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Introduction

Compact embeddings of Sobolev spaces into other function spaces play a very
important role in modern functional analysis and, especially, in its applications
to finding solutions of partial differential equations. Although Sobolev spaces on
Euclidean domains having a Lipschitz boundary are discussed the most frequently,
it turns out that Sobolev spaces on different measure spaces would be of interest
as well.

Suppose that €2 is an open connected subset of R” endowed with a probability
measure v fulfilling dv(x) = w(z)dz, where w is a strictly positive continuous
density. Let X (€2, v) and Y (€2, v) be rearrangement-invariant spaces, in the sense
described in the following chapter. Given m € N, the Sobolev space V™ X (£, v)
consists of all m-times weakly differentiable functions in €2 whose m-th order weak
derivatives belongs to X (€2, v). Our main aim is to prove a sufficient condition
for

VX (Q,v) —— Y(Q,v)

given in terms of compactness of the one-dimensional operator

HIf(t) = /t1 ‘;((3 (/t I‘(l:))ml ds, feL'(0,1), te(0,1),

on representation spaces. This operator corresponds to a function I which should
be chosen in such a way that it is dominated by the isoperimetric function of
(Q,v) and satisfies some regularity assumptions. Our method is based on a
result which yields that boundedness of such an operator implies validity of the
corresponding Sobolev embedding. This result was proved in [10] for first-order
Sobolev embeddings and then it was generalized in [3] for Sobolev embeddings
of an arbitrary order m by iterating of first-order embeddings. In contrast with
this, in a big part of our proof we do not need to distinguish whether m =1 or
m > 1, although there is an exception in the case when Y (Q,v) = L>(Q,v).

Our method strongly depends on the use of so called almost-compact em-
beddings, called also absolutely continuous embeddings in some literature, which
were studied, e.g., in [6] and [I3]. Tt is well known that such embeddings have a
great significance for deriving compact Sobolev embeddings.

Our key one-dimensional result which, in fact, provides a connection between
the one-dimensional and n-dimensional case, says that compactness of the op-
erator H7" from a rearrangement-invariant space X (0, 1) into a rearrangement-
invariant space Y(0,1) # L*(0,1) is equivalent to an almost-compact embed-
ding of certain rearrangement-invariant space X, ;(0, 1) into Y (0,1). The space
Xn.1(0,1) is related to X (0, 1) by the fact that it is the smallest rearrangement-
invariant space fulfilling that the operator H}"* is bounded from X (0, 1) into this
space.

The case when Y (0,1) = L*>(0,1) is slightly different since here we first de-
rive the first-order result based on a certain almost-compact embedding, while
the higher-order result is transformed by iteration to the case when Y (0,1) #
L>(0,1). However, in contrast with [3], this iteration is quite straightforward,
using only the well known Hardy-Littlewood-Pdlya inequality instead of a non-
standard inequality needed in [3].




Moreover, in most cases of possible interest the function I can be chosen in
such a way that compactness of the operator H}" is not only sufficient but also
necessary for compactness of the corresponding Sobolev embedding. This is the
case, e.g., when (2 is a John domain, that is, a bounded Euclidean domain whose
isoperimetric function is equivalent to s'/™ near 0. Here, n’ = n/(n — 1). Note
that for the particular family of bounded domains having a Lipschitz boundary,
such a result is already known, see [7]. Also compact Sobolev embeddings on
more general Fuclidean domains belonging to so called Maz'ya classes can be
characterized by compactness of certain one-dimensional operator, in the sense
that there is always one domain in each class for which we have the necessity.
Finally, the product probability spaces belong into this framework. Among them,
the Gauss space, i.e., R" endowed with the probability measure

2
—lz|

dyn() = (27) 375 da,

is the most standard example.

The structure of the thesis is as follows. We start by recalling some basic
facts from the theory of rearrangement-invariant spaces and by describing mea-
sure spaces on which we will study compact Sobolev embeddings, see Chapter [T,
Section [T and Section [[.2], respectively. In Chapter 2] we derive several char-
acterizations of compactness of the one-dimensional operator H}*, which will be
needed in Chapter Bl where we state and prove our main results. The last chapter
of the thesis, devoted to the study of compact Sobolev embeddings on concrete
measure spaces, starts with some technical results contained in Section Bl In
Section we characterize compact Sobolev embeddings on John and Maz’ya
domains and in the final Section we deal with compact Sobolev embeddings
on product probability spaces.



1. Preliminaries

1.1 Rearrangement-invariant spaces

In this section we recall some basic facts from the theory of rearrangement-
invariant spaces.

Let (R, u) be a nonatomic measure space satisfying p(R) = 1. Denote by
M(R, ) the set of all real valued p-measurable functions in R.

Suppose that f € M(R,pn). The nonincreasing rearrangement of f is the
function f; defined by

fit)=inf{A>0:p({z e R:|f(x)] > A}) <t}, t€(0,00).

Observe that f(t) = 0 whenever ¢ > 1. For this reason, we sometimes consider
the function f; to be defined on (0, 1) instead of on (0, c0).

Assume that a functional || - ||xu @ M(R,pn) — [0,00] is such that for
all functions f, g € M(R, u), for all sequences (fx)7>, in M(R,p) and for all
constants a > 0, the following conditions are satisfied:

(PL) | fllxru =0 < f =0 p-ae., ||af|xrw = ol fllx@uw-
1f + 9llx@u < 1 fllxrw + 19llx@uw;

(P2) 0 < f<gprae = [[fllxmm < 9lx@mm;

(P3) 0 < fi T f prace. = |[fillxam T 1S lxcam;

(P4) (1] x(ru) < 003

(P5) fR \fldp < O flx(r,u for some constant C' > 0 independent of f;
(P6) f,

P6) fi =95 = Ifllx@wm = ll9lxzm-

The collection of all functions f € M(R,u) for which || f||x(r) < oo is then
called the rearrangement-invariant space X (R, v) and the functional || - || x (g, is
called the rearrangement-invariant norm of X (R, u).

If X(R,pn) and Y(R,p) are rearrangement-invariant spaces, the continuous
embedding X (R, u) — Y (R, p) holds if and only if X (R, ) C Y (R, u), see [2]
Chapter 1, Theorem 1.8]. We shall write X (R, 1) = Y (R, p1) if the set of functions
belonging to X (R, i) coincides with the set of functions belonging to Y (R, p).
In this case, the norms on X (R, ) and Y (R, ) are equivalent, in the sense that
there are positive constants C, Cs such that

Cillfllxem < fllvrw < Collflixrw, € M(R,w).

The Fatou lemma |2, Chapter 1, Lemma 1.5 (iii)] tells us that whenever (f;)32,
is a sequence in X (R, p) converging to some function f p-a.e. and fulfilling that
liminfy oo || fill x(rp) < 00, then f € X(R, 1) and

1 fllx(rw < hgglf I fellx (R



Furthermore, the Hardy-Littlewood inequality [2, Chapter 2, Theorem 2.2] yields

that
/Ifgldu</ f(s)g,(s (1.1)

is satisfied for all functions f, g € M(R, ).

Given a rearrangement-invariant space X (R, u), the associate space X'(R, )
is the rearrangement-invariant space consisting of all functions g € M(R, p) for
which

ol = [ Vrsld < .

If IX(R ;L)<1

For every f € X(R,u) and g € X'(R, i), we have the Hélder inequality

/R £l din < 1 9] x7c0

see [2, Chapter 1, Theorem 2.4].
For each rearrangement-invariant space X (R, pt) there exists a rearrangement-
invariant space X ((0,1), A1) such that

1 fllxrw = 1 fillxona, [ € X(R ), (1.2)

see [2 Chapter 2, Theorem 4.10]. Here, A\; denotes the one-dimensional Lebesgue
measure. The space X ((0,1),A;) is called the representation space of the space
X(R, p).

In other words, each rearrangement-invariant space X (R, i) can be defined in
terms of a rearrangement-invariant space X ((0, 1), A1) by ([L2)). We shall therefore
always start with a rearrangement-invariant space X ((0,1), A;) and then denote
by X (R, i) the rearrangement-invariant space whose norm is given by (L2)). For
simplicity, we shall write (0,1) instead of ((0,1),A;) and, analogously, we shall
omit the lower index A\; when dealing with nonincreasing rearrangements.

Let X(0,1) be a rearrangement-invariant space. The function ¢x defined by

px(s) = lIx©sllx©n, s€(0,1),

is called the fundamental function of X (0,1) (or X (R, u)). It is quasiconcave, i.e.,
it is nondecreasing in (0, 1) and ¢x(s)/s is nonincreasing in (0, 1). Furthermore,
each rearrangement-invariant space can be equivalently renormed such that its
fundamental function is concave.

We say that a function f € M(R,u) has an absolutely continuous norm
in X(R, p) if for every sequence (Fj)2, of u-measurable subsets of R fulfilling
XE, — 0 p-a.e. we have

klggo Xz fll xR = 0.

An easy observation yields that this can be equivalently reformulated by
alga 1X(0.0) f 2]l x0,1) = 0.

Suppose that X (0,1) and Y (0, 1) are rearrangement-invariant spaces. We say
that X (R, i) is almost-compactly embedded into Y (R, ) and write X (R, u) —
Y (R, p) if

lim —sup |[xgflly@m =0

k=0 | £l x (R, u <1



is satisfied for every sequence (Ej)7, of p-measurable subsets of R fulfilling
Xg, — 0 p-a.e. It can be deduced that this is the same as if

lim  sup  [[x0.0)f |y

=04 £l x 0,1y <1

Note that the relation X (R, ) < Y (R, u) always implies X (R, p) — Y (R, ).

We shall now give some examples of rearrangement-invariant spaces over (0, 1).
A basic example are the Lebesque spaces LF(0,1), p € [1,00], consisting of all
f € M(0,1) for which the functional

(f1rp(syds) " p< oo

[/l 01y =
ess SUPse(o) | fI(8) p =00

is finite. Recall that for each rearrangement-invariant space X (0,1), we have
L>(0,1) < X(0,1) — L*(0,1). (1.3)

Since none of the conditions L>(0,1) < L*(0,1) and L'(0,1) < L*(0,1) is sat-
isfied (see [I3, Remark 4.2]), it follows from (IL3]) that there is no rearrangement-
invariant space X (0,1) for which X(0,1) < L>(0,1) or L'(0,1) < X(0,1).
Furthemore, it is well known that the fact that a rearrangement-invariant space
X(0,1) is different from L*(0,1) can be characterized by lim,_o, ¢x(s) = 0.

One can consider also more general sets of functions LP?(0, 1) and L»%*(0, 1)
which were studied, e.g., in [5] and [I2]. They consists of all f € M(0,1) for
which

1_1
1 ooy = || £(s)s 7

< 0
La(0,1)

and

[y = | £()57 5 (log(e/s))°

respectively. Here, we assume that p € [1,00], ¢ € [1, 0], @ € R, and use the con-
vention that 1/00 = 0. Note that L?(0,1) = LP?(0,1) and L>9(0,1) = L»%°(0, 1)
for every such p and q. However, it turns out that under these assumptions on p, ¢
and «, LP?(0, 1) and LP%%(0, 1) do not have to be rearrangement-invariant spaces.
To ensure that L»%*(0,1) is a rearrangement-invariant space (up to equivalent
norms), we need to assume that one of the following conditions is satisfied:

< 00,
L9(0,1)

p=q=1, a=>0;
1 <p<oo;

—_ =
(G2 ENTEN

1

D

1
p=00, g<oo, a4+ - <0;
q

1.7

(1.4)
(1.5)
(1.6)
p=gq=o00, a<0. (1.7)
In this case, LP4(0, 1) is called a Lorentz space and LP%*(0,1) is called a Lorentz-
Zygmund space.
Suppose that LP12:91(0, 1) and LP>»%92((), 1) are rearrangement-invariant spaces

(up to equivalent norms). Then

Lphquoél (O, 1) SN Lp27q2;042 (0’ 1)
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holds if and only if p; > po, or p; = ps and one of the following conditions is
satisfied:

p1 <00, 1 <@, O > Qo

1 1
P11 =00, 1 <@, a1+ — =g+ —; (1.8)
q1 q2
1 1
QP <q, ap+— >0+ —.
q1 q2

Let ¢ be a nonnegative nondecreasing concave function in (0,1). The Lorentz
endpoint space A, (0, 1) is the rearrangement-invariant space consisting of all func-
tions f € M(0, 1) for which

1 llas01) = PO F L= +/O f*(8)¢'(s) ds < oo.

Here, we use the convention 0 - oo = 0. Recall that A,(0,1) has fundamental
function ¢ and, moreover, it is the smallest rearrangement-invariant space having
this fundamental function.

Throughout the thesis we shall adopt the following convention. When a func-
tional p is defined on M(R,u) and f : R — [0,00] is a p-measurable function
on R such that f = oo on a subset E of R satisfying u(E) > 0, then we set

p(f) = oo.

1.2 Measure spaces

In this section we describe measure spaces on which we will later study com-
pact Sobolev embeddings. Our most general results, namely those appering in
Chapter [3] correspond to the following situation.

Let n € N and let €2 denote an open connected subset of R” endowed with a
measure v satisfying v(€2) = 1. Moreover, we assume that there exists a strictly
positive continuous function w on {2 such that

v(E) :/Ew(x) dx (1.9)

for every Lebesgue measurable subset F C (.
For every F as above we define its perimeter in (Q,v) by

P,(E,Q) = / w(z)dH" (),

QNOM E

where OM E stands for the essential boundary of £, in the sense of geometric
measure theory (see [11]), and H" ! denotes the (n — 1)-dimensional Hausdorff
measure. The isoperimetric function I(q,) : [0,1] — [0, 00) is then defined by

1
Ton(s) = inf{Py(E, N):ECQ, s<v(b)< 5}



if s € [0,1/2] and by I(0.)(s) = Iiau(1—s) if s € (1/2,1]. Throughout the thesis
we shall assume that (2, v) is such that there exists a constant C; > 0 for which

Ioun(s) > Cis, s€[0,1/2]. (1.10)

Moreover, if we denote n’ = n/(n — 1) when n > 1 and n’ = oo when n = 1, we
have )
C(25? > [(Q,u)(s>7 s € [07 1/2]7 (111)

for some constant Cy > 0 independent of s € [0, 1/2], see [3, Proposition 5.1].
Throughout the thesis, A\, denotes the n-dimensional Lebesgue measure. For
simplicity of notation we shall write 2 instead of (£2, \,,).

Let X (0,1) be a rearrangement-invariant space. We denote

VTmX(Q,v) ={u: uis an m-times weakly differentiable function in €2
such that |V™u| € X(Q,v)},

where V™u is the vector of all m-th order weak derivatives of the function wu.
According to [3, Proposition 5.2], the inclusion V"X (Q, v) C L'(, v) is satisfied.
Hence, the expression

[ullvmx @ = lulli@w + 11V ull x@u) (1.12)
defines a norm on V™ X (£, v).

Proposition 1.1. The Sobolev space V"X (2, v) equipped with the norm (L12))
18 a Banach space.

Proof. Let (u)72, be a Cauchy sequence in V"X (Q,v). f a = (aq,...,,) is a
multiindex, denote by (D%uy )2, the sequence consisting of weak derivatives with
respect to the multiindex « of elements of the sequence (uy)g2,. Furthermore, set
la| = a1 + -+ + a,,. Owing to the completeness of L'(2,v) and X (Q,v), there
is a function v on € such that u, — u in L'(Q,v), and for each multiindex j3
satisfying |3] = m there is a function vz on Q such that DPuy, — vg in X(Q,v).

Suppose that q is an open subset of 2 such that Qg is compact in €. Since w
is continuous and strictly positive in €2, there is a constant ¢ > 0 such that w > ¢
in €. Hence, for every function w € L*(€, v) we have

1 1 1
Il = [ |wl)ldr < — | Jwl@)lw(z)de = ~[[wlz@ew < ~lwlla.

Qo Qo
(1.13)
Thus, ux — u in LY(Qy) and DPuy, — vg in L'(Qp) for each multiindex 3 fulfilling
|8] = m (in the latter case we are using the fact that X (Q,v) — L'(Q,v)).
Let k, | € N and let o be a multiindex satisfying 1 < |a| < m. By [9, Remark
5.11.4], by inequality (II3) and by embedding X (Q,v) — L'(Q,v), we have

[D%up, — D[ 1) < Ch <||Uk — | 1) + IV uk — vmul|||L1(Qo)>
Cl m m
< = (e = wll a9 01 = V7l 1))

< G (llur = wll s g + 19" 0 = V"l 0, )

= Chl|up — wil|vmx @),



where C7 > 0, C5 > 0 are positive constants independent of & and [. Hence,
(D%uy)%2, is a Cauchy sequence in L'(€)g). Owing to the completeness of L*(€),
for every such a we can find a function v, such that D%, — v, in L'(€).
Passing, if necessary, to a subsequence, we may assume that D%u;, — v, a.e. in
y. Hence, by different choices of €y, it is correct to consider v, to be defined
a.e. in the entire ). Now, a standard argument (see, e.g., [LT, Theorem 1.1.12])
yields that u is m-times weakly differentiable in Q2 and D%u = v, for every «
fulfilling that 1 < |a| < m. Hence, uxy — u in V"X (Q,v), as required. O

Note that it follows from [3, Proposition 5.2] that for every k =1,2,...,m —
1, we have the inclusion V"X (Q,v) C VFLY(Q,v). Hence, since the graph of
the indentity map from V™ X (Q,v) into VFLY(Q,v) is closed, the closed graph
theorem yields that the inclusion is continuous, that is,

VX (Q,v) = VELYQv), k=1,2,...,m — 1. (1.14)

Thanks to the embedding X (€, v) — LY(Q,v), (LI4) holds also for k = m.

We now describe concrete measure spaces we will deal with in Chapter [4]
namely, John domains, Maz’ya classes of Euclidean domains and product proba-
bility spaces.

Let n € N, n > 2. A bounded domain Q2 C R"™ endowed with the n-
dimensional Lebesgue measure A, and fulfilling that \,(Q2) = 1 is called a John
domain if the reverse inequality to (LII) is satisfied, i.e., if there is a constant
('3 > 0 such that

Io(s) > Cysw, s €[0,1/2).

Let a € [1/n/,1]. We denote by J, the Maz’ya class of all bounded Euclidean
domains 2 C R™ with A\,(€2) = 1 fulfilling that there is a positive constant Cy
such that

In(s) > Cys®, s €10,1/2].

Assume that ® : [0, 00) — [0, 00) is a strictly increasing function such that it
is twice continuously differentiable and convex in (0, 00), v/® is concave in (0, 00)
and ®(0) = 0. Define the one-dimensional probability measure pip = pe1 by

dpe(x) = coe™ 0D gz, (1.15)

where the constant c¢p > 0 is chosen in such a way that ue(R) = 1. We also
define the product measure pg, on R", n > 2, by

Hon = Ho X - X U - (116)
—_——

n—times
Then (R", p1e ) is a probability space for every n € N and we have
() = (cg)e= (@l +8(laalq-+0 () gy
Define the function Fp : R — (0, 1) by
Fy(t) :/ cge PV dr, t € R,
t

9



the function Ig : [0, 1] — [0, 00) by
Io(t) = coe~ 1P OD ¢ € (0, 1),

and I5(0) = Ip(1) = 0, and the function Lg : [0,1] — [0, 00) by

L¢@):t®’(®_1(bg%)>, t €(0,1],

and Lg(0) = 0. Then the isoperimetric function of (R", ue,,) satisfies
T®e g (t) = Ia(t) = Lo(t), te[0,1/2], (1.17)

see [I, Proposition 13 and Theorem 15].
The main example of product probability measures we have just defined is
the n-dimensional Gauss measure

2
—lz|

dyn(z) = (27)"2e 2 dx,
which can be obtained by setting
Lo
Mﬂ:?,tEMm%
into (LIH) (if n=1) or (LIG) (if n > 1).
More generally, measures associated with

Mﬂ:%ﬁtemm%

for some (3 € [1,2] are also examples of product probability measures. For each
B € [1,2], such n-dimensional measure is denoted by 7, 3 and satisfies

—|z|®
dynp(r) = cge” 7 dz,

where ¢z > 0 is chosen in such a way that v, 3(R) = 1. We of course have
Yn2 = Tn-

10



2. Compact operators

Let J:[0,1] — [0,00) be a measurable function satisfying

inf & > 0. (2.1)
te(0,1) ¢
We set
Jo = inf J(t), a€(0,1), (2.2)
t€la,l]

and observe that for every a € (0,1),
J, > Ca >0,

where C' = inf;c0,1) J(t)/t.
Let m € N. We define the operator H}* by

HTf(t) = /t1 % (/t%)ml ds, fe L'Y0,1), t € (0,1). (2.3)

Consider also the operator H; defined by
1
mw = [ fas. jeron. e o,
¢ J(s)

Then

HY =(m—1)!H;oHjyo0---0Hy, (2.4)
m—;irmes
see [3, Remarks 10.1]. Furthermore, observe that whenever f € L'(0,1) is non-
negative in (0, 1) then H’"f is nonincreasing in (0, 1).
Let X(0,1) be a rearrangement-invariant space. For every f € M(0,1) define
the functional [ - ||(x,, ,)0,1) by

sl ([ ) ros

and let (X, 5)'(0,1) be the collection of all f € M(0,1) for which || f||(x,,. ;) 0,1) <
00. Then, according to [3, Proposition 8.1], (X,,s)'(0,1) is a rearrangement-
invariant space and

1Nl )01) = (2.5)

X7(0,1)

H : X(0,1) — X,,(0,1), (2.6)

where X, ;(0, 1) denotes the associate space to the space (X, ;)'(0,1). Moreover,
Xn.s(0,1) is the optimal (i.e., the smallest) rearrangement-invariant space for

which (2.6]) is satisfied.

Remark 2.1. (i) The function J defined above does not denote the class of
equivalence of all functions which coincide a.e. Instead of this, we suppose that
J is one particular representative defined everywhere in [0,1].

(ii) In [3], the function J is supposed to be nondecreasing in [0, 1]. However,
this additional assumption has no significance for the proof of ([2.4]) and ([2.4]).

11



We start by proving that the image by H'* of the unit ball of each rearrangement-
invariant space is compact in measure.

Lemma 2.2. Let J : [0,1] — [0, 00) be a measurable function satisfying (Z1)) and
let m € N. Suppose that X (0,1) is a rearrangement-invariant space and ( fi)5,
is a bounded sequence in X (0,1). Then there is a subsequence (fr,)i2, of (fx)i,
such that (H7' fi,)72, converges pointwise a.e. in (0,1).

Proof. Because every rearrangement-invariant space X (0,1) is embedded into
L(0,1), the sequence (f;)72, is bounded in L'(0,1). First, suppose that m = 1.
Let j7 > 1 be an integer. Thanks to (2.6) and (L3]), we have

Hy: L'(0,1) — (L"), 4(0,1) — L(0,1),

so the sequence (Hjfy):2, is bounded in L'(0,1). Therefore, in particular,
(X0 Hyfe)i, is bounded in L'(1/4,1). For every k € N, we have that the
function x(1j,1)H fr is absolutely continuous in (1/7,1) and

_ @] _ [f@)]
J) — Juy;

‘(X(l/jJ)HJfk)l(t)‘

for a.e. t € (1/4,1). Since (fx);, is bounded in L'(0,1), ((xayj)Hife) )i, is
bounded in L'(1/7,1) and (x(1/5,1)H s fr)i; is therefore bounded in VL (1/5,1).

Denote f! = fx, k € N. By induction, for every integer j > 1 we will
construct a subsequence (f)?2, of the sequence (f] '), such that (Hjf])2,
converges a.e. in (1/j,1). Suppose that, for some j > 1, we have already
found the sequence ( g_l)z":l. Due to the results of the previous paragraph,
(X(l/j’l)HJfg_l)zozl is bounded in V'L!(1/4,1). Then, thanks to the compact
embedding V'L'(1/4,1) << L'(1/4,1), we can find a subsequence (f})$, of
the sequence (f7~")52 , such that (H;f])$, converges a.e. in (1/74, 1), as required.
Now, the diagonal sequence (H;fF)?°, converges a.e. in (0,1). This completes
the proof in the case that m = 1.

Finally, suppose that m > 1. Then, due to (28) and (L3),

H7P 1 LN0,1) — (LY)1.5(0,1) — L'(0,1),

so (H'771 fi)22, is bounded in L'(0,1) and the first part of the proof implies that
there is a subsequence (fy,)32, of (fi)32, such that (H;(H7'f,))22, converges
a.e. in (0,1). But (24) gives

Hy'=(m-—-1)!H;oH;0---0H, (2.7)
m—;i,mes
=(m—1)Hyo((m-2)H;joH; 0 0H,)= (m—1)Hyo HP,

(m—1)—times
i.e., (H} f,)2, converges a.e. in (0, 1). O

The main result of this chapter is the following
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Theorem 2.3. Let J : [0,1] — [0,00) be a measurable function satisfying ([2.1))
and let m € N. Suppose that X(0,1) and Y (0,1) are rearrangement-invariant
spaces. Then, except of the case that X(0,1) = L'(0,1), Y(0,1) = L*(0,1),
fol 1/J(t)dt < oo and m = 1, the following two conditions are equivalent:

(i) H": X(0,1) ==Y (0, 1);

(i) limg—o, supy sy, o<1 7 (X0 |/ lv01) = 0.
In the case that X(0,1) = L'(0,1), Y(0,1) = L*=(0,1), fol 1/J(t)dt < oo and
m = 1, the implication (1) = (ii) is still true.

Moreover, provided that

dt

Y (0,1) # L>(0,1) or /0 T 00, (2.8)

conditions (i) and (ii) are equivalent to

() Yo, 501 <1 [0 B0y = 0
and

(iv) Xp.s(0,1) < Y(0,1).

Proof. (i) = (ii) For every k € N we can find a nonnegative measurable function
fx in (0, 1) such that || fi||x@,1) < 1 and

m m 1
sup [ HT (x| DIy < THT (X018 fe)llvo) + T (2.9)
11l x 0,1y <1

Because the sequence (X(01/k).fk)jey is bounded in X(0,1), the assumption (i)
yields that there is a subsequence ( fi, )7, of (fi)z2, such that (H7 (X (0,1/k,) fr.)) 721
converges to some function f in Y(0,1). Moreover, the subsequence can be
found in such a way that (H7(X(0,1/k,).fx.))72, converges to f a.e. in (0,1). But
H7 (X0,1/k)Jk,) = 0 in (1/kg, 1), which implies that H7 (x(0,1/k,).fr,) — 0 point-
wise. Thus, f =0 a.e. in (0,1). This yields

Jim ([H (x0.1/k0) fro) Iy 0.1) = 0.
Now, the inequality (29) gives

lim  sup  ||[H7 (X017 )]y = 0.
=% flx <t

Because the function

a—  sup || H7 (x0.a0lfDllvon
11l x 0,1y <1

is nondecreasing in (0, 1), we obtain (ii), as required.
(ii) = (iii) We assume that (2.8]) is satisfied. Let ¢ > 0. Due to (ii), we can
find a € (0, 1) such that

m 19
sup || HT (x©0.0)| D)y < 5
[1fllx0,1)<1

13



Once we show that there is b € (0, 1) such that

()

sup [ xon H7 (X [ fDllyon < 5 (2.10)
11l x 0,1y <1
it will be easy to complete the proof. Indeed, we have
sup  Ixon HT'|fIllv0.1)
11l x 0,1y <1
< sup  xonHT Xl fDlven +  sup [IxosHT XanlfDlvoy <e.
11l x 0,1y <1 11l x 0,1y <1

Then, using that the function

b—  sup x5 HT|flllvon
11l x (0,1 <1

is nondecreasing in (0, 1), we obtain (iii), as required.
It remains to find b € (0, 1) such that (ZI0) is satisfied. For every function
f e M(0,1) fulfilling || f||x(,1) < 1 and for every ¢ € (0,a) we have

HY (o 1) (1) = ‘ﬁ;'(/sfr) Is

—%( <) /” Ids

< ()
<S([5) nmmn

< JQ ( 1 ) (2.11)

where C' > 0 is the constant from the embedding X (0,1) < L(0,1).

Now, suppose that
/1 —dt < (2.12)
00. .
o J(1)

Then for every f and t as above we have

el s S ([ ) < S ([ )" p

Since (ZI2) is in progress, we necessarily have Y (0,1) # L>(0,1). So, as it was
pointed out in Section [[LT], there is b € (0, a) such that ||x(os)|ly01) < &/2D. This
implies

m g
sup  Ixop T Xl fDIlvon < Dlixosllyon < 3
[1fllx 0,1y <1

Finally, we will discuss the case when

)
/0 o 0. (2.13)

14



We can find a; € (0,a) such that

/1 dr _ C

- Z I

v Jr) T e

for every t € (0,ay). Then, owing to (Z.I1]), for any such ¢ and for every f from
the unit ball of X(0, 1), we have

HY (o )0 < ( / 1 %)m < ( / 1 %)m (2.14)

Choose ¢ > 0 such that ||x01)c|[x@©1) = 1. Then

dlim IHT (x0.00)lyo1) < dhm sup  |[H7 (x| /DIy =0,
—0+ —0+ 11l x 0,1y <1

SO
Jm 77 (xoa)lyoen =0 (2.15)

Fix d € (0,1) and ¢ € (0,d). Denote

o(s) = /:%, s € (t,d).

Then ¢ is an increasing Lipschitz function in (¢, d), because |¢'(s)| = 1/J(s) <
1/J; for a.e. s € (t,d). So, due to the change of variables theorem,

HYT (X 0.4)#) = X(©0.a)(t) /td J(ls) (/: %)ml ds

~ Yo (®) / & (5) ()™ ds

w(d) .
= X(Qd) (t) / Tmi d’r’
»(t)

— D" = txea®) ([ 5) )

Combining this with (2.I5]), we obtain

d d’y m
lim X,dt</ —) =0.
a0, |1 ) t T o
Thus, we can find ay € (0, a;) such that
2 dy \"™ €
X(0.a2)(t) (/ —) — (2.17)
H (0e2) ¢ JW) Y (0,1) 2m

Thanks to (2I3), there is b € (0, ay) such that for every ¢ € (0,b) we have

() - L) =G a)
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This inequality together with (2.I4]) and (2.17) gives

- . @2 dr \"™
sup  [IxonHT (X@n!fD)Ilve <2 HX(O’”)@) (/ J("’))
t

[1fllx 0,1y <1

<
v (0,1)

Do ™

(iii) = (iv) Using the definition of the associate norm and the Fubini theorem,
we get

lim sup ||X(o,a)f* ||(Xm,J)/(071)

=04 | fllyr 1y <1
1 /s s dy m—1
& [xatoro( —) it
J(s) Jo 0 ¢ JW) o
S m—1
= lim  sup sup / l9(s ‘/ X(0,a)( (/ ) dt ds
=04 ||f||y/(01><1||g||x<01)<1 J(s) : J(Y)

1 m—1
lg(s)| (7 dy
= lim  sup sup / X(O,a)(t)f*(t)/ ds dt
9041 fllyr g1y <1 llgl x(0,1y <1 S0 e Js) \Je J()

1
= lim  sup sup / X(0.0) (0) f*(t)HY' |g|(t) dt

a0y l9llx 0,1 <1 1 fllyr 0,1y <1

m *
~lim s [ 70 (am i) o)
et ||9||X(0 nH<l1 ||f||y'(0 n<l

= lim sup |x00HT 9]y =0

=0+ gl x 0,1 <1

= lim sup
=0+ || fllyr g1y <1

‘ s
<

Note that the second last equality holds because X(07G)H§”| g| is nonincreasing in
(0,1) for every a € (0,1) and g € X(0,1). Thus, we have proved that Y'(0,1) <
(Xon.s)'(0,1), which is a condition equivalent to (iv), see [6, Section 4, property
5].

(iv) = (i) Suppose that (fx)7; is a sequence bounded in X (0,1). According
to Lemma [2.2] there is a subsequence (fy,)72, of the sequence (f;)32, such that
(HT fr,) 24 Converges to some function f a.e. in (0,1). Moreover, (28] implies
that (H7 fr,)2, is bounded in X, ;(0,1). Hence, by the Fatou lemma,

111 0,0 < diminf [[HF fi |l x,,, 0.0 < 00,

so, f € Xpns(0,1). Thus, (H}fr, — f);2, is bounded in X,, ;(0,1) and, by
using (iv) and [13, Theorem 3.1], we get that (H}fy, — f) — 0 in Y(0,1), i.e.,
H7 fy, — fin Y/(0,1). Therefore, H}* : X(0,1) —— Y(0,1).

(ii) = (i) This implication has already been proved in the case that (2.8]) is
satisfied. Thus, we can suppose that Y (0,1) = L*(0,1) and fol 1/J(t) dt < 0.

We first observe that it is enough to show that for every a € (0, 1), the operator
HY, o f = H7P(X(a,1)f) is compact from X (0, 1) into L>°(0, 1). Indeed, thanks to
(ii) and to the fact that |[H7'(X(0,0)f)| < HT (X0.a)|f]) for every f € X(0,1) and

€ (0,1), we have

lim  sup |[[H}f — H),fllL~©1 = lim  sup  [[H" (0.0 f)llz=01)

=0+ | fll x (0,1) <1 =04 £l x 0,1y <1

< lim  sup [ HP (x| f)]lL=©1) =0,

=04 fllx 0,1y <1
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so H7 will be a norm limit of compact operators, and thus itself a compact
operator.

Let a € (0,1) and let f be a measurable function on (0, 1) satisfying || f|| x(0,1) <
1. Consider HY, f = H}(X(a1)f) to be defined by (23) in the entire [0, 1]. Such
a definition is correct since the integral in ([23]) is convergent for every ¢ € [0, 1].

Indeed,
o< | | X(a’”ﬁl')f(sﬂ (/ ;Jj(l:)>M1 ds
U ()
1(/%) T

Loagr ™
s—( / ﬁ) |flxon <D (2.18)

for every t € [0, 1], where C' > 0, D > 0 are as in the proof of implication (ii)

= (iii). Inequality (ZIS) also implies that the image by H, of the unit ball of
X(0,1) is equibounded in [0, 1].
Suppose that 0 < t; <ty < 1. We have

|HTaf(t1) - HTaf(t2)|

- /tll % (/t?:))ml ds — /t: X<a,1}(<i))f(s) < /t ch:))m—l N
<[] )

Assume that m > 1. Then

Q&

~

1/ [ dr \™
IHTaf(tl)—HTaf(tz)léja( / ﬂ) 1l

o[- L) (S ) (L))

=0

A e -y
=2\ ) Mg\ Ty IO
2 dr
<C’/ —_
N t1 ‘](T)

where C' > 0, C" > 0 are constants independent of f. Thanks to the absolute
continuity of the Lebesgue integral, the last expression goes to 0 when ¢y — t;
tends to 0.

Let m = 1. We need the additional assumption X(0,1) # L'(0,1) which
implies that X'(0,1) # L*>(0,1). Then, using (219) and the Hélder inequality,

A\
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we deduce that

m m 1 t2
sup |HYf(0) ~ By fe) < s [ Ifo)]ds
11l x 0,1y <1 a || fllxo,<1Jt
1
< 5 sup £ 10,0 X (t1.02) | 7 0,1)

a || fllxo,1<1

—_

1
= ja”X(tl,tz)HX/(o,l) = J—a||X(o,trt1)||X'(0,1)a

which goes to 0 when t5 — ¢; tends to 0. This proves the equicontinuity. Arzela-
Ascoli theorem now yields that H’, maps the unit ball of X (0, 1) into a relatively
compact set in C([0,1]). Because for every f € X(0,1), the norm of HY, f in
C([0,1]) coincides with its norm in L>°(0, 1), the operator H, is compact from
X(0,1) into L>(0,1). The proof is complete. O

Remark 2.4. It is easy to observe that the only function having an abso-
lutely continuous norm in L*°(0,1) is the constant function 0. Thus, none of
the conditions (iii) and (iv) from the statement of Theorem can hold with
Y (0,1) = L*>=(0,1). In particular, if fol 1/J(t) dt = oo and the condition (i) (or,
equivalently, (ii)) is satisfied, we have Y (0,1) # L>°(0,1). In this sense, it would
be equivalent to replace the assumption (2.8]) just with Y(0,1) # L>(0,1).

Furthermore, one can observe that in the proof of (iii) = (iv) and (iv) = (i),
we make no use of (Z8)). However, these two implications have no significance in
the case that Y'(0,1) = L*(0, 1), because none of the assumptions (iii) and (iv)
can be satisfied.

Example 2.5. Suppose that J : [0, 1] — [0, 00) is a measurable function satisfy-
ing (2.1). We will show that, in general, the condition
lim  sup ||Hs(X©a)|fDllLe@1) =0 (2:20)

0| £l L1 0,0y <1

does not imply
Hy: L'(0,1) —— L>(0,1). (2.21)

Indeed, for an arbitrary 8 > 0, set J(t) =% ¢ € (0,1], and J(0) = 0. Then J
is measurable in [0, 1] and satisfies (ZT]) as well as ([2.20), because

i sup (o Do = Jim s [ 1fGs)ls"ds
<1J0

=0+ 1 1l 1 .0y <1 =0+ 11l 1 0,1y <

— B — 1 B _—
= lim X009 ) = Jim a” =0.
Let t € (0,1/2). Define the function f, by fi(s) = xa-t1)(s)1/t, s € (0,1).
Then || f¢||10,1) = 1. We can consider H f; to be a continuous function defined
in the entire [0, 1]. Then we have

Hofi—t)— 50 = [ Tgss L[ Lgs— 2
2 [i(L—1t) = H;fi(1) = - X(lft,l)(S)Y s Z 28 - X(lft,l)(s); s = 28"
so the image by H; of the unit ball of X(0,1) is not equicontinuous in [0, 1],
hence, due to the Arzela-Ascoli theorem, it is not relatively compact in C(]0, 1]).
Because the norm of H; f in C(]0, 1]) coincides with its norm in L>°(0, 1) for every
f € L'(0,1), the condition ([Z21]) cannot be satisfied.
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Suppose that a function J : [0, 1] — [0, 00) is nondecreasing and satisfies (2.1])

and
dt

/0 7 < (2.22)

\If(t):/O %, te(0,1).

Since VU is nonnegative, nondecreasing and concave in (0, 1), we can consider the
rearrangement-invariant space A;(0,1) = Ay(0,1). The main properties of this
space are described in the following

Define the function

Lemma 2.6. Let J : [0,1] — [0,00) be a nondecreasing function satisfying (2.1))
and 222). Then for every f € M(0,1) we have

oo = [ 256 at

Furthermore, the rearrangement-invariant space A;(0, 1) is different from L>(0,1)

and fulfills

Hy: Ay(0,1) — L(0,1).

Proof. Due to the absolute continuity of the Lebesgue integral,

¢
d
lim ¥(¢) = lim i

=0. 2.23
t—04 =0+ Jo J(S) ( )

Hence, A;(0,1) = Ag(0,1) is different from L>°(0,1). Furthemore, for every
f e M(0,1) we have

L)
1 lason = 1 lawon = [ Fllz=w), hm W(t f i dt.

Finally, using the Hardy-Littlewood inequality (L.II), we obtain
(5) 5o

/ 1)l
( L°°(0,1) S >0 (0,1)

/'f Pilas < /f ds = £l (2.24)

for every f € A;(0,1), so, H; : A;(0,1) — L*(0,1). This completes the proof.
U

[H s f oo 0,0) =

The previous lemma shall be now applied to obtain further characterizations
of compactness of the operator H'/* from a rearrangement-invariant space X (0, 1)
into L>°(0,1).

Theorem 2.7. Let J : [0,1] — [0,00) be a nondecreasing function satisfying ([2.1))
and [222)) and let m € N. Suppose that X (0,1) is a rearrangement-invariant
space. Then the following two conditions are equivalent:

(i) H7" : X(0,1) —— L>(0,1);

(11) hma"0+ Sup||f||x(071)§1 |’HT(X(O7G')‘f|>HLOO(O71) = 0
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Moreover, if m = 1, conditions (i) and (ii) are equivalent to
(i) X(0,1) <> A;(0, 1);
and if m > 1, they are equivalent to
(iv) H7 ' X(0,1) —— A, (0,1).
Proof. To show that (i) < (ii) it suffices to prove the implication (i) = (i) in
the particular case X (0,1) = L*(0,1) and m = 1, because the rest of the proof

follows from Theorem 2.3
Suppose that (ii) holds with X (0,1) = L*(0,1) and m = 1. Then

. 1 a f S
0= llr(l)l sup ||HJ(X(O,a)|f|)||L°°(071) - h%l sup / |J( ) ds
TSl 0, St O st Jo S (8)
= lim X0a) = sup L

a—0,4 JlLe=(0,1) te(0,1] J(t)’

because 1/.J is nonincreasing in [0,1]. But 1/J > 0 in (0, 1], so the assumption
(i) cannot be satisfied in this situation. The proof of (i) < (ii) is complete.
(ii) < (iii) We suppose that m = 1. First, observe that for every g € M(0,1)

we have
1 1
9" (s) /9*(8)
HgHAJ(OJ) /0 J(S) S \ J(S) S

= ||HJ9*||L<>°(0,1) : (2.25)

£%(0,1)
Let a € (0,1). Then
sipxea flla,on = sup[Hi(xw )| =
11l x 0,1y <1 11l x 0,1y <1
< s [H (e D] o)
11l x(0,1)<1 L=0.1)

where the inequality holds thanks to the fact that whenever a measurable function
f belongs to the unit ball of the space X (0, 1), then also f* = |f*| has the same
property. Conversely, using (Z24]) we obtain that for every a € (0, 1),

Sup HHJ(X(O,a)‘fDHLoo(O,I)S sup [ x 0.0l f 40,1
11l x(0,1)<1 11l x 0,1)<1

= sup |[x0.0) X! f1) 400
[1fllx 0,1y <1

< sup ||X(0,a)f*||AJ(071)'
£l x(0,1)<1

Hence,

lim  sup xS/ a0 = lim  sup || Hs(xw.a) D] o -

a—0+ 11l x 0,1y <1 a—0+ 11l x 0,1y <1

This establishes the equivalence of (ii) and (iii).
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(ii) < (iv) We suppose that m > 1. Then

lim  sup  [[H7 ' (X0 fD)la,01

=0+ | fll x(0,1) <1

= lim sup | H;(H? ' (Xowlf1) =01

=04 £l x 0,1y <1

= lim sup | H;(H? ' (X0l f))lz=01

=04 £l x 0,1y <1

1
=——lim sup |[H(x0.a!f])|lL=01)- (2.26)

— L a=0t o<t

Note that the first equality can be obtained by using ([2.27]) and the third equality
holds thanks to (2Z.1).

Thus, (ii) is equivalent to

lim sup [HF (o DIy = 0. (2.27)

=0+ fll x 0,1y <1

Since A;(0,1) # L>(0,1) (see Lemma [2.0), Theorem implies that (227 is

equivalent to (iv), as required. O
Theorem and Theorem 2.7] yield altogether the following

Corollary 2.8. Let J : [0,1] — [0,00) be a nondecreasing function satisfy-
ing ZI) and let m € N. Suppose that X (0,1) and Y (0,1) are rearrangement-
invariant spaces. Then

H7 :X(0,1) -— Y (0,1)
18 satisfied if and only if

lim sup ||H§n(X(0,a)|f|)||Y(0,1) =0.

=041 fllx 0,1y <1
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3. Main results

Let (2,v) be as in Section [[L2 The results from Chapter 2] shall be now applied
to a function I : [0, 1] — [0, 00) satisfying

Liau)(t) > cI(ct), te[0,1/2), (3.1)

for some constant ¢ € (0,1) and fulfilling certain regularity assumptions, which
are encoded in the notion of admissibility introduced in [3].

Definition 3.1. We say that a function I : [0,1] — [0, 00) is admissible if it is
nondecreasing in [0, 1], I(¢)/t is strictly positive and nonincreasing in (0, 1] and
one of the following conditions is satisfied:

(a) There exists k € N and a constant A > 0 such that for every t € (0,1),

%/Ot (@)kdsgf(@)k, (3.2)

I(t k+1
inf (*)
te(0,1)  tk

and, at the same time,

> 0. (3.3)

(b) For every m € N there exists a constant A,, > 0 such that for every

een WO 1(6)\"
(5 e ()

Remark 3.2. Each admissible function I is nondecreasing in [0, 1] and satisfies

I(t
inf ) > I(1) > 0.
te(0,1) t

Hence, all results from Chapter 2] can be indeed applied to the choice J = 1.

Examples 3.3. (i) Let a € (0,1]. Then the function I(s) = s*, s € [0,1], is
admissible. Indeed, I is obviously nondecreasing in [0, 1] and I(s)/s is positive and
nonincreasing in (0, 1]. Moreover, if a € (0,1) then ([3:2)) is satisfied if and only if
k<1/(1—«)and B3) is fulfilled if and only if £ > o/(1 — ) =1/(1 — «) — 1.
Since there is always a positive integer in the interval [ﬁ -1, ﬁ), condition
(a) is satisfied. On the other hand, if & =1 then, clearly, I fulfills (b).

(ii) The function I fulfilling I(s) = s\/log2/s, s € (0,1], and I(0) = 0, is
admissible. Indeed, it is not hard to observe that I is nondecreasing in [0, 1] and
that I(s)/s is nonincreasing in (0, 1]. Furthermore, I satisfies (b) since for every

m e N,
1t 2\* 2\ ?
- log — ds ~ | log — t 1
t/0<ogs) 5 <ogt) , te(0,1),

up to multiplicative constants independent of ¢ € (0, 1).

(iii) Suppose that m > 1is an integer and set &« = 1—1/m. Let § < 0 and let [
be the function defined by I(s) = s®(log2/s)”, s € (0, 1], and by I(0) = 0. Then
there is § > 0 such that [ is nondecreasing in [0, §] and /(s)/s is nonincreasing in
(0, 6]. However, we will show that I is not equivalent to an admissible function.
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Since # < 0, condition (3.3) is satisfied if and only if a(k + 1) — k < 0, or,
equivalently, & > a/(1—«) = m—1. Furthermore, a necessary condition for (3:2))
to be fulfilled is that

t I k t 2 Pk
/ ( (S)) ds = / S(O‘*l)k (log —) ds < 00, te (07 1)7
0 § 0 s

which holds if and only if £ < 1/(1 —«a) = m, or k = 1/(1 —a) = m and
fm < —1. Hence, B2) and [B3) cannot be satisfied simultaneously unless
k =m and fm < —1. However, in this case we have for every ¢t € (0, 1)

1 [t /I(s)\™ 1 [t (log 2)°™ 1 N N 2
t ), s t P ¢ ¢ ¢ ¢

so, ([B3) is not satisfied. Hence, (a) is not true. Moreover, (b) is also not satisfied

since (8.2)) does not hold for k > m.

The following result, which will be crucial for us, is a consequence of [3
Theorem 3.3 and Theorem 3.4].

Theorem 3.4. Assume that (Q,v) is as in Section[L2 and I : [0,1] — [0, 00) is
an admissible function satisfying B)). Let m € N and let X (0,1) and Y (0,1) be
rearrangement-invariant spaces. Then the condition

H: X(0,1) — Y(0,1)

implies

VMX(Q,v) — Y(Q,v).

In particular, we have
VTmX(Qv) — X (Q,v).

We shall now prove a result in the spirit of Theorem [B.4] concerning compact
Sobolev embeddings.

Theorem 3.5. Assume that (Q,v) is as in Section[L2 and I : [0,1] — [0, 00) is
an admissible function satisfying B1)). Let m € N and let X (0,1) and Y (0, 1) be
rearrangement-invariant spaces. Then, provided that

H":X(0,1) -— Y(0,1), (3.4)
or, equivalently,

lim  sup  ||H" (X0l fDIlyo1 =0, (3.5)

=04 | fllx 0,1y <1

we have
VX (Q,v) == Y(Q,v).

Our proof starts with the following lemma which shows that the unit ball of
each Sobolev space V™ X (), v) is compact in measure.
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Lemma 3.6. Assume that (Q,v) is as in Section[L.A Let m € N and let X (0,1)
be a rearrangement-invariant space. Then every sequence (ug)5>, bounded in
V™ X(Q,v) contains a subsequence (uy,)72, converging v-a.e. in Q. In particular,

the subsequence (u,);2, is convergent in measure.

Proof. For every & € Q we can find a ball B, centered in x such that B, C €.
Then 2 C Uycq B, and, due to the separability of €2, there is a sequence ()32, of
points in 2 such that 2 C U, B, . As it was pointed out in (L14) for k = 1, the
sequence (u;)32, is bounded in V!LY(Q,v). Moreover, for every j € N, (u)5,
is bounded in V'L'(B,,,v). Since B,, is compact in Q and w is strictly positive
and continuous in (2, there is a constant ¢; > 0 such that w > ¢; in B,,. Thus,
for every k € N,

lwellvicys., ) = / (lur (@) + [Vur(2)]) w() do
v
> ;[ (uel + [Vue) do = & Judlvinics, .
@
Hence, (u;);2, is bounded in V'L'(B,,). Denote uf = uy, k € N. By induction,
for every j € N we will construct a subsequence ()22, of the sequence (u] )%,
converging a.e. in B,,. Suppose that, for some j € N, we have already found the
sequence (ul ')?°,. Since (u] )82, is bounded in V'LY(B,,) and the compact
embedding VLY (B,,) —— L'(B,,) holds, we can find a subsequence (u},)32; of
(u{{l)zozl converging in L'(B,,). Passing, if necessary, to another subsequence,
(uy,)72, can be found in such a way that it converges a.e. in B,,. Now, the diagonal
sequence (uj);>, converges a.e. (or, what is the same, v-a.e.) in U, B, = Q,
as required. Furthermore, it is a well known fact that each sequence converging
v-a.e. is convergent in measure. ]

Proof of Theorem[3. Conditions ([34) and ([BI) are equivalent according to
Corollary 2.8
First, suppose that

Y (0,1) # L*=(0,1) or /lﬁ = 00
0

1(s)
Then, due to Theorem 23, B4) and B3) imply X,,;(0,1) < Y (0,1), or, what
is the same, X,, /(€ v) — Y(Q,v).
Assume that (uy)52, is a sequence bounded in V™ X (€, v). Due to Lemma[3.6]
we can find its subsequence (ug,)72; which converges to some function u v-a.e.
in 2. Because V"X (Q,v) — X,,,1(Q,v) (Theorem B.4), (ug,);2, is bounded in
Xom.1(€2,v). Hence, by the Fatou lemma,

Jull ) < limin g L, 00 < o0,
sou € X, 1(Q,v) and (ug, — )72, is therefore bounded in X, ;(Q2, v) as well. We

have X, (€, v) <> Y (€, ), so, according to [I3, Theorem 3.1}, (uy, — u) — 0 in
Y(Q,v), ie., ug, — uwin Y(Q,v). Thus, V"X(Q,v) —— Y(Q,v).
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Now, assume that Y (0,1) = L>(0,1) and fol 1/1(s)ds < co. We start with
the case that m = 1. Then, due to Theorem 2.7, conditions (3.4]) and (B.5) imply

X(0,1) < A;(0,1). (3.6)
Moreover, Lemma 2.6 together with Theorem B4 give that
VIA[(Q,v) — L™(Q,v). (3.7)

Let u € V1A;(Q,v) be a nonnegative function fulfilling med(u) = 0, that is,

v({re:u>0}) <

N | —

Then, using [37), [3, Proposition 5.2] and the fact that A;(Q,v) — L'(Q,v), we
get

[l ooy < CLlllI VUl aru) + llullr@w)
< CilIVulllagow + CalllVulllew) < GslllVulllagom, — (3:8)

where C, Cy, C5 are positive constants independent of u.
Let (ug)?2, be a sequence in V!X (Q,v) such that

lukllvix@u <1, k€N (3.9)

Due to Lemma [3.6 there is a subsequence (v)32, of the sequence (uy)52; which
converges in measure to some function v. Choose € > 0 arbitrarily. Due to (3.6,
we can find § € (0,1/2) such that

* £
sup  ||x0.8).f 401 < 10 (3.10)
1 f1lx0,1)<1 3

Since (vg)72, converges to v in measure, there exists ko € N such that whenever
k > ko, we have v({x € Q : |vp(x) —v(x)] > €/4}) < 0/2. Because for every
k7£ > k07

{z € Q: |up(x) —ve(x)| > €/2}
C{r e Q:|u(zr) —v(x)| >e/4tU{zr € Q: |u(x) —v(x)| > e/4},

we deduce that

v({z € Q: |ug(z) —ve(x)| > €/2}) (3.11)
<v({x e Q:|u(z) —v(x)| >e/4}) +v({r € Q: |ux) —v(z)| > e/4}) < 0.

Observe that
|ug — ve| = min{|vx, — ve|, £/2} + max{|vy — ve| — £/2,0}. (3.12)

Let € be an open subset of 2 such that € is compact in €. Since vy, vy, |V
and |Vu;| are locally integrable in 2, we have v, € V() and v, € V(D).
Obviously, the constant function £/2 € V(). This implies that the function
|, — vg| — £/2 belongs to V11(Q') as well and

V(v —ve| —£/2) = V|vr. —ve| = sgn(vk —ve) V(v — ;) = sgn(vg —vg) (Vo — V)
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a.e. in €. Furthermore, because the constant function 0 belongs to V11 (£'), we
have max{|vy — v/| —/2,0} € VH1(Y) and

V max{|vy — ve| — £/2,0}
_ {sgn(wC — ) (Vo — V)
0

a.e. in Q' N {|vg —wve| > €/2},
a.e. in Q' N {|vp — v < e/2},

ie.,

V max{|vy — ve| —€/2,0} = X{jop—vy|>e/2} 580 (v — Vo) (Vv — Vuy) (3.13)

a.e. in (.

Suppose that ¢ € C*°(2) has a compact support in €2 and denote this support
by K. Because K is bounded in R", there is an open ball B in R™ such that
K C B. Moreover, since R"\() is closed in R", the Euclidean distance d =

d(K,R™\Q) > 0. Define
, d
Q= xER”:d(x,K)<§ NB.

Then ' is a bounded (i.e., relatively compact) open subset of R™ and
/ 0O/ n d n
KCQ CcocC xER:d(az,K)§§ NBCO.

Thus, € is compact in € and ¢ has a compact support in €. Hence, owing

to (B.I3), for every i € 1,2,...,n we have
g

/max{|vk ~ul —/2,0} - ¢
Q )
i
T
8vk 8@@)

:/ max{|o — vr] — /2,0} - 2
Q/

= - /Q/ P X{|vp—ve|>e/2} Sgﬂ(vk - W) (8@ B
8vk 8vg)

= - /S; P X{|vp—ve|>e/2} Sgrl(Uk - UZ) (8372 0:61

This yields that max{|vy — v¢| — ¢/2,0} is weakly differentiable in the entire 2

and
V max{|vy — ve| —€/2,0} = X{jvp—uvy|>e/2} 5E0(v — o) (VU — Vo)

holds a.e. in 2. Consequently,

|V max{|vk — ’Ug| — 6/2, 0}| = X{|vk,w|>€/2}|Vvk - V’Ug| (3.14)

a.e. in Q. Moreover, max{|vy — v;| —€/2,0} is nonnegative in Q and
med(max{|vy —v| —e/2,0}) = 0. (3.15)
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Indeed, (B.I1)) implies that

1
v({x € Q:max{|vy —v| —¢/2,0} >0}) =v({x € Q: |y —w| >¢/2}) << 3"
Altogether, we obtain

vk — ve|| Lo ()
< || min{[vy, — ve|,€/2} Loy + || max{[vy, — ve| = €/2,0} ||,y (by B.I2)

€

< 5+ Gl [Vmax{[og — v — /2, 0}[| a) (by B.15) and (3.8))
€

= 5 T CslXqu—vel>e/2 Ve = Vel [l a0 (by (B.14))
€

< -+ C3”X{\Uk—vg|>a/2}‘vvk| HA](Q,V) + 03|’X{\uk—w\>e/2}|vw\ ”AI(Q,V)

2

8 * *
= 5 + Gl qoe—vel>e2t V)il ar00) + Call Ocoe—vel>e/23 [ Voe )yl s 0.)

8 *
= =+ C3lIX0.6) (X{jvr—vel>e/2y VORIl 4, 0,1)

9
+ Cs1x(0.6) (X {Jon—vel /23 Vel )y Ml 4y 0,1) (by B.110)
€ N X
< 5+ Gillxea IVorlillaon + Csllxos Vo)l a0
15 *
S5 +20 supAlxes S laen <e (by B3I) and [B.I0))
11l x 0,1y <1

It follows that (vg)72, is a Cauchy sequence in L>(§2,v). Thanks to the com-
pleteness of L>(,v), (vg)72, is convergent in L>(2,v), as required.
Let m > 1. According to Theorem [27] conditions (3.4]) and (B3] imply

H ' X(0,1) —— A;(0,1).
Because A;(0,1) # L>(0,1) (Lemma 2.6]), the first part of the proof gives that
VmLX(Q,v) e A (Q,v). (3.16)

Let (ux)?2; be a bounded sequence in V™ X (€, v). Then (uy)52, is bounded
in L'(Q,v), therefore ([, u, dv);2, is a bounded sequence of real numbers and we
can find a subsequence (ug)p>; of (uy)2, such that the sequence ( [, uf dv)p>, is
convergent.

Fori=1,2,...,n, consider the sequence (D;uf)?, consisting of weak deriva-
tives with respect to the i-th variable of elements of the sequence (u))?°,. Thanks
to the continuous embedding V"X (Q,v) — VILY(Q,v), all these sequences are
bounded in L'(€,v), and, owing to the boundedness of (uz)2, in V"X (Q,v),
they are bounded also in V" ' X(Q,v). Now, the compact embedding (3.I0)
yields that we can inductively find sequences (u})%2,, ¢ = 1,2,...,n, such that
(ui)ge, is a subsequence of (uj '):2, fulfilling that (D;ui)g, is convergent in
Ar(Qv) for j =1,2,...,i. Thus, in particular, (D;ju});2, is a Cauchy sequence
in A;(Q,v) for every j € {1,2,...,n}.

Let € > 0. Thanks to the embedding V'A;(Q,v) — L>*(Q,v), there is a
constant C' > 0 such that for every u € V'A;(Q,v),

u—/udu
Q

< CllIVull g0 < C Y IDjulla e (3.17)
j=1

L (Q,v)
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see [3, Proposition 5.3]. Since (Dj;uf)i, is a Cauchy sequence in A;(€2,v) for
every j € {1,2,...,n}, we can find kg € N such that || D;u —D;up| 4, < e/Cn
whenever k,¢ > ko and j € {1,2,...,n}. Thus, inequality (BI7) implies that for
every k,{ > ko,

n
= CZ | Djui — Dju?||AI(Q,y) <é,
L>(Q,v) j=1

z@—u?—/ﬂﬁ—u@dv
Q

so, (up — [ up dv)i2, is a Cauchy sequence in L>(2, v). Due to the completeness
of L*(Q,v), (up — [,updv);>, is convergent in L>(2,v). Since the sequence
(Jqup dv)i2, consisting of constant functions is convergent in L>(€,v) as well,
(up)p2, is convergent in L>®(Q,v) and V"X (Q,v) —— L*(Q,v), as required.

0

We shall now prove that in the special case when there is a constant C' > 0
such that

*odr S
/0 T < Oy €0 (3.18)

the kernel operator H7* in (3.4) and ([B.0) can be (almost) equivalently replaced
by a much simpler weighted Hardy type operator K}* defined by

Sm

1 -1

K70 = [ 1) s, £eLH0.1), te 0.1)

! ' (Z(s))™

Moreover, the rearrangement-invariant space X, ;(0,1), useful to characterize
when ([B.4) and (B3] hold, coincides with the rearrangement-invariant space
Xfml((), 1) whose associate space consists of all f € M(0,1) for which

tm

The fact that the functional || - || (an,l)/(()’l)

< 00.
X7(0,1)

is a rearrangement-invariant norm was

proved in [3 Proposition 8.2].
Finally, notice that whenever inequality (B8] is satisfied, we have

Yoar
/0 o) < (3.19)

Let us now state the considerations above more precisely.

Theorem 3.7. Assume that (2, v) is as in Section[LZ and I : [0,1] — [0, 00) is
an admissible function satisfying BJ) and BI8]). Let m € N and let X(0,1) and
Y (0,1) be rearrangement-invariant spaces. Consider the following conditions:

(i) K" : X(0,1) -— Y(0,1);

(i) limg—o, supy s, o<t K7 (X0 | Dlv01) = 0;

(iii) V"X (Q,v) - Y(Q,v).
Then (1) = (ii) = (iii).

Moreover, provided that X (0,1) # L'(0,1) or Y (0,1) # L>(0,1) or (I(t))™/t™!
is nondecreasing in (0, 1], conditions (i) and (ii) are equivalent. In the case when
Y (0,1) # L>=(0,1), (i) (and therefore also (ii)) is satisfied if and only if
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(iv) X%, ;(0,1) < Y(0,1),

and in the case when Y (0,1) = L>=(0,1) and (I(t))™/t™' is nondecreasing in
(0,1], each of (i), (ii) is equivalent to

(V) X(O, ].) 'i> A(](t))m/tm—l(o, 1)
Proof. Consider the function J defined by

0 t=0;
) = {(I(t))m/tm—l t e (0,1].

Then J is nonnegative and measurable in [0, 1] and

L J) I(t)\™ m
inf —_tel(%,fl)( ) > (I(1))™ >0, (3.20)

te(0,1) ¢ t
so J satisfies (2.1)). Observe that K" = H; and

/1 dt /1 o ( t )ml/l dt
— = < sup | ——= TN SO0,
o JO) Jo )™ 7 ey \1(t) o 1(t)
since (B.I8) implies (3.19). Hence, Theorem yields that (i) implies (ii) and
that (ii) implies (i) provided that X(0,1) # L'(0,1) or Y(0,1) # L*(0,1). Fur-
thermore, due to Corollary 2.8, (ii) implies (i) also in the case that (I(¢))™/t™!
is nondecreasing in (0, 1].

According to [3, Proposition 10.15], there are positive constants C; and Cj
such that for every nonnegative measurable function f in (0, 1) we have

CUlHT fllvon < KT fllv o) < CollHT" fllyo,1)-

Thus, for every a € (0, 1),

Ci o sup [H (Xl fDlvon < sup [K7 (x.w [ FD v

11l x 0,1y <1 11l x 0,1y <1
<Cp sup [H"(x©alfDlyo
11l x 0,1y <1

which proves the equivalence of (ii) and ([B.3) (or, equivalently, (34])). The im-
plication (ii) = (iii) then follows from Theorem B.5

Suppose that Y (0,1) # L*>°(0,1). Then (i) is equivalent to (3.4]) which is
equivalent to

Xp1(0,1) < Y(0,1),

see Theorem 23] Owing to [3, Corollary 3.7], X, (0,1) = anJ(O, 1). This yields
the equivalence of (i) and (iv).

Finally, let Y/(0,1) = L*>(0,1) and assume that (I(¢))™/t™! is nondecreasing
in (0, 1]. Then, due to Theorem [27] applied to J as above, (i) is equivalent to

X(O, 1) ‘i> A([(t))m/tm—l<07 1)

This completes the proof. O
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4. Compact Sobolev embeddings
on concrete measure spaces

4.1 'Two propositions

In this section we state and prove two propositions which will be needed in the
rest of this chapter. The first proposition says that, under some assumptions,
compactness of a Sobolev embedding implies compactness of a certain operator.
This is the key step when proving the reverse implication to the one stated in
Theorem (we will do it in particular cases in the remaining two sections).

Proposition 4.1. Assume that (2,v) is as in Section [L2 Let m € N and let
X(0,1) and Y(0,1) be rearrangement-invariant spaces satisfying

VX (Q,v) == Y(Q,v). (4.1)
Let « € (0,1]. Denote
X¢={feX(0,1): f>0ae in(0,a) and f =0 a.e. in (0,1)\(0,a)}.

Suppose that H is an operator defined on X, with values in M(0,1). Assume
that there exists an operator L defined on X, with values in V™ X (Q,v), satis-
fying the following conditions.

(i) There is > 0 and a real valued function K defined in (0, 3) x (0, 3) such
that K(-,t) is measurable in (0, 3) for every t € (0,3), and

p S
(L0 ~ X0 f(g) K(s.0)ds, 150, (1.2)

holds for every f € X, up to multiplicative constants independent on f and t.
(ii) The inequalities

L fllvmx@wy < Cillfllx©.), (4.3)
1H fllyo1) < Coll LIy (4.4)

hold for some positive constants Cy and Cy and for all f € X¢.
Then

lim  sup |[H(x©0alf])lvon = 0. (4.5)

a—0+ 11l x0,1)<1

Proof. We first observe that whenever k is a positive integer satisfying 1/k < «
and f € X(0,1) fulfills f > 0 a.e. in (0, 1), then x(o,1/x)f € X§ and the functions
H(x(0,:1/x)f) and L(x(0,1/r)f) are thus well defined. Consequently, for every k € N
satisfying 1/k < a we can find a nonnegative measurable function f; in (0, 1)
such that || fi|lx,1) <1 and

1
sup || H (xo,/m DIy, < H (o0 fe)llyon) + s (4.6)

11l x 0,1y <1
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Because the sequence (X(o,1/x)fk)71/) 18 bounded in X(0,1), it follows that
(L(X(0,1/k) 1)) 3% 1 /o7 must be bounded in V™ X (€2, v) due to (E.3). Thanks to (@I,
there is a subsequence (fy, )72y of (fk)7Z() /o) such that (L(x(o,1/k,) k)71 con-
verges to some function g in Y (€2, ). Moreover, passing, if necessary, to a subse-
quence, we can assume that L(x(,1/x,)fk,) — ¢ v-a.e. in €.

Observe that for every ¢ € N, we have (L(x(0,1/k,)fr))5(t) = 0 when t >
(/k¢, thanks to ([@Z). Because the functions L(X(0,1/k,).fx,) and (L(X(0,1/k)f5.))5
are equimeasurable, the distribution function of L(x(0,1/k,)fx,) according to v
coincides with that of (L(x(0,1/x,)fk,)); according to the one-dimensional Lebesgue
measure A;. In particular,

lim v ({z € Q: |L(x(.1/k) fr) ()| > 0})

{—00
= ZILHSO M ({s>0: (L(X(O,l/kg)sz)):: (s)>0}) < Zlirgo% = 0. (4.7)

Let S be the set of all points z € Q such that | L(x(0,1/k,)fx,)(¢)| > 0 for infinitely
many ¢ € N. Then, due to @T), v(S)=0. Thus, L(X(0,1/k,)fx,) — 0 v-a.e. in Q.
This implies that g = 0 v-a.e. in Q. So, owing to (4£.4)),

S (LH (xo,/80) fre) vo,) < G2 i [|LOxo,1/m0 fro)ly @) = 0.
Inequality (6] now yields

lim  sup || H(x01/%0)]f])]lv©0,1) =0.
=% fllx 0,1 <1

Using that the function

a— sup | HXoa!fDvon
11l x 0,1)<1

is nondecreasing in (0, «], we obtain (Z.3]). O

The second proposition provides a characterization of almost-compact embed-
dings between Lorentz-Zygmund spaces and gives us therefore a tool for studying
compact embeddings of Sobolev spaces built upon Lorentz-Zygmund spaces. Let
us note that almost-compact embeddings between even more general classical
and weak Lorentz spaces have already been studied in [8]. Our proof is, however,
independent on arguments from [§].

Proposition 4.2. Let py, pa, ¢1, @2 € [1,00], a1, as € R be such that both
Lpra5e1(0,1) and LP>%%2(0,1) are rearrangement-invariant spaces (up to equiv-
alent norms). Then

[ Praan (O, 1) (i) [ P2:92:02 (07 1) (48)
holds if and only if p1 > pa, or p1 = pa and the following conditions are satisfied:

if p1 = pa < 00 and q; < qo then oy > ao; (4.9)
1 1

if pr =pa =00 or q1 > ¢ then ay + — > as + —. (4.10)
q1 q2
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In particular, if p1, p2, ¢1, q2 € [1, 00] are such that both LP»%(0,1) and LP>%(0, 1)
are rearrangement-invariant spaces (up to equivalent norms) then

LP9(0,1) < LP%(0, 1) (4.11)

iof and only if py > po.

Proof. Suppose that p; = ps and denote p = p; = ps. Assume that condi-
tions (L.9) and (AI0) are satisfied. Then we can find € > 0 such that LP%*2%¢((), 1)
is a rearrangement-invariant space (up to equivalent norms). Indeed, except of
the case LP%*2(0,1) = L*°(0,1), it easily follows from conditions (L4) — (I7).
However, if LP9:%2(0,1) = L*°(0, 1) then, using that LP?%1(0, 1) = L>>%*1(0,1)
satisfies (LO) or (L7) and that (4I0) is in progress, we get 0 > a; + 1/q¢; >
0, which is a contradiction. Condition (AI0) is therefore never fulfilled with
Lpa222((, 1) = L>=(0,1) and we are done.

The constant ¢ from the previous paragraph can be found in such a way
that (£.9) and ([@I0) are satisfied with as +¢ in place of ay. Then (L) is fulfilled

with as + € in place of s as well and we have
[pasan (0’ 1) PN Lp7q2;oz2+6(0’ 1)'
Thus,

lim sup X (0,0)f" | zr-azie20,1)
a—0+ 1 £l pa1sen (o<1

—€ lfi (0% €
= lim sup 1 X(0,0)(8) f*(s) (loge/s) = s7 "% (loge/s) 2t | Loz 0,1)

=04 | £l pparian 0,1y <1

_ BN S E a
< lim Ixoa(®) Goge/s) " limon  sup[f(s)s7 % (oge/s) "™ lumon

l£1lLparion 0,1y <1

= sup Hf”LP’q23a2+6(0,1) lil’gl (loge/a)™= =0,
||f||LP,q1;a1(0’1)§1 a—04

i.e., (L) is satisfied.
On the other hand, suppose that p = p; = py and (4.§) is in progress. Then,
in particular,
[Pl (0’ 1) s [Pr92:02 (O, 1)’

so one of the conditions (L) must be satisfied. We shall distinguish between
three cases when both LP%:%1(0, 1) and LP9*2(0, 1) are rearrangement-invariant
spaces (up to equivalent norms), some of the conditions (L&) holds but (9]
or ({I0) not. The first one is

P<00, 1= @2 Q1= (4.12)
the second one is
1 1
P=00, 1 <¢, g+ —=a+— <0, (4.13)
q1 q2
and the third one is
pP=00, @1 =¢ =00, o =ay=0. (4.14)
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Using [12], proof of Theorem 6.3] we get that in all cases, fundamental functions
of LPaa1(0,1) and LP%*2(0,1), denoted by ©p41:0 a0 ©p goias, respectively,
are equivalent up to multiplicative constants. Indeed, this trivially holds in the
case (AI4)), while in the case (£I2]) we have

l (7 l o
Pp.giiar (5) = s7(loge/s)™ = sr(loge/s)™ & Py 4an(s), s € (0,1),

and in the case (£I3]) we have

o+ L agt+L
Pp.aisar (8) = (loge/s) " = (loge/s)™ & Pp.gasaz(s), 5 € (0,1).
Therefore, a necessary condition for (4.8)) to be true,

lim ‘Pp,qmozz(s)
5=0+ Op.gi;a1 (S>

=0, (4.15)

is not satisfied (note that the fact that (4.8]) yields (£IX) was shown in [6, Section
3]). Hence, ([A8)) always implies ([L9) and (Z.I0).

Let us now discuss the case when p; # p,. First, observe that if (L8] is
satisfied then, in particular,

Lphqual (0’ 1) SN Lp2,QQ;a2 (07 1)’

which implies that p; > p;. On the other hand, suppose that LPv2%1(0,1)
and LP>%%2((, 1) are rearrangement-invariant spaces (up to equivalent norms)
fulfilling p; > po. Then LP>%:%2(0,1) # L>(0,1), so, as it was explained in the
first paragraph of this proof, we can find ¢ > 0 such that LP2%2%<(( 1) is a
rearrangement-invariant space (up to equivalent norms) as well. It follows from
the first part of the proof that

Lp27q2;042+6(0’ 1) fi) [ P292;02 (0’ 1).

Moreover, we have
[phaiea (0’ 1) PN Lp27q2;02+€(0’ 1>.

Altogether, we get (L), as required.

To complete the proof, observe that conditions (£9) and ([@I0) are satisfied
with a; = as = 0 only in the case that p; = ps = oo and ¢o > ¢;. This, however,
necessarily means that ¢; < oo, i.e., the norm of L°9(0, 1) is not equivalent to a
rearrangement-invariant norm. Therefore, (A1) holds if and only if p; > p,. O

4.2 Compactness of Euclidean-Sobolev embed-
dings

In this section we characterize compact Sobolev embeddings on John domains
and on Maz’ya classes of domains.

Let n € N, n > 2. For a € [1/n/,1], consider the function I,(s) = s%,
s € [0,1]. Then I, is admissible (see ExamplesB.3]) and if o € [1/n/, 1) then (B18)
is satisfied with I = I,,.
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Let m € N. Define the operator M!" by

M f(t) = K" f(1) / f(s)s7HHmi=2qs  fe LY(0,1), t € (0,1),
if a € [1/n',1) and by
MP () = HI'f() / fls log o W88 gs, feL'(0,1), t e (0,1).
We will also consider the rearrangement-invariant space X, (0, 1) defined by

Xina(0,1) = XE 1 (0,1) if & € [1/n',1) and by X,,1(0,1) = X7, (0,1). The
associate space of X,, (0, 1) therefore fulfills for every f € M(0,1)

g 1Hm(1-a) / FA(r) dr
0
if « € [1/n',1) and

1l (X 0,1) = Hé/os <10g f)mlf*(r) dr

r

1Sl (Xma)01) =

X’(0,1)

X7(0,1) .

We first focus on compact Sobolev embeddings on John domains. In this
situation, the operator Ml"}n, having the form

it = | ()5 ds, fe LN0,1), te (0,)

and the rearrangement-invariant space X, 1/, (0, 1) fulfilling
ism / o

Theorem 4.3. Letn € N, n > 2, let m € N and let 2 be a John domain in R™.
Suppose that X(0,1) and Y (0,1) are rearrangement-invariant spaces. If m < n
then the following conditions are equivalent:

(i) V"X (Q) —— Y(Q);
(i) My, X(0,1) —— Y(0, 1);
(i) lima—o, supyp o, <t M7 (X0 |y = 0.
If, in addition, Y (0,1) # L>(0, 1), the previous conditions are equivalent to
(iv) X1 jm(0,1) <= V(0,1),
and if Y(0,1) = L>(0,1), conditions (i) - (iii) are equivalent to
(v) X(0,1) < Lw(0,1).

Furthermore, if m > n then conditions (i) and (iii) are satisfied independently
of the choice of X(0,1) and Y (0,1) while condition (ii) is true for all pairs of
rearrangement-invariant spaces X (0,1) and Y (0,1) except of X(0,1) = L*(0,1)
and Y (0,1) = L*>=(0,1).

||f||(Xm,1/n/)/(o1 = , feM(,1),

X’(071)

come into play.
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The proof of the previous theorem will be moved to the end of this section
since its major part is a consequence of more general results for Maz’ya classes
of domains, which will be proved first.

Theorem 4.4. Let n € N, n > 2, let m € N and let a € [1/n/,1]. Suppose
that X (0,1) and Y (0,1) are rearrangement-invariant spaces. If m(1 — a) < 1
(notice that this is true for every m € N provided that o = 1) then the following
assertions are equivalent:

(i) VX () —— Y (Q) holds for every Q € Jy;

(i) M 2 X(0,1) —— Y(0,1);

(iii) limga—o, supypy o, <1 1Ma" (X0 [ f DIy 01 = 0.
If, in addition, Y (0,1) # L*(0,1) or a = 1, conditions (i), (ii) and (iii) are
equivalent to

(iv) Xpma(0,1) <= Y(0,1),
and if « € [1/n';1) and Y (0,1) = L*°(0,1), then (i), (ii) and (iii) are equivalent
to

(v) X(0,1) < L#a=a11(0,1).
Furthermore, if m(1 — «) > 1 then conditions (i) and (iii) are satisfied indepen-
dently of the choice of X(0,1) and Y (0, 1), while condition (ii) is true for all pairs
of rearrangement-invariant spaces X (0,1) and Y (0, 1) except of X(0,1) = L(0, 1)
and Y (0,1) = L*>=(0,1).

Proof. Suppose that (i) is satisfied. Then, in particular, V"X () —— Y(§)
holds for 2 given by [3 Proposition 11.1]. Define the function N, by

N, (s) = (1—(1 —a)s)ﬁ for s € [0, =] ifae[l/n,1);
e for s € [0,00) if a=1.

Let f be any nonnegative function in X(0,1) (or, what is the same, let f be
an arbitrary function belonging to the set X3 defined in Proposition ELT)). For
x=(x1,...,2,) €L, we set

1 1 11 1
Lf(x):/ —/ —/ f(rm) dry, drp,—1 ... dry.
Na(zn) T? 1 r% Tm—1 'I"%

Let us also define H = Hj'. According to [3, proof of Theorem 6.4], Lf is an
m-times weakly differentiable function in 2 satisfying

(Hf)(s)
(m —1)!

for s € (0,1). Here, A, denotes the n-dimensional Lebesgue measure. The first
equality means, in particular, that L satisfies (A2]) with = 1 and

(L), (s) = and ([V"Lf])3,(s) = f*(s)

K(s,t) = 13) (/t [a‘i(:))m_l, (s,t) € (0,1) x (0, 1).
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Moreover,

1 f Iy,
L — L * — RASEL AN Sl St A
1L fllv@ = L Ny o (m—1)!

and

VT Lfllx@ = IUV™LIDN, Ix 0 = [ fllx©.)-
Furthermore, in [3| proof of Theorem 6.4] it is shown that there is a constant
C' > 0 independent of f such that

I LSy < Cll fllx0,1)-

Altogether, we get (43) and (£4]). Using Proposition [l with H and L as above,
we obtain that

lim  sup[H (ol Dlvon = O
C7H 1 Fllx 0,1y <1

which is, as it was shown in the proof of Theorem B if o € [1/n/, 1), equivalent

to (iii).

As it has already been pointed out at the beginning of this section, the function
I, is admissible and if o € [1/n/, 1) then (B.I8) is fulfilled. Moreover, each domain
0 € J, satisfies ([B). Hence, according to Theorem B.7 if o € [1/n/,1) and to
Theorem B.Hif o = 1, (iii) implies (i).

Assume that @ = 1. Then condition (ii) is equivalent to (iii) due to Theo-
rem 3.5 and condition (iv) is equivalent to (iii) thanks to Theorem 23 and to the
fact that fol 1/sds = cc.

Now, let a € [1/n/,1). If X(0,1) # L'(0,1) or Y(0,1) # L>*(0,1) or m(1 —
«) < 1 (which is the same as that the function (I(s))™/s™"! = sl=m1-a) g
nondecreasing in (0, 1)) then Theorem [B.7 gives the equivalence of (ii) and (iii).
Moreover, if Y(0,1) # L*(0,1) then (iii) is equivalent to (iv), and if Y (0,1) =
L*>(0,1) and m(1 — o) < 1 then (iii) is equivalent to

X(0,1) <5 Ay i (0,1) = L1 (0,1).

It remains to examine the case when m(1 — «) > 1. In this situation, it
follows from Example applied to f = m(1 —a) —1 > 0 that (iii) holds with
X(0,1) = L'(0,1) and Y(0,1) = L>=(0,1). Because in general X(0,1) — L'(0,1)
and L>(0,1) — Y (0, 1), we obtain that (iii) is true for all pairs of rearrangement-
invariant spaces X (0,1) and Y'(0,1). We have already proved that (iii) implies (i),
so, (1) is satisfied independently of the choice of X (0, 1) and Y (0, 1). Furthermore,
(iii) implies (ii) provided that X (0,1) # L'(0,1) or Y'(0,1) # L>(0,1). Thus, (ii)
holds under this assumption. Conversely, it follows from Example that (ii) is
not true when X (0,1) = L'(0,1) and Y (0,1) = L>(0, 1). O

The remaining part of this section is devoted to applications of the previous
theorem to concrete pairs of rearrangement-invariant spaces X (0, 1) and Y'(0,1).
We will always assume that m(1 — «) < 1, which can be done with no loss of
generality since the situation when m(1 — o) > 1 was sufficiently described in
Theorem (.41

We first focus on compact embeddings of the Sobolev space V™L(Q) into
rearrangement-invariant spaces, and on compact embeddings of Sobolev spaces
built upon rearrangement-invariant spaces into L>°(2). Towards doing this, the
following observation will be of use.
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Remark 4.5. Suppose that ¢ is a nonnegative nondecreasing concave function
in (0,1) and X(0,1) is a rearrangement-invariant space. If ¢y denotes the fun-
damental function of X (0, 1) then

Ay(0,1) < X(0,1) (4.16)

if and only if

_px(s)

1

0 ()
Indeed, ({I7) is a necessary condition for ([AI6]) to be true, see [6, Section 3.
On the other hand, if ([@IT) is satisfied then, according to [6, Example 3.1],
Ay(0,1) < A, (0,1) which, together with the fact that A, (0,1) — X(0,1),
implies (4.14]).

Theorem 4.6. Let n € N, n > 2, and let m € N. Suppose that X(0,1) is
a rearrangement-invariant space and denote by ¢x its fundamental function. If
a € [1/n',1) satisfies m(1 — «) < 1 then the condition

= 0. (4.17)

VLN Q) —— X(Q) (4.18)

is satisfied for every Q2 € T, if and only if

. ex(s)
i oty — O (4.19)
and the condition
VX (Q) —— L™(Q) (4.20)
1s satisfied for every Q) € T, if and only if
lim || x(.0(5)s™ 7 x10.1) = 0. (4.21)

a—04

Furthermore, there is no rearrangement-invariant space X (0,1) such that condi-
tion [@I8) or condition ([E20Q) is satisfied for every Q) € Ji.

Proof. Let a € [1/n/,1). Tt follows from Theorem [L.4], condition (v), that (£IS)
is not satisfied for every Q € J, when X(0,1) = L*>(0,1) (recall that there is
no rearrangement-invariant space into which L*(0, 1) is almost-compactly embed-
ded). Thus, Theorem 4] yields that (ZI8) holds for every Q € 7, if and only
if

(L )ma(0,1) = X(0,1). (4.22)

Due to [3l Theorem 6.8], we have

Li=nti=a01(0,1)  if m(1 — 1;
e L>(0,1) if m(l —a)=1.

In the latter case, condition (£22) is fulfilled if and only if

lim ¢x(s) =0,
5—04

see [13, Theorem 5.2].
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If m(l—a) <1 we set

Sl—m(l—a)

w(S) = m, c (0, ].)

Then 1 is a nonnegative nondecreasing concave function in (0,1) and Ay (0,1) =
LY (=m=a).1(0 1), Owing to Remark EE5, (#22) holds if and only if (ZI9) is
satisfied, as required.

Furthermore, due to Theorem[Z.4] condition (£20) is satisfied for every Q € 7,
if and only if

0= lim sup ||MT (X(Oa)|f|)||Loo(01)— hm sup / |f(s) |sm(1 =1 s

a—0+ 11l x 0,1y <1 T 1fllx0,1H<1

= lim HXOa (s )5 1HX/ (0,1 "

a—>0

We will finally examine the case when o = 1. According to Theorem [£.4]
and [3, Theorem 6.13], ([AI8) holds for every Q2 € 7 if and only if

(LY)m1(0,1) = LY(0,1) < X(0,1),

which is never satisfied (see Section [[T]). Similarly, (£20) is fulfilled for every
Qe J; if and only if
Xpma(0,1) < L2(0,1).

As it was pointed out in Section [[LT] this cannot be satisfied since there is no
rearrangement-invariant space almost-compactly embedded into L>°(0, 1). O

Remark 4.7. Theorem enables us to describe all compact Sobolev embed-
dings on Maz’ya classes of domains in the case when m(1 — «) = 1. Indeed,
suppose that X (0, 1) is a rearrangement-invariant space different from L>(0,1).
Then lim,_o, px(s) = 0, so, [EIF) is satisfied for every Q € J,. Further-
more, if X(0,1) is a rearrangement-invariant space different from L'(0,1) then
X'(0,1) # L*>(0,1) and we have

lirgl 1X(0,0)(8) || x7(0,1) = lim px(a) = 0.
a—04 a—04

Hence, ([A20) is satisfied for every Q € J,. Altogether, thanks to continu-
ous embeddings X (0,1) < L'(0,1) and L>(0,1) — Y (0,1) which hold for all
rearrangement-invariant spaces X (0, 1) and Y (0, 1), we have that V"X (Q)) <——
Y (Q) is satisfied for every Q € 7, provided that X (0,1) # L'(0,1) or Y(0,1) #
L>(0,1). On the other hand, it follows from Theorem that there is always
some domain 2 € 7, for which V" L(Q) << L>() is not satisfied.

We now focus on applications of Theorem 4] to the case when both X (0, 1)
and Y (0,1) are Lorentz spaces. Owing to Remark .7, we shall assume that
m(l —a) < 1.

Theorem 4.8. Let n € N, n > 2, let m € N and let a € [1/n',1] satisfy m(1 —
a) < 1. Suppose that p1, ps, q1, g2 € [1,00] are such that both LP+%(0,1) and
LP2>%2(0,1) are rearrangement-invariant spaces (up to equivalent norms). Then
the following assertions are equivalent.
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(i) The compact embedding
Vmpna (Q) sy [P2:92 (Q)

holds for every Q) € J,.
(ii) The compact embedding

VmLPH(Q) —— LP2(Q)

holds for every Q) € J.,.
(iii) One of the following conditions is satisfied:

1 P
. SR S : 4.23
QE[/n, ), pl m(]_—O[)’ p2 ]_—mpl(l—O[)7 ( )
1
R N . 4.24
1
. 1 4.25
ae /D). > -
a=1 p > (4.26)

Proof. Let a € [1/n’,1). First, suppose that LP>%(0,1) # L*°(0,1). Due to
Theorem [, (i) is satisfied if and only if

(L7 )0, 1) = L% (0, 1). (427)

It follows from [3| Theorem 6.8] that

N 5 B .
Li=mnG=a"(0,1) if p; < m;
(L7 )na(0,1) = § L2071(0, 1) if pr = gy and @1 > 1;
L>(0,1) otherwise.

Thus, if py < 1/(m(1 — «)) then ([@27) is fulfilled if and only if py < py/(1 —
mp1(1 — «)), see Proposition .2l In the case when p; > 1/(m(1 — «)), (£27)
is characterized by p, < oo. Indeed, observe that the only Lorentz space hav-
ing the first index equal to co and being a rearrangement-invariant space (up to
equivalent norms) at the same time is L>°(0,1). Since there is no rearrangement-
invariant space almost-compactly embedded into L>(0, 1) (see Section [LT]), con-
dition (£.217) cannot be satisfied with ps = co. On the other hand, it is satisfied
with ps < 0o, see Proposition [£21

Let us now discuss the case when LP2%(0,1) = L*°(0, 1). Theorem A4 yields
that in this situation, (i) is satisfied if and only if

L2 (0,1) < L0, 1),
which is, owing to Proposition [4.2] equivalent to p; > 1/(m(1 — «)).
Let a = 1. First, suppose that LP1%(0,1) # L*(0,1). Then, according to
Theorem 4] and [3, Theorem 6.13], (i) is satisfied if and only if

(Lpl’ql)m,l(oa 1) = [pua (0’ 1) i) LP2,Q2(0’ 1)’
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which is equivalent to py < p1, see Proposition .2l Finally, (i) is satisfied with
Lpra1(0,1) = L*(0,1) if and only if

(L)1 (0,1) = L=°7™(0,1) < LP2%(0,1).

As observed above, this is equivalent to ps < oc.

By applying the equivalence of (i) and (iii) to the particular case when p; = ¢;
and p; = @2, we obtain that (ii) is equivalent to (iii) as well. The proof is
complete. O

We shall finish this section by proving Theorem which characterizes com-
pact Sobolev embeddings on John domains. Note that variations of Theorem
and Theorem for John domains can then be obtained by using the fact that
the compact embedding

VX (Q) == Y(Q)

holds for one particular John domain 2 if and only if it holds for all Q € J,/,.

Proof of Theorem[{.3, Suppose that m < n. Let Bgr be a ball of radius R €
(0, 00) such that B C €. Without loss on generality, we may assume that B is
centered at 0. Let f be any nonnegative function in X (0, 1) (or, what is the same,
let f be an arbitrary function belonging to the set X3 defined in Proposition ..
Then we set

S I g (e ) v v ey @ € By

Knlz|™ Jr1 Tm—1 Kkn R

L@ = {O x € Q/Bg,

where k,, denotes the volume of the unit ball in R". Define also H = Mf}n,. Then,
according to [3, proof of Theorem 6.1], Lf is an m-times weakly differentiable
function in Q satisfying (£3) and (£4). Furthermore, for every s > 0 we have

knR™ o m—1
(Lf)3, (s) = X(o,nan)(S)/ f (an%n) r—m+%% dr,

so L satisfies (A2)) with § = k,, R" and

K(r,s) =r ™% %, (r,s) € (0,5, R") x (0, K, R").

The implication (i) = (iii) in the particular case m < n thus follows from Propo-
sition [£J] used with H and L as above.

Moreover, the above argument can also be applied to the case when m = n
and X(0,1) = L'(0,1). However, we need to explain why there is a constant
C > 0 such that ||[V™Lf||l 1) < C|lfll11(0,1) holds for every f e (L")} since the
proof given in [3 proof of Theorem 6.1] does not work in this situation.

It follows from [3, proof of Theorem 6.1] that there are positive constants C’
and C” such that for all f € (L')},

9™ Ly < C Nl +C”

m—1 1
S eyt
; S /s r)r r

L1(0,1)
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But for every i =1,...,m — 1 we have

1 1 1 1 r
1/ flr)yr :/ sil/ f(r)ridrds:/ f(r)rl/ s tdsdr
s L1(0,1) 0 s 0 0
I 1
= [ 1wydr =3l
i Jo i
which gives the result.

By using Remark [Z7 applied to the case a« = 1/n’ and by taking the equality
m(1—1/n") = m/n into account, it follows that condition (iii) is satisfied whenever
m = n and X(0,1) # L'(0,1). Altogether, we have proved that (i) implies (iii)
provided that m < n. The rest of the proof follows from Theorem [.4] by using
the fact that Q belongs to Ji /. O

4.3 Compactness of Sobolev embeddings in prod-
uct probability spaces

Let m € N and let ® be as in Section Since the function J = Lg is measur-
able in [0, 1] and satisfies (Z1]) we can consider the operator Pg' = HJ" defined
by (23). Observe that

e [ J() S ar -
e f(t)_/t 50’ (@1 (log 2)) </t re (@ (10g%))> :

(@7 (log §) — 0! (log )™ 1
/f & (1 (g 2)) ds, fe L*0,1), t€(0,1).

Furthermore, if X(0, 1) is a rearrangement-invariant space, we shall consider the
rearrangement-invariant space X, r, (0, 1) whose norm is given by (2.3]). Similarly
to the previous case, it is not hard to observe that for every f € M(0,1),

“(log2) — @' (log )"
t®'(d~1(log %))

ds

||f|| (Xm,Lé)l(Ovl) =

X/(0,1)

The following theorem characterizes compact Sobolev embeddings in (R”, us ).
Notice that, in contrast to the Fuclidean setting, such embeddings do not depend
on the dimension n, in the sense that we have the equivalence of the following
two assertions.

(i) There exists n € N for which V"X (R", pig.,) —— Y (R"™, o) is satisfied.
(ii) The compact embedding V"X (R", pig,) —— Y (R", uo,n) is satisfied for
every n € N.

Theorem 4.9. Let n,m € N and let X(0,1) and Y (0,1) be rearrangement-
inwvariant spaces. Then the following conditions are equivalent:

(i) VX (R, pigp) = VIR, pr,p);

(i) Pg*: X(0,1) »— Y(0,1);

(iii) hm%m SUP 0. <1 125" (X ©0.0) [ f DIy 0,1 = 0;

(iv) X 1,(0,1) < Y (0,1).
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Proof. Assume that (i) holds. Let f be an arbitrary function belonging to the
set Xi/ ? defined in Proposition @1l For every x = (z1,...,2,) € R" we set

B 1 1 1 1 1 f("’m)
Lf(x) = /l%(ml) Ta(ry) /Tl To(rs) .../rm_1 To(r) dry, drp—1 ... dry.

Let us also define H = Pp'. According to [3, proof of Theorem 7.4], Lf is an
m-times weakly differentiable function in R™ satisfying

(V™ Lf g, (s) = [7(s), s € (0,1).

Thus,
V™ Ll x®n e = IV LI, I x 01 = [[fllx01)- (4.28)

Furthermore, in [3| proof of Theorem 7.4] it is shown that there is a constant
C > 0 such that for each f € X}r/z,

1L @ o) < CllFIx0,0)- (4.29)
By adding [A28) and ([@29)), we obtain (3.

According to [3, proof of Theorem 7.4] once again, we get
(Lf)}i, (5) = (Hf)(s), s€(0,1),
up to multiplicative constants independent of f € Xi/ >and s € (0,1). This, in
particular, means that L satisfies (2] with 5 =1 and

(@7 fog2) 0~ (lop2))"
s’ (<I>—1 (logg))

K(s,t) = . (s,1) € (0,1) x (0, 1),

Moreover,
IL Sy @ e n) = (L) Iy 0,0 = 1H fllv0,1) (4.30)

up to multiplicative constants independent of f € Xi/ 2, hence, ([44) is satisfied
as well. Using Proposition 1l with H and L as above, we obtain (iii).

According to [3| Lemma 12.3], there is ¢y € (0,1/2] such that the function 7
defined by

Is(to) t € (to,1];

Hw:{@@ t € [0, ];

is admissible. Moreover,
I(t) = Io(t) = L@n g, (1) = La(t), t€[0,1/2], (4.31)

up to multiplicative constants independent of ¢ € [0,1/2]. Since I is a constant
function in [1/2, 1] and there are positive constants C, Cy such that C} < Lg(t) <
Cy, t € [1/2,1], the equivalence I ~ Lg holds in the entire [0, 1]. Thus, we have

HP|f1(t) = HE,|fI(t) = PgIfI(t), f € LY0,1), te(0,1),

up to multiplicative constants independent of f and ¢. Hence, (iii) is fulfilled if
and only if

lim  sup || H (x©w|fDlyo1n =0.

=041 fllx 0,1y <1
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Furthermore, thanks to (£31)), there is a constant C'3 > 0 such that In ,, ) (t) >
C31(t) for every t € [0,1/2]. Denote Cy = min(Cs,1). Then, owing to the fact
that I is nondecreasing in [0, 1],

C3I(t) > Cyl(t) > CyI(Cyt), t€10,1/2].
Hence, [ satisfies (B.1]) with (Q,v) = (R", ptp,,). The implication (iii) = (i) now

follows from Theorem [B.5
Finally, recall that the function J = Lg fulfills (Z1]) and observe that

/1 ds /1 ds . /1 ds
— = = lim
o J(8)  Jo La(s) t=0+ ), La(s)

= lim <<I>1 (log %) — & (log 2)) = 0. (4.32)

t—04
Using Theorem and the fact that Pg' = HJ", we obtain the equivalence of
(i), (iii) and (iv). O

We now focus on compact Sobolev embeddings in generalized Gauss spaces.
Let 8 € [1,2] and let m € N. Consider the operator G} defined by

1 s m—1
Gy f(t) = i / f(s)% ds, fe L'0,1), t € (0,1).
(log g)T(mfl) t (log )7

)
@

Furthermore, whenever X (0, 1) is a rearrangement-invariant space, define the
functional || - H(XG Y (01) for every f € M(0,1) by
m,3 ’

(log < )
||f||(XG ) (0,1) — H / f log ﬁ 1(m 1) ds

X’(0,1)

According to [3, Theorem 7.5] (where the case § = 2 is treated, the general case is
analogous), the functional || - || (x¢ ) o) is a rearrangement-invariant norm and,
m,3 ’

if we denote by X% (0, 1) the associate space to the space (Xgﬁ)/ (0,1), we have
that Xg“g(o, ]_) == Xm,s(log?/s)(ﬁ_l)/ﬁ (0, ]_)

In the special case when 3 = 2 and 7, g is therefore the n-dimensional Gauss
measure, the operator G™ = G5 having the form

m—1
l

G = [ 119 Log s SEL0.D, te D)

log t 10g

and the rearrangement-invariant space X5 (0,1) = X% ,(0,1) fulfilling

iox? 1/2/ F(s m_ds C feM,1),

X/(0,1)

||f||(X,C,i)/(0,1) =

come into play.

Characterization of compact Sobolev embeddings in generalized Gauss spaces
takes the following form.

43



Theorem 4.10. Let n,m € N, let f € [1,2] and let X(0,1) and Y (0,1) be
rearrangement-invariant spaces. Then the following conditions are equivalent:
(i) V"X (R, 4 5) == Y(R", 7y 5);
(ii) GF + X(0,1) —— Y(0,1);
(iii) hmaﬁm SUP) 0. <1 1GE (X0l fDIlyo1 = 0;
(iv) X 5(0,1) < Y(0,1).

Proof. Set

Then g, = ynp and it is easy to observe that

B—1

Lo(s) = s (log g)ﬁ . se(0,1].

According to [3, proof of Theorem 7.7], for each nonnegative function f € X(0, 1)
we have

Gpf~ Pyf (4.33)

up to multiplicative constants depending on  and m. Thus, condition (iii) is
equivalent to

lim  sup [Py (X0l fDlye1 =0, (4.34)

=0+ | fll x(0,1) <1

which is equivalent to (i) due to Theorem Q. Moreover, the fact that X5 ;(0,1) =
Xon stog2ys)-0/8(0, 1) = Xy, 1, (0, 1) yields the equivalence of (iii) and (iv).

Assume that (iv) is satisfied. Let (fx)52; be a bounded sequence in X (0,1).
Then for every s € (0, 1),

)| _1fuls)
(log2) 7 |~ (log2)"

o (fx(s)/(log2/s)B=D/B)= is bounded in X (0,1) as well. Consider the function
J(s) =s, s €]0,1], and the operator G7" satisfying

-1
lo
G I(t) = H A1) / PV e x(0.1), te (0,1)
Due to Lemma 22 applied to J and to the sequence (fi(s)/(log2/s)B-D/B)e
there is a subsequence (fx,)72; of (fx)72; such that

1

log m
ng sz Z_ / fk‘g ARG ds
(log % s log ) g

is convergent for a.e. t € (0,1). Thus also

G5 fi (1) =

1
=L (m-1)

(log %)
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converges for a.e. t € (0,1). By using that G : X(0,1) — X 5(0,1) (see [3,
Theorem 7.5 and Theorem 7.7]), the same proof as in Theorem 23] implication
(iv) = (i), gives that G fy, is convergent in Y'(0, 1), which implies (ii).

The implication (ii) = (iii) can be proved in the same way as the implication
(i) = (ii) in Theorem 23 O

In the remaining part of this section we focus on applications of results from
Theorem to concrete pairs of rearrangement-invariant spaces X (0,1) and
Y (0,1). Similarly as in the case of Maz’ya domains, we start with the situa-
tion when X (0,1) = L'(0,1). On the other hand, we do not study compact
Sobolev embeddings into L>°(0, 1) since such embeddings are never fulfilled, see
Remark 2.4l Instead of this, we focus on compact embeddings of the Sobolev
space V™ L®(R"™, 7,.3).

Theorem 4.11. Let n, m € N and § € [1,2]. Suppose that X(0,1) is a
rearrangement-invariant space and denote by px its fundamental function. Then
the condition

VLY R, Ynp) = X(R™, 7,) (4.35)
18 satisfied iof and only if

lim — 72X (4.36)

m(B-1)
s—04 S(lOg %) 3

and the condition
VTLE(R", Yn5) —— X(R™, yn,8) (4.37)

18 satisfied iof and only if
2\ 7
o) (1022)

Proof. Due to Theorem and [3, Theorem 7.8], (L35]) is equivalent to

lim
a—04

— 0. (4.38)

X(0,1)

.m(B—-1) *
(LNG 4(0,1) = L5577 (0,1) < X (0, 1).

Set o
(0 8) T
P(s) = /0 (1og r) dr, se€(0,1).

Then 1) is a nonnegative nondecreasing concave function in (0,1) and A,(0,1) =
 m(B=1)
B ,1). Using Remark [4.0l and the fact that

L 0,1). Using Remark i3] and the fact th

s m(B-1)
/ <1og E) Y odr~s (log E)
0 r S

the equivalence of (£3H) and (£30) follows.
Futhermore, due to Theorem and [3, Theorem 7.8], ([A37) is satisfied if
and only if

m(B-1) B

9\ @
~ s ( log - , s€(0,1),
s

(L®)G 5(0,1) = L™™75(0,1) <= X(0,1).
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Observe that a function f belongs to the unit ball of the space Loo’oo’f%((), 1) if
and only if

[i(s) < (1Og g) " se(0,1).

Thus,
: . . e\ s
lim sip X0 ()17 ()lxon = Jim || (s) (log )
a—=5+ ”f”Loo,oo,fm/ﬁ(Oyl)Sl U+ S X(O,l)
. 2\ %
~ lim ||x(0,a)(s) | log = :
a—04 S
X(0,1)
which proves the equivalence of ([@37) and ([L38]). O

We finish with the case when both X (0,1) and Y(0,1) are Lebesgue spaces,
and then, more generally, when both X (0,1) and Y(0,1) are Lorentz-Zygmund
spaces.

Theorem 4.12. (i) Letn, m € N, g € (1,2] and p € [1,00). Then
VT LP(R™, v, 5) == LP(R™, v,.5).

Moreover, LP(R™, v, 3) is the optimal (i.e., the smallest) Lebesgue space into which
V™ LP(R™, v, 3) is compactly embedded.
(ii) Let € (1,2] and p = oo, or B = 1 and p € [1,00]. Suppose that
q € [1,00|. Then
VmLp(Rna Vn,ﬁ) — Lq(Rna Vn,ﬁ)

if and only if ¢ < p.

Theorem 4.13. Let n, m € N and § € [1,2]. Furthermore, let p1, p2, qi,
@2 € [1,00], a1, ag € R be such that both LP17°1(0,1) and LP>%°2(0,1) are
rearrangement-invariant spaces (up to equivalent norms).

(i) Suppose that py < co. Then

VM LPLIEAL(R™Y 1y, ) < LP2I2(R™ A, 5) (4.39)

holds if and only if p1 > pa, or p1 = ps and one of the following conditions is
satisfied:

m(f—1
g1 < qo, a1+%>a2;
1 m(p5—1) 1
@ <q, 01+—+——7—>a+ —.
q1 %] q2

(ii) Suppose that p; = oco. Then ([E39) holds if and only if py < 0o, or

m
P2 =00, 1+ — — — > Qg+ —.
q B a2
We shall first prove Theorem 13} the proof of Theorem [Z.12 being an easy
consequence of this result.
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Proof of Theorem[4.13 Due to Theorem .10, condition (4.39) is equivalent to
(LPraen)@ (0,1) < LP29202(0, 1). (4.40)

Furthermore, it follows from [3, Theorem 7.8] that

Lpl,qum—i—m(%*l)

(LPth?al)G 5(0, 1) = . (0,1) if p1 < oo;
m, L007q1;01*§(0’ 1) lf P = 00.

By applying Proposition we get the result. O

Proof of Theorem[f.19 Suppose that p € [1,00) and ¢ € [1,00]|. Using Theo-
rem L3 with p; = q1 =p, po = ¢2 = ¢ and a; = @y = 0 we get that

VILP(RY, ) = LI(R", 7, 5) (4.41)

is satisfied if and only if p > ¢, or p = ¢ and m(G —1)/5 > 0. The last inequality
is true provided that § > 1, so, in this case LP(R"™,, ) is indeed the smallest
Lebesgue space into which V™ LP(R",~, ) is compactly embedded. On the other
hand, if =1 then (Z4I)) is fulfilled if and only if p > ¢.

Finally, suppose that p = co. Then, due to Theorem once again, ({L.41))
is satisfied if and only if ¢ < oo, or ¢ = oo and —m/ > 0. However, the last
condition is never fulfilled, so (£41]) holds with p = oo if and only if ¢ < oo. This
completes the proof. O
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