
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Martin Kahoun

Procedural generation and realtime
rendering of planetary bodies

Department of Software and Computer Science Education

Supervisor: Mgr. Jan Horá£ek,

Study programme: Computer Science, Programming

2010

I would like to thank to my supervisor, Mgr. Jan Horá£ek, for his time
and advice.

I claim to have written my thesis by myself using only the cited sources.
I agree with lending of this thesis and letting it publicly available.

In Prague on 5.8.2010 Martin Kahoun

3

Contents

1 Introduction 11

2 Problem analysis 13

2.1 Terrain generation techniques 13
2.1.1 The Fault lines algorithm 13
2.1.2 The Plasma algorithm 14
2.1.3 Other fractal based algorithms 14
2.1.4 Noise based approach 14

2.2 Spherical level of detail algorithm 15
2.2.1 Geometry clipmaps 15
2.2.2 The ROAM algorithm 15

2.3 Texturing the planet . 16
2.3.1 UV mapping . 16
2.3.2 Cube mapping and texture combination 16
2.3.3 Tri-planar texturing 17

3 Implemented algorithms 18

3.1 The spherical ROAM algorithm 18
3.2 Fractal Brownian motion 20

3.2.1 Simple fBm generator 21
3.2.2 Advanced fBm generator 22

3.3 Terrain texturing . 23
3.3.1 Heightmap and normal map generation 23
3.3.2 Shader based texturing 24

4 Implementation 26

4.1 Installation . 27
4.1.1 Prerequisites . 28
4.1.2 GNU/Linux instructions 28
4.1.3 Windows instructions 29
4.1.4 Other operating systems 30

5

4.1.5 Troubleshooting 30
4.2 Usage . 31

4.2.1 Basic controls and camera movement 32
4.2.2 Console . 33
4.2.3 Generating a new planet 34
4.2.4 Saving and loading planets 34
4.2.5 Exporting a planet 35

4.3 Program work�ow . 36
4.3.1 Initialization . 36
4.3.2 Main loop . 38
4.3.3 Rendering . 39

4.4 Module overview . 40
4.4.1 Utility classes . 42

4.5 Vertex bu�er . 43
4.5.1 Keeping track of vertices 43
4.5.2 Rendering . 44

4.6 The ROAM implementation 45
4.6.1 Initialization . 45
4.6.2 Triangle splitting 46
4.6.3 Triangle merging 48
4.6.4 Rendering the tree 48

4.7 Perlin noise implementation 49

5 Observations 50

5.1 The e�ectivity of the LOD algorithm 50
5.2 The e�ectivity of our texturing method 51
5.3 The impact of normal mapping 51

6 Conclusion 53

6.1 Further work . 53

A List of control keys 55

B List of console commands 56

C Con�guration �le options 58

Bibliography 61

6

List of Figures

3.1 Split and merge operations 18
3.2 Recursive triangle splitting 19
3.3 The ROAM Sphere at various levels of detail 20

4.1 Planet rendered with the GLSL shader 33
4.2 Program �owchart . 37
4.3 Class diagram . 41
4.4 Triangle layout . 46
4.5 Triangle schema . 46

5.1 Normal mapping with wireframe overlay 52

7

Název práce: Procedurální generování planet a jejich zobrazování v reálném

£ase

Autor: Martin Kahoun

Katedra (ústav): Kabinet software a výuky informatiky

Vedoucí bakalá°ské práce: Mgr. Jan Horá£ek

e-mail vedoucího: Jan.Horacek@m�.cuni.cz

Abstrakt: P°edloºená práce se zabývá procedurálním generováním planetárních

t¥les a jejich zobrazováním v reálném £ase. Blíºe zkoumáme jeden z moºných

p°ístup· a pokou²íme se vylep²it vizuální kvalitu produkovaných model·. P°i

generování t¥les nebereme ohled na geofyzikální správnost planetárního povrchu

ani neprovádíme fyzikální simulace proces· jeho vzniku. P°edstavujeme, £eho

je moºné dosáhnout s pouºitím n¥kolika £ísel, ²umového generátoru a fraktál-

ních funkcí. D·raz je kladen na vizuální dojem a poskytnutí podobného efektu

jako v Google Earth, tedy moºnosti prohlíºet povrch nejen z velké vý²ky, ale

i p°i p°iblíºení. Vedle toho umoº¬ujeme export model· do externího formátu

vhodného ke zpracování ve 3D modelovacím software. Rovn¥º poskytujeme

ukládání parametr· práv¥ vygenerovaného t¥lesa a jejich op¥tovné na£ítání do

aplikace.

Klí£ová slova: po£íta£ová gra�ka, procedurální terén, úrove¬ detail·

Title: Procedural generation and realtime rendering of planetary bodies

Author: Martin Kahoun

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Jan Horá£ek

Supervisor's e-mail address: Jan.Horacek@m�.cuni.cz

Abstract: The presented work deals with procedural generation of planetary

bodies and their rendering in realtime. We take a closer look on one of the

available methods and we try to improve the visual quality of produced mod-

els. We don't consider geophysical correctness of the planetary surface during

the generation, nor we do any physical simulations to create the planets. We

present what is possible by using several numbers, noise generator and fractal

functions. We emphasize aesthetic feeling, and we try to o�er similar e�ect to

the Google Earth, i.e., the opportunity to view a planet from high altitudes

as well as a close-up zoom to the surface. Besides, we allow exporting gen-

erated models into external format suitable for processing in a 3D modelling

software. We also support saving planetary parameters and their loading into

the application.

Keywords: computer graphics, procedural terrain, level of detail

9

Chapter 1

Introduction

Procedural generation is a technique for an on-the-�y content creation.
It is often related with multimedia, such as computer graphics applica-
tions, video games, and the �lm industry. In these particular �elds using
the procedural approach can rapidly cut down production costs. If we
take video games as an example, the usual way their levels are designed
requires a designer to spend hours of work to create the level geome-
try. Then several artists have to prepare textures and place them over
the created geometry. This process consumes resources that could be
spent elsewhere if the work on the levels and textures would be created
algorithmically.

While this approach isn't applicable everywhere, there are numer-
ous examples, in all sorts of areas, proving that the procedural content
generation is e�ective. Ways of usage are di�erent, ranging from proce-
durally generated unique details on in-game characters, through proce-
durally generated textures, up to the extreme of generating all content
(examples include works related to the demoscene, �lms like Tron, and
computer games like Elite or Spore).

Algorithms used for procedural generation must typically produce
same results given the same input. We say, that they must be referentially
transparent. Various fractals can serve as a good example.

We were interested in the procedural landscape generation, more
speci�cally in the procedural generation of planetary bodies, as they
can be used for quick content creation for independent (or hobby) game
projects.

A large number of articles has been written in this area. How-
ever, most of them focus on generating "�at" landscapes. Neverthe-
less, there are two relevant works dealing with generating a spherical
terrain. Hugo Elias posted an article Spherical landscapes [3] on his web-

11

site. Sean O'Neil wrote a series of articles called A real-time procedural
universe [7, 8] which was featured on a prominent game industry server
Gamasutra.com.

This was a starting point for our work. We took a path described
by O'Neil and tried to elaborate on it. We focused mainly on the visual
aesthetics of produced results. We utilized GLSL shaders to generate the
terrain texture and to light the surface.

In chapter 2 we provide an overview of various techniques that can be
used to generate a procedural landscape. We make a theoretical analysis
of the chosen methods in chapter 3 and describe their implementation
in chapter 4 as well as provide user's point of view to the program. In
chapter 5 we present our results and key observations made during the
development of the program. We make the summary of our work in
chapter 6, and present topics for future work.

12

Chapter 2

Problem analysis

This chapter discusses several techniques for generating and realtime
rendering of spherical landscapes. While the former task isn't that hard
and a large variety of methods can be used, the latter task requires
implementation of a suitable level of detail algorithm. Mainly due to the
large scale of the landscape that needs to be rendered in real time.

In section 2.1 we list several methods applicable to procedural land-
scape generation and discuss their pros and cons. Section 2.2 discusses
several techniques for applying level of detail algorithms to arbitrary
landscapes. Section 2.3 then presents several ways of texturing such ter-
rains.

2.1 Terrain generation techniques

We aimed, from the beginning, for an approach that would use a method
which doesn't deal with any pre-generated data. In other words, we
wanted to use some dynamic algorithm capable of yielding heights on
demand, so we won't need to hold the whole detailed mesh of a planetary
body in memory. Furthermore, implementing a level of detail algorithm
above a �xed arbitrary geometry isn't an easy task.

We have studied several approaches that can be used to generate a
random landscape with the above requirements in mind. We present the
most notable of them.

2.1.1 The Fault lines algorithm

Algorithm proposed by Hugo Elias [3] is based on a �at algorithm that
uses randomly placed fault lines to generate a heightmap. However, this

13

algorithm isn't dynamic � it generates a speci�ed number of fault lines
and raises or lowers a terrain along them.

The spherical version has a major shortcoming: the algorithm uses
random planes cutting through the planet lowering, or raising, the land
on either side of the sphere. If ran through enough iterations, it produces
nice results; however, the back side of the generated planet looks like the
front one turned upside down.

2.1.2 The Plasma algorithm

O'Neil talks about the Plasma algorithm [7] (also known as a diamond-
square algorithm) that randomly subdivides a square to create moun-
tainous terrain. It can be �tted for the on-the-�y generation and can be
tailored for generating a spherical landscape. Unfortunately, its method
is far too simple and produces an endless mountain range.

2.1.3 Other fractal based algorithms

Most of the fractal based methods are mostly static algorithms that pre-
generate a heightmap. An example of these is a simple midpoint displace-
ment algorithm. It recurrently subdivides a square, and at each step sets
the height of the square's midpoint to a random number. Tailoring this
algorithm for a spherical landscape would be tricky, not to mention, that
the algorithm isn't �t for an on-demand execution.

Most of the other fractals are, on the other hand, computationally
expensive and again not really �t for the on-the-�y generation we were
aiming for.

2.1.4 Noise based approach

In his article [7], O'Neil proposes using a persistent noise generator (by
persistent we mean that given the same seed and the same input value,
the function will yield the same output value). One such method of
creating random persistent noise is named after its inventor � the Perlin
noise. More on the method can be found in a Ken Perlin's paper [9]. It's
a popular noise generator with some nice properties:

• Supports arbitrary number of dimensions (the drawback is, that
with each dimension the number of operations needed to calculate
the result value grows exponentially).

• Same input coordinates produce the same result.

14

• Is easy to implement (see section 4.7).

Perlin noise gives good results, but they are either smooth in appear-
ance, or look like a static from a television screen. By zooming to images
produced by a Perlin noise generator one could see patterns observable
in lower noise ranges � changing the range resembles zooming on a part
of a noisy picture.

Lower ranges provide nice base for continent dislocation while higher
ranges can be used to add details on the landmass. The idea for obtaining
useful results is to combine the results from several ranges together.

For our application we have chosen the fractal Brownian motion
method for summing the noise values of varying frequencies together.
It is a simple fractal sum that can be written as follows:

noise(x) +
1

2
· noise(2 · x) + 1

4
· noise(4 · x) + ...

2.2 Spherical level of detail algorithm

Most of the level of detail algorithms are tailored for usage on "�at"
terrains. Our goal was to �nd a suitable method that could be �tted
into memory and would be easy to adapt for a spherical landscape. This
requirement ruled out most of the available algorithms as they tend to
focus on processing large amounts of data � they are typically used for
displaying existing geographical data.

2.2.1 Geometry clipmaps

In a SIGGRAPH paper [4] Losasso and Hoppe present an approach based
on the application of texture clipmaps to a regular grid elevation map.
However, their algorithm decreases the level of detail purely by distance
so it doesn't handle very well a high contrast terrain. Hoppe later im-
proved the concept by heavy utilization of the GPU.

This concept was later applied to a spherical landscape by Malte
Classen and Hans-Christian Hege [1]. However, this approach utilizes
heavily the GPU as it requires complex calculations done in shaders. An
approach that wasn't of a good use for us.

2.2.2 The ROAM algorithm

O'Neil described a simple adaptation [8] of the ROAM algorithm pub-
lished by Duchaineau et al. [2]. ROAM stands for Real-time Optimally

15

Adapting Meshes, and it is an algorithm for displaying terrains in various
levels of detail depending on the camera distance and a visible error met-
ric, i.e., distant, or �at, areas are rendered with less details while near,
or high contrast, areas are more detailed.

It basically treats the terrain as a single quad formed by two triangles.
An error metric is then applied to determine when the visual error is
large enough to justify an increase of the level of detail. This is achieved
by splitting such triangles using a set of simple rules to prevent the
occurrence of cracks in the mesh. When the high details aren't needed,
we simply merge the triangles back to the larger ones.

It is this algorithm we have chosen for our application as it is easily
adapted and implemented, produces good results, and doesn't require
the use of expensive graphics hardware.

2.3 Texturing the planet

Texturing an arbitrary landscape is not a trivial task. Normally an artist
would examine the landscape and adjust the texture coordinates in places
where distortions occur. This is not an option with a procedural ap-
proach. Our task is even harder because we are trying to splice a texture
to a spherical surface.

2.3.1 UV mapping

Standard methods for texturing a sphere include the use of polar coordi-
nates. For this, a texture distorted along the equator is needed, so when
applied to the surface it looks undistorted. One problem, with such ap-
proach, is the occurrence of visible and disturbing artefacts on the poles �
the texture wraps around both poles and texels are often stretched from
a single point towards the equator. Our assignment required prevention
of such artefacts.

2.3.2 Cube mapping and texture combination

One possible approach is to take a heightmap of the landscape and then
combine several basic terrain textures together taking the terrain height
into account. E.g., in low altitudes we would use grass texture while in
high altitudes rock or snow textures. We can also use texture blending
for nicer gradients between the terrain types.

16

In case of texturing a planet, we would generate six such textures,
and then cube-mapped them to the surface. This method, however, has
one major disadvantage � the landscape can be large while the texture
will be relatively small.

2.3.3 Tri-planar texturing

We have decided to generate the terrain texture in the GLSL shaders.
For this we have partially used previously discussed cube-mapping. The
problem was a visible hard seam artefact that occurred where the textures
touched. However, our decision to use shaders allowed us to take advan-
tage of a technique called tri-planar texturing presented in [6, chapter 1].
The method uses three planar projections of the texture coordinates to
obtain the best result for a given position.

17

Chapter 3

Implemented algorithms

This chapter explains the theory behind the chosen methods for gen-
erating planetary bodies used in our program. We will talk about the
spherical version of the ROAM algorithm, the fractal Brownian motion
technique, and a terrain texture generation.

3.1 The spherical ROAM algorithm

The ROAM algorithm uses a tree structure for representing a terrain
composed of triangles. Each node in the tree is equal to a single right
triangle with size proportional to its depth in the tree. Root node repre-
sents a top level triangle encompassing the whole terrain, on the contrary,
all leaves represent triangles to be rendered. We begin with two triangles
composing a square. By calculating an amount of visible error we decide
which triangles must be split to increase, or decrease, the level of detail.

Figure 3.1: Split and merge operations

Triangles in the tree can compose two signi�cant shapes � a square

18

and a diamond, as seen in �gure 3.1 on the left and right, respectively. A
square is de�ned as two triangles of the same size sharing the hypotenuse.
A diamond is formed by four triangles sharing a vertex lying by their right
angles.

We use a DFS algorithm to traverse the tree. For each leaf, we calcu-
late the visible error and compare it with an error threshold. Based on
the result of the comparison we either split the triangle, merge it, or leave
it as it is. As a way of preventing rampant splitting or nearly in�nite
recursion, and the resulting bu�er overruns, a maximum tree depth is
de�ned. If the bottom �oor is reached, no further split operation will be
performed on the particular triangle.

In order to preserve water-tightness of the mesh, two simple rules
must be followed when splitting or merging triangles. A split operation
is allowed only when the triangle, we are about to split, is a part of a
square; we will be actually splitting the triangle's neighbour along the
longest edge as well. A situation in �gure 3.2 shows how splitting of the
triangle T requires an introduction of several new vertices, edges (shown
in red), and triangles.

Figure 3.2: Recursive triangle splitting

Merging requires that the triangles to be merged form a diamond.
Every split operation creates 1 diamond and destroys between 0, 1, or 2
diamonds. The merge operation does exactly the opposite � destroying
1 diamond and creating up to 2 diamonds. A care must be taken when
operating on triangles lying at the edges of the initial quad to prevent
memory leaks.

19

Figure 3.3: The ROAM Sphere at various levels of detail

We are using a spherical adaptation proposed by O'Neil [8] � it uses six
ROAM squares to form a cube. This takes care of potential memory leaks
on the edges of the quads since all triangles now have their neighbours. To
create a sphere from the cube we move every new vertex to the surface of
the sphere (by multiplying its direction vector by the sphere radius) and
then we add the height obtained from the height generator. In �gure 3.3
we can see the evolution of the initial cube.

3.2 Fractal Brownian motion

A fractal Brownian motion (often abbreviated as fBm) is a popular
method for adjusting samples obtained from a Perlin noise generator
to produce more interesting results. Instead of outputting the �rst value
obtained from the noise generator, we take several noise samples, called
octaves, with di�erent frequencies and sum them together. This sum is
then returned as a height value in a given direction. Following expressions
show the �rst iteration of the fractal function:

w = 1.0

n = 1.0

h = 0.0

h = h+ w · noise(x · n, y · n, z · n) (3.1)

where h is the output value, w is the weight value, and n is the
exponent (sometimes called lacunarity). We can see that each octave uses
the same input vector, but with a di�erent scale (n). We also in�uence
how big impact these higher frequencies will have on the �nal value by
weighing them (w). Expression 3.1 is then executed several times to
combine the results of more than one octave (for implementation details

20

see section 3.2.1). Between the iterations we can modify both w and n
values (or we can pre-calculate them) as follows:

w = w · wfactor

n = n · exponent
where wfactor and exponent are parameters to the function. The

wfactor in�uences how much noise from the larger octaves will used. Val-
ues below 0.5 will result in a smooth terrain since the higher frequencies
will not have big impact on the �nal value, while values over 0.5 will
produce very turbulent noise which will result in large height di�erences
on a small distance.

The exponent in�uences how high frequencies will be sampled. Val-
ues lower than 2.0 smooth out the terrain, but not as drastically as low
values of the wfactor. Higher values, again, produce turbulent noise. Ex-
perimenting with these variables can bring both interesting, and uncanny
results.

3.2.1 Simple fBm generator

A very simple fBm was implemented for testing purposes. A vector
is passed as an input to the function and a single value representing
the height in the given direction is returned. Prior return the result is
truncated to (−1.0, 1.0) and then scaled by the maximal height. The
function is parametrized with wfactor and exponent values.

We can write the function as follows (the pseudo-code doesn't contain
truncating and scaling for simplicity):

w := 1.0
n := 1.0
result := 0.0
for 1 to k do
h := w ∗ noise(x · n, y · n, z · n)
w = w · wfactor

n = n · exponent
result := result+ h

end for

return result

where x, y, and z are terms of the input vector, and k is the number
of octaves (prede�ned in our implementation � see further). Note, that

21

if k is large enough, the execution of this method can take considerable
amount of time � the 3D noise function will be called k times. In the
current implementation that constitutes 8 lattice lookups and 7 linear
interpolations. Each lattice lookup constitutes of 3 multiplications and
3 modulo (division) operations. Together, we get the approximate time
complexity of:

O((6 · 8 + 7) · k)

Theoretically, this isn't that bad, but 55 multiplications and divisions
can cost some time. Especially, when we take into account the total
number of fBm function calls; a request for height calculation happens
every time a new triangle is introduced (each split operation creates
four new triangles). Although we check whether the value hasn't been
previously calculated by the triangle's neighbour along the longest edge,
the number is calls is large.

3.2.2 Advanced fBm generator

The simple algorithm provides good, but uninteresting results with al-
most uniform height gradients. Therefore, we have implemented a more
intricate fractal algorithm to produce more visually pleasing surface. We
use a fractional number of octaves (k) and slightly di�erent default set-
tings of the fBm routine. The method is executed in a similar manner
as the simple one.

First, we sum bkc number of octaves and then do the following:

h = h+ (k − bkc) · w · noise(x · n, y · n, z · n)

Finally, we post-process the generated h value. If the resulting num-
ber is below zero, we assume that it creates the ocean �oor. We leave
the value as it is to some distance from the shore. We extract the root of
values outside this threshold. This causes a sudden drop and �attening
of the ocean �oor. That results in darker hues of grey which in turn
results in darker ocean colour in depths and brighter along the shores.
As a side e�ect, if the user changes the ocean level, he can either expose
the ocean �oor or �ood the landmass.

Positive values are raised with random exponents obtained from the
noise generator. This action results in lower altitudes becoming mostly
�atland, while higher altitudes obtain mountainous look. Values above
1.0 are then subtracted from 1.0 in order to create valleys or more inter-
esting mountain regions. Another reason for doing so is more practical

22

� we have only a limited scale of grey hues and values over 1.0 would re-
sult in an all white region. The geometry would use the returned value,
though. The heightmap would, on the other hand, have the same value
everywhere and the normal map would result in a �at terrain. From a
distance we would see a mesa, but in the close-up zoom we would see
that the geometry runs higher with the terrain lit as if it was �at.

Time complexity of this method is similar to the simple one, but one
has to take into consideration three conditions and power function calls
that aren't trivial. This results in a more time costly method than the
simple implementation. As in the case of the simple generator, the result
is truncated to (−1.0, 1.0) and then scaled by the maximal height.

3.3 Terrain texturing

Texturing in our project is achieved through the combination of a pre-
calculated heightmap texture that further serves as a height lookup for
shader programs. The heightmap is relatively small (the exact size can
be set up by the user), nevertheless it is su�cient for providing good
amount of visible details.

Heightmap is also used for generating a normal map used for per-pixel
lighting which drastically improves the visual quality of the landscape.
All terrain texturing is then done inside the GLSL fragment shader. We
use four basic terrain textures to create the surface texture. These tex-
tures are loaded from external �les, though1.

3.3.1 Heightmap and normal map generation

We use a technique called cube mapping to place the heightmap texture
to the surface. This technique uses 6 textures (each representing one face
of a cube) that are then projected to the sphere. We generate all textures
inside two loops going through all their texels. Essentially, we are making
n · n height samples, where n is the size of the texture speci�ed by the
user (see appendix C).

First, we set six initial vectors pointing towards the cube vertex to
which the top-left corner of the texture is mapped. Then we calculate the
increment between the samples by dividing length of the cube edge by n.
This way we get non-linear probing ray distribution in the given wedge
(pyramid with the apex in the point of origin and base coincidental with
the respective cube face). Samples from areas near the face edges will be

1It was beyond the scope of the project to generate them in code.

23

more dense than samples from the middle of the face. This can help to
reduce some distortions along the texture seams.

We then loop n · n times and gradually increment the initial vectors
along which we cast the probing rays. We use them to read the height
(obtained from the planet's generator) in the given direction. Then, given
the maximal height for the planet we calculate a hue of grey and write
it to the texture to appropriate coordinates.

The normal map is generated in a similar fashion. But, instead of
polling the generator for height information, we use the heightmap. This
saves time that would otherwise be repeatedly spent by polling the gen-
erator (see section 3.2 � a paragraph describing the time complexity).
We make total of �ve height samples (current position, up, down, left,
and right), and then calculate a normal as a sum of two cross products
of vectors pointing to all four directions.

Usage of more samples, or even other techniques for the normal-map
generation, is quite problematic since we have to take samples from other
textures. Even now we take the border values from the neighbouring cube
face and have to smooth out borders of all six normal maps to reduce
the visible seam artefact and remove the hard seam artefact.

The object space normal is then encoded into RGB value and stored
in the texture.

Our weather zone map generation uses the Perlin noise with an in-
verted seed to obtain smooth pattern of wet and dry zones. This way
doesn't provide realistic desert or tropical zone dislocations, but realism
wasn't the focus of this project. Results are quite satisfactory and create
surface diversity which in turn improves the visual quality.

3.3.2 Shader based texturing

We use GLSL 1.1 shader programs to replace the �xed OpenGL rendering
pipeline with our own that generates the terrain texture The shaders are
de�ned in the vertex_shader.shd and fragment_shader.shd �les, and
must be distributed along the executable.

The vertex shader mainly transforms vertices according to the pro-
jection matrix. All vertices that are under the ocean level are moved to
the ocean level, thus creating the water surface. The fragment shader
then uses information about the fragment obtained from the cube map
texture and parameters supplied by the application to determine the �nal
colour of the current fragment.

First, we determine the base terrain texture according to the height
of the particular fragment (height-based texturing). Underwater regions

24

are coloured with a hue of blue that depends on the depth of the sea.
On land we blend terrain textures to obtain smooth transitions between
the various regions. This colour is then blended with the desert texture
(created as a mixture of sand and dirt textures based on the fragment's
latitude) if the region is a dry one (information obtained from the weather
zone texture, see section 3.3.1), or adjusted to become "greener" if the
region is more wet.

Texture coordinates for terrain textures are calculated with a tech-
nique called tri-planar texturing. It uses three planar projections of 3D
texture coordinate used to sample the cube-map and blends between
them in order to use the projection that is closest to the direction the
current fragment is facing. This technique however requires three times
more texture fetches than other techniques, on the other hand, it pro-
duces nice results and isn't complicated.

Fragment shader also calculates per-pixel lighting using the Phong
lighting model. Normals are taken either from the normal map or cal-
culated in the fragment shader for all water regions (it is more accurate
than the normal map).

Several thoughts and methods implemented in the fragment shader
has been inspired by approaches used in the demo application Kris Nichol-
son wrote for his report [5].

25

Chapter 4

Implementation

This chapter introduces the Slartibartfast1 planet generator from the
user's and programmer's perspective. It covers the installation process,
possible problems that might occur in the course of building the program
from sources, program setup, program controls, and an overview of the
code structure accompanied with key implementation details.

Slartibartfast has been written with respect to the object oriented
programming paradigm, therefore, nearly all program code is enclosed in
an interconnected system of classes. This enables easy extensibility, as
well as good code re-usability in further projects which was part of the
goal.

We started programming from scratch; however, we have reused some
previous work of mainly supportive character. The �rst step was to create
an OpenGL application that could render a cube. With this basic setup,
we have implemented the spherical version of the ROAM algorithm. The
program, at this point, was able to render a sphere subdivided from the
initial cube in wireframe. The next step was the implementation of the
simple world generator.

Then, came the generation of the cube map texture and its applica-
tion to the surface, we have also added per-vertex lighting. Up to this
milestone, all variables that in�uence the �nal result were implemented,
but there were no means for the user to change them in the program. The
simple command line interface was added to provide the user interface.
All other functionality, such as saving, loading, or exporting was coded
as well.

Last steps included the development and incorporation of the GLSL

1The name is taken from The Hitchhiker's Guide to Galaxy by Douglas Adams.
The book contains a character of the same name whose job is best described as a
planet designer.

26

shaders. These replaced the OpenGL �xed rendering pipeline in order
to create terrain textured surface, as well as improvement to the visual
quality by using normal maps and per-pixel lighting. Outside the shaders
we use normals that are calculated at the time a new vertex is created

While we use a method of geomorphing to slowly move the vertices
into their positions, we don't recalculate their normals during the move-
ment to prevent high CPU load. In other words, if we would use per-
vertex lighting, all the e�ort to reduce visible vertex "popping" would
have gone to waste. User is encouraged to compare the lighting quality
of the GLSL and lit heightmap texture modes.

The chapter is supplemented with appendices A, B, and C containing
an overview of all control keys, available console commands, and possible
program settings along with their short descriptions.

4.1 Installation

Slartibartfast is a cross platform application written in C++ with utiliza-
tion of the OpenGL graphics library and the Allegro library for providing
an operating system independent window management and user input.
It is distributed under the zlib license which is included with the source
code. The program also makes use of GLSL1.1 shaders to render the ter-
rain textured surface (the user should have a video card that implements
at least the GLSL1.1 shaders).

The source code should be portable to virtually any platform that
has a port of the C++ compiler, the Allegro library, and an OpenGL im-
plementation. Portability has been tested on Windows and GNU/Linux
environments (both 32 and 64 bit). Because of this, the application
doesn't contain installation program of any sort. It is distributed as a
compressed archive containing the source code, make�le (build-able with
GNU Make) and pre-compiled binaries for 32 bit Windows.

All libraries needed to successfully build and run the application are
included in a dedicated folder. However, the OpenGL implementation
depends on the video card vendor � the open source implementation
shipped with the source uses software only renderer and doesn't support
GLSL shading language, thus the functionality may be somewhat limited.

Remainder of this section describes how to build the program from
sources.

27

4.1.1 Prerequisites

In order to successfully compile this program, the following libraries must
be present on the target system:

• OpenGL SDK - Should be provided by a video card vendor � ver-
sion 2.0 or higher is required (mainly for GLSL1.1 support). Use
of MESA3D library is strongly discouraged. Important OpenGL
headers are, nevertheless, included in the GL folder that can be
found in the root of the source package. Should the user be un-
able to obtain and install OpenGL headers on the target system,
he should consult section 4.1.5, page 31, paragraph dealing with
outdated OpenGL headers.

• Allegro 4.2.2 - It is supplied in the libs directory. A care must
be taken when getting the library from the Internet to not use
Allegro 5 branch because it has a di�erent API.

• AllegroGL 0.4.3 - This library is also supplied with the program
and provides binding between Allegro and OpenGL.

To build the Allegro libraries, the user should simply unzip both
source packages and follow build instructions provided for the target plat-
form. On Windows a pre-compiled distribution can be used. The Allegro
library can be found in the packages manager on some GNU/Linux dis-
tributions. However, the AllegroGL will seldom be there.

If any problems occur during the prerequisites build process, user
should consult section 4.1.5 covering possible problems that might occur.
Platform speci�c instructions follow.

4.1.2 GNU/Linux instructions

Slartibartfast is supplied with a GNU Make make�le. User should check
the �le to make sure that the PLATFORM variable is set to "linux", and
then type "make" into the shell. After that, the compiled binary should
be present in the bin folder ready for use.

If the Code::Blocks IDE is installed, the supplied project �le can be
used. Again the user should make sure that the linker options are set up
correctly. They should read the following (the order is important):

-lagl

`allegro-config --libs`

-lGL

28

-lGLU

After a successful build the compiled binary should occur either in
bin/Debug or bin/Release directories depending on the speci�ed target.

4.1.3 Windows instructions

On Windows the process isn't that straightforward. However, there
should be no pitfalls. The easiest way to build Slartibartfast on Win-
dows is to have Code::Blocks installed, or, at least, the MinGW compiler
suite2. On the other hand, any compiler or IDE should be su�cient.

Using just the MinGW suite the user can build the program by check-
ing that the PLATFORM variable is set to "windows" and invoking make

or mingw32-make (the exact command depends on the version of the
MinGW package).

Should the user decide to use Code::Blocks for building the project,
he should make sure that the linker settings are set up correctly � they
should read the following (the order is important):

-lagl

-lalleg

-luser32

-lgdi32

-lopengl32

-lglu32

On 64 bit systems it is likely that the linker settings will look slightly
di�erent, depending whether the user wants to build a 32 bit binary
or a 64 bit binary. After successful build the compiled binary should
occur either in bin/Debug or bin/Release directories, depending on the
speci�ed target.

Building the project using other IDE's will require some work. First,
a new project for console application must be created. Then, all source
and header �les located in src and include directories must be added to
the project. The following libraries must be linked with the executable
(the "d" su�x by the Allegro libraries designates the debug version of
the library):

2The suite is a Windows port of the GNU C Compiler and is a part of the
Code::Blocks installation package.

29

• AllegroGL (agl/agld)

• Allegro (alleg/allegd)

• User32 (or 64)

• GDI

• OpenGL

• GLU

If the Allegro library was linked dynamically, the alleg42.dll should
be distributed alongside the executable. It is also a good idea to include
Windows runtime libraries.

4.1.4 Other operating systems

Ports for other than Windows and GNU/Linux environments weren't
tested, but as stated earlier, the code should be portable and the only
limiting factor is the existence of the C++ compiler, OpenGL2.0, and
Allegro implementation on the target platform. Therefore little to no
e�ort should be required to build the program on such platforms.

4.1.5 Troubleshooting

Generally, following the build instructions provided by both Allegro li-
braries should not yield any problems. Though some circumstances may
complicate the build process. Bellow are the known issues that might
arise during the build of either Allegro, AllegroGL, or the project itself.

No root privileges

The user can have limited access to the machine and thus cannot install
any third party libraries (this typically happens on UNIX or GNU/Linux
workstations). Both Allegro libraries o�er local install option that will
install them into the home directory instead of the standard location.
When doing so, the user needs to adjust his PATH variable to include his
home directory � speci�c instructions are contained within build docu-
mentation supplied with the libraries.

On Windows Vista and higher, the user should run the program
within a directory he has a write permission to, otherwise some func-
tions may not be working properly.

30

AllegroGL related errors

On some compilers the user may observe the following (or similar) cryptic
message while building the AllegroGL:

allegrogl/GLext/gl_ext_api.h:1827: error: `<anonymous>' has incom...

allegrogl/GLext/gl_ext_api.h:1827: error: invalid use of `GLvoid'

It is a known issue on some versions of the g++ compiler, but there
is a simple workaround. User needs to open up the mentioned �le
(gl_ext_api.h) and change the line 1827 from:

AGL_API(void, EndTransformFeedbackNV, (GLvoid))

to this:

GL_API(void, EndTransformFeedbackNV, (void))

Outdated OpenGL headers

One can observe a compiler error message regarding the glUseProgram()
or any other shader related function saying that it wasn't declared. This
indicates that the OpenGL headers present on the system are of ver-
sion bellow 2.0. Optimally the user should obtain newer version of the
OpenGL distribution (usually from the video card vendor). But that
may not always be an option.

Slartibartfast comes with the OpenGL2.0 headers included inside the
GL directory. On Windows, some headers from the Mesa library might
need to be included in the compiler's libs directory. The user has just
to make sure that the compiler looks for the included OpenGL headers
�rst and includes them at compile time. When using the make�le the
following line should be uncommented to achieve the described e�ect:

#override CCFLAGS += -IGL

4.2 Usage

For a quick reference, all control keys, console commands, and program
settings are listed and described in tables at the end of this text (see

31

appendices A, B, and C). Rest of this section takes a deeper look on
using the planet generator.

Upon the �rst run Slartibartfast will use default settings � running
in 800x600x32 windowed mode � and will generate the con�guration �le.
User can edit this �le in order to change the settings. All options should
be self-explanatory, or should be explained in the comments written
above them inside the generated �le. User can also consult appendix C.

One of the important settings is the texture size. The bigger the
size, the longer it will take to generate any planet. On the other hand,
the planet will possibly look much better and will appear to have more
details. Also various level of detail settings can be tuned to improve the
performance.

If something isn't working as expected, or the program terminates un-
expectedly, the user can inspect the log.txt kept next to the executable.
All sorts of information are written to it on every run, so the user can
get a clue of what has happened prior the occurrence of a problem, and
possibly pinpoint its cause.

Slartibartfast is provided with a sample set of basic terrain textures
contained within the Textures directory. Deleting or renaming them
will result in error messages and premature termination of the program.
The user is, however, encouraged to swap the default textures with his
own as he wishes. Replacement textures must be named exactly as the
default ones and have to be in the bmp format.

4.2.1 Basic controls and camera movement

After the initial planet is generated, the user is presented with a GLSL
shaded view of the planet with various information printed in the top-left
and the bottom-left corner (as seen in �gure 4.1). The default camera
(called "homeworld") will always be focused to the centre of the planet.
The camera can be zoomed in and out using the mouse wheel. It can be
rotated by holding the right mouse button and moving the mouse in the
desired direction. In-program help can be viewed in the top-right corner
after pressing F1. Program can be terminated by either pressing Esc key
or clicking the cross button (in windowed mode only).

Pressing the 'C' key switches the camera to the "spectator" mode
which allows free looking and moving around using the mouse (again
while holding right mouse button) and keys 'W', 'S', 'A', 'D'. Pressing
the 'C' again will switch back to the "homeworld" camera.

Key 'L' toggles on/o� the dynamic level of detail. Key 'R' toggles
on/o� the rotation of the light (visible only in some render modes � see

32

Figure 4.1: Planet rendered with the GLSL shader

further). Keys '1', '2', '3', '4', and'5' (the numbered keys bellow
the function keys) switch between wireframe, culled wireframe, grayscale
texture, lit grayscale texture, and terrain texture rendering modes.

The �rst two are good for viewing how the mesh is constructed. The
third mode o�ers view of the heightmap texture and how it is placed
to the surface. The fourth mode switches on the lighting; it is good for
comparing the per-vertex lighting with the per-pixel lighting used in the
�fth mode that uses the GLSL shaders to replace the OpenGL rendering
pipeline in order to produce terrain textured surface.

4.2.2 Console

For all non-trivial tasks the Slartibartfast implements simple command
line interface that can be activated by pressing the '~' (tilde) key. All
commands are composed of a single word � a combination of alphanu-
meric characters and other characters except the '~' (tilde). All argu-
ments are space separated � this disallows �lenames or paths (in com-
mands that use them) with spaces. The console doesn't interface with
the �lesystem or the operating system, nor it supports command auto-

33

completion.
Planets are generated, saved, and loaded from here. Overview of all

available commands can be invoked by executing the cmdlist command
(by typing in the command and pressing Enter). Another useful com-
mand is the help command. When invoked without parameters, it prints
some potentially helpful information. It can also be executed with an-
other command as an argument. That way, the user will get usage info
about a particular command he is interested in. For detailed information
about all currently implemented commands see appendix B.

4.2.3 Generating a new planet

In order to generate a new planet the user must open the console and
execute the generate command. At that moment, the old planet is
destroyed, and a new planet is generated. During this time the program
may become unresponsive for a moment (the length of the lag depends
mostly on the speci�ed texture size). The nparams command can be used
to review parameters that will be used to generate the new planet, while
the params command lists the current planet parameters.

To change any of the parameters one simply types in the parameter
name followed by the new value separated by a space. All parameters
accept �oating point numbers, except the random number generator seed
which is treated as an integer. All parameters are listed and explained
in appendix B (second half of the table) or the next section.

One must also choose the preferred generator. Currently, there are
two of them implemented. List of all implemented generators can be
obtained by executing the generator command without any arguments.
Executing the same command with a number from the list, as an argu-
ment, will set that particular generator to be used for the next planet.

Most of the parameters in�uence dimensions of the planet and other
various aspects. There are however two parameters that may not be clear
at �rst sight. These are the exponent and the w_factor. They are set
by default to 0.5 and 2.0, respectively, and both are tied with the fractal
Brownian motion function used in both generators to obtain heights (see
section 3.2).

4.2.4 Saving and loading planets

The currently displayed planet can be saved for later usage by typing
save filename into the console where filename is a name of the �le
(including the path without any spaces) in which the data should be

34

stored. Slartibartfast will try to create a �le with the exact �lename;
however, it won't give any warning when such �le already exists, so care
must be taken. Planets are saved in a plain text, but hand editing of the
�les isn't recommended.

To load a previously saved planet, the user should type load followed
by a path to the �le he wants to load. The only inconvenience lies in the
fact that the program doesn't support �le listing, so the user must know
the �lename. Both commands will notify the user whether their execution
was successful or not. In the latter case, more info why the attempt has
failed can be obtained by inspecting the log.txt. The program may
become unresponsive for a moment during the load operation.

Format of the save �les is simple (it is essentially the same format as
con�guration �les � see section 4.3.1). Even the parser is the same. All
parameters needed for successful saving and loading are these:

• Generator � de�nes which generator should be used to generate the
planet.

• Radius � the mean radius of the planet.

• Max height � de�nes maximal/minimal height of the terrain mea-
sured from the radius. Care should be taken when specifying it,
high values can produce non-pleasing outputs or can get occluded
by OpenGL.

• Ocean level � de�ned as a radius below which we deem the terrain
as an ocean �oor. Visible in textured rendering via shaders.

• Angular velocity � de�nes rotation of the planet (in the current
implementation rotation of the light source around the planet).

• Seed � random number seed for the noise object inside the planetary
generator.

• Weight factor � explained in section 3.2.

• Exponent � explained in section 3.2.

4.2.5 Exporting a planet

For usage outside of this program, every planet can be exported into the
Waveform's obj format3. This can be achieved by typing export into

3It is a plain text �le with a list of all vertices, normals, edges, faces and other
attributes belonging to the mesh � http://en.wikipedia.org/wiki/Obj

35

the console followed by an integer (N) and a �lename. N is the level
of subdivision. Level 0 will dump only the basic cube, further levels
will dump recursive subdivisions of this cube. Input values of N larger
than 12 aren't recommended. This is due the limitation imposed on our
implementation of the vertex bu�er � it can hold only 65535 vertices.
Larger values will thus result in a non-watertight mesh.

Upon export, one �le with the .obj extension is created. The pro-
gram then dumps vertex positions, normals and cube-map coordinates
along with polygons into the �le. Two sets of six bitmap �les containing
appropriate faces of the cube-map are also created. The �rst set contains
the heightmap and the other contains the normal map.

4.3 Program work�ow

This section provides a general overview of the program's code. Figure 4.2
shows a basic work�ow of the program. The program's main function
obtains an instance of the Core class and calls its Init() method.

If everything is set up correctly, the control reaches the Run() method
that implements our main loop. This method also makes sure that all
frames are calculated in �xed time steps, thus the program should appear
to execute (in the sense of visible movement etc.) at the same speed on
all machines that can run it (see section 4.3.2). When the control returns
to the main() function, we hand it over to the ShutDown() method which
will clean all dynamically created objects, then the program terminates.

4.3.1 Initialization

The �rst thing we do during the initialization phase, is an attempt to
open and parse the con�guration �le. Whether this method fails or not
doesn't bother us because either way we'll have a valid con�guration
parameters � in the case of non-existent/corrupted con�guration �le, or
errors in the �le, all of the wrong options are set to defaults and then
written back before the application exits.

Format of the con�guration �le is simple: any line beginning with
the '#' character will be treated as a comment. All other lines are either
blank or in the format: option = value;. The parser omits all blank
lines and comments. Other lines are split by ' ', '=', ';' characters,
and then the parser matches the �rst word on the line against all known
options (see appendix C). When a match is found, it tries to parse the
argument and save the value into the appropriate variable. If an invalid

36

Figure 4.2: Program �owchart

37

value or syntax error is encountered, it is logged and the parsing resumes.
All adjustable variables are initially set to defaults, so if the error occurs,
such variable is left in the default state.

When the program obtained its con�guration, we need to initialize
the Allegro library. This is done through the standard API functions;
we prepare keyboard and mouse input. At this point, we try to set
up the graphics window. If this fails, the initialization is terminated
immediately and the program exits. Notion of what exactly went wrong
should be written in the log �le.

From this point onward we should be looking into a black window and
have the OpenGL rendering context. The vertex bu�er should be ready
for use; we load textures and compile shaders. Any errors during their
loading and compilation are reported to the log �le; the user is noti�ed
via a pop-up window that the shaders have failed to load and will not be
available.

Next on the initialization list is the planet generation. We create the
initial planet with prede�ned attributes and randomly selected seed for
the random number generator. This is the longest process of the whole
initialization phase, and its length depends on the size of the cube-map
texture (see section 3.3.1). User can notice some lag, but he shouldn't
be worried. Finally we prepare cameras and the console. If everything
went smooth, we are about to enter the main loop.

4.3.2 Main loop

Upon entry into the main loop, we call an Allegro function to initialize the
timer. It sets another thread that periodically calls small, user de�ned
function 60 times per second. Inside this function we increment two
helper variables � one for frame synchronization and one for updating the
FPS counter (implemented as a simple circular bu�er used to calculate
the average framerate).

Further, we check whether the inner state hasn't changed to the exit
state upon which we terminate the main loop. Follows a nested loop that
is ideally executed at 60 times per second (unless we are forced to drop
frames) thus ensuring a constant logical framerate of 60 FPS. In this loop
we calculate all the program logic.

After the logical loop, we do the rendering. If it's faster than 1/60s,
we render the frame again. When the rendering is done, we give back
some time to the CPU, unless the user hasn't speci�ed he wants the
maximal performance. This loop update method (however, more sophis-
ticated) is, for example, the default method used in the XNA Game

38

Framework for .NET 2.04.
Logic inside the nested loop takes care of the following:

• Checking for the general user input, i.e. control keys. We basically
check the state of the keys we are interested in, and execute the logic
behind them � like swapping the camera, adjusting the OpenGL
parameters, switching to console, or setting the state to exit.

• Updating the planet object, camera, lighting, and the vertex bu�er.

• Updating the console if it's open.

Should the user issued planet loading or generating completely new
planet, we stop the execution, and return back to the planet generation
phase. We then resume the execution of the main loop when the newly
created planetary body is ready.

4.3.3 Rendering

We use the visitor pattern to separate rendering from the ROAM al-
gorithm implementation. We call the planet's render method with an
appropriate visitor that will �ll our vertex bu�er (for details see sec-
tion 4.5) with triangles to be rendered. We then push the vertex data to
the GPU � we can't use the VBO [11, p. 93] because of the nature of our
data � they change from frame to frame. Therefore, we use only vertex
arrays, but we call it the vertex bu�er for short (see section 4.5).

When the bu�er is �lled with polygons to be rendered, we update the
projection matrix and call OpenGL API functions to render data stored
on the GPU using an index bu�er. What functions will be used depends
on the selected render mode:

• Wireframe � all triangles are rendered only as edge lines.

• Culled wireframe � same as above, except some primitive calcula-
tions are done to occlude triangles on the back of the sphere.

• Grayscale � the planet is rendered as a textured solid. Heightmap
texture is cube-mapped to the surface.

4As posted by one of its developers on his blog �
http://blogs.msdn.com/b/shawnhar/archive/2007/11/23/game-timing-in-xna-game-
studio-2-0.aspx

39

• Lit grayscale � ditto, but the solid is lit using the pre-calculated
vertex normals. Good for comparing visual quality with the per
vertex lighting that uses a normal map.

• Textured � custom vertex and fragment shader (see section 3.3.2)
programs are used instead of the �xed rendering pipeline to produce
per pixel lit mesh with terrain texture and oceans.

4.4 Module overview

In �gure 4.3 we can see an overview of all important classes and their log-
ical structure. Lines between the classes show interactions, inheritance,
and instantiation.

All the blue classes are singletons and serve mainly as utility classes,
i.e., they implement setting up the graphics window, user control, and
low level rendering (physical vertex pushing through the pipeline). All
the light-green classes are abstract interfaces from which we derive actual
implementation of these components.

Finally, all the green classes, except the Camera class, compose the
main kernel of the demo � the actual algorithms for generating a plan-
etary body. Should anybody decide to use these in their work, all he
needs to do, is taking the green classes and importing them into their
project. Small changes will be necessary as implied by the diagram.
These include:

• Method for creating and removing vertices that would �t existing
codebase in the target project.

• Physical rendering of the planet � this is actually very easy, since
virtually everything needed to achieve this, is deriving a new class
from the RenderVisitor interface and writing new code into its
Render() method. Render visitors are instantiated in the Planet

class. They are passed to the ROAM_Sphere.Render() method (not
shown in the diagram) and propagated all the way down to the
ROAM_Triangle.Render() method that serves as an acceptor.

• Passing through the camera position � right now the Core class
passes down active camera object, so the algorithm knows where
is the eye and where is it looking. It uses these information to
decide where it should increase visible mesh details and where it
isn't necessary.

40

Figure 4.3: Class diagram

41

• Omitting or changing the logging system � currently it uses very
simple method of writing unformatted messages into a �le.

Follows a closer look upon some implementation details of the key
modules.

4.4.1 Utility classes

The Core class encompasses most of the boring, yet necessary, code. It is
a singleton that provides interface for initializing, running, and shutting
down the graphics engine. If a strict OO design would be followed, it
would also provide an interface for controlling the planetary objects.
However, a decision to omit such proxy methods has been taken as this
program is mostly a demo. So the class is a friend with the Console

class. I.e., the console can access all data members of the Core class
(because it serves as the user interface).

The Core implements a small �nite state machine that decides what
to do once inside the logical loop (see section 4.3.2). Possible states are:

• Init � a default state during which we initialize everything. Should
this state occur inside the main loop, it is perceived as an error that
is reported to the program log and then the application terminates.

• Run � this is the state in which we update planet's level of detail,
camera position, etc.

• Console � in this state all keyboard input is used to type in com-
mands in order to control the generator.

• Exit � this state is issued upon pressing the key 'Esc' or typing
"exit" into the console. When this state is encountered we ter-
minate the main loop and clear all dynamically created data from
memory.

The Console class contains basic command line interface implemen-
tation. Only the basics are implemented. While limited in functionality,
it provides an easy interface that allows the user to generate new planets,
load them, and/or save them. The command parser works in the same
manner as the con�guration �le parser (see section 4.3.1).

The Log class provides an interface for writing text messages into a
log �le.

42

4.5 Vertex bu�er

The VertexBuffer class hides the implementation of the OpenGL vertex
arrays from the user. It contains an array of 65535 vertices (a vertex is
an aggregate structure de�ned in the vertex.h header), and provides
an interface for their creation or removal. Structures described later
require shared vertices; having them stored in one place and in a way that
allows usage of the vertex arrays proved to be more elegant, and e�cient,
than having them scattered all around the memory inside objects with
reference counters. This approach is much less error prone and improves
the performance a bit because it doesn't use the OpenGL immediate
mode � �rst, it can be slow on some occasions [11, p. 80] and new
versions of OpenGL even mark them as deprecated [10, p. 404].

4.5.1 Keeping track of vertices

The vertex structure holds information about its position, colour, tex-
ture coordinates, and normal. The VertexBuffer class can use all four
attributes for rendering through specifying vertex, colour, texture coor-
dinates, and normal arrays � usage of these can be switched on and of
through the Enable*Array and Disable*Array methods. The structure
also implements a method for time dependent vertex displacement to re-
duce artefact known as vertex "popping" which can be very disturbing.
It is a form of geomorphing proposed by Duchaineau [2] for his ROAM
algorithm.

Each vertex can be in one of several states, e.g., morphing into the po-
sition, morphing out, idle, or marked for removal. Upon insertion, the tri-
angle position is set to the midpoint of the split square (see section 4.6.2).
For several oncoming frames it is moved to its �nal position (the coor-
dinates calculated during the split operation). When we are about to
remove the vertex, we gradually move it into the midpoint again, and
then remove it. Other states do nothing or signalise the VertexBuffer

class that the vertex has morphed out and can be deleted.
Adding a new vertex doesn't involve any permanent memory con-

sumption because we store them in a static array. All we do is updating
the vertex counter, free space information, and the element in the array.
Upon successful creation of a vertex (which can be created either blank
or initialized) an index into the bu�er is provided. Access to the stored
vertices is made possible through a method that returns reference to the
vertex structure stored under the supplied index.

Because the speed is crucial, no boundary checks are done, so it is

43

a programmer's responsibility to supply valid index. Obtaining a vertex
from any position marked as free space results in an unde�ned behaviour
� a valid reference is always returned, but data can contain anything.

To keep track of the free space (vertex array elements that do not
store any active vertex) inside the bu�er we are holding a pointer to a
position after the last active vertex. Besides that, we keep track of the
non-continuous free space (between the beginning and the highest peak)
in a priority queue. When we add a new vertex, we �rst look into the
priority queue if there's a space bellow the highest peak. If there is,
we pop it from the queue and store the vertex there. This operation
is O(log n) � we use STL's container priority_queue that constructs
heap above the supplied vector of numbers. If the queue is empty, or the
highest peak is bellow the �rst element in the queue, we store the vertex
on the peak position and move the peak one index to the right.

When we run out of space, we simply return the V_BUF_SIZE con-
stant (it denotes the size of the bu�er � 65535 vertices in the current
implementation).

4.5.2 Rendering

In order to render anything, polygons must be constructed using indices
to the vertex array. This is done via the AddTriangle() method. The
method takes three indices into the vertex array and stores them in the
given order into the index array (which is 4 times bigger than the vertex
array). A care must be taken to pass vertices in the correct order, oth-
erwise it can happen that the OpenGL pipeline will treat the polygon as
back faces and won't render them.

The PushData2GPU() method must be called before any actual ren-
dering. It takes all enabled arrays and copies them into the appropriate
arrays on the GPU unit. The Render() method then takes indices from
the index bu�er and calls the appropriate OpenGL functions (see sec-
tion 4.3.3 for an overview of render modes).

The index bu�er is then cleared to make space for new frame data.
When a new planet is generated, the Purge() method is used to get rid of
all vertices in the bu�er � it resets the free space pointer to the beginning
and clears the priority queue.

The DumpObjData() method can be used to dump contents of the
vertex bu�er into an external �le in the Wavefront's obj format.

44

4.6 The ROAM implementation

Our implementation of the spherical ROAM algorithm is spread across
several classes designated with the "ROAM" pre�x (see �gure 4.3). The
top level class is then harboured inside the proxy Planet class. By swap-
ping this private object for anything else, one can implement his own
algorithm instead of using the current implementation while maintaining
the same interface.

The sphere object contains 12 ROAM trees � we hold pointers to their
roots. We use a DFS algorithm to update all of them every frame. Each
frame, we check whether any of the leaves needs splitting. We also need
to check, if we can merge some of the triangles. We could do this by
checking all nodes inside the tree, but that would also mean we would
need to check whether such triangles form a diamond in every frame.

As an optimization we cache all present diamonds (we know that they
can only be created during the split and merge operations), This cache
is provided via a linked list. We then simply go through all diamonds in
the list to check for un-needed triangles.

Triangles and diamonds to be removed are at �rst marked as dead
in the function that �nds them unnecessary (either the split or merge
operation). They are collected in the next frame by the update method.
If the user wants to export the planet, we �rst reset the sphere back to
the initial cube, and then call a special version of the update method
that recursively subdivides all triangles to form same level of detail over
the whole surface.

4.6.1 Initialization

First, the initialization process calls the Init() method on the world
generator object that has been supplied via constructor. Then, we create
12 triangles (instances of the ROAM_Triangle) � each two composing one
face of a cube. These 12 triangles represent roots of a tree structure
generated by split operations (see below). This approach literally creates
a sphere from a cube.

We prepare 8 primary vertices and assign them to the previously
created triangles. Figure 4.4 shows the layout of the vertices and triangles
(black numbers denote vertices, red numbers denote triangles, and red
lines indicate neighbour relationships).

45

Figure 4.4: Triangle layout

Figure 4.5: Triangle schema

4.6.2 Triangle splitting

Figure 4.5 shows how the situation looks before the split and after the
split operation. Black numbers denote local vertex aliases, red numbers
denote edge indices. We can see that both triangles on the left side of the
�gure share 2 vertices (B and D), but have them listed under di�erent
local indices. This is because we need to keep the same vertex-edge
orientation for all triangles.

Each triangle has a three element array containing indices to the ver-
tex bu�er (red letters in the �gure would correspond to these). Each

46

triangle also contains a three element array of pointers towards its neigh-
bours along all edges. We refer to these with numbers shown in the �gure
(they correspond with vertex designations).

Now, when we split the triangle, the �rst thing we have to check is
whether the triangle forms a square. For this purpose we simply do the
following (in order to be as fast as possible, we don't check for null or
invalid pointers):

if neighbour[2]− > neighbour[2] = this then
return true

else

return false
end if

If this test fails, a split method on the neighbour along the longest
edge must be called before proceeding furter. Splitting of a triangle
introduces new vertex E, so we ask the vertex bu�er to give us its index.
If there is no space left (the vertex bu�er will notify us by returning the
maximum capacity as an index), we quit immediately (so far we haven't
changed the state of the triangle).

We assign the position (pre-calculated when the current triangle was
created � it is obtained as a unit vector pointing towards the new vertex
multiplied by radius plus the value returned by the height generator),
texture coordinates, and normal (actually the normal is calculated at
the end when we have all four new triangles ready, so we can calculate a
normal as an average of the triangle normals around the new vertex) to
the newly created vertex. We also set its state to morph-in.

Then, we allocate space for both children of the current triangle and
the opposite one (neighbour along the hypotenuse). We set parents to
these children and assign vertices to them (how it's done can be seen
on the right side of �gure 4.5). Then, we update the neighbourhood
of all four new triangles � so each triangle has valid pointers towards
its neighbours along all edges. To do so, we use information contained
within their respective parents.

An important step is to check, whether or not the current triangle,
or the the opposite one, wasn't a part of a diamond (see section 4.6.3).
If so, we need to mark it dead because the split operation destroyed it.
Finally, we add a new diamond to the list (the one we have just created).
To check whether a triangle is a part of a diamond, we run in circle along
one of the short edges. If we get back to the original triangle, we form a

47

diamond.
Last step depends on the use of recursive rendering (see section 4.6.4).

If we do not use it, we add four new triangles to the list of leaves and
remove both parent triangles from the same list. An optional way of
implementing the tree would be storing just the list of leaves. However,
that introduces overhead during merging as we need to re-calculate some
values for the parent triangles. On the other hand, it can save memory,
as we don't need to hold all nodes between the root and the leaves, and
the time spent on the DFS execution (see 5.1).

4.6.3 Triangle merging

When the calculated visible error of a diamond is less or equal than the
threshold, we merge it. First, we change the state of the middle vertex
to morph out back to its original position. Then, several frames later,
the actual merging takes place. We check the state of the vertex, and
when it has changed to a state indicating we can remove the diamond
from the list, we do so.

The merge operation is the inversion of splitting. We can see the post-
merge situation (left) and the pre-merge situation (right) in �gure 4.5.
When a merge is invoked, we take parents of all four triangles (pairs
of them share one parent), and update their neighbourhood using infor-
mation from the diamond. Then, we take an optional step of removing
two leaves from the list of leaves and adding a new for each parent (see
section 4.6.4).

We need to check whether either of the parent triangles forms a di-
amond. If so, we add it to the list. Last three steps of merging consist
of recalculation of the vertex normals, removing the vertex E from the
bu�er (by changing its state to dead), and marking four merged triangles
as dead (they will be removed in the next triangle update cycle). We also
mark the current diamond as dead.

4.6.4 Rendering the tree

As far as rendering is concerned, there are two possible ways to render
the sphere in our implementation. Since we hold the whole tree structure,
the �rst way is via standard recursion. We traverse the tree until a leaf
is found, there we call the Render() method of the supplied visitor with
the leaf as its argument.

The other way is non-recursive. It is achieved by creating a list of
leaves updated during the update phase. Then we call the Render()

48

method of the supplied visitor on all elements in this list. Used render
method can be switched at the compile time via de�ning or un-de�ning
preprocessing constant CFG_USE_RECURSIVE_RENDERING. It can be used
to compare which method is faster.

4.7 Perlin noise implementation

The Noise class provides an abstract interface for implementing any
n-dimensional persistent noise, in practice we use only 3 dimensions;
however, the number can be increased. The class declares virtual method
to initialize the noise generator with a seed value, and provides three
pure virtual methods for obtaining one, two, and three dimensional noise
samples.

The PerlinNoise class uses the previously de�ned interface to imple-
ment the Perlin noise. We use 3-dimensional lattice of random numbers
to generate the output. Up to three numbers are passed as the input (if
less than three numbers are passed, the rest is padded with zeroes). We
then take integral and fractional parts of the input values. The integral
parts are used as indices to the lattice.

A single index is constructed from all three indices, and a three di-
mensional vector is taken from the pre-calculated array. All elements are
then multiplied by the fractional parts respectively, and a single value
obtained as a sum of all vector elements is returned.

For one dimensional noise we take two random numbers from the
lattice, and interpolate between them (current implementation uses linear
interpolation). To obtain the �rst number, we use the �rst element of
the input vector as an index to the lattice. To obtain the second, we add
1 to the �rst element of the vector, and use it as a lattice index.

Two dimensional noise uses four random numbers obtained through
the original vector and all possible combinations of adding 1 to its ele-
ments. Then, we interpolate the �rst two and the last two numbers, and
then the results. For three dimensional noise, we do the same, but with
eight numbers. The interpolation of the pairs yields four values. These
are again interpolated, and the results are again interpolated.

Adding another dimension would result in an exponential increase of
the values that compose the result. All return values are truncated to
(−1.0, 1.0).

49

Chapter 5

Observations

In this chapter we will discuss some key observations made during the
development of this demo. Our key points are the suitability of the
chosen LOD algorithm, the e�ectivity of the used texturing method, and
the impact of normal mapping.

5.1 The e�ectivity of the LOD algorithm

We have decided to use the spherical version of the ROAM algorithm de-
spite the fact that even O'Neil later rewrote his application using another
LOD algorithm (a variation on the quad-tree algorithm). The ROAM
algorithm isn't a bad choice, but it has one drawback brie�y mentioned
in section 4.3.3 � changes that occur in our vertex data can be predicted
and detected with great di�culty, i.e., the data are too un-organized.
Therefore, we are forced to push all vertices and polygons repeatedly to
the GPU. Thus we cannot take advantage of the OpenGL vertex bu�er
objects which would greatly improve the rendering performance.

Another possible improvement would be the storage of the ROAM
tree leaves only (as mentioned at the end of section 4.6.2). Some testing
could be done to tell whether the DFS algortihm used for tree update
causes such overhead that opting for the leaves only implmentation would
prove much more e�ective. In spite of the overhead introduced to the
merge operation.

Some time could also be spent on tuning the split and merge priorities.
Our current implementation embodies a weird behaviour that can be
occasionally visible on the horizon � some triangles get split only to be
merged either in the same frame, or in the next one. This results in
jittering vertices. Most of the time a small camera movement is enough

50

to remove this e�ect, though. The cause is unknown despite the e�ort
dedicated to remove this problem.

5.2 The e�ectivity of our texturing method

From distance all generated planets look nice. However, on closer look
we'll observe that there is something wrong with the scales. Because we
use the tri-planar texturing that uses three texture fetches we cannot
use dynamic changing of the texture repetition factor. We had to make
a compromise between visible texture patterns and a texture scale on a
close-up zoom.

We currently use four terrain textures and that makes 12 texture
fetches to get the desired result. Should we use dynamic texture scaling
that would require blending to hide observable texture movement, we
would need 24 texture fetches, and that really impacts the rendering
performance.

Even now, the framerate drops bellow 60 FPS when we activate the
shaders, and we only try to render around 10 000 polygons. There are
several realtime landscape renderers that claim to run at around 60 FPS
with much larger numbers of rendered polygons (O'Neil's implementation
included). A discussion can be made how big the impact is, and whether
the bottleneck doesn't lie somewhere else (see section 5.1).

We also cannot forget about noticeable artefacts (blurred texture)
that can occur as a result of tri-planar texturing (they were mentioned in
[6, chapter 1]). Noticeable texture stretching is also visible in areas where
three cube-map faces get together (this is mainly due to the distortion
of the normal map).

Therefore, in order to improve the rendering performance and image
quality, another terrain texture method should be sought and imple-
mented.

5.3 The impact of normal mapping

Before switching to the shader approach we have used normals calcu-
lated in the program for per-vertex lighting. This hasn't produced nice
results because all the terrain features diminished when the planet was
viewed from high altitude. Also, as the surface got subdivided during
zooming, new vertices were introduced and this resulted in visible vertex
"popping".

51

In order to reduce this uncanny e�ect we have incorporated geomor-
phing to our LOD algorithm. However, to prevent high CPU loads, we
weren't updating vertex normals as the vertices were slowly moved into
their positions, thus the outcome of this e�ort was nil. The mountains
still looked horribly because the per-vertex lighting stressed out the tri-
angles. Every mountain range therefore resembled a shape constructed
from pyramids.

Figure 5.1: Normal mapping with wireframe overlay

The incorporation of normal maps and per-pixel lighting together
with water re�ection had really positive e�ect to all previously mentioned
visual issues. First, the terrain features are clearly visible, although, the
surface is composed only from several triangles. An example can be seen
in �gure 5.1.

Second, the vertex "popping" is now virtually invisible from high al-
titudes and nearly un-noticeable in close-up zooms during camera move-
ment.

52

Chapter 6

Conclusion

In this work we have tested a method of procedural generation of a
spherical landscape. To do so, we have implemented an adaptation of
the ROAM algorithm and supplemented it with a shader based solution
for generating terrain texture. We have experimented with some fractal
based functions to transform generated noise values. This area provides a
wide open space for further research as we have only touched the surface
of the world of multifractals.

We have also con�rmed that lighting has the biggest impact on the
overall quality of the generated imagery. Scenes without lighting lack
details that should be visible. We have also observed that the per-vertex
lighting isn't enough for providing visually pleasing results. Normal map-
ping proved to be simple, easy-to-implement, yet powerful solution for
many uncanny lighting e�ects we have observed. It improved the overall
quality of produced images by several orders of magnitude.

If we were to write, for example, a free space simulation that would
allow the player to travel from one star to another, where the player would
watch planetary bodies from the orbit only (a clone of Elite), we could
easily use our current implementation as it provides su�cient results.

Should we, on the other hand, write an application where the player
could freely zoom to the surface and observe a wildlife, for example,
further work would be needed. Nevertheless, we would have a solid base
to begin with.

6.1 Further work

Our program serves as a demonstration of what is possible with several
numbers and mathematical functions. There is, however, an open space

53

for further improvements. Topics for future work include:

• Optimization of the current ROAM algorithm implementation that
would use only the list of leaves, so we would not be storing and
traversing the whole tree structure.

• Implementation of a better LOD algorithm that could take advan-
tage of the OpenGL vertex bu�er objects.

• Improvements to the scale of the planet � so the user would really
feel like he is descending onto a planet surface.

• Use of other texturing techniques instead of the tri-planar textur-
ing.

• Implementation of a water shader for more visually appealing water
surfaces.

• Normal map generation code improvements.

• Implementation of basic terrain texture generation in the code � for
the time being we use sample textures obtained from the Internet.

• Introduction of the axial tilt of the planet and improvements to the
weather zoning.

• More experimentation with the world generator.

• Rendering a star �eld and the sun.

• Implementation of a realtime atmospheric light scattering and a
cloud layer.

• Introduction of scene anti-aliasing for better visual quality.

• Implementation of a graphical user interface.

54

Appendix A

List of control keys

General:
'Esc' Exits the program.
'F1' Shows/hides help.
'~' Opens/closes the command console.
'R' Toggles light rotation.
'L' Toggles dynamic level of detail.
'=' Increases level of detail.
'-' Decreases level of detail.
Viewport control:
'C' Switches camera type.
'W' Moves camera forward (spectator camera).
'S' Moves camera backward (spectator camera).
'A' Moves camera left (spectator camera).
'D' Moves camera right (spectator camera).
Render mode switching:
'1' Switches to the wireframe mode.
'2' Switches to the activates culled wireframe mode � faces

on the back of the sphere are culled.
'3' Switches to the grayscale mode � solid rendering using

heightmap texture.
'4' Switches to the lit grayscale mode � solid rendering using

heightmap texture with per-vertex lighting.
'5' Switches to the texture mode � solid rendering using

custom rendering pipeline (shaders) and per-pixel light-
ing.

55

Appendix B

List of console commands

Command Parameters Description
cmdlist � Prints out list of available commands.
exit � Immediately quits the program.
export N �lename Exports the planet in the .obj format

as the N -th subdivision of the basic
cube into the speci�ed �le.

generate � Generates new planet according to the
speci�ed parameters (see below).

generator [G] When executed without parameter, it
will print out numbered list of all avail-
able generators. Supplying a parameter
sets generator G to be used for the next
planet generation.

help [command] Prints the basic help. If supplied with
command name, it prints help for that
particular command.

load �lename Tries to load the speci�ed planet.
save �lename Saves current planet into the speci�ed

�le.
nparams � Prints out parameters for the new

planet.
params � Prints out parameters of the current

planet.
radius (�oat)r Sets radius of the new planet to r.

ocean_level (�oat)l Sets ocean level of the new planet to l.

56

Command Parameters Description
max_height (�oat)h Sets maximal height of the new planet

to h.
seed (int)s Sets random seed for the new planet to

s.
omega (�oat)o Sets the angular velocity of the new

planet to o.
exponent (�oat)e Sets the exponent used in the fBm al-

gorithm of the new planet to e.
w_factor (�oat)w Sets the weight factor used in the fBm

algorithm of the new planet to w.

57

Appendix C

Con�guration �le options

Option Value Description
width (int)w Sets graphics window width to

w.
height (int)h Sets graphics window width to

h.
color_depth (int)d Sets the colour depth to d bits.

d should be either 8, 15, 16, 24
or 32.

field_of_view (int)fov Sets graphics window �eld of
view to fov. Should be be-
tween 0 and 180 degrees.

enable_fullscreen (int) Toggles full screen mode on/o�
(1/0).

enable_max_performance (int) Toggles the laptop unfriendly
mode on/o� (1/0). If set to 1
the program eats as many sys-
tem resources as it can get.

texture_size (int)sz Sets cube-map texture size to
sz ∗sz. Note that there are to-
tally 18 textures generated of
this size. The bigger the size
the longer it will take to gen-
erate the planet.

58

Option Value Description
max_tree_depth emph(int) Maximal depth of the ROAM

tree. High depth means more
detailed geometry, however,
extremely high depths may
result in vertex bu�er over-
run which will result in non-
watertight mesh and sudden
framerate drop.

enable_dynamic_LOD (int) Toggles the dynamic level of
detail on/o� (1/0).

default_threshold (�oat)t Sets the default triangle split
threshold (level of detail) to t.
Can be anything between 0.0
and 0.1.

min_threshold (�oat)min Sets the lower bound for the
split threshold to min. Can be
anything between 0.0 and 0.1

max_threshold (�oat)max Sets the upper bound for the
split threshold to min. Can be
anything between 0.0 and 0.1

59

Bibliography

[1] Clasen M., Hege H.-C., Terrain Rendering using Spherical Clipmaps.
Eurographics, 2006.

[2] Duchaineau M. et al., ROAMing Terrain: Real-time Optimally
Adapting Meshes. Proc. Visualization '97, 81-88, 1997.

[3] Elias H., Spherical landscapes, [Online],
http://freespace.virgin.net/hugo.elias/models/m_landsp.htm

[4] Losasso F., Hoppe H. Geometry clipmaps: Terrain rendering using
nested regular grids. Proc. SIGGRAPH 2004, 769-776, 2004.

[5] Nicholson K., GPU based algorithms for terrain texturing University
of Canterbury, Christchurch, New Zealand, 2008.

[6] Nguyen H., et al., GPU Gems 3. NVIDIA Corporation, USA, 2007.

[7] O'Neil S., A Real-time procedural universe, part one - generating
planetary bodies. [Online], www.gamasutra.com, 2001.

[8] O'Neil S., A Real-time procedural universe, part two - rendering
planetary bodies. [Online], www.gamasutra.com, 2001.

[9] Perlin K., An image synthesizer. Proc. SIGGRAPH 85, 287-296,
1985.

[10] Segal, M., Akeley K., The OpenGL Graphics System: A Speci�ca-
tion, [Online], www.opengl.org, Version 3.0, 2008.

[11] Shreiner D., Woo M., Neider J., Davis T., OpenGL: Pr·vodce pro-
gramátora (authorised transl. of OpenGL programming guide: The
o�cial guide to learning OpenGL, version 2, 5th edition). Computer
Press, a.s., Brno, 1st edition, 2006.

61

