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Chapter 1

Introduction

is thesis focuses on maine translating. To begin with, let us first describe what we mean by the
word translating.

1.1 Seme of translation
Translating is the process of expressing the same meaning in another language. Humans who speak
both the source and target language of a particular translation problem usually have good idea about
what the right translation is. However, one should realize that there are always more than one way
how to express a given meaning in a given language, and that no possible counterpart of a given
source language sentence in the target language has exactly the same meaning. We believe that
even for the simplest sentences, there is a difference between its source and target form, caused
by possible connotations or different usage distribution, whi are in turn caused by the languages
differing as a whole.

We will use the parallel Cze-English corpus CzEng 0.9 [2] for our experiments, whi consists
of pairs of segments stated to have the same meaning. But, before we draw any conclusions from
results of the experiments, we need to be aware of several facts about the actual relation between
Cze and English segments in the corpus and about expected relation between a Cze sentence
and its translation into English (or vice versa).

1.1.1 Translation as a relation

In any translation, a meaning is necessarily present (although certain class of translationmodels suc-
cessfully ignores it). is is the meaning that should be common to the sentences in both languages.
As noted above, meanings of the sentences necessarily differ. Moreover, some other sentences in
the target language have meanings similar to given translations, and some of them may even be
beer translations for the given source sentence.

Alternatively, this idea can be shown at the Vauquois triangle. We claim that the analysis and
generation are rather general relations than functions. Moreover, not even the top point of the
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Figure 1.1: Vauquois triangle

triangle can be seen as unique on the way from the source sentence to the target one—we are given
only the surface form of the sentence, whi can have several meanings.

1.1.2 Corpus as a (random) sample

While the whole process of translation is fuzzy, even more randomness is brought by available re-
sources describing the languages, by corpora. Ideally, properties of translation models should be
determined based on whole probability space of both the languages, containing all possible transla-
tion pairs together with the probability that they will occur in a “random” pair of parallel texts.

However, the probability space mentioned above can be approximated by a (large enough) sam-
ple. at is what parallel corpora present. Bearing the fact about translation being a general relation
in mind, we should see that any parallel corpus is a (random) sample of segments in the source lan-
guage, assigning a sample of their translations to them. e corpus, as su, provides only a sample
of length 1 for ea space of possible translations for a given source segment. However, it can be
factored by the source segments, whi yields, generally, larger samples for ea source segment.

Ideally, corpora would present random samples. Unfortunately, we cannot assume this about
the real corpus we will use. ey are biased, generally speaking, to wrien texts whi are easily
available in large amounts. Apart from that, they may contain errors caused by mistakes in deciding
about particular pairs of segments, whether they were originally meant as translations of ea other.
However, we will neglect this noise with the excuse that we will use data whi are subject to the
same noise, both for testing and for training.
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1.2 Seme of translation model
Before we proceed to formulating the question for this thesis, let us first briefly describe general
construction of a translation model we will assume.

ere are two basic types of translation models—rule-based and statistical. e basic difference
between them is that former ones come with language-specific knowledge already implemented,
while laer ones have implemented only general rules for how to acquire the knowledge from data.
We will only examine the laer ones, as there is no dependency of rule-based models on training
data, and thus nothing to examine for us.

e work a statistical translation model (or, hereaer, just TM) has to perform when applied to
a translation problem, can be decomposed into phases:

1. Learn from training data.

(a) Analyze ea pair of segments into basic units.

(b) Figure out possible mutual correspondence of respective units (a.k.a. alignment).

(c) Mark the found corresponding pairs of units with probability that they really correspond
to ea other in meaning.

2. Calibrate parameters on (another) training data.

3. Use the outcome of first two phases to find the best translation for the given text.

In this procedure, some points are of special importance for us. First, we expect every TM to
produce its translation lexicon aer the phase 1, whi may get trimmed aer the later phase 2. e
lexicon stores all language-specific knowledge the TM has. Second, the term unit used in 1a will
be fundamental in our resear. Basically, we will use the concept of language unit to classify TMs,
and then to describe their various properties with respect to the unit they use.

We assume that all TMs follow this sequence of phases. Some TMs may skip some of the phases,
especially the trivial ones we will present.

1.3 estion for this thesis
With the presumptions formulated above, we can now specify precisely the question for this thesis.

We will use a parallel Cze-English corpus to measure performance of various TMs. We will try
to determine empirical limits on reaable quality of translation for those TMs, as well as uncertainty
in geing the translation. All results will be functions of size of the corpus used for training and of
the basic language unit used by that particular TM.

Different basic units lead to different view of the 〈segment in the source language〉–〈segment
in the target language〉 relation: some may correlate well with the surface, thus allowing for easy
analysis and synthesis, while leaving the transfer phase (as illustrated in Fig. 1.1) complicated, while
other can get nearer to the structure of meaning, thereby making the relation of the TMs internal
representation and the surface formmore complicated, with the benefit of providing simpler relation
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for the transfer. Some TMs might even use su units that neither correlate well with the surface
form, nor do they make the transfer easier. We will try to reflect this property of different TMs using
our measures.

For us to be able to measure the TMs and to compare the results, we need to find measures
whi are appropriate and well interpretable. e measures for adequacy of translation should
provide simple aracteristics of the complicated relation of space of translations as seen by the TM
and by the corpus. Measures for uncertainty should present a counterweight for the former ones.

1.4 Outline of the resear
First, we will find some measures whi we expect to be suitable for our task. en, we will run
experiments with trivial TMs whi we will construct for that single purpose. It will a) give us an
idea about extremal values for measures we are going to use; b) help us modify the measures when
needed; and also c) allow us to measure some parameters of the underlying corpus we use. e last
point can hold true thanks to easy interpretability of results from experiments with trivial models.

Aer having set some basic framework using toy TMs, we will proceed to more elaborate ones
and apply measures obtained from the initial experiments to them. We will include TMs based on
as different language units as possible. Main categories of TMs we want to examine include 1. flat
phrase translation models whi use for transfer predominantly the lowest level of abstraction in
Vauquois triangle (see Fig. 1.1), and 2. translation models with transfer at a deeper syntactic level.

1.5 Overview of experiments conducted
e table 1.1 summarizes all experiments we actually conducted. ere were experiments we were
planning to conduct, but we did not conduct them eventually. We did not measure later developed
measures with the model Sen, whi we had already finished experimented with at that time. ese
measurements are approximated using the TM Pas. We did not experiment with t-factored trans-
lation with longer phrases, as intended, for its high computational requirements. e translation
lexicon for Tfact got unfortunately removed when the disk space allocated for our experiments ran
out, and the IV-n measure was not measured for Tfact for tenical hurdles. e IV-n is also not
measured for Pas nor Sen, because at the time IV-n was included, data for those models were not
easily accessible any more.

9



Extreme Phrase Factored
Hypothetical

Afact Tfact
Sen Pas Ltr 1 3 10 1 3 10 1 Aedge Tedge

lexicon size X X X X X X X X X – –
IV-n X X X X X X X X X

OOV(TM) X X X X X X X X X X – –
reaability X X X X X X X X X X – –
dec. entropy X X X X X X X X X X – –

TM perplexity X X X X X X X X X – –

Table 1.1: Overview of conducted experiments. Ea column corresponds to a type of TM and ea
row to a measure applied to it. e numbers 1, 3, and 10 express maximum length of phrases used
for translating. e abbreviations in names of TMs, as well as the measures applied, are described
in detail in the following text. Points marked with the sign “X” correspond to experiments that we
conducted. e sign “–” is at combinations of rows and columns that do not describe any possi-
ble experiment (e.g. lexicon size cannot be measured without having an actual TM). Empty fields
correspond to experiments that we did not conduct.
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Chapter 2

Developing measures

Before we start with experiments, we have to have prepared the measures to apply. We will discuss
their oice in this apter.

2.1 Level of abstraction
We believe that a well designed TM should fit well to any given corpus, learning specific properties
of the language with certainty, but not with size of its translation lexicon, proportional to size of
the corpus. e TM should be able to abstract from repeated paerns.—Rather than remembering
all permissible pairs of language units, it should extract rules for them. is requirement is based
not only on aesthetic feeling; the rate of growth of the translation lexicon has practical impacts on
complexity of the translation process, on the time needed to compute the translation. Based on this
argument, we will use size of the translation lexicon as another measure.

It could be discussed whether the lexicon may be measured in the form the TM uses it, because
it may contain also some information only useful for faster working with it. However, we will
disregard this issue, presuming that an index or any other subsidiary structure included in the lexicon
is negligible in comparison with amount of the raw useful information. Bearing this in mind, we
will focus rather on the rate of growth of the lexicon than on its absolute size.

Another simple but useful measure for ability to abstract, or generality, is the out of vocabu-
lary rate (or, hereaer, just OOV ). We expect models based on different language units to differ
significantly with regard to OOV.

We are also going to employ a generalization of OOV. Besides counting only numbers of units
out of vocabulary, we are going to obtain a histogram of how many occurrences a particular unit
had in the training data. We will call this measure IV-n, with n as a variable for the number of
occurrences of the unit in training data. OOV is then a special case of IV-n for n = 0. is measure,
IV-n, in contrast to OOV, will be only obtained without actually using any TM for translating—it
will be a purely empirical measure, describing the relation of training and testing data.

ese two measures of TM’s ability to abstract need to be complemented by other measures, that
would discard TMs with high ability to abstract for the price that the abstraction is not very useful
for the task. e ideal TM should be tailored to the structure of natural languages, able to draw
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knowledge from training data whi is successfully reusable for a sample of pairs of segments that
have in common with the training data the structure of the language. at is, it should perform well
on unseen data while having reasonably abstracted from the training data. Hence, we will always
compare size of the translation lexicon to measures of applicability, in particular to reaability and
TM perplexity.

2.2 Reaability and TM perplexity
Probably the most easy-to-obtain parameter of ea TM are statistics of reaability of reference
translations. Not only are they easily available, but also they can tell a lot about performance of a
TM. erefore, we are going to measure them for ea of the TMs.

Rate of reaable pairs of segments can be viewed as an instance of a measure of recall—, and
because recall cannot provide a universal measure, having to be accompanied by precision, we
will also define a correlate of precision. Once we can measure both of these, we can judge the
appropriateness of any given TM.

Instead ofoosing a constant number of best candidate translations andmeasuring their fidelity
one by one, we will need to measure the TM’s view of space of translations generally, as a whole.
In accordance with the categoricity of our measure of recall, also this measure of precision shall
be categorical in comparing to reference translations. So, the property whi can well distinguish
TMs that have comparable rate of reaable sentences, is certainty in oosing the correct trans-
lation—TMs allowing virtually for any string to be the correct translation would have the rate of
reaability insuperable, but for the price of never being certain.

Note that we used the phrase correct translation in the previous paragraph, despite that we had
claimed that no translation can be considered the correct one. In some cases, a TM might be certain
in oosing the reference translation, whereas it should not be that certain, according to the corpus
evidenceus, the measure of precision has to be readjusted to this fact. It has to consider the vector
of probabilities that the corpus predicts for all possible translations (when factorized according to
the source segments) and compare these probabilities to those proposed by the TM.e measure we
are looking for is Kullba-Leibler divergence, defined as∑

x

PT (x) log
PT (x)

PM(x)
, (2.1)

where, in our case, x is a possible translation of the fixed source unit, PT is its probability derived
from data of the corpus (“true probability”), andPM is its probability as proposed by the TM (“model
probability”).

e Kullba-Leibler divergence is measured in bits¹. Commonly, it is transformed to another
quantity, called perplexity:

2−
∑

x PT (x) logPM (x). (2.2)

(See [4].) Perplexity can be more natural to use, because its scale is linear rather than logarithmic,
with regard to the intuitive property of dissimilarity.

¹if one ooses 2 as the base for log
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With the corpus fixed, KL-divergence and perplexity map to ea other one-to-one, as the term
(
∑

x PT (x) logPT (x)) (the corpus entropy) in the following equation is constant:∑
x

PT (x) log
PT (x)

PM(x)
=

∑
x

PT (x) logPT (x)−
∑
x

PT (x) log(PM(x)). (2.3)

(e term −
∑

x PT (x) log(PM(x)) is called cross entropy.) erefore, as long as we are using the
same corpus, we will use either of the measures, depending on whi one yields more useful values
in the particular situation.

N.B. Perplexity is directly dependent on the measure of cross entropy and vice versa. However,
we are going to measure perplexity of TM compared to the corpus, and a measure of entropy of
decision (see 2.3) whi is independent on the perplexity of TM. In the following, we will always
use the terms TM perplexity and cross entropy to refer to the mutual measure between the TM and
the corpus, and the term entropy of decision to refer to the inner property of the TM.

Unfortunately, both the measures, KL-divergence and perplexity, have a feature whi makes
them unsuitable for our purpose without some adaptation—they are not defined forPM = 0. Hence,
we have either to restrict their use to only those translations whi are allowable according to a given
TM, or we need to adjust the measure to avoid computing log 0.

While the first option would be mu simpler and cleaner, it would mean discarding probably
a large portion of translation pairs from the evaluation, particularly all su pairs where the corpus
knows a translation (one or more) for their source segment that the TM does not know. Su pairs
of segments would then neither be counted in the OOV measure, nor would they be counted in the
measure of KL-divergence or perplexity. We decided not to permit su an inaccuracy.

erefore, we devised an algorithm to measure perplexity also for those pairs of segments that
are not measurable using the standard definition of perplexity.

2.2.1 Modified TM perplexity

We base themeasure of perplexity on its standard definition, adjusting it in the special cases ofPM =
0. e adjustment aims at quantifying the information whi the TM’s best proposed candidate for
the translation² las in comparison to the translation provided by the corpus. We also take into
account any information the TM’s best proposed candidate has surplus.

Formulated this way, the problem can be seen as measuring the edit distance, whi is what we
eventually do. We employ a weighted Levenshtein distance applied for whole basic language units
(rather than leers). We define the operations

• insert a unit (I),

• delete a unit (D),

²Be it an empty string if the TM cannot propose any candidate at all.
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viewed in the direction from the translation proposed by the TM to the translation in the corpus.
We consider missing information a more several deficiency than including an excessive word (thus
leaning slightly on side of the recall, in the precision–recall distinction). We derive the amount of
information present in a language unit from its frequency in the corpus, as the amount of information
needed to identify it among all units in the corpus. Inspired by the translation tool Moses [3] that
we use for our experiments, we express the weight of ea unit ux as a log-probability:

wI(ux) = log
(
n(ux)

|C|

)
− 1, (2.4)

where n(u) is number of occurrences of u in the corpus C and |C| is total number of units in
the corpus. Subtracting 1 approximates the amount of information missing in the corpus from the
whole language in use, whi the TM should ideally know, too. is weight applies to units whi
are missing from the reference translation, therefore it is indexed with the I .

e cost for D can be approximated by a simple arithmetic mean of costs for all words in the
reference translation:

wD(ux) =
1

tgtLength

∑
u∈tgt

(
n(u)

|C|

)
, (2.5)

where “tgt” is the reference translation, u is a unit in that translation and “tgtLength” length of “tgt”
measured in the language units used.

We expect that costs for I will be higher, as TMs will probably leave out rather rare words,
whi are more costly—more than an average word in the reference translation. e correction for
corpus incompleteness is another measure to put more emphasis on the recall.

Now, having set up for measuring the probability of translations not reaable by the TM using
weighted Levenshtein distance, we simply supply these probabilities in the formulae 2.1 and 2.2 for
PM .

2.3 Entropy of decision
Finally, having accounted for ability to rea good enough translations by reaability and close-
fiing to structure of natural languages by TM perplexity, we want to define also some measures to
quantify uncertainty associated with performing the translation using the osen TM. To express it
using the conception of analysis and synthesis as relations, we want to measure expansiveness of
these relations, weighted by probability of transitions over their different edges.

What we are going to employ for this aim, is entropy of decision, as a compound measure for a
set of edges weighted with probabilities. Let us define the entropy of decision as

−
∑
fi

P (ei|fi) logP (ei|fi) (2.6)

for ea language unit fi from the source segment, where ei is its possible image (the target language
unit this translates into) and P (ei) the probability from view of the TM that the source language
unit should be translated into ei.
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e entropy of decision corresponds to the uncertainty of the TM during the translation. It
should not be confused with TM perplexity, defined above, whi describes rather the relation of
the TM and the corpus.

Because we will want to compare TMs working with different kinds of language units, we are
going to count the entropy of decision for every input unit and sum them up to yield total entropy
of decision for the whole segment f :

−
∑
fi∈f

∑
ei

P (ei|fi) logP (ei|fi). (2.7)

is approa neglects all other uncertainty associated with the decoding, su as employing
language models, whi assign different probabilities to different orderings of the output units, as
well as lexical weigthing, honored by the Moses decoder, or any feature functions. We have osen
to measure TMs by their very acquisition to the whole translation pipeline, rather than by their
ability to perform well with other components co-employed in the translation process.

Regarding the phases of analysis and synthesis, it should be noted yet that we have decided
to work with lowercased forms of segments from the corpus, thus always staying at least at this
level of abstraction. We believe that it enables to compare different TMs more accurately, as differ-
ences stemming from different errors in truecasing are rather caused by differring performance of
truecasers than of the TMs.

2.4 Summary
To make the final set of measures more synoptic, we recapitulate them here, in the table 2.1, together
with abbreviations we are going to use for them hereinaer. e measured values are cited in
apters about the respective TMs either in tables, or as ploed data, apart from IV-n, whi has its
own apter.
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Table 2.1: Summary of measures

Name Abbreviation Description

Reaability vs. TM perplexity
Reaability rbl Reaability of the reference trans-

lation by the TM. Analogous to re-
call.

Modified TM perplexity TM-ppl Measures differences in probability
spaces of translations between the
TM and the corpus. Analogous to
precision.

TM cross entropy TM-xent Binary logarithm of the modified
TM perplexity.

Level of abstraction
Size of the lexicon |Lex|[B] / |Lex|[phr] Size of the translation lexicon, either

absolute size in bytes, or number of
phrases it contains.

OOV of the TM OOV Rate of source segments from whi
not all units occur in the TM’s vo-
cabulary.

Empirical IV-n IV-n Number of instances of units in the
source side of the testing data that
occur in the training data n times.
e difference between IV-0 and
OOV is, that IV-0 is counted directly
from the training data, whereas
OOV depends on the TM’s extracted
vocabulary.

Uncertainty
Entropy of decision Ent Entropy of decision when using the

TM. Also measured on a per-unit
base.
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Chapter 3

Extreme translation models

3.1 Translating sentence-wise (Sen)
As mentioned above, we have started experimenting with a trivial TM, whi we developed for that
single purpose. e TM we measure merely collects pairs of whole sentences it finds in training
data. It is able to translate only exactly the same phrase it saw in training data, provided it saw also
the right translation with it there. e only abstraction performed is lowercasing.

3.1.1 Characteristics of the sentence-wise approa

e language unit this model uses is a whole sentence¹. We have osen it, as it is the only language
unit readily provided with the corpus we have, whose instances in source and target languages
are already mapped to ea other in the one-to-one fashion. is model completely ignores any
linguistical structures behind given sentences of aracters (or, bytes), not to mention the meaning.

3.1.2 Tenical setup of the experiments

For comparing sentences from the training part of a corpus with sentences from its testing part and
counting number of those whi are same, not mu is needed over the corpus itself. Rather than
an actual piece of soware, fractions of the corpus of different size served as our TM, with several
GNU utilities and a database management system on top of them.

We ran our experiments on the corpus CzEng 0.9. In accordance with instructions from authors
of CzEng, we used first 8 sections of total 10 for training. We did not use the 9th section, reserved for
testing during development, at all. And we used the 10th section for evaluation of the model. Most
data we utilized come from the plaintext format of the corpus, only counts of tokens are derived
from its “export format”.

¹. . .or any segment, depending on what the corpus contains
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tr[sen.] rbl[sen.] rbl (sen.)
1,000 10,338 1.2 %
3,162 22,680 2.8 %
10,000 33,751 4.2 %
31,623 48,267 6.0 %
100,000 68,359 8.5 %
316,228 93,874 11.6 %

1,000,000 131,037 16.3 %
3,162,278 187,881 23.4 %

Table 3.1: Reaability for the model Sen. e column headers mean: ‘tr’ = “size of training data”;
‘rbl’ = “reaability”; ‘sen’ = “sentences/segments”.

tr[sen.] tr[en. t.] tr[cz. t.] rbl (en. t.) rbl (cz. t.)
1,000 11,376 9,923 0.5 % 0.5 %
3,162 35,460 31,111 0.9 % 0.9 %
10,000 115,663 101,775 1.4 % 1.3 %
31,623 365,211 321,871 2.1 % 2.0 %
100,000 1,153,029 1,019,940 3.2 % 3.2 %
316,228 3,672,385 3,247,100 5.0 % 5.0 %

1,000,000 11,598,831 10,253,485 8.1 % 8.3 %
3,162,278 36,700,477 32,444,389 13.7 % 14.0 %

Table 3.2: Reaability for the model Sen, ea segment weighted by number of words it contains.
e new column headers mean: ‘en. t.’ = “English tokens”; ‘cz. t.’ = “Cze tokens”.

3.1.3 Expectations

As outlined earlier, we expect this model to be an extreme one. It should bemost error-free of all TMs
(provided they cannot take advantage from context). erefore, it will probably have the highest
score in oosing the right translation, and the same for entropy of decision, given the testing part
of the corpus is consistent enough with its training part. On the other hand, without the TMmaking
any abstractions, we expect it to be the most specific one, with a very high OOV rate.

e main purpose of the model is to provide us with extremal values of the quantities we will
measure. If they turn out to be less extreme than we expect, we will be able to relativize values
obtained by measuring other models.

3.1.4 Results

e results from our experiments with translating sentence-wise are captured in the tables 3.1 and
3.2.

Aer having performed a few first measurements, we were quite surprised with the reaability
of translations. Already with as few as ten thousand pairs of segments in training data, roughly
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Table 3.3: Size of the lexicon for the model Sen. Training data are expressed in number of segment
pairs, size of the lexicon is measured in kilobytes.

training data |Lex|[kB]
1,000 221
3,162 675
10,000 2,137
31,623 6,671
100,000 20,913
316,228 65,803

1,000,000 206,546
3,162,278 648,640

8.5 % of reference translations become reaable² (see Table 3.1). And from all the testing data, over
23 % of the pairs can be seen literally in the training data. is called for explanation.

e reason for su high reaability can be either poor correspondence of probability distribu-
tion of sentences in text, as implied by the corpus, with the true distribution (whi, we believe, is
not recurring to that extent). Or, there might be short segments strongly represented in the corpus,
whi are more likely to repeat literally than long sentences. To find the actual reason, we measured
the reaability one more time, counting number of reaable tokens in the sentences, rather that
just count of the sentences. To figure out number of tokens in ea segment, we utilized the “export
format” part of Czeng, whi already comes tokenized.

Results of measurements of the reaability in number of tokens can be seen in the last two
columns of the second part of the table 3.2. By comparing this table with the table 3.1, we can see
that percentages in the table for tokens are approximately half the corresponding values in the first
table. is verifies the expectation that shorter sentences are reaable more oen than longer ones.

Despite this positive findings, we peeked into the data to see what kind of segments are repetitive,
while not too short. We have found that there are many paragraphs mainly from the EU law, whi
are obviously ea time literally the same, coming from different sources. We draw a conclusion
from it, that the corpus is unnaturally regular, fairly non-random.

Regarding the complement measure to reaability, as declared in the section 2.2, either the TM
perplexity or KL-divergence, we were not able to calculate it in reasonable time using the basic tools
we used for this model. is is unfortunate, as if we knew results for this measure, we could find out
about diversity of the corpus—whether it contains rather many different target segments for ea
source segment, or just a few of them.

e entropy of decision for this TM is summarized in fig. 3.1. e result reflects our prior ex-
pectations, that is that the entropy of decision is very low. Note that even aer the TM sees 106

segment pairs in the training corpus, its decision is approximately equally uncertain as a coin flip.

²Note that reaability was evaluated only once for both directions in this TM.is is because whenever the reference
translation is reaable in one direction, it had to be present literally in the training data, and therefore it is reaable
also in the opposite direction.
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Figure 3.1: Entropy of decision for the TM Sen. e middle ti shows the average value, the bars
delimit the standard deviation of the measured sample. It is not an error that they rea into neg-
ative values; they merely visualize an approximation of the standard deviation of the real random
measure.
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Figure 3.2: Comparison of the models Sen and Pas: Size of the lexicon vs. OOV rate, roughly cor-
responding to level of abstraction vs. applicability of the abstraction. e labels next to the points
express number of pairs of segments in training data.
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3.2 Translating sentence-wise using a statistical model (Pas)
To ensure coherence of the results we obtain from different approaes, we measured the sentence-
wise TM once again, using a phrase-based statistical TM. We pasted words in ea segment in one
long word by substituting the aracter ‘@’ for ea space. is way, we simulated the sentence-
wise translation for a phrase-based TM.

We expected to get the same results as with the other method. However, the results from our
hypothetical TM from the previous section did not happen to be absolutely identical to those we
obtained using a phrase-based TM over pasted segments. We do not print the tables for the measures
both models are almost the same in again. e interesting differences are captured in the figure 3.2.
You can note that the phrase based TM (Pas) somehow performs beer than the exact applying pairs
seen in training data literally. Not only does it save the information more effectively—whi one
could expect—, but it can rea slightly more reference translations given the same training data.
By comparing the sets of translations reaable by the model Sen and by Pas, we found that the
Moses tool substitutes the original segment as the translation where it does not know any beer.
Surprisingly, copying the source segment proved to be the right answer in a number of cases.

If not with respect to size of the lexicon, at least with respect to all other relevant parameters, Pas
behaves almost the same as Sen. Based on this presumption, we have measured the appropriateness
(TM perplexity or cross entropy) of the TM for Pas only, not for Sen. e results are captured
in the figure 3.3. We can take these values as an example of very good ones, because this TM is
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Figure 3.3: Average cross entropy of the model Pas for different decoding options. Note that seing
the maximum translation options per input span does not improve the TM’s performance almost at
all. at indicates that the TM does not know too many good translations for any of source phrases.

usually maximally sure with the translation, as possible, unless the source segment was out of its
vocabulary. Recall, though, that source segments out of vocabulary are not evaluated with respect
to cross entropy, TM perplexity or KL-divergence. It is also mostly the out-of-vocabulary segments’
credit that with less training data, the cross entropy is lower. In this context, importance of the OOV
value over cross entropy is prominent.

What is worth noting at figures 3.3 and 3.4, is that the cross entropy tends to get rather worse
with increasing size of training data, than beer. It may be caused by growing vocabulary of the TM,
whi makes its OOV score lower (beer) for the price of reducing its overall appropriateness for
cases where it is applicable. Another point about the results is that given a Cze segment, having
more morphology, being more informative, on input makes the decision easier.

3.3 Translating letterwise (Ltr)
e second extremewe examine to set boundary values for our measures, is oosing single leer for
the basic language unit. Because leers are not aligned one-to-one in the corpus, we already need
to employ a statistical model whi makes up (non-trivial) alignments for language units in the
training segments. erefore, we use a phrase-based TM adjusted for phrases build up from single-
leer words. We include a special word for the space aracter, too, as we consider it important to
be able to transfer boundaries of words correctly.

With scaling down to su miniature unit as a leer, the computational costs of the transla-
tion dramatically increase. erefore, range of both training and testing data need to get reduced
accordingly (we scaled down from tens of thousands and millions of segments to a few dozens).
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Figure 3.4: Closer look at the Pas TM’s precision results aer seing the maximum translation
options per input span to 8 and distortion limit to 0 (whi should allow for prey good results).
e vertical bars show the standard deviation of measured values for testing data. e large standard
deviation shows that some of the translations proposed by the TM are in perfect agreement with
the corpus evidence, while others are rather bad, reaing about the level of the top mark. (Caused
by a bug, whi could not be recovered at the time, the lines for both translation directions are
unfortunately drawn in the same style.)

3.3.1 Expectations

We expect this TM to set the upper bound for perplexity, as well as the lower bound for size of the
lexicon. In other words, this TM is expected to abstract highly from provided information while not
being able to use the knowledge efficiently. It will also probably have an extremely high entropy of
decision.

3.3.2 Results

e results for this TM were obtained in two runs, whi differred in seing of the maximum trans-
lation options per input span. In the first run, the results were generated with this parameter set
to 4 or 8. ey brought a surprise that not a single reference translation was reaable with them.
is was already the first sign of a bad oice of the language unit, showing that the units from
the two languages cannot be well aligned, that their correspondence is in almost no relation to the
correspondence of meanings.

However, aer finding so, wemade the second run of translations, with themaximum translation
options limit set high enough to cover most of all commonaracters, namely to 50. is adjustment
had the expected effect—some of the reference translations became reaable. e reaability with
these second-run TMs is summarized in the table 3.4.

One hundred of training sentences might sound like too lile, but when all of them are cut into
as many pieces, as number of leers they are composed of, it presents a lot of information for the
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tr[sen] dir rbl[sen] rbl
100 cs→en 21,966 2.7 %
100 en→cs 11,187 1.4 %

Table 3.4: Reaability for the translation model Ltr used with <maximum translation options per
span> set to 50. e columns contain size of the training data (in sentences/segments), direction of
the translation, number of reaable sentences (out of 802,392), and the reaability rate.

tr[sen] l dl dir
Cross entropy [b]

avg±stdev min max
10 4 4 cs→en 51.6±32.6 0 120.3
10 4 4 en→cs 50.6±24.3 10 104.8
10 8 0 cs→en 52.8±33.4 0 122.8
10 8 0 en→cs 51±21.5 2.1 91.8
18 8 0 cs→en 53.4±34.8 0 129.3
18 8 0 en→cs 72±44.6 7.2 185.4
32 4 4 en→cs 81±48.6 7.2 198
32 8 0 cs→en 54.5±34.1 0 134.6
32 8 0 en→cs 79.7±49.2 5.7 200.2
100 50 4 cs→en 38.5±32.6 0 300.7
100 50 4 en→cs 27.8±34.5 3.6 327

Table 3.5: Cross entropy of the TM Ltr. e column headers mean: ‘tr[sen]’ = “number of training
sentences/segments; ‘l’ = “maximum number of translation options per input span”; ‘dl’ = “limit
on distortion—reordering—of the translation”.

MT system. Despite that, the reaable number of sentences is very low. Our prior expectation
was that almost every translation is reaable, but it turns out that complexity of finding the right
translation among all possible is too high.

If the translation using leerwise approa was not as tardy as it was, we would perform more
sounds into the space of possible experiment setups, to findmore about trends the translation follows.
Because this was not possible, we can only study a few other values we obtained, that describe the
other properties.

e table 3.5 lists measured values regarding perplexity of this TM, to complete the picture of
poor reaability of reference. It demonstrates high inappropriateness of a TM to the translation
problem. e highest values of cross entropy of the TM and the corpus rea 300 bits—that is the
amount of information that would have to be added to gain the one, certain translation for the given
source sentence.

Apart from the absolute values of the cross entropy, one more thing is astounding about the
results. e zeros as minimal values for the cross entropy should mean that some source Cze
segmentwas translatable with no doubts into one and only one English segment. at is not virtually
possible with this TM. Moreover, the zero cross entropy got measured with a prey long sentence.
We realize that this must have been caused by a bug in the soware, but we, unfortunately, have
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tr[sen] l dl dir |lex|[kB] oov
10 4 4 cs→en 12 2.6 %
10 4 4 en→cs 13 4.2 %
10 8 0 cs→en 12 2.6 %
10 8 0 en→cs 13 4.2 %
18 8 0 cs→en 31 2.8 %
18 8 0 en→cs 40 2.6 %
32 4 4 en→cs 74 1.5 %
32 8 0 cs→en 68 1.8 %
32 8 0 en→cs 74 1.5 %
100 50 0 cs→en 288 0.4 %
100 50 0 en→cs 305 0.2 %

Table 3.6: OOV rate for the translation model Ltr. e columns contain size of the training data (in
sentences/segments), maximum translation options per input span, distortion limit, direction of the
translation, and the OOV rate.

not found the cause.
On the other hand, the results frommeasurements of OOV turned out just as expected. e OOV

was at low 2.6 % already from 10 segments of training data, and aer first 100 segments, only ea
500th unit—aracter—was unknown to the TM. ese values were reaed by the TM with using
mere 300 kB. e best OOV score of Pas was reaed mu earlier by Ltr, with less than 12 kB of
memory for storing the translation lexicon. All the results are listed in Table 3.6.

e table 3.7 summarizes measurements of the decision entropy for the TM Ltr. e first four
columns are the same as in the previous tables, for specifying the translation seings. Following
columns list the new information. From those, of a special interest is the third last column, describing
decision entropy per unit. When the unit is a aracter/leer, as in this case, if we neglect the TM’s
ability to translate the leers from the source segment’s leers, this value corresponds to the entropy
rate of an English, or Cze text, whi is known to have approximately these values. (See [5].)
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tr[sen] l dl dir entropy entropy per unit
avg±stddev min max avg±stddev min max

10 4 4 cs→en 39.3±32.3 4.5 180.9 1.2±0.6 0 2.9
10 4 4 en→cs 34.4±25.9 7.6 135.8 1.2±0.8 0 3.6
10 8 0 cs→en 42.4±36.2 5.1 199.6 1.3±0.7 0 2.9
10 8 0 en→cs 37.9±30.4 7.0 161.1 1.3±0.9 0 4.1
18 8 0 cs→en 46.4±40.6 4.2 216.7 1.4±0.8 0 3.2
18 8 0 en→cs 58.9±48.8 12.8 266.8 1.5±0.9 0 3.6
32 4 4 en→cs 60.0±46.1 15.0 272.7 1.6±0.8 0 3.5
32 8 0 cs→en 47.3±37.1 4.5 207.1 1.5±0.9 0 3.2
32 8 0 en→cs 65.4±51.5 15.7 309.2 1.7±0.9 0 4.0
100 50 0 cs→en 90.7±68.4 7.3 475.2 2.3±1.3 2.4 0
100 50 0 en→cs 102.4±74.7 16.6 384.2 2.3±1.3 0 5.3

Table 3.7: e entropy and entropy per unit for the TM Ltr.
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Chapter 4

Phrase translation models (Phr)

Having finished seing appropriate measures and eing them at extreme TMs, we advanced to
more real examples of TMs and language units they use. However, these TMs consumed still more
resources to produce the output than, for example, models for translating leerwise. erefore, both
training and testing data were smaller for the experiments that employed the TM.

4.1 Setup of the experiments
We used sets of 1,000 and 10,000 segment pairs of training data for training phrase translationmodels
with the maximal length of phrases saved into the translation lexicon restricted to 1, 3, and 10 words,
in subsequent experiments. Aer training the models, they were tuned using MERT (minimum
error rate training) on equally sized tuning data. For obtaining the translations, we used the Moses
decoder again. e number of segments eventually translated by the models varies from about
25,000 to 800,000, as translating the whole testing section of CzEng took a few days of CPU, and
thus proved intolerable. (Full listing of numbers of translated segments for all TMs can be found in
Chapter A.1 in the appendix.) Fortunately, the reaability was mu quier to calculate, so it is
always evaluated on the whole testing section.

4.2 Results
All the experiments were run using the seing TTL (maximum translation options per input span)
= DL (distortion limit) = 4. e maximum phrase length (abbreviated as ‘plen’ below) used for the
translation was varied among values 1, 3, and 10. We expected the proposed measures to respond
to the anging ‘plen’ parameter.

e measured results are listed in the table 4.1.
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tr[sen] 1,000 1,000 1,000 1,000 10,000 10,000 10,000 10,000 10,000
dir en→cs en→cs cs→en en→cs cs→en en→cs cs→en en→cs en→cs

plen 1 3 3 10 1 1 3 3 10
lex[kB] 41 246 243 896 286 280 2,577 2,583 10,873
lex[#] 1,922 9,837 9,742 29,730 13,116 12,986 100,579 100,345 364,317
oov 32.6 % 30.9 % 43.6 % 30.8 % 25.5 % 14.2 % 22.8 % 13.0 % 12.9 %
rbl¹ 2.3 % 3.2 % 3.3 % 3.3 % 6.6 % 5.8 % 9.3 % 9.1 % 9.8 %

Entropy of decision
avg 3.2 5.5 3.8 6.5 2.7 6.7 6.1 10.4 11.1

stddev 2.7 4.4 4.1 7.9 2.3 5.7 5.3 8.0 10.1
min 0 0 0 0 0 0 0 0 0
max 21.3 37.3 28.6 116.6 47.7 59.2 72.3 77.0 192.5

Entropy of decision per unit
avg 0.8 1.2 1.1 1.4 0.7 1.1 1.3 1.6 1.7

stddev 0.7 0.8 0.8 1.0 0.6 0.7 0.8 0.8 0.9
min 0 0 0 0 0 0 0 0 0
max 2.0 3.5 3.4 5.1 2.0 2.0 4.1 4.0 5.7

Cross entropy
avg 80.9 64.0 11.4 24.9 23.2 13.2 24.4 8.2 28.9

stddev 71.3 63.8 9.9 16.9 17.6 19.4 20.1 16.3 44.0
min 2.8 1.6 0.7 2.1 3.5 0.1 3.3 0.0 0.3
max 909.3 902.5 102.4 181.1 226.0 247.2 214.2 229.4 488.0

Table 4.1: Results from the measurement of the phrase TMs. e first column describes meaning of
the corresponding row. e abbreviations read this way: ‘tr[sen]’ = “number of segments/sentences
in the training data”; ‘dir’ = direction of the translation; ‘plen’ = “maximum length of phrases saved
into the translation lexicon”; ‘lex[kB] = size of the translation lexicons in kilobytes; ‘lex[#]’ = size
of the translation lexicons in number of items; ‘oov’ = “out-of-vocabulary rate”; ‘rbl rate’ = “rate
of reaable reference translations”; ‘avg’ = “arithmetic mean”; ‘stddev’ = “standard deviation”;
‘min’ = “minimum value”; ‘max’ = “maximum value”.
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4.3 Analysis of the results
Let us first describe constingness of this TM, as implied by the table of results, and how it depends
on the translation seings. By the constingness, we understand amount of resources needed by
the translation, whi is reflected prevalently by the size of the translation lexicon (for memory
requirements) and partly by the entropy of decision (for its impact on CPU and other dynamic
resources).

When we experimented with the TMs Pas and Sen, whi store whole segment pairs in the
translation lexicon, we made the prediction that they would use up most space for the lexicon.
However, the results from experiments with Phr contradict the prediction. When training on 10,000
sentences, Phr uses up to 11 MB of memory for the translation lexicon, whereas Sen needed only
2 MB. It is obviously caused by Phr learning overlapping phrases from the training data, whi in
turn causes it to remember ea word up to 10 times, in the case of phrases 10 words long. However,
we believe that with training data growing further beyond the size we experimented with, there
occur unseen whole segments mu more oen then unseen phrases of a fixed maximum length.
Hence, we predict that the Sen’s translation lexicon would overgrow that of Phr at some time. For
the maximum phrase lengths 1 and 3, sizes of the translation lexicons are nearing those for Sen
already in the seing with 1,000, resp. 10,000 training sentences.

Regarding the entropy of decision, it stays very low when measured per unit, but it also stays
relatively low when evaluated for the whole segments. Its variation is too big to rule out possible
discrepancy between the measured average and its actual mean value, but with this many trans-
lated data (as listed in Table A.1) the average values become fairly reliable. Note, though, that this
parameter can be directly influenced by seing parameters to the decoder. erefore, its plausibly
low value should be understood rather as reflecting seing the decoder to be plausible, than as a
surprising result of this TM. Regardless of this fact, the differences in the entropy between the two
directions of translation are noteworthy. e TM provides about 3 b or 4 b more of decision en-
tropy, on average, for the 1,000 training sentences, respectively 10,000 training sentences seings.
at means that this TM sees Cze as a rier language than English (having learned it from a few
thousand sentences only). It is certainly caused partly by the ri Cze morphology, but probably
to the same extent also by the Cze free word order whi accounts for the TMs uncertainty in
aligning corresponding phrases correctly.

e second group of properties concerns the success of the TM in finding a good translation.
First important measure to look at is the OOV rate. Also here we can note a significant difference
between the directions of translation. Cze proved more complex again, as it did regarding the
entropy of decision. It had the OOV rate almost twice as big as English in the experiments with
10,000 training sentences.

In contrast to the OOV is reaability of reference translations, whiwas always slightly higher
for translating to English from Cze than otherwise, in the pairs of experiments with the same
seings. is also testifies for Cze being a more complex language in the view of this TM. Re-
garding the absolute values of these measures, they are rather poor. Not more than 10 % of reference
translations were reaable, even using as regular data source as we found CzEng is (in the section
3.1.4). However, compared to the extreme models of Sen or Pas, whi had reaability of 4.2 %
with 10,000 training sentences, the phrase based TM performed mu beer. We can observe a sig-
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nificant improvement between experiments that used 1,000 training sentences and those that used
10,000 training sentences. e improvement is most notable with maximum phrase length set to 3.

Unlike the training data size, the maximum phrase length is not that essential for reaing beer
results. But it proves very important. As we have mentioned in the above text, adding to the phrase
length does not damage the entropy of decision noticeably. Or, the other way around, even when
keeping the entropy of decision low, and thus saving dynamic computational resources, we can use
longer phrases and get more good translations. e exact measured improvement can be best traed
by the experiments that we conducted with all maximum phrase length seings (i.e. 1, 3, and 10).
From these series of experiments, we get the results 〈2.3 %, 3.2 %, 3.3 %〉, and 〈5.8 %, 9.1 %, 9.8 %〉,
for 1,000 training sentences, and 10,000 training sentences, respectively. ese sequences lead us to
expect the ideal seing somewhere over phrases of length up to 10, although we cannot tell how the
relation will develop further. We expect longer phrases to impose a burden at both the training and
decoding phase, whi might increase the complexity of the translation, as well as consume part of
space of partial translation hypotheses, that should be beer occupied by hypotheses made up of
shorter phrases. is is a maer for future measurements. e possibility to success in translating
as a parameter of decoder seings is well examined in [1].

As the last measured parameter, we will analyze the cross entropy. At first sight, we can notice
it varies largely—both with regards to the average in different experiment seings, and with regards
to variation in ea particular seing. e second mentioned phenomenon can only be explained
by the TM having come across source sentences of largely variable demandingness, some of whi
were well learned by the TM, but some of whi were rather alien. e variation across different
experiment seings is of more interest. In the 1,000 training sentences seing, the only translation
from Cze to English outperforms all translations in the other directions sovereignly. is is ap-
parently due to its high OOV score whi causes many source sentences not to be measured with
respect to OOV at all. e same cause can be seen behind differences of translating from Cze to
English and in the other direction with the seing of 10,000 training sentences and the maximum
phrase length of 1 or 3 words.

Specially surprising is the value measured for the last experiment, translation based on 10,000
training sentences from English to Cze, with maximum phrase length 10. Its cross entropy got
mu higher than those of experiments with shorter phrases, while the OOV rate stays almost the
same. is was most probably caused by pruning translation paths to the actual best translation
candidates (by sear errors, as described in [1]). N.B. that cross entropy, unlike reaability, was
evaluated using unconstrained translation, while reaability, in whi this seing reaed a high
rating, was measured using a constrained translation. e relatively high score in reaability, and
relatively low score in the cross entropy at the same time means that the model allowed for trans-
lating the sentences rightly, but did not score individual translations well (not in good accordance
to the corpus evidence).
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Chapter 5

TMs using additional linguistic information
(Afact and Tfact)

is section is devoted to factored translation, i.e. translating words annotated with various tags.
We performed two kinds of factored translation—one using annotations at the morphological level
(or a-level), and the second one using annotations at the tectogrammatical level (or t-level). All these
experiments were again conducted using the MT system Moses. e decoder parameters were set
the same as in experiments with Phr, and the maximum phrase length was varied, as in experiments
with Phr. e measures were evaluated on a part of the 10th section of CzEng, size of whi is listed
in the table A.1, but reaability was evaluated using the whole section.

5.1 Setup of translations at the a-level
For translating with morphological information available, we pied a translation seme that was
linguistically appealing: we translated separately a-lemmata and morphological tags, employing a
language model at the target side of both of these layers, and from the target-side lemmata and
morphology, we generated ba the surface forms.

5.2 Results for Afact
e measured results are listed in the tables 5.1 and 5.3.

5.3 Analysis of the results
Let us first describe the constingness of the TMs again. We can notice that the translation lexi-
con was somewhat smaller for the factored translation (Afact) than for the unfactored (Phr). For
instance, approximately 1.4 MB for Afact (10,000 training sen., max. phrase length 3, both direc-
tions) compares to approximately 2.6 MB for Phr with the same seings. On the other hand, the
lexicon of Afact holds more entries than that of Phr with the same seings of the experiment. For
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tr[sen] 1,000 1,000 1,000 1,000 1,000 1,000
dir en→cs cs→en en→cs cs→en en→cs cs→en

plen 1 1 3 3 10 10
lex[kB] 55 39 174 157 564 539
lex[#] 2,539 2,561 16,421 16,222 53,319 53,435
oov 31.0 % 42.1 % 29.9 % 40.4 % 29.7 % 40.1 %
rbl 2.2 % 2.7 % 3.0 % 2.2 % 3.5 % 3.3 %

Entropy of decision
avg 5.2 3.0 7.2 5.2 7.9 5.8

stddev 3.8 2.3 5.6 3.9 8.2 7.8
min 0 0 0 0 0 0
max 35.6 25.9 43.8 55.0 85.1 72.4

Entropy of decision per unit
avg 1.1 0.9 1.5 1.4 1.6 1.5

stddev 0.7 0.7 0.9 0.8 1.0 1.1
min 0 0 0 0 0 0
max 2.0 2.0 4.1 3.6 5.3 5.0

Cross entropy
avg 60.2 15.7 10.4 28.5 14.2 19.1

stddev 65.1 14.4 12.4 21.7 14.1 19.6
min 0.4 0.5 0.1 0.8 0.4 0.7
max 573.2 223.8 137.9 187.9 148.6 169.0

Table 5.1: Results for the TM Afact trained on 1,000 segment pairs.

the seings used for the previous example, the lexicons contain about 150,000, and 100,000 entries,
respectively. ² at reflects that the factored model sees less different language units in the training
data (therefore the translation table is smaller), but stores them more times ea (into the three ta-
bles: translation, reordering, and generation); therefore the lexicons contain more entries than they
do for non-factored models.

We would like to make an estimate of the translation lexicon size for growing training data, but,
unfortunately, we have not had enough resources and time to run experiments on more different
sizes of training data, thus we have too lile data to make the estimate. However, we expect that
with the abstraction Afact involves, the translation lexicons would grow slower depending on the
size of the training data, than those of Phr. So far, we can merely compare the rate of growth of
the lexicons depending on the maximum phrase length allowed. In su a comparison, Phr shows
slightly slower growth. In other words, there are less individual lemmata and annalytical tags seen

²e entries counted include those in the translation table only (not the entries from either reordering table or from
the generation table).
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tr[sen] 10,000 10,000 10,000 10,000¹ 10,000 10,000 1,000,000 1,000,000
dir en→cs cs→en en→cs cs→en en→cs cs→en en→cs cs→en

plen 1 1 3 3 10 10 1 1
lex[kB] 335 197 1,448 1,309 6,339 6,170 6,064 3,068
lex[#] 12,630 12,713 151,775 152,636 639,224 646,442 380,592 378,356
oov 12.5 % 18.2 % 11.6 % 16.9 % 11.5 % 16.9 % 1.8 % 1.8 %
rbl 4.8 % 6.1 % 8.0 % 4.1 % 8.8 % 6.6 % 6.9 % –

Entropy of decision
avg 9.6 6.2 14.2 8.5 15.0 9.9 15.9 14.7

stddev 8.0 4.8 11.1 6.3 12.4 9.2 16.1 14.3
min 0 0 0 0 0 0 0 0
max 107.2 91.6 162.9 53.4 199.9 99.4 126.1 135.9

Entropy of decision per unit
avg 1.5 1.2 2.1 1.7 2.2 1.8 1.5 1.6

stddev 0.6 0.6 0.8 0.8 0.9 1.0 0.5 0.6
min 0 0 0 0 0 0 0 0
max 2.0 2.0 4.3 3.9 5.6 6.5 2.0 2.0

Cross entropy
avg 28.4 22.8 17.9 9.2 15.3 31.0 23.8 –

stddev 31.3 22.8 25.6 16.0 24.1 55.0 42.4 –
min 0.4 0.5 0.2 0.1 0.2 0.2 0.0 –
max 425.1 287.8 335.5 206.6 303.6 750.0 486.4 –

Table 5.3: Results for the TM Afact trained on 10,000 and 1,000,000 segment pairs. Fields marked
with “–” correspond to experiments we have not measured, particularly for their high computational
requirements.

in the training data, but they can be combined in more ways into 3-grams and 10-grams, than the
whole tokens from the surface level.

Regarding the entropy of decision, we observed a moderate increase compared to Phr. However,
as a pleasing trifle, Afact lowered the maximum value of the entropy of decision in the seing 1,000
tr. sen., en→cs, plen 10, from Phr’s 116.6 b to 72.4 b, even geing beer OOV rate. Otherwise, the
entropy of decision is a bit higher also on a per unit base, where it reaes over 2 b (on average).

Let us now analyze the Afact’s results with regard to its success. In the first measure, OOV
rate, we can see an improvement compared to Phr. e improvement is not very clear with 1,000
training segments, while with 10,000 training segments it becomes notable. To instantiate this dif-
ference, compare the experiments using 10,000 training segments and maximum phrase length of 3
tokens. Phr has OOV rate for these seings 〈13.0 %, 22.8 %〉 for the directions en→cs, and cs→en,
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respectively, while Afacts reaes beer 〈11.6 %, 16.9 %〉 for the same experiments. e differences
in OOV rate are most notable for the direction cs→en, that is for covering the Cze vocabulary.
is exactly agrees with the aracteristics of Cze as of a language with ri morphology, whi
factorization of the model prevalently copes with. As the best result from experimenting with Afact
we can see pushing the OOV rate as low as to 1.8 % with models trained on 1 million segment pairs.
(e phrase based TM would surely also rea a lower score if trained on more data, but as the ex-
periments with 10,000 training segments indicate, it would most probably not reaa this low OOV
rate.)

In contrast to improvement of the OOV rate, the reaability decreased about 1 % on average
compared to Phr. e difference was again almost unobservable with 1,000 training segments, where
Afact even reaed a beer score for translating en→cs with phrases up to 10 tokens long (3.5 %,
compared to 3.3 %). e reaability is again increasing as we loose the maximum phrase length
constraint. A highly interesting phenomenon that can be seen in the results from experiments with
max. phrase length 3 and higher, is that the relation of reaability for English and Cze got
inverse, compared to all preceding results. When the reaability got lower overall, it should be
perceived rather as geing the cs→en translation worse than geing the en→cs translation beer.
Without further resear, we cannot tell surely what caused this turnover. We would expect the
Cze segments to be harder to generate (or that there would be a larger ‘vocabulary’ of them),
whi the results disprove. We can only draw the conclusion that the factored model coped beer
with the rier (or, maybe, more thoroughly annotated) language than with the second one.

A very surprising result is the fall in reaability of cs→en translation using 10,000 training
segment pairs, from maximum phrase length of 1 to 3. e same fall is present also in the parallel
experiments based on 1,000 training segment pairs. e only explanation we can supply is the
translation lexicon being probably populated with bigrams and trigrams that bloed unigrams,
otherwise useful for the reaability, from geing either into the lexicon or into consideration by
the decoder.

Let us analyze the cross entropy now. We can note the unpleasantly high maximum values
for every experiment. In su extreme cases, the translation brings rather a (countable) loss of
information, rather than its increase, from view of the target language speaker. On the other hand,
in the cases where cross entropy reaes its minimum, the TM brings only a negligible amount of
misinterpretation into the translation, compared to the corpus evidence.

e other aracteristics of the cross entropy distribution are more informative, though. e
experiment with 10,000 tr. seg., cs→en, max. phr. len. 3 turns out to be a special case again, for its
low value not only for the reaability, but also for the cross entropy. e reaability was measured
using the whole 10th section of CzEng, but the cross entropy was extracted from translating only
1,119 segments (as listed in Table A.1), hence it presents a less reliable value. However, the parallel
experiment using Phr instead of Afact performed similarly with respect to the cross entropy, so we
should not disregard this measured value.

e overall trends in the cross entropy show it has its minimum when the maximum phrase
length is set to 3. e increase with using longer phrases can be explained by sear errors again, as
with Phr.

e dependency of whi one of the translation directions performs beer with regard to the
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cross entropy, on the experiment setup or on the OOV rate do not seem to be easily explainable.
Several types of errors can come into play (described in [1]), and without more experiments set up
more different ways, we cannot surely distinguish the causes of different performance.

5.4 Setup of translations at the t-level
For translating with tectogramatical annotations at hand, we tried to adhere to those relations
we consider especially useful for translating. We presupposed that a node in the tectogrammat-
ical dependency parse tree has its governing node as one of its principal properties. We also as-
sumed that the deep-order distance plays an important role. erefore, we substituted the tuple
〈< deep-order distance >,< governing node’s functor >〉 for the link to the governing node origi-
nally present in the “export format” of CzEng 0.9, assigning a special value to it for the root node.

en, we oosed a translation seme we wanted to be representative for translating at the
tectogrammatical level. It included translating separately the lemmata plus the valency frame³, the
above described joined data about the governing node, and the rest (formemes and various aributes,
refer to [2]). Aer the translation, we did not perform any synthesis or generation of the surface
form, as we considered the output of the translation as bearing more information than its possible
synthesis into surface. us the experiments abstract from discrepancies potentially caused by errors
in the synthesis. However, we have not imposed any penalties for the TM not having finished its
actual work of translating, as we have not set up any framework for doing so yet. We would also
first need more results from translating to be able to benefit from imposing the penalties.

5.5 Results for Tfact
e results are listed in Table 5.4.

5.6 Analysis of the results
We have not run enough experiments with Tfact, unfortunately, to produce more interesting results.
is TM proved computationally one of the most demanding, and we also gave the TMs analyzed
earlier higher priority. erefore, only incomplete results are available, only for two modest experi-
ment seings, and only measured using 1,000, and 2,000 testing segments for the translation en→cs,
and cs→en, respectively.

We can note that the translation lexicons for Tfact contain more entries than for example those
for Phr. Tfact uses three translation tables, therefore the expected number of entries in its lexicon
would be three times number of entries in the comparable Phr’s translation lexicon. But the Tfact’s
lexicon contains somewhat more than that. It implies that the t-lemmata, the combined information
about the governing node, or the combined formemes are not as repetitive as the simple surface

³Although the valency frame aribute was le empty at least by first several thousands of sentences in CzEng.
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tr[sen] 1,000 1,000
dir en→cs cs→en

plen 1 1
lex[kB] 77 77
lex[#] 7,009 7,044
oov 56.7 % 60.1 %

rbl rate 0.03 % 0.006 %

Entropy of decision
avg 5.1 5.1

stddev 3.1 3.1
min 2.0 1
max 15.9 20.0

Entropy of decision per unit
avg 2.0 2.0

stddev 0.0 0.1
min 1.5 1
max 2.0 2.0

Table 5.4: Results for the TM Tfact.

forms. is refers to training on data containing 1,000 segment pairs, though, so it is not a very
crucial observation. So do not we consider the absolute size of the lexicons very informative.

e other measures prove that this TMwould need more training data. Almost 60 % of all testing
data were out of vocabulary, and only a few segments were eventually reaable. is did not help
the TM be certain, either. Conversely, the entropy of decision was at the highest level seen till now
already for this small setup.

All in all, we found the tectogrammatical annotation very specific and probably accurate, but
also too demanding for the translation system to use.
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Chapter 6

IV-n for all TMs

e results from the measurement of the IV-n are collected in this apter for beer readability, for
not losing the context with results for other TMs. e apter is divided into sections for ea TM
for whi this measure was evaluated. In ea section, there are the measured data ploed with a
title naming the corresponding (hypothetical) TM, number of segment pairs it used (might use) for
training, and the language it is evaluated for¹.

IV-n was defined in the section 2.1. For the reader to understand the plots more easily, we shall
describe their different areas and their meaning briefly. e axis named “Times seen in training
data” corresponds to the extent the given phrase is known. e le-most coordinate, “Times seen
in training data” = 0, corresponds to the empiric OOV. (It is oen not ploed as a point in the plot
for having to large value.) e second variable axis, named “Phrase length”, distinguishes length
of phrases the measure is evaluated for. e rearmost line in the plot corresponds to unigrams, the
third from rear to trigrams, the foremost line corresponds to phrases of length 10. e value axis,
“Times used”, expresses total number of occurrences of phrases with the given length, seen in the
data the corresponding number of times, in the 10th section of CzEng.

e values were obtained by first counting occurrences in the training data and, with the ta-
ble of counts, going through the 10th section of CzEng and adding one for ea 1..10-gram to the
appropriate number.

6.1 Translating letterwise (Ltr)
ese results are not of very importance for maine translating, but they are useful to e the
method, and they also tell something about the regularity of both languages at the level of groups
of a few leers.

We can notice two basic tendencies in this kind of plots:

1. e curve for unigrams continues furthest to high values of the “Times seen in training data”
axis. e curves for higher n-grams go lower.

¹Unlike OOV, we can immediately make use of IV-n for the language it is evaluated for, whether it is the source
language for a particular translation, or the target language. It is not subject to any aligning and phrase filtering, as
one-sided models may be.
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2. ere forms a “bowl” (a local minimum) on individual lines in the plot sometimes.

We will talk about these tendencies later.
What is noticeable about the results for Ltr, is the overall high extent of having known the

language unit from the training data (the curves are fairly high above 0, but, most importantly, they
spread far to right).

6.2 Phrase translation (Phr)
In the plots for the TM Phr, we can see that the testing data (the 10th section of CzEng) was very
similar to the training data, as even the nearest curves cover a prey significant area with “Times
seen in training data” relatively high. We claim that the high values (causing the curves to resemble
a bowl) correspond to the same sentences that came to the corpus from different sources (but they
have the same origins), as it is highly improbable for a set of 10-grams to occur this number of times²
and not to come from the same sentence.

6.3 A-factored translation (Afact)
For the a-factored translation, we have counted the IV-n measure for ea of the translating (or,
precisely, “mapping”) step: for translation of the lemmata, for translation of the morphology and for
the generation of the final surface forms. Ea su translation is then influenced by the IV-n for
the lemmata and morphology at the source side and by the IV-n for the tuple 〈lemma,morphology〉
(called “lemmor” in captions of the plots) at the target side.

In themeasured data, we can observe inarguable improve from the corresponding plots for trans-
lating in unfactored fashion. e curves spread mu more to the right side. Another noteworthy
observation regards the difference between English and Cze morphological tags. e plot for En-
glish ones is very spare. at reflects the English morphological tagset being mu smaller than the
Cze one.

e conclusion to be drawn from these plots speaks for use of factored models, at least without
abundance of training data.

6.4 Edges of the a-tree (Aedge)
is section and the following one are devoted to a hypothetical TM, or rather to a mere feature of
linguistic data in the corpus. e implied TMs could not translate a single sentence. By including
these two experiments, we want to measure useability of tree-like structures for maine translating
in practice, or, more precisely, aracterize the two types of trees (a-trees and t-trees) with respect
to maine translating.

In these experiments, we extract tuples of nodes from a-trees³ and t-trees⁴ and measure the IV-n

²Namely, it was 5379.
³Parse trees at the a-level (annalytical).
⁴Parse trees at the t-level (tectogrammatical).
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for su pairs. e nodes in the edges retain all their original linguistic information (i.e. lemmata
and tags) for the experiment. e edges we operate on are sorted into segments the same way
their dependent nodes were originally in the corpus. is allows us to compute IV-n also for longer
phrases than just for single edges.

As you can see in the figure 6.5, surprisingly, also longer phrases of edges could be taken as the
basic language unit for a TM, as they display a high enough extend of repetitiveness. e shape of the
plots for 10,000 training segments is very similar to plots for the lemma-morphology combination
for Afact. at is natural, as both concepts, the a-edge, and the lemma-morphology combination,
are also very similar.

e last two plots in this section display the slice of the other plots, taken at where “Phrase
length” = 1, for large training data. ey demonstrate the bowl-like appearance of this kind of plots,
and give a clue what it is caused by. Let us describe the plot from le to right, in correspondence
to extent of knowing a particular a-edge. ere existed a lot of a-edges, that would be useful for
translating the test section, but they were not seen in the training data at all. A number of a-edges
was very useful in the testing data, while having been seen only a few times in the training data
(this corresponds to the descending part of the plot). Some common a-edges were present in both
the data (the middle part of the plot). Finally, some very common a-edges occured many times in
both the data (the last, ascending part of the plot).

6.5 Edges of the t-tree (Tedge)
Generally, we have not, unfortunately, experimented with the t-layer mu, because it came to the
t-layer only aer having explored the simpler models. erefore, also the IV-n measurements were
only few for this layer.

In the plots in Figure 6.6, you can note both the phenomenons mentioned in the introduction to
this section. e results were somewhat interesting in that the longer phrases were always unrea-
able. at means that applying a phrase based model to t-level annotated corpus cannot yield very
good results, because too many phrases would be just out of vocabulary.
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Figure 6.1: IV-n for the TM Ltr.
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Figure 6.2: IV-n for the phrase TM.
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Figure 6.3: IV-n for the a-factored TM.
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Figure 6.4: IV-n for the a-factored TM, continuation.
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Figure 6.5: IV-n for edges of the morphological parse tree.
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Figure 6.6: IV-n for edges of the tectogrammatical parse tree.
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Chapter 7

Conclusion

We have selected and discussed measures for measuring performance of TMs according to three
distinct criterions. e cross entropy/TM perplexity was devised for a linguistic problem involving
two languages as a novel measure. We have implemented all the measures to evaluate them using
both toy and real translation models. We have set their empirical bounds using extremal cases of
TMs and also proved their applicability to several real TMs. Further models we originally intended
to include in our experiments (like hierarical TMs) unfortunately exceed the scope of this thesis,
mainly due to their greater complexity.

We would like to continue in this work and both extend size of the measured models, and add
models of new kinds, like hierarical TMs. e difference between generating target surface forms
from source m-lemmata and morphology, and generating target m-lemmata from source t-lemmata
and tectogrammatical tags would be of particular interest for us. We would surely also want to
compare a beer trained phrase TM with a comparably trained hierarical model. ese topics are
le for further resear.
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Appendix A

Sizes of data in experiments

e table A.1 lists number of sentences the experiments were actually run with. Although the goal
was to measure all the TMs equally, on the whole 10th section of CzEng, the time that would be
needed for that was intolerable. erefore, the calculations were usually stopped aer some time.
e number in the table expresses number of segments/segment pairs taken from the top of the 10th

section of CzEng that were translated in the direction listed in the 2nd column to yield basis for
calculations of the OOV, decision entropy and TM perplexity.
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Model (max. phr. length) Direction Training [sen] Translated [sen]
Sen both ALL 802,392
Pas both ALL 802,392
Ltr cs→en 100 187
Ltr en→cs 100 118

Phr(1) en→cs 1,000 138,866
Phr(3) en→cs 1,000 287,045
Phr(3) cs→en 1,000 255,891
Phr(10) en→cs 1,000 762,662
Phr(1) en→cs 10,000 36,226
Phr(1) cs→en 10,000 802,392
Phr(3) en→cs 10,000 24,605
Phr(3) cs→en 10,000 802,392
Phr(10) en→cs 10,000 214,414
Afact(1) en→cs 1,000 202,901
Afact(1) cs→en 1,000 216,762
Afact(3) en→cs 1,000 80,549
Afact(3) cs→en 1,000 456,447
Afact(10) en→cs 1,000 184,892
Afact(10) cs→en 1,000 223,951
Afact(1) en→cs 10,000 209,478
Afact(1) cs→en 10,000 282,381
Afact(3) en→cs 10,000 100,000
Afact(3) cs→en 10,000 1,119
Afact(10) en→cs 10,000 74,329
Afact(10) cs→en 10,000 50,353
Afact(1) en→cs 1,000,000 385,024
Afact(1) cs→en 1,000,000 15,000
Tfact(1) en→cs 1,000 1,000
Tfact(1) cs→en 1,000 2,000

Table A.1: Size of data in experiments. “ALL” means all the experiments with with the specified
TM. e 10th section of CzEng contains 802,392 sentences.
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