∥
∥
Y (0,1)

<
ε

2m+1
. (2.17)

Thanks to (2.13), there is b ∈ (0, a2) such that for every t ∈ (0, b) we have

(∫ 1

t

dr

J(r)

)m

=

(∫ a2

t

dr

J(r)
+

∫ 1

a2

dr

J(r)

)m

≤
(

2

∫ a2

t

dr

J(r)

)m

.
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This inequality together with (2.14) and (2.17) gives

sup
‖f‖X(0,1)≤1

‖χ(0,b)H
m
J (χ(a,1)|f |)‖Y (0,1) ≤ 2m

∥
∥
∥
∥
χ(0,a2)(t)

(∫ a2

t

dr

J(r)

)m∥∥
∥
∥
Y (0,1)

<
ε

2
.

(iii) ⇒ (iv) Using the definition of the associate norm and the Fubini theorem,
we get

lim
a→0+

sup
‖f‖Y ′(0,1)≤1

‖χ(0,a)f
∗‖(Xm,J )′(0,1)

= lim
a→0+

sup
‖f‖Y ′(0,1)≤1

∥
∥
∥
∥
∥

1

J(s)

∫ s

0

χ(0,a)(t)f
∗(t)

(∫ s

t

dy

J(y)

)m−1

dt

∥
∥
∥
∥
∥
X′(0,1)

= lim
a→0+

sup
‖f‖Y ′(0,1)≤1

sup
‖g‖X(0,1)≤1

∫ 1

0

|g(s)|
J(s)

∫ s

0

χ(0,a)(t)f
∗(t)

(∫ s

t

dy

J(y)

)m−1

dt ds

= lim
a→0+

sup
‖f‖Y ′(0,1)≤1

sup
‖g‖X(0,1)≤1

∫ 1

0

χ(0,a)(t)f
∗(t)

∫ 1

t

|g(s)|
J(s)

(∫ s

t

dy

J(y)

)m−1

ds dt

= lim
a→0+

sup
‖g‖X(0,1)≤1

sup
‖f‖Y ′(0,1)≤1

∫ 1

0

χ(0,a)(t)f
∗(t)Hm

J |g|(t) dt

= lim
a→0+

sup
‖g‖X(0,1)≤1

sup
‖f‖Y ′(0,1)≤1

∫ 1

0

f ∗(t)
(
χ(0,a)H

m
J |g|

)∗
(t) dt

= lim
a→0+

sup
‖g‖X(0,1)≤1

‖χ(0,a)H
m
J |g|‖Y (0,1) = 0.

Note that the second last equality holds because χ(0,a)H
m
J |g| is nonincreasing in

(0, 1) for every a ∈ (0, 1) and g ∈ X(0, 1). Thus, we have proved that Y ′(0, 1)
∗→֒

(Xm,J)
′(0, 1), which is a condition equivalent to (iv), see [6, Section 4, property

5].
(iv) ⇒ (i) Suppose that (fk)

∞
k=1 is a sequence bounded in X(0, 1). According

to Lemma 2.2, there is a subsequence (fkℓ
)∞ℓ=1 of the sequence (fk)

∞
k=1 such that

(Hm
J fkℓ

)∞ℓ=1 converges to some function f a.e. in (0, 1). Moreover, (2.6) implies
that (Hm

J fkℓ
)∞ℓ=1 is bounded in Xm,J(0, 1). Hence, by the Fatou lemma,

‖f‖Xm,J(0,1) ≤ lim inf
ℓ→∞

‖Hm
J fkℓ

‖Xm,J (0,1) <∞,

so, f ∈ Xm,J(0, 1). Thus, (Hm
J fkℓ

− f)∞ℓ=1 is bounded in Xm,J(0, 1) and, by
using (iv) and [13, Theorem 3.1], we get that (Hm

J fkℓ
− f) → 0 in Y (0, 1), i.e.,

Hm
J fkℓ

→ f in Y (0, 1). Therefore, Hm
J : X(0, 1) →→ Y (0, 1).

(ii) ⇒ (i) This implication has already been proved in the case that (2.8) is

satisfied. Thus, we can suppose that Y (0, 1) = L∞(0, 1) and
∫ 1

0
1/J(t) dt <∞.

We first observe that it is enough to show that for every a ∈ (0, 1), the operator
Hm
J,a : f 7→ Hm

J (χ(a,1)f) is compact from X(0, 1) into L∞(0, 1). Indeed, thanks to
(ii) and to the fact that |Hm

J (χ(0,a)f)| ≤ Hm
J (χ(0,a)|f |) for every f ∈ X(0, 1) and

a ∈ (0, 1), we have

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
J f −Hm

J,af‖L∞(0,1) = lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
J (χ(0,a)f)‖L∞(0,1)

≤ lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
J (χ(0,a)|f |)‖L∞(0,1) = 0,
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so Hm
J will be a norm limit of compact operators, and thus itself a compact

operator.
Let a ∈ (0, 1) and let f be a measurable function on (0, 1) satisfying ‖f‖X(0,1) ≤

1. Consider Hm
J,af = Hm

J (χ(a,1)f) to be defined by (2.3) in the entire [0, 1]. Such
a definition is correct since the integral in (2.3) is convergent for every t ∈ [0, 1].
Indeed,

|Hm
J,af(t)| ≤

∫ 1

t

χ(a,1)(s)|f(s)|
J(s)

(∫ s

t

dr

J(r)

)m−1

ds

≤
∫ 1

a

|f(s)|
J(s)

(∫ 1

0

dr

J(r)

)m−1

ds

≤ 1

Ja

(∫ 1

0

dr

I(r)

)m−1

‖f‖L1(0,1)

≤ C

Ja

(∫ 1

0

dr

I(r)

)m−1

‖f‖X(0,1) ≤ D (2.18)

for every t ∈ [0, 1], where C > 0, D > 0 are as in the proof of implication (ii)
⇒ (iii). Inequality (2.18) also implies that the image by Hm

J,a of the unit ball of
X(0, 1) is equibounded in [0, 1].

Suppose that 0 ≤ t1 < t2 ≤ 1. We have

|Hm
J,af(t1) −Hm

J,af(t2)|

=

∣
∣
∣
∣
∣

∫ 1

t1

χ(a,1)(s)f(s)

J(s)

(∫ s

t1

dr

J(r)

)m−1

ds−
∫ 1

t2

χ(a,1)(s)f(s)

J(s)

(∫ s

t2

dr

J(r)

)m−1

ds

∣
∣
∣
∣
∣

≤
∫ t2

t1

χ(a,1)(s)|f(s)|
J(s)

(∫ s

t1

dr

J(r)

)m−1

ds

+

∫ 1

t2

χ(a,1)(s)|f(s)|
J(s)

((∫ s

t1

dr

J(r)

)m−1

−
(∫ s

t2

dr

J(r)

)m−1
)

ds. (2.19)

Assume that m > 1. Then

|Hm
J,af(t1) −Hm

J,af(t2)| ≤
1

Ja

(∫ t2

t1

dr

J(r)

)m−1

‖f‖L1(0,1)

+
1

Ja

∫ 1

t2

|f(s)|
(∫ s

t1

dr

J(r)
−
∫ s

t2

dr

J(r)

)(m−2∑

i=0

(∫ s

t1

dr

J(r)

)i(∫ s

t2

dr

J(r)

)m−2−i
)

ds

≤ C

Ja

(∫ t2

t1

dr

J(r)

)m−1

‖f‖X(0,1) +
m− 1

Ja

(∫ 1

0

dr

J(r)

)m−2 ∫ t2

t1

dr

J(r)
‖f‖L1(0,1)

≤ C ′

∫ t2

t1

dr

J(r)
,

where C > 0, C ′ > 0 are constants independent of f . Thanks to the absolute
continuity of the Lebesgue integral, the last expression goes to 0 when t2 − t1
tends to 0.

Let m = 1. We need the additional assumption X(0, 1) 6= L1(0, 1) which
implies that X ′(0, 1) 6= L∞(0, 1). Then, using (2.19) and the Hölder inequality,
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we deduce that

sup
‖f‖X(0,1)≤1

|Hm
J,af(t1) −Hm

J,af(t2)| ≤
1

Ja
sup

‖f‖X(0,1)≤1

∫ t2

t1

|f(s)| ds

≤ 1

Ja
sup

‖f‖X(0,1)≤1

‖f‖X(0,1)‖χ(t1,t2)‖X′(0,1)

=
1

Ja
‖χ(t1,t2)‖X′(0,1) =

1

Ja
‖χ(0,t2−t1)‖X′(0,1),

which goes to 0 when t2 − t1 tends to 0. This proves the equicontinuity. Arzela-
Ascoli theorem now yields that Hm

J,a maps the unit ball of X(0, 1) into a relatively
compact set in C([0, 1]). Because for every f ∈ X(0, 1), the norm of Hm

J,af in
C([0, 1]) coincides with its norm in L∞(0, 1), the operator Hm

J,a is compact from
X(0, 1) into L∞(0, 1). The proof is complete.

Remark 2.4. It is easy to observe that the only function having an abso-
lutely continuous norm in L∞(0, 1) is the constant function 0. Thus, none of
the conditions (iii) and (iv) from the statement of Theorem 2.3 can hold with

Y (0, 1) = L∞(0, 1). In particular, if
∫ 1

0
1/J(t) dt = ∞ and the condition (i) (or,

equivalently, (ii)) is satisfied, we have Y (0, 1) 6= L∞(0, 1). In this sense, it would
be equivalent to replace the assumption (2.8) just with Y (0, 1) 6= L∞(0, 1).

Furthermore, one can observe that in the proof of (iii) ⇒ (iv) and (iv) ⇒ (i),
we make no use of (2.8). However, these two implications have no significance in
the case that Y (0, 1) = L∞(0, 1), because none of the assumptions (iii) and (iv)
can be satisfied.

Example 2.5. Suppose that J : [0, 1] → [0,∞) is a measurable function satisfy-
ing (2.1). We will show that, in general, the condition

lim
a→0+

sup
‖f‖L1(0,1)≤1

‖HJ(χ(0,a)|f |)‖L∞(0,1) = 0 (2.20)

does not imply
HJ : L1(0, 1) →→ L∞(0, 1). (2.21)

Indeed, for an arbitrary β > 0, set J(t) = t−β, t ∈ (0, 1], and J(0) = 0. Then J
is measurable in [0, 1] and satisfies (2.1) as well as (2.20), because

lim
a→0+

sup
‖f‖L1(0,1)≤1

‖HJ(χ(0,a)|f |)‖L∞(0,1) = lim
a→0+

sup
‖f‖L1(0,1)≤1

∫ a

0

|f(s)|sβ ds

= lim
a→0+

∥
∥χ(0,a)(s)s

β
∥
∥
L∞(0,1)

= lim
a→0+

aβ = 0.

Let t ∈ (0, 1/2). Define the function ft by ft(s) = χ(1−t,1)(s)1/t, s ∈ (0, 1).
Then ‖ft‖L1(0,1) = 1. We can consider HJft to be a continuous function defined
in the entire [0, 1]. Then we have

HJft(1 − t) −HJft(1) =

∫ 1

1−t

χ(1−t,1)(s)
sβ

t
ds ≥ 1

2β

∫ 1

1−t

χ(1−t,1)(s)
1

t
ds =

1

2β
,

so the image by HJ of the unit ball of X(0, 1) is not equicontinuous in [0, 1],
hence, due to the Arzela-Ascoli theorem, it is not relatively compact in C([0, 1]).
Because the norm of HJf in C([0, 1]) coincides with its norm in L∞(0, 1) for every
f ∈ L1(0, 1), the condition (2.21) cannot be satisfied.
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Suppose that a function J : [0, 1] → [0,∞) is nondecreasing and satisfies (2.1)
and ∫ 1

0

dt

J(t)
<∞. (2.22)

Define the function

Ψ(t) =

∫ t

0

ds

J(s)
, t ∈ (0, 1).

Since Ψ is nonnegative, nondecreasing and concave in (0, 1), we can consider the
rearrangement-invariant space AJ(0, 1) = ΛΨ(0, 1). The main properties of this
space are described in the following

Lemma 2.6. Let J : [0, 1] → [0,∞) be a nondecreasing function satisfying (2.1)
and (2.22). Then for every f ∈ M(0, 1) we have

‖f‖AJ(0,1) =

∫ 1

0

f ∗(t)

J(t)
dt.

Furthermore, the rearrangement-invariant space AJ(0, 1) is different from L∞(0, 1)
and fulfills

HJ : AJ(0, 1) → L∞(0, 1).

Proof. Due to the absolute continuity of the Lebesgue integral,

lim
t→0+

Ψ(t) = lim
t→0+

∫ t

0

ds

J(s)
= 0. (2.23)

Hence, AJ(0, 1) = ΛΨ(0, 1) is different from L∞(0, 1). Furthemore, for every
f ∈ M(0, 1) we have

‖f‖AJ(0,1) = ‖f‖ΛΨ(0,1) = ‖f‖L∞(0,1) lim
t→0+

Ψ(t) +

∫ 1

0

f ∗(t)Ψ′(t) dt =

∫ 1

0

f ∗(t)

J(t)
dt.

Finally, using the Hardy-Littlewood inequality (1.1), we obtain

‖HJf‖L∞(0,1) =

∥
∥
∥
∥

∫ 1

t

f(s)

J(s)
ds

∥
∥
∥
∥
L∞(0,1)

≤
∥
∥
∥
∥

∫ 1

t

|f(s)|
J(s)

ds

∥
∥
∥
∥
L∞(0,1)

=

∫ 1

0

|f(s)|
J(s)

ds ≤
∫ 1

0

f ∗(s)

J(s)
ds = ‖f‖AJ(0,1) (2.24)

for every f ∈ AJ(0, 1), so, HJ : AJ(0, 1) → L∞(0, 1). This completes the proof.

The previous lemma shall be now applied to obtain further characterizations
of compactness of the operator Hm

J from a rearrangement-invariant space X(0, 1)
into L∞(0, 1).

Theorem 2.7. Let J : [0, 1] → [0,∞) be a nondecreasing function satisfying (2.1)
and (2.22) and let m ∈ N. Suppose that X(0, 1) is a rearrangement-invariant
space. Then the following two conditions are equivalent:

(i) Hm
J : X(0, 1) →→ L∞(0, 1);

(ii) lima→0+ sup‖f‖X(0,1)≤1 ‖Hm
J (χ(0,a)|f |)‖L∞(0,1) = 0.
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Moreover, if m = 1, conditions (i) and (ii) are equivalent to

(iii) X(0, 1)
∗→֒ AJ(0, 1);

and if m > 1, they are equivalent to

(iv) Hm−1
J : X(0, 1) →→ AJ(0, 1).

Proof. To show that (i) ⇔ (ii) it suffices to prove the implication (ii) ⇒ (i) in
the particular case X(0, 1) = L1(0, 1) and m = 1, because the rest of the proof
follows from Theorem 2.3.

Suppose that (ii) holds with X(0, 1) = L1(0, 1) and m = 1. Then

0 = lim
a→0+

sup
‖f‖L1(0,1)≤1

‖HJ(χ(0,a)|f |)‖L∞(0,1) = lim
a→0+

sup
‖f‖L1(0,1)≤1

∫ a

0

|f(s)|
J(s)

ds

= lim
a→0+

∥
∥
∥
χ(0,a)

J

∥
∥
∥
L∞(0,1)

= sup
t∈(0,1]

1

J(t)
,

because 1/J is nonincreasing in [0, 1]. But 1/J > 0 in (0, 1], so the assumption
(ii) cannot be satisfied in this situation. The proof of (i) ⇔ (ii) is complete.

(ii) ⇔ (iii) We suppose that m = 1. First, observe that for every g ∈ M(0, 1)
we have

‖g‖AJ(0,1) =

∫ 1

0

g∗(s)

J(s)
ds =

∥
∥
∥
∥

∫ 1

t

g∗(s)

J(s)
ds

∥
∥
∥
∥
L∞(0,1)

= ‖HJg
∗‖L∞(0,1) . (2.25)

Let a ∈ (0, 1). Then

sup
‖f‖X(0,1)≤1

‖χ(0,a)f
∗‖AJ(0,1) = sup

‖f‖X(0,1)≤1

∥
∥HJ(χ(0,a)f

∗)
∥
∥
L∞(0,1)

≤ sup
‖f‖X(0,1)≤1

∥
∥HJ(χ(0,a)|f |)

∥
∥
L∞(0,1)

,

where the inequality holds thanks to the fact that whenever a measurable function
f belongs to the unit ball of the space X(0, 1), then also f ∗ = |f ∗| has the same
property. Conversely, using (2.24) we obtain that for every a ∈ (0, 1),

sup
‖f‖X(0,1)≤1

∥
∥HJ(χ(0,a)|f |)

∥
∥
L∞(0,1)

≤ sup
‖f‖X(0,1)≤1

‖χ(0,a)|f |‖AJ(0,1)

= sup
‖f‖X(0,1)≤1

‖χ(0,a)(χ(0,a)|f |)∗‖AJ (0,1)

≤ sup
‖f‖X(0,1)≤1

‖χ(0,a)f
∗‖AJ(0,1).

Hence,

lim
a→0+

sup
‖f‖X(0,1)≤1

‖χ(0,a)f
∗‖AJ(0,1) = lim

a→0+

sup
‖f‖X(0,1)≤1

∥
∥HJ(χ(0,a)|f |)

∥
∥
L∞(0,1)

.

This establishes the equivalence of (ii) and (iii).
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(ii) ⇔ (iv) We suppose that m > 1. Then

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm−1
J (χ(0,a)|f |)‖AJ(0,1)

= lim
a→0+

sup
‖f‖X(0,1)≤1

‖HJ(H
m−1
J (χ(0,a)|f |))∗‖L∞(0,1)

= lim
a→0+

sup
‖f‖X(0,1)≤1

‖HJ(H
m−1
J (χ(0,a)|f |))‖L∞(0,1)

=
1

m− 1
lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
J (χ(0,a)|f |)‖L∞(0,1). (2.26)

Note that the first equality can be obtained by using (2.25) and the third equality
holds thanks to (2.7).

Thus, (ii) is equivalent to

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm−1
J (χ(0,a)|f |)‖AJ(0,1) = 0. (2.27)

Since AJ(0, 1) 6= L∞(0, 1) (see Lemma 2.6), Theorem 2.3 implies that (2.27) is
equivalent to (iv), as required.

Theorem 2.3 and Theorem 2.7 yield altogether the following

Corollary 2.8. Let J : [0, 1] → [0,∞) be a nondecreasing function satisfy-
ing (2.1) and let m ∈ N. Suppose that X(0, 1) and Y (0, 1) are rearrangement-
invariant spaces. Then

Hm
J : X(0, 1) →→ Y (0, 1)

is satisfied if and only if

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
J (χ(0,a)|f |)‖Y (0,1) = 0.
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3. Main results

Let (Ω, ν) be as in Section 1.2. The results from Chapter 2 shall be now applied
to a function I : [0, 1] → [0,∞) satisfying

I(Ω,ν)(t) ≥ cI(ct), t ∈ [0, 1/2], (3.1)

for some constant c ∈ (0, 1) and fulfilling certain regularity assumptions, which
are encoded in the notion of admissibility introduced in [3].

Definition 3.1. We say that a function I : [0, 1] → [0,∞) is admissible if it is
nondecreasing in [0, 1], I(t)/t is strictly positive and nonincreasing in (0, 1] and
one of the following conditions is satisfied:

(a) There exists k ∈ N and a constant A > 0 such that for every t ∈ (0, 1),

1

t

∫ t

0

(
I(s)

s

)k

ds ≤ A

(
I(t)

t

)k

, (3.2)

and, at the same time,

inf
t∈(0,1)

I(t)k+1

tk
> 0. (3.3)

(b) For every m ∈ N there exists a constant Am > 0 such that for every
t ∈ (0, 1),

1

t

∫ t

0

(
I(s)

s

)m

ds ≤ Am

(
I(t)

t

)m

.

Remark 3.2. Each admissible function I is nondecreasing in [0, 1] and satisfies

inf
t∈(0,1)

I(t)

t
≥ I(1) > 0.

Hence, all results from Chapter 2 can be indeed applied to the choice J = I.

Examples 3.3. (i) Let α ∈ (0, 1]. Then the function I(s) = sα, s ∈ [0, 1], is
admissible. Indeed, I is obviously nondecreasing in [0, 1] and I(s)/s is positive and
nonincreasing in (0, 1]. Moreover, if α ∈ (0, 1) then (3.2) is satisfied if and only if
k < 1/(1 − α) and (3.3) is fulfilled if and only if k ≥ α/(1 − α) = 1/(1 − α) − 1.
Since there is always a positive integer in the interval [ 1

1−α
− 1, 1

1−α
), condition

(a) is satisfied. On the other hand, if α = 1 then, clearly, I fulfills (b).
(ii) The function I fulfilling I(s) = s

√

log 2/s, s ∈ (0, 1], and I(0) = 0, is
admissible. Indeed, it is not hard to observe that I is nondecreasing in [0, 1] and
that I(s)/s is nonincreasing in (0, 1]. Furthermore, I satisfies (b) since for every
m ∈ N,

1

t

∫ t

0

(

log
2

s

)m
2

ds ≈
(

log
2

t

)m
2

, t ∈ (0, 1),

up to multiplicative constants independent of t ∈ (0, 1).
(iii) Suppose thatm > 1 is an integer and set α = 1−1/m. Let β < 0 and let I

be the function defined by I(s) = sα(log 2/s)β, s ∈ (0, 1], and by I(0) = 0. Then
there is δ > 0 such that I is nondecreasing in [0, δ] and I(s)/s is nonincreasing in
(0, δ]. However, we will show that I is not equivalent to an admissible function.
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Since β < 0, condition (3.3) is satisfied if and only if α(k + 1) − k < 0, or,
equivalently, k > α/(1−α) = m−1. Furthermore, a necessary condition for (3.2)
to be fulfilled is that

∫ t

0

(
I(s)

s

)k

ds =

∫ t

0

s(α−1)k

(

log
2

s

)βk

ds <∞, t ∈ (0, 1),

which holds if and only if k < 1/(1 − α) = m, or k = 1/(1 − α) = m and
βm < −1. Hence, (3.2) and (3.3) cannot be satisfied simultaneously unless
k = m and βm < −1. However, in this case we have for every t ∈ (0, 1)

1

t

∫ t

0

(
I(s)

s

)m

ds =
1

t

∫ t

0

(
log 2

s

)βm

s
ds ≈ 1

t

(

log
2

t

)βm+1

=

(
I(t)

t

)m

log
2

t
,

so, (3.3) is not satisfied. Hence, (a) is not true. Moreover, (b) is also not satisfied
since (3.2) does not hold for k > m.

The following result, which will be crucial for us, is a consequence of [3,
Theorem 3.3 and Theorem 3.4].

Theorem 3.4. Assume that (Ω, ν) is as in Section 1.2 and I : [0, 1] → [0,∞) is
an admissible function satisfying (3.1). Let m ∈ N and let X(0, 1) and Y (0, 1) be
rearrangement-invariant spaces. Then the condition

Hm
I : X(0, 1) → Y (0, 1)

implies
V mX(Ω, ν) →֒ Y (Ω, ν).

In particular, we have
V mX(Ω, ν) →֒ Xm,I(Ω, ν).

We shall now prove a result in the spirit of Theorem 3.4 concerning compact
Sobolev embeddings.

Theorem 3.5. Assume that (Ω, ν) is as in Section 1.2 and I : [0, 1] → [0,∞) is
an admissible function satisfying (3.1). Let m ∈ N and let X(0, 1) and Y (0, 1) be
rearrangement-invariant spaces. Then, provided that

Hm
I : X(0, 1) →→ Y (0, 1), (3.4)

or, equivalently,

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
I (χ(0,a)|f |)‖Y (0,1) = 0, (3.5)

we have
V mX(Ω, ν) →֒→֒ Y (Ω, ν).

Our proof starts with the following lemma which shows that the unit ball of
each Sobolev space V mX(Ω, ν) is compact in measure.
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Lemma 3.6. Assume that (Ω, ν) is as in Section 1.2. Let m ∈ N and let X(0, 1)
be a rearrangement-invariant space. Then every sequence (uk)

∞
k=1 bounded in

V mX(Ω, ν) contains a subsequence (ukℓ
)∞ℓ=1 converging ν-a.e. in Ω. In particular,

the subsequence (ukℓ
)∞ℓ=1 is convergent in measure.

Proof. For every x ∈ Ω we can find a ball Bx centered in x such that Bx ⊆ Ω.
Then Ω ⊆ ∪x∈ΩBx and, due to the separability of Ω, there is a sequence (xj)

∞
j=1 of

points in Ω such that Ω ⊆ ∪∞
j=1Bxj

. As it was pointed out in (1.14) for k = 1, the
sequence (uk)

∞
k=1 is bounded in V 1L1(Ω, ν). Moreover, for every j ∈ N, (uk)

∞
k=1

is bounded in V 1L1(Bxj
, ν). Since Bxj

is compact in Ω and ω is strictly positive
and continuous in Ω, there is a constant cj > 0 such that ω ≥ cj in Bxj

. Thus,
for every k ∈ N,

‖uk‖V 1L1(Bxj ,ν)
=

∫

Bxj

(|uk(x)| + |∇uk(x)|)ω(x) dx

≥ cj

∫

Bxj

(|uk| + |∇uk|) dx = cj‖uk‖V 1L1(Bxj ).

Hence, (uk)
∞
k=1 is bounded in V 1L1(Bxj

). Denote u0
k = uk, k ∈ N. By induction,

for every j ∈ N we will construct a subsequence (ujk)
∞
k=1 of the sequence (uj−1

k )∞k=1

converging a.e. in Bxj
. Suppose that, for some j ∈ N, we have already found the

sequence (uj−1
k )∞k=1. Since (uj−1

k )∞k=1 is bounded in V 1L1(Bxj
) and the compact

embedding V 1L1(Bxj
) →֒→֒ L1(Bxj

) holds, we can find a subsequence (ujk)
∞
k=1 of

(uj−1
k )∞k=1 converging in L1(Bxj

). Passing, if necessary, to another subsequence,

(ujk)
∞
k=1 can be found in such a way that it converges a.e. in Bxj

. Now, the diagonal
sequence (ukk)

∞
k=1 converges a.e. (or, what is the same, ν-a.e.) in ∪∞

j=1Bxj
= Ω,

as required. Furthermore, it is a well known fact that each sequence converging
ν-a.e. is convergent in measure.

Proof of Theorem 3.5. Conditions (3.4) and (3.5) are equivalent according to
Corollary 2.8.

First, suppose that

Y (0, 1) 6= L∞(0, 1) or

∫ 1

0

ds

I(s)
= ∞.

Then, due to Theorem 2.3, (3.4) and (3.5) imply Xm,I(0, 1)
∗→֒ Y (0, 1), or, what

is the same, Xm,I(Ω, ν)
∗→֒ Y (Ω, ν).

Assume that (uk)
∞
k=1 is a sequence bounded in V mX(Ω, ν). Due to Lemma 3.6,

we can find its subsequence (ukℓ
)∞ℓ=1 which converges to some function u ν-a.e.

in Ω. Because V mX(Ω, ν) →֒ Xm,I(Ω, ν) (Theorem 3.4), (ukℓ
)∞ℓ=1 is bounded in

Xm,I(Ω, ν). Hence, by the Fatou lemma,

‖u‖Xm,I(Ω,ν) ≤ lim inf
ℓ→∞

‖ukℓ
‖Xm,I(Ω,ν) <∞,

so u ∈ Xm,I(Ω, ν) and (ukℓ
−u)∞ℓ=1 is therefore bounded in Xm,I(Ω, ν) as well. We

have Xm,I(Ω, ν)
∗→֒ Y (Ω, ν), so, according to [13, Theorem 3.1], (ukℓ

− u) → 0 in
Y (Ω, ν), i.e., ukℓ

→ u in Y (Ω, ν). Thus, V mX(Ω, ν) →֒→֒ Y (Ω, ν).
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Now, assume that Y (0, 1) = L∞(0, 1) and
∫ 1

0
1/I(s) ds < ∞. We start with

the case that m = 1. Then, due to Theorem 2.7, conditions (3.4) and (3.5) imply

X(0, 1)
∗→֒ AI(0, 1). (3.6)

Moreover, Lemma 2.6 together with Theorem 3.4 give that

V 1AI(Ω, ν) →֒ L∞(Ω, ν). (3.7)

Let u ∈ V 1AI(Ω, ν) be a nonnegative function fulfilling med(u) = 0, that is,

ν({x ∈ Ω : u > 0}) ≤ 1

2
.

Then, using (3.7), [3, Proposition 5.2] and the fact that AI(Ω, ν) →֒ L1(Ω, ν), we
get

‖u‖L∞(Ω,ν) ≤ C1(‖|∇u|‖AI(Ω,ν) + ‖u‖L1(Ω,ν))

≤ C1(‖|∇u|‖AI(Ω,ν) + C2‖|∇u|‖L1(Ω,ν)) ≤ C3‖|∇u|‖AI(Ω,ν), (3.8)

where C1, C2, C3 are positive constants independent of u.
Let (uk)

∞
k=1 be a sequence in V 1X(Ω, ν) such that

‖uk‖V 1X(Ω,ν) ≤ 1, k ∈ N. (3.9)

Due to Lemma 3.6, there is a subsequence (vk)
∞
k=1 of the sequence (uk)

∞
k=1 which

converges in measure to some function v. Choose ε > 0 arbitrarily. Due to (3.6),
we can find δ ∈ (0, 1/2) such that

sup
‖f‖X(0,1)≤1

‖χ(0,δ)f
∗‖AI(0,1) <

ε

4C3
. (3.10)

Since (vk)
∞
k=1 converges to v in measure, there exists k0 ∈ N such that whenever

k ≥ k0, we have ν({x ∈ Ω : |vk(x) − v(x)| > ε/4}) < δ/2. Because for every
k, ℓ ≥ k0,

{x ∈ Ω : |vk(x) − vℓ(x)| > ε/2}
⊆ {x ∈ Ω : |vk(x) − v(x)| > ε/4} ∪ {x ∈ Ω : |vℓ(x) − v(x)| > ε/4},

we deduce that

ν({x ∈ Ω : |vk(x) − vℓ(x)| > ε/2}) (3.11)

≤ ν({x ∈ Ω : |vk(x) − v(x)| > ε/4}) + ν({x ∈ Ω : |vℓ(x) − v(x)| > ε/4}) < δ.

Observe that

|vk − vℓ| = min{|vk − vℓ|, ε/2} + max{|vk − vℓ| − ε/2, 0}. (3.12)

Let Ω′ be an open subset of Ω such that Ω′ is compact in Ω. Since vk, vl, |∇vk|
and |∇vl| are locally integrable in Ω, we have vk ∈ V 1,1(Ω′) and vl ∈ V 1,1(Ω′).
Obviously, the constant function ε/2 ∈ V 1,1(Ω′). This implies that the function
|vk − vℓ| − ε/2 belongs to V 1,1(Ω′) as well and

∇(|vk−vℓ|−ε/2) = ∇|vk−vℓ| = sgn(vk−vℓ)∇(vk−vl) = sgn(vk−vℓ)(∇vk−∇vℓ)
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a.e. in Ω′. Furthermore, because the constant function 0 belongs to V 1,1(Ω′), we
have max{|vk − vℓ| − ε/2, 0} ∈ V 1,1(Ω′) and

∇max{|vk − vℓ| − ε/2, 0}

=

{

sgn(vk − vℓ)(∇vk −∇vℓ) a.e. in Ω′ ∩ {|vk − vℓ| > ε/2},
0 a.e. in Ω′ ∩ {|vk − vℓ| ≤ ε/2},

i.e.,

∇max{|vk − vℓ| − ε/2, 0} = χ{|vk−vℓ|>ε/2} sgn(vk − vℓ)(∇vk −∇vℓ) (3.13)

a.e. in Ω′.
Suppose that ϕ ∈ C∞(Ω) has a compact support in Ω and denote this support

by K. Because K is bounded in R
n, there is an open ball B in R

n such that
K ⊆ B. Moreover, since R

n\Ω is closed in R
n, the Euclidean distance d =

d(K,Rn\Ω) > 0. Define

Ω′ =

{

x ∈ R
n : d(x,K) <

d

2

}

∩B.

Then Ω′ is a bounded (i.e., relatively compact) open subset of R
n and

K ⊆ Ω′ ⊆ Ω′ ⊆
{

x ∈ R
n : d(x,K) ≤ d

2

}

∩B ⊆ Ω.

Thus, Ω′ is compact in Ω and ϕ has a compact support in Ω′. Hence, owing
to (3.13), for every i ∈ 1, 2, . . . , n we have

∫

Ω

max{|vk − vℓ| − ε/2, 0} · ∂ϕ
∂xi

=

∫

Ω′

max{|vk − vℓ| − ε/2, 0} · ∂ϕ
∂xi

= −
∫

Ω′

ϕ · χ{|vk−vℓ|>ε/2} sgn(vk − vℓ)

(
∂vk
∂xi

− ∂vℓ
∂xi

)

= −
∫

Ω

ϕ · χ{|vk−vℓ|>ε/2} sgn(vk − vℓ)

(
∂vk
∂xi

− ∂vℓ
∂xi

)

.

This yields that max{|vk − vℓ| − ε/2, 0} is weakly differentiable in the entire Ω
and

∇max{|vk − vℓ| − ε/2, 0} = χ{|vk−vℓ|>ε/2} sgn(vk − vℓ)(∇vk −∇vℓ)

holds a.e. in Ω. Consequently,

|∇max{|vk − vℓ| − ε/2, 0}| = χ{|vk−vℓ|>ε/2}|∇vk −∇vℓ| (3.14)

a.e. in Ω. Moreover, max{|vk − vl| − ε/2, 0} is nonnegative in Ω and

med(max{|vk − vl| − ε/2, 0}) = 0. (3.15)
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Indeed, (3.11) implies that

ν({x ∈ Ω : max{|vk − vℓ| − ε/2, 0} > 0}) = ν({x ∈ Ω : |vk − vℓ| > ε/2}) < δ <
1

2
.

Altogether, we obtain

‖vk − vℓ‖L∞(Ω,ν)

≤ ‖min{|vk − vℓ|, ε/2}‖L∞(Ω,ν) + ‖max{|vk − vℓ| − ε/2, 0}‖L∞(Ω,ν) (by (3.12))

≤ ε

2
+ C3‖|∇max{|vk − vℓ| − ε/2, 0}|‖AI(Ω,ν) (by (3.15) and (3.8))

=
ε

2
+ C3‖χ{|vk−vℓ|>ε/2}|∇vk −∇vℓ|‖AI(Ω,ν) (by (3.14))

≤ ε

2
+ C3‖χ{|vk−vℓ|>ε/2}|∇vk|‖AI(Ω,ν) + C3‖χ{|vk−vℓ|>ε/2}|∇vℓ|‖AI(Ω,ν)

=
ε

2
+ C3‖(χ{|vk−vℓ|>ε/2}|∇vk|)∗ν‖AI(0,1) + C3‖(χ{|vk−vℓ|>ε/2}|∇vℓ|)∗ν‖AI(0,1)

=
ε

2
+ C3‖χ(0,δ)(χ{|vk−vℓ|>ε/2}|∇vk|)∗ν‖AI(0,1)

+ C3‖χ(0,δ)(χ{|vk−vℓ|>ε/2}|∇vℓ|)∗ν‖AI(0,1) (by (3.11))

≤ ε

2
+ C3‖χ(0,δ)(|∇vk|)∗ν‖AI(0,1) + C3‖χ(0,δ)(|∇vℓ|)∗ν‖AI(0,1)

≤ ε

2
+ 2C3 sup

‖f‖X(0,1)≤1

‖χ(0,δ)f
∗‖AI(0,1) < ε. (by (3.9) and (3.10))

It follows that (vk)
∞
k=1 is a Cauchy sequence in L∞(Ω, ν). Thanks to the com-

pleteness of L∞(Ω, ν), (vk)
∞
k=1 is convergent in L∞(Ω, ν), as required.

Let m > 1. According to Theorem 2.7, conditions (3.4) and (3.5) imply

Hm−1
I : X(0, 1) →→ AI(0, 1).

Because AI(0, 1) 6= L∞(0, 1) (Lemma 2.6), the first part of the proof gives that

V m−1X(Ω, ν) →֒→֒ AI(Ω, ν). (3.16)

Let (uk)
∞
k=1 be a bounded sequence in V mX(Ω, ν). Then (uk)

∞
k=1 is bounded

in L1(Ω, ν), therefore (
∫

Ω
uk dν)

∞
k=1 is a bounded sequence of real numbers and we

can find a subsequence (u0
k)

∞
k=1 of (uk)

∞
k=1 such that the sequence (

∫

Ω
u0
k dν)

∞
k=1 is

convergent.
For i = 1, 2, . . . , n, consider the sequence (Diu

0
k)

∞
k=1 consisting of weak deriva-

tives with respect to the i-th variable of elements of the sequence (u0
k)

∞
k=1. Thanks

to the continuous embedding V mX(Ω, ν) →֒ V 1L1(Ω, ν), all these sequences are
bounded in L1(Ω, ν), and, owing to the boundedness of (uk)

∞
k=1 in V mX(Ω, ν),

they are bounded also in V m−1X(Ω, ν). Now, the compact embedding (3.16)
yields that we can inductively find sequences (uik)

∞
k=1, i = 1, 2, . . . , n, such that

(uik)
∞
k=1 is a subsequence of (ui−1

k )∞k=1 fulfilling that (Dju
i
k)

∞
k=1 is convergent in

AI(Ω, ν) for j = 1, 2, . . . , i. Thus, in particular, (Dju
n
k)

∞
k=1 is a Cauchy sequence

in AI(Ω, ν) for every j ∈ {1, 2, . . . , n}.
Let ε > 0. Thanks to the embedding V 1AI(Ω, ν) →֒ L∞(Ω, ν), there is a

constant C > 0 such that for every u ∈ V 1AI(Ω, ν),

∥
∥
∥
∥
u−

∫

Ω

u dν

∥
∥
∥
∥
L∞(Ω,ν)

≤ C ‖|∇u|‖AI(Ω,ν) ≤ C
n∑

j=1

‖Dju‖AI (Ω,ν) , (3.17)
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see [3, Proposition 5.3]. Since (Dju
n
k)

∞
k=1 is a Cauchy sequence in AI(Ω, ν) for

every j ∈ {1, 2, . . . , n}, we can find k0 ∈ N such that ‖Dju
n
k−Dju

n
ℓ ‖AI(Ω,ν) < ε/Cn

whenever k, ℓ ≥ k0 and j ∈ {1, 2, . . . , n}. Thus, inequality (3.17) implies that for
every k, ℓ ≥ k0,

∥
∥
∥
∥
unk − unℓ −

∫

Ω

(unk − unℓ ) dν

∥
∥
∥
∥
L∞(Ω,ν)

≤ C

n∑

j=1

‖Dju
n
k −Dju

n
ℓ ‖AI(Ω,ν) < ε,

so, (unk−
∫

Ω
unk dν)

∞
k=1 is a Cauchy sequence in L∞(Ω, ν). Due to the completeness

of L∞(Ω, ν), (unk −
∫

Ω
unk dν)

∞
k=1 is convergent in L∞(Ω, ν). Since the sequence

(
∫

Ω
unk dν)

∞
k=1 consisting of constant functions is convergent in L∞(Ω, ν) as well,

(unk)
∞
k=1 is convergent in L∞(Ω, ν) and V mX(Ω, ν) →֒→֒ L∞(Ω, ν), as required.

We shall now prove that in the special case when there is a constant C > 0
such that ∫ s

0

dr

I(r)
≤ C

s

I(s)
, s ∈ (0, 1), (3.18)

the kernel operator Hm
I in (3.4) and (3.5) can be (almost) equivalently replaced

by a much simpler weighted Hardy type operator Km
I defined by

Km
I f(t) =

∫ 1

t

f(s)
sm−1

(I(s))m
ds, f ∈ L1(0, 1), t ∈ (0, 1).

Moreover, the rearrangement-invariant space Xm,I(0, 1), useful to characterize
when (3.4) and (3.5) hold, coincides with the rearrangement-invariant space
X♯
m,I(0, 1) whose associate space consists of all f ∈ M(0, 1) for which

‖f‖(X♯
m,I)

′
(0,1)

=

∥
∥
∥
∥

tm−1

(I(t))m

∫ t

0

f ∗(s) ds

∥
∥
∥
∥
X′(0,1)

<∞.

The fact that the functional ‖ ·‖(X♯
m,I)

′
(0,1)

is a rearrangement-invariant norm was

proved in [3, Proposition 8.2].
Finally, notice that whenever inequality (3.18) is satisfied, we have

∫ 1

0

dr

I(r)
<∞. (3.19)

Let us now state the considerations above more precisely.

Theorem 3.7. Assume that (Ω, ν) is as in Section 1.2 and I : [0, 1] → [0,∞) is
an admissible function satisfying (3.1) and (3.18). Let m ∈ N and let X(0, 1) and
Y (0, 1) be rearrangement-invariant spaces. Consider the following conditions:

(i) Km
I : X(0, 1) →→ Y (0, 1);

(ii) lima→0+ sup‖f‖X(0,1)≤1 ‖Km
I (χ(0,a)|f |)‖Y (0,1) = 0;

(iii) V mX(Ω, ν) →֒→֒ Y (Ω, ν).

Then (i) ⇒ (ii) ⇒ (iii).
Moreover, provided that X(0, 1) 6= L1(0, 1) or Y (0, 1) 6= L∞(0, 1) or (I(t))m/tm−1

is nondecreasing in (0, 1], conditions (i) and (ii) are equivalent. In the case when
Y (0, 1) 6= L∞(0, 1), (i) (and therefore also (ii)) is satisfied if and only if
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(iv) X♯
m,I(0, 1)

∗→֒ Y (0, 1),

and in the case when Y (0, 1) = L∞(0, 1) and (I(t))m/tm−1 is nondecreasing in
(0, 1], each of (i), (ii) is equivalent to

(v) X(0, 1)
∗→֒ A(I(t))m/tm−1(0, 1).

Proof. Consider the function J defined by

J(t) =

{

0 t = 0;

(I(t))m/tm−1 t ∈ (0, 1].

Then J is nonnegative and measurable in [0, 1] and

inf
t∈(0,1)

J(t)

t
= inf

t∈(0,1)

(
I(t)

t

)m

≥ (I(1))m > 0, (3.20)

so J satisfies (2.1). Observe that Km
I = HJ and

∫ 1

0

dt

J(t)
=

∫ 1

0

tm−1

(I(t))m
dt ≤ sup

t∈(0,1)

(
t

I(t)

)m−1 ∫ 1

0

dt

I(t)
<∞,

since (3.18) implies (3.19). Hence, Theorem 2.3 yields that (i) implies (ii) and
that (ii) implies (i) provided that X(0, 1) 6= L1(0, 1) or Y (0, 1) 6= L∞(0, 1). Fur-
thermore, due to Corollary 2.8, (ii) implies (i) also in the case that (I(t))m/tm−1

is nondecreasing in (0, 1].
According to [3, Proposition 10.15], there are positive constants C1 and C2

such that for every nonnegative measurable function f in (0, 1) we have

C1‖Hm
I f‖Y (0,1) ≤ ‖Km

I f‖Y (0,1) ≤ C2‖Hm
I f‖Y (0,1).

Thus, for every a ∈ (0, 1),

C1 sup
‖f‖X(0,1)≤1

‖Hm
I (χ(0,a)|f |)‖Y (0,1) ≤ sup

‖f‖X(0,1)≤1

‖Km
I (χ(0,a)|f |)‖Y (0,1)

≤ C2 sup
‖f‖X(0,1)≤1

‖Hm
I (χ(0,a)|f |)‖Y (0,1),

which proves the equivalence of (ii) and (3.5) (or, equivalently, (3.4)). The im-
plication (ii) ⇒ (iii) then follows from Theorem 3.5.

Suppose that Y (0, 1) 6= L∞(0, 1). Then (i) is equivalent to (3.4) which is
equivalent to

Xm,I(0, 1)
∗→֒ Y (0, 1),

see Theorem 2.3. Owing to [3, Corollary 3.7], Xm,I(0, 1) = X♯
m,I(0, 1). This yields

the equivalence of (i) and (iv).
Finally, let Y (0, 1) = L∞(0, 1) and assume that (I(t))m/tm−1 is nondecreasing

in (0, 1]. Then, due to Theorem 2.7 applied to J as above, (i) is equivalent to

X(0, 1)
∗→֒ A(I(t))m/tm−1(0, 1).

This completes the proof.

29



4. Compact Sobolev embeddings

on concrete measure spaces

4.1 Two propositions

In this section we state and prove two propositions which will be needed in the
rest of this chapter. The first proposition says that, under some assumptions,
compactness of a Sobolev embedding implies compactness of a certain operator.
This is the key step when proving the reverse implication to the one stated in
Theorem 3.5 (we will do it in particular cases in the remaining two sections).

Proposition 4.1. Assume that (Ω, ν) is as in Section 1.2. Let m ∈ N and let
X(0, 1) and Y (0, 1) be rearrangement-invariant spaces satisfying

V mX(Ω, ν) →֒→֒ Y (Ω, ν). (4.1)

Let α ∈ (0, 1]. Denote

Xα
+ = {f ∈ X(0, 1) : f ≥ 0 a.e. in (0, α) and f = 0 a.e. in (0, 1)\(0, α)}.

Suppose that H is an operator defined on Xα
+, with values in M(0, 1). Assume

that there exists an operator L defined on Xα
+, with values in V mX(Ω, ν), satis-

fying the following conditions.
(i) There is β > 0 and a real valued function K defined in (0, β)× (0, β) such

that K(·, t) is measurable in (0, β) for every t ∈ (0, β), and

(Lf)∗ν(t) ≈ χ(0,β)(t)

∫ β

t

f

(
s

β

)

K(s, t) ds, t > 0, (4.2)

holds for every f ∈ Xα
+, up to multiplicative constants independent on f and t.

(ii) The inequalities

‖Lf‖VmX(Ω,ν) ≤ C1‖f‖X(0,1), (4.3)

‖Hf‖Y (0,1) ≤ C2‖Lf‖Y (Ω,ν) (4.4)

hold for some positive constants C1 and C2 and for all f ∈ Xα
+.

Then
lim
a→0+

sup
‖f‖X(0,1)≤1

‖H(χ(0,a)|f |)‖Y (0,1) = 0. (4.5)

Proof. We first observe that whenever k is a positive integer satisfying 1/k ≤ α
and f ∈ X(0, 1) fulfills f ≥ 0 a.e. in (0, 1), then χ(0,1/k)f ∈ Xα

+ and the functions
H(χ(0,1/k)f) and L(χ(0,1/k)f) are thus well defined. Consequently, for every k ∈ N

satisfying 1/k ≤ α we can find a nonnegative measurable function fk in (0, 1)
such that ‖fk‖X(0,1) ≤ 1 and

sup
‖f‖X(0,1)≤1

‖H(χ(0,1/k)|f |)‖Y (0,1) < ‖H(χ(0,1/k)fk)‖Y (0,1) +
1

k
. (4.6)
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Because the sequence (χ(0,1/k)fk)
∞
k=⌈1/α⌉ is bounded in X(0, 1), it follows that

(L(χ(0,1/k)fk))
∞
k=⌈1/α⌉ must be bounded in V mX(Ω, ν) due to (4.3). Thanks to (4.1),

there is a subsequence (fkℓ
)∞ℓ=1 of (fk)

∞
k=⌈1/α⌉ such that (L(χ(0,1/kℓ)fkℓ

))∞ℓ=1 con-

verges to some function g in Y (Ω, ν). Moreover, passing, if necessary, to a subse-
quence, we can assume that L(χ(0,1/kℓ)fkℓ

) → g ν-a.e. in Ω.
Observe that for every ℓ ∈ N, we have (L(χ(0,1/kℓ)fkℓ

))∗ν(t) = 0 when t >
β/kℓ, thanks to (4.2). Because the functions L(χ(0,1/kℓ)fkℓ

) and (L(χ(0,1/kℓ)fkℓ
))∗ν

are equimeasurable, the distribution function of L(χ(0,1/kℓ)fkℓ
) according to ν

coincides with that of (L(χ(0,1/kℓ)fkℓ
))∗ν according to the one-dimensional Lebesgue

measure λ1. In particular,

lim
ℓ→∞

ν
({
x ∈ Ω :

∣
∣L(χ(0,1/kℓ)fkℓ

)(x)
∣
∣ > 0

})

= lim
ℓ→∞

λ1

({
s > 0 :

(
L(χ(0,1/kℓ)fkℓ

)
)∗

ν
(s) > 0

})
≤ lim

ℓ→∞

β

kℓ
= 0. (4.7)

Let S be the set of all points x ∈ Ω such that
∣
∣L(χ(0,1/kℓ)fkℓ

)(x)
∣
∣ > 0 for infinitely

many ℓ ∈ N. Then, due to (4.7), ν(S)=0. Thus, L(χ(0,1/kℓ)fkℓ
) → 0 ν-a.e. in Ω.

This implies that g = 0 ν-a.e. in Ω. So, owing to (4.4),

lim
ℓ→∞

‖H(χ(0,1/kℓ)fkℓ
)‖Y (0,1) ≤ C2 lim

ℓ→∞
‖L(χ(0,1/kℓ)fkℓ

)‖Y (Ω,ν) = 0.

Inequality (4.6) now yields

lim
ℓ→∞

sup
‖f‖X(0,1)≤1

‖H(χ(0,1/kℓ)|f |)‖Y (0,1) = 0.

Using that the function

a 7→ sup
‖f‖X(0,1)≤1

‖H(χ(0,a)|f |)‖Y (0,1)

is nondecreasing in (0, α], we obtain (4.5).

The second proposition provides a characterization of almost-compact embed-
dings between Lorentz-Zygmund spaces and gives us therefore a tool for studying
compact embeddings of Sobolev spaces built upon Lorentz-Zygmund spaces. Let
us note that almost-compact embeddings between even more general classical
and weak Lorentz spaces have already been studied in [8]. Our proof is, however,
independent on arguments from [8].

Proposition 4.2. Let p1, p2, q1, q2 ∈ [1,∞], α1, α2 ∈ R be such that both
Lp1,q1;α1(0, 1) and Lp2,q2;α2(0, 1) are rearrangement-invariant spaces (up to equiv-
alent norms). Then

Lp1,q1;α1(0, 1)
∗→֒ Lp2,q2;α2(0, 1) (4.8)

holds if and only if p1 > p2, or p1 = p2 and the following conditions are satisfied:

if p1 = p2 <∞ and q1 ≤ q2 then α1 > α2; (4.9)

if p1 = p2 = ∞ or q1 > q2 then α1 +
1

q1
> α2 +

1

q2
. (4.10)
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In particular, if p1, p2, q1, q2 ∈ [1,∞] are such that both Lp1,q1(0, 1) and Lp2,q2(0, 1)
are rearrangement-invariant spaces (up to equivalent norms) then

Lp1,q1(0, 1)
∗→֒ Lp2,q2(0, 1) (4.11)

if and only if p1 > p2.

Proof. Suppose that p1 = p2 and denote p = p1 = p2. Assume that condi-
tions (4.9) and (4.10) are satisfied. Then we can find ε > 0 such that Lp,q2;α2+ε(0, 1)
is a rearrangement-invariant space (up to equivalent norms). Indeed, except of
the case Lp,q2;α2(0, 1) = L∞(0, 1), it easily follows from conditions (1.4) – (1.7).
However, if Lp,q2;α2(0, 1) = L∞(0, 1) then, using that Lp,q1;α1(0, 1) = L∞,q1;α1(0, 1)
satisfies (1.6) or (1.7) and that (4.10) is in progress, we get 0 ≥ α1 + 1/q1 >
0, which is a contradiction. Condition (4.10) is therefore never fulfilled with
Lp,q2;α2(0, 1) = L∞(0, 1) and we are done.

The constant ε from the previous paragraph can be found in such a way
that (4.9) and (4.10) are satisfied with α2 +ε in place of α2. Then (1.8) is fulfilled
with α2 + ε in place of α2 as well and we have

Lp,q1;α1(0, 1) →֒ Lp,q2;α2+ε(0, 1).

Thus,

lim
a→0+

sup
‖f‖Lp,q1;α1 (0,1)≤1

‖χ(0,a)f
∗‖Lp,q2;α2(0,1)

= lim
a→0+

sup
‖f‖Lp,q1;α1(0,1)≤1

‖χ(0,a)(s)f
∗(s) (log e/s)−ε s

1
p
− 1

q2 (log e/s)α2+ε ‖Lq2 (0,1)

≤ lim
a→0+

‖χ(0,a)(s) (log e/s)−ε ‖L∞(0,1) sup
‖f‖Lp,q1;α1(0,1)≤1

‖f ∗(s)s
1
p
− 1

q2 (log e/s)α2+ε ‖Lq2 (0,1)

= sup
‖f‖Lp,q1;α1 (0,1)≤1

‖f‖Lp,q2;α2+ε(0,1) lim
a→0+

(log e/a)−ε = 0,

i.e., (4.8) is satisfied.
On the other hand, suppose that p = p1 = p2 and (4.8) is in progress. Then,

in particular,
Lp,q1;α1(0, 1) →֒ Lp,q2;α2(0, 1),

so one of the conditions (1.8) must be satisfied. We shall distinguish between
three cases when both Lp,q1;α1(0, 1) and Lp,q2;α2(0, 1) are rearrangement-invariant
spaces (up to equivalent norms), some of the conditions (1.8) holds but (4.9)
or (4.10) not. The first one is

p <∞, q1 ≤ q2, α1 = α2, (4.12)

the second one is

p = ∞, q1 ≤ q2, α1 +
1

q1
= α2 +

1

q2
< 0, (4.13)

and the third one is

p = ∞, q1 = q2 = ∞, α1 = α2 = 0. (4.14)
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Using [12, proof of Theorem 6.3] we get that in all cases, fundamental functions
of Lp,q1;α1(0, 1) and Lp,q2;α2(0, 1), denoted by ϕp,q1;α1 and ϕp,q2;α2, respectively,
are equivalent up to multiplicative constants. Indeed, this trivially holds in the
case (4.14), while in the case (4.12) we have

ϕp,q1;α1(s) ≈ s
1
p (log e/s)α1 = s

1
p (log e/s)α2 ≈ ϕp,q2;α2(s), s ∈ (0, 1),

and in the case (4.13) we have

ϕp,q1;α1(s) ≈ (log e/s)
α1+ 1

q1 = (log e/s)
α2+ 1

q2 ≈ ϕp,q2;α2(s), s ∈ (0, 1).

Therefore, a necessary condition for (4.8) to be true,

lim
s→0+

ϕp,q2;α2(s)

ϕp,q1;α1(s)
= 0, (4.15)

is not satisfied (note that the fact that (4.8) yields (4.15) was shown in [6, Section
3]). Hence, (4.8) always implies (4.9) and (4.10).

Let us now discuss the case when p1 6= p2. First, observe that if (4.8) is
satisfied then, in particular,

Lp1,q1;α1(0, 1) →֒ Lp2,q2;α2(0, 1),

which implies that p1 ≥ p2. On the other hand, suppose that Lp1,q1;α1(0, 1)
and Lp2,q2;α2(0, 1) are rearrangement-invariant spaces (up to equivalent norms)
fulfilling p1 > p2. Then Lp2,q2;α2(0, 1) 6= L∞(0, 1), so, as it was explained in the
first paragraph of this proof, we can find ε > 0 such that Lp2,q2;α2+ε(0, 1) is a
rearrangement-invariant space (up to equivalent norms) as well. It follows from
the first part of the proof that

Lp2,q2;α2+ε(0, 1)
∗→֒ Lp2,q2;α2(0, 1).

Moreover, we have
Lp1,q1;α1(0, 1) →֒ Lp2,q2;α2+ε(0, 1).

Altogether, we get (4.8), as required.
To complete the proof, observe that conditions (4.9) and (4.10) are satisfied

with α1 = α2 = 0 only in the case that p1 = p2 = ∞ and q2 > q1. This, however,
necessarily means that q1 <∞, i.e., the norm of L∞,q1(0, 1) is not equivalent to a
rearrangement-invariant norm. Therefore, (4.11) holds if and only if p1 > p2.

4.2 Compactness of Euclidean-Sobolev embed-

dings

In this section we characterize compact Sobolev embeddings on John domains
and on Maz’ya classes of domains.

Let n ∈ N, n ≥ 2. For α ∈ [1/n′, 1], consider the function Iα(s) = sα,
s ∈ [0, 1]. Then Iα is admissible (see Examples 3.3) and if α ∈ [1/n′, 1) then (3.18)
is satisfied with I = Iα.
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Let m ∈ N. Define the operator Mm
α by

Mm
α f(t) = Km

Iαf(t) =

∫ 1

t

f(s)s−1+m(1−α) ds, f ∈ L1(0, 1), t ∈ (0, 1),

if α ∈ [1/n′, 1) and by

Mm
1 f(t) = Hm

I1f(t) =

∫ 1

t

f(s)

(
log s

t

)m−1

s
ds, f ∈ L1(0, 1), t ∈ (0, 1).

We will also consider the rearrangement-invariant space Xm,α(0, 1) defined by

Xm,α(0, 1) = X♯
m,Iα

(0, 1) if α ∈ [1/n′, 1) and by Xm,1(0, 1) = Xm,I1(0, 1). The
associate space of Xm,α(0, 1) therefore fulfills for every f ∈ M(0, 1)

‖f‖(Xm,α)′(0,1) =

∥
∥
∥
∥
s−1+m(1−α)

∫ s

0

f ∗(r) dr

∥
∥
∥
∥
X′(0,1)

if α ∈ [1/n′, 1) and

‖f‖(Xm,1)′(0,1) =

∥
∥
∥
∥

1

s

∫ s

0

(

log
s

r

)m−1

f ∗(r) dr

∥
∥
∥
∥
X′(0,1)

.

We first focus on compact Sobolev embeddings on John domains. In this
situation, the operator Mm

1/n′ having the form

Mm
1/n′f(t) =

∫ 1

t

f(s)s−1+ m
n ds, f ∈ L1(0, 1), t ∈ (0, 1),

and the rearrangement-invariant space Xm,1/n′(0, 1) fulfilling

‖f‖(Xm,1/n′ )′(0,1) =

∥
∥
∥
∥
s−1+ m

n

∫ s

0

f ∗(r) dr

∥
∥
∥
∥
X′(0,1)

, f ∈ M(0, 1),

come into play.

Theorem 4.3. Let n ∈ N, n ≥ 2, let m ∈ N and let Ω be a John domain in R
n.

Suppose that X(0, 1) and Y (0, 1) are rearrangement-invariant spaces. If m ≤ n
then the following conditions are equivalent:

(i) V mX(Ω) →֒→֒ Y (Ω);
(ii) Mm

1/n′ : X(0, 1) →→ Y (0, 1);

(iii) lima→0+ sup‖f‖X(0,1)≤1 ‖Mm
1/n′(χ(0,a)|f |)‖Y (0,1) = 0.

If, in addition, Y (0, 1) 6= L∞(0, 1), the previous conditions are equivalent to

(iv) Xm,1/n′(0, 1)
∗→֒ Y (0, 1),

and if Y (0, 1) = L∞(0, 1), conditions (i) – (iii) are equivalent to

(v) X(0, 1)
∗→֒ L

n
m
,1(0, 1).

Furthermore, if m > n then conditions (i) and (iii) are satisfied independently
of the choice of X(0, 1) and Y (0, 1) while condition (ii) is true for all pairs of
rearrangement-invariant spaces X(0, 1) and Y (0, 1) except of X(0, 1) = L1(0, 1)
and Y (0, 1) = L∞(0, 1).
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The proof of the previous theorem will be moved to the end of this section
since its major part is a consequence of more general results for Maz’ya classes
of domains, which will be proved first.

Theorem 4.4. Let n ∈ N, n ≥ 2, let m ∈ N and let α ∈ [1/n′, 1]. Suppose
that X(0, 1) and Y (0, 1) are rearrangement-invariant spaces. If m(1 − α) ≤ 1
(notice that this is true for every m ∈ N provided that α = 1) then the following
assertions are equivalent:

(i) V mX(Ω) →֒→֒ Y (Ω) holds for every Ω ∈ Jα;
(ii) Mm

α : X(0, 1) →→ Y (0, 1);
(iii) lima→0+ sup‖f‖X(0,1)≤1 ‖Mm

α (χ(0,a)|f |)‖Y (0,1) = 0.

If, in addition, Y (0, 1) 6= L∞(0, 1) or α = 1, conditions (i), (ii) and (iii) are
equivalent to

(iv) Xm,α(0, 1)
∗→֒ Y (0, 1),

and if α ∈ [1/n′, 1) and Y (0, 1) = L∞(0, 1), then (i), (ii) and (iii) are equivalent
to

(v) X(0, 1)
∗→֒ L

1
m(1−α)

,1(0, 1).

Furthermore, if m(1 − α) > 1 then conditions (i) and (iii) are satisfied indepen-
dently of the choice of X(0, 1) and Y (0, 1), while condition (ii) is true for all pairs
of rearrangement-invariant spacesX(0, 1) and Y (0, 1) except of X(0, 1) = L1(0, 1)
and Y (0, 1) = L∞(0, 1).

Proof. Suppose that (i) is satisfied. Then, in particular, V mX(Ω) →֒→֒ Y (Ω)
holds for Ω given by [3, Proposition 11.1]. Define the function Nα by

Nα(s) =

{

(1 − (1 − α)s)
1

1−α for s ∈ [0, 1
1−α

] if α ∈ [1/n′, 1);

e−s for s ∈ [0,∞) if α = 1.

Let f be any nonnegative function in X(0, 1) (or, what is the same, let f be
an arbitrary function belonging to the set X1

+ defined in Proposition 4.1). For
x = (x1, . . . , xn) ∈ Ω, we set

Lf(x) =

∫ 1

Nα(xn)

1

rα1

∫ 1

r1

1

rα2
. . .

∫ 1

rm−1

f(rm)

rαm
drm drm−1 . . . dr1.

Let us also define H = Hm
Iα. According to [3, proof of Theorem 6.4], Lf is an

m-times weakly differentiable function in Ω satisfying

(Lf)∗λn
(s) =

(Hf)(s)

(m− 1)!
and (|∇mLf |)∗λn

(s) = f ∗(s)

for s ∈ (0, 1). Here, λn denotes the n-dimensional Lebesgue measure. The first
equality means, in particular, that L satisfies (4.2) with β = 1 and

K(s, t) =
1

Iα(s)

(∫ s

t

dr

Iα(r)

)m−1

, (s, t) ∈ (0, 1) × (0, 1).
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Moreover,

‖Lf‖Y (Ω) = ‖(Lf)∗λn
‖Y (0,1) =

‖Hf‖Y (0,1)

(m− 1)!

and
‖|∇mLf |‖X(Ω) = ‖(|∇mLf |)∗λn

‖X(0,1) = ‖f‖X(0,1).

Furthermore, in [3, proof of Theorem 6.4] it is shown that there is a constant
C > 0 independent of f such that

‖Lf‖L1(Ω) ≤ C‖f‖X(0,1).

Altogether, we get (4.3) and (4.4). Using Proposition 4.1 with H and L as above,
we obtain that

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
Iα(χ(0,a)|f |)‖Y (0,1) = 0,

which is, as it was shown in the proof of Theorem 3.7 if α ∈ [1/n′, 1), equivalent
to (iii).

As it has already been pointed out at the beginning of this section, the function
Iα is admissible and if α ∈ [1/n′, 1) then (3.18) is fulfilled. Moreover, each domain
Ω ∈ Jα satisfies (3.1). Hence, according to Theorem 3.7 if α ∈ [1/n′, 1) and to
Theorem 3.5 if α = 1, (iii) implies (i).

Assume that α = 1. Then condition (ii) is equivalent to (iii) due to Theo-
rem 3.5 and condition (iv) is equivalent to (iii) thanks to Theorem 2.3 and to the

fact that
∫ 1

0
1/s ds = ∞.

Now, let α ∈ [1/n′, 1). If X(0, 1) 6= L1(0, 1) or Y (0, 1) 6= L∞(0, 1) or m(1 −
α) ≤ 1 (which is the same as that the function (I(s))m/sm−1 = s1−m(1−α) is
nondecreasing in (0, 1)) then Theorem 3.7 gives the equivalence of (ii) and (iii).
Moreover, if Y (0, 1) 6= L∞(0, 1) then (iii) is equivalent to (iv), and if Y (0, 1) =
L∞(0, 1) and m(1 − α) ≤ 1 then (iii) is equivalent to

X(0, 1)
∗→֒ As1−m(1−α)(0, 1) = L

1
m(1−α)

,1(0, 1).

It remains to examine the case when m(1 − α) > 1. In this situation, it
follows from Example 2.5 applied to β = m(1 − α) − 1 > 0 that (iii) holds with
X(0, 1) = L1(0, 1) and Y (0, 1) = L∞(0, 1). Because in general X(0, 1) →֒ L1(0, 1)
and L∞(0, 1) →֒ Y (0, 1), we obtain that (iii) is true for all pairs of rearrangement-
invariant spaces X(0, 1) and Y (0, 1). We have already proved that (iii) implies (i),
so, (i) is satisfied independently of the choice of X(0, 1) and Y (0, 1). Furthermore,
(iii) implies (ii) provided that X(0, 1) 6= L1(0, 1) or Y (0, 1) 6= L∞(0, 1). Thus, (ii)
holds under this assumption. Conversely, it follows from Example 2.5 that (ii) is
not true when X(0, 1) = L1(0, 1) and Y (0, 1) = L∞(0, 1).

The remaining part of this section is devoted to applications of the previous
theorem to concrete pairs of rearrangement-invariant spaces X(0, 1) and Y (0, 1).
We will always assume that m(1 − α) ≤ 1, which can be done with no loss of
generality since the situation when m(1 − α) > 1 was sufficiently described in
Theorem 4.4.

We first focus on compact embeddings of the Sobolev space V mL1(Ω) into
rearrangement-invariant spaces, and on compact embeddings of Sobolev spaces
built upon rearrangement-invariant spaces into L∞(Ω). Towards doing this, the
following observation will be of use.
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Remark 4.5. Suppose that ψ is a nonnegative nondecreasing concave function
in (0, 1) and X(0, 1) is a rearrangement-invariant space. If ϕX denotes the fun-
damental function of X(0, 1) then

Λψ(0, 1)
∗→֒ X(0, 1) (4.16)

if and only if

lim
s→0+

ϕX(s)

ψ(s)
= 0. (4.17)

Indeed, (4.17) is a necessary condition for (4.16) to be true, see [6, Section 3].
On the other hand, if (4.17) is satisfied then, according to [6, Example 3.1],

Λψ(0, 1)
∗→֒ ΛϕX

(0, 1) which, together with the fact that ΛϕX
(0, 1) →֒ X(0, 1),

implies (4.16).

Theorem 4.6. Let n ∈ N, n ≥ 2, and let m ∈ N. Suppose that X(0, 1) is
a rearrangement-invariant space and denote by ϕX its fundamental function. If
α ∈ [1/n′, 1) satisfies m(1 − α) ≤ 1 then the condition

V mL1(Ω) →֒→֒ X(Ω) (4.18)

is satisfied for every Ω ∈ Jα if and only if

lim
s→0+

ϕX(s)

s1−m(1−α)
= 0, (4.19)

and the condition
V mX(Ω) →֒→֒ L∞(Ω) (4.20)

is satisfied for every Ω ∈ Jα if and only if

lim
a→0+

‖χ(0,a)(s)s
m(1−α)−1‖X′(0,1) = 0. (4.21)

Furthermore, there is no rearrangement-invariant space X(0, 1) such that condi-
tion (4.18) or condition (4.20) is satisfied for every Ω ∈ J1.

Proof. Let α ∈ [1/n′, 1). It follows from Theorem 4.4, condition (v), that (4.18)
is not satisfied for every Ω ∈ Jα when X(0, 1) = L∞(0, 1) (recall that there is
no rearrangement-invariant space into which L1(0, 1) is almost-compactly embed-
ded). Thus, Theorem 4.4 yields that (4.18) holds for every Ω ∈ Jα if and only
if

(L1)m,α(0, 1)
∗→֒ X(0, 1). (4.22)

Due to [3, Theorem 6.8], we have

(
L1
)

m,α
(0, 1) =

{

L
1

1−m(1−α)
,1(0, 1) if m(1 − α) < 1;

L∞(0, 1) if m(1 − α) = 1.

In the latter case, condition (4.22) is fulfilled if and only if

lim
s→0+

ϕX(s) = 0,

see [13, Theorem 5.2].
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If m(1 − α) < 1 we set

ψ(s) =
s1−m(1−α)

1 −m(1 − α)
, s ∈ (0, 1).

Then ψ is a nonnegative nondecreasing concave function in (0, 1) and Λψ(0, 1) =
L1/(1−m(1−α)),1(0, 1). Owing to Remark 4.5, (4.22) holds if and only if (4.19) is
satisfied, as required.

Furthermore, due to Theorem 4.4, condition (4.20) is satisfied for every Ω ∈ Jα
if and only if

0 = lim
a→0+

sup
‖f‖X(0,1)≤1

‖Mm
α (χ(0,a)|f |)‖L∞(0,1) = lim

a→0+

sup
‖f‖X(0,1)≤1

∫ a

0

|f(s)|sm(1−α)−1 ds

= lim
a→0+

∥
∥χ(0,a)(s)s

m(1−α)−1
∥
∥
X′(0,1)

.

We will finally examine the case when α = 1. According to Theorem 4.4
and [3, Theorem 6.13], (4.18) holds for every Ω ∈ J1 if and only if

(L1)m,1(0, 1) = L1(0, 1)
∗→֒ X(0, 1),

which is never satisfied (see Section 1.1). Similarly, (4.20) is fulfilled for every
Ω ∈ J1 if and only if

Xm,α(0, 1)
∗→֒ L∞(0, 1).

As it was pointed out in Section 1.1, this cannot be satisfied since there is no
rearrangement-invariant space almost-compactly embedded into L∞(0, 1).

Remark 4.7. Theorem 4.6 enables us to describe all compact Sobolev embed-
dings on Maz’ya classes of domains in the case when m(1 − α) = 1. Indeed,
suppose that X(0, 1) is a rearrangement-invariant space different from L∞(0, 1).
Then lims→0+ ϕX(s) = 0, so, (4.18) is satisfied for every Ω ∈ Jα. Further-
more, if X(0, 1) is a rearrangement-invariant space different from L1(0, 1) then
X ′(0, 1) 6= L∞(0, 1) and we have

lim
a→0+

‖χ(0,a)(s)‖X′(0,1) = lim
a→0+

ϕX′(a) = 0.

Hence, (4.20) is satisfied for every Ω ∈ Jα. Altogether, thanks to continu-
ous embeddings X(0, 1) →֒ L1(0, 1) and L∞(0, 1) →֒ Y (0, 1) which hold for all
rearrangement-invariant spaces X(0, 1) and Y (0, 1), we have that V mX(Ω) →֒→֒
Y (Ω) is satisfied for every Ω ∈ Jα provided that X(0, 1) 6= L1(0, 1) or Y (0, 1) 6=
L∞(0, 1). On the other hand, it follows from Theorem 4.6 that there is always
some domain Ω ∈ Jα for which V mL1(Ω) →֒→֒ L∞(Ω) is not satisfied.

We now focus on applications of Theorem 4.4 to the case when both X(0, 1)
and Y (0, 1) are Lorentz spaces. Owing to Remark 4.7, we shall assume that
m(1 − α) < 1.

Theorem 4.8. Let n ∈ N, n ≥ 2, let m ∈ N and let α ∈ [1/n′, 1] satisfy m(1 −
α) < 1. Suppose that p1, p2, q1, q2 ∈ [1,∞] are such that both Lp1,q1(0, 1) and
Lp2,q2(0, 1) are rearrangement-invariant spaces (up to equivalent norms). Then
the following assertions are equivalent.
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(i) The compact embedding

V mLp1,q1(Ω) →֒→֒ Lp2,q2(Ω)

holds for every Ω ∈ Jα.
(ii) The compact embedding

V mLp1(Ω) →֒→֒ Lp2(Ω)

holds for every Ω ∈ Jα.
(iii) One of the following conditions is satisfied:

α ∈ [1/n′, 1), p1 <
1

m(1 − α)
, p2 <

p1

1 −mp1(1 − α)
; (4.23)

α ∈ [1/n′, 1), p1 =
1

m(1 − α)
, p2 <∞; (4.24)

α ∈ [1/n′, 1), p1 >
1

m(1 − α)
; (4.25)

α = 1, p1 > p2. (4.26)

Proof. Let α ∈ [1/n′, 1). First, suppose that Lp2,q2(0, 1) 6= L∞(0, 1). Due to
Theorem 4.4, (i) is satisfied if and only if

(Lp1,q1)m,α(0, 1)
∗→֒ Lp2,q2(0, 1). (4.27)

It follows from [3, Theorem 6.8] that

(Lp1,q1)m,α(0, 1) =







L
p1

1−mp1(1−α)
,q1(0, 1) if p1 <

1
m(1−α)

;

L∞,q1,−1(0, 1) if p1 = 1
m(1−α)

and q1 > 1;

L∞(0, 1) otherwise.

Thus, if p1 < 1/(m(1 − α)) then (4.27) is fulfilled if and only if p2 < p1/(1 −
mp1(1 − α)), see Proposition 4.2. In the case when p1 ≥ 1/(m(1 − α)), (4.27)
is characterized by p2 < ∞. Indeed, observe that the only Lorentz space hav-
ing the first index equal to ∞ and being a rearrangement-invariant space (up to
equivalent norms) at the same time is L∞(0, 1). Since there is no rearrangement-
invariant space almost-compactly embedded into L∞(0, 1) (see Section 1.1), con-
dition (4.27) cannot be satisfied with p2 = ∞. On the other hand, it is satisfied
with p2 <∞, see Proposition 4.2.

Let us now discuss the case when Lp2,q2(0, 1) = L∞(0, 1). Theorem 4.4 yields
that in this situation, (i) is satisfied if and only if

Lp1,q1(0, 1)
∗→֒ L

1
m(1−α)

,1(0, 1),

which is, owing to Proposition 4.2, equivalent to p1 > 1/(m(1 − α)).
Let α = 1. First, suppose that Lp1,q1(0, 1) 6= L∞(0, 1). Then, according to

Theorem 4.4 and [3, Theorem 6.13], (i) is satisfied if and only if

(Lp1,q1)m,1(0, 1) = Lp1,q1(0, 1)
∗→֒ Lp2,q2(0, 1),
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which is equivalent to p2 < p1, see Proposition 4.2. Finally, (i) is satisfied with
Lp1,q1(0, 1) = L∞(0, 1) if and only if

(L∞)m,1(0, 1) = L∞,∞,−m(0, 1)
∗→֒ Lp2,q2(0, 1).

As observed above, this is equivalent to p2 <∞.
By applying the equivalence of (i) and (iii) to the particular case when p1 = q1

and p2 = q2, we obtain that (ii) is equivalent to (iii) as well. The proof is
complete.

We shall finish this section by proving Theorem 4.3 which characterizes com-
pact Sobolev embeddings on John domains. Note that variations of Theorem 4.6
and Theorem 4.8 for John domains can then be obtained by using the fact that
the compact embedding

V mX(Ω) →֒→֒ Y (Ω)

holds for one particular John domain Ω if and only if it holds for all Ω ∈ J1/n′.

Proof of Theorem 4.3. Suppose that m < n. Let BR be a ball of radius R ∈
(0,∞) such that BR ⊆ Ω. Without loss on generality, we may assume that BR is
centered at 0. Let f be any nonnegative function in X(0, 1) (or, what is the same,
let f be an arbitrary function belonging to the set X1

+ defined in Proposition 4.1).
Then we set

Lf(x) =

{∫ κnRn

κn|x|n

∫ κnRn

r1
. . .
∫ κnRn

rm−1
f
(

rm
κnRn

)

r
−m+ m

n
m drm . . . dr1 x ∈ BR

0 x ∈ Ω/BR,

where κn denotes the volume of the unit ball in R
n. Define also H = Mm

1/n′ . Then,

according to [3, proof of Theorem 6.1], Lf is an m-times weakly differentiable
function in Ω satisfying (4.3) and (4.4). Furthermore, for every s > 0 we have

(Lf)∗λn
(s) = χ(0,κnRn)(s)

∫ κnRn

s

f

(
r

κnRn

)

r−m+ m
n

(r − s)m−1

(m− 1)!
dr,

so L satisfies (4.2) with β = κnR
n and

K(r, s) = r−m+ m
n

(r − s)m−1

(m− 1)!
, (r, s) ∈ (0, κnR

n) × (0, κnR
n).

The implication (i) ⇒ (iii) in the particular case m < n thus follows from Propo-
sition 4.1 used with H and L as above.

Moreover, the above argument can also be applied to the case when m = n
and X(0, 1) = L1(0, 1). However, we need to explain why there is a constant
C > 0 such that ‖|∇mLf |‖L1(Ω) ≤ C‖f‖L1(0,1) holds for every f ∈ (L1)1

+ since the
proof given in [3, proof of Theorem 6.1] does not work in this situation.

It follows from [3, proof of Theorem 6.1] that there are positive constants C ′

and C ′′ such that for all f ∈ (L1)1
+,

‖|∇mLf |‖L1(Ω) ≤ C ′‖f‖L1(0,1) + C ′′

∥
∥
∥
∥
∥

m−1∑

i=1

si−1

∫ 1

s

f(r)r−i dr

∥
∥
∥
∥
∥
L1(0,1)

.
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But for every i = 1, . . . , m− 1 we have
∥
∥
∥
∥
si−1

∫ 1

s

f(r)r−i
∥
∥
∥
∥
L1(0,1)

=

∫ 1

0

si−1

∫ 1

s

f(r)r−i dr ds =

∫ 1

0

f(r)r−i
∫ r

0

si−1 ds dr

=
1

i

∫ 1

0

f(r) dr =
1

i
‖f‖L1(0,1),

which gives the result.
By using Remark 4.7 applied to the case α = 1/n′ and by taking the equality

m(1−1/n′) = m/n into account, it follows that condition (iii) is satisfied whenever
m = n and X(0, 1) 6= L1(0, 1). Altogether, we have proved that (i) implies (iii)
provided that m ≤ n. The rest of the proof follows from Theorem 4.4 by using
the fact that Ω belongs to J1/n′ .

4.3 Compactness of Sobolev embeddings in prod-

uct probability spaces

Let m ∈ N and let Φ be as in Section 1.2. Since the function J = LΦ is measur-
able in [0, 1] and satisfies (2.1) we can consider the operator Pm

Φ = Hm
LΦ

defined
by (2.3). Observe that

Pm
Φ f(t) =

∫ 1

t

f(s)

sΦ′
(
Φ−1

(
log 2

s

))

(
∫ s

t

dr

rΦ′
(
Φ−1

(
log 2

r

))

)m−1

ds

=

∫ 1

t

f(s)

(
Φ−1

(
log 2

t

)
− Φ−1

(
log 2

s

))m−1

sΦ′
(
Φ−1

(
log 2

s

)) ds, f ∈ L1(0, 1), t ∈ (0, 1).

Furthermore, if X(0, 1) is a rearrangement-invariant space, we shall consider the
rearrangement-invariant spaceXm,LΦ

(0, 1) whose norm is given by (2.5). Similarly
to the previous case, it is not hard to observe that for every f ∈ M(0, 1),

‖f‖(Xm,LΦ
)′(0,1) =

∥
∥
∥
∥
∥

∫ t

0

f ∗(s)

(
Φ−1(log 2

s
) − Φ−1(log 2

t
)
)m−1

tΦ′(Φ−1(log 2
t
))

ds

∥
∥
∥
∥
∥
X′(0,1)

.

The following theorem characterizes compact Sobolev embeddings in (Rn, µΦ,n).
Notice that, in contrast to the Euclidean setting, such embeddings do not depend
on the dimension n, in the sense that we have the equivalence of the following
two assertions.
(i) There exists n ∈ N for which V mX(Rn, µΦ,n) →֒→֒ Y (Rn, µΦ,n) is satisfied.
(ii) The compact embedding V mX(Rn, µΦ,n) →֒→֒ Y (Rn, µΦ,n) is satisfied for
every n ∈ N.

Theorem 4.9. Let n,m ∈ N and let X(0, 1) and Y (0, 1) be rearrangement-
invariant spaces. Then the following conditions are equivalent:

(i) V mX(Rn, µΦ,n) →֒→֒ Y (Rn, µΦ,n);
(ii) Pm

Φ : X(0, 1) →→ Y (0, 1);
(iii) lima→0+ sup‖f‖X(0,1)≤1 ‖Pm

Φ (χ(0,a)|f |)‖Y (0,1) = 0;

(iv) Xm,LΦ
(0, 1)

∗→֒ Y (0, 1).
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Proof. Assume that (i) holds. Let f be an arbitrary function belonging to the

set X
1/2
+ defined in Proposition 4.1. For every x = (x1, . . . , xn) ∈ R

n we set

Lf(x) =

∫ 1

FΦ(x1)

1

IΦ(r1)

∫ 1

r1

1

IΦ(r2)
. . .

∫ 1

rm−1

f(rm)

IΦ(rm)
drm drm−1 . . . dr1.

Let us also define H = Pm
Φ . According to [3, proof of Theorem 7.4], Lf is an

m-times weakly differentiable function in R
n satisfying

(|∇mLf |)∗µΦ,n
(s) = f ∗(s), s ∈ (0, 1).

Thus,
‖|∇mLf |‖X(Rn,µΦ,n) = ‖(|∇mLf |)∗µΦ,n

‖X(0,1) = ‖f‖X(0,1). (4.28)

Furthermore, in [3, proof of Theorem 7.4] it is shown that there is a constant

C > 0 such that for each f ∈ X
1/2
+ ,

‖Lf‖L1(Rn,µΦ,n) ≤ C‖f‖X(0,1). (4.29)

By adding (4.28) and (4.29), we obtain (4.3).
According to [3, proof of Theorem 7.4] once again, we get

(Lf)∗µΦ,n
(s) ≈ (Hf)(s), s ∈ (0, 1),

up to multiplicative constants independent of f ∈ X
1/2
+ and s ∈ (0, 1). This, in

particular, means that L satisfies (4.2) with β = 1 and

K(s, t) =

(
Φ−1

(
log 2

t

)
− Φ−1

(
log 2

s

))m−1

sΦ′
(
Φ−1

(
log 2

s

)) , (s, t) ∈ (0, 1) × (0, 1).

Moreover,
‖Lf‖Y (Rn,µΦ,n) = ‖(Lf)∗µΦ,n

‖Y (0,1) ≈ ‖Hf‖Y (0,1) (4.30)

up to multiplicative constants independent of f ∈ X
1/2
+ , hence, (4.4) is satisfied

as well. Using Proposition 4.1 with H and L as above, we obtain (iii).
According to [3, Lemma 12.3], there is t0 ∈ (0, 1/2] such that the function I

defined by

I(t) =

{

IΦ(t) t ∈ [0, t0];

IΦ(t0) t ∈ (t0, 1];

is admissible. Moreover,

I(t) ≈ IΦ(t) ≈ I(Rn,µΦ,n)(t) ≈ LΦ(t), t ∈ [0, 1/2], (4.31)

up to multiplicative constants independent of t ∈ [0, 1/2]. Since I is a constant
function in [1/2, 1] and there are positive constants C1, C2 such that C1 ≤ LΦ(t) ≤
C2, t ∈ [1/2, 1], the equivalence I ≈ LΦ holds in the entire [0, 1]. Thus, we have

Hm
I |f |(t) ≈ Hm

LΦ
|f |(t) = Pm

Φ |f |(t), f ∈ L1(0, 1), t ∈ (0, 1),

up to multiplicative constants independent of f and t. Hence, (iii) is fulfilled if
and only if

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Hm
I (χ(0,a)|f |)‖Y (0,1) = 0.
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Furthermore, thanks to (4.31), there is a constant C3 > 0 such that I(Rn,µΦ,n)(t) ≥
C3I(t) for every t ∈ [0, 1/2]. Denote C4 = min(C3, 1). Then, owing to the fact
that I is nondecreasing in [0, 1],

C3I(t) ≥ C4I(t) ≥ C4I(C4t), t ∈ [0, 1/2].

Hence, I satisfies (3.1) with (Ω, ν) = (Rn, µΦ,n). The implication (iii) ⇒ (i) now
follows from Theorem 3.5.

Finally, recall that the function J = LΦ fulfills (2.1) and observe that

∫ 1

0

ds

J(s)
=

∫ 1

0

ds

LΦ(s)
= lim

t→0+

∫ 1

t

ds

LΦ(s)

= lim
t→0+

(

Φ−1

(

log
2

t

)

− Φ−1 (log 2)

)

= ∞. (4.32)

Using Theorem 2.3 and the fact that Pm
Φ = Hm

LΦ
, we obtain the equivalence of

(ii), (iii) and (iv).

We now focus on compact Sobolev embeddings in generalized Gauss spaces.
Let β ∈ [1, 2] and let m ∈ N. Consider the operator Gm

β defined by

Gm
β f(t) =

1
(
log 2

t

)β−1
β

(m−1)

∫ 1

t

f(s)

(
log s

t

)m−1

s
(
log 2

s

)β−1
β

ds, f ∈ L1(0, 1), t ∈ (0, 1).

Furthermore, whenever X(0, 1) is a rearrangement-invariant space, define the
functional ‖ · ‖(XG

m,β)
′
(0,1)

for every f ∈ M(0, 1) by

‖f‖(XG
m,β)′(0,1) =

∥
∥
∥
∥
∥

1

t(log 2
t
)

β−1
β

∫ t

0

f ∗(s)
(log t

s
)m−1

(log 2
s
)

β−1
β

(m−1)
ds

∥
∥
∥
∥
∥
X′(0,1)

.

According to [3, Theorem 7.5] (where the case β = 2 is treated, the general case is
analogous), the functional ‖ · ‖(XG

m,β)
′
(0,1)

is a rearrangement-invariant norm and,

if we denote by XG
m,β(0, 1) the associate space to the space

(
XG
m,β

)′
(0, 1), we have

that XG
m,β(0, 1) = Xm,s(log 2/s)(β−1)/β(0, 1).

In the special case when β = 2 and γn,β is therefore the n-dimensional Gauss
measure, the operator Gm = Gm

2 having the form

Gmf(t) =
1

(
log 2

t

)m−1
2

∫ 1

t

f(s)

(
log s

t

)m−1

s
(
log 2

s

)1/2
ds, f ∈ L1(0, 1), t ∈ (0, 1),

and the rearrangement-invariant space XG
m(0, 1) = XG

m,2(0, 1) fulfilling

‖f‖(XG
m)′(0,1) =

∥
∥
∥
∥
∥

1

t(log 2
t
)1/2

∫ t

0

f ∗(s)
(log t

s
)m−1

(log 2
s
)

m−1
2

ds

∥
∥
∥
∥
∥
X′(0,1)

, f ∈ M(0, 1),

come into play.

Characterization of compact Sobolev embeddings in generalized Gauss spaces
takes the following form.
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Theorem 4.10. Let n,m ∈ N, let β ∈ [1, 2] and let X(0, 1) and Y (0, 1) be
rearrangement-invariant spaces. Then the following conditions are equivalent:

(i) V mX(Rn, γn,β) →֒→֒ Y (Rn, γn,β);
(ii) Gm

β : X(0, 1) →→ Y (0, 1);
(iii) lima→0+ sup‖f‖X(0,1)≤1 ‖Gm

β (χ(0,a)|f |)‖Y (0,1) = 0;

(iv) XG
m,β(0, 1)

∗→֒ Y (0, 1).

Proof. Set

Φ(s) =
1

β
sβ, s ∈ [0,∞).

Then µΦ,n = γn,β and it is easy to observe that

LΦ(s) = s

(

log
2

s

)β−1
β

, s ∈ (0, 1].

According to [3, proof of Theorem 7.7], for each nonnegative function f ∈ X(0, 1)
we have

Gm
β f ≈ Pm

Φ f (4.33)

up to multiplicative constants depending on β and m. Thus, condition (iii) is
equivalent to

lim
a→0+

sup
‖f‖X(0,1)≤1

‖Pm
Φ (χ(0,a)|f |)‖Y (0,1) = 0, (4.34)

which is equivalent to (i) due to Theorem 4.9. Moreover, the fact thatXG
m,β(0, 1) =

Xm,s(log 2/s)(β−1)/β(0, 1) = Xm,LΦ
(0, 1) yields the equivalence of (iii) and (iv).

Assume that (iv) is satisfied. Let (fk)
∞
k=1 be a bounded sequence in X(0, 1).

Then for every s ∈ (0, 1),

∣
∣
∣
∣
∣
∣

fk(s)
(
log 2

s

)β−1
β

∣
∣
∣
∣
∣
∣

≤ |fk(s)|
(log 2)

β−1
β

,

so (fk(s)/(log 2/s)(β−1)/β)∞k=1 is bounded in X(0, 1) as well. Consider the function
J(s) = s, s ∈ [0, 1], and the operator Gm

1 satisfying

Gm
1 f(t) = Hm

J f(t) =

∫ 1

t

f(s)

(
log s

t

)m−1

s
ds, f ∈ X(0, 1), t ∈ (0, 1).

Due to Lemma 2.2 applied to J and to the sequence (fk(s)/(log 2/s)(β−1)/β)∞k=1,
there is a subsequence (fkℓ

)∞ℓ=1 of (fk)
∞
k=1 such that

Gm
1




fkℓ

(s)
(
log 2

s

)β−1
β



 (t) =

∫ 1

t

fkℓ
(s)

(
log s

t

)m−1

s
(
log 2

s

)β−1
β

ds

is convergent for a.e. t ∈ (0, 1). Thus also

Gm
β fkℓ

(t) =
1

(
log 2

t

)β−1
β

(m−1)
Gm

1




fkℓ

(s)
(
log 2

s

)β−1
β



 (t)
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converges for a.e. t ∈ (0, 1). By using that Gm
β : X(0, 1) → XG

m,β(0, 1) (see [3,
Theorem 7.5 and Theorem 7.7]), the same proof as in Theorem 2.3, implication
(iv) ⇒ (i), gives that Gm

β fkℓ
is convergent in Y (0, 1), which implies (ii).

The implication (ii) ⇒ (iii) can be proved in the same way as the implication
(i) ⇒ (ii) in Theorem 2.3.

In the remaining part of this section we focus on applications of results from
Theorem 4.10 to concrete pairs of rearrangement-invariant spaces X(0, 1) and
Y (0, 1). Similarly as in the case of Maz’ya domains, we start with the situa-
tion when X(0, 1) = L1(0, 1). On the other hand, we do not study compact
Sobolev embeddings into L∞(0, 1) since such embeddings are never fulfilled, see
Remark 2.4. Instead of this, we focus on compact embeddings of the Sobolev
space V mL∞(Rn, γn,β).

Theorem 4.11. Let n, m ∈ N and β ∈ [1, 2]. Suppose that X(0, 1) is a
rearrangement-invariant space and denote by ϕX its fundamental function. Then
the condition

V mL1(Rn, γn,β) →֒→֒ X(Rn, γn,β) (4.35)

is satisfied if and only if

lim
s→0+

ϕX(s)

s(log 2
s
)

m(β−1)
β

= 0, (4.36)

and the condition
V mL∞(Rn, γn,β) →֒→֒ X(Rn, γn,β) (4.37)

is satisfied if and only if

lim
a→0+

∥
∥
∥
∥
∥
χ(0,a)(s)

(

log
2

s

)m
β

∥
∥
∥
∥
∥
X(0,1)

= 0. (4.38)

Proof. Due to Theorem 4.10 and [3, Theorem 7.8], (4.35) is equivalent to

(L1)Gm,β(0, 1) = L1,1;
m(β−1)

β (0, 1)
∗→֒ X(0, 1).

Set

ψ(s) =

∫ s

0

(

log
e

r

)m(β−1)
β

dr, s ∈ (0, 1).

Then ψ is a nonnegative nondecreasing concave function in (0, 1) and Λψ(0, 1) =

L1,1;
m(β−1)

β (0, 1). Using Remark 4.5 and the fact that

∫ s

0

(

log
e

r

)m(β−1)
β

dr ≈ s
(

log
e

s

)m(β−1)
β ≈ s

(

log
2

s

)m(β−1)
β

, s ∈ (0, 1),

the equivalence of (4.35) and (4.36) follows.
Futhermore, due to Theorem 4.10 and [3, Theorem 7.8], (4.37) is satisfied if

and only if

(L∞)Gm,β(0, 1) = L∞,∞;−m
β (0, 1)

∗→֒ X(0, 1).
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Observe that a function f belongs to the unit ball of the space L∞,∞,−m
β (0, 1) if

and only if

f ∗(s) ≤
(

log
e

s

)m
β

, s ∈ (0, 1).

Thus,

lim
a→0+

sup
‖f‖

L∞,∞,−m/β (0,1)
≤1

‖χ(0,a)(s)f
∗(s)‖X(0,1) = lim

a→0+

∥
∥
∥
∥
χ(0,a)(s)

(

log
e

s

)m
β

∥
∥
∥
∥
X(0,1)

≈ lim
a→0+

∥
∥
∥
∥
∥
χ(0,a)(s)

(

log
2

s

)m
β

∥
∥
∥
∥
∥
X(0,1)

,

which proves the equivalence of (4.37) and (4.38).

We finish with the case when both X(0, 1) and Y (0, 1) are Lebesgue spaces,
and then, more generally, when both X(0, 1) and Y (0, 1) are Lorentz-Zygmund
spaces.

Theorem 4.12. (i) Let n, m ∈ N, β ∈ (1, 2] and p ∈ [1,∞). Then

V mLp(Rn, γn,β) →֒→֒ Lp(Rn, γn,β).

Moreover, Lp(Rn, γn,β) is the optimal (i.e., the smallest) Lebesgue space into which
V mLp(Rn, γn,β) is compactly embedded.

(ii) Let β ∈ (1, 2] and p = ∞, or β = 1 and p ∈ [1,∞]. Suppose that
q ∈ [1,∞]. Then

V mLp(Rn, γn,β) →֒→֒ Lq(Rn, γn,β)

if and only if q < p.

Theorem 4.13. Let n, m ∈ N and β ∈ [1, 2]. Furthermore, let p1, p2, q1,
q2 ∈ [1,∞], α1, α2 ∈ R be such that both Lp1,q1;α1(0, 1) and Lp2,q2;α2(0, 1) are
rearrangement-invariant spaces (up to equivalent norms).

(i) Suppose that p1 <∞. Then

V mLp1,q1;α1(Rn, γn,β) →֒→֒ Lp2,q2;α2(Rn, γn,β) (4.39)

holds if and only if p1 > p2, or p1 = p2 and one of the following conditions is
satisfied:

q1 ≤ q2, α1 +
m(β − 1)

β
> α2;

q2 < q1, α1 +
1

q1
+
m(β − 1)

β
> α2 +

1

q2
.

(ii) Suppose that p1 = ∞. Then (4.39) holds if and only if p2 <∞, or

p2 = ∞, α1 +
1

q1
− m

β
> α2 +

1

q2
.

We shall first prove Theorem 4.13, the proof of Theorem 4.12 being an easy
consequence of this result.
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Proof of Theorem 4.13. Due to Theorem 4.10, condition (4.39) is equivalent to

(Lp1,q1;α1)Gm,β(0, 1)
∗→֒ Lp2,q2;α2(0, 1). (4.40)

Furthermore, it follows from [3, Theorem 7.8] that

(Lp1,q1;α1)Gm,β(0, 1) =

{

Lp1,q1;α1+
m(β−1)

β (0, 1) if p1 <∞;

L∞,q1;α1−
m
β (0, 1) if p1 = ∞.

By applying Proposition 4.2 we get the result.

Proof of Theorem 4.12. Suppose that p ∈ [1,∞) and q ∈ [1,∞]. Using Theo-
rem 4.13 with p1 = q1 = p, p2 = q2 = q and α1 = α2 = 0 we get that

V mLp(Rn, γn,β) →֒→֒ Lq(Rn, γn,β) (4.41)

is satisfied if and only if p > q, or p = q and m(β− 1)/β > 0. The last inequality
is true provided that β > 1, so, in this case Lp(Rn, γn,β) is indeed the smallest
Lebesgue space into which V mLp(Rn, γn,β) is compactly embedded. On the other
hand, if β = 1 then (4.41) is fulfilled if and only if p > q.

Finally, suppose that p = ∞. Then, due to Theorem 4.13 once again, (4.41)
is satisfied if and only if q < ∞, or q = ∞ and −m/β > 0. However, the last
condition is never fulfilled, so (4.41) holds with p = ∞ if and only if q <∞. This
completes the proof.
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