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Introduction

Planning is a specific branch of artificial intelligence aim of which is, shortly 

described, finding a sequence of actions leading from the initial state to a desired 

goal state. In the recent years, various kinds of autonomous, unmanned robots and 

machines have been developed and this trend is highly expected to accelerate in 

the  future.  Systems  with  a  certain  amount  of  autonomy  inevitably  need  a 

mechanism determining their activity in order to fulfill a goal. In other words, they 

need a planner. Therefore, construction of effective and scalable planning systems 

is gaining importance in a fast pace.

Together with planners, plan analysis is a  necessary part of complete planning 

systems. With a growing complexity of plans, in terms of number of actions and 

causal relations in plans,  the analysis becomes more and more time consuming 

process. In  fact,  plans  with  hundreds  of  actions  are  practically  unreadable  for 

humans. Having the  good tools  for plan analysis,  a  user  can  easily check the 

correctness of an examined plan, effectively retrieve a general overview of the 

plan, find its flaws, identify possible enhancements, etc.

Though a number of available planners grows, the number of plan analysis tools 

is  still  limited.  The aim of  this  thesis  is  to  fill  this  gap,  namely  to  provide a 

complex plan analysis solution. The thesis should propose the way how to handle 

different types of plans and how to visualize them in a user-friendly way. Along 

with that, the thesis should elaborate a proper plan verification with respect to 

different plan types, their semantics and concrete planning domains. The thesis 

should also identify already existing plan analysis tools, analyze them and provide 

a novel functionality upon the comparison and, primarily, contribute to a planning 

community in a positive way. Eventually, all the solutions of the thesis should be 

implemented by a sofware program accompanying the thesis.

 The result of the thesis is VisPlan - Interactive Visualization and Verification of 

Plans. It  is  a program written in Java programming language and it  practically 

implements  its  plan  verification  and visualization solutions. The main  goal  of 
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VisPlan is  to  make even larger plans transparent and human readable.  VisPlan 

parses and consecutively visualizes a plan in the way based on its type. VisPlan is 

capable of verifying the plan, during which it identifies causal relations between 

actions and possible flaws in the plan. Upon verification it updates the visualized 

plan. The plan visualization is implemented as a mathematical graph. Actions are 

illustrated  as  vertices,  causal  relations  as  edges  in  the  graph.   As  part  of  the 

analysis, VisPlan displays information about the actions during plan execution, 

flaws possibly found in the plan are highlighted. VisPlan goes even further - it 

allows users to interactively modify the plan and hence manually repair the flaws 

or  fine-tune  the  plan if  they  wish.  Finally,  as  VisPlan  is  a  graphical  desktop 

application,  it  provides  a  comfortable  way  of using  the  previously  mentioned 

functionality.

At  the  beginning,  the  thesis  introduces the  general  aspects  of  artificial 

intelligence. Planning as a certain subfield of artificial intelligence is  discussed in 

the second chapter. We focus particularly on answering which types of  planning 

problems the thesis deals with and how they are represented by computers. Then, 

in  the  next  chapter,  we  describe  the  history  and  syntax  of  PDDL  (Planning 

Domain Definition Language), a de facto standard language for planning problem 

notation. All the planning problems we want to analyze by VisPlan need to be 

formalised in  PDDL.  The fourth  chapter  compares  functionality  of  VisPlan to 

other  available  plan  analysis  tools,  namely  itSimple  and  GIPO.  Especially  the 

differences  between VisPlan and each of them are accented.  The fifth  chapter 

discusses visualization and verifications solutions of the thesis, each respectively 

to the type of the plan. It describes semantics, used algorithms and, if there had 

been  a  multiple  choice  in  the  way of  implementation,  gives  reasons  why the 

chosen one has been selected. The last two chapters get closer to the program 

usage from user perspective and, finally, describe some implementation details. 

The program is under continuous development and all the relevant information 

plus the up-to-date version of the software can be downloaded from:

http://glinsky.org/visplan
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1. Artificial Intelligence

Nowadays,  we  live  in  the world  full  of  various  technological  advantages 

compared to our ancestors, such as planes, televison, phones, tractors and we may 

continue.  They all  help to make our everyday lives better. The impossible has 

come true,  the unbelievable has come obvious and many difficulties  have just 

dissappeared;  in  the  fields  of  transportation,  communication,  entertainment, 

careers, living standard and so on.

The most of our today’s technical appliances is, however, very simple in the 

means  of  determination.  Generally,  on  the  exact  inputs they  behave  in 

deterministic way, they don’t think and do accept only a predefined set of inputs. 

In the real world,  however,  where  a single event is influenced by many, initially 

unknown factors, where possible inputs cannot be accurately described, the needs 

go even further. These are the cases where the artificial intelligence (AI) succeeds.

Nowadays, AI is still a new science, as the first mentionings come from the late 

fifties of  the  twentieth  century.  The  goal  of  AI  is  to  create  and  understand 

intelligent  systems.  This  involves  intelligent  behavior,  learning,  adaptation  to 

unknown environments, solving unpredictable situations.

Achievements of the AI are used in many disciplines. Recognition of human 

speech, computer opponents  replacing human ones  when playing games, robotic 

vacuum cleaner’s planning its movement, email spam automatic filtering based on 

the user previous labeling, are only the very few examples. AI is really a universal 

field.

1.1. Definition of AI

There is not a unique definition of artificial intelligence. However, the most of 

the definitions use two approaches. The one approach is a thought process, so that 

artificially intelligent system think, whereas the other one is more interested in 

behavior of  such system. The definitions,  in  addition,  are not consistent  when 

defining what really means intelligence. Is the  intelligent  system simulating the 

human behavior? Or does it always try to be rational (meaning to always choose 
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the best possible option, which is, certainly, not always the human case). Having 

considered  the  previous  approaches, Table  1  summarizes  definitions  of 

(artificially) intelligent systems (Russel and Norvig, 2003):

Human performance Rationality

Thought processes Systems that think like humans Systems that think rationally

Behavior Systems that act like humans Systems that act rationally

Table 1: Various definitions of AI based on different approaches

1.2. Acting rationally approach

From all the approaches to AI which has developed so far, an approach we will 

adhere to in this thesis is  developing systems that act rationally. In such systems 

there’s always someone (or something) who  performs the actions. We will call 

him the agent1. Furthermore, such agent performs only the rational actions. That 

means that  he/it maximalizes the possible gain/outcome by always  choosing the 

proper actions.

The approach we have chosen (systems with a rational agent) has some very 

important advantage  which is the fact that the rational behavior can be clearly 

specified in majority of cases. Human behavior, in contrast, sometimes cannot be 

be specified at all (people vary a lot from one another plus the same man may act 

differently in the same situation, according to his/her mood, etc.). The mentioned 

advantage  is  crucial  when  the  problem  to  solve  needs  to  be  represented 

mathematically.  Once  mathematically  represented,  computer engineering  then 

provides mechanism (lots of memory and speed) in order to solve the problem 

effectively.

1 agent comes from the Latin agere, to do
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2. Planning

Planning is  a  certain  part  of  artificial  intelligence  science.  Assumed we are 

given an initial state of the “world”, it could be shortly described as a process of 

decision making to find out a sequence of actions needed to accomplish given 

goal. The result of planning process is a plan - an ordered sequence of actions. 

Actions  of  the  plan  consecutively  modify  the  state  of  the  “world”.  After 

application of the entire action sequence - the plan - the final world state desirably 

meets the goal - a set of certain facts that should apply in the final state.

2.1. The language of planning problems

In order to represent the real world planning in an artificial world, it is common 

to  simplify the model. The thesis will therefore consider only classical planning 

model. This model ensures that the world is deterministic, finite, fully observable 

(we have full information about the world) and static (there are no actions in the 

world other than the agent’s). If the model is discrete at the same time (discrete in 

time and  actions’ applications) we talk about STRIPS2-like planning. Otherwise 

we consider temporal planning (actions have duration, preconditions and effects 

specified  arbitrarily  within  action’s  application,  ...). The  thesis  handles  both 

STRIPS-like  and  temporal  plan  types.  This  is  demonstrated  by  VisPlan  -  the 

software implementation of the thesis.

The  language of  representation of planning  domains and problems should be 

expressive enough in order to be able to describe many different kinds of planning 

problems. At the same time it should be somehow delimited so that planners can 

be designed for solving the general planning problems and be effective, too.

2.1.1. States

Any state of the world will be represented as a conjunction of literals. We will 

assume the “closed” world what means that if a literal is not explicitly stated in the 

world state it means that it does not hold in the state. As the consequence of this 

assumption, any state includes only positive literals. In addition, literals must be 

2  STRIPS is an abbreviation of STanford Research Institute Problem Solver
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ground  (no  variables  allowed)  and  function-free.  The  following  example  may 

represent a state in the “monkey” world:

monkey(monkey1) ∧ monkey(monkey2) ∧ place(place1) ∧ 
place(place2) ∧ place(place3) ∧ eatable(banana1) ∧ 
at(monkey1,place3) ∧ at(monkey2,place1) ∧ 
at(banana1,place3) ∧ happy(monkey2)

More formally3, let L (language) be a finite set of possible literals:

L = {p1, …, pn}

Then state s is a subset of L containing literals which hold:

p ∈ s ⇒ literal p holds in s

p ∉ s ⇒ literal p does not hold in s

2.1.2. Operators

An  operator is  an action schema. It  means that an action is created (we say 

instantiated) from an operator when all variables of the operator are substituted 

with  concrete  arguments  (we  say  grounded). Each  operator  specifies  its 

preconditions and effects.  For example,  an operator for eating a banana in  the 

“monkey” world could look like this:

Action(eat(m,b,p),

Precond: monkey(m) ∧ eatable(b) ∧ place(p) ∧

at(m,p) ∧ at(b,p)

Effect: ¬at(b,p) ∧ happy(m)

More formally, let A be a set of possible actions, then:

a ∈ A

a=(precond-(a),precond+(a),effects-(a),effects+(a))

precond-(a),precond+(a),effects-(a),effects+(a) ⊆ L

precond-(a) ∩ precond+(a) = ∅

effects-(a) ∩ effects+(a) = ∅

Action a is applicable at state s if:

∀ p ∈ precond+(a) ⇒ p ∈ s

∀ p ∈ precond-(a) ⇒ p ∉ s

3 Planning problem language formalism in this section has been inspired by: 
(http://kti.mff.cuni.cz/~bartak/planovani/index.html, 2011)
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2.1.3. Planning domain

Planning domain Σ over language L is a trio (S,A,γ), such that:

S ⊆ P(L), S is a set of possible world states

Transitional function γ describes how the resulting world state looks like 
after application of the given action to a specific world state:

γ(s,a)=(s – effects-(a)) ∪ effects+(a),  if a is applicable at s

2.1.4. Goals

A goal g is a partially specified desired world state in the planning problem:

g ⊆ L

Sg = {s ∈ S | g ⊆ s} is set of fully specified goal states

For example, the state given as example in the previous “States” section satisfies 

the partially specified goal at(monkey2,place1) ∧ happy(monkey2).

2.1.5. Planning problem

Planning problem P is a trio (Σ,s0,g), such that:

Σ = (S,A,γ) is a planning domain over language L

s0 is an initial world state, s0 ∈ S

g ∈ Sg

2.2. Plan

Plan π is a sequence of actions 〈a1,a2,…,ak〉

k = |π| is the length of the plan

We define world state induced by plan using transitional function γ:

• k = 0:

γ(s,π) = s

• k > 0 and a1 is applicable at s

γ(s,π) = γ(γ(s,a1), 〈a2,…,ak〉)

• not defined otherwise

Plan  π is the solution for planning problem P if and only if:

g ⊆ γ(s0,π)
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3. Planning Domain and Problem Representation

For  a  long  time  there  had  been  no  standard  language  for  representation  of 

planning problems. Actually, this had a negative influence on the whole field of 

planning, as engineers, developers and enthusiasts from all around the world had 

no common means of communication among themselves.

Finally, in 1998, Drew McDermott and others created a language called PDDL - 

the Planning Domain Definition Language. At the time of its creation, the main 

motivation was to unify requirements and input format for planners taking part in 

the  planning  competition  IPC  (International  planning  competition).  The 

competition was a success (it has been organized regularly since then) and it was 

right the PDDL what laid the fundamentals for it.

Since the PDDL has been introduced, it has been gaining popularity and, in fact, 

it has become a standard language for representing the planning problems. Many 

new features has been added to the PDDL during the last years in order to enlarge 

set of possible planning domains it can describe. And, in opposite direction, what 

PDDL can describe is  now being treated as the standard and therefore has an 

impact on the whole planning community.

The language has changed a lot since it was initially introduced in 1998 and is 

still under development. Throughout the history, several major enhancements in 

the PDDL syntax has been featured, each of which usually induced a new version. 

As the environment presented in this  thesis has a close connection to the  PDDL 

(VisPlan parses PDDL files as its input), a brief description of the most important 

syntactic elements will be provided in the following sections with respect to the 

version in which they were introduced.

Planning tasks specified in PDDL are separated into two files:

1. A domain file for predicates and actions

For concrete example of domain file see Appendix A (STRIPS-like domain) 

and Appendix C (temporal domain).

2. A problem file for objects, initial states and goal specifications.

For concrete example of problem file see Appendix B (STRIPS-like domain) 
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and Appendix D (temporal domain).

3.1. PDDL 1.2

PDDL 1.2 (Ghallab et al., 1998) is an original version and was used for the first 

IPC  competition.  It  has  introduced  the  basic  concepts  of  the  language. The 

language has a LISP-like syntax. A set of features used in the PDDL file is listed 

at the beginning of the file, after the :requirements keyword, for example:

(:requirements :typing :durative-actions)

A domain is structured into components by keywords, such as :predicates 

or :actions.   We will provide a brief explanation of these components in the 

next paragraphs.  We focus mainly on  the  components which can be hanled by 

VisPlan program.  Appendix  A and  B provide samples for most of the discussed 

elements.

3.1.1 Variables

Variables in the PDDL have the same meaning as in any other language. They 

are present in the parameters of actions4, as well as in other functions. They start 

with a question mark (?variable). 

3.1.2. Constants

Constants in the PDDL can be used at the same places as variables, however, 

with a big difference that they cannot be substituted.

3.1.3. Predicates

Conjunction of predicates represent a state of the world. They carry information 

about the objects in the world and relations between them, too. A simple example 

of the predicate might look like: (smaller ?x ?y). In addition, predicates are 

used in PDDL’s actions as preconditions and effects. 

3.1.4. Actions

Actions  are the means how the world state is changed.  Concrete PDDL action 

definition will be demonstrated on the following example. The action comes from 

the blocks world planning domain:

4 Actions in PDDL domain file can be treated as operators explained earlier. They are not the 
actual actions, but rather represent an action schema.
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(:action putdown

:parameters (?block)

:precondition (and (holding ?block))

:effect (and (clear ?block) (arm-empty) (on-table ?
block) (not (holding ?block))))5

Actions must specify the following:

• name: putdown

• parameters: (?block)

• preconditions: (and (holding ?block))

• effects: (and (clear ?block) (arm-empty)

 (not (holding ?block)) (on-table ?block))

3.1.7. Planning problem

Planning domain is usually defined in a separate file. This enables us to have 

many different planning problems sharing a single planning domain.

In the PDDL problem file we include a list of objects present in the world (typed 

or without types):

(:objects rod1 rod2 rod3 d1 d2 d3)

The initial situation is declared as the list of predicates which hold at the initial 

world state. Predicates not listed explicitly do not hold at the initial state6.

(:init (smaller rod1 d1) (smaller rod1 d2) ... (clear 
rod2) (clear rod3) (clear d1) (on d3 rod1) (on d1 d2))

An example of a goal might look like the following. Listed predicates must be 

grounded:

(:goal (and (on d3 rod3) (on d2 d3) (on d1 d2)))

3.2. PDDL 2.1

PDDL 2.1 (Fox and Long., 2003) is based on PDDL 1.2. It only adds some new 

fetures  supporting  temporal  planning.  Numeric  state  variables  has  been 

introduced, as well as durative actions which enable concurrency. See Appendix C 

and D for examples and overall reference.

5 The blocks world is one of the most famous planning domains. This domain consists of a set of 
cube-shaped blocks sitting on a table or on other blocks. A robot arm then picks up blocks and 
moves them to different positions in order to build desired stacks of blocks.

6 Closed world assumption.
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3.2.1. Functions

Functions in the PDDL present a way how to assign a numerical value to a set of 

arguments,  for example the following defines  a  numeric function drive-time 

with 2 parameters from and to of location type:

(:functions (drive-time ?from ?to - location))

Compound expressions created from simple functions (like the example above) 

and arithmetic operators were introduced as well.

3.2.2. Comparisons and assignments

Comparisons  are  used  among  preconditions  of  the  actions. After  they 

numerically  evaluate  both  of  their  sides  they  decide  whether  the  condition  is 

satisfied.

Moreover, assignments using operators such as assign, increase and decrease are 

also possible. The value for the assignment should be stated in the problem file  

using the following construct: (= (drive-time loc3 loc1) 7.1).

3.2.3. Durative actions

Durative actions bring concurrency to the plans. In the planning domain a new 

definition for the actions’ duration must be stated:

:duration (= ?duration (drive-time ?from ?to))

Conditions and effects of durative actions can be examined at start, at end or over 

all of the action’s interval. See Appendix C for example.

3.2.4. Plan metrics

Plan metrics determine how should a planner choose actions in the plan in order 

to maximize/minimize a plan cost based on the metrics criteria. In the PDDL this 

can be specified using the following language:

(:metric minimize (total-time))

3.3. PDDL 3.0 and PDDL+

Features of PDDL 3.0 and PDDL+ are not covered by VisPlan so we will only 

mention a few. In PDDL 3.0  (Gerevini  and Long, 2005) declarations about  plan 

quality and plan trajectories have appeared (the states a plan have to go through). 

Real-time systems and probabilistic planning featured in PDDL+.
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4. Existing software

Though the number of planners rapidly grows, the number of available tools for 

user interaction with planners is still limited. However, there are several publicly 

available programs dealing with such issues and provide graphical user interface 

supporting the planning process. The most well-known are shortly described in the 

next paragprahs.  For each described tool the comparison to VisPlan is stated as 

well in order to emphasise the contribution of VisPlan to the planning community.

4.1. itSIMPLE7

Integrated Tools Software Interface for Modeling PLanning 
Environments (Vaquero et al., 2010)

itSIMPLE is an open source project implemented in Java, available under the 

GNU  General  Public  License  version  3.  The  tool  has  been  designed  to  give 

support to users during the construction of a planning domain application mainly 

in  the  initial  stages  of  the  design  life  cycle.  These  initial  stages  encompass 

processes  such as  domain specification,  modeling,  analysis,  model  testing and 

maintenance. It provides a user-friendly GUI  for modeling and analyzing many 

planning domains  at  the same time.  Specified  domain and problem are nicely 

visualized to users. For these purposes, a special use of UML (Unified Modeling 

Language) has been developed

XML  (eXtended Markup Language)  is used as an intermediate language that 

can support automatic translation from UML to other representations as well, such 

as PDDL or Petri Nets.

A model  can be generated  into PDDL language.  PDDL representation gives 

users an opportunity to test their models with several general planners (such as 

Metric-FF,  FF,  SGPlan,  MIPS-xxl,  LPG-td,  LPG,  hspsp,  SATPlan,  Plan-A, 

blackbox, LPRPG, Marvin). These planners are bundled within the software and 

using them is  rather straightforward. Moreover, plans can be specified manually 

by users, too.

7 The software has been downloaded and more information retrieved from: 
(http://dlab.poli.usp.br/twiki/bin/view/ItSIMPLE/OverView, 2011)
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Once a domain and problem are modeled, itSimple also gives an interface for 

plan analysis and management (Figure 1). It is possible to observe the behavior of 

the model during the simulation of plans (given by users or by planners). This is 

done by using sequence of snapshots of the plan. The interface visualizes relations 

(predicates)  between  objects  which  are  true before  and  after  each  action  is 

performed. As illustrated in Figure 1, objects are assigned a graphical appearance, 

relations between objects are shown as arrows and those which are being changed 

by current plan action are highlighted.

itSimple provides variable observation in charts  as well.  Each attribute of an 

object can be continuously tracked in a well-arranged chart.

4.1.1. Comparison to the VisPlan

Compared to the VisPlan, following functionality is not covered by itSIMPLE:

• PDDL domain and problem files are not accepted as an input

• there is no verification of a plan (if the given plan is not valid, missing 

preconditions are not reported, nor any flaws are recognized)

• causal relations of actions are not shown

• preconditions of actions are not shown

itSimple is an effective tool for modeling planning domains. However, it does 
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assume that given plans are 100% valid. Regarding to plan visualization, the tool 

shows  a  sequence of  world  states  (facts  that  apply in  each state).  It  does  not 

recognize causal relations8 of actions, nor gives a compact overview of actions’ 

preconditions and effects.

4.2. GIPO9

Graphical Interface for Planning with Objects (Simpson et al., 2007)

GIPO allows a user to create new domain models or import and change old 

ones. Recognized domains are either classical or hierarchical or requiring durative 

actions.

GIPO program provides:

• Modeling object types, predicates, operators, tasks (init and goal states) 

using graphical tools. Models are represented in the OCL (Object Centered 

Language)  language.  As  the  language  name  suggests,  GIPO  models 

planning domains from an object’s perspective, which is describing how 

8 Causal relation is a relation between two actions where one or more effects of one action are 
consequently used as preconditions for the other action.

9 The software has been downloaded and more information retrieved from: 
(http://scom.hud.ac.uk/planform/gipo, 2011)

14

Figure 2: Plan Analysis in GIPO program using Stepper.



actions can change a state of the object.

• Validation of domain specification.

• Stepper (see Figure 2) - an interface enabling manual planning. Meaning 

the  user  has  to  choose  and instantiate  an  operator.  The  Stepper  shows 

objects present in the planning problem. If a particular object is clicked a 

window appears describing which predicates apply for this object at the 

given  state.  When  the  user  chooses  an  action  and  if  all  necessary 

preconditions are met,  the resulting state (after execution of the chosen 

action) will be generated. The changed objects then appear in a different 

color and have different sets of predicates applying at that state.

• A hierarchical planner HyHtn bundled within the program.

• Plan  animator  (not  for  durative  actions):  similar  to  the  Stepper.  The 

difference  is  that  the  actions  are  taken  as  the  output  of  an  integrated 

planner. 

• Tools for exporting/importing PDDL models.

4.2.1. Comparison to the VisPlan

Compared to the VisPlan, following functionality is not covered by GIPO:

• overall world state at a specific plan execution time cannot be retrieved

• causal relations of actions are not shown

• the visualized objects cannot be moved

• actions in the plan cannot be modified/created/deleted

• durative actions not supported

GIPO  software  is  mainly  used  for  creating/updating  planning  domains.  In 

contrast to the  thesis, the visualization is very low level and doesn’t tell much 

about the plan. As illustrated in Figure 2, the Stepper shows layers of (always the 

same) objects. This approach is not acceptable if the number of objects is higher 

(e.g. more than twenty). In order to show the state of the concrete object (meaning 

all the predicates that apply to the object at given layer), the object needs to be 

double-clicked and a new window carrying this information pops-up. Therefore, 

the  progress  of  object’s  state  cannot  be  retrieved  easily,  as  multiple  pop-up 
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windows (each carrying the state for the same object but different layer) may look 

disorganized.  In addition, the necessity to open and close all windows is rather 

unhandy.

4.4. VisPlan contribution

Previously  mentioned tools,  itSimple  and GIPO,  are  both  effective  tools  for 

modelling  and  updating  planning  domains. However,  their  plan  analysis  lacks 

some handy features such as:

• recognizing causal relations of actions

• compact overview of actions’ preconditions and effects

• support for plans with flaws

• information about world state at a specific plan step

• a user friendly interface to modify, insert, and delete actions in a plan and 

to re-verify the plan in real-time

VisPlan focuses on all above features.
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5. VisPlan Functionality

Shortly described, VisPlan is a graphical application (Figure 3) written in Java 

with the ultimate goal to visualize any plan, to find and highlight possible flaws, 

and to allow the user to repair these flaws by manual plan modification.

5.1. Program Input

VisPlan works with three types of files that the user should specify as program 

input:

• planning domain file in PDDL

• planning problem file in PDDL

• plan file specified in text format

VisPlan  supports  STRIPS-like  plans  and  temporal  plans.  The  program 

recognizes  the  plan  type  (strips/temporal)  automatically  and  verifies  and 
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visualizes it based on its type. The plan type is determined by the planning domain 

– durative actions indicate a temporal plan, actions with no duration indicate a 

STRIPS-like plan. The following PDDL requirements are currently supported in 

the program: strips, typing, negative-preconditions, equality, durative-actions.

Planning domain and problem need to be syntactically  correct  and mutually 

consistent  (separately parsed planning domain and problem files can be linked 

with each other). Otherwise, visualization and verification is not performed and 

errors from the PDDL parser are displayed. Sometimes, PDDL parser encounters 

errors and issues which are not critical. In these cases, warning and non-critical 

error messages are displayed and the program continues. Recognized plan actions 

are given in the following format:

start_time: (action_name param1 param2 …) [duration]

In the plan file each action is supposed to be on a separate line. The parser 

recognizes the lines and creates actions given only in the above mentioned format. 

Other lines are ignored. Eventually, a modified plan can be saved either to the 

original file or to a new text file.

5.2. Verification

Plan verification is automatically executed after the plan is initially loaded and 

then after each user interaction modifying the plan. The verification process is 

based  on  simulation  of  plan  execution  and  the  main  idea  is  to  incrementally 

construct “layers” of facts. Each fact layer is determined by a corresponding set of 

facts and an action due to which the layer has been created.

At the beginning of the verification, all possible facts (grounded predicates) are 

instantiated. This domain-specific data remains fixed and is computed only once 

at the beginning; re-verifications do not change the data. This attitude permits us 

not to manipulate with the facts during the whole verification process, but to work 

only with the indexes to the array of grounded facts. Because of that, operations 

like checking if  an action is  applicable,  application of action’s effects,  finding 

missing conditions, etc. are just logical bit-sets operations (where one bit-set has 

its bits set to true at indexes corresponding to the selected grounded facts). Such 

operations are very fast.
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Unlike facts, only actions present in the plan are grounded (meaning related to 

an operator with grounded conditions and effects). The operator is found based on 

matching the planning-domain operator and concrete parameters of the action. As 

mentioned  in  the  previous  paragraph,  conditions  and  effects  of  the  grounded 

operator are represented by bit sets (pointing to the fix array of grounded facts). 

The verification process makes sure it has a matching operator available for each 

examined plan action (otherwise, for instance when a user adds a new action, the 

verification process additionally finds and stores the operator). Actions, which do 

not comply with any operator definition, are marked as invalid and omitted from 

the verification. Nevertheless, such actions are still displayed (but distinguished 

from others by a different colour and marked as invalid).

There are two special “actions” artificially added into the plan. They are called 

“init” and “goal” and their aim is to represent the initial state and the goal. A 

classical plan-space approach is used to define these actions. The init action has 

empty preconditions and the facts that apply at the initial state are considered as 

its effects. The goal action has empty effects and the set of facts that need to be 

satisfied at the final world state are considered as its preconditions. By treating the 

initial state and the goal as regular plan actions we are able to recognise causal 

relations also at the margins of the plan without any further work. This way we 

easily find dependencies on the initial state and, eventually, marking the “goal” 

action as non-applicable means that the goal conditions are not satisfied.

5.2.1. Finding action’s matching operator

In order to find a matching operator for an action we have to go through the 

planning-domain operator expressions and find an operator which:

• matches action’s name

• matches the number of action’s parameters

• each  action’s  parameter  belongs  to  a  (typed)  domain  of  respective 

operator’s variable, where the domain is a set of concrete objects in the 

planning problem such that object’s type is equal to the variable’s type (or 

variable’s deduced type)
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Upon correspondence, every couple (variable, parameter) is bound and added 

into  a  “substitution”  object.  This  substitution  is  consequently  applied  on  the 

operator’s conditions  and effects,  thus  ensuring  they  are  grounded since  then. 

Afterwards,  the  algorithm  separately  converts  the  grounded  conditions’  and 

effects’ compound expressions into a set of trivial expressions (for STRIPS-like 

actions each such expression is either a literal or, for durative actions, a timed 

expression including just one literal).

In the final step, an operator is created based on the trivial expression set from 

the previous step. For STRIPS-like actions the following bit-sets are instantiated: 

positive  preconditions,  negative  preconditions,  positive  effects,  and  negative 

effects. If the literal from the literal set is an atomic formula, the index of atomic 

formula (which is, indeed, a grounded fact, one of the facts in the initially created 

array of facts) is added to positive preconditions/effects bit-set. On the other hand, 

if the literal is a “not (atomic formula)”, the index of atomic formula is added to 

negative preconditions/effects bit-set.

For durative actions the literal is obtained from a timed expression (one of the 

following: “at start (literal)”, “over all (literal)”, “at end (literal)”). And, similarly, 

index of literal’s atomic formula is added to one of the following sets: at start 

conditions, over all conditions, at end conditions, at start effects, at end effects 

(each positive or negative depending on the literal).

Artificial operators for special “init” and “goal” actions are constructed as well. 

Conditions for the “goal” operator are obtained in the same way as conditions for 

any regular plan action with an exception that the goal expression is separately 

taken from the parsed PDDL problem file. In contrast to the “goal” operator, for 

the “init” operator there is already a predefined and grounded set of facts (atomic 

formulas) from the separately taken init expression. These facts (represented as a 

bit-set) are then assigned to the “init”  operator’s effects. In addition to grounded 

facts, the init PDDL expression may contain equality comparison functions, for 

instance:

(= (drive-time l1 l2) 4.3)

Function  name  plus  its  arguments  (the  first  argument  of  the  above  equality 
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comparison function)  is  assigned a numerical  value representing time duration 

(the  second  argument  of  the  above  equality  comparison  function).  Couple 

(duration function, duration value) is stored and used when creating an operator 

matching the durative action. At this time, the duration of action is obtained from 

the  parsed  PDDL domain  file,  grounded (by the  same substitution  as  action’s 

conditions and effects) and searched within previously stored duration functions. 

Duration value of the found function is assigned to the matching operator of the 

currently manipulated action.

5.2.2. Semantics of STRIPS-like plans

In  contrast  to  temporal  plans,  semantics  of  STRIPS-like  plans  is  really 

straightforward. The order of actions is exactly specified by the sequential plan. In 

fact, this order is clearly determined by the order of actions in a file accepted as an 

input to VisPlan (from top to the bottom). Internally, the order is maintained in a 

linked list. Since we sometimes need to iterate over the actions in a descending 

(opposite) order a double-linked list is used, thus enabling descending iterations 

and access to the last action naturally.

Providing the sequence of actions in STRIPS-like plans, all the preconditions’ 

checks and possible world state changes occur instantaneously, at the points when 

actions are consecutively handled. Preconditions of an action  (or, eventually, the 

goal conditions) are checked against the current world state, meaning the state at 

the point when the action is being examined. This is right the state induced by the 

effects of the last applied preceding action.

5.2.3. Verification of STRIPS-like plans

Verification is realised via simulation of plan execution. Firstly, we construct an 

empty layer of facts. After that, we consecutively try to apply a single action (in 

the order given by the sequential plan) to the current world state represented by 

the last fact layer. If the action is applicable, the action is applied and a new world 

state is computed based on the effects of the action. If the action is not applicable, 

its effects are not encountered and the verification starts processing the next action 

in the plan. For instance, after the first “init” action is successfully applied, we 
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have constructed the initial world state as defined in the planning problem. An 

action is applicable to a given fact layer if and only if the layer contains all action’s 

positive preconditions and simultaneously excludes all negative preconditions. If 

the  action  is  applicable,  a  new fact  layer  is  created.  The  new set  of  facts  is 

computed based on the previous fact layer extended by the facts  from action’s 

positive effects and excluding action’s negative effects.

Fact layer against which an action under examination is trying to be applied is 

remembered. If applicable, the fact layer which the action has created is stored as 

well. For STRIPS-like plans the first and the second fact layer are next to each 

other. In temporal plans, a difference between these two layers can vary a lot, as 

there can be arbitrary number of other actions’ starts and ends between them (each 

start  and  end  of  durative  action  possibly  creates  a  new  layer).  Such  stored 

information will be used when finding how the world changes by applying the 

action (the actual set of facts prior and after the action).

Missing preconditions of the action (if  any) and causal relations to previous 

actions in the plan are also computed for each action during its verification. In the 

visualization, an action is applicable if and only if its set of missing preconditions 

is empty. If a precondition of the action is not missing, we find the last fact layer 

from which the  precondition  fact  is  included (on  the  other  hand,  for negative 

precondition  we  find  the  last  fact  layer  from  which  the  precondition  fact  is 

excluded). The precondition then depends on the action assigned to that fact layer. 

After each modification the plan is immediately re-verified.

5.2.4. Semantics of temporal plans

Based on the  PDDL 2.1  specification  introducing durative actions (Fox  and 

Long, 2003), this section summarizes several aspects of temporal plans’ semantics 

respectively to the extent of the thesis. A single durative action, besides “at start” 

conditions  (equivalent  to  strips  preconditions),  defines  “over  all” conditions 

(invariant over a duration of the action) and “at end” conditions (needed to hold at 

the point at which the final effects of the action are asserted). Therefore, a durative 

action needs to be checked multiple times whether it is applicable or not. Invariant 

conditions are required to hold over an interval that is open at both ends (starting 
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and ending at the end points of the action). If one wants to specify that a fact  p 

holds  in  the  closed  interval  over  the  duration  of  a  durative  action,  then  three 

conditions are required: (at start p), (over all p) and (at end p).

Similarly,  from an effect’s  annotation  it is clear when the effect should apply, 

whether  at the start of the interval or at the end of the interval.  Effects can be 

applied  only  at  these  two  end  points  of  the  durative  action.  This  gives  us 

aguideline how the temporal plans can be treated as point-based.

In order to handle concurrent actions we need to de ne the situations in whichfi  

the  effects  of  those  actions  are  consistent  with  one another.  The  mutex10 rule 

applies here. The rule  makes sure there is no  way of  effects’ conflict. An effect 

cannot  be  both  asserted  and  negated  by  different  actions  at  the  same  time. 

Considering the following example (Fox and Long, 2003):

(:action a

:precondition (or p q)

:effect (r))

(:action b

:precondition (p)

:effect (and (not p) (s)))

We might suppose that both actions can be executed simultaneously in a state in 

which both p and q hold. However, in such a case it would be necessary to check 

application of actions in all possible orderings. In order to avoid such complexity 

and define the semantics clearly,  we will adhere to the rule of no moving targets. 

The rule means that  there ano no two actions from which one action is using a 

value and the other one is changing the same value at exactly the same time . The 

no moving targets  rule  makes the  cost  of  determining whether  a given set  of 

actions can be applied concurrently polynomial in the size of the set of actions and 

their conditions and effects.

Temporal plan with durative actions is valid only if both ends of every action are 

present in  the  plan.  It  is  also  supposed  that  precise  simultaneity,  in  terms  of 

ensuring  that  two independent  actions  are  executed  simultaneously,  cannot  be 

expected. Arbitrarily accurate time control cannot be expected, as well.

10 mutex stands for mutual exclusion, the basic concept from a well-known GraphPlan algorithm
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5.2.5. Determining order of actions in temporal plans

In comparison to STRIPS-like plans, temporal plans do not determine order of 

their actions exactly. Each action in temporal plan can be assigned any start time 

and any duration. During the execution interval of one action, another actions may 

possibly start or end without any restrictions.

The way we transform the interval-based plan into a point-based plan involves 

creating actions to represent the end points of the  actions’  intervals.  The  only 

complication is that invariants must be checked during the corresponding interval. 

This is achieved by checking the invariants after each of the updating actions.

As  already  mentioned,  verification  algorithm  for  temporal  plans  transforms 

durative  action  into  couples  representing  the  end  points  of  the  corresponding 

interval. VisPlan’s implementation is the following: each action internally clones / 

duplicates itself. Then, the original action is marked as “start” action, whereas the 

duplicated action is marked as “end” action. Having the same step repeated for all 

the actions, we end up with doubled set of actions (of two types).  Such a set is 

used for the verification purposes solely.  Next, the just created set of actions is 

sorted so that the verification manipulates the actions in the correct order. Sorting 

algorithm uses  a  comparator,  which  is  a  function  deciding  which  of  the  two 

actions, given as parameters, should be earlier and which should be latter in the 

verification queue.

At  the  beginning,  the  comparator  finds  corresponding  times  for  both  given 

actions. Corresponding time for the “start” action is its start time. Corresponding 

time for the “end” action is its start time plus duration. The two retrieved times are 

compared (once the return statement is reached the comparison doesn’t continue):

1. The two times differ:

a) if the first time is less than the second time, the first action is returned as 

earlier

b) if the first time is greater than the second time, the first action is returned 

as latter

2. The two times are equal:

a) if one of the actions is a duplicate of the other action (if, theoretically, the 
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action has no duration), the “start” action is returned as earlier

b) if one of the actions is marked as the “start” action and the other one is 

marked as the “end”, the “end” action is returned as earlier; thus an “in 

progress” action (meaning the original durative action) is finished before 

a new one is processed

c) both actions of the same type (both are the “start” actions or both are the 

“end” actions

i. an action assigned a shorter duration is returned as earlier one

ii. an  action  returned  as  earlier  is  the  one  name of  which  (with 

parameters) is sorted earlier in an alphabetical order

iii. if even the previous case had not arbitrated the result, the actions are 

completely the same, in fact, and therefore the comparison treats both 

actions being equal with each other

Due to the fact that the order of durative actions in the input plan file has not been 
standardized, the plan file order is not taken into consideration at all.

5.2.6. Verification of temporal plans

Verification of temporal plans is similar to STRIPS plans’ verification regarding 

the  plan  execution  simulation  and fact  layers’  construction.  In  a  general  case, 

however, one  durative action can create more than one fact layer, when both “at 

start” effects and “at end” effects are encountered.

Prior the verification, at the time the algorithm is creating operators matching to 

actions, each durative action is checked to have the duration complying with the 

duration  specified  for  the  operator  in  the  planning-domain.  In  case  the  two 

durations vary, a user is prompted (in a new question message dialog) to accept or 

deny  modification  of  action’s  duration  to  the  one  specified  in  the  planning 

domain. Once a user has denied action’s duration modification, he/she is never 

prompted again for the  same action.  When many actions  from the  plan under 

examination have similar conflict, the user is given a possibility to accept/deny 

modifications  for  all  actions.  Nevertheless,  this  doesn’t  affect  new  actions 

eventually added to the plan.

The verification  manipulates  actions  in  the  sorted  order  as  described in  the 
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previous section. As it has been already explained, every action is examined twice. 

A decision whether the action is being procesed for either the first time or for the 

second time is determined by the mark of the action (either “start” or “end” mark). 

At the first examination of an action, at its start time, “at start” conditions are 

checked against the current fact layer.  If  the action is  applicable it  is applied 

(taking its “at start” effects into consideration), resulting in creation of a new fact 

layer. In addition, the action is remembered to be “in progress” internal state. At 

the second examination of an action, at action’s end time (start plus duration time

),  the  action finds  out  whether  it  has been applied at  its  start.  If  so,  “at  end” 

conditions are checked and, if satisfied, the action is applied (considering its “at 

end” effects). The action is removed from “in progress” actions at this phase.

As we have discussed in the temporal plans’ semantics section, when applying 

actions consecutively after each other we should take special care to ensure:

• effects applied by any two actions at the exactly same time must be mutex-

free

• effects of an action cannot be used at the exactly same time as conditions 

for other actions

Considering these very conservative requirements, VisPlan performs the following 

checks:

• it  checks  whether  any  condition  of  the  action  under  examination  has 

already been asserted by the previously processed actions at the same time

• it  checks  whether  any effect  of  the  action  has  already  been used as  a 

condition for the previously processed action at the same time

• it  checks  whether  effects  of  the  action  are  mutex-free  with  respect  to 

possibly asserted effects of the previously processed actions at the same 

time

If any of the checks answers positively we’ve encountered a mutex. The action is 

remembered to be the mutex-containing and cannot be applied. Afterwards, when 

visualizing,  the  action  is  treated  in  different  way compared to  the  rest  of  the 

actions.  Naturally,  a  question,  why  the  action  has  been  marked  as  mutex-

containing but not the one which had induced the mutex, arises. VisPlan behaves 
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uniquely regarding the  plans’ manipulation since it  continues  with verification 

even  if  any  invalid  or  non-applicable  action  is  found.  Such  an  action  is  just 

omitted. This is the key feature of VisPlan and marking action mutex-containing 

stands within this idea.   In fact, VisPlan provides no guarantee for a plan being 

valid  unless  it  contains  exclusively  applicable  actions  (and  satisfies  a  goal 

conditions).  Still, the user is given possibility to manually adjust the plan when 

situation like this comes up. 

When processing an action during the verification either at its start time or its 

end  time,  besides  checking  its  own conditions,  the  algorithm checks  also  “in 

progress” actions (those which have already started but haven’t finished yet) to 

verify their “over all” conditions. Such verification is performed only when the 

inducing action is applied (either at its start time or end time).

In case an action’s “at start” effects have been applied at action’s start time and 

it has later been found that any of action’s “over all” and “at end” conditions are 

not  satisfied,  the  verification  process  is  reverted  back  to  the  point  when  the 

affected action was applied at its start time, the action is omitted then and marked 

as non-applicable.

Similarly  to  STRIPS  plans’  verification,  possibly  missing  conditions  for  an 

action are found while processing the action. However, for durative actions we 

store three different types of missing conditions: “at start”, “over all” and “at end” 

missing conditions sets. Thus, in a future plan analysis, missing conditions are 

already available without need to be computed.
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5.3. Visualization

As shown in the right-upper frame of Figure 3, plan’s actions are visualized as 

cells (boxes) of fixed size filled by the action name. Each action is coloured green 

or  red (or  any other  colour  chosen  in the  user preferences  of  the  application) 

depending  on  whether  the  action  is  applicable  or  non-applicable.  Besides 

applicable and non-applicable action states there exist several more action states; 

for  each  state  VisPlan  uses  different  visualization  properties  (color,  available 

information,  ...).  Causal  relations  between the actions  are visualized by edges. 

These  edges  are  annotated  by  grounded  facts  that  are  “passed”  between  the 

actions. Only the causal relations for the currently highlighted action are displayed 

to remove a cluttered view. Display position of the edges is automatically adjusted 

every time an action is highlighted in order to assure that the edges do not overlap 

and  their  labels  (describing  the  causal  relations)  are  fully  readable.  The  edge 

position adjustment is vertical (with fixed space size between edges), as well as 

horizontal (source and target points of edges on the same cell have regular space 

between themselves).

If the process of verification is still going on, actions whose state has not been 

decided yet are coloured gray (or any other colour chosen by the user). The state 

of an action can be one of the following:

• invalid (action doesn’t match any definition in the planning domain file),

• un-decided (action is still being checked by the verification module),

• applicable (action is valid and can be used),

• non-applicable (action cannot be used due to non-satisfied preconditions),
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• mutex-containing (in  temporal  plans only;  any condition or  effect  is  in 

mutex with the effect of another action in the plan at exactly given time).

Two special actions, “init” and “goal” are coloured differently to distinguish their 

special meaning. These are the only two actions which cannot be modified in any 

way.

For the highlighted action, the system displays complete information about the 

action including the satisfied and violated preconditions and actions giving these 

preconditions (the right-bottom frame of Figure 3), as well as world change caused 

by the action (Figure  4). World change illustrates which facts are true prior the 

action  and  which  after  the  action.  Naturally,  world  state  information  is  not 

available  for  non-applicable,  un-decided,  invalid  or  mutex-containing actions. 

Facts that were subject of change (either added or deleted) are marked (by colour 

and/or by strike through their names). 

On the left side of the window a list of actions is shown to provide a brief plan 

summary  (the  left  frame of  Figure  3).  Actions  in  the  list  are  sorted  by  their 

order/start time and are visually differentiated based on their states. The list gets 

updated every-time a modification is done to the plan. Selecting an action in the 

list results in adjusting the scrollbar view to comprise the visualized action in the 

graph and vice versa. If the user needs more space for graphical plan analysis 

he/she is free to hide the action summary list completely (as well as informative 

tab pane at the bottom of the application).

During a plan analysis, the ruler (Figure 3) helps to orientate within a time axis. 

Its  default  size  of  units  is  one  inch  (without  dependence  on  user’s  screen 

resolution). Size of units can be adjusted by the combo box (upper-right frame of 

Figure 3) or by dragging any tick of the ruler.

While  dragging  an  action  (to  change  its  position),  actions  providing 

preconditions  and actions  using  effects  of  the  dragged action  are  dynamically 

highlighted,  so  that  the  user  knows where  he/she  can  drop  the  action.  When 

actions  are  swapped  it  usually  changes  causal  relations  between  the  actions 

significantly.  Due  to  this  fact,  highlighting  preconditions  and  effects  partially 

wouldn’t provide enough information. Therefore the plan is re-verified when an 
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action changes its order while dragging. Having such information the program 

chooses the correct actions to highlight. Colour for highlighting is the same as 

colour for preconditions/effects edges. If actual colour of an action is the same as 

the colour for edges when highlighting, another (but similar) colour is used then.

Each user has an opportunity to set his/her own user preferences regarding the 

visual appearance and behavior of software according to the personal needs. The 

user preferences are saved in the home directory of the user and include various 

(mostly graphical) settings, for instance:

• colors for actions (each state has its own color), edges (both preconditions 

and effects) and ruler,

• font size (for different GUI components),

• automatic loading of last successfully loaded files (domain, problem, plan) 

at start-up,

• default action width in STRIPS-like plans.

5.3.1. Visualization of STRIPS plans

As the STRIPS plans are sequential, cells representing the actions are displayed 

in a row. When changing the order of an action by drag & drop, the new order is 

computed after each movement by checking the horizontal  position of the cell 

being dragged and ruler’s units. In the case the new position is different from the 

current  one,  a  cell  placed  at  that  moment  on  the  “new  order”  position  is 

immediately  repositioned  to  the  “current  order”  position,  and  thus  these  two 

actions swap their position. When the action is finally dropped, it is just placed in 

the row.
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5.3.2. Visualization of temporal plans

Ruler units in temporal plans reflect durations of actions. However, as individual 

durations of actions within a plan can vary a lot, the median duration has been 

chosen to be the initial ruler unit. Auxiliary ticks are also present on the ruler. All 

actions (meaning cells) are also guaranteed to have a minimum horizontal size (in 

order to be visible even if real duration is too small).

Horizontal  position  of  an  action  is  fully  determined  by  its  start  time  and 

duration. Although actions in temporal plans can overlap with each other, cells 

representing  the  actions  are  positioned  in  order  to  be  fully  visible.  This  is 

performed by placing the cells in rows. All cells in the same row have the same 

vertical position. Cells position adjustment is iterative and cells are positioned into 

the first row (from top) where the cell would not overlap with other cells (Figure 5

).

When an action is being dragged, in contrast to STRIPS plans, the start time of 

the action is determined by the horizontal position only (multiplied by the current 

ruler units). In such a situation re-verification of the plan is done only when the 

action has changed its  position significantly, meaning the  relative order  of  the 

dragged action margins (start/end) changed with respect to other actions.

5.4. Plan Modifications

In  addition  to  visualization  of  plans  the  software  supports  interactive 

modification of the plan. The following operations with plans are supported:

• inserting  new  actions  (selection  of  actions  and  their  parameters  is 

31

Figure 5: Example of visualisation of temporal plans.



automatically restricted to the current planning domain and the problem 

and offered in the corresponding number of pre-filled combo boxes),

• removing actions,

• modifying actions,

• changing the order of actions in STRIPS plans and start time of action in 

temporal plans by drag & drop technique.

Modifications  are  revertible  and  are  under  control  by  undo  manager.  Undo 

manager waits for performing an undoable (revertible) modification, which is any 

of the above. When an undoable change is fired, undo manager clones and saves 

both the current plan and verificator state (this includes the constructed layers of 

facts,  the causal relations among actions,  actions’ indexes to layers before and 

after application,  missing conditions).  On the one hand,  this  approach is  more 

memory consuming, due to the fact that undo manager saves as many plans and 

verificator  states  as  is  the  limit  of  possible  “undo”s.  On  the  other  hand,  the 

approach is time-saving. Re-verification is not needed to be performed after each 

“undo”/“redo”. All the necessary steps include just retrieving previous/next plan 

and  verificator  state  plus  redrawing the  graph based on the  retrieved plan.  In 

comparison  with  a  memory-saving  approach,  which  would  save  only 

modifications’  description  and  would  perform  opposing  action  during 

“undo”/“redo”, the chosen approach is easier and more “defect-resistant”. That is 

because it coherently maintains entire plans and states.

Besides the already mentioned plan and verificator state, undo manager saves 

two more items for user-friendliness and informative purposes. These include id of 

an action causing an undoable change (in order to select this action and to adjust 

view  to  comprise  it)  and  a  string  describing  the  change  (in  order  to  print 

informative message onto status panel at the bottom of the application).

Modified  plans  can  be  saved in  the  text  format  to  either  the  same (initially 

loaded) file or to a new file (save as).

32



6. Working with VisPlan

In this chapter we will provide a brief introduction to VisPlan from the end-user 

perspective.  While describing the functionality of VisPlan from an algorithmical 

point of view in the previous chapter, many usability issues have already been 

mentioned. In the next paragraphs these will be skipped or discussed just very 

briefly, so that we can focus on a new information.

When we launch VisPlan - a desktop application written in Java programming 

language for the first time, the GUI (Graphical User Interface) components (main 

visualization and informative windows) are blank, as we haven’t loaded any plan, 

yet. In order to verify and visualize a plan, the application needs 3 separate files: 

domain, problem and plan file. We can specify such a trio by either selecting “File 

->  Load”  from the  application menu,  or  clicking  on  the  “load  button”  from 

toolbar, or pressing “Ctrl + L” key sequence. In either case, a “Load files” window 

pops-up (Figure 6). File choosers are available here as well, so that we have an 

option to specify files by browsing with a file manager. File choosers implement 

file filters which, in case of domain and problem files, show only files with “pddl” 

suffix and, in case of plan file, show only files with “txt” suffix.

After selection, domain and problem PDDL files are parsed and if they contain 

any syntax error, a  list of the error(s) is printed,  as shown in  Figure 7,  and the 
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program does not continue with verification.

After domain, problem and plan are correctly parsed, the plan is shown to the 

user, so that he/she can immediately obtain a rough idea of the plan organization 

in a time axis. The user is free to adjust sizes of two informative windows (one on 

the  left  side  and  the  other  at  the  bottom),  or  he/she  can  hide  the  mentioned 

windows completely using small split pane arrows (in favor to main visualization 

window). A concrete example of the GUI with plan already displayed might look 

the screenshot in Figure 3 (page 17).

Simultaneously,  a  separate  program  thread  is  started which  performs  plan 

verification.  This  verification process  is  iterative.  See section 5.2.  Verification 

(page 18) for more details how the verification is performed.

As an iterative process of verification finishes, the plan visualization changes as 

well. The plan’s actions, visualized as graph vertices, are coloured with respect to 

their  action  state (changing  default  colours  will  be  described in  the  next 

paragraphs). In addition to that, if cursor hovers above an action, action’s tooltip 

(showing action’s name plus parameters) is displayed. If the cursor hovers above 

an edge, representing a  causal relation, the tooltip displays edge’s name and  the 

both actions which it interconnects. Such a name represents predicate (or set of 

predicates)  that  is,  at  the  same  time,  an  effect  of  the  source  action  and  a 

precondition for the destination action.  Figure 8 demonstrates this. Green edges 

represent  preconditions,  blue  edges  represent  effects  of  the  action  in  question 

(again, these colours can be adjusted in the user preferences).
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In order to keep the graph transparent, the edges are not displayed by default (as 

this would mean, in most cases, displaying too many edges simultaneously). The 

edge visibility policy is therefore restricted only to one action at the same time, 

both incoming (precondition) and outgoing (effect) edges, as shown in Figure 8.

The  left  frame  of  Figure  3 (page  17) shows  how actions  are  consecutively 

ordered in the plan. It provides a brief overview of  the  actions.  This overview 

might be handy in cases, when a user wants to examine some sequence of the 

plan, but corresponding actions in the graph do not all fit into the size-restricted 

window. The overview graphically distinguishes applicable and not applicable and 

other types of action states (by font colour).

In addition to edges becoming visible when an action is hovered (meaning the 

cursor appears above the action), full action information report is generated out in 

a separate window (The bottom frame of Figure 3 (page 17)). This report includes:

• action name (plus parameters)

• either  order of the action (for strips plans) or alternatively start  time + 

duration (for temporal plans)

• grounded  preconditions  (coloured  green/red  if  satisfied/unsatisfied, 

respectively)

• for each precondition an action on which it depends

• which preconditions are not satisfied (if any)

• grounded effects

• for each effect actions depending on this effect
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Besides  full  action  information,  a  “world  state  change”  information  for  the 

“hovered” action is displayed in another separate information tab (Figure 9). The 

“world state change” view shows predicates applicable before and after the action. 

Moreover,  predicates  removed  and  added  are  visually  separated  from  the 

(unchanged) rest of the predicates.  The user can freely switch between the two 

mentioned information views, as they are located in a common tab pane (at the 

bottom part of the graphical interface).

It is possible for user to adjust the width of the vertices (actions), so that it better 

reflects his/her needs. This can be done using a size combo-box (the top right 

frame of Figure 3 (page 17), or by dragging any ruler’s tick.

The following plan changes are available:

• Removal  of  selected  action  (by  pressing  “Delete”  button  or  clicking 

“Remove action” toolbar  button or  menu item).  All  the toolbar  buttons 

provide  a  tooltip  with  a  brief  button’s  functionality  description. 

Furthermore,  toolbar  buttons  which cannot  be used at  that  moment are 

disabled automatically.

• New actions can be added (by pressing “Ctrl + I” button or clicking “Insert 

new action” toolbar button or menu item). In an action addition dialog 

(Figure  10),  these  items must  be  specified:  operator  name  and  all  its 

parameters (provided by combo boxes),  order (for STRIPS-like plans) or 

alternatively a start time and duration (for temporal plans). Correctness of 

the items is automatically validated.
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• Existing actions can be modified (by double-clicking on the action or by 

clicking “Modify action” toolbar button or menu item). An action addition 

dialog pops-up (Figure 10), however, with the predefined values for in this 

case.

• Changing  order  (or  start  time  for  durative  actions)  by  drag&drop 

technique.

• Eventually, an “undo”/“redo” feature is available as well,  which is very 

useful  when  the  user  has  performed  any  unwished  plan  modification. 

“Undo”/“redo” can be invoked by clicking on respective toolbar buttons, 

menu items or by pressing the “Ctrl + U” or “Ctrl + R” keyboard buttons.

If  any  of  the  the  above  plan  modification  actions  is  performed,  the  plan  is 

revalidated from the removed/added/modified action onwards.

If the plan is modified, the user is given an option to export the plan into text 

file. Moreover, if the plan had been changed but not saved before the user exits the 

application, an exit confirmation dialog is displayed where the user is prompted to 

either save the modified plan or exit without saving.

Each user has an opportunity to adjust his/her own user preferences according to 
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his/her personal needs. User preferences include various settings, for instance:

• actions’  and  edges’  colours  (single  colour  for  different  kinds of 

actions/edges),

• resizability of vertices representing actions,

• automatic loading of last successfully loaded trio (domain, problem, plan) 

at startup,

• and much more.

User preferences are stored in the ’preferences’ file under application’s ’“visplan” 

directory. “.visplan” directory is automatically created in the user’s home directory 

just after the settings are saved for the first time. Application’s preferences dialog 

can be invoked by either selecting “Edit -> Preferences” from application’s menu, 

or  clicking  on  the  “Preferences”  toolbar button,  or  pressing  “Ctrl  +  P”  key 

sequence. Then, preferences dialog pops-up (Figure 11).

Useful information about the application can be easily found by invoking  an 

“About” dialog (select “Help -> About” from menu). Besides short application 

description, version and author, user is provided a link to the VisPlan’s homepage, 

where news, up-to-date version of the software and other interesting information 

are regularly stated.
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7. VisPlan Implementation

In this chapter an overview of VisPlan implementation will be provided. We will 

focus on the decomposition of the program to the smaller closed program units, 

called modules. We will provide a brief description of each module and describe 

how the modules interact with each other, so that the reader obtains a general 

overview of how the program works. On the other hand, we will not go into much 

details about implementation of single classes. The reader may consider to look to 

the JavaDoc attached on the CD-ROM, where he/she can find more information 

about the classes and their methods and data fields. Similarly, the alogithms used 

in  the  program will  not  be  covered  here  as  they  have been  mostly  discussed 

previously in the verification and visualization sections.

7.1. External libraries used in the program

7.1.1. JGraph Java library11

JGraph is an open source graph visualization Java library. It is based on the 

mathematical graph theory. JGprah is fully compatible with the Swing. Therefore 

it can be used within the Swing12 GUI applications quite easily. For example, the 

main component for displaying graph in JGraph library is a direct subclass of the 

Swing class javax.swing.JScrollPane13, meaning it has all the inherited methods of 

the JScrollPane component available.

JGraph  provides  a  wide  range  of graph  drawing  functionality,  such  as 

automatical layouting and performing analysis of graphs. The way how a graph is 

displayed can be adjusted by JGraph’s API (Application Programming Interface) 

and graphs can also caryy a certain logic, as other objects can be associated with 

the graph components.

11 The library has been downloaded and more information retrieved from: 
(http://www.jgraph.com/jgraph5.html, 2010)

12 Swing is the primary Java GUI toolkit
13 It is a component which is both vertically and horizontally scrollable
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7.1.2. PDDL4J Java library14

PDDL4J is an open source Java library. The goal of the PDDL4J is to provide a 

low-level  functionality  for  Java  applications  manipulating  files  written  in  the 

PDDL language.

The  library  contains  a  parser for PDDL  3.0 version.  The  parser  can  be 

configured to accept only specified requirements of the PDDL language. After a 

file  is  successfully  parsed,  PDDL4J  classes  (objects)  then  carry  individual 

elements of the parsed file. The library also implements an error manager used by 

the parser to hold possibly encountered errors and warnings.

7.2. Single handling of different plan types

During the program development, at the time when we were adding a support 

for temporal planning, we have found out that there were too many cases we had to 

deal with a temporal plan in a different way compared to a STRIPS-like plan. This 

lead us to create a common parent class for the both types of plans and a subclass 

for  each  of  the  types.  The  subclasses  handle  the  same  situation  differently, 

however, now we have a common way to call  their  methods -  via the  abstract 

parent class.  This principle  is  used everywhere we need to treat  a situation in 

different  way based  on  the  plan  type.  The  following  classes/modules  use  the 

principle15: Plan, Op (operator), Verificator, State, Visualizer, Ruler.

7.3. Program modularity

7.3.1. GUIView

GUIView is  the  main  program  module.  Because  it defines the  main  GUI 

window with all the graphical components, it defines many listeners and handlers 

for  all  the  user  inputs (such  as  clicking  on  an  action  in  the  plan,  pressing  a 

keyboard button,  selecting an item from the file  menu,  ...).  Each listener  than 

reacts on the inputs, in most cases it calls other module’s methods.

Besides all the graphical components (including other windows like preferences 

14 The library has been downloaded and more information retrieved from: 
(http://sourceforge.net/projects/pdd4j/, 2010)

15 In the next sections, if we mention a Visualizer class for example, it means we have both 
StripsVisualizer and TemporalVisualizer classes on mind, but we don’t distinguish between 
them as they have the same API in majority of cases.
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or  add  action  dialog)  the  module  contains  all  other  main  modules  and 

synchronizes them. These are  Plan,  Graph, Ruler, State,  Verificator,  Visualizer 

and UndoManager.

7.3.2. Plan

The Plan class represents a plan, what is a set of plan actions. Each plan action 

consists of instantiated operator, start time and duration, all encapsulated into one 

object of PlanAction class.

7.3.3. State

This module represents states of the world during the plan execution. Moreover, 

for each plan action it saves preconditions and effects, missing preconditions and 

links  to  previous  actions  on  which  it  depends (causal  relations).  This  can  be 

achieved  by  various  representations.  Therefore,  State  class  is  abstract  and  is 

extended  by  BitSetState  class  which  implements  bitset  representation.  If  the 

concrete implementation ever needs to be modified or replaced (by more effective 

representation), a new class would extend State class and thus not influence other 

modules of the program.

State class is responsible for:

• creating world state layers during the plan execution simulation

• returning specific world state (before or after application of an action)

• returning preconditions and effects of an action

• returning missing preconditions of an action

• returning causal relations of an action

7.3.4. Verificator

It  is  a  module  which  executes the  plan  verification.  Verification  process  is 

executed as an independent thread and runs simultaneously with the main (GUI) 

thread. This is useful in case the verification of the plan takes a long time. In such 

case the user can still work with the plan - without waiting for the verification 

process to finish.

Verificator stands between GUIView and State. GUIView uses Verificator for 

running the  verification,  answering  questions  about  applicability  and  updating 
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actions’ information (like the causal relations of actions, preconditions and effects, 

missing preconditions, ...). Verificator itself does not contain such data, it asks the 

State for the data. Then it interprets them to GUIView.

After the verification process is finished, Verificator colours actions (vertices in 

the graph) with corresponding colour. Moreover, it also creates edges in the graph 

representing causal relations.

7.3.5. Visualizer

Visualizer’s main function is to show the plan. It  iterates over plan’s actions 

(meaning vertices) and for each of them it computes where it should be placed (in 

plane). Visualizer distinguishes between strips/temporal plans. For temporal plans 

the visualization presents a Gantt chart.

Besides of that it handles plan modifications as well. Especially when the user 

changes position of actions by drag&drop, it handles the movement of actions.
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8. Future Development

The program is under continuous development and all the relevant information 

plus the up-to-date version of the software can be downloaded from:

http://glinsky.org/visplan

In the future VisPlan is intended to support additional features such as:

• wider support of PDDL requirements  

- disjunctive-preconditions: allows or in goal and preconditions

- existential-preconditions: allows exists in goal and preconditions

- universal-preconditions - allows forall in goal and preconditions

- quantified-preconditions: equivalent to existential-preconditions + 

universal-preconditions

- conditional-effects: allows when clause in action’s effects

- fluents - allows function definitions and use of effects using assignment 

operators and numeric preconditions

• support of plans specified in PDDL+

• own planning module

- this feature would make possible to find a solution (the plan) for a given 

planning problem directly from the program

- user would not need to specify already found plan for a problem

-  this  would  be  an  important  step  towards  making  VisPlan  a  complex 

planning system, not only a plan analyser

• support for finding possible plan modifications in order to solve flaws in 

the plan

- program would not just recognize flaws but would provide possible plan 

modifications with an intent to satisfy a goal

• graphs visualizing a timeline of predicates and numerical variables during 

plan execution

- user would be able to track chosen predicate or variable (such as amount 

of gas in a tank of a car), thus gaining even better overview of a plan
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Conclusion

The thesis, particularly VisPlan as the practical implementation of the thesis, 

provide an environment for plan analysis.  It encapsulates several different plan-

manipulating  tasks  into  one  single  program.  This  includes  parsing  the  PDDL 

domain and problem,  parsing the plan file, verification of the plan and, finally, 

visualizing the  plan.  The  plan  visualization  is  based  on  showing  the  causal 

relations between actions.

VisPlan, however, is not dedicated only to a static plan analysis. It provides tools 

which  interactively  modify  the  plan  under  examination,  so  the  user  has  a 

possibility to follow the plan execution changes in the real time based on his/her 

modifications. The “undo” feature may be very useful in these cases.

The program pays special attention to automatize everything what is possible 

and reasonable. From this point of view it doesn’t require any unnecessary actions 

or input from the users. Some examples of such (artificially intelligent) behavior 

may include automatic decision of the plan type (and thus automatic decision of 

the proper ways of verification/visualization of the plan) or automatically prefilled 

combo-boxes representing arguments for an action in the action addition dialog.

In contrast  to  other  already existing plan analysis  tools,  such as  itSimple  or 

GIPO, VisPlan is natively able to handle also plans which are not valid. This is 

one of the key features of VisPlan and the main idea is to skip actions from the 

verification process once found they are non-applicable/invalid. This allows us to 

examine also the rest of the plan after the first non-applicable action. It can be said 

that this approach is kind of  a  novelty. The results of the thesis have also been 

presented  on  the  KEPS  workshop  (Knowledge  Engineering  for  Planning  and 

Scheduling) organized within  ICAPS 2011 conference (International Conference 

on Automated Planning and Scheduling) (Glinský and Barták, 2011).

VisPlan  is  still  under  continuous  development.  Many  useful  features  are 

intended to be added to VisPlan, such as displaying a timeline of predicates and 

numerical variables. Considering our future goals, summarized in the previous 

chapter, we are still at the beginning.
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• VisPlan program (compiled and bundled in jar file, including libraries)
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Appendix

A. Concrete example of (STRIPS-like) domain file

Description:

“The Tower of Hanoi or Towers of Hanoi , also called the Tower of Brahma or 

Towers of Brahma, is a mathematical game or puzzle. It consists of three rods, and 

a number of disks of different sizes which can slide onto any rod. The puzzle 

starts with the disks in a neat stack in ascending order of size on one rod, the 

smallest at the top, thus making a conical shape.

The objective of the puzzle is to move the entire stack to another rod, obeying the 

following rules:

• Only one disk may be moved at a time.

• Each move consists  of taking the upper  disk from one of the rods and 

sliding it onto another rod, on top of the other disks that may already be 

present on that rod.

• No disk may be placed on top of a smaller disk.”

(http://en.wikipedia.org/wiki/Tower_of_Hanoi, 2011)

(define (domain hanoi)16

(:requirements :strips)

(:predicates 

(clear ?x)

(on ?x ?y)

(smaller ?x ?y))

(:action move

:parameters (?disc ?from ?to)

:precondition (and (smaller ?to ?disc) 

(on ?disc ?from) 

16 The hanoi domain and problem example has been taken and slightly modified from: 
(http://www.inf.uos.de/schmid/LB-Kog/hanoi.lisp, 2011)

50



(clear ?disc) 

(clear ?to))

:effect  (and (clear ?from) 

(on ?disc ?to) 

(not (on ?disc ?from))  

(not (clear ?to)))

))
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B. Concrete example of (STRIPS-like) problem file

(define (problem hanoi-pb1)

(:domain hanoi)

(:requirements :strips)

(:objects rod1 rod2 rod3 d1 d2 d3)

(:init 

(smaller rod1 d1)

(smaller rod1 d2)

(smaller rod1 d3)

(smaller rod2 d1)

(smaller rod2 d2)

(smaller rod2 d3)

(smaller rod3 d1)

(smaller rod3 d2)

(smaller rod3 d3)

(smaller d2 d1)

(smaller d3 d1)

(smaller d3 d2)

(clear rod2)

(clear rod3)

(clear d1)

(on d3 rod1)

(on d2 d3)

(on d1 d2))

(:goal  (and (on d3 rod3)

(on d2 d3)

(on d1 d2)))

)
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C. Concrete example of (temporal) domain file

Description:

Essentially, this is a logistics domain about moving packages between locations 

by trucks under certain constraints. The loading space of each truck is organized 

by areas.

(define (domain trucks)17

(:requirements :typing :adl :durative-actions :fluents)

(:types truckarea location locatable - object

truck package - locatable)

(:predicates (at ?x - locatable ?l - location)

(in ?p - package ?t - truck ?a - truckarea)

(connected ?x ?y - location)

(free ?a - truckarea ?t - truck)

(delivered ?p - package ?l - location))

(:functions (drive-time ?from ?to - location))

(:durative-action load

:parameters (?p - package ?t - truck ?a1 - truckarea ?l - location)

:duration (= ?duration 1)

:condition (and (at start (at ?p ?l))

(at start (free ?a1 ?t))

(over all (at ?t ?l)))

:effect (and (at start (not (at ?p ?l)))

(at start (not (free ?a1 ?t)))

(at end (in ?p ?t ?a1))))

(:durative-action unload

:parameters (?p - package ?t - truck ?a1 - truckarea ?l - location)

:duration (= ?duration 1)

17 The trucks domain and problem example has been taken and slightly modified from: 
(http://zeus.ing.unibs.it/ipc-5/generators/Domains/trucks-Time.pddl, 2011)
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:condition (and (at start (in ?p ?t ?a1))

(over all (at ?t ?l)))

:effect (and (at start (not (in ?p ?t ?a1)))

(at end (free ?a1 ?t))

(at end (at ?p ?l))))

(:durative-action drive

:parameters (?t - truck ?from ?to - location)

:duration (= ?duration (drive-time ?from ?to))

:condition (and (at start (at ?t ?from))

(over all (connected ?from ?to)))

:effect (and (at start (not (at ?t ?from)))

(at end (at ?t ?to))))

(:durative-action deliver

:parameters (?p - package ?l - location)

:duration (= ?duration 1)

:condition (and (at start (at ?p ?l))

(over all (at ?p ?l)))

:effect (and (at end (not (at ?p ?l)))

(at end (delivered ?p ?l))))

)
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D. Concrete example of (temporal) problem file

(define (problem truck-1)

(:domain trucks)

(:objects

truck1 - truck

package1 - package

package2 - package

package3 - package

l1 - location

l2 - location

l3 - location

a1 - truckarea

a2 - truckarea)

(:init

(at truck1 l2)

(free a1 truck1)

(free a2 truck1)

(at package1 l3)

(at package2 l3)

(at package3 l1)

(connected l1 l2)

(connected l1 l3)

(connected l2 l1)

(connected l2 l3)

(connected l3 l1)

(connected l3 l2)

(= (drive-time l1 l2) 4.3)

(= (drive-time l1 l3) 7.1)

(= (drive-time l2 l1) 4.3)
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(= (drive-time l2 l3) 3.8)

(= (drive-time l3 l1) 7.1)

(= (drive-time l3 l2) 3.8))

(:goal (and 

(delivered package1 l1)

(delivered package2 l2)

(delivered package3 l2)))

(:metric minimize (total-time))

)
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