
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Peter Ondrú²ka

Automatic assembly of jigsaw puzzles
from digital images

Department of Software Engineering

Supervisor of the bachelor thesis: Mgr. Ji°í Sedlá°

Study programme: Computer Science

Specialization: General Computer Science

Prague 2011

I would like to thank my thesis advisor Mgr. Ji°í Sedlá° for his time, feedback
and a lot of advice. I would also like to thank to my family and friends for
their love and support.

I declare that I carried out this bachelor thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1
of the Copyright Act.

In date signature

Názov práce: Automatické skladanie puzzle z digitálnych snímkov
Autor: Peter Ondrú²ka
Katedra: Katedra Softwarového Inºenýrství
Vedúci bakalárskej práce: Mgr. Ji°í Sedlá°

Abstrakt: V tejto práci popí²eme nový algoritmus na automatické skladanie
klasických obrázkových puzzle pomocou po£íta£a. Automatické skladanie za-
h¯¬a spracovávanie obrázkov s naskenovanými dielcami, výpo£et rie²enia na
základe vzájomnej kompatibility dielcov a vyprodukovania obrázku s výsled-
ným rie²ením. Predchádzajúce metódy na rie²enie tejto úlohy vyuºívali len in-
formáciu o tvare dielcov. Popísaný algoritmus vyuºíva informáciu o tvare ale aj
farbe dielcov a tieº priná²a nieko©ko zlep²ení v rôznych aspektoch celého pro-
cesu. Testovanie nakoniec poukázalo, ºe táto metóda dosahuje lep²ie výsledky
ako v²etky doteraj²ie algoritmy ke¤ dokázala zloºi´ puzzle o ve©kosti viac ako
1000 dielcov.

Klú£ové slová: puzzle, spracovávanie obrazu, rozoznávanie vzorov

Title: Automatic assembly of jigsaw puzzles from digital images
Author: Peter Ondrú²ka
Department: Department of Software Engineering
Supervisor: Mgr. Ji°í Sedlá°

Abstract: This thesis describes a new approach to automatic assembly of clas-
sical jigsaw puzzles by computer. The process involves processing scanned im-
ages of puzzle pieces, computing a solution based on piecewise compatibility
and producing an image of the solution. Whereas previous approaches to this
problem were mostly concentrated on using only the shape of the pieces, the
method we proposed uses both shape and colour information. The method also
introduced several improvements in di�erent aspects of solving. The method
was able to successfully solve a puzzle of more than 1000 pieces and thus
outperformed previous algorithms.

Keywords: jigsaw puzzle, image processing, pattern recognition

Contents

1 Introduction 3
1.1 Problem formulation . 3
1.2 Di�culties of the problem . 4

2 Background 5

3 Method overview 7

4 Data extraction 8
4.1 Shape extraction from back scan 9

4.1.1 Format of images . 10
4.1.2 Extraction method . 10

4.2 Piece segmentation with known shape 10
4.2.1 Piece detection and assignment of shape 11
4.2.2 Matching shape to piece position 13

4.3 Edge classi�cation . 14
4.4 Colour extraction . 16

5 Puzzle solving 17
5.1 Local compatibility . 17

5.1.1 Filtering based on logical type 18
5.1.2 Optimal layout of compatible edges 18
5.1.3 Compatibility classi�cation model 20

5.2 Frame assembling . 22
5.2.1 Properties of the frame 22
5.2.2 Reduction to max-cost bipartite matching 23

5.3 Interior assembling . 24
5.3.1 Greedy algorithm . 25

6 Solution visualization 26
6.1 Computation of geometric con�guration 26

6.1.1 Local position dependencies 27
6.1.2 Con�guration based on dependencies 27

6.2 Image composition . 28

1

7 Implementation and optimization 29
7.1 Parallelisation . 29
7.2 Special algorithms . 30

7.2.1 Shape optimization algorithm 30
7.2.2 Computing of compatibility table 31

8 Experimental results 32
8.1 Choice of testing data . 32
8.2 Performance . 33

8.2.1 Robustness . 34
8.2.2 Shape-only case . 34
8.2.3 Running time . 34
8.2.4 Memory requirements 35

9 Discussion 36

10 Conclusion 37

References 38

11 Attachment 40
11.1 Source code and testing data . 40
11.2 Example input 1 . 41
11.3 Example input 2 . 42
11.4 Solution to a 80-piece puzzle . 43
11.5 Solution to a 208-piece puzzle 44
11.6 Solution to a 572-piece puzzle 45
11.7 Solution to a 1008-piece puzzle 46

2

Chapter 1

Introduction

In this thesis we will introduce an e�cient algorithm for automatically
�nding a solution to a standard jigsaw puzzle. A jigsaw puzzle is a common
puzzle that consists of an image divided into many small pieces. Solving the
jigsaw puzzle involves assembling these pieces together to form the original
image.

An automatic solution to a jigsaw puzzle is a highly non trivial problem.
It becomes even more complex if information about the desired solution, i.e.
the original image, is not available. The existing algorithms are usually based
on various techniques used in manual solving. Although several automatic
methods solve the problem e�ciently, none of them were designed to solve
very large puzzles, i.e. more than a thousand pieces.

The automatic solving of jigsaw puzzles has many applications, namely in
image reconstruction, computer vision, robotics, combinatorial optimization
and other �elds of applied mathematics. Existing automatic methods also
provide insight into computer e�ciency compared to classical manual solving.

1.1 Problem formulation

In this thesis, the term automatic solution to a jigsaw puzzle by computer
will mean a process of solving the puzzle where only a minimum of human
intelligence is required and most of the logic is handled by a computer.

The input of this process is a set of digitally scanned images of puzzle
pieces. This is the only input; we do not use other information like the desired
assembled image, which is usually available at the top of the jigsaw puzzle box.

The algorithm extracts the pieces from the input images and assembles an
anticipated solution of the puzzle. The problem of puzzle assembling itself can
be de�ned as an optimization problem of �nding the con�guration maximizing
local compatibility of neighbouring pieces.

The output is an image of these pieces in a geometrical con�guration cor-
responding to the anticipated solution. This image should be very similar to
that of the manual solution (Figure 1.1).

3

Figure 1.1: Automatic solving of puzzles.

Puzzle type speci�cation

We will focus on jigsaw puzzles where each piece has four edges that can
connect to other pieces by uniquely corresponding indents and tabs. This
representation corresponds with a model where each piece is a square and the
solution is a convenient placement of these squares in a rectangular grid. This
abstraction is also known as an instance of square-tilling problem [11].

1.2 Di�culties of the problem

The problem of solving a jigsaw puzzle is not only theoretically intriguing
but also technically challenging.

First of all the jigsaw digitalization process introduces several di�culties.
Discrete input data obtained by a scanner usually contain several kinds of
noise and speci�c types of error, e.g. shadows or refections. This dramatically
a�ects the quality of extracted data. For these reasons, very robust processing
methods and techniques are necessary.

Moreover, the fact that we do not have information about the desired
solution makes the problem very hard. In general, the problem of �nding a
solution to this type of puzzle is NP-complete [11]. This means that no e�cient
polynomial algorithm is known. This complexity has also lead to production
of puzzles with high rewards for �nding solution [12].

Although the variability of pieces in shape and colour can help to deter-
mine matching edges in the solution, it is still very challenging to develop
combinatorial method that can e�ectively use the noisy information

In conclusion, it is very hard to design a reliable algorithm that can handle
jigsaw puzzles with a very large number of pieces.

4

Chapter 2

Background

Because of a interesting nature of the problem, many attempts of computer
solving of real jigsaw puzzle were made.

One of the �rst results is from Freeman and Gardner [1] followed by many
papers [2] [3] [4]. These earlier approaches were rather simple and used only
information about shape of the pieces. However they were able to assemble
the puzzles of size a few dozens of pieces.

The raising performance of modern computers and possibility to process
more information allowed development of more sophisticated methods. The
�rst attempt was to use each piece's colour together with shape from Chung,
Fleck and Forsyth [5]. Their work also showed the new combinatorial approach
of transforming the problem into an instance of the Travelling Salesman Prob-
lem [13]. As demonstrated, this method was able to solve the puzzle of size 54
pieces.

Later methods [6] [7] improved the quality of piece's shape extraction.
Precise information of the shape was shown as key aspect during successful
solving and allowed to develop methods able to solve puzzles of more than 100
pieces.

The project of Atsmon and Varon [8] from 2009 dramatically improved the
technique of extracting the shape information. To obtain high precision was
each piece scanned three times; twice from the front side, against the back-
ground of di�erent colour, and once from the back side. Data obtained by this
method was good enough to assemble the biggest puzzles yet of size 572 pieces.

The general nature of solving a jigsaw puzzle also helped the development
of methods of other connected problems. One of them is solving a puzzle where
each piece is a square which implies we can not use any shape information. The
best result in this area is from Cho, Avidan and Freeman [9] whose probabilistic
algorithm was able to solve puzzle of size 400 pieces. We must note, this
puzzles were obtained synthetically, by digital dividing of the picture into
squares. Data of this type does not contain many kinds of noise present in the
extracted colour from digitalised real puzzle.

5

Finally, one of the curious methods of piece-wise compatibility checking
used the "mechanic oraculum"[10]. This oraculum was able to physically check
if the given pieces were really shape compatible.

To sum up, many previous approaches were made to solve the de�ned
problem with various results. Most of them use only the shape information
of the pieces and can be improved in several ways to possibly achieve better
results.

6

Chapter 3

Method overview

Our proposed method for solving of jigsaw puzzles is improving techniques
used in prior approaches discussed in the background chapter and also invent-
ing some new. The method is primarily designed to be able successfully and
e�ectively solve the puzzles of sizes which were not possible to solve before.
The intended performance was also con�rmed during testing when the method
was able to solve the puzzle of size more than thousand of pieces beating the
former best result in this area. The method itself consists from several consec-
utive steps resulting to �nal solved puzzles.

The input data consists of images obtained by scanning puzzle pieces on
a standard scanner. To improve the precision of piece features extraction, we
use a similar approach as in [8]. This involves scanning of the pieces from both
the front and the back side (Figure 11.1, 11.2), but with a di�erence that we
need to scan the front side only once.

Extracting the pieces from the images requires a multi-stage process. The
shape of pieces is for higher quality extracted separately from the images of
their back sides. This shape is later mapped back to the images of pieces
scanned from the front side. The colour and other features required during
later puzzle solving are also extracted during the preprocessing.

The assembling of the puzzle is due to a high complexity of the problem
done using combined heuristic algorithm similar to work [5]. We assemble
the puzzle in two steps: assembling a frame and assembling an interior of the
frame.

To solve the frame, we use reduction of the problem into a restricted case
of a max-cost bipartite matching [15]. Solving the interior involves a greedy
algorithm with limited backtracking.

Finally, the obtained combinatoric solution is transformed into a desired
output image. On this image are the input pieces in a con�guration forming
the expected solution of the puzzle.

7

Chapter 4

Data extraction

Data extraction means extraction of parameters of each puzzle piece from
the input images. This information contains each piece's shape and colour
along its edges. We use this information to create an internal representation
of each piece.

Piece is internally represented by four edges which can be used to connect
another pieces. For each edge we store its shape as a sequence of points along
particular part of piece's boundary. Moreover, for each this point we store an
average colour of the piece in its neighbourhood.

High precision extraction of puzzle pieces

The extracting of the pieces' parameters is not an easy task. Simple meth-
ods often do not provide su�cient results and more sophisticated approaches
are required.

First, we tried a method of scanning puzzle pieces using a standard image
scanner, we placed the pieces at the scanner and scanned them against a
contrast background. Despite using various scanners and scanning in a high
resolution, this method did not provide su�cient precision. This was caused
by three main errors shown on the Figure 4:

1. The shadow around the pieces caused by the scanner's light.

2. Capturing parts of pieces which are not visible in an assembled puzzle.

3. Similarity of piece's colour to background colour.

8

Figure 4.1: Three main errors of scanned pieces.

To overcome these limitations, we use a more sophisticated approach. We
found that scanning puzzle pieces from the back side does not contain any
of mentioned errors. Although this does not provide any information about
colour of pieces, it allows us to precisely extract their shape. Knowledge of the
shape can be then used in a signi�cant improvement of the image segmentation
in the previously described method.

To apply this observation we scan each piece two times. First, we scan the
puzzles as described in the �rst approach (Figure 11.1). For each front scan we
also create a corresponding back scan. In the back scan, we simply �ip all the
pieces on the scanner and make a picture with back sides of each piece (Figure
11.2). For correct identi�cation of corresponding pieces we need to create this
back scan in a con�guration, when each piece is approximately at the same
location as in the original scan. It is also critical to scan the images in the
same resolution to have the same scale for all pieces.

The extracted shapes from the back scan are then used during the process-
ing of original images when the problem is reduced to image segmentation into
objects with a known shape.

After the segmentation we split the shape of each piece into four parts
corresponding to its four edges.

Finally, extracting of the colour along the edges, we obtain the desired
internal representation of the pieces.

The described multistage approach of extracting the shape and colour in-
formation of the pieces from di�erent images produces the data with very high
quality.

4.1 Shape extraction from back scan

As described, shape extraction of the puzzle pieces is executed on the im-
ages of their scanned back sides. This images does not contain any signi�cant
errors a�ecting the border of puzzle pieces allowing us to obtain very precise
results.

9

4.1.1 Format of images

Input images should be created in a way that allows the best image seg-
mentation. This is achieved when the usually bright back sides of pieces are
scanned against a dark background. Pieces should also not overlap or touch
to correctly detect their shapes.

4.1.2 Extraction method

The shape extraction of puzzle pieces on de�ned images is a segmentation
of bright objects from a dark background. To solve this problem, we use a
classical method of transforming the input images into a grayscale, performing
a threshold-based segmentation and extracting the shape of segmented objects.

To transform the image into grayscale we can use one of many standard
methods. Testing showed a very good method is to set gray value of a particular
pixel to the maximum value of its red, green and blue colour components.

The following segmentation of this image is obtained simply by considering
all the pixels with value greater than given threshold as the foreground and
all other pixels as the background. To automatically calculate the proper
threshold value we can use the classical Otsu's histogram shape-based method
[18].

For the correct results, it is necessary to further �lter noisy foreground com-
ponents. The area of each piece is approximately the same, we can therefore
discard all the components with the area less than 1

4
of the greatest compo-

nent's size. Using a morphological operation close [19] with a circle operator
of the size a few pixels can further reduce the noise along the border of the
components.

The desired piece shapes are �nally extracted as sequences of border pixels'
coordinates of the foreground components.

4.2 Piece segmentation with known shape

Piece segmentation from the images is performed after we extract their
shape from the corresponding back scan. The knowledge of the shape reduces
the problem to position calculation for each this shape to match the desired
piece and segmentation along this shape. We propose a e�ective method for
calculating of this positions for each known shape.

First we detect approximate position of each piece and to every this piece
we assign one known shape. Then we �nd exact position of each shape to
match the assigned piece on the image.

Finally we simply cut the pieces from the image based on this placed shape
obtaining the desired.

10

Format of images

To successfully apply the method, the input images should be created in a
way that allows good detection of puzzle pieces. For this reason it is enough
that we scan pieces with mostly bright texture against a dark background and
vice versa (Figure 11.1, 11.3). Moreover, as mentioned for determining the
correspondence of the pieces to the known shapes, corresponding pieces has to
be approximately at the same position in the front and the back scan.

4.2.1 Piece detection and assignment of shape

For the further processing we need for each piece on the image detect its
position and assign one of known shapes. Detection is based on a detection
of objects with texture di�erent from the background. For each such detected
piece we also assign its shape based on the similarity of piece's position on the
front and the back scan.

At the beginning, we detect the foreground objects using simple segmenta-
tion technique based on the similarity to an average background colour. The
average background colour can be computed as an average colour of border
pixels because this pixels should not be parts of the pieces. Then we deter-
mine for each pixel if it is a part of foreground or background based on the
colour distance to to this computed colour.

Figure 4.2: Binarized image with puzzle pieces.

11

Applying this technique we obtain a binarized image with pieces forming
the foreground. However this image can contain various errors like noise pixels
or a division of one piece into two components (Figure 4.2).

Next, we determine for each foreground pixel its correspondence to some
piece. Analysis shows, the shape of each piece has approximately the same
variance in each direction. We can use K-means clustering [17] to determine
this correspondences.

As a feature space we use directly the coordinates of foreground pixels.
Because the position of each piece on the picture is approximately the same
compared to the corresponding back scan, we also set the initial means to the
centres of masses of extracted shapes from the back scan. After clustering, we
obtain clusters corresponding with each piece on the image 4.3.

Figure 4.3: Clusterized image using K-means clustering.

However the custerizing can theoretically determine wrong clusters, in prac-
tice this methods works very well. As it can be seen, also the pieces binarized
into several components are assigned to one cluster.

This clustering also automatically determines the assignment of the shapes
to the pieces. We simply assign to each cluster the shape whose center of mass
was originally equal to the mean of the cluster.

12

4.2.2 Matching shape to piece position

For each detected piece and and its assigned shape we �nd the exact map-
ping of the shape to match the border of the piece. This mapping can be de-
scribed as a translation and rotation of the shape; transformation also known
and rigid. The computing of this transformation requires a special algorithm.

Because of the image format, we can assume, the pieces on the images have
mostly recognizable edges. The edges can be found applying some well-known
�lters on the image, for our purposes the Laplace operator[23] works well.

We can therefore de�ne the optimal position for each shape as one matching
most of the edge pixels. However, this optimal position do not have to correctly
match the shape of the piece, testing never shown the opposite.

One of the methods which can �nd the optimal transformation is the Ex-
tended Hough Transform [21]. Unfortunately, computational complexity of
this method makes its real use for our purposes impossible.

To overcome this di�culty, we need to use a di�erent approach. First we
place the shape to a base position when the center of the shape's mass is equal
to the center of mass of the piece (the mean of its cluster). Then we rotate
the shape by 5 degrees and after each rotation we run a Shape Optimization
Algorithm to �nd the exact transformation of the shape to the piece from this
base position. Finally we choose the transformation which gives best score
returned by the algorithm.

Using of this two-step method of placing the shape at the approximately
correct position and optimizing the exact transformation we obtain very precise
results comparable to using of the Hough Transform but with dramatically less
computation.

Shape Optimization Algorithm

After we place the shape at approximately correct position we need to �nd
a locally best matching of the shape to the piece. We use an iterative algo-
rithm which in each iteration reoptimizes the current transformation to better
match underlying edges of the piece.

The essential aspect is using of the Schwartz-Sharir algorithm[22]. This
algorithm accepts two sets of points in the plane; for every point from the �rst
set we have de�ned its matching point in the second set. The algorithm �nds
the optimal rigid transformation of the �rst set minimizing the sum of distance
squares to all matching points in the second set.

In each iteration of the algorithm we �nd for each point on the shape the
average position of the edge within its local neighbourhood. We use the square
neighbourhood having the center in the given point. The average position of
the edge can be de�ned as the center of mass of this neighbourhood when

13

each pixel has the value equal to the value of the edge assigned by the edge
detection.

Next we use this pairs of points as the input of the Shwartz-Sharir algorithm
to �nd the optimal transformation of the shape to match the average positions
of the edge in the local neighbourhood of the shape.

After each iteration the transformation of the shape better matches the
underlying edge. As the transformation converges to the local optimum, we
can also slightly decrease the size of the neighbourhood in each iteration. We
stop when the transformation is not changing or the change is under given ε.

Finally, for a purpose of decision which converged transformation from the
72 basic positions, rotated by 5 degrees, is the best we also output the score
of the transformation found. The score is de�ned as the sum of values of the
pixels in the constant neighbourhood of each point on the shape. The trans-
formation with high score indicates the strong underlying edge close to the
shape position.

Testing showed, the proposed algorithm gives very good results when the
shape precisely match the edges of the given piece. The algorithm converges
usually very fast within about 10 iterations. Moreover, the chapter 7 discuss
a method how the average position of the edge can be computed in a constant
time further improving the running time of the method.

4.3 Edge classi�cation

In order to obtain an internal representation, we need to split each shape
into four parts representing the edges of the piece. basic goal is therefore to
identify the four corners which de�ne this four edges.

However it is rather easy to develop an arbitrary algorithm, the challenge
is to develop an algorithm having success rate of over 99.9%. Incorrectly de-
tected edges of one piece can later cause a failure of the entire puzzle solving.

The detection is based on the �rst and second derivative of piece's shape
shown on Figure 4.4. The corners of the pieces are points with high curvature
which can be seen as peaks in second di�erence. As it can be seen, this peaks
do not have to be the global maximum.

14

Figure 4.4: First and second derivation of the piece's shape.

In our method we �rst identify all candidates for corner points. Testing
on various pieces showed, the correct corners are always local maxima on the
second derivative with value greater than one third of the global maximum.
This restriction usually satisfy 4-12 points on the curve. The solution is then
a combination of four points from this set.

To select the proper combination, we assign a penalisation score for each
possible combination and choose one with lowest score. The penalisation score
is based on the sum of penalisation scores for subcurves de�ned by the given
combination of points.

The penalisation score for the subcurve is a score re�ecting a degree of sim-
ilarity to some classical type of edge - edge with indent, outdent or no padding.
For each curve we compute three di�erent scores measuring its similarity to
each of type. At the end, we choose the lowest score which also identi�es the
type of the edge.

The �rst core measuring similarity to an edge without padding can be
computed rather easily. It is enough to simply compute the sum of distances

15

of points forming the curve to a virtual line between the �rst and the last
point.

The score measuring the similarity to edge with outdent padding is based
on a signi�cant valley in the second derivative of the curve. This valley is
caused by padding of the edge. To compute the score, we delete this valley
part of the curve, which is equivalent to cutting out the padding part, and
measure the distance to edge without padding.

Equivalently we compute the similarity to edge without padding. In this
case it is enough to �ip the edge and measure the similarity to the edge with
the outdent padding.

Despite higher complexity of the proposed method, this approach of analysing
each possibility provides highly reliable method of identifying the piece's cor-
ners.

4.4 Colour extraction

In order to use colour information during the puzzle solving, it is required
to extract this information along each edge. Basically, for each point forming
the edge we want to store a colour in a neighbourhood of this point.

Because the colour information on the edges can be damaged by image
artefacts like light re�ections we extract the colour of the piece in a constant
distance from the edge. Proper distance is dependent on quality and a resolu-
tion of input data. For inputs with resolution 100 dpi it is usually enough to
use a distance of 3 pixels.

Finally, for purposes of noise reduction, it is encouraged to blur the im-
age using Gaussian �lter[20] with low sigma before the extraction. This will
improve the quality of the obtained information by considering a wider area
around the extraction point.

16

Chapter 5

Puzzle solving

In this chapter we describe the algorithm assembling the extracted puzzles
into a �nal solution. The solving of the puzzles involves several aspects.

The solving is done on a simpli�ed combinatorial model of the puzzles. In
this model, every piece is considered a square with four edges. The combi-
natorial solution of this puzzle is a suitable placement of these squares into a
grid creating the solution of the puzzle. It means, for every piece we need to
compute its position in the grid and one of its four possible rotations.

Because we do not have any information about the desired solution, the
key aspect during the solving is the local compatibility of neighbouring pieces.
Generally we want to measure the likelihood of coincidence of two edges in the
correct solution which can be expressed by their similarity score, and �nd a
solution which maximizes this likelihood.

The �nal solving of puzzles is a very complex combinatorial task. We use
a combined heuristic search with limited backtracking to �nd the solution in a
reasonable time. We use approach similar to algorithm used in the work [8] -
solving the frame of the puzzle �rst and then �lling the interior of this frame.

The entire solving process �nishes with the combinatorial solution of the
puzzle. This solution is later used during the visualization phase.

5.1 Local compatibility

The measuring of local compatibility of two edges is based on several fac-
tors. Logical incompatibility of some pairs of the edges can be decided rather
easily. For the rest of the edges we have to use a method allowing us to mea-
sure their relative compatibility in some more continuous way to deal with a
lot of possible combinations.

For the pairs of edges where the logical type does not provide a valuable
information, we measure their relative compatibility score P (i, j). This score
is proportional to a likelihood of incidence of given edges in a correctly solved
puzzles.

17

To compute the compatibility score of two edges, we use a di�erent ap-
proach from most of previous work. Instead of a direct measurement of a
vector similarity describing particular edges, we measure a compatibility of an
optimal geometric placement of two edges.

The compatibility of optimal geometric placement is described by an abso-
lute shape and colour similarity score. Later we use a compatibility classi�ca-
tion model transforming these scores into �nal single score P (i, j).

Figure 5.1: Optimal geometric layout of di�erent pieces.

5.1.1 Filtering based on logical type

In general, the shape of each edge de�nes a logical type of the edge - the
edge with indent, outdent or no padding. Some combinations can not logically
�t together. For example, an edge with the indent padding has to coincide
only with an edge having the outdent padding. The edges with no padding are
located on the frame of the puzzle and can not coincide with any other edge.
Observation that a piece containing an edge with no padding can coincide only
with some other types of pieces allows the �ltering of some more combinations.

5.1.2 Optimal layout of compatible edges

The geometric layout of two edges is some placement of one edge along the
other. We introduce a method of �nding this layout which is optimal in some
matter.

Each placement can be encoded as a rigid transformation of the second
edge when the position of the �rst edge is �xed. During the analysis of op-
timal geometric layout we work with de�ned internal shape representation of
edges as a sequence of 2D points along their shapes. Therefore, �xing of the
�rst edge's position means �xing all its points ai; rigid transformation of the
second edge is applying this transformation to all its points bj to obtain a new
sequence b′j

18

For a given geometric layout we de�ne pairs of matching points. These
pairs are useful during the analysis of correctly matching edges, because they
should have similar characteristics.

Matching points

For the given geometric layout we de�ne a matching point NB′(ai) for a
point ai located on the �rst edge as the closest point from the set B′ of points
forming the second edge. To determine the closest point we use the standard
euclidean metrics. Similarly we de�ne NA(b

′
j) as the closest point on the �rst

edge to the given point b′ located on the second edge.

Figure 5.2: Matching points under given geometric layout

Optimal transformation

The optimal transformation for two edges should place these edges in a
visually smooth layout when they best �t together. To judge di�erent trans-
formations, we de�ne their shape compatibility score.

The shape compatibility score of given transformation is the sum of squared
distances to all matching points:

K(i, j) =
∑
i

||ai −NB′(ai)||2 +
∑
j

||b′j −NA(b
′
j)||2 (5.1)

As the optimal transformation we therefore consider one minimizing this
shape compatibility score.

To compute the optimal transformation, we use an iterative algorithm sim-
ilar to the method used in section 4.1.2. This algorithm gradually reoptimizes
the actual con�guration converging to a local optimum. This optimum can be
the global optimum or is very close to this global optimum allowing us to use
the result during further processing.

19

We start in a layout when we roughly place two edges together. This
con�guration can be found for example considering only the �rst and the last
point on each edge.

In every iteration we use the Schwartz-Sharir algorithm[22] to reoptimize
the transformation. First, we �nd all matching points for given transformation.
Then we use this pairs of points as an input of Schwartz-Sharir algorithm
to �nd an optimal transformation which minimizes shape compatibility score
under given assignment. Finally we apply this transformation changing the
actual geometric layout and also matching points. Moreover, each iteration
will necessarily decrease or not change the overall shape compatibility score.

We iterate an algorithm until the shape compatibility score is not changing
or the change is less than given ε. Testing showed, that proposed algorithm
converges very fast in about 10 iterations and the found solution is very close
to the global optimum.

5.1.3 Compatibility classi�cation model

We measure the similarity of the edges in the optimal geometric layout and
compute the compatibility score based on this similarity and other factors.

The similarity is of two types: the shape similarity and the colour similarity.
Both of them can be described by a corresponding score. The score computa-
tion is based on the matching points which should have similar characteristics
in the case of compatible edges.

Next, this scores are normalized to express the relative compatibility com-
pared to the best possiblity for the given edges and combined together to
obtain the single �nal score.

The entire process judges the given layout of edges in terms of likelihood to
be achieved by really matching edges. This likelihood is eventually expressed
by the score later used to �nd the correct solution.

Shape compatibility score

We de�ne the shape score directly as the de�ned shape compatibility score
of the given layout normalized by the number of points on edges:

S(i, j) =
1

|A|+ |B′|
(
∑
i

||ai −NB′(ai)||2 +
∑
j

||b′j −NA(b
′
j)||2) (5.2)

Colour compatibility score

The colour score consists of three separate scores of colour similarity of the
matching points in the colour model HSL [23]. This model is used because it
can better express the importance of the di�erent colour properties.

20

CH(i, j) =
1

|A|+ |B′|
(
∑
i

|aiH −NB′(ai)H |2 +
∑
j

|b′jH −NA(b
′
j)H |2) (5.3)

CS(i, j) =
1

|A|+ |B′|
(
∑
i

|aiS −NB′(ai)S|2 +
∑
j

|b′jS −NA(b
′
j)S|2) (5.4)

CL(i, j) =
1

|A|+ |B′|
(
∑
i

|aiL −NB′(ai)L|2 +
∑
j

|b′jL −NA(b
′
j)L|2) (5.5)

Note, computation of CH(i, j) requires using the metrics measuring distance
of points on a circle with a length of the perimeter 1.0.

Combining scores

The measured shape and colour scores express the absolute compatibility
of the given edges and does not provide the information if the edges are really
matching or not. To accommodate this property, we normalise each score with
the best achieved score for the given edge:

S ′(i, j) =
min{S(i, k)|∀k}

S(i, j)
(5.6)

C ′H(i, j) =
min{CH(i, k)|∀k}

CH(i, j)
(5.7)

C ′S(i, j) =
min{CS(i, k)|∀k}

CS(i, j)
(5.8)

C ′L(i, j) =
min{CL(i, k)|∀k}

CL(i, j)
(5.9)

Note, the best value of the score for comaptible edges is 1.0 and also in general
S ′(i, j) 6= S ′(j, i), similarly for the other scores. To obtain the commutative
property, we work with modi�ed scores:

S ′′(i, j) = S ′(i, j) + S ′(j, i) (5.10)

C ′′H(i, j) = C ′H(i, j) + C ′H(j, i) (5.11)

C ′′S(i, j) = C ′S(i, j) + C ′S(j, i) (5.12)

C ′′L(i, j) = C ′L(i, j) + C ′L(j, i) (5.13)

The �nal compatibility score is obtained simply by a linear combination of
the de�ned scores:

P (i, j) = αS ′′(i, j) + βC ′′H(i, j) + γC ′′S(i, j) + δC ′′L(i, j) (5.14)

The values of the coe�cients were obtained by testing on the training set
of 4000 edges with known matching edges pairs in a correct solution. This
created the 4000 positive and 15996000 negative cases of matching edges. We
were looking for the values maximizing the number of positive cases judged
for given edge as the highest scoring possibility among the other possibilities.
The values of the coe�cients were estimated as α = 5, β = 1, γ = 5, δ = 1.

21

5.2 Frame assembling

Assembling the puzzle frame is de�ning the positions of the border pieces
e.g. containing an edge without padding (Figure 5.3). This partial solution
is used as the basic of the desired solution into which are inserted all other
pieces. First we analyse the problem of frame solving and then we reduce this
problem to a special case of another problem known as min-cost matching[?].

Figure 5.3: Puzzle con�guration with solved frame.

5.2.1 Properties of the frame

The count of the border pieces, containing a frame edge, m together with
the count of all pieces n uniquely de�nes the width and height of the solution.
These values provide an essential information about the expected solution of
the puzzle and can be easily found as the solution of the equations:

width =
1

4
(4 +m+

√
16 + 8m+m2 − 16n) (5.15)

height =
1

4
(4 +m−

√
16 + 8m+m2 − 16n) (5.16)

note, we can rotate the solution by 90 degrees by swapping the equations.

For each border piece we de�ne its left and right matching edge. Left edge
of the border piece is the preceding the edge without padding. Similarly right
edge of the border piece is succeeding the edge without padding.

22

Figure 5.4: Matching edges of frame pieces.

In any correct solution, those edges are coincident with right respective left
edges of another border pieces. In other words, it de�nes a perfect matching
in a complete bipartite graph [14] with partitions represented by left and right
edge.

5.2.2 Reduction to max-cost bipartite matching

The fact, each solution of the frame forms some matching in the given
bipartite graph allows us to look at the problem from an opposite direction.
We look for the matching de�ning the correct solution. This reverse process
involves solution of more restrictive problem than simply �nding any bipartite
matching in the graph.

Not each perfect matching in this graph de�nes some correct solution. The
matching has to ful�l two conditions to be considered a correct matching. The
sequence of the left and the corresponding right matching edges has to create
one closed cycle. Moreover, the relative distance of four corner pieces on this
cycle has to match with expected dimensions of the puzzle.

We also de�ne the optimal matching from the set of all correct matchings
which is directly related to a solution of restricted max cost matching in the
modi�ed graph. This solution also de�nes the best solution of the frame.

Finally we propose the method to �nd this matching in a reasonable time.

Optimal matching

As an optimally assembled frame we consider one whose sum of compati-
bility scores P (i, j) of incident edges is maximal. In other words, if we de�ne
the cost of the edges in the bipartite graph between vertices i, j as P (i, j)
(Figure 5.2.2), we will look for the correct matching with maximum cost[15].
This optimal frame does not have to be the intended one for the given puzzle,
but the testing has never given an incorrect frame.

23

Figure 5.5: Bipartite graph with left and right edges.

Algorithm for optimal matching

Into described problem of �nding correct max-cost matching can be easily
transformed any instance of Travelling Salesman Problem (TSP) [13]. Because
TSP itself is in a computational complexity class NP-hard, it implies there is
no known polynomial algorithm for �nding the correct max-cost perfect match-
ing. However this fact an algorithm which can usually �nd the desired solution
very fast can be used.

To �nd the exact solution we use similar approach as in work of [5]. We
will gradually generate all perfect matchings in given bipartite graph in order
of decreasing cost. After we generate each new matching, we check if it ful�ls
the conditions for the correctness. We stop after the �rst matching pass given
conditions. It also implies this solution have the maximum cost, therefore is
optimal and corresponds to the optimally assembled frame.

Algorithm for e�cient generating permutations in given order is known as
Murphy's algorithm[16] and can generate each next matching in polynomial
time T (m) = O(m3). The overall complexity is therefore dependant on the
number of generated permutations which can be in the worst case O(m!T (m)).
However the testing shows this algorithm can usually �nd the solution on given
data very fast generating only a few matchings. Often even the �rst matching
passes the given conditions.

5.3 Interior assembling

After we have correctly solved the frame of the puzzle, we �ll its interi-
or to obtain the �nal combinatorial solution. Because of a huge number of
possibilities of assembling the interior we use a greedy algorithm with limited
backtracking to �nd the correct one in reasonable time. This algorithm does

24

not have to always �nd the correct solution, but during testing it was always
able to �nd the solution of even very large puzzles.

5.3.1 Greedy algorithm

The greedy algorithm is based on placing piece at some empty position one
at a time, the key assumption of correctly solved puzzles is therefore a correct
placing of each piece in every step otherwise we obtain a wrong solution. For
this reason we need to maximize the probability of correctness of each step.

To obtain the maximum likelihood of correct step, we always place some
unused piece at some position which coincide with maximal number of already
placed pieces. This number is always at least 2 and at the beginning we have
four of this possible positions in the corners of the frame. Moreover we always
choose the possibility of maximizing the sum of scores P (i, j) to already placed
edges.

We can further improve the likelihood of particular step correctness with
backtracking of its neighbourhood. It means, for each possibility we also �nd
the optimal �lling of its empty neighbouring positions and similarly add their
scores. In this case we also need to normalize each score by the number of
included edges to not discriminate some possibilities.

Finally, during the assembling, we must not forget about the fact that scores
P (i, j) are always relativised to actual best possible matching for a given edge.
Because these possibilities are changing during the solving, we also need to
keep these scores accurate.

In conclusion, successfulness of the proposed greedy algorithm is highly
dependant on the correctness of each single step. However, there is still a
probability of �nding a wrong solution, stated improvements greatly eliminated
this cases on tested puzzles.

25

Chapter 6

Solution visualization

This chapter describes the process of visualization of the puzzle's combi-
natoric solution obtained during the puzzle solving phase into a �nal image
with solved puzzle. The �nal image consists of pieces extracted during the
data extraction phase in a con�guration forming the desired solution. The
computation of the con�guration involves several aspects.

The basic goal is to compute the size of the resulting image in pixels w, h
and for each piece its position in this image. The position of each piece can
be described again as a rigid transformation of the piece de�ning its center
coordinates xi, yi and a rotation ωi.

The computed geometric con�guration is then transformed into the �nal
image. This is basically achieved by applying the computed transformations
on the pieces and fusion into the resulting image.

6.1 Computation of geometric con�guration

The computation of the geometric con�guration involves computing the
de�ned parameters. To obtain a visually pleasant result, the desired con�gu-
ration should minimize the inconsistency between neighbouring pieces in the
�nal image. We use the special method to compute the con�guration having
this property.

First, we compute the local position dependencies between the neighbour-
ing pieces. This dependencies are stating the ideal relative transformation of
one piece based on the transformation of another piece. Similarly we compute
the position dependencies between the pieces with a frame edge and the frame.

Second, we express this dependencies as equations of a overdetermined
linear system. Variables of the system are the required parameters of the �nal
con�guration and the equations are the dependencies of the values.

Finally, we use the least squares method [24] to �nd the solution of the
de�ned overdetermined linear system.

Using the proposed algorithm of transforming the problem into the overde-
termined linear system and �nding the solution using the least squares method,

26

we obtain the con�guration resulting into a very consistent result.

6.1.1 Local position dependencies

The local position dependencies are stating the optimal dependencies be-
tween some values of xi, yi, w, h, ωi in the resulting solution. This dependencies
are of two types: dependencies between the parameters of coincident pieces
and the dependencies between pieces having an edge without padding and the
frame of the puzzle.

The optimal local position dependency between the neighbouring pieces is
the relative value of rotation ∆ωij and the center position ∆xij, ∆yij of one
piece based on the rotation and position of the other.

To compute the values of the dependencies we use the same method as in
the chapter 5.1.2 to compute the optimal geometric layout of two edges applied
on the adjacent edges of two pieces.

The optimal local dependency between the frame and the piece having an
edge without padding is slightly more complicated and depends on the part
of the frame the piece is coincide with. The frame is represented by an axis-
parallel rectangle with lower left corner located in the point (0, 0) and the
unknown width w and height h.

The dependencies are always stating the ideal absolute value ω′i of each
piece's rotation. Moreover for the pieces coinciding with left or bottom edge
we de�ne their ideal absolute value of x′i or y

′
i. On the other hand, for pieces

coinciding with the right or top frame we de�ne their relative value x′′i or y′′i
compared to the unknown width or height of the frame.

We compute the dependency between the frame pieces and the frame sim-
ilarly as in the piece to piece dependency case considering the frame as a �at
edge.

The computed dependencies provide an insight into the relations between
values in a virtually ideal, maximally coherent con�guration. However this
con�guration could not exist, it allows us to �nd the solution closest to this
ideal state.

6.1.2 Con�guration based on dependencies

The computation of the �nal con�guration is based on the computed local
dependencies. The computation is done in two steps, �rst we compute the
rotation value of each piece ωi and then we compute the translation of the
pieces xi, yi together with dimension of the puzzle w, h.

In both steps, we transform the problem into an instance of a overdeter-
mined linear system and �nd the solution using the least square method.

27

computing of rotations

The computing of each piece's rotation directly uses obtained dependencies
as the equations of the linear system having variables ωi:

ωi − ωj = ∆ωij ∀i, j adjacent pieces (6.1)

ωi = ω′i ∀i border piece (6.2)

Before solving the system we need to consider the 2π-cyclic nature of the
angular values. The proposed linear system can not handle this directly causing
wrong results. To overcome this problem, �rst we rotate each piece in an
approximately correct direction based on the edge facing up and then apply
the linear system to compute the exact values.

computing of translations

The computing of each piece's translation with dimension of the puzzle is
done similarly using the obtained dependencies solving the linear system:

xi − xj = ∆xij ∀i, j adjacent pieces (6.3)

yi − yj = ∆yij ∀i, j adjacent pieces (6.4)

xi = x′i ∀i piece on the left border (6.5)

xi − w = x′′i ∀i piece on the right border (6.6)

yi = y′i ∀i piece on the bottom border (6.7)

yi − h = y′′i ∀i piece on the top border (6.8)

Note, the values ∆xij, x
′
i, y
′
i, x
′′
i , y

′′
i are also rotated based on the computed

values of ωi.

6.2 Image composition

The computed con�guration of the puzzle is transformed into resulting
image of the assembled puzzle.

First, we create an image of the computed size and then we place the pieces
into this image one at a time. During the processing of one piece, we cut the
piece from the source image, apply the particular transform and merge it with
the image.

We can also apply the morphologic operation erode[19] on each piece to
improve the quality of the resulting image. Using the circle kernel of size a
few pixels eliminates errors caused by non-perfect cutting of the piece from its
source image. This also improves the result in the occasional partial overlap
of neighbouring pieces.

The proposed visualization of the computed con�guration involving draw-
ing the pieces is the �nal an termination step of the entire algorithm.

28

Chapter 7

Implementation and optimization

This chapter describes the various aspects of the implementation of the
proposed method. This area is becoming especially important when we use
the method on systems with limited computing resources.

First we describe a parallelisation possibility of the method. Parallelisation
is an important aspect dramatically reducing the running time on systems
having multiple computational units.

Then we describe the possible optimizations of the most critical parts of
the method. This parts have the greatest impact on the overall running time
and their optimization is the important aspect of the possible computational
time reduction.

The stated improvements provide a practical insight into an e�ective im-
plementation of the method and provide the e�ective solutions for the most
computational complex parts.

7.1 Parallelisation

The method can be very e�ectively scaled in terms of the parallelisation if
we have the su�cient number of parallel execution units. This is based on the
high scalability of each of the most important parts of the method.

First, the pieces are extracted from independent image pairs during the
data extraction phase. This process can be naturally parallelised processing
each input image using di�erent execution thread. The parallelisation scale is
therefore limited only by the number of input images.

Second, the computing of compatibility table can be also handled very
e�ectively. We can split the process to several threads, each one computing
one row of the table or even only part of the row. This allows almost unlimited
boost scale on the systems having many execution units.

Next, the solving of the interior of puzzle; in each step we need to ex-
amine several possibilities where and which piece could be placed. Each this
possibility can be processed in the separate thread making the process very
fast.

29

Finally, the process of puzzle visualisation when the solution of overde-
termined linear system is computed can be parallelised as well. This can be
achieved using one of many known parallel implementations of the used least
squares method.

All this improvements together can dramatically reduce the running time
from possibly several hours to several minutes if the su�cient computing power
is available. This speed then outperforms any attempt to solve the given puzzle
by a traditional hand-solving method.

7.2 Special algorithms

The method consists of two computationally demanding parts. We propose
the possibility of e�ective optimization of this parts to decrease the computa-
tional time of the method.

First, we describe a technique which can signi�cantly boost up the Shape
optimization algorithm de�ned in the section 4.2.2. Then we propose a e�ective
way of computing the compatibility table used in the chapter 5.

7.2.1 Shape optimization algorithm

The described shape optimization algorithm requires iterative reoptimiza-
tion process of the shape transformation involving routine computation of the
mass center of the given square neighbourhood. We propose a method, which
can after linear preprocessing handle each this query in a constant time rapidly
boosting the entire algorithm.

We precompute two 2D tables of the size equal to the size of the image
width and height whose square areas we ask the queries. One table is for
x-dimension and the values are S(x, y) and the second is for y-dimension with
values R(x, y).
Let denote the pixel's edge value assigned by the edge detection as Wx,y, the
values of the tables are de�ned by:

S(x, y) =
x−1∑
i=0

y−1∑
j=0

iWi,j (7.1)

R(x, y) =
x−1∑
i=0

y−1∑
j=0

jWi,j (7.2)

The closed form of the cell values can be derived as:

S(x, y) = S(x− 1, y) + S(x, y − 1)− S(x− 1, y − 1) + iWx−1,y−1 (7.3)

R(x, y) = R(x− 1, y) +R(x, y − 1)−R(x− 1, y − 1) + jWx−1,y−1 (7.4)

30

If we �ll the tables by a row order starting from the lower left corner, we always
have the values in the closet form already computed. This allows us to spend
a constant time with computing of one value �nishing the entire computation
in a linear time.

Next, we can e�ectively handle the queries. Each query is asking for a
center of mass of some square with center point p and radius r. We can
translate this as a query asking for the center of mass of the rectangle de�ned
by two points a = (px + r, py + r) and b = (px − r, py − r). Answer for each
this rectangle query can be computed as a point de�ned as:

cx = S(ax + 1, ay + 1)− S(bx, ay + 1)− S(ax + 1, by) + S(bx, by) (7.5)

cy = R(ax + 1, ay + 1)−R(bx, ay + 1)−R(ax + 1, by) +R(bx, by) (7.6)

Described approach of the linear precomputation of the table and later
processing of arbitrary queries in the constant time speeds up the algorithm
by about order of magnitude allowing us to decrease the running time of the
data extraction process.

7.2.2 Computing of compatibility table

The computation of the compatibility table requires computing of the com-
patibility score for every pair of logically compatible edges. The entire process
requires to determine the optimal shape align for every pair of the edges which
is a relatively expensive operation. The observation the high compatibility
score is achieved only by some subset of the entire edge pairs set allows the
e�ective optimization.

The edge pairs which have the low compatibility score never coincide in the
correct solution and they are not used by the algorithm during the solving. It
is enough if we only roughly determine their theoretical score indicating the
incompatibility. The problem is, we can not guess which edges have the high
and low compatibility score without computing it.

To resolve this situation, we create for every edge several versions in a lower
resolution. In each this lower resolution is every edge de�ned by a less number
of points. Then we continue in several rounds, for every resolution one.

First we run the computation of the scores on the lowest resolution for every
pair of edges. In every next round we recompute the score for some fraction
of the best scoring edge pairs. The chosen fraction should re�ect the amount
of this edges in the dataset. In the last round is therefore examined the score
for the best matching edges in a full resolution obtaining precise results.

The approach allows us to distribute the computation based on the �nal
compatibility score therefore optimizing the running time. The score for com-
patible edge pairs is determined precisely and for incompatible edge pairs is
the score determined with less precision.

31

Chapter 8

Experimental results

To measure the properties and abilities of the proposed method, we wrote
the implementation and experimentally tested its abilities. The testing in-
volved several aspects.

The implementation was written in the C++ language and can be found
in the attachment. We choose this language due to its high e�ciency of the
compiled code and a low memory overhead. These proprieties are becoming
especially valuable during solving of big puzzles.

The implemented method was tested on inputs of various size and proper-
ties. We choose the puzzles with di�erent colour variability and size starting
on puzzles having 80 pieces up to puzzles having over 1000 pieces.

We tested several aspects of the method. The most important one was the
ability to successfully solve the given puzzle. Another aspect was the testing of
this ability on data having lower resolution and under di�erent settings of the
method. We also measured the total running time and memory requirements
during the solving.

The testing showed di�erent properties of the method and the overall per-
formance on given data. If the quality of the input data was good enough, the
method was able to successfully solve all given puzzles (Figure 11.4, 11.5, 11.6,
11.7).

8.1 Choice of testing data

The input data were the scanned pieces of standard puzzles which can be
bought in almost every local toyshop.

The testing was done on the puzzles by Ravensburger AG. This puzzle have
a high quality and contain less physical errors like erosion of the pieces. The
size of the puzzle was chosen 80, 200, 572 and 1008 pieces. Puzzle had di�erent
themes and variability of the texture and colour.

The puzzle were scanned on a standard scanner Genius ColorPage HR7X
Slim in the resolution 100 dpi using the format described in chapter 4. This
resolution produces images of pieces having the edge length about 150 pixels

32

which is su�cient for precise extraction of the shape. The contrast and bright-
ness were set to a constant value during the entire scanning to values providing
a good segmentation of the image into pieces and background.

We also created input data with digitally decreased resolution of the original
data to the lower values 75, 50 and 25 dpi. The testing on this data measured
a dependency of method's successfulness on the quality of input.

8.2 Performance

The performance of the method was tested on the personal computer Leno-
vo T400 in a con�guration Intel Core2 Duo 2.4 GHz, 4GB RAM.

The running time and memory requirements on di�erent inputs when the
method used one execution thread:

size of puzzle running time (min) required memory (MB)
80 (100dpi) 4 21
80 (75dpi) 3 17
80 (50dpi) 3 14
80 (25dpi) 2 9
200 (100dpi) 9 52
200 (75dpi) 8 46
200 (50dpi) 6 42
200 (25dpi) - -
575 (100dpi) 29 124
575 (75dpi) 24 117
575 (50dpi) 17 109
575 (25dpi) - -
1000 (100dpi) 111 405
1000 (75dpi) 94 396
1000 (50dpi) - -
1000 (25dpi) - -
- means the method did not solve the given input in time 10 hours.

To compare the parallelisation e�ciency we also tested the method with two
execution threads on the inputs with resolution 100 dpi:

size of puzzle running time (min) required memory (MB)
80 (100dpi) 3 21
200 (100dpi) 6 52
572 (100dpi) 16 55
1008 (100dpi) 71 412

33

8.2.1 Robustness

The results indicates the performance of the method is dependant on the
quality of input data. However the method is able to solve the puzzles of size
1008 pieces even on the low resolution 75 dpi of input data.

It is required to have a higher resolution of input data to successfully solve
the puzzles of bigger size than for the puzzles with a lower number of pieces.

The very low resolution causes a insu�cient precision of the extracted shape
and colour. This makes di�cult to distinguish matching and non-matching
edges based on their compatibility score. The method can then fail because of
�nding the wrong solution of the frame or the wrong �lling of the interior of
the frame.

8.2.2 Shape-only case

To measure the importance of the shape and colour information we tested
the method in a con�guration using only the shape information. This approach
is similar to previous methods which were concentrated exclusively on using
only this type of information.

Using the shape information only was achieved by setting the coe�cients
de�ned in the section 5.1.3 to the values α = 1, β = 0, γ = 0, δ = 0. Testing
showed, the method was able to successfully solve all tested puzzles on resolu-
tion 100 dpi and some of them also on lower resolutions. However, in most of
the cases, the solving of the frame required more iterations than in the case of
using both the shape and colour information.

This experimental testing pointed on the fact, the using of shape informa-
tion only is enough to successfully solve even very large puzzles.

8.2.3 Running time

The stated results provide the insight of the method's e�ciency measured
in the time necessary to solve the particular puzzle.

The testing stated approximately quadratic dependency of the running
time based on the number of pieces. This dependency is mostly given by the
compatibility table computation phase. In this phase is computed the score
for every pair of edges.

On the other hand, the puzzle frame solving phase as the only one with
the theoretical exponential complexity was usually done in a few iterations of
the algorithm and did not a�ected the running time of the method.

The dependency of the running time based on the resolution is mostly
linear. This is based on the fact, the majority of the used algorithms is linearly
dependant on the length of piece's edges.

The running time in con�guration with two execution threads was approx-
imately half of the running time with one execution thread. This showed a
very good parallelisation capability of the method.

34

In conclusion, the experimental analysis showed the running time of the
method is mostly based on the resolution of the inputs and the size of the
puzzle.

8.2.4 Memory requirements

The size of operating memory required by the method is dependant on
several factors.

Memory requirements shows approximately quadratic dependency based
on the number of pieces. This fact is based on structures used to store the
data, especially on the table storing the compatibility score for every pair of
edges.

On the other hand, a constant information in this table for every pair of
edges caused that the resolution of input data does not have a big impact
on the size of required memory. Slightly lower memory requirements were
based on a less amount of the information describing the pieces itself. This
information contains the shape and the colour description of pieces along the
edges and its size is therefore dependant on the length of the edges de�ned by
the used resolution.

Overall memory requirements were therefore dependant mostly on the size
of the puzzles.

35

Chapter 9

Discussion

The algorithm itself achieves very good results and solves the given problem
successfully. Moreover some extensions and applications can be made.

The proposed method can be extended in several ways. One of them is
ability to solve puzzles of arbitrary shape similarly to work [6]. Another in-
teresting extension could be application of the method during designing of a
robotic system capable to mechanically solve the real puzzle.

The developed algorithms and techniques can be applied in other areas as
well. For example the fast method used for determining the optimal layout
of two matching edges can be used in applications of noisy curves matching.
Next, the method of matching the shape of the piece on its image can be used
in areas where the using of Hough transform is impractical or impossible.

To sum up, the method can be further extended to greater capability.
Moreover the developed algorithms touch some connected areas and the results
can be applied in this areas as well.

36

Chapter 10

Conclusion

In this thesis we introduced a new algorithm for the automatic solution of
digitalised jigsaw puzzle. In many areas this algorithm uses more sophisticated
methods than previous work. The algorithm consisted on several consecutive
phases.

First, we showed how parameters of scanned pieces can be precisely ex-
tracted. This is the the base aspect of the successful solving of the puzzles.
Next, we used an advanced method of measuring piece-wise similarity. In this
method we used a score-based on the shape and colour compatibility of opti-
mal geometric layout of given pieces. During the assembling of the pieces we
used a two-step algorithm of solving the frame �rst by reducing the problem
to the max-cost bipartite matching and solving the interior second using the
greedy algorithm with limited backtracking. Finally we showed the method of
solution visualisation into a highly coherent image.

We suggested how the method can be e�ectively implemented and paral-
lelised and also provided the implementation in C++. Testing showed this
method was able to solve the puzzles of greater size than all previous ap-
proaches when it solved the puzzle of size more than 1000 pieces. Results also
indicated the success of the method depends on the quality and resolution of
input data especially on the quality of shape information.

At the end we discussed the possible extensions and application of the
method and the specially developed algorithms for this task.

37

Bibliography

[1] H. Freeman and L. Garder. "Apictorial jigsaw puzzles: the computer
solution of a problem in pattern recognition". IEEE TEC, (1964) (13):
pp. 118�127

[2] Radack, Gerald M. and Norman I. Badler. �Jigsaw puzzle matching
using a boundary-centered polar en- coding,� Computer Graphics and
Image Processing, VOI 19. (1982), pp. 1-17

[3] H.E. Wolfson, A. Schonberg, A. Kalvin, Y. Lamdan. �Solving Jigsaw
Puzzles by Computer,� Annals of Operation Research, 12 (1988) pp.
51-64

[4] D.A. Kosiba, P.M. Devaux, S. Balasubramanian, T. Gandhi, R. Kasturi.
"An Automatic Jigsaw Puzzle Solver". Int. Conf. Pattern Recognition,
Jerusalem, (1994), pp. 616�618.

[5] M.G. Chung, M. Fleck and D.A. Forsyth. "Jigsaw Puzzle Solver Using
Shape and Color". ICSP '98, (1998), pp. 877�880.

[6] D. Goldberg, C. Malon, and M. Bern. "A global approach to automatic
solution of jigsaw puzzles". In Symposium on Computational Geometry,
(2002).

[7] T. R. Nielsen, P. Drewsen, and K. Hansen. "Solving jigsaw puzzles using
image features". PRL, (2008).

[8] L. Atsmon L. Varon, "Automatic Jigsaw Puzzle Solver" thesis. Israel
Institute of Technology, (2009).

[9] T.S. Cho, S. Avidan and W.T. Freeman. "A probabilistic image jigsaw
puzzle solver" Massachusetts Institute of Technology, (2010).

[10] G.C. Burdea and H.J. Wolfson. "Solving Jigsaw Puzzles by a Robot".
IEEE Trans. on Robotics and Automation 5 (1989), pp. 752�764.

[11] E. D. Demaine and M. L. Demaine. "Jigsaw puzzles, edge matching, and
polyomino packing: Connections and complexity". Graphs and
Combinatorics, (2007).

38

[12] Duncan Richer, "The Eternity Puzzle" (July 1999)

[13] Applegate, D. L.; Bixby, R. E.; Chvátal, V.; Cook, W. J. "The Traveling
Salesman Problem: A Computational Study", Princeton University
Press, ISBN 978-0-691-12993-8. (2006)

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Cli�ord
Stein. "Introduction to Algorithms (second ed.)". MIT Press and
McGraw-Hill. ISBN 0-262-53196-8 (2001) Chapter 26, pp. 643�700.

[15] Assignment problem Burkard, Rainer; M. Dell'Amico, S. Martello.
"Assignment Problems". SIAM. ISBN 978-0-898716-63-4 (2009).

[16] Katta G. Murty. "An algorithm for ranking all the assignments in order
of increasing cost", Operations Research, Vol. 16, No. 3, (May-June,
1968), pp. 682 � 687

[17] MacQueen, J. B. "Some Methods for classi�cation and Analysis of
Multivariate Observations". 1. Proceedings of 5th Berkeley Symposium
on Mathematical Statistics and Probability. University of California
Press. (1967) pp. 281�297

[18] Nobuyuki Otsu. "A threshold selection method from gray-level
histograms". IEEE Trans. Sys., Man., Cyber. 9
doi:10.1109/TSMC.1979.4310076 (1979) (1): pp. 62�66.

[19] Jean Serra. "Image Analysis and Mathematical Morphology", ISBN
0126372403 (1982)

[20] Mark S. Nixon and Alberto S. Aguado. "Feature Extraction and Image
Processing". Academic Press, (2008), p. 88.

[21] Duda, R. O. and P. E. Hart, "Use of the Hough Transformation to
Detect Lines and Curves in Pictures," Comm. ACM, Vol. 15, (January,
1972) pp. 11�15

[22] Schwartz J.T. and Sharir M. "Identi�cation of paritally Obscured
Objects in Two Dimensions by Matching of Noisy Characteristic
Curves", Tech. Rep. No.165, Comp. Sc. Div.,Courant Inst. of Math.,
NYU (June 1985)

[23] Rafael C. Gonzalez and Richard Eugene Woods. "Digital Image
Processing", 3rd ed. Upper Saddle River, NJ: Prentice Hall. ISBN
0-13-168728-X. (2008) pp. 407�413.

[24] Bretscher, Otto. "Linear Algebra With Applications", 3rd ed. Upper
Saddle River NJ: Prentice Hall (1995)

39

Chapter 11

Attachment

11.1 Source code and testing data

The implementation of the algorithm together with testing data are located
on the enclosed compact disc with the directory structure:

./src implementation source code in C++ language

./doc documentation of the source code

./bin a compiled binary for Unix system

./input input data for the puzzles of size 80, 208, 572 and 1008

./output solved puzzles of size 80, 208, 572 and 1008

./thesis an electronic version of this thesis

40

11.2 Example input 1

Figure 11.1: Input image with the front sides of bright puzzle pieces scanned
against the dark background.

Figure 11.2: Corresponding image with the back sides of pieces.

41

11.3 Example input 2

Figure 11.3: Input image with the front sides of dark puzzle pieces scanned
against the bright background.

Figure 11.4: Corresponding image with the back sides of pieces.

42

11.4 Solution to a 80-piece puzzle

Figure 11.5: Output image with the solution of the 80-piece puzzle.

43

11.5 Solution to a 208-piece puzzle

Figure 11.6: Output image with the solution of the 208-piece puzzle.

44

11.6 Solution to a 572-piece puzzle

Figure 11.7: Output image with the solution of the 572-piece puzzle.

45

11.7 Solution to a 1008-piece puzzle

Figure 11.8: Output image with the solution of the 1008-piece puzzle.

46

	Introduction
	Problem formulation
	Difficulties of the problem

	Background
	Method overview
	Data extraction
	Shape extraction from back scan
	Format of images
	Extraction method

	Piece segmentation with known shape
	Piece detection and assignment of shape
	Matching shape to piece position

	Edge classification
	Colour extraction

	Puzzle solving
	Local compatibility
	Filtering based on logical type
	Optimal layout of compatible edges
	Compatibility classification model

	Frame assembling
	Properties of the frame
	Reduction to max-cost bipartite matching

	Interior assembling
	Greedy algorithm

	Solution visualization
	Computation of geometric configuration
	Local position dependencies
	Configuration based on dependencies

	Image composition

	Implementation and optimization
	Parallelisation
	Special algorithms
	Shape optimization algorithm
	Computing of compatibility table

	Experimental results
	Choice of testing data
	Performance
	Robustness
	Shape-only case
	Running time
	Memory requirements

	Discussion
	Conclusion
	References
	Attachment
	Source code and testing data
	Example input 1
	Example input 2
	Solution to a 80-piece puzzle
	Solution to a 208-piece puzzle
	Solution to a 572-piece puzzle
	Solution to a 1008-piece puzzle

