
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Jan Záloha

Stability and security of ZlomekFS

Department of distributed and dependable systems

Supervisor: RNDr. Vlastimil Babka
Study program: Computer Science

2012

2

I would like to thank my supervisor, RNDr. Vlastimil Babka, for his

valuable advice.

I declare that I carried out this master thesis independently, and only with

the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the

Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact

that the Charles University in Prague has the right to conclude a license

agreement on the use of this work as a school work pursuant to Section 60

paragraph 1 of the Copyright Act.

Prague, April 12, 2012 Jan Záloha

3

Contents
Abstract..5
1 Introduction..7

1.1 Goals...9
1.2 Structure of the Thesis..9

2 Security...11
2.1 Basic security issues analysis..11
2.2 Other security issues...13

2.2.1 Local cache..13
2.2.2 Data in memory...13
2.2.3 Not solved attacks...14

2.3 Possible trustworthy solutions..15
2.3.1 Signing messages..16
2.3.2 Encrypting messages...17
2.3.3 Key distribution...17
2.3.4 OpenSSL...19

2.4 Node types..21
2.4.1 Machine type node..21
2.4.2 User mode connection...24

2.4.2.1 Group membership..25
2.6 Certificate revocation..26
2.7 Implementation details..29

2.7.1 Network stack..29
2.7.2 User mode launching...31
2.7.3 User and machine mode ...33

2.8 SSL utilities...34
3 File sharing semantics..35

3.1 NFS [2] overview..35
3.2 UNIX semantics..36
3.4 Immutable files [18]..37
3.5 Session semantics..37
3.6 Comparison of these semantics in the context of ZlomekFS................................37
3.7 Causality in ZlomekFS...40
3.8 Solutions...43

3.8.1 Reintegration/update journal...43
3.8.2 Snapshots...45

4 Capabilities and filehandles..49
4.1 Remote capabilities...49
4.2 Capability securing...49
4.3 Capability ageing..50
4.4 Filehandle..51

4.4.1 Unique integer generator...52
4.4.2 I-node numbers mapping...53

5 Minor changes..54
6 User manual..55
7 Conclusion..59

7.1 Further work..60
Bibliography..61
A Enclosed CD..64

4

List of figures
obrázky1..1
IPv4 datagram..11
PKI infrastructure..19
Network schema ...23
Reintegration ZFS semantics...42
Journal format..44
Snapshot handling..47
Filehandle..52

5

Název práce: Bezpečnost a stabilita ve ZlomekFS

Autor: Jan Záloha

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí diplomové práce: RNDr. Vlastimil Babka

email vedoucího: b abka@d3s.mff.cuni.cz

ZlomekFS je distribuovaný souborový systém, který umožňuje sdílet data mezi

jednotlivými uzly. Tyto uzly mohou spolupracovat ve několika módech. Tyto

módy se liší v cachování lokálních dat na klientském uzlu a způsobu

synchronizace mezi klientským a serverovým uzlem. Tato synchronizace byla

doposud implementována pomocí nedůvěryhodného nezabezpečeného

síťového spojení. Současná implementace používá FUSE rozhraní pro

komunikaci mezi jádrem souborového systému a uživatelem. K synchronizaci

dat dochází během jednotlivých událostí vyvolaných operacemi nad

souborovým systémem.

Pro funkci v moderním síťovém prostředí je nezbytné, aby komunikující partneři

měli jistotu o důvěryhodnosti svého protějšku. Tato práce implementuje

důvěryhodné spojení mezi klientskou a serverovou částí souborového systému.

Navíc rozlišuje mezi klientem typu stroj a uživatel.

Další důležitou částí práce je korektní průběh synchronizace dat a přesné

definování sémantiky sdílení souborů.

Title: Security and stability in ZlomekFS

Author: Jan Záloha

Department: Department of distributed and dependable systems

Supervisor: RNDr. Vlastimil Babka

Supervisor's email: babka@d3s.mff.cuni.cz

ZlomekFS is a distributed filesystem which is able to share data among nodes.

These nodes can cooperate in various modes. Modes differ in caching of local

data at the client side and in the way how data is synchronized between the

client and the server. This synchronization has been implemented by an

unsecured and untrusted network connection until now. The current

mailto:babka@ksi.mff.cuni.cz
mailto:babka@ksi.mff.cuni.cz
mailto:babka@ksi.mff.cuni.cz

6

implementation uses FUSE interface for the communication between the kernel

of the filesystem and the user. The synchronization is triggered when the user

performs a specific operation above the filesystem.

For well functionality in modern network environment it is necessary to both

communicating partners to be sure about the identity of the second end of a

communicating channel. This thesis implements trustworthy connection

between the server and the client part of filesystem. In addition, it separates

machine and user type of client.

Next important part of the thesis is correct data synchronization and precise

definition of sharing semantics.

7

1 Introduction
ZlomekFS is an open source distributed filesystem. It is able to

transparently share data among oriented graph structure of nodes [1]. Data are

organized in files placed in a directory tree structure and all standard POSIX

operations are allowed above them. Main unit of shared data is called volume.

Volumes are organized in a tree structure. Each volume has one node,

which is on the top of the volume's hierarchy. This node must have its local

cache, the source image of the volume, which is then modified by all nodes in

the infrastructure. Connection between server and client has been implemented

as insecure TCP channel until now. It means that there is no way how to check

peer node's identity. In addition, the connection is susceptible to various types

of attacks. These attacks could result in stealing or modifying data by an

unauthorized entity.

The filesystem access rights management has been designed in an

extraordinary way. The filesystem has a mechanism which remaps users and

groups valid at one node to users and group numbers valid at the distributed

environment. This information is stored in a metadata structure which is passed

through network with the content of the file. Then another node remaps them

back to locally valid users and groups. At first sight it works well. But at second

sight, when a user mounts volume, all content of the volume can be cached (or

accessed) by daemon launched by the local user. It is because server does not

check any permission to shared file. So anybody can connect to server with a

program implementing ZlomekFS network protocol and access all data, even

data which should not be accessible to them.

Next important issue is sharing semantics. When a file at a node is

opened, the data contained in the file has some versions. Handling of versions

is called semantics. One way, how to solve this problem is stateless semantics.

Stateless semantics is implemented for example by NFS. It means, every

operation above file is interpreted as atomic file open, the actual operation, file

close [2]. But this approach to file operations is not transparent to an application

working above the filesystem. For example the file can be removed (unlinked)

by another application between two reads performed by the first application.

8

And there is not any way how to solve this problem without loosing the stateless

semantics. Because the access to filesystem is stateless, number of opened

filedescriptors can not be held to determine when the data contained in the file

should be released.

To ensure transparency of the filesystem to higher layers, there should be

a mechanism which correctly handles opened filedescriptors and performs open

and close operations independently on other operations. But another problem

lies here. After a process opens a file, then another node can push a new

version of a file to the node. It could result in strange behaviour when one part

of data is read from one version of the file and another parts from another

versions. This could not be a problem when it is desired behaviour. But in some

cases it represents a serious problem. For example, when the file contains

some snapshot of data.

In the old implementation of ZlomekFS this issue is solved in a special

way. When a node does not have local cache, the operation is performed on a

nearest cache in volume tree structure. So this case is not interesting. But when

a node has its own local cache, read and write operations differ. When a read

operation is performed, before own read from file, the system tries to

synchronize the data at the local cache with the version at master. And when

write is performed, no synchronization is done until the file is properly closed.

This behaviour is useful when a file is shared from master to client node and the

application expects this direction of data flow. But in other cases it could cause

many serious problems.

But there exists a way how to solve this problem. Concurrent read and

write operations at one node should not be treated in a special way, they occur

in all other filesystems. But when a newer version of file is created in the

system, it should become accessible to each process opening the file. But each

already opened filedescriptor should point to the version of file that was present

at system when it was opened, and ignore subsequent updates from other

nodes. This semantics was described in [1], but the implementation did not work

well.

Next issue is that each file at ZlomekFS is represented by filehandle, data

type zfs_fh. This filehandle describes how the file should be accessed, which

9

volume is its volume and its other properties. One of the most important

property is i-node number, which is treated as volume wide unique identifier of

image of the file in local cache.

This way is correct because UNIX-like filesystems (e.g. ext3, ext4, etc...)

always gives unique i-node number to each file created on it. But metadata

containing i-node number is exported to client. Then the i-node number is used

as an identifier of the file, when synchronization of file is performed. In addition,

the architecture of ZlomekFS does not permit updating filehandles shared with

other nodes.

This property of ZlomekFS does not permit changing i-node numbers

during operations. Most important issue of this limitation, as described in [3], is

related to the performance of truncating file to zero length while preserving its

old version.

1.1 Goals

This thesis should describe and implement security model for ZlomekFS.

This security model should describe the behaviour of server side and client side

in all possible scenarios, including cached and non cached mode. It should

differ operating mode when the client application is launched by a single user or

when it is a trusted machine. In case of a trusted machine, the machine should

have access to all data stored in ZlomekFS. A single-user instance should have

access accordingly to his identity.

Next important issue to solve is session semantics. Current session

semantics does not behave coherent when client or server write operation

occurs. This will be fixed so when one version of file is already opened at a

node, all operations will be done above this version.

At last the old implementation contains implementation errors that affects

the stability of all system. So this thesis should fix as many of them as possible.

1.2 Structure of the Thesis

Chapter 2 describes how identity verification and secure communication

between nodes could be solved. It also shows how handling client type differs

10

and how user membership in groups could be solved.

Chapter 3 gives an overview of session semantics and shows which

advantages and disadvantages possible session semantics possess. It also

describes chosen implementation including its properties and possible future

enhancement.

The chapter 4 is about issues tied to capabilities and internal filehandles.

Because of changes described in chapter 3, there apeared a necessity to fix

some behaviour issues of capabilities. In addition, the issue of i-node number

directly stored in filehandle is discussed there.

Also another minor changes to the architecture of the daemon have been

done. They have been done because of fixing the stability of the daemon. The

way how and why they have been done is described in chapter 5.

Because the changes in implementation require more configuration data,

in chapter 6 new configuration options are described. Because of chosen

security model, it is necessary to generate certificates for clients machines and

users. Doing this is also documented here.

The last chapter 7 is aimed at evaluating results of this thesis. It also

concludes main decisions and shows possible future enhancements of

ZlomekFS.

11

2 Security
As described above, the old implementation of ZlomekFS does not use

any security model. When client connects to server, only a protocol handshake

is done and the connection is already usable for data transfers. Standard

communication protocol through network is connected TCP protocol over

sockets. These sockets can be created over IPv4 [4] or IPv6 [5] protocols.

2.1 Basic security issues analysis

First take a look at protocol IPv4. It is for now the most spread protocol.

See its datagram format in Figure 2.1. The whole datagram is not encrypted by

default because IPsec enhancement of this protocol is not its native part. Simply

can be seen, many attacks can be performed to this protocol. The easiest are

network traffic sniffing, stealing identity, data integrity change or man in the

middle attack, when the basic networking set-up is done.

Network traffic sniffing can be performed somewhere on the network path

between connected nodes. The attacker only listens to network traffic and

decodes data transferred through network. This way he can easily read private

content of files or directories in case of ZlomekFS.

Stealing identity is very easy, too. The easiest way is running another

instance of program implementing ZlomekFS network protocol at compromised

Figure 2.1: IPv4 datagram

12

node. This way attacker can read full content of any exported volume and in

addition he can modify any data stored in such a volume.

When data is passed through network, it goes through it in an

unencrypted form, checked only by checksum generated by algorithm whose

only input is the passed data. So any network node present on the path

between communicating peers can modify data passed in a message and then

count again its checksum. When a message modified in this way arrives to its

destination, there is no chance how to recognize its modification.

Attack man-in-the-middle is a special case of these attacks. Some node

on the path between nodes behaves same way as the server for client side and

same as the client for server side. So he has full control above data passed

through network and can transparently modify or read them.

These attacks can be solved by using IPv6 which should implement

IPsec enhancement by default but, as written above, it is not as widespread as

IPv4. Another solution is very careful configuring of network and implementing

IPsec above IPv4. But it is a quite difficult activity.

And here is another issue: these solutions can lead to trusted machine

and connection to it. But we can not do any conclusion about the program

launched on it. It could be a malignant program launched by an attacker. Even it

can be correct implementation of ZlomekFS but not launched by an

administrator. It could be launched by a common user. In the old implementation

of ZlomekFS this instance of filesystem daemon have full access to all data

exported by available volumes.

This could be a large problem. It is because in cached mode, all data

available at one volume is transferred to this node and it could lead to massive

network traffic. Another problem rises when a user uses somehow changed or

hacked program or launches proper implementation of ZlomekFS in debugger.

In this case, he can access all data even the data that should be hidden to him.

Because of this, there should be a mechanism which recognizes type and

identity of client connected to server. The question is how to divide and

recognize types of clients. One type is user who connects to server and

acquires data. Data accessible to him should be only the filesystem entries

belonging to the user or belonging to a group where the user has a membership

13

or public data accessible to all users. No other data should be transferred to

such a client. On the other hand, there should be nodes which contain all data

shared by volume.

So basic goals in the area of security are set: The communication

between nodes should be resistant to traffic sniffing, data modification and

man-in-the-middle attack. The communication protocol should be resistant to

basic cryptanalysis. And the identity of communicating peers should be

verifiable and, accordingly to it, only a limited set of data should be accessible

to each node.

2.2 Other security issues

Except the problems described above, ZlomekFS can be vulnerable in

other ways. The biggest problem is local cache stored in filesystem.

2.2.1 Local cache

There are many other possible attacks to ZlomekFS. Very vulnerable is

local cache containing data. When wrong access rights are set to the cache,

unauthorized user can access these data. So it is necessary to discuss

managing access rights to local cache.

Next dangerous problem could be the presence of local cache in

unencrypted shape on disk. Because when the disk is mounted under another

system, the cache can be accessible to attacker. But this issue can be simply

solved by the user. The user can place the local cache to a virtual encrypted

volume, for example by Truecrypt [6].

2.2.2 Data in memory

Naturally, when the ZlomekFS is launched, its working set [] data is in its

virtual memory in unencrypted form. This can cause two problems. When some

data is swapped out, they are stored in a persistent form. An attacker can read

them from the disk when he starts another instance of operating system and

then dumps the content of swap partition.

This vulnerability can be avoided by disabling swapping or some other

way by encrypting swap partition for example by [7] or [8]. In this case there is

another problem: how a and where store key for encrypting swap. It is a

14

classical chicken-egg problem, But it can be also solved by, e.g., using a key

stored at some removable device or by using the biometry of user (or

administrator).

Another problem could be raw data in memory. Today attacks based on

stealing data directly from main memory chips are known [9]. The design of this

attack is in stealing memory modules from a running machine and their very fast

cooling (e.g. by liquid nitrogen). When the modules are deeply frozen, they can

hold data up to several minutes. But this issue is outside the scope of this

thesis.

2.2.3 Not solved attacks

 Another attacks can be performed to the shape of network traffic. When

an attacker has permission to the network media connected to node, he can

read raw data sent through the media. When the data are encrypted in the

correct way with a good encryption algorithm, it is supposed to be very difficult

to restore the image of the ciphertext or the encrypting key [10]. But when the

encryption algorithm is deterministic and known, the attacker can often easily

restore for example the length of sent data. From the length of the data some

conclusions on the type of data can be done. In some cases this could be

undesirable property. This issue could be solved by inserting (pseudo)random

chunks of data to output stream. But this solution could lead to high network

traffic, so this question is not solved here.

Another problem can rise from the external behaviour of system. For

example the heat emitted by its components or the consumption of electricity

can be a source of information about system activity. But these issues require

much deeper analysis than this master thesis and do not represent a serious

danger in planed filesystem use.

Next some conclusions about system activity shape can be done by

observing activity indicators such as hard disk or network activity LEDs. These

indicators could be affected by generating (pseudo)random traffic or by

updating drivers of such devices. But generating additional traffic can lead to

high network traffic as described above. It stresses components and could

decrease system response time.

15

Another serious issue is DoS (Deny of service) attack [11]. This can be

performed by many ways. First aim is networking stack of machine. Solution of

this is a part of the design of operating system, so it would not be solved in this

thesis. An attack to network infrastructure is similar. Again it is out of range of

this thesis. Next serious issue is sending not valid data to machine by proper

client, e.g. when it crashes. This can lead to serious problems and crash or

malfunction of node. Some steps to avoid this are done but a very deep

analysis and probably rewriting of a large amount of recent code and adding a

large amount of new one should be performed to be sure, this issue is not

already solved.

Last main area that could lead to DoS is wasting node resources. Some

operations performed on node require system resources as memory or CPU

time. It can lead to malfunction of the node or to severe slowdown of the node.

The biggest problem is to answer how much resources one node could acquire.

In distributed environment of ZlomekFS it is hard to say how much resources

one node could acquire. Because when the net of ZlomekFS is formed by two

nodes, the amount of resources available to one node differs to case when the

root of a volume is processing peak traffic of requests from a very large

network.

Next it is important to realize how to manage resources in environment

where no assumptions about nodes availability can be done. Nodes are

connected and disconnected more less randomly. Even a node which is

available for communication can disconnect because of lack of its own network

resources. Some proposals how to manage this question are done in chapter

4.2 but this problem is left open.

2.3 Possible trustworthy solutions

There are many ways how to check identity of the peer and/or encrypt the

communication channel. The easiest way is assigning a key to each node and

publish the keys systemwide and use them for the digital signing of passed

messages.

16

2.3.1 Signing messages

By using this mechanism message trustworthy can be reached. Each

node gets a key which is used for message signing. Before sending through

network from each message and the key is counted a hash. The hash is

appended to the useful data and this message is sent through the network.

When the message arrives at the second endpoint of connection, the data is

picked up from the message. Corresponding key is selected accordingly to the

assumed peer. And the hash is counted from key and that data. The result is

compared to the hash appended in message. When they are equal, it means

that the message has not been changed during network transfer and the origin

of data is verified. This solution introduces three obvious serious problems.

First, the data are sent through the network unencrypted, so an attacker can

read its content. Second problem is distributing keys through the system.

Because of preceding issue, keys must not be sent in unencrypted form through

network. Suppose that the keys are sent some way through an encrypted

channel but before owning them, it is not possible to check whether the

message providing key is from a trusted source. So there must be another

trusted communication channel for distributing keys. In addition, each node

should know keys for each other node which could connect to it. But let us

suppose that this problem is solved.

Then another question rises: should symmetrical or asymmetrical hash

function be used? When symmetrical hash function is used, both sides use the

same key for signing and verifying messages [10]. In trusted environment this

would not be such a serious problem. But in the environment of ZlomekFS

where common users would have access to keys used by another nodes, it

would lead to serious problem. Users could steal identity of other nodes.

So for this reason an asymmetrical hashing should be used. But here is

one serious issue described above: messages are sent unencrypted and

attacker could read their content. So there should be a way how to hide data in

messages.

17

2.3.2 Encrypting messages

This data hiding can be performed by message encrypting. This should

work that way, one node before sending message encrypts it, sends it through

network and the second side decrypts it. Because encrypting is view form set of

plaintext to ciphertext and decrypting is view from ciphertext to plaintext and

these sets have same cardinality for common algorithms (Blowfish, DES, 3DES

[10]), another attack to this solution can be performed.

When data is sent through network, an attacker can modify the message

and this way the image for decrypting is changed. When the decryption

procedure is performed, it does not recognize the message change because of

the same cardinality [10].

For this reason, a technique for recognizing such attacks must be

implemented. As described above, message hashing is suitable for solving this

problem. So after encrypting, a signature will be attached to each message and

it allows the second side to recognize unauthorized modifying of the message.

Even the same key can be used for encrypting and signing.

But this solution also brings problems with key management. These

problems are the same. When a conventional fast block cipher is used,

decrypting and hash verifying keys must be distributed through system.

2.3.3 Key distribution

As mentioned above, the key management is a serious problem in

distributed environment. In case when each possible connection has two pairs

of encrypting (and signing) and decrypting (and verifying) keys and the structure

is a tree, it means distributing and sharing many keys. Undesired problem then

occurs when a new entity is added to system. It means distributing its

verification key to all its neighbours and backwards installing verify keys of its

neighbours on it. When this minimalistic approach is done, it makes it difficult to

dynamically change topology of the network.

Implementing a smarter key management would be a better solution. For

example, public key infrastructure [12]. This key management is designed for

using asymmetric cryptography. Each encrypting entity is represented by public

certificate and private key. These two keys are closely tight together:

18

Transformation of message by one of them is reversible by transformation by

the second one. In the simplest case the public certificate is used to encrypt

data sent to owner of private key. Let us suppose that this operation is

irreversible, so the public certificate can be shared among all communicating

partners. It can be done for example during establishing connection. So when

the message is passed to node, it is transformed by its public key (certificate),

transferred to destination node and there again transformed by private key. The

result of this transformation should be the original message.

Another important property of this key management is its usability for

digital signing [12]. When a message is passed from one node to another, there

is counted a checksum by a known deterministic algorithm. Then the checksum

is transformed by a source's private key and appended to message. When the

message arrives to destination, the transformed checksum is again transformed

by public key. From message data is same way counted hash and compared to

result of transformation. If the message has not been changed, these two data

chunks should be the same.

This is very useful also in key distribution. Suppose that exists one

trusted private key and its public certificate (call them A and A '). Another pair

of a private key and a public certificate (B and B ') can be generated and

verified their correctness. Then some special data can be added to B ' and a

hash of this data object is counted. The hash is transformed by A and the

result is added to updated B ' . Then the pair 〈 B , B ' 〉 is assigned to some

network entity C and public key A ' is published. When any node D connects

to C , entity C first sends to D certificate B ' and D can verify its correctness

by performing procedure described above.

This key management also allows creating trees of trusted entities like in

the Figure 2.2. The root of this tree is called certification authority. Its special

property is that its public certificate is signed not by a superior key but by its

complementary private key. This key pair is then used to sign and verify first

level of other certificates. These certificates can be user certs. It means, they

are not allowed to sign other key material. But another can contain special

privilege and could be used to sign new certificates. Then after signing by such

certificate, its verification certificate is appended to just signed entity. This way a

19

tree structure with a very useful feature arises: only the root certificate

authority's certificate is needed to verify any signed certificate. It is because first

is verified first level sign. When it is considered trusted, it can be used to verify

next level and so on.

2.3.4 OpenSSL

All these requirements are satisfied by X.509 standard [12]. This standard

allows hierarchical public key infrastructure and, in addition, revoking

certificates. It means that when a key is compromised, it can be invalidated. The

invalidation is performed by a list of revocated certificates (let call the list CRL –

certificate revocation list). This list is signed by certification authority. When a

certificate is considered untrusted, its identifier is added to this list. Then the list

is signed by the certification authority and distributed to all nodes [12]. The

distribution channel may not be secure because of signature of the list which

provides trustfulness.

When there is established communication channel between two

endpoints, they show their certificates to the peer. The peer looks into the CRL

and when the certificate is there present, it rejects further communication.

Figure 2.2: PKI infrastructure

Key

Certificate

Signing

Verification

20

This behaviour is very useful in environment where it is supposed that the

private key of entity can be stolen or other way compromised. And the

environment of ZlomekFS where each user might have its own certificate meets

these properties.

So there should be an authority: the administrator of whole system who

will issue new certificates and also issues and updates the CRL.

Most common framework implementing the X.509 standard is probably

OpenSSL [13]. This protocol can be set above TCP/IP protocol, so there are

necessary only minor changes in the old implementation. But OpenSSL is not

only a layer providing authentication of communicating nodes. It also encrypts

the connection between nodes by cryptographic communication protocols.

Available protocols are SSL v2, v3 and TLS v1 [13]. These protocols should

provide enough amount of security for purposes of ZlomekFS. When using

sufficiently long asymmetric keys (for establishing of connection) – it means

about 2048 bits, the probability of compromising the communication channel is

very low for now [10]. In future, the length of this key will rise but it can be very

simply replaced by another key.

Quite pleasant property of OpenSSL is the fact that it is not only a library

for securing network connection. It is a complex package including many utilities

for managing key material and generating support files. Because of this

OpenSSL is a good choice for securing ZlomekFS.

When X.509 format of certificates is used, they can contain another

information about its holder, issuer and validity. Very important entry is their

period of validity. It is very unfortunate solution to have a certificate with

unlimited validity period. It is because computers are still rapidly faster and keys

providing enough security today will be totally obsolete after a few years (maybe

earlier).

Next important entry is also identity of holder. From this field, it can be

get by trustful way, who is the peer. X.509 format also offers some optional

fields, which can be used to determine the type of peer node.

21

2.4 Node types

As described in chapter 2.1, nodes created by single users can access

only the data that the user is authorized to access. But when all nodes would be

only user nodes, it would rise a problem: Each part of filesystem would have

some data set but nowhere would be all image of a volume. So when another

node (user) would connect, it would prove its identity but the data owned by the

user would be stored at node with the same user identity. It would mean: all

users should have their private data set in their own local cache and share only

public data.

This approach does not meet the idea about distributed filesystem which

has a master node where a user connects, downloads its data set, works on it

and then stores the data back to the repository. Some time later again he

checks out all data set from another node and can continue his work.

So there should be some entities which contain all data. But as discussed

above, it should be not the user. So it is necessary to involve another type of

node trusted to contain all data.

2.4.1 Machine type node

As any other process, the instance of ZlomekFS daemon on a machine

type node has to run under a UNIX user account, and the question is which

one. One of the solution is introducing special users whose task is just storing

data into the cache. It would prohibit access to data in the cache by other users.

But here is another problem. The mechanism of storing file metadata is solved

in a quite specific way. When the file is created, its owner uid and gid [1] are

translated to systemwide known numbers, stored to metadata of this file and the

file is stored to local cache under its permissions belonging to its creator.

This method has one serious disadvantage. In case that instance of

ZlomekFS manages files belonging to another user, the mechanism of saving

file access rights does not work. It is because of changing access rights to file

the process must have appropriate privileges [14].

Also here is another way how to treat this issue. It can again be done by

defining a special user and group where this user belongs to. But in this case,

all local cache would belong to that user and all operation above access rights

22

would be redirected from filesystem to metadata. But this solution requires a

very deep change of the old implementation of ZlomekFS. More or less it would

mean the change of all FUSE interface.

Another solution is launching the daemon of ZlomekFS as a superuser or

another user which is allowed to change privileges of files. In this case it would

be good to declare the whole machine and any operation done by it does not

have to be checked when propagated to another machine.

It is because the type of installation. In the case the user connects the

client to ZlomekFS infrastructure, he has his own certificate and possibly his

own implementation of ZlomekFS daemon. But when the daemon is launched

under a special user which is created (or another way trusted) by machine

administrator, the administrator can do steps to avoid stealing its identity. For

example storing keys in a secure location.

This approach also has another important advantage. When FUSE

filesystem is launched under superuser, the option allow_other can be

passed to it. In this case the content of ZlomekFS will be accessible to all user

under proper access rights. It is possible to pass argument allow_other even

in common-user mode, but it requires changes in the /etc/fuse.conf [15]

and they are systemwide valid. So this way would affect, probably undesired,

behaviour of the whole system.

Here a question arises how to differ the described type of node from the

node created by a root at a machine for his own purposes. In addition there

would be another undesired property: the root could be mapped to a common

user at ZlomekFS infrastructure, so each connection would require a

mechanism how to ensure that peer is really machine's superuser.

Much better solution is using certificate data fields to store information

about the type of node which owns it. So now at least two types of certificates

are needed. One for fully trusted machines and one for individual users. Here is

a question whether another type of certificate would be needed.

It is sensible to expect that these two cases are extreme. A smaller unit

which can get access rights could be defined as an intersection of directory tree

and user's access rights. But this way have not any benefits. Similarly larger

23

units than one machine need not to be considered, too. So the last question is

whether there is an entity which might be important and is not user nor

machine. But ZlomekFS and FUSE are designed for two basic purposes: to

mount filesystem for one user and nobody other can reach it or to mount

filesystem for all users at a system level. So no other entity should not be

introduced into the infrastructure of ZlomekFS.

This solution brings one important property of ZlomekFS: the shape of

infrastructure tree is more precise showed in Figure 2.3. The root and non-leave

nodes should be trusted machines with all data accessible. Leaves of the tree

are nodes which can be common users or fully trusted machines. And there

should be a mechanism which prohibits connection of node to an instance with

user privileges because only incomplete set of data would be accessible. O n

the other hand, there can be scenario where a user mounts his data at a

“router” which is connected to a ZlomekFS infrastructure. Then he connects

another local node to such a “router”. Then from the architecture of ZlomekFS,

there would not be a problem. But because because this this approach would

lead to major architecture changes, this behaviour is forbidden.

Figure 2.3: Network schema

Machine type
node with
cache

Machine type
node without
cache

User type
node (cache
not important)

24

2.4.2 User mode connection

As described above, these nodes are placed as leaves in hierarchical

structure of ZlomekFS. They are intended to make accessible private data to

each user. They are intended to work in cached or non-cached modes.

When such a node connects to server, it proves its identity by a

certificate. Then every operation required by such a client is verified by the

server. The verification includes file permission check. When access rights to

file allows desired operation, it is done, in another case it is rejected.

Here rises another problem: what about files that have executable bit set

but read bit not set for that user. The user is allowed to execute such files but

for executing the file should be transferred to a client node. But when it is

transferred this way, the data of the file can be stored also at that machine. It

means that the content of such a file can be compromised by that user. But here

should be a way how to launch them. This requirement leads to a special

limitation. When a user wants to launch an executable file form, a node with

only user certificate, he also should have the permission to read that file. This

solution differs from the standard behaviour of POSIX system but in order to

prevent compromising data it is necessary.

Another problem rises from the local cache access rights management.

Files are also stored in underlying filesystem and their access rights are stored

in it. From discussion above flows, it is not a nice solution to transform file

access rights directly from metadata to local entities.

But when a common user launches the daemon, it inherits his identity, so

changing owner and group of file in the cache is not possible. The only

possibility is granting CAP_CHOWN [14] to that user. But by granting this

capability, effective privileges of that user dangerously rise. So in this case,

when using user-type of certificate, the executable of ZlomekFS should have

set the setuid bit and should be owned by a user who is capable to change file

owner.

At first sight, it should be dangerous, to launch such a large project with

superuser privileges. But this problem can be simply solved with a chroot utility.

The ZlomekFS own daemon will be stored without the setuid bit enabled. But

another utility, call it zfs_launcher has this bit enabled. So when it is launched, it

25

again creates command line accordingly to arguments passed to it and

launches ZlomekFS with chroot somewhere in user's home directory.

In case the implementation of ZlomekFS does not contain a fatal bug, this

should prevent possible attacks to local system. A fatal bug is a bug which

allows replacing the code of running program by a harmful code. This attack,

called stack overflow, is performed by sending data of wrong length to a

program input. But OpenSSL is used for network communication and all buffers

are well bounded. File inputs are again bounded. It is important to prevent stack

overflow. Because when it happens, the chroot jail can be broken [16]. So if

these conditions are met, there should not be done an attack dangerous to all

system to ZlomekFS daemon when it is placed out of root directory.

2.4.2.1 Group membership

The user is always a member of a group, sometimes not only one group.

So here rises a problem how to manage mapping group membership of a user.

It is because at one machine, the user can be a member of a set of groups, but

at another machine, he can be a member of a different set of groups. In

addition, there is a possibility that, at a node, there does not exist mapping from

systemwide group to local group.

This issue can be solved in many ways. One of them is restricting the

user membership at all nodes connected to ZlomekFS. This approach is not

scalable. Any group membership change at one node should be propagated to

other nodes before the user connects there. In addition, it is not transparent to

nodes' administration because there should be some restrictions to group

membership at some nodes. Simply said, the environment may not be

homogeneous.

So another solution should be chosen. It could be based on information

about group membership present in data used by the filesystem and

automatically spread. First such data can be certificates. The information about

group membership can be stored in them. In real it means, the information of

group membership can be stored in an entry contained in certificate in the same

way as the user identity.

26

But when all systemwide groups would be stored in a certificate, it would

bring many problems. When the group membership changes, a new certificate

must be issued. In addition, the old certificate must be revoked. So this way is

not the best. A better solution would be storing group membership information in

a separate file stored and distributed by filesystem. These files should be

accessible by all nodes but changeable only by administrators. For this purpose

configuration volume [1] could be used because this volume has proper access

rights: Anybody can read it, but only the user mapped to ZlomekFS

administrator can modify it. In that volume a file containing information about

group membership could be placed. And the certificate may contain only an

index to that file, which allows group membership searching. This solution also

allows to have one entry per certificate and the entry is not dependent on

machine where it is used. At this machine the mapping of groups is then

defined by its entry in the mapping mechanism.

The configuration volume also has another important property. When any

change is performed on it, the ZlomekFS mechanism notifies all clients about

such a change. When a change is reintegrated to server node, closing of that

file triggers the same mechanism at its clients and further reintegration to higher

levels of hierarchy is performed. This way important setup information is spread

very fast through all infrastructure.

Next reason why it is a good way to treat this information is the fact that

all information about ZlomekFS users, groups and its mapping is also handled

this way. So this solution is logically consistent with the preceding

implementations.

2.6 Certificate revocation

Because of usage of this system by many user, accidental identity

compromising can be caused. This can happen by losing user's private key. In

case of a machine type certificate it is an extremely serious problem because

the new owner of key gains full control of all data shared through the system.

So here must be a mechanism of secure storing files containing key material.

This problem is solved directly by placing machine certificate to

configuration directory with special access rights. These rights should be

27

adjusted so that any other user can not reach that file. But here is another

issue: storing of user level certificates. The user should be allowed to transfer

his certificate among all machines that he can use.

This type of behaviour brings a higher risk of losing the identity. So there

should be present a simple way how to invalidate X.509 certificate as described

above. The OpenSSL framework brings full support of these actions but another

problem is how to distribute this information.

The simplest way is providing CRL with other identity data on startup of

node. But this solution brings a problem how to obtain the CRL list. It would

mean, before each startup the user should use a service (e.g. web or another

maybe proprietary service) to obtain this list. Again, this connection should be

trusted because in another case an attacker should provide obsolete CRL list.

Of course CRLs also have limited time of validity, so this should not be such a

problem. It is because obsolete CRL would be valid only for a short time. But in

distributed environment of ZlomekFS when nodes can work disconnected for a

long time, it would bring a problem. In some disconnected areas all CRLs would

become obsolete and no communication could be performed.

Better way may be to generate CRL with a longer period of validity and

distribute it with data of the filesystem. But again this solution has

disadvantages. The main reason is when a machine type of certificate is

compromised, as shown in Figure 2.4, all its subtree has a serious problem.

Consider a situation when the system administrator realizes that a

machine type of node has been attacked and its certificate is stolen. So it takes

root certification authority's key and compromised certificate and updates the

CRL. Then the CRL is copied to proper path at the ZlomekFS directory

structure. There could be three basic types of node where this operation should

be done as shown in Figure 2.4.

Suppose when a certificate is stolen, any assumptions about identity or

correctness about that node could not be done. Only in case when the CRL is

updated at compromise node, the identity of the node is known, but still there

could be a problem about the correctness of local ZlomekFS implementation, so

it could be unable to share the CRL.

28

When the new CRL is installed in the subtree where compromised node

is root, it should by installed though that tree but it is only the first sight. The

behaviour of such a damaged node is undefined, so it can update version of file

holding CRL and this way cause a conflict.

A very similar situation is when the new CRL is installed from outside of

such a tree. Again the malicious node can cause conflict and there can't be

done any assumptions about sharing CRL through network. So this way seems

not to be the best solution of the problem.

But there is not any other way how to obtain CRL. Only two types of

communication channels are available: by own ZlomekFS infrastructure or by

another channel. Both of them have similar problems. For the first case a

restriction must be defined. Especially about behaving and administrating of

nodes with machine type certificate.

The discussion above brings an important result: Distributing CRL

through ZlomekFS is not a good way how to manage revocated machine

certificates. But on the other hand, when an attacker reaches the private key of

machine type node, it means that he has had access to secured store of the key

material. But this may happen only when administrator's credentials are broken

or the daemon is hacked. But in these cases the validity of the local cache or

data sent to other nodes can be corrupted and the topology of the ZlomekFS

net can be affected. So stealing private key of machine key is only a

subsequent case of a much serious problem. And the solution of this is not only

replacing the key with a new one and then to revocate the old one. First, all

such attacked nodes should be repaired, correctness of installed version of

ZlomekFS, other programs and settings should be checked. Then a new

certificate for this node should be issued and the old one revocated. Finally,

after systemwide synchronization of CRL, it should be checked whether no

conflicts occurred and the synchronized version is equal to just declared

version. Good news is that because of a high level of securing (described in

2.7) machine mode nodes, this case should not happen.

But another case is user type node. The user takes his key material with

them, so stealing it is not so difficult. But revocation of such a certificate is easy.

Important points are: the client mode machine is a leaf in the ZlomekFS

29

topology tree and it is typically not allowed to modify configuration data. In case

that it tries to do that, reintegration of such a file will be rejected by its first

neighbour and systemwide settings will not be corrupted.

So when compromising of user type certificate occurs, it is enough to

generate new CRL and update the old one. The change will be spread through

the infrastructure and communication channel to the compromised node

disconnected.

2.7 Implementation details

The proposed improvements to ZlomekFS naturally requiree significant

changes of implementation. The most important is the change in network stack

of ZlomekFS.

2.7.1 Network stack

In previous implementation the networking stack was solved as a simple

filedescriptor placed in structure fd_data_t. This structure was then passed to

another calls and native POSIX calls were performed above the integer

filedescriptor. Also as a side effect the integer nature of the filedescriptor was

used as an index to field of structures fd_data_t. This is possible because the

filedescriptor is a small non-negative number.

But when OpenSSL is used for securing network communication, it must

be possible to manage network communication by it. There are two main ways

how to solve this problem. One is rewriting all network module accordingly to

OpenSSL requirements. The second is based on observation that OpenSSL is

only a wrapper above sockets and provides similar functionality and even the

calls are very similar. So the network connection has been redesigned as a

virtual object which provides all necessary functionality to client application.

These functionalities are reading data, writing data to connection and support

functions as binding, connecting and others.

Because network connection is not now just an integer, but a dynamically

allocated object, it must be properly deallocated when it is not further needed. It

would be a simple operation in environment where only one thread has access

to that structure. But ZlomekFS networking module is designed to be

30

multithreaded and this structure is shared between threads. So the technique of

reference counting to object has been chosen. It is fast and reliable. When a

thread gets pointer to the object, the reference counter is atomically increased,

when the thread releases the object, the reference is decremented. When the

counter reaches zero, it means no thread knows the pointer to it, so it is further

unreachable and it can be deallocated.

Another problem in the networking stack has been statically allocated

array field of fd_data_t, which describes internally each connection. It has

been indexed by filedescriptors assigned by kernel. A nice solution would be to

dynamically change its size. For this purpose the special indexing layer bound

with network connection has been designed. But during a deep analysis of the

module important findings were made. Not only filedescriptor is passed to other

thread but just pointer to all structure fd_data_t. So here could be done two

decisions. The first one is passing a copy of the structure. But the structure is

designed for data sharing between threads and copying of it would lead for

example to problems with synchronization. It is because it contains a condition

variable to manage threads using this structure. And pthread entities should not

be copied [17].

The second way is to hold only pointer in the field to the fd_data_t

structure. But it introduces the necessity of using another reference counting

and another synchronization in network module. The reference counting can be

solved simply but after analysis of locking scheme of all ZlomekFS daemon, it

was considered to leave the old implementation of managing connections

untouched. It is better to waste a few kilobytes of memory then to risk a

deadlock.

The next necessary problem described above is the secure storing of key

material. Especially the machine type key is very vulnerable. So it should be

stored in a secure place. There were considered many ways of placing this

data. But because of decreasing dependence on other services, storing in local

filesystem has been chosen.

Because of this, access rights to configuration files should be precisely

checked. When the ZlomekFS daemon is launched, it checks access rights to

31

files containing key material. These files should be owned by the user who

launches the daemon and access rights should permit at least owner read

access to it. All other rights should prohibit access by group or other users to

them. In other cases the daemon will exit.

2.7.2 User mode launching

In the old implementation the way of treating local cache, even then in

user mode, should be the ZlomekFS launched with superuser privilege. But it

would mean possible security violation. Therefore some steps to avoid such

possibilities must be done.

The most important thing is to avoid possible operating system data and

configuration change when the process with superuser privileges is running. So

the possibility of launching the daemon in chroot jail [14] seems very interesting.

It means the virtual filesystem image is created at a filesystem point. At such

point any program is then launched and its root of filesystem is just there and it

can not affect other parts of filesystem.

Other possible way is to drop the privileges of running daemon. It could

be done by changing the owner of the daemon from root to another user. The

best choice would be special dedicated user zfs_user which will be created

during system installation. And then the daemon will be launched with privileges

of this user.

This approach brings new problems to solve. When such a process

would be launched, it can not change directly permissions to a file. It is a

problem with the old implementation of cache when access rights are directly

stored in underlying filesystem. This issue can be solved in two ways. The first

one is granting CAP_CHOWN privilege to the daemon. But this would be a

serious security issue because when a process has this privilege, it could

behave similarly to a superuser process when it changes owner to himself and

then change the file.

The second way is to discontinue the way of storing attributes at

filesystem level and store them somewhere else. The best way is probably to

store them at metadata information and leave files at cache under full control of

32

the daemon. Because of the possibility of creating special files, the process

would have granted privilege CAP_MKNOD.

This way would solve the main security issue. On the other hand, it would

be nice to prevent the daemon to access another data when it gets corrupted.

This can be done by moving it to a jail [14].

But this feature of UNIX systems (especially Linux) has some

disadvantages. The most important is the fact that all files, including libraries,

used by such a program must be copied to the place where the root directory of

the jail will be.

First of all, access rights to the root of jail should be changed to 0500. It

is because its owner should have read and write access to it. Then required

libraries and configuration files should be copied to the jail. So for doing this, all

directories except the /etc and /var are removed from the jail and replaced

by new. It is because ensuring correct behaviour of the launched daemon. The

/var directory is left untouched because it is supposed that the cache will be

placed there. And similarly the /etc contains important setup of the daemon.

Other issue closely tied to the previous one is the necessity of presence

of all character devices used by such a program. So first, there has to be

prepared the environment of the jailed process. But in this environment even

some special devices from directory /dev must be present. But it can be a

problem. This directory is mounted as another device, so making hard links to

desired devices is not possible. When symbolic link is made to /dev/fuse, it is

only a path to a file out of chroot, so it is unusable.

Another way how to provide special devices to the jail has to be

performed. The problem can be solved by mount utility. It can mirror any

directory to a mountpoint when the option bind is specified. But just mounting

all /dev directory to the virtual filesystem would not be a good choice because

the daemon will be able to access all devices. So there should be created a

subdirectory zfs_fuse_dev where hardlinks to needed devices will be present

and this directory will be mount to the /dev directory in the jail. The command

used for this is: #mount -o bind /dev/zfs_fuse_dev/ ./dev/ . The

FUSE daemon can be launched at the jail now.

33

It is important to say that the utility preparing the jail must have superuser

access rights again. This can be ensured by a SUID bit attached to it. It would

not be a problem because the code of this utility is very simple.

But another issue should be solved. How to behave when the user wants

to place local cache somewhere else than the /var directory. This problem is

very simply avoided by forbidding placing the cache somewhere else in the user

mode. It is possible, that all daemon is launched in a jail, which is prepared by

a privileged process.

2.7.3 User and machine mode

New scheme of behaviour when the client is trusted machine or not fully

trusted user has been introduced. This has brought also a new code inserted to

the network module.

Types of certificate are recognized by field nsComment. A machine has

its value set to string ”Machine certificate” and a user to ”User

certificate”. Accordingly to the value of this field the access rights check is

then launched when an action is performed remotely.

But for doing so, there must be implemented a mechanism which allows

mapping users to groups independently to local machine settings. It is done

quite simply by the configuration file and data held in certificate.

When the type of certificate is ”User certificate”, it also holds the

systemwide number of the user in field subjAltName. But this is too small to

hold all information about user's identity. From the user type certificate the

group membership information about that user should be also available.

Here are two basic approaches to this issue. One is holding all

information in the certificate. But it means to issue a new certificate for each

group membership change and to revoke the old one. This means the necessity

of a sometimes massive communication between the system administrator and

the user and to manipulate with vulnerable key material.

Because of this, a better solution would be a table indexed by user

systemwide ID and containing the membership information. This configuration

file is designed as line oriented. Each line contains user identification followed

by the list of systemwide identifiers of groups. This file is stored at configuration

34

volume, so it can be changed whenever it is needed and is also available to all

nodes.

2.8 SSL utilities

Because the filesystem uses SSL framework for communication, it is very

easy to use this package of utilities to manage key material. To be user friendly,

shell scripts for certificate management are provided with the filesystem.

35

3 File sharing semantics
Each filesystem should have well-defined rules regarding propagating

changes to its files. These rules can differ in many ways. As described below,

there are several issues in a distributed environment, where no serializing

authority is present [18]. One of the most common network filesystems is

Network File System.

3.1 NFS [2] overview

This filesystem has been designed at 1980's by Sun Microsystems. There

have been published three newer versions which differ from the old

implementation. But the main importance of NFS is in its old versions which use

stateless semantics.

It means the system itself does not have any mechanism dependant on

client connection. It is because it is divided into two main parts: the mount

daemon and the actual NFS implementation. When the client mounts a NFS

volume, it first asks the mount server for a handle of entry point to the NFS

volume. Of course, it should provide its credentials to the mount server.

When the handle to the entry point is provided, the client can use it to

obtain handles to its child directory entries and so walk through the directory

structure. But this handle is not only resource for walking the directory structure,

it is also used for identifying files. It has the same functionality as filedescriptor

in local filesystem. Reads and writes to NFS are identified only by this

handle [2]. It means no explicit open or close to NFS filesystem is required. So

when the client application does such an operation, it is ignored by server and

always succeeds. Any subsequent reads and writes are done above actually

closed file.

Requests to these operations are delivered to NFS server and here the

file operations are atomically done. Each operation is interpreted as open, the

actual operation and close. When client realizes that the operation failed

because of a network error or a server malfunction, it can retry the operation

until it succeeds. These operations work fine and the semantics is well defined.

But the protocol has also disadvantages.

36

Because it is stateless, the server can not count references to the opened

files. It means such sequences of operations like open file, unlink the file from

directory structure and using it as a hidden storage do not work.

Quite similar is the case when a file is opened by a privileged user, then

process drops its privileges and can work with that file is quite similar. In

addition, the NFS can have only one cache (in this case image would be better

name), which is in the root of its topology and other NFS servers then only

redirects.

But in NFS such problems can not be conflicts. It is because all

operations are done above one systemwide image of filesystem. So when an

operation succeeds, it should be persistently stored in the filesystem. And when

another operation is done concurrently, there are only two possibilities: they are

not mutually exclusive and both succeed or one of them fails.

3.2 UNIX semantics

This semantics is designed for local filesystems where the kernel can

synchronize each operation. This filesystem has states. Each file before

accessing must be opened. Process which has opened the file gets

filedescriptor which internally represents the file.

At this moment, the process has access to that file independently on any

access rights changes. Even the file can be unlinked from directory structure

but process which have opened filedescriptor to such a file can work with it

independently on directory structure changes.

All operations above such a filesystem are synchronized by the kernel of

underlying operating system. It is because at one machine synchronization

entities are effectively implemented. Because of this concurrent accesses can

not occur. Suppose we have multiprocessor system where two processes try to

access (for example write) a file at one time. The underlying operating system

cooperatively with hardware ensures, that one access is done before the other.

So modify-modify conflict [1] can not occur here.

The same case is create-create conflict [1] because it is same as modify-

modify conflict, only above a file with directory attribute. It is the same for

37

attribute-attribute conflict [1]. Modify-delete conflicts []1 are again not possible

here because of counting references to open files as described above.

This semantics is perfect for handling files but it requires very strong

resources: synchronization entities or another scheme to avoid conflicts. And

this entities are hard to implement in distributed environment [18]. Mentioned

algorithms work well in a relative stable environment.

3.4 Immutable files [18]

Some filesystems use a special way for accessing files: immutable files. It

means that no write operation is permitted to a file. File is always created with

all data and it can be further modified.

When the file should be modified, all its data must be stored somewhere,

the file is then removed from directory structure and new file is created instead.

3.5 Session semantics

This semantics again uses open and close operations to get capabilities

to a file. In its pure shape it says that when one process opens a file and

modifies it, the modifications are not visible to other processes which have this

file opened. This allows one important feature: processes if they have their own

copy of file, do not need to communicate. They only play with their data and in

the end, they close them. After closing all, following opens should see the

modified version of a file.

This feature means that changes should be propagated to other nodes

after close and only then all following opens should see this version. But all

current opens should see their older version of file.

3.6 Comparison of these semantics in the context of ZlomekFS

ZlomekFS is designed as distributed filesystem with maximal

transparency of operations above it. It means that the operations should behave

as similarly to operations performed above local filesystem as possible.

It means that such semantics as immutable files is not the best way to

solve this problem. Of course there is a way how to make this semantics

transparent to client application. It is briefly described in section 3.4 but there

that way needs serious implementation optimizations to be usable in real

38

environment. These optimizations are based on reusing data stored at physical

storage.

stateless NFS protocol also provides interesting semantics. But in its pure

form, it has only one image and all operations are serialized to that storage.

When it is desired to some nodes have their own cache, it means conflicts can

occur. Because the lack of open and close operations, synchronization

operations must be done during other filesystem operations. But they do not

define a consistent state of the filesystem. It is not always such a problem but

restrictions based on its statelessness do not confirm to the requirement to be

transparent as much as possible.

Unix semantics seems to be the best solution. But on the other hand, it

requires a mutually exclusive mechanism to serialize operations. Some of these

mechanisms are described here [19]. But all of them have one strong

restriction. When the node wants to write, it must be connected typically to a

significant part of all network. So the possibility of implementing this semantics

mentioned here [20] is at least very restrictive.

It means that all nodes should be tightly connected and when a node

wants to write to a file, it must obtain capability to write from a granting

mechanism. After finished writing it should return the capability and

simultaneously to returning the capability changes should be replicated through

all network. This access does not solve synchronization of reading. But it is not

a problem because read own writes semantics [21] at a node is granted by own

operating system. And a read operation done concurrently to a write is not a

problem because when such collision is done at local machine by two

processes, the kernel always can schedule the reading process before the

writing process.

The only problem would be the case when processes on different nodes

perform network communication based on data read from filesystem. Then one

process can read newer data than the other. At this case this semantics is not

transparent. It is not hard to see the only solution of this problem is to succeed

write only after successful installation of new data by all nodes. But this breaks

one of the basic paradigms of distributed computing: There should not be done

any expectations about speed or liability of a communication channel. But for

39

data sharing between processes at one machine, it would be the fastest and the

most transparent solution.

Last considered semantics is the session semantics. It mandates that

only committed data are shown to other processes. Consider that the process in

definition in section 3.5 is a node. It means there are special commit operations

at that node, which shows internal changes to other nodes.

These operations should be the close actions of each process launched

at node. It is because it is a way to say that the process has done some amount

of work and has finished for now.

This feature brings the possibility of operation conflicts when writes are

not visible to other nodes immediately. On the first sight, it could be a problem,

but on the second sight, this property allows to replicate changes gradually

through all hierarchy of network. It is because this semantics allows concurrent

(in the meaning of parallel) writes on nodes (further discussion in 3.7) and no

serializing authority is then needed.

So finally the conclusion is: for one node data sharing should be Unix

semantics implemented and for communication between nodes the session

semantics will be used. In the [1] has also been done discussion above

choosing, but it didn't determine how the semantics would be used. And finally

the real implementation of ZlomekFS didn't support any semantics in its pure

shape. It is really true that data reintegration to server node was performed at

the file close. But this is only one part of correct implementation of session

semantics. When a file has been read, the local daemon has tried to update it

from its server. It means that the opened file has been updated during read

operation to a newer version than the version that was actually opened.

Additionally, the update has been performed only by comparing data directly

placed in the server's underlying filesystem. Again these data has not been

committed by close operation. It has been only raw written data. During such

update the image at server also could be changed by another subsequent write

performed at server. This action has led to update interruption, but already

updated data has not been rolled back to a really existing version.

A very similar situation is reintegration. When user process has

reintegrated data to server, there has not been any mechanism which would

40

prevent rewriting just reintegrated data. But what is worse: this way could

create a file containing more than one version of data when one process has

reintegrated data and the other process has modified another part of file.

In the end it is important to notice that this semantics is usable for regular

files [1]. For other types of files, another semantics should be applied. For

example named pipes or special devices should propagate all changes as soon

as possible to other nodes.

3.7 Causality in ZlomekFS

We define causal dependency this way: If exist process p

where action b depends on action a , written a →
p b , then b

causally depends on a (a →b). For each message m

send (m)→ receive (m) and if a →b and b → c then a → c . This

definition works well in an environment where actions are done atomically at one time.

But in a filesystem like the ZlomekFS, there rises a problem. The

operation of modifying file could take quite a long time. It is bounded by file

open and file close. As described above, on file close synchronization between

nodes is done. But synchronization information can be delivered to a node with

three possible states of the file. The first is: the file is closed. It means no other

process is using that file. If the version of the file allows reintegration, the file is

reintegrated, otherwise [1] a conflict is created at client node.

The second case: the file is just open only for reading. If the version of

server's file is in conflict to the version of the client file, again conflict is created.

But when the versions do not prohibit reintegration, there is a problem. Because

of chosen semantics, the file can not be blindly rewritten. When the file would

be treated in such a way, processes reading this file would have access to

version of data which is newer than their opening and it s forbidden. Next, the

conflict can not be created because there is no conflict in versions of the file. So

the readers should obtain their own copy of the file and the file should be

reintegrated. Then any new reader will open the reintegrated version.

The last case is reintegrating to file which is open for modifications. The

correct behaviour is not easy to determine. When the file has already been

41

modified, the answer is easy: conflict. But the question is how to behave when

the file is opened for writing and has not been written yet.

When updating such a file, it means the opened version would be

rewritten without any notification. In addition, there should be a mechanism

which counts writes performed since the file opening. In addition, when a

process tries to open a file for writing, it can be assumed that it will write the file

soon. Because of these reasons, the write operation is not only the event when

the physical write with version change occurs but it is the time interval between

file open and close. So when a file already opened for writing is reintegrated,

the conflict should be created at client.

But there is another problem with reintegration: when a reintegration is

performed, the data could be sent to server in many chunks. This means that

the reintegration is not an atomic operation. So between uploading the first and

the last chunk of data any other process can access the file. It means that

invalid mixture of versions would be accessed. This behaviour is also

undesired, so all data (including versions from version and to version) sent

during file reintegration are recorded to a journal and nothing else is done.

When the client finishes the data upload, the file is locked. Then the from

version is read from journal and compared to local version of that file. If they

agree, the journal is traversed and all its content is merged with the file. When

the versions do not agree, the journal is discarded and the client is notified

about a conflict. In the end, the journal is removed and the file is unlocked.

When, for any reason, the connection between client and server is aborted and

other process tries to reintegrate same file, the journal is removed and a new

one is created.

A very similar case is updating file from a client to a server. It should be

performed whenever a process wants to open a file. When the file is not opened

at that moment, the behaviour is clear. The file is updated and the new version

is opened.

When the file is opened only for reading, the reading processes should

gain their own copy and update can be performed. But problem arises, when

there is a process owning a capability allowing writing. According to semantics

of reintegration it means that the local copy of the file is in conflict with the

42

remote. So the conflict is created. But the question is which copy should be

provided to a newly calling process. The blind following of semantics says the

remote, newer copy but here is other important fact. The file could be used to

data sharing between two or more processes, so opening of the remote link to

the file would affect this important facility. So the link to remote file is added to

conflict directory but the local version of the file is provided to callee.

Another issue is tightly coupled to the strict following of session

semantics. It rises when the data source for update is required by another node.

When another node requires update, the hash result is counted from data

stored directly at filesystem. When those data has been rewritten by any

process and the process has not closed the file yet, the chosen sharing

semantics does not permit to show the data to any other process.

This means another snapshot of such a file should be created when an

open request is done to the filesystem (or at close operation). Then when an

update request is performed, the data should be always read from the own

Figure 3.1: Reintegration ZFS semantics

Client 1 Server Client 2

Open file1

Open file1
for writing

Reintegrate

Open file1
for writing

Open file1 for writing and
previous read redirect to
snapshot

Create
conflict dir

Update

Open file1
for reading

Update

Reintegration start

Open file1
for writing

Reintegration
commit

Conflict

Conflict

Create
conflict dir

43

cache, when no write capability is present. In other cases, a snapshot should be

available with correct data and will be then used as data source of data.

For better understanding of this implementation of this semantics, a brief

conclusion of reintegration is done in Figure 3.1 (for update is similar).

3.8 Solutions

As described above, there are some required changes to the ZlomekFS.

3.8.1 Reintegration/update journal

Because the reintegration or update are not atomic operations, as

described above, there should be a way, how to make them atomic. Section 3.7

describes how the journal should work at all. But there are issues which should

be solved.

The first is the place where the cached or such an action would be

stored. There are several possibilities. The first is creating an unnamed

temporary file. But this solution would waste system resources because when

the reintegration is in progress, the file should not be closed. Because when

such a file is closed, it is also removed from the filesystem [3]. Then another

possibility where to place this temporary file is /tmp directory. But introducing

this solution is another platform specific property of the project. So the best way

is probably to be consistent with directory journal and place the file journal again

to the metadata directory. This directory is not shared through the ZlomekFS

infrastructure, so this could be a good choice. In addition the old implementation

is able to build unique paths for files stored here dependent up to file's i-node

number and device where the image of the file is stored. To recognize this

metadata file from the others, the suffix must differ from other suffixes. In

addition, there must be a way how to recognize update and reintegration type of

journal because they can occur simultaneously. So the suffixes are

.update_file_journal and .reintegrate_file_journal.

Another question to answer is the internal format of such a file and its precise

behaviour when update or reintegration abort occurs. The main problem is

whether these files can have the same internal format. First, each case should

have as first entry metadata describing the source and the destination version

44

of the file. This entry would be when the changes are commit whether the target

file has not changed during operation. Then reintegration/update blocks

themselves? should follow. The actual reintegration/update data has the same

shape. It is always a block of data with specified length and offset where it

should be placed. Because of this, these internal file formats can be the same,

illustrated at Figure 3.2.

But there are more issues to solve. When a reintegration occurs, it can

be interrupted by some cases. For example losing network connection. Then

the orphaned journal should be removed and the reintegration aborted. But the

implementation of ZlomekFS does not allow to recognize the cause of

disconnecting. The connection can be aborted because of a serious network

error or by a fully intended action and the connection will be established again

soon. Because of these reasons, there is no sensible way how to declare a

reintegration as aborted. But when another reintegration from a node occurs

and the previous node is disconnected, it can be assumed that an error has

occurred. So the reintegration privilege is granted to a newly acquiring node and

the journal is removed and started anew.

Figure 3.2: Journal format

Header

Size

Version

Journal entry

Size

Offset

Data

Journal entry

Journal entry

.

.

.

45

Of course, another case can occur. Suppose that one node is performing

reintegration and has granted the reintegration privilege. Then another node

wants to perform conflicting reintegration. There could be three basic ways how

to solve this.

The first is to abort the previous reintegration. This means that there

could occur a starvation problem. It means that many nodes would try to

reintegrate and they would steal the right from others. The second way is

waiting for the result of previous reintegration. When its result is conflicting to

the waiting, the conflict would be created. But this solution would cause a

problem when the first reintegration runs for a long time.

So there has been chosen the third way. When a node is trying to

reintegrate a file already being reintegrated by another node, it probably means

a conflict. It is because the reintegration changes the version of data stored in

the file. And if the version of data of the remote version of the remote file

corresponds to the local version and the remote file is being reintegrated, after

commit the versions will not correspond. So in this case a conflict is created.

Another question is whether the reintegrated file should be locked at

server. If yes, there is no possibility to change it but the reintegration can take a

very long time, so it would case problems at that node. In addition, because of

the issue described above: there is no way how to recognize failed

reintegration, the file could be locked forever. So the file should be locked only

when the journal replay is performed. The update operation is more less the

same, accordingly to section 3.7.

3.8.2 Snapshots

As mentioned above, there must be a way how to store snapshots of

files. The two basic ways could be used. The first is storing all the file how it lies

in the filesystem. But this solution wastes the place on the persistent storage

and, in addition, such an action would be very slow. Because copying file

means its reading, and again writing all its content to the disk.

The results of [3] seemed very interesting. But in fact, it can not be used

for implementing Unix semantics because it forbids reads parallel to writes.

Access to files is treated in a special way. When a user tries to open a file for

46

writing but the snapshot already exists, the writing operation is rejected. But the

idea of storing differential intervals of files could be a good idea. So the solution

of creating snapshots is quite similar to the implementation of version system.

As a result, it should not be exclusive to version system. These two accesses to

treating snapshots should work together.

The idea is very simple. Every time when a special event occurs, a new

snapshot is created. The snapshot is an empty file joined to an interval tree.

Whenever the file is then modified, the modified interval is backed up and its

boundaries are stored in the interval tree. When the old version of data is then

requested, the current version of file is read and then the interval tree is

traversed. If there is an intersection between read interval and data already

backed up, the data is “updated” from the copy of the old version.

Another interesting case is when the source file is then truncated. It

means that all data contained in the truncated area must be stored to backup

area. This is very similar to the [3].

The important question is when the snapshots should be created. As

described above, such events happen when local data is modified by a

reintegration or update (the commit of such an operation). It has been

discussed that no writing capability should be present at the system at such an

event. Then all read-only capabilities should get assigned that snapshot and

correct its readings by data of the right version.

But another event for creating a snapshot is required. Because when an

update or reintegration is performed, then the data source should be a

snapshot. In other case the data of an incorrect version could be transferred.

For reintegration it is not a problem because it is performed only on file close.

But when an update is performed, it should be done above a version snapshot.

As described above, the events when a snapshot for update should be done,

are file closes.

When later a data update occurs, all operations are done above a

snapshot. At the end of update file attributes should be also synchronized. It

means the snapshot should also contain metadata of the file. And in addition,

there is a question how to treat fisle attributes changes: whether the file attribute

47

change is a part of the sequence of operations, or it is a standalone operation

which is able to start a new snapshot of file.

The operation of file's attributes change can be understood in the same

way as a commit of the current file state. So this operation would start a new

snapshot for update of the file. On the other hand, this type of access would

bring a new type of conflict: attribute-modify where one process changes

attributes and the second data inside of the file.

But another issue rises from creating snapshots. There can be a process,

which reads from a snapshot for a very long time and so the snapshot has been

overlaid by many other updates and snapshots. In addition, there should be a

way how to store many version snapshots. One possibility is to have a complete

history of changes for each version used by processes. But when this way is

used, it has many disadvantages: first, every change to current version of file

triggers many data copies at underlying filesystem. It would mean a significant

performance loss. The second is then significant disk space requirements.

Here can be done an observation: let have snapshots a and b where

version (a)< version(b) then all changes needed to reconstruct b from the

current version are subset of changes stored in the same way to reconstruct

snapshot a . In result the solution is quite easy. Whenever a new snapshot is

created, then any older snapshot is closed and stored until any capability aiming

to its version exists.

When a read operation to a snapshot occurs, then all newer snapshots are applied in the
order they were created. Last, the snapshot of a specified version is applied and the read
data should be in the correct shape.

From previous flows, a good way of storage of snapshots is a chain,

which could be traversed when searching the correct version of the snapshot of

the file. The schema of creating snapshots is shown at Figure 3.3.

Figure 3.3: Snapshot handling

Snapshot (newer)

Next snapshot

Version

Size

Mutex

Other variables
needed for

synchronization

Filename of snapshot

Snapshot (older)

Next snapshot

Version

Size

Mutex

Other variables
needed for

synchronization

Filename of snapshot

NULL

Direction of snapshot reading

Filehandle

48

But a little problem occurs: when a snapshot for reintegration or update

is created, it would cause transferring all current read-only capabilities of such a

file to a reading snapshot. But it would break the property of Unix semantics at a

local node. So another flags were introduced: O_RUPD and O_RREI. When a file

is opened In such a way, the new capability is created and the latest snapshot

of such a file is assigned to it. This is a safe way how to ensure that all

operations would be done above a snapshot and no other processes will be

affected by this behaviour.

49

4 Capabilities and filehandles
As mentioned above, capabilities are used to determine which actions

can be done to the opened file. But when capabilities are stored at remote

nodes, there is no way how to change data contained. Even capabilities stored

at a local node are hard to change. And as described above, there should be a

way how to change them when a snapshot is created. It is because the version

of snapshot which is tied to the capability should be stored in the capability. So

there should be a mechanism which allows to change a capability that is not

present at the kernel of the ZlomekFS.

4.1 Remote capabilities

There are two basic ways: to notify the client holding the capability, to

change it according to the request. But this solution brings a necessity of

network protocol changes. In addition, it would be necessary to send this

information in direction from server to client. And with the old implementation of

ZlomekFS it would be a serious amount of work.

A better solution is to publish only virtual identifiers of filehandles. It could

be only a large integer number followed by a bit-field which contains the access

rights and finished with a field with a digest, which proves the validity of the

capability.

When such a filehandle is then passed to the ZlomekFS core, first the

digest is checked and if it does not seem to be valid, the operation is rejected.

In other case, the capability identifier is then used to translate this handle to real

capability which is then used to perform an operation.

4.2 Capability securing

The capability format, especially the level of securing, as described at [1]

works well. It is because of the known and trusted environment. But in the

environment where an attacker can impersonate a trusted user machine, there

should be a way how to revocate an issued capability.

These revocations should be done on file close. But when another

process has opened the file for the same access right, the capability is shared

among the processes. This means that just one close does not remove the

50

capability from the system, so another access via already closed file can be

performed. It would be a problem in case when the file has been closed and its

access rights has been changed. Because of this each open operation should

get its own capability which will be revoked at the corresponding close.

Even these requests are handled by the mechanism of remote

capabilities. The underlying core of system can henceforward use the old

mechanism of capabilities. But requests performed from the outside of the

secure core of the filesystem have to prove their legitimacy by remote

capabilities which are unique per open.

Therefore there should be a mechanism for signing the remote

capabilities in order to check their correctness. The old model of copying the

random number hash from the capability holder is not sufficient. It is because

the MD5 has been used to count the verify. This algorithm is very useful for

checking data for a random change but is not resistant to an aimed attack [22].

Because of this an attacker could get the state of the internal pseudo-random

generator. A better solution would be signing capabilities by SHA256 or newer

algorithm. But signing itself is not sufficient. The result should be a field of

unique salt created by hash mentioned above and a real hash calculated from

the content of remote capability and the salt. When the hash is calculated this

way, the remote capability is valid even when its issuer has restarted, but its

image does not exist. It is a problem that can be solved in two ways.

The first solution is a persistent storage of capabilities but it means a

serious change of ZlomekFS daemon architecture. A better way is to add an

instance specific value (random number) which would be also an input

parameter of the hash. Then after restart of the daemon, all capabilities will be

invalidated. When a client acquires an operation with such a capability, the

operation is rejected with code CAP_OBSOLETE. Then it is up to the client how

to manage this case. Whether to fail the operation or try to reopen the resource

and thus get a new capability.

4.3 Capability ageing

Issuing capabilities also brings problems with their storing. Each

capability takes some amount of memory. So when too many capabilities are

51

present in a system, it would lead to wasting memory. Here are two basic

possible approaches. One way used for example at [23] is to remember for how

long an open file has not been accessed. And when the time goes over some

boundary, the capability is discarded.

But ZlomekFS is designed to emulate local filesystem remotely and this

solution is not transparent. Because at local filesystem, the file can be opened

for any time and it can not be closed by the operating system. To be most

precise, it would need a deep analysis of times when the files are left

untouched.

Then a sensible boundary should be set and a mechanism how to

remove capabilities considered as unused should be implemented.

4.4 Filehandle

As described at [3], there is a performance problem tied to filehandles

implementation. The filehandles contain i-node number, which is specific for one

instance of a file. But when a file is truncated its previous version should be

stored and the simplest and fastest way is to move the image of the previous

version to the version storage and then create a new empty file in the local

cache. But the newly created file will obtain a new i-node number and this

operation will invalidate all filehandles held by other nodes aiming to such a file.

In addition, when a file is physically deleted from the filesystem, the i-

node is then again available for a new file. It rises a very serious issue. When a

filehandle containing the i-node number is somehow cached by FUSE interface

(or a client), then a problem could occur.

Suppose one process has requested a filehandle which is then stored at

the interlayer between FUSE and ZlomekFS. Then an unlink operation is

invoked. It successfully removes the file from the filesystem. So the i-node

number becomes available to a new file. At this moment a file creation can be

performed and the file could get the same i-node number. Unfortunately such

file can be a file created by another user and somewhere in the filesystem.

After these actions the first process holding already invalidated filehandle

can try to open its properly gained filehandle. The i-node number agrees with

the newly created file, so it is found in internal structures and the file is opened.

52

This issue could be solved by introducing generations of filehandles

according to [1]. For better illustration the scheme of the filehandle is shown in

Figure 4.1. But this solution is quite complicated and not very well extensible. A

better solution would be assigning a unique virtual integer identifier to each file

– internal ZFS i-node number.

This will allow to change the physical image of file without any affect to

the filehandle. But even this solution is not without any problems. Many

operations are done in such a way where the i-node number of file in cache is

got by calling lstat call and then a partial filehandle is passed to

lookup_metadata, which finishes the creation of the filehandle.

It can be seen that all ZlomekFS is internally deeply tight to i-node

numbers of the underlying filesystem. To satisfy such requirements of the

ZlomekFS, there must be implemented an interlayer which is able to assign a

unique integer to each newly created filesystem entity and for all known old i-

nodes will remember the mapping of the underlying filesystem i-node number to

the virtual i-node number of ZlomekFS.

4.4.1 Unique integer generator

So the solution is made from two basic parts: the generator of unique

identifiers and the mapping interlayer. The question is how the generator should

be designed. Suppose the case where a client is tightly coupled with his server.

It is the case of current implementation of ZlomekFS where a filehandle to a

remote file is just a local filehandle of its server. In such case the generator can

Figure 4.1: Filehandle

Filehandle

ZFS file identificator

Flags

Version

Serial number

Signs

Filename of snapshot

53

be only an atomic sequence number generator. On the other hand, the last

number sequence should be stored in a persistent storage. It is caused by the

necessity of having for each file machine-wide unique identifier and after the

restart of the daemon, the sequence must not be repeated.

So because of this, the sequence generator is designed as 64-bit wide

unsigned integer which is shadowed to a persistent storage. So the question is

where the integer should be stored. The filehandle also contains volume

identifier which is used to determine which volume contains the represented file.

So for such a file the local storage of volume metadata can be chosen.

But when each file creation would generate an additional I/O request to

local filesystem, it would mean an unnecessary significant performance issue.

So the sequence generator should be represented by an object, which acquires

an interval of values from the persistent storage. Then it assigns them just by

in-memory operations and only when the interval is exhausted, it acquires

another one.

4.4.2 I-node numbers mapping

However the described solution is just a part of a more complex system.

Because of the issues described above, there must be present a system which

does mapping from physical i-node numbers to the virtual i-node numbers. This

can be done by reusing already implemented structure: hash_file.

Whenever a new file is in the filesystem created, a virtual i-node number is

acquired. Then a pair which is inserted to the hash_file is created from

physical and virtual i-node numbers.

Then when any ZlomekFS procedure requires a filehandle from a

physical i-node number, it asks for the virtual one. When it already exists, the

mapping is found and the filehandle is ready for use. In case when mapping for

such number does not exist, it is created and such a file can be from now

accessed by its physical i-node number.

54

5 Minor changes
Except large changes described in previous parts related to data sharing

and network security, there were made many minor changes to ZlomekFS

daemon to improve its stability.

The biggest problem of the whole implementation is the threading model.

It is designed to allow massive parallelism, but because many levels of locking

and unlocking, it leads to race conditions. Overall it is the source of most of

stability problems. So some changes to locking schema were made with the aim

to improve the stability but when a change has been made, another issue has

raised. Many times the new issue did not relate to the new change. Just another

race condition manifested.

But some minor changes have been made. The calling mlock procedure

was omitted – in modern system it is not necessary and for launching the

daemon under the account of a regular user it is unusable.

Next the problem when the node is connecting to itself has been

documented. When this situation occurs, a deadlock is created and all daemon

is blocked.

By storing access rights in metadata there has been solved a serious bug

in file opening. It occurred when a user created file with write only privileges and

then the daemon tried to open it (it opens files with read/write access) the

opening failed – now all files at local cache are writeable by the owner of the

daemon and belong directly him.

Another serious bug was wrong reintegration, when the file on the server

was only truncated and the reintegration finished. This was caused by wrong

versioning of file, which has been fixed during implementation of transact

reintegration.

55

6 User manual
The first step is to obtain source codes from the SVN repository placed at

https://shiva.ms.mff.cuni.cz/svn/zlomekfs/branches/zaloha/stable and to install

necessary libraries to build the filesystem. First, the script $./makeall.sh

from the root of tree of source code should be launched. It will build all parts of

the daemon. If this step is successfully passed, it is necessary to launch #make

install. This will install all parts of ZlomekFS and create user zfsuser and

group zfsgroup to securely launch the daemon. During creating the prompt to

enter zfsuser password is displayed. It is good to remember this password to

administrate ZlomekFS without root privileges.

After succeeding this basic part of installation, the daemon requires

special setting up. Firstly, setting up and launching daemon for a machine is

described.

It is necessary to set-up all settings required by previous installation

described in [1]. But the SSL framework requires some other information to

successful work. First, it is necessary to generate a pair of a root key and a

certificate (if it already exists, it is necessary to convert the certificate to the

PEM format and generate all user keys and certificates in the PEM format). This

can be done by launching the script CA.sh placed in the directory ssl_utils

in the root of checked out repository. The pair contains two files – the key and

the certificate with same prefix. This prefix is passed to the script as a

parameter:

$./CA.sh prefix

If the certification authority is created, it is necessary to create a machine

certificate. This action should be done by script machine.sh placed again in

the directory ssl_utils, the first parameter is the prefix of the name of a

newly created pair of a key and a certificate, and the second parameter is the

prefix of the name of the certification authority (it should be placed at the same

directory from where is the script launched):

$./machine.sh new_pair ca_prefix

https://shiva.ms.mff.cuni.cz/svn/zlomekfs/branches/zaloha/stable

56

The Creating of this pair is necessary for each machine added to the

ZlomekFS infrastructure. When these certificates are created, DH parameters

and a random seed should be generated. It should be done by launching

special gen_params.sh script in the ssl_utils directory. Log in as the

zfsuser and generate DH parameters with length 512, 1024, 2048 bits in files

dh512.pem, dh1024.pem and dh2048.pem and random seed file

rand.pem:

$gen_params.sh

Please note that while creating these files, some other files are created,

so do not delete or modify them and do not allow any other users to access the

directory where they are stored.

Next for all generated files the owner should be changed to zfsuser, the

group to zfsgroup and their mode to 600 before installing them to their proper

places (eg. /etc/zfs). The installation is then done by simple copying them to

the destination. After having completed it, you should change paths aiming to

them in the /etc/zfs/ssl_config. Necessary values are Localcert –

path to the machine's certificate, Localkey – path to the machine's key,

Verifycert – path to the certification authority certificate, Password –

password used to decrypt the local key, dh[512|1024|2048] – path to the

DH parameter files and seed – path to the random number seed. Remember,

the paths should be accessible for the zfsuser.

When these properties are set, it is necessary to create the certificate

revocation list (CRL). If built in scripts for generating certificates were used, it

should done by calling in the directory where the scripts are placed :

$openssl ca -gencrl -keyfile [ca_prefix]key.pem -cert

[ca_prefix]cert.pem -out revocated.pem -conf Caconf.con

The file revocated.pem should be then placed to the root of

configuration volume.

Finally, the group membership file should be edited accordingly to the

situation. It should contain at least one line. Its internal format is line:

user_id: group_id[, group_id[, group_id]...]

57

Where all elements are integer numbers of ZlomekFS internal users and

groups. When an access right check for a user type client is performed, the

group membership of this user is read from this file.

Now the daemon can be launched as root and as parameter should be

passed the mountpoint where the infrastrucutre should be placed. When it

starts, its access rights are decreased to the zfsuser:

#zfsd mounpoint
The last important thing is generating a new version of the CRL. It is done

again by openssl framework. If the built-in scripts are used to generate

certificates, it should be done by calling in directory where the scripts are

placed:

$openssl ca -revoke [bad_prefix]cert.pem -keyfile

[ca_prefix]key.pem -cert [ca_prefix]cert.pem -config

Caconf.conf

When the CRL is updated, it should be signed by the same way as the

first CRL was generated and placed to the root of config volume.

The setting up of user machine type is quite similar. But because of

launching the daemon in a jail, it has some specifics. First, the certificate for the

client should be issued. It should be done by calling

$./user.sh new_pair ca_prefix

It will create a new pair of a certificate and a key. During the creation you

will be asked to enter a proper ZlomekFS user id of the owner of the certificate.

It is necessary to fill it correctly because it will be used for access rights checks.

Then a jail should be created. It is a directory where the daemon will be

placed. It should be in a directory where the user launching the ZlomekFS has

write access and the ZFS-user has at least read access. In this directory

directories var and etc should be created. In the var the local cache of the

created volume should be placed. Then the image of the /etc/zfs directory

(including all content needed for the security features) should be placed

somewhere.

Then should be called:

$zfsd_launcher config_dir mountpoint

58

Where config_dir is the image of /etc/zfs and mountpoint is the

mountpoint with absolute path (begins with /) from the root of the jail. After this,

the ZlomekFS infrastructure should be created and mounted.

59

7 Conclusion
The goals of this thesis have been mostly met. The security model has

been fully implemented and seems to work well. The standard network security

framework – OpenSSL has been used. It brings very high security of data

transfers and it is quite user friendly to an administrator.

It is now possible to logically divide the ZlomekFS infrastructure to fully

trusted machines which contain all data, and single-user clients who are

allowed to access only their working set of data. The resolving of their types is

based on signed certificates, so it should be secure. In addition, there has been

added feature of kernel check permissions, so now any user should not have

access to data which doesn't belong to him.

This thesis also considers the case when user's certificate can be

compromised, so the possibility of revocation obsolete certificates has been

added.

The whole implementation of the network security framework has been

done by an abstract layer, which hides implementation details from the rest of

the system. Because of this, another implementation of network security model

can be done without large changes of the current source code.

Fixing the file sharing semantics has been implemented. Not only an

easy session semantics fix has been implemented, but also new distributed file

sharing semantics has been defined and implemented. This new semantics

differs from the classic session semantics which says that each opened file

descriptor should have access to the version of file existing at the moment it has

been opened. But when concurrent writes at one machine occur, the session

semantics rule is broken and the second opening of the file should fail.

But the new implementation works with local files in the same way as

Unix semantics until they are changed remotely. Then if the file is not opened

for writing, and versions allow to do the change, it is done. Otherwise, in this

semantics, it means a conflict has occurred and it is created.

A relatively easy but very important fix of abstracting filehandles from

underlying i-node numbers has been done. This fix is realized by assigning

unique virtual integer identifiers to the i-node numbers obtained from the

60

underlying filesystem. This patch allows performance improvement related to

versioning, as described in [3].

The last goal – making the ZFS daemon stable has not been fully

satisfied. Even more than one thousand hours spent by trying to fix all assertion

aborts did not lead to success. It is because the very concurrent architecture of

the daemon and quite confusing way of implementation where there are many

levels of locking entities and operations are not fully unified to require the same

level of locking. In addition, many functions called inside the daemon as side

effect unlock some locks dependently on satisfied conditions. So fixing the

stability issues of ZlomekFS should joined with overall change of design of the

application.

7.1 Further work

As described above, future work on ZlomekFS should aim at changing

the locking model of all the system, unifying the requirements of locked mutexes

of all levels of abstraction. Probably a good way to achieve this goal is to make

the daemon less parallel and to reduce the amount of mutexes and threads. On

the other hand, the main ideas of the architecture of the daemon are very

interesting.

Another required fix is implementation of access rights check for directory

tree. At this moment it is implementable only for files cached locally. So when a

node without cache is placed between fully cached node and leaf node with

user level certificate, there is a problem: The node without cache can not check

access rights of the path to the file and it can result in access rights policy

violation.

61

Bibliography
[1] Shared File System for a Cluster [online]. Prague, 2004 [cit. 2012-04-10].

Available at: https://shiva.ms.mff.cuni.cz/svn/zzzzzfs/trunk/doc/Zlomek-

SharedFileSystem.pdf. Master thesis. Faculty of Mathematics and Physics.

[2] RFC 1094. NFS: Network File System Protocol Specification. 2550 Garcia

Avenue, Mountain View, CA 94043, 1989. Available at

http://tools.ietf.org/html/rfc1094

[3] WARTIAK, Rastislav. History and Backup Support for ZlomekFS [online].

Prague, 2010 [cit. 2012-04-10]. Available at:

h t tps : / /sh iva .ms.mff .cun i .cz /svn /z lomekfs / t runk /doc /War t iak-

HistoryBackup.pdf. Master thesis. Faculty of Mathematics and Physics.

[4] RFC 791. DARPA INTERNET PROGRAM PROTOCOL SPECIFICATION.

1400 Wilson Boulevard, Arlington, Virginia 22209, 1981. Available at:

http://www.ietf.org/rfc/rfc791.txt

[5] RFC 2460. Internet Protocol, Version 6 (IPv6) Specification. 1998. Available

at: http://tools.ietf.org/html/rfc2460

[6] Truecrypt [online]. 12 [cit. 2012-04-10]. Available at: http://www.truecrypt.org/

[7] Dm-crypt [online]. [cit. 2012-04-10]. Available at:

http://www.saout.de/misc/dm-crypt/

[8] RW PENNEY. Cryptmount [online]. 30.3.2012 [cit. 2012-04-10]. Available at:

http://cryptmount.sourceforge.net/

[9] Lest We Remember: Cold Boot Attacks on Encryption Keys. Proc. 2008

USENIX Security Symposium [online]. 2008[cit. 2012-04-10]. Available at:

http://citp.princeton.edu.nyud.net/pub/coldboot.pdf

https://shiva.ms.mff.cuni.cz/svn/zlomekfs/trunk/doc/Wartiak-
https://shiva.ms.mff.cuni.cz/svn/zzzzzfs/trunk/doc/Zlomek-

62

[10]KAUFMAN, Charlie, Radia PERLMAN a Michael SPECINER. Network

security: private communication in a public world. Englewood Cliffs, New

Jersey: PTR Prentice Hall, c1995, 504 s. ISBN 01-306-1466-1.

[11] CERT/CC Denial of Service Attacks. CARNEGIE MELLON UNIVERSITY.

Http://www.cert.org [online]. [cit. 2012-04-10]. Available at:

http://www.cert.org/tech_tips/denial_of_service.html

[12]ADAMS, Carlisle, Steve LLOYD a Carlisle ADAMS. Understanding PKI:

concepts, standards, and deployment considerations. 2nd ed. Boston:

Addison-Wesley, 2003, 322 s. ISBN 06-723-2391-5.

[13]VIEGA, John, Matt MESSIER a Pravir CHANDRA. Network security with

OpenSSL. 1st ed. Sebastopol, CA: O'Reilly, c2002, 367 s. ISBN 05-960-

0270-X.

[14]Linux man pages [online]. [cit. 2012-04-10]. Available at:

http://linux.die.net/man/

[15]FUSE [online]. [cit. 2012-04-10]. Available at: http://fuse.sf.net

[16]How to break out of a chroot() jail. Http://www.bpfh.net [online].

12.05.2002 [cit. 2012-04-10]. Available at:

http://www.bpfh.net/simes/computing/chroot-break.html

[17]BUTENHOF, D. Programming with POSIX threads. Boston: Addison-

Wesley, 1997, 381 s. ISBN 02-016-3392-2.

[18]TANEBAUM, Andrew S., KAASHOEK, Robbert VAN RENESSE a Henri

E. BAL. The Amoeba distributed operating system: Status report [online].

Amsterdam, Netherlands, 20.03.1994 [cit. 2012-04-10]. Available at:

www.cs.vu.nl/pub/papers/amoeba/comcom91.ps.Z. Paper. Vrije Universiteit.

[19]TANENBAUM, Andrew S. Distributed operating systems. New Jersey:

Prentice-Hall, 1995, 614 s. ISBN 01-321-9908-4.

63

[20] OpenAFS [online]. [cit. 2012-04-10]. Available at: http://www.openafs.org

[21] ZAVORAL, Filip. Distribuované operační systémy. The textbook for the

course of the same name, Faculty of Mathematics and Physics.

[22]WANG, Xiaoyun a Hongbo YU. How to Break MD5 and Other Hash

Functions. [online]. 200[cit. 2012-04-10]. Available at: merlot.usc.edu/csac-

f06/papers/Wang05a.pdf

[23]Coda File System [online]. [cit. 2012-04-10]. Available at:

http://www.coda.cs.cmu.edu/

64

A Enclosed CD

	1 Introduction
	1.1 Goals
	1.2 Structure of the Thesis

	2 Security
	2.1 Basic security issues analysis
	2.2 Other security issues
	2.2.1 Local cache
	2.2.2 Data in memory
	2.2.3 Not solved attacks

	2.3 Possible trustworthy solutions
	2.3.1 Signing messages
	2.3.2 Encrypting messages
	2.3.3 Key distribution
	2.3.4 OpenSSL

	2.4 Node types
	2.4.1 Machine type node
	2.4.2 User mode connection
	2.4.2.1 Group membership

	2.6 Certificate revocation
	2.7 Implementation details
	2.7.1 Network stack
	2.7.2 User mode launching
	2.7.3 User and machine mode

	2.8 SSL utilities

	3 File sharing semantics
	3.1 NFS [2] overview
	3.2 UNIX semantics
	3.4 Immutable files [18]
	3.5 Session semantics
	3.6 Comparison of these semantics in the context of ZlomekFS
	3.7 Causality in ZlomekFS
	3.8 Solutions
	3.8.1 Reintegration/update journal
	3.8.2 Snapshots

	4 Capabilities and filehandles
	4.1 Remote capabilities
	4.2 Capability securing
	4.3 Capability ageing
	4.4 Filehandle
	4.4.1 Unique integer generator
	4.4.2 I-node numbers mapping

	5 Minor changes
	6 User manual
	7 Conclusion
	7.1 Further work

	Bibliography
	A Enclosed CD

