
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Radoslav Glinský

Visualization and Verification of Plans

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: Doc. RNDr. Roman Barták, Ph.D.

Study programme: Computer Science

Specialization: General Computer Science

Prague 2011

I would like to thank Doc. RNDr. Roman Barták, Ph.D., supervisor of the bachelor

thesis, for his professional help and friendly approach.

I would like to thank my parents for their love and trust.

I declare that I carried out this bachelor thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In …...... Date

Názov: Vizualizácia a verifikácia plánov

Autor: Radoslav Glinský

Katedra: Katedra teoretickej informatiky a matematickej logiky

Vedúci bakalárskej práce: Doc. RNDr. Roman Barták, Ph.D.

Abstrakt: Analýza plánov je dôležitou sú as ou kompletných plánovacích systémov.č ť

Aby sme umožnili užívate om ľ orientovať sa aj vo vä ších plánoch, vytvorili smeč

program, ktorý pomáha s analýzou a vizualizáciou plánov. Program sa volá VisPlan -

Interactive Visualization and Verification of Plans. VisPlan je neoddelite nouľ

sú as ouč ť bakalárskej práce, ke že prakticky implementuje jej vizualiza né aď č

verifika né riešenia. VisPlan nachádza a zobrazuje č kauzálne väzby medzi akciami,

identifikuje možné chyby v pláne (a tak overuje jeho korektnos), zvýraz uje nájdenéť ň

chyby v pláne a umož uje užívate om interaktívne modifikova plán, a teda opraviň ľ ť ť

chyby v pláne alebo ho jednoducho vylepši .ť

K úľ ovč é slová: Plánovanie, Umelá inteligencia, PDDL, Verifikácia

Title: Visualization and Verification of Plans

Author: Radoslav Glinský

Department: Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: Doc. RNDr. Roman Barták, Ph.D.

Abstract: Plan analysis is an important part of complete planning systems. In order to

make even larger plans transparent and human readable, we have developed a

program which helps users with the analysis and visualization of plans. This program

is called VisPlan - Interactive Visualization and Verification of Plans. VisPlan is an

inevitable part of this thesis as it practically implements its plan verification and

visualization solutions. VisPlan finds and displays causal relations between actions, it

identifies possible flaws in plans (and thus verifies plans’ correctness), it highlights

the flaws found in the plan and finally, it allows users to interactively modify the plan

and hence manually repair the flaws or just fine-tune the plan.

Keywords: Planning, Artificial Intelligence, PDDL, Verification

Table of Contents
Introduction...1
1. Artificial Intelligence..3

1.1. Definition of AI...3
1.2. Acting rationally approach..4

2. Planning..5
2.1. The language of planning problems..5

2.1.1. States..5
2.1.2. Operators...6
2.1.3. Planning domain..7
2.1.4. Goals..7
2.1.5. Planning problem...7

2.2. Plan..7
3. Planning Domain and Problem Representation..8

3.1. PDDL 1.2...9
3.1.1 Variables...9
3.1.2. Constants...9
3.1.3. Predicates...9
3.1.4. Actions...9
3.1.7. Planning problem...10

3.2. PDDL 2.1...10
3.2.1. Functions...11
3.2.2. Comparisons and assignments...11
3.2.3. Durative actions...11
3.2.4. Plan metrics...11

3.3. PDDL 3.0 and PDDL+..11
4. Existing software..12

4.1. itSIMPLE..12
4.1.1. Comparison to the VisPlan..13

4.2. GIPO...14
4.2.1. Comparison to the VisPlan..15

4.4. VisPlan contribution..16
5. VisPlan Functionality..17

5.1. Program Input..17
5.2. Verification..18

5.2.1. Finding action’s matching operator...19
5.2.2. Semantics of STRIPS-like plans...21
5.2.3. Verification of STRIPS-like plans...21
5.2.4. Semantics of temporal plans..22
5.2.5. Determining order of actions in temporal plans......................................24
5.2.6. Verification of temporal plans...25

5.3. Visualization..28
5.3.1. Visualization of STRIPS plans..30
5.3.2. Visualization of temporal plans...31

5.4. Plan Modifications..31
6. Working with VisPlan...33
7. VisPlan Implementation..39

7.1. External libraries used in the program..39
7.1.1. JGraph Java library..39

7.1.2. PDDL4J Java library...40
7.2. Single handling of different plan types...40
7.3. Program modularity..40

7.3.1. GUIView..40
7.3.2. Plan..41
7.3.3. State...41
7.3.4. Verificator..41
7.3.5. Visualizer...42

8. Future Development..43
Conclusion..44
Bibliography...45
List of Figures...46
List of Tables...47
List of Abbreviations...48
Attachments..49
Appendix...50

A. Concrete example of (STRIPS-like) domain file..50
B. Concrete example of (STRIPS-like) problem file...52
C. Concrete example of (temporal) domain file...53
D. Concrete example of (temporal) problem file...55

Introduction

Planning is a specific branch of artificial intelligence aim of which is, shortly

described, finding a sequence of actions leading from the initial state to a desired

goal state. In the recent years, various kinds of autonomous, unmanned robots and

machines have been developed and this trend is highly expected to accelerate in

the future. Systems with a certain amount of autonomy inevitably need a

mechanism determining their activity in order to fulfill a goal. In other words, they

need a planner. Therefore, construction of effective and scalable planning systems

is gaining importance in a fast pace.

Together with planners, plan analysis is a necessary part of complete planning

systems. With a growing complexity of plans, in terms of number of actions and

causal relations in plans, the analysis becomes more and more time consuming

process. In fact, plans with hundreds of actions are practically unreadable for

humans. Having the good tools for plan analysis, a user can easily check the

correctness of an examined plan, effectively retrieve a general overview of the

plan, find its flaws, identify possible enhancements, etc.

Though a number of available planners grows, the number of plan analysis tools

is still limited. The aim of this thesis is to fill this gap, namely to provide a

complex plan analysis solution. The thesis should propose the way how to handle

different types of plans and how to visualize them in a user-friendly way. Along

with that, the thesis should elaborate a proper plan verification with respect to

different plan types, their semantics and concrete planning domains. The thesis

should also identify already existing plan analysis tools, analyze them and provide

a novel functionality upon the comparison and, primarily, contribute to a planning

community in a positive way. Eventually, all the solutions of the thesis should be

implemented by a sofware program accompanying the thesis.

 The result of the thesis is VisPlan - Interactive Visualization and Verification of

Plans. It is a program written in Java programming language and it practically

implements its plan verification and visualization solutions. The main goal of

1

VisPlan is to make even larger plans transparent and human readable. VisPlan

parses and consecutively visualizes a plan in the way based on its type. VisPlan is

capable of verifying the plan, during which it identifies causal relations between

actions and possible flaws in the plan. Upon verification it updates the visualized

plan. The plan visualization is implemented as a mathematical graph. Actions are

illustrated as vertices, causal relations as edges in the graph. As part of the

analysis, VisPlan displays information about the actions during plan execution,

flaws possibly found in the plan are highlighted. VisPlan goes even further - it

allows users to interactively modify the plan and hence manually repair the flaws

or fine-tune the plan if they wish. Finally, as VisPlan is a graphical desktop

application, it provides a comfortable way of using the previously mentioned

functionality.

At the beginning, the thesis introduces the general aspects of artificial

intelligence. Planning as a certain subfield of artificial intelligence is discussed in

the second chapter. We focus particularly on answering which types of planning

problems the thesis deals with and how they are represented by computers. Then,

in the next chapter, we describe the history and syntax of PDDL (Planning

Domain Definition Language), a de facto standard language for planning problem

notation. All the planning problems we want to analyze by VisPlan need to be

formalised in PDDL. The fourth chapter compares functionality of VisPlan to

other available plan analysis tools, namely itSimple and GIPO. Especially the

differences between VisPlan and each of them are accented. The fifth chapter

discusses visualization and verifications solutions of the thesis, each respectively

to the type of the plan. It describes semantics, used algorithms and, if there had

been a multiple choice in the way of implementation, gives reasons why the

chosen one has been selected. The last two chapters get closer to the program

usage from user perspective and, finally, describe some implementation details.

The program is under continuous development and all the relevant information

plus the up-to-date version of the software can be downloaded from:

http://glinsky.org/visplan

2

1. Artificial Intelligence

Nowadays, we live in the world full of various technological advantages

compared to our ancestors, such as planes, televison, phones, tractors and we may

continue. They all help to make our everyday lives better. The impossible has

come true, the unbelievable has come obvious and many difficulties have just

dissappeared; in the fields of transportation, communication, entertainment,

careers, living standard and so on.

The most of our today’s technical appliances is, however, very simple in the

means of determination. Generally, on the exact inputs they behave in

deterministic way, they don’t think and do accept only a predefined set of inputs.

In the real world, however, where a single event is influenced by many, initially

unknown factors, where possible inputs cannot be accurately described, the needs

go even further. These are the cases where the artificial intelligence (AI) succeeds.

Nowadays, AI is still a new science, as the first mentionings come from the late

fifties of the twentieth century. The goal of AI is to create and understand

intelligent systems. This involves intelligent behavior, learning, adaptation to

unknown environments, solving unpredictable situations.

Achievements of the AI are used in many disciplines. Recognition of human

speech, computer opponents replacing human ones when playing games, robotic

vacuum cleaner’s planning its movement, email spam automatic filtering based on

the user previous labeling, are only the very few examples. AI is really a universal

field.

1.1. Definition of AI

There is not a unique definition of artificial intelligence. However, the most of

the definitions use two approaches. The one approach is a thought process, so that

artificially intelligent system think, whereas the other one is more interested in

behavior of such system. The definitions, in addition, are not consistent when

defining what really means intelligence. Is the intelligent system simulating the

human behavior? Or does it always try to be rational (meaning to always choose

3

the best possible option, which is, certainly, not always the human case). Having

considered the previous approaches, Table 1 summarizes definitions of

(artificially) intelligent systems (Russel and Norvig, 2003):

Human performance Rationality

Thought processes Systems that think like humans Systems that think rationally

Behavior Systems that act like humans Systems that act rationally

Table 1: Various definitions of AI based on different approaches

1.2. Acting rationally approach

From all the approaches to AI which has developed so far, an approach we will

adhere to in this thesis is developing systems that act rationally. In such systems

there’s always someone (or something) who performs the actions. We will call

him the agent1. Furthermore, such agent performs only the rational actions. That

means that he/it maximalizes the possible gain/outcome by always choosing the

proper actions.

The approach we have chosen (systems with a rational agent) has some very

important advantage which is the fact that the rational behavior can be clearly

specified in majority of cases. Human behavior, in contrast, sometimes cannot be

be specified at all (people vary a lot from one another plus the same man may act

differently in the same situation, according to his/her mood, etc.). The mentioned

advantage is crucial when the problem to solve needs to be represented

mathematically. Once mathematically represented, computer engineering then

provides mechanism (lots of memory and speed) in order to solve the problem

effectively.

1 agent comes from the Latin agere, to do

4

2. Planning

Planning is a certain part of artificial intelligence science. Assumed we are

given an initial state of the “world”, it could be shortly described as a process of

decision making to find out a sequence of actions needed to accomplish given

goal. The result of planning process is a plan - an ordered sequence of actions.

Actions of the plan consecutively modify the state of the “world”. After

application of the entire action sequence - the plan - the final world state desirably

meets the goal - a set of certain facts that should apply in the final state.

2.1. The language of planning problems

In order to represent the real world planning in an artificial world, it is common

to simplify the model. The thesis will therefore consider only classical planning

model. This model ensures that the world is deterministic, finite, fully observable

(we have full information about the world) and static (there are no actions in the

world other than the agent’s). If the model is discrete at the same time (discrete in

time and actions’ applications) we talk about STRIPS2-like planning. Otherwise

we consider temporal planning (actions have duration, preconditions and effects

specified arbitrarily within action’s application, ...). The thesis handles both

STRIPS-like and temporal plan types. This is demonstrated by VisPlan - the

software implementation of the thesis.

The language of representation of planning domains and problems should be

expressive enough in order to be able to describe many different kinds of planning

problems. At the same time it should be somehow delimited so that planners can

be designed for solving the general planning problems and be effective, too.

2.1.1. States

Any state of the world will be represented as a conjunction of literals. We will

assume the “closed” world what means that if a literal is not explicitly stated in the

world state it means that it does not hold in the state. As the consequence of this

assumption, any state includes only positive literals. In addition, literals must be

2 STRIPS is an abbreviation of STanford Research Institute Problem Solver

5

ground (no variables allowed) and function-free. The following example may

represent a state in the “monkey” world:

monkey(monkey1) ∧ monkey(monkey2) ∧ place(place1) ∧
place(place2) ∧ place(place3) ∧ eatable(banana1) ∧
at(monkey1,place3) ∧ at(monkey2,place1) ∧
at(banana1,place3) ∧ happy(monkey2)

More formally3, let L (language) be a finite set of possible literals:

L = {p1, …, pn}

Then state s is a subset of L containing literals which hold:

p ∈ s ⇒ literal p holds in s

p ∉ s ⇒ literal p does not hold in s

2.1.2. Operators

An operator is an action schema. It means that an action is created (we say

instantiated) from an operator when all variables of the operator are substituted

with concrete arguments (we say grounded). Each operator specifies its

preconditions and effects. For example, an operator for eating a banana in the

“monkey” world could look like this:

Action(eat(m,b,p),

Precond: monkey(m) ∧ eatable(b) ∧ place(p) ∧

at(m,p) ∧ at(b,p)

Effect: ¬at(b,p) ∧ happy(m)

More formally, let A be a set of possible actions, then:

a ∈ A

a=(precond-(a),precond+(a),effects-(a),effects+(a))

precond-(a),precond+(a),effects-(a),effects+(a) ⊆ L

precond-(a) ∩ precond+(a) = ∅

effects-(a) ∩ effects+(a) = ∅

Action a is applicable at state s if:

∀ p ∈ precond+(a) ⇒ p ∈ s

∀ p ∈ precond-(a) ⇒ p ∉ s

3 Planning problem language formalism in this section has been inspired by:
(http://kti.mff.cuni.cz/~bartak/planovani/index.html, 2011)

6

2.1.3. Planning domain

Planning domain Σ over language L is a trio (S,A,γ), such that:

S ⊆ P(L), S is a set of possible world states

Transitional function γ describes how the resulting world state looks like
after application of the given action to a specific world state:

γ(s,a)=(s – effects-(a)) ∪ effects+(a), if a is applicable at s

2.1.4. Goals

A goal g is a partially specified desired world state in the planning problem:

g ⊆ L

Sg = {s ∈ S | g ⊆ s} is set of fully specified goal states

For example, the state given as example in the previous “States” section satisfies

the partially specified goal at(monkey2,place1) ∧ happy(monkey2).

2.1.5. Planning problem

Planning problem P is a trio (Σ,s0,g), such that:

Σ = (S,A,γ) is a planning domain over language L

s0 is an initial world state, s0 ∈ S

g ∈ Sg

2.2. Plan

Plan π is a sequence of actions 〈a1,a2,…,ak〉

k = |π| is the length of the plan

We define world state induced by plan using transitional function γ:

• k = 0:

γ(s,π) = s

• k > 0 and a1 is applicable at s

γ(s,π) = γ(γ(s,a1), 〈a2,…,ak〉)

• not defined otherwise

Plan π is the solution for planning problem P if and only if:

g ⊆ γ(s0,π)

7

3. Planning Domain and Problem Representation

For a long time there had been no standard language for representation of

planning problems. Actually, this had a negative influence on the whole field of

planning, as engineers, developers and enthusiasts from all around the world had

no common means of communication among themselves.

Finally, in 1998, Drew McDermott and others created a language called PDDL -

the Planning Domain Definition Language. At the time of its creation, the main

motivation was to unify requirements and input format for planners taking part in

the planning competition IPC (International planning competition). The

competition was a success (it has been organized regularly since then) and it was

right the PDDL what laid the fundamentals for it.

Since the PDDL has been introduced, it has been gaining popularity and, in fact,

it has become a standard language for representing the planning problems. Many

new features has been added to the PDDL during the last years in order to enlarge

set of possible planning domains it can describe. And, in opposite direction, what

PDDL can describe is now being treated as the standard and therefore has an

impact on the whole planning community.

The language has changed a lot since it was initially introduced in 1998 and is

still under development. Throughout the history, several major enhancements in

the PDDL syntax has been featured, each of which usually induced a new version.

As the environment presented in this thesis has a close connection to the PDDL

(VisPlan parses PDDL files as its input), a brief description of the most important

syntactic elements will be provided in the following sections with respect to the

version in which they were introduced.

Planning tasks specified in PDDL are separated into two files:

1. A domain file for predicates and actions

For concrete example of domain file see Appendix A (STRIPS-like domain)

and Appendix C (temporal domain).

2. A problem file for objects, initial states and goal specifications.

For concrete example of problem file see Appendix B (STRIPS-like domain)

8

and Appendix D (temporal domain).

3.1. PDDL 1.2

PDDL 1.2 (Ghallab et al., 1998) is an original version and was used for the first

IPC competition. It has introduced the basic concepts of the language. The

language has a LISP-like syntax. A set of features used in the PDDL file is listed

at the beginning of the file, after the :requirements keyword, for example:

(:requirements :typing :durative-actions)

A domain is structured into components by keywords, such as :predicates

or :actions. We will provide a brief explanation of these components in the

next paragraphs. We focus mainly on the components which can be hanled by

VisPlan program. Appendix A and B provide samples for most of the discussed

elements.

3.1.1 Variables

Variables in the PDDL have the same meaning as in any other language. They

are present in the parameters of actions4, as well as in other functions. They start

with a question mark (?variable).

3.1.2. Constants

Constants in the PDDL can be used at the same places as variables, however,

with a big difference that they cannot be substituted.

3.1.3. Predicates

Conjunction of predicates represent a state of the world. They carry information

about the objects in the world and relations between them, too. A simple example

of the predicate might look like: (smaller ?x ?y). In addition, predicates are

used in PDDL’s actions as preconditions and effects.

3.1.4. Actions

Actions are the means how the world state is changed. Concrete PDDL action

definition will be demonstrated on the following example. The action comes from

the blocks world planning domain:

4 Actions in PDDL domain file can be treated as operators explained earlier. They are not the
actual actions, but rather represent an action schema.

9

(:action putdown

:parameters (?block)

:precondition (and (holding ?block))

:effect (and (clear ?block) (arm-empty) (on-table ?
block) (not (holding ?block))))5

Actions must specify the following:

• name: putdown

• parameters: (?block)

• preconditions: (and (holding ?block))

• effects: (and (clear ?block) (arm-empty)

 (not (holding ?block)) (on-table ?block))

3.1.7. Planning problem

Planning domain is usually defined in a separate file. This enables us to have

many different planning problems sharing a single planning domain.

In the PDDL problem file we include a list of objects present in the world (typed

or without types):

(:objects rod1 rod2 rod3 d1 d2 d3)

The initial situation is declared as the list of predicates which hold at the initial

world state. Predicates not listed explicitly do not hold at the initial state6.

(:init (smaller rod1 d1) (smaller rod1 d2) ... (clear
rod2) (clear rod3) (clear d1) (on d3 rod1) (on d1 d2))

An example of a goal might look like the following. Listed predicates must be

grounded:

(:goal (and (on d3 rod3) (on d2 d3) (on d1 d2)))

3.2. PDDL 2.1

PDDL 2.1 (Fox and Long., 2003) is based on PDDL 1.2. It only adds some new

fetures supporting temporal planning. Numeric state variables has been

introduced, as well as durative actions which enable concurrency. See Appendix C

and D for examples and overall reference.

5 The blocks world is one of the most famous planning domains. This domain consists of a set of
cube-shaped blocks sitting on a table or on other blocks. A robot arm then picks up blocks and
moves them to different positions in order to build desired stacks of blocks.

6 Closed world assumption.

10

3.2.1. Functions

Functions in the PDDL present a way how to assign a numerical value to a set of

arguments, for example the following defines a numeric function drive-time

with 2 parameters from and to of location type:

(:functions (drive-time ?from ?to - location))

Compound expressions created from simple functions (like the example above)

and arithmetic operators were introduced as well.

3.2.2. Comparisons and assignments

Comparisons are used among preconditions of the actions. After they

numerically evaluate both of their sides they decide whether the condition is

satisfied.

Moreover, assignments using operators such as assign, increase and decrease are

also possible. The value for the assignment should be stated in the problem file

using the following construct: (= (drive-time loc3 loc1) 7.1).

3.2.3. Durative actions

Durative actions bring concurrency to the plans. In the planning domain a new

definition for the actions’ duration must be stated:

:duration (= ?duration (drive-time ?from ?to))

Conditions and effects of durative actions can be examined at start, at end or over

all of the action’s interval. See Appendix C for example.

3.2.4. Plan metrics

Plan metrics determine how should a planner choose actions in the plan in order

to maximize/minimize a plan cost based on the metrics criteria. In the PDDL this

can be specified using the following language:

(:metric minimize (total-time))

3.3. PDDL 3.0 and PDDL+

Features of PDDL 3.0 and PDDL+ are not covered by VisPlan so we will only

mention a few. In PDDL 3.0 (Gerevini and Long, 2005) declarations about plan

quality and plan trajectories have appeared (the states a plan have to go through).

Real-time systems and probabilistic planning featured in PDDL+.

11

4. Existing software

Though the number of planners rapidly grows, the number of available tools for

user interaction with planners is still limited. However, there are several publicly

available programs dealing with such issues and provide graphical user interface

supporting the planning process. The most well-known are shortly described in the

next paragprahs. For each described tool the comparison to VisPlan is stated as

well in order to emphasise the contribution of VisPlan to the planning community.

4.1. itSIMPLE7

Integrated Tools Software Interface for Modeling PLanning
Environments (Vaquero et al., 2010)

itSIMPLE is an open source project implemented in Java, available under the

GNU General Public License version 3. The tool has been designed to give

support to users during the construction of a planning domain application mainly

in the initial stages of the design life cycle. These initial stages encompass

processes such as domain specification, modeling, analysis, model testing and

maintenance. It provides a user-friendly GUI for modeling and analyzing many

planning domains at the same time. Specified domain and problem are nicely

visualized to users. For these purposes, a special use of UML (Unified Modeling

Language) has been developed

XML (eXtended Markup Language) is used as an intermediate language that

can support automatic translation from UML to other representations as well, such

as PDDL or Petri Nets.

A model can be generated into PDDL language. PDDL representation gives

users an opportunity to test their models with several general planners (such as

Metric-FF, FF, SGPlan, MIPS-xxl, LPG-td, LPG, hspsp, SATPlan, Plan-A,

blackbox, LPRPG, Marvin). These planners are bundled within the software and

using them is rather straightforward. Moreover, plans can be specified manually

by users, too.

7 The software has been downloaded and more information retrieved from:
(http://dlab.poli.usp.br/twiki/bin/view/ItSIMPLE/OverView, 2011)

12

Once a domain and problem are modeled, itSimple also gives an interface for

plan analysis and management (Figure 1). It is possible to observe the behavior of

the model during the simulation of plans (given by users or by planners). This is

done by using sequence of snapshots of the plan. The interface visualizes relations

(predicates) between objects which are true before and after each action is

performed. As illustrated in Figure 1, objects are assigned a graphical appearance,

relations between objects are shown as arrows and those which are being changed

by current plan action are highlighted.

itSimple provides variable observation in charts as well. Each attribute of an

object can be continuously tracked in a well-arranged chart.

4.1.1. Comparison to the VisPlan

Compared to the VisPlan, following functionality is not covered by itSIMPLE:

• PDDL domain and problem files are not accepted as an input

• there is no verification of a plan (if the given plan is not valid, missing

preconditions are not reported, nor any flaws are recognized)

• causal relations of actions are not shown

• preconditions of actions are not shown

itSimple is an effective tool for modeling planning domains. However, it does

13

Figure 1: Plan Analysis in itSimple program using Movie Maker.

assume that given plans are 100% valid. Regarding to plan visualization, the tool

shows a sequence of world states (facts that apply in each state). It does not

recognize causal relations8 of actions, nor gives a compact overview of actions’

preconditions and effects.

4.2. GIPO9

Graphical Interface for Planning with Objects (Simpson et al., 2007)

GIPO allows a user to create new domain models or import and change old

ones. Recognized domains are either classical or hierarchical or requiring durative

actions.

GIPO program provides:

• Modeling object types, predicates, operators, tasks (init and goal states)

using graphical tools. Models are represented in the OCL (Object Centered

Language) language. As the language name suggests, GIPO models

planning domains from an object’s perspective, which is describing how

8 Causal relation is a relation between two actions where one or more effects of one action are
consequently used as preconditions for the other action.

9 The software has been downloaded and more information retrieved from:
(http://scom.hud.ac.uk/planform/gipo, 2011)

14

Figure 2: Plan Analysis in GIPO program using Stepper.

actions can change a state of the object.

• Validation of domain specification.

• Stepper (see Figure 2) - an interface enabling manual planning. Meaning

the user has to choose and instantiate an operator. The Stepper shows

objects present in the planning problem. If a particular object is clicked a

window appears describing which predicates apply for this object at the

given state. When the user chooses an action and if all necessary

preconditions are met, the resulting state (after execution of the chosen

action) will be generated. The changed objects then appear in a different

color and have different sets of predicates applying at that state.

• A hierarchical planner HyHtn bundled within the program.

• Plan animator (not for durative actions): similar to the Stepper. The

difference is that the actions are taken as the output of an integrated

planner.

• Tools for exporting/importing PDDL models.

4.2.1. Comparison to the VisPlan

Compared to the VisPlan, following functionality is not covered by GIPO:

• overall world state at a specific plan execution time cannot be retrieved

• causal relations of actions are not shown

• the visualized objects cannot be moved

• actions in the plan cannot be modified/created/deleted

• durative actions not supported

GIPO software is mainly used for creating/updating planning domains. In

contrast to the thesis, the visualization is very low level and doesn’t tell much

about the plan. As illustrated in Figure 2, the Stepper shows layers of (always the

same) objects. This approach is not acceptable if the number of objects is higher

(e.g. more than twenty). In order to show the state of the concrete object (meaning

all the predicates that apply to the object at given layer), the object needs to be

double-clicked and a new window carrying this information pops-up. Therefore,

the progress of object’s state cannot be retrieved easily, as multiple pop-up

15

windows (each carrying the state for the same object but different layer) may look

disorganized. In addition, the necessity to open and close all windows is rather

unhandy.

4.4. VisPlan contribution

Previously mentioned tools, itSimple and GIPO, are both effective tools for

modelling and updating planning domains. However, their plan analysis lacks

some handy features such as:

• recognizing causal relations of actions

• compact overview of actions’ preconditions and effects

• support for plans with flaws

• information about world state at a specific plan step

• a user friendly interface to modify, insert, and delete actions in a plan and

to re-verify the plan in real-time

VisPlan focuses on all above features.

16

5. VisPlan Functionality

Shortly described, VisPlan is a graphical application (Figure 3) written in Java

with the ultimate goal to visualize any plan, to find and highlight possible flaws,

and to allow the user to repair these flaws by manual plan modification.

5.1. Program Input

VisPlan works with three types of files that the user should specify as program

input:

• planning domain file in PDDL

• planning problem file in PDDL

• plan file specified in text format

VisPlan supports STRIPS-like plans and temporal plans. The program

recognizes the plan type (strips/temporal) automatically and verifies and

17

Figure 3: Graphical user interface of VisPlan.

visualizes it based on its type. The plan type is determined by the planning domain

– durative actions indicate a temporal plan, actions with no duration indicate a

STRIPS-like plan. The following PDDL requirements are currently supported in

the program: strips, typing, negative-preconditions, equality, durative-actions.

Planning domain and problem need to be syntactically correct and mutually

consistent (separately parsed planning domain and problem files can be linked

with each other). Otherwise, visualization and verification is not performed and

errors from the PDDL parser are displayed. Sometimes, PDDL parser encounters

errors and issues which are not critical. In these cases, warning and non-critical

error messages are displayed and the program continues. Recognized plan actions

are given in the following format:

start_time: (action_name param1 param2 …) [duration]

In the plan file each action is supposed to be on a separate line. The parser

recognizes the lines and creates actions given only in the above mentioned format.

Other lines are ignored. Eventually, a modified plan can be saved either to the

original file or to a new text file.

5.2. Verification

Plan verification is automatically executed after the plan is initially loaded and

then after each user interaction modifying the plan. The verification process is

based on simulation of plan execution and the main idea is to incrementally

construct “layers” of facts. Each fact layer is determined by a corresponding set of

facts and an action due to which the layer has been created.

At the beginning of the verification, all possible facts (grounded predicates) are

instantiated. This domain-specific data remains fixed and is computed only once

at the beginning; re-verifications do not change the data. This attitude permits us

not to manipulate with the facts during the whole verification process, but to work

only with the indexes to the array of grounded facts. Because of that, operations

like checking if an action is applicable, application of action’s effects, finding

missing conditions, etc. are just logical bit-sets operations (where one bit-set has

its bits set to true at indexes corresponding to the selected grounded facts). Such

operations are very fast.

18

Unlike facts, only actions present in the plan are grounded (meaning related to

an operator with grounded conditions and effects). The operator is found based on

matching the planning-domain operator and concrete parameters of the action. As

mentioned in the previous paragraph, conditions and effects of the grounded

operator are represented by bit sets (pointing to the fix array of grounded facts).

The verification process makes sure it has a matching operator available for each

examined plan action (otherwise, for instance when a user adds a new action, the

verification process additionally finds and stores the operator). Actions, which do

not comply with any operator definition, are marked as invalid and omitted from

the verification. Nevertheless, such actions are still displayed (but distinguished

from others by a different colour and marked as invalid).

There are two special “actions” artificially added into the plan. They are called

“init” and “goal” and their aim is to represent the initial state and the goal. A

classical plan-space approach is used to define these actions. The init action has

empty preconditions and the facts that apply at the initial state are considered as

its effects. The goal action has empty effects and the set of facts that need to be

satisfied at the final world state are considered as its preconditions. By treating the

initial state and the goal as regular plan actions we are able to recognise causal

relations also at the margins of the plan without any further work. This way we

easily find dependencies on the initial state and, eventually, marking the “goal”

action as non-applicable means that the goal conditions are not satisfied.

5.2.1. Finding action’s matching operator

In order to find a matching operator for an action we have to go through the

planning-domain operator expressions and find an operator which:

• matches action’s name

• matches the number of action’s parameters

• each action’s parameter belongs to a (typed) domain of respective

operator’s variable, where the domain is a set of concrete objects in the

planning problem such that object’s type is equal to the variable’s type (or

variable’s deduced type)

19

Upon correspondence, every couple (variable, parameter) is bound and added

into a “substitution” object. This substitution is consequently applied on the

operator’s conditions and effects, thus ensuring they are grounded since then.

Afterwards, the algorithm separately converts the grounded conditions’ and

effects’ compound expressions into a set of trivial expressions (for STRIPS-like

actions each such expression is either a literal or, for durative actions, a timed

expression including just one literal).

In the final step, an operator is created based on the trivial expression set from

the previous step. For STRIPS-like actions the following bit-sets are instantiated:

positive preconditions, negative preconditions, positive effects, and negative

effects. If the literal from the literal set is an atomic formula, the index of atomic

formula (which is, indeed, a grounded fact, one of the facts in the initially created

array of facts) is added to positive preconditions/effects bit-set. On the other hand,

if the literal is a “not (atomic formula)”, the index of atomic formula is added to

negative preconditions/effects bit-set.

For durative actions the literal is obtained from a timed expression (one of the

following: “at start (literal)”, “over all (literal)”, “at end (literal)”). And, similarly,

index of literal’s atomic formula is added to one of the following sets: at start

conditions, over all conditions, at end conditions, at start effects, at end effects

(each positive or negative depending on the literal).

Artificial operators for special “init” and “goal” actions are constructed as well.

Conditions for the “goal” operator are obtained in the same way as conditions for

any regular plan action with an exception that the goal expression is separately

taken from the parsed PDDL problem file. In contrast to the “goal” operator, for

the “init” operator there is already a predefined and grounded set of facts (atomic

formulas) from the separately taken init expression. These facts (represented as a

bit-set) are then assigned to the “init” operator’s effects. In addition to grounded

facts, the init PDDL expression may contain equality comparison functions, for

instance:

(= (drive-time l1 l2) 4.3)

Function name plus its arguments (the first argument of the above equality

20

comparison function) is assigned a numerical value representing time duration

(the second argument of the above equality comparison function). Couple

(duration function, duration value) is stored and used when creating an operator

matching the durative action. At this time, the duration of action is obtained from

the parsed PDDL domain file, grounded (by the same substitution as action’s

conditions and effects) and searched within previously stored duration functions.

Duration value of the found function is assigned to the matching operator of the

currently manipulated action.

5.2.2. Semantics of STRIPS-like plans

In contrast to temporal plans, semantics of STRIPS-like plans is really

straightforward. The order of actions is exactly specified by the sequential plan. In

fact, this order is clearly determined by the order of actions in a file accepted as an

input to VisPlan (from top to the bottom). Internally, the order is maintained in a

linked list. Since we sometimes need to iterate over the actions in a descending

(opposite) order a double-linked list is used, thus enabling descending iterations

and access to the last action naturally.

Providing the sequence of actions in STRIPS-like plans, all the preconditions’

checks and possible world state changes occur instantaneously, at the points when

actions are consecutively handled. Preconditions of an action (or, eventually, the

goal conditions) are checked against the current world state, meaning the state at

the point when the action is being examined. This is right the state induced by the

effects of the last applied preceding action.

5.2.3. Verification of STRIPS-like plans

Verification is realised via simulation of plan execution. Firstly, we construct an

empty layer of facts. After that, we consecutively try to apply a single action (in

the order given by the sequential plan) to the current world state represented by

the last fact layer. If the action is applicable, the action is applied and a new world

state is computed based on the effects of the action. If the action is not applicable,

its effects are not encountered and the verification starts processing the next action

in the plan. For instance, after the first “init” action is successfully applied, we

21

have constructed the initial world state as defined in the planning problem. An

action is applicable to a given fact layer if and only if the layer contains all action’s

positive preconditions and simultaneously excludes all negative preconditions. If

the action is applicable, a new fact layer is created. The new set of facts is

computed based on the previous fact layer extended by the facts from action’s

positive effects and excluding action’s negative effects.

Fact layer against which an action under examination is trying to be applied is

remembered. If applicable, the fact layer which the action has created is stored as

well. For STRIPS-like plans the first and the second fact layer are next to each

other. In temporal plans, a difference between these two layers can vary a lot, as

there can be arbitrary number of other actions’ starts and ends between them (each

start and end of durative action possibly creates a new layer). Such stored

information will be used when finding how the world changes by applying the

action (the actual set of facts prior and after the action).

Missing preconditions of the action (if any) and causal relations to previous

actions in the plan are also computed for each action during its verification. In the

visualization, an action is applicable if and only if its set of missing preconditions

is empty. If a precondition of the action is not missing, we find the last fact layer

from which the precondition fact is included (on the other hand, for negative

precondition we find the last fact layer from which the precondition fact is

excluded). The precondition then depends on the action assigned to that fact layer.

After each modification the plan is immediately re-verified.

5.2.4. Semantics of temporal plans

Based on the PDDL 2.1 specification introducing durative actions (Fox and

Long, 2003), this section summarizes several aspects of temporal plans’ semantics

respectively to the extent of the thesis. A single durative action, besides “at start”

conditions (equivalent to strips preconditions), defines “over all” conditions

(invariant over a duration of the action) and “at end” conditions (needed to hold at

the point at which the final effects of the action are asserted). Therefore, a durative

action needs to be checked multiple times whether it is applicable or not. Invariant

conditions are required to hold over an interval that is open at both ends (starting

22

and ending at the end points of the action). If one wants to specify that a fact p

holds in the closed interval over the duration of a durative action, then three

conditions are required: (at start p), (over all p) and (at end p).

Similarly, from an effect’s annotation it is clear when the effect should apply,

whether at the start of the interval or at the end of the interval. Effects can be

applied only at these two end points of the durative action. This gives us

aguideline how the temporal plans can be treated as point-based.

In order to handle concurrent actions we need to de ne the situations in whichfi

the effects of those actions are consistent with one another. The mutex10 rule

applies here. The rule makes sure there is no way of effects’ conflict. An effect

cannot be both asserted and negated by different actions at the same time.

Considering the following example (Fox and Long, 2003):

(:action a

:precondition (or p q)

:effect (r))

(:action b

:precondition (p)

:effect (and (not p) (s)))

We might suppose that both actions can be executed simultaneously in a state in

which both p and q hold. However, in such a case it would be necessary to check

application of actions in all possible orderings. In order to avoid such complexity

and define the semantics clearly, we will adhere to the rule of no moving targets.

The rule means that there ano no two actions from which one action is using a

value and the other one is changing the same value at exactly the same time . The

no moving targets rule makes the cost of determining whether a given set of

actions can be applied concurrently polynomial in the size of the set of actions and

their conditions and effects.

Temporal plan with durative actions is valid only if both ends of every action are

present in the plan. It is also supposed that precise simultaneity, in terms of

ensuring that two independent actions are executed simultaneously, cannot be

expected. Arbitrarily accurate time control cannot be expected, as well.

10 mutex stands for mutual exclusion, the basic concept from a well-known GraphPlan algorithm

23

5.2.5. Determining order of actions in temporal plans

In comparison to STRIPS-like plans, temporal plans do not determine order of

their actions exactly. Each action in temporal plan can be assigned any start time

and any duration. During the execution interval of one action, another actions may

possibly start or end without any restrictions.

The way we transform the interval-based plan into a point-based plan involves

creating actions to represent the end points of the actions’ intervals. The only

complication is that invariants must be checked during the corresponding interval.

This is achieved by checking the invariants after each of the updating actions.

As already mentioned, verification algorithm for temporal plans transforms

durative action into couples representing the end points of the corresponding

interval. VisPlan’s implementation is the following: each action internally clones /

duplicates itself. Then, the original action is marked as “start” action, whereas the

duplicated action is marked as “end” action. Having the same step repeated for all

the actions, we end up with doubled set of actions (of two types). Such a set is

used for the verification purposes solely. Next, the just created set of actions is

sorted so that the verification manipulates the actions in the correct order. Sorting

algorithm uses a comparator, which is a function deciding which of the two

actions, given as parameters, should be earlier and which should be latter in the

verification queue.

At the beginning, the comparator finds corresponding times for both given

actions. Corresponding time for the “start” action is its start time. Corresponding

time for the “end” action is its start time plus duration. The two retrieved times are

compared (once the return statement is reached the comparison doesn’t continue):

1. The two times differ:

a) if the first time is less than the second time, the first action is returned as

earlier

b) if the first time is greater than the second time, the first action is returned

as latter

2. The two times are equal:

a) if one of the actions is a duplicate of the other action (if, theoretically, the

24

action has no duration), the “start” action is returned as earlier

b) if one of the actions is marked as the “start” action and the other one is

marked as the “end”, the “end” action is returned as earlier; thus an “in

progress” action (meaning the original durative action) is finished before

a new one is processed

c) both actions of the same type (both are the “start” actions or both are the

“end” actions

i. an action assigned a shorter duration is returned as earlier one

ii. an action returned as earlier is the one name of which (with

parameters) is sorted earlier in an alphabetical order

iii. if even the previous case had not arbitrated the result, the actions are

completely the same, in fact, and therefore the comparison treats both

actions being equal with each other

Due to the fact that the order of durative actions in the input plan file has not been
standardized, the plan file order is not taken into consideration at all.

5.2.6. Verification of temporal plans

Verification of temporal plans is similar to STRIPS plans’ verification regarding

the plan execution simulation and fact layers’ construction. In a general case,

however, one durative action can create more than one fact layer, when both “at

start” effects and “at end” effects are encountered.

Prior the verification, at the time the algorithm is creating operators matching to

actions, each durative action is checked to have the duration complying with the

duration specified for the operator in the planning-domain. In case the two

durations vary, a user is prompted (in a new question message dialog) to accept or

deny modification of action’s duration to the one specified in the planning

domain. Once a user has denied action’s duration modification, he/she is never

prompted again for the same action. When many actions from the plan under

examination have similar conflict, the user is given a possibility to accept/deny

modifications for all actions. Nevertheless, this doesn’t affect new actions

eventually added to the plan.

The verification manipulates actions in the sorted order as described in the

25

previous section. As it has been already explained, every action is examined twice.

A decision whether the action is being procesed for either the first time or for the

second time is determined by the mark of the action (either “start” or “end” mark).

At the first examination of an action, at its start time, “at start” conditions are

checked against the current fact layer. If the action is applicable it is applied

(taking its “at start” effects into consideration), resulting in creation of a new fact

layer. In addition, the action is remembered to be “in progress” internal state. At

the second examination of an action, at action’s end time (start plus duration time

), the action finds out whether it has been applied at its start. If so, “at end”

conditions are checked and, if satisfied, the action is applied (considering its “at

end” effects). The action is removed from “in progress” actions at this phase.

As we have discussed in the temporal plans’ semantics section, when applying

actions consecutively after each other we should take special care to ensure:

• effects applied by any two actions at the exactly same time must be mutex-

free

• effects of an action cannot be used at the exactly same time as conditions

for other actions

Considering these very conservative requirements, VisPlan performs the following

checks:

• it checks whether any condition of the action under examination has

already been asserted by the previously processed actions at the same time

• it checks whether any effect of the action has already been used as a

condition for the previously processed action at the same time

• it checks whether effects of the action are mutex-free with respect to

possibly asserted effects of the previously processed actions at the same

time

If any of the checks answers positively we’ve encountered a mutex. The action is

remembered to be the mutex-containing and cannot be applied. Afterwards, when

visualizing, the action is treated in different way compared to the rest of the

actions. Naturally, a question, why the action has been marked as mutex-

containing but not the one which had induced the mutex, arises. VisPlan behaves

26

uniquely regarding the plans’ manipulation since it continues with verification

even if any invalid or non-applicable action is found. Such an action is just

omitted. This is the key feature of VisPlan and marking action mutex-containing

stands within this idea. In fact, VisPlan provides no guarantee for a plan being

valid unless it contains exclusively applicable actions (and satisfies a goal

conditions). Still, the user is given possibility to manually adjust the plan when

situation like this comes up.

When processing an action during the verification either at its start time or its

end time, besides checking its own conditions, the algorithm checks also “in

progress” actions (those which have already started but haven’t finished yet) to

verify their “over all” conditions. Such verification is performed only when the

inducing action is applied (either at its start time or end time).

In case an action’s “at start” effects have been applied at action’s start time and

it has later been found that any of action’s “over all” and “at end” conditions are

not satisfied, the verification process is reverted back to the point when the

affected action was applied at its start time, the action is omitted then and marked

as non-applicable.

Similarly to STRIPS plans’ verification, possibly missing conditions for an

action are found while processing the action. However, for durative actions we

store three different types of missing conditions: “at start”, “over all” and “at end”

missing conditions sets. Thus, in a future plan analysis, missing conditions are

already available without need to be computed.

27

5.3. Visualization

As shown in the right-upper frame of Figure 3, plan’s actions are visualized as

cells (boxes) of fixed size filled by the action name. Each action is coloured green

or red (or any other colour chosen in the user preferences of the application)

depending on whether the action is applicable or non-applicable. Besides

applicable and non-applicable action states there exist several more action states;

for each state VisPlan uses different visualization properties (color, available

information, ...). Causal relations between the actions are visualized by edges.

These edges are annotated by grounded facts that are “passed” between the

actions. Only the causal relations for the currently highlighted action are displayed

to remove a cluttered view. Display position of the edges is automatically adjusted

every time an action is highlighted in order to assure that the edges do not overlap

and their labels (describing the causal relations) are fully readable. The edge

position adjustment is vertical (with fixed space size between edges), as well as

horizontal (source and target points of edges on the same cell have regular space

between themselves).

If the process of verification is still going on, actions whose state has not been

decided yet are coloured gray (or any other colour chosen by the user). The state

of an action can be one of the following:

• invalid (action doesn’t match any definition in the planning domain file),

• un-decided (action is still being checked by the verification module),

• applicable (action is valid and can be used),

• non-applicable (action cannot be used due to non-satisfied preconditions),

28

Figure 4: Example of information about world-state change.

• mutex-containing (in temporal plans only; any condition or effect is in

mutex with the effect of another action in the plan at exactly given time).

Two special actions, “init” and “goal” are coloured differently to distinguish their

special meaning. These are the only two actions which cannot be modified in any

way.

For the highlighted action, the system displays complete information about the

action including the satisfied and violated preconditions and actions giving these

preconditions (the right-bottom frame of Figure 3), as well as world change caused

by the action (Figure 4). World change illustrates which facts are true prior the

action and which after the action. Naturally, world state information is not

available for non-applicable, un-decided, invalid or mutex-containing actions.

Facts that were subject of change (either added or deleted) are marked (by colour

and/or by strike through their names).

On the left side of the window a list of actions is shown to provide a brief plan

summary (the left frame of Figure 3). Actions in the list are sorted by their

order/start time and are visually differentiated based on their states. The list gets

updated every-time a modification is done to the plan. Selecting an action in the

list results in adjusting the scrollbar view to comprise the visualized action in the

graph and vice versa. If the user needs more space for graphical plan analysis

he/she is free to hide the action summary list completely (as well as informative

tab pane at the bottom of the application).

During a plan analysis, the ruler (Figure 3) helps to orientate within a time axis.

Its default size of units is one inch (without dependence on user’s screen

resolution). Size of units can be adjusted by the combo box (upper-right frame of

Figure 3) or by dragging any tick of the ruler.

While dragging an action (to change its position), actions providing

preconditions and actions using effects of the dragged action are dynamically

highlighted, so that the user knows where he/she can drop the action. When

actions are swapped it usually changes causal relations between the actions

significantly. Due to this fact, highlighting preconditions and effects partially

wouldn’t provide enough information. Therefore the plan is re-verified when an

29

action changes its order while dragging. Having such information the program

chooses the correct actions to highlight. Colour for highlighting is the same as

colour for preconditions/effects edges. If actual colour of an action is the same as

the colour for edges when highlighting, another (but similar) colour is used then.

Each user has an opportunity to set his/her own user preferences regarding the

visual appearance and behavior of software according to the personal needs. The

user preferences are saved in the home directory of the user and include various

(mostly graphical) settings, for instance:

• colors for actions (each state has its own color), edges (both preconditions

and effects) and ruler,

• font size (for different GUI components),

• automatic loading of last successfully loaded files (domain, problem, plan)

at start-up,

• default action width in STRIPS-like plans.

5.3.1. Visualization of STRIPS plans

As the STRIPS plans are sequential, cells representing the actions are displayed

in a row. When changing the order of an action by drag & drop, the new order is

computed after each movement by checking the horizontal position of the cell

being dragged and ruler’s units. In the case the new position is different from the

current one, a cell placed at that moment on the “new order” position is

immediately repositioned to the “current order” position, and thus these two

actions swap their position. When the action is finally dropped, it is just placed in

the row.

30

5.3.2. Visualization of temporal plans

Ruler units in temporal plans reflect durations of actions. However, as individual

durations of actions within a plan can vary a lot, the median duration has been

chosen to be the initial ruler unit. Auxiliary ticks are also present on the ruler. All

actions (meaning cells) are also guaranteed to have a minimum horizontal size (in

order to be visible even if real duration is too small).

Horizontal position of an action is fully determined by its start time and

duration. Although actions in temporal plans can overlap with each other, cells

representing the actions are positioned in order to be fully visible. This is

performed by placing the cells in rows. All cells in the same row have the same

vertical position. Cells position adjustment is iterative and cells are positioned into

the first row (from top) where the cell would not overlap with other cells (Figure 5

).

When an action is being dragged, in contrast to STRIPS plans, the start time of

the action is determined by the horizontal position only (multiplied by the current

ruler units). In such a situation re-verification of the plan is done only when the

action has changed its position significantly, meaning the relative order of the

dragged action margins (start/end) changed with respect to other actions.

5.4. Plan Modifications

In addition to visualization of plans the software supports interactive

modification of the plan. The following operations with plans are supported:

• inserting new actions (selection of actions and their parameters is

31

Figure 5: Example of visualisation of temporal plans.

automatically restricted to the current planning domain and the problem

and offered in the corresponding number of pre-filled combo boxes),

• removing actions,

• modifying actions,

• changing the order of actions in STRIPS plans and start time of action in

temporal plans by drag & drop technique.

Modifications are revertible and are under control by undo manager. Undo

manager waits for performing an undoable (revertible) modification, which is any

of the above. When an undoable change is fired, undo manager clones and saves

both the current plan and verificator state (this includes the constructed layers of

facts, the causal relations among actions, actions’ indexes to layers before and

after application, missing conditions). On the one hand, this approach is more

memory consuming, due to the fact that undo manager saves as many plans and

verificator states as is the limit of possible “undo”s. On the other hand, the

approach is time-saving. Re-verification is not needed to be performed after each

“undo”/“redo”. All the necessary steps include just retrieving previous/next plan

and verificator state plus redrawing the graph based on the retrieved plan. In

comparison with a memory-saving approach, which would save only

modifications’ description and would perform opposing action during

“undo”/“redo”, the chosen approach is easier and more “defect-resistant”. That is

because it coherently maintains entire plans and states.

Besides the already mentioned plan and verificator state, undo manager saves

two more items for user-friendliness and informative purposes. These include id of

an action causing an undoable change (in order to select this action and to adjust

view to comprise it) and a string describing the change (in order to print

informative message onto status panel at the bottom of the application).

Modified plans can be saved in the text format to either the same (initially

loaded) file or to a new file (save as).

32

6. Working with VisPlan

In this chapter we will provide a brief introduction to VisPlan from the end-user

perspective. While describing the functionality of VisPlan from an algorithmical

point of view in the previous chapter, many usability issues have already been

mentioned. In the next paragraphs these will be skipped or discussed just very

briefly, so that we can focus on a new information.

When we launch VisPlan - a desktop application written in Java programming

language for the first time, the GUI (Graphical User Interface) components (main

visualization and informative windows) are blank, as we haven’t loaded any plan,

yet. In order to verify and visualize a plan, the application needs 3 separate files:

domain, problem and plan file. We can specify such a trio by either selecting “File

-> Load” from the application menu, or clicking on the “load button” from

toolbar, or pressing “Ctrl + L” key sequence. In either case, a “Load files” window

pops-up (Figure 6). File choosers are available here as well, so that we have an

option to specify files by browsing with a file manager. File choosers implement

file filters which, in case of domain and problem files, show only files with “pddl”

suffix and, in case of plan file, show only files with “txt” suffix.

After selection, domain and problem PDDL files are parsed and if they contain

any syntax error, a list of the error(s) is printed, as shown in Figure 7, and the

33

Figure 6: Load Files window in VisPlan application.

program does not continue with verification.

After domain, problem and plan are correctly parsed, the plan is shown to the

user, so that he/she can immediately obtain a rough idea of the plan organization

in a time axis. The user is free to adjust sizes of two informative windows (one on

the left side and the other at the bottom), or he/she can hide the mentioned

windows completely using small split pane arrows (in favor to main visualization

window). A concrete example of the GUI with plan already displayed might look

the screenshot in Figure 3 (page 17).

Simultaneously, a separate program thread is started which performs plan

verification. This verification process is iterative. See section 5.2. Verification

(page 18) for more details how the verification is performed.

As an iterative process of verification finishes, the plan visualization changes as

well. The plan’s actions, visualized as graph vertices, are coloured with respect to

their action state (changing default colours will be described in the next

paragraphs). In addition to that, if cursor hovers above an action, action’s tooltip

(showing action’s name plus parameters) is displayed. If the cursor hovers above

an edge, representing a causal relation, the tooltip displays edge’s name and the

both actions which it interconnects. Such a name represents predicate (or set of

predicates) that is, at the same time, an effect of the source action and a

precondition for the destination action. Figure 8 demonstrates this. Green edges

represent preconditions, blue edges represent effects of the action in question

(again, these colours can be adjusted in the user preferences).

34

Figure 7: Error/warning messages window in VisPlan

In order to keep the graph transparent, the edges are not displayed by default (as

this would mean, in most cases, displaying too many edges simultaneously). The

edge visibility policy is therefore restricted only to one action at the same time,

both incoming (precondition) and outgoing (effect) edges, as shown in Figure 8.

The left frame of Figure 3 (page 17) shows how actions are consecutively

ordered in the plan. It provides a brief overview of the actions. This overview

might be handy in cases, when a user wants to examine some sequence of the

plan, but corresponding actions in the graph do not all fit into the size-restricted

window. The overview graphically distinguishes applicable and not applicable and

other types of action states (by font colour).

In addition to edges becoming visible when an action is hovered (meaning the

cursor appears above the action), full action information report is generated out in

a separate window (The bottom frame of Figure 3 (page 17)). This report includes:

• action name (plus parameters)

• either order of the action (for strips plans) or alternatively start time +

duration (for temporal plans)

• grounded preconditions (coloured green/red if satisfied/unsatisfied,

respectively)

• for each precondition an action on which it depends

• which preconditions are not satisfied (if any)

• grounded effects

• for each effect actions depending on this effect

35

Figure 8: Causal relations’ visualization in VisPlan application

Besides full action information, a “world state change” information for the

“hovered” action is displayed in another separate information tab (Figure 9). The

“world state change” view shows predicates applicable before and after the action.

Moreover, predicates removed and added are visually separated from the

(unchanged) rest of the predicates. The user can freely switch between the two

mentioned information views, as they are located in a common tab pane (at the

bottom part of the graphical interface).

It is possible for user to adjust the width of the vertices (actions), so that it better

reflects his/her needs. This can be done using a size combo-box (the top right

frame of Figure 3 (page 17), or by dragging any ruler’s tick.

The following plan changes are available:

• Removal of selected action (by pressing “Delete” button or clicking

“Remove action” toolbar button or menu item). All the toolbar buttons

provide a tooltip with a brief button’s functionality description.

Furthermore, toolbar buttons which cannot be used at that moment are

disabled automatically.

• New actions can be added (by pressing “Ctrl + I” button or clicking “Insert

new action” toolbar button or menu item). In an action addition dialog

(Figure 10), these items must be specified: operator name and all its

parameters (provided by combo boxes), order (for STRIPS-like plans) or

alternatively a start time and duration (for temporal plans). Correctness of

the items is automatically validated.

36

Figure 9: World state change in VisPlan application

• Existing actions can be modified (by double-clicking on the action or by

clicking “Modify action” toolbar button or menu item). An action addition

dialog pops-up (Figure 10), however, with the predefined values for in this

case.

• Changing order (or start time for durative actions) by drag&drop

technique.

• Eventually, an “undo”/“redo” feature is available as well, which is very

useful when the user has performed any unwished plan modification.

“Undo”/“redo” can be invoked by clicking on respective toolbar buttons,

menu items or by pressing the “Ctrl + U” or “Ctrl + R” keyboard buttons.

If any of the the above plan modification actions is performed, the plan is

revalidated from the removed/added/modified action onwards.

If the plan is modified, the user is given an option to export the plan into text

file. Moreover, if the plan had been changed but not saved before the user exits the

application, an exit confirmation dialog is displayed where the user is prompted to

either save the modified plan or exit without saving.

Each user has an opportunity to adjust his/her own user preferences according to

37

Figure 10: Adding a new action in VisPlan application

his/her personal needs. User preferences include various settings, for instance:

• actions’ and edges’ colours (single colour for different kinds of

actions/edges),

• resizability of vertices representing actions,

• automatic loading of last successfully loaded trio (domain, problem, plan)

at startup,

• and much more.

User preferences are stored in the ’preferences’ file under application’s ’“visplan”

directory. “.visplan” directory is automatically created in the user’s home directory

just after the settings are saved for the first time. Application’s preferences dialog

can be invoked by either selecting “Edit -> Preferences” from application’s menu,

or clicking on the “Preferences” toolbar button, or pressing “Ctrl + P” key

sequence. Then, preferences dialog pops-up (Figure 11).

Useful information about the application can be easily found by invoking an

“About” dialog (select “Help -> About” from menu). Besides short application

description, version and author, user is provided a link to the VisPlan’s homepage,

where news, up-to-date version of the software and other interesting information

are regularly stated.

38

Figure 11: User preferences settings in Visplan Application

7. VisPlan Implementation

In this chapter an overview of VisPlan implementation will be provided. We will

focus on the decomposition of the program to the smaller closed program units,

called modules. We will provide a brief description of each module and describe

how the modules interact with each other, so that the reader obtains a general

overview of how the program works. On the other hand, we will not go into much

details about implementation of single classes. The reader may consider to look to

the JavaDoc attached on the CD-ROM, where he/she can find more information

about the classes and their methods and data fields. Similarly, the alogithms used

in the program will not be covered here as they have been mostly discussed

previously in the verification and visualization sections.

7.1. External libraries used in the program

7.1.1. JGraph Java library11

JGraph is an open source graph visualization Java library. It is based on the

mathematical graph theory. JGprah is fully compatible with the Swing. Therefore

it can be used within the Swing12 GUI applications quite easily. For example, the

main component for displaying graph in JGraph library is a direct subclass of the

Swing class javax.swing.JScrollPane13, meaning it has all the inherited methods of

the JScrollPane component available.

JGraph provides a wide range of graph drawing functionality, such as

automatical layouting and performing analysis of graphs. The way how a graph is

displayed can be adjusted by JGraph’s API (Application Programming Interface)

and graphs can also caryy a certain logic, as other objects can be associated with

the graph components.

11 The library has been downloaded and more information retrieved from:
(http://www.jgraph.com/jgraph5.html, 2010)

12 Swing is the primary Java GUI toolkit
13 It is a component which is both vertically and horizontally scrollable

39

7.1.2. PDDL4J Java library14

PDDL4J is an open source Java library. The goal of the PDDL4J is to provide a

low-level functionality for Java applications manipulating files written in the

PDDL language.

The library contains a parser for PDDL 3.0 version. The parser can be

configured to accept only specified requirements of the PDDL language. After a

file is successfully parsed, PDDL4J classes (objects) then carry individual

elements of the parsed file. The library also implements an error manager used by

the parser to hold possibly encountered errors and warnings.

7.2. Single handling of different plan types

During the program development, at the time when we were adding a support

for temporal planning, we have found out that there were too many cases we had to

deal with a temporal plan in a different way compared to a STRIPS-like plan. This

lead us to create a common parent class for the both types of plans and a subclass

for each of the types. The subclasses handle the same situation differently,

however, now we have a common way to call their methods - via the abstract

parent class. This principle is used everywhere we need to treat a situation in

different way based on the plan type. The following classes/modules use the

principle15: Plan, Op (operator), Verificator, State, Visualizer, Ruler.

7.3. Program modularity

7.3.1. GUIView

GUIView is the main program module. Because it defines the main GUI

window with all the graphical components, it defines many listeners and handlers

for all the user inputs (such as clicking on an action in the plan, pressing a

keyboard button, selecting an item from the file menu, ...). Each listener than

reacts on the inputs, in most cases it calls other module’s methods.

Besides all the graphical components (including other windows like preferences

14 The library has been downloaded and more information retrieved from:
(http://sourceforge.net/projects/pdd4j/, 2010)

15 In the next sections, if we mention a Visualizer class for example, it means we have both
StripsVisualizer and TemporalVisualizer classes on mind, but we don’t distinguish between
them as they have the same API in majority of cases.

40

or add action dialog) the module contains all other main modules and

synchronizes them. These are Plan, Graph, Ruler, State, Verificator, Visualizer

and UndoManager.

7.3.2. Plan

The Plan class represents a plan, what is a set of plan actions. Each plan action

consists of instantiated operator, start time and duration, all encapsulated into one

object of PlanAction class.

7.3.3. State

This module represents states of the world during the plan execution. Moreover,

for each plan action it saves preconditions and effects, missing preconditions and

links to previous actions on which it depends (causal relations). This can be

achieved by various representations. Therefore, State class is abstract and is

extended by BitSetState class which implements bitset representation. If the

concrete implementation ever needs to be modified or replaced (by more effective

representation), a new class would extend State class and thus not influence other

modules of the program.

State class is responsible for:

• creating world state layers during the plan execution simulation

• returning specific world state (before or after application of an action)

• returning preconditions and effects of an action

• returning missing preconditions of an action

• returning causal relations of an action

7.3.4. Verificator

It is a module which executes the plan verification. Verification process is

executed as an independent thread and runs simultaneously with the main (GUI)

thread. This is useful in case the verification of the plan takes a long time. In such

case the user can still work with the plan - without waiting for the verification

process to finish.

Verificator stands between GUIView and State. GUIView uses Verificator for

running the verification, answering questions about applicability and updating

41

actions’ information (like the causal relations of actions, preconditions and effects,

missing preconditions, ...). Verificator itself does not contain such data, it asks the

State for the data. Then it interprets them to GUIView.

After the verification process is finished, Verificator colours actions (vertices in

the graph) with corresponding colour. Moreover, it also creates edges in the graph

representing causal relations.

7.3.5. Visualizer

Visualizer’s main function is to show the plan. It iterates over plan’s actions

(meaning vertices) and for each of them it computes where it should be placed (in

plane). Visualizer distinguishes between strips/temporal plans. For temporal plans

the visualization presents a Gantt chart.

Besides of that it handles plan modifications as well. Especially when the user

changes position of actions by drag&drop, it handles the movement of actions.

42

8. Future Development

The program is under continuous development and all the relevant information

plus the up-to-date version of the software can be downloaded from:

http://glinsky.org/visplan

In the future VisPlan is intended to support additional features such as:

• wider support of PDDL requirements

- disjunctive-preconditions: allows or in goal and preconditions

- existential-preconditions: allows exists in goal and preconditions

- universal-preconditions - allows forall in goal and preconditions

- quantified-preconditions: equivalent to existential-preconditions +

universal-preconditions

- conditional-effects: allows when clause in action’s effects

- fluents - allows function definitions and use of effects using assignment

operators and numeric preconditions

• support of plans specified in PDDL+

• own planning module

- this feature would make possible to find a solution (the plan) for a given

planning problem directly from the program

- user would not need to specify already found plan for a problem

- this would be an important step towards making VisPlan a complex

planning system, not only a plan analyser

• support for finding possible plan modifications in order to solve flaws in

the plan

- program would not just recognize flaws but would provide possible plan

modifications with an intent to satisfy a goal

• graphs visualizing a timeline of predicates and numerical variables during

plan execution

- user would be able to track chosen predicate or variable (such as amount

of gas in a tank of a car), thus gaining even better overview of a plan

43

Conclusion

The thesis, particularly VisPlan as the practical implementation of the thesis,

provide an environment for plan analysis. It encapsulates several different plan-

manipulating tasks into one single program. This includes parsing the PDDL

domain and problem, parsing the plan file, verification of the plan and, finally,

visualizing the plan. The plan visualization is based on showing the causal

relations between actions.

VisPlan, however, is not dedicated only to a static plan analysis. It provides tools

which interactively modify the plan under examination, so the user has a

possibility to follow the plan execution changes in the real time based on his/her

modifications. The “undo” feature may be very useful in these cases.

The program pays special attention to automatize everything what is possible

and reasonable. From this point of view it doesn’t require any unnecessary actions

or input from the users. Some examples of such (artificially intelligent) behavior

may include automatic decision of the plan type (and thus automatic decision of

the proper ways of verification/visualization of the plan) or automatically prefilled

combo-boxes representing arguments for an action in the action addition dialog.

In contrast to other already existing plan analysis tools, such as itSimple or

GIPO, VisPlan is natively able to handle also plans which are not valid. This is

one of the key features of VisPlan and the main idea is to skip actions from the

verification process once found they are non-applicable/invalid. This allows us to

examine also the rest of the plan after the first non-applicable action. It can be said

that this approach is kind of a novelty. The results of the thesis have also been

presented on the KEPS workshop (Knowledge Engineering for Planning and

Scheduling) organized within ICAPS 2011 conference (International Conference

on Automated Planning and Scheduling) (Glinský and Barták, 2011).

VisPlan is still under continuous development. Many useful features are

intended to be added to VisPlan, such as displaying a timeline of predicates and

numerical variables. Considering our future goals, summarized in the previous

chapter, we are still at the beginning.

44

Bibliography

Fox, M.; Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20 (2003), 61-124.

Gerevini, A.; Long, D. (2005). Plan Constraints and Preferences in PDDL3, Technical
Report R.T. 2005-08-47, Department of Electronics for Automation, University of
Brescia, Italy.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.
and Wilkins, D. (1998). PDDL - the planning domain definition language. Technical
report, Yale University, New Haven, CT.

Glinský, R.; Barták, R. (2011). VisPlan - Interactive Visualisation and Verification of
Plans. In Proceedings of the ICAPS 2011 Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS 2011), pp. 134-138. Available on-line at
http://icaps11.icaps-conference.org/proceedings/keps/keps2011-proceedings.pdf.

Russel, S.; Norvig, P. (2003). Artificial Intelligence: A Modern Approach (second
edition), Prentice Hall, New Yersey.

Simpson, R.M.; Kitchin D.E.; McCluskey, T.L. (2007). Planning Domain Definition
using GIPO. The Knowledge Engineering Review 22(2): 117-134.

Vaquero, T. S.; Silva, J. R.; Beck, J.C. (2010). Analyzing Plans and Planners in
itSIMPLE3.1. In: Proceeding of the ICAPS 2010 Knowledge Engineering for Planning
and Scheduling Workshop. Toronto. Canada, pp. 45-52.

http://dlab.poli.usp.br/twiki/bin/view/ItSIMPLE/OverView

http://en.wikipedia.org/wiki/Tower_of_Hanoi

http://kti.mff.cuni.cz/~bartak/planovani/index.html

http://scom.hud.ac.uk/planform/gipo

http://sourceforge.net/projects/pdd4j/

http://www.jgraph.com/jgraph5.html

http://www.inf.uos.de/schmid/LB-Kog/hanoi.lisp

http://zeus.ing.unibs.it/ipc-5/generators/Domains/trucks-Time.pddl

45

List of Figures
Plan Analysis in itSimple program using Movie Maker..13
Plan Analysis in GIPO program using Stepper..14
Graphical user interface of VisPlan..17
Example of information about world-state change..28
Example of visualisation of temporal plans...31
Load Files window in VisPlan application...33
Error/warning messages window in VisPlan..34
Causal relations’ visualization in VisPlan application...35
World state change in VisPlan application...36
Adding a new action in VisPlan application..37
User preferences settings in Visplan Application...38

46

List of Tables
Various definitions of AI based on different approaches...4

47

List of Abbreviations

AI - Artificial Intelligence

API - Application Programming Interface

DARPA - Defense Advanced Research Project Agency

DART - Dynamic Analysis and Replanning Tool

itSimple - Integrated Tools Software Interface for Modeling PLanning

Environments

GIPO - Graphical Interface for Planning with Objects

GNU - GNU is Not Unix

GUI - Graphical User Interface

ICAPS - International Conference on Automated Planning and Scheduling

IPC - International planning competition

KEPS - Knowledge Engineering for Planning and Scheduling

PDDL - Planning Domain Definition Language

STRIPS - STanford Research Institute Problem Solver

UML - Unified Modeling Language

VisPlan - Interactive Visualization and Verification of Plans (program)

XML - eXtended Markup Language

48

Attachments

1. CD-ROM containing:

• VisPlan program (compiled and bundled in jar file, including libraries)

• Java source code of VisPlan

• JavaDoc for VisPlan

• VisPlan’s sample input files

49

Appendix

A. Concrete example of (STRIPS-like) domain file

Description:

“The Tower of Hanoi or Towers of Hanoi , also called the Tower of Brahma or

Towers of Brahma, is a mathematical game or puzzle. It consists of three rods, and

a number of disks of different sizes which can slide onto any rod. The puzzle

starts with the disks in a neat stack in ascending order of size on one rod, the

smallest at the top, thus making a conical shape.

The objective of the puzzle is to move the entire stack to another rod, obeying the

following rules:

• Only one disk may be moved at a time.

• Each move consists of taking the upper disk from one of the rods and

sliding it onto another rod, on top of the other disks that may already be

present on that rod.

• No disk may be placed on top of a smaller disk.”

(http://en.wikipedia.org/wiki/Tower_of_Hanoi, 2011)

(define (domain hanoi)16

(:requirements :strips)

(:predicates

(clear ?x)

(on ?x ?y)

(smaller ?x ?y))

(:action move

:parameters (?disc ?from ?to)

:precondition (and (smaller ?to ?disc)

(on ?disc ?from)

16 The hanoi domain and problem example has been taken and slightly modified from:
(http://www.inf.uos.de/schmid/LB-Kog/hanoi.lisp, 2011)

50

(clear ?disc)

(clear ?to))

:effect (and (clear ?from)

(on ?disc ?to)

(not (on ?disc ?from))

(not (clear ?to)))

))

51

B. Concrete example of (STRIPS-like) problem file

(define (problem hanoi-pb1)

(:domain hanoi)

(:requirements :strips)

(:objects rod1 rod2 rod3 d1 d2 d3)

(:init

(smaller rod1 d1)

(smaller rod1 d2)

(smaller rod1 d3)

(smaller rod2 d1)

(smaller rod2 d2)

(smaller rod2 d3)

(smaller rod3 d1)

(smaller rod3 d2)

(smaller rod3 d3)

(smaller d2 d1)

(smaller d3 d1)

(smaller d3 d2)

(clear rod2)

(clear rod3)

(clear d1)

(on d3 rod1)

(on d2 d3)

(on d1 d2))

(:goal (and (on d3 rod3)

(on d2 d3)

(on d1 d2)))

)

52

C. Concrete example of (temporal) domain file

Description:

Essentially, this is a logistics domain about moving packages between locations

by trucks under certain constraints. The loading space of each truck is organized

by areas.

(define (domain trucks)17

(:requirements :typing :adl :durative-actions :fluents)

(:types truckarea location locatable - object

truck package - locatable)

(:predicates (at ?x - locatable ?l - location)

(in ?p - package ?t - truck ?a - truckarea)

(connected ?x ?y - location)

(free ?a - truckarea ?t - truck)

(delivered ?p - package ?l - location))

(:functions (drive-time ?from ?to - location))

(:durative-action load

:parameters (?p - package ?t - truck ?a1 - truckarea ?l - location)

:duration (= ?duration 1)

:condition (and (at start (at ?p ?l))

(at start (free ?a1 ?t))

(over all (at ?t ?l)))

:effect (and (at start (not (at ?p ?l)))

(at start (not (free ?a1 ?t)))

(at end (in ?p ?t ?a1))))

(:durative-action unload

:parameters (?p - package ?t - truck ?a1 - truckarea ?l - location)

:duration (= ?duration 1)

17 The trucks domain and problem example has been taken and slightly modified from:
(http://zeus.ing.unibs.it/ipc-5/generators/Domains/trucks-Time.pddl, 2011)

53

:condition (and (at start (in ?p ?t ?a1))

(over all (at ?t ?l)))

:effect (and (at start (not (in ?p ?t ?a1)))

(at end (free ?a1 ?t))

(at end (at ?p ?l))))

(:durative-action drive

:parameters (?t - truck ?from ?to - location)

:duration (= ?duration (drive-time ?from ?to))

:condition (and (at start (at ?t ?from))

(over all (connected ?from ?to)))

:effect (and (at start (not (at ?t ?from)))

(at end (at ?t ?to))))

(:durative-action deliver

:parameters (?p - package ?l - location)

:duration (= ?duration 1)

:condition (and (at start (at ?p ?l))

(over all (at ?p ?l)))

:effect (and (at end (not (at ?p ?l)))

(at end (delivered ?p ?l))))

)

54

D. Concrete example of (temporal) problem file

(define (problem truck-1)

(:domain trucks)

(:objects

truck1 - truck

package1 - package

package2 - package

package3 - package

l1 - location

l2 - location

l3 - location

a1 - truckarea

a2 - truckarea)

(:init

(at truck1 l2)

(free a1 truck1)

(free a2 truck1)

(at package1 l3)

(at package2 l3)

(at package3 l1)

(connected l1 l2)

(connected l1 l3)

(connected l2 l1)

(connected l2 l3)

(connected l3 l1)

(connected l3 l2)

(= (drive-time l1 l2) 4.3)

(= (drive-time l1 l3) 7.1)

(= (drive-time l2 l1) 4.3)

55

(= (drive-time l2 l3) 3.8)

(= (drive-time l3 l1) 7.1)

(= (drive-time l3 l2) 3.8))

(:goal (and

(delivered package1 l1)

(delivered package2 l2)

(delivered package3 l2)))

(:metric minimize (total-time))

)

56

	Introduction
	1. Artificial Intelligence
	1.1. Definition of AI
	1.2. Acting rationally approach

	2. Planning
	2.1. The language of planning problems
	2.1.1. States
	2.1.2. Operators
	2.1.3. Planning domain
	2.1.4. Goals
	2.1.5. Planning problem

	2.2. Plan

	3. Planning Domain and Problem Representation
	3.1. PDDL 1.2
	3.1.1 Variables
	3.1.2. Constants
	3.1.3. Predicates
	3.1.4. Actions
	3.1.7. Planning problem

	3.2. PDDL 2.1
	3.2.1. Functions
	3.2.2. Comparisons and assignments
	3.2.3. Durative actions
	3.2.4. Plan metrics

	3.3. PDDL 3.0 and PDDL+

	4. Existing software
	4.1. itSIMPLE7
	4.1.1. Comparison to the VisPlan

	4.2. GIPO9
	4.2.1. Comparison to the VisPlan

	4.4. VisPlan contribution

	5. VisPlan Functionality
	5.1. Program Input
	5.2. Verification
	5.2.1. Finding action’s matching operator
	5.2.2. Semantics of STRIPS-like plans
	5.2.3. Verification of STRIPS-like plans
	5.2.4. Semantics of temporal plans
	5.2.5. Determining order of actions in temporal plans
	5.2.6. Verification of temporal plans

	5.3. Visualization
	5.3.1. Visualization of STRIPS plans
	5.3.2. Visualization of temporal plans

	5.4. Plan Modifications

	6. Working with VisPlan
	7. VisPlan Implementation
	7.1. External libraries used in the program
	7.1.1. JGraph Java library11
	7.1.2. PDDL4J Java library14

	7.2. Single handling of different plan types
	7.3. Program modularity
	7.3.1. GUIView
	7.3.2. Plan
	7.3.3. State
	7.3.4. Verificator
	7.3.5. Visualizer

	8. Future Development
	Conclusion
	Bibliography
	List of Abbreviations
	Attachments
	Appendix
	A. Concrete example of (STRIPS-like) domain file
	B. Concrete example of (STRIPS-like) problem file
	C. Concrete example of (temporal) domain file
	D. Concrete example of (temporal) problem file

