
Univerzita Karlova v Praze

Matematicko-fyzikální fakulta

BAKALÁ�SKÁ PRÁCE

�estmír Hou²ka

Tournament Management System

Katedra softwarového inºenýrství

Vedoucí bakalá°ské práce: RNDr. David Obdrºálek

Studijní program: Informatika, programování

2010

D¥kuji panu RNDr. Davidu Obdrºálkovi za ochotu být vedoucím této práce, jakoº
i za podn¥tné rady a p°ipomínky k programování aplikace.

Také bych rád pod¥koval Mgr. Ond°eji Luksovi za poskytnutí dat ze sout¥ºe Eurobot
2010 k testování.

Prohla²uji, ºe jsem svou bakalá°skou práci napsal samostatn¥ a výhradn¥ s pouºitím
citovaných pramen·. Souhlasím se zap·j£ováním práce a jejím zve°ej¬ováním.

V Praze dne �estmír Hou²ka

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Structure of the work . 10

2 Design and analysis 11
2.1 Requirements . 11
2.2 Existing applications . 13
2.3 Data model . 15
2.4 Event system . 18
2.5 Modules . 19
2.6 Design vs. requirements . 20

3 Implementation 21
3.1 Technologies . 21
3.2 General view . 23
3.3 Use of the Observer pattern . 24
3.4 Match interconnection GUI . 27
3.5 Incorporating Lua . 29
3.6 Database organization . 30
3.7 Important classes . 32

4 Application description 35
4.1 Administrator . 35
4.2 Programmer . 36
4.3 User . 38

5 Case study 43
5.1 Administrator's work . 43
5.2 Programming the logic . 44
5.3 Events . 48
5.4 Creating the tournament structure . 52
5.5 Presentation . 55

5

6 Conclusion 59
6.1 Future work . 59

A Lua script API 61
A.1 Object manager . 61
A.2 Tournament manager . 62
A.3 Arrays . 64
A.4 Events . 66
A.5 Types . 66

B Terminology 69

C Contents of the CD 73

References 75

Název práce: Tournament Management System
Autor: �estmír Hou²ka
Katedra (ústav): Katedra softwarového inºenýrství
Vedoucí bakalá°ské práce: RNDr. David Obdrºálek
e-mail vedoucího: david.obdrzalek@m�.cuni.cz
Abstrakt: V této práci jsou analyzována speci�ka r·zných turnajových systém·
a navrºen objektový datový model, pomocí kterého lze tyto turnajové systémy
p°íhodn¥ modelovat. Sou£ástí práce je dále aplikace pro správu turnaj·, ve které
je tento model vyuºit. D·raz byl kladen p°edev²ím na otev°ený charakter a také na
roz²i°itelnost a univerzálnost aplikace. Dal²í d·leºitou sou£ástí práce je p°ípadová
studie, která ukazuje, jak m·ºe být aplikace vyuºita v praxi. Tato p°ípadová studie
je provedena na skute£ných datech z robotické sout¥ºe Eurobot 2010.
Klí£ová slova: správa turnaj·, sout¥ºe, zapisování výsledk·, software

Title: Tournament Management System
Author: �estmír Hou²ka
Department: Department of Software Engineering
Supervisor: RNDr. David Obdrºálek
Supervisor's e-mail address: david.obdrzalek@m�.cuni.cz
Abstract: In this work the speci�cs of various tournament systems are analyzed
and an object data model is proposed that can be used to model these tournament
systems conveniently. A tournament management application that implements this
model comprises another part of the work. Emphasis was given to the open nature
and to the extensibility and universality of the application. Another important part
of the work is a case study that shows how the application can be used in praxis.
The case study is made using the real data from a robotic competition Eurobot
2010.
Keywords: tournament management, competitions, score-keeping, software

Chapter 1

Introduction

One of the reasons why sports exist is that people like to compete with each other
and measure their performance against other contestants. That is why every sport
includes a scoring system that somehow mirrors the performance of the contestants.
However, as Jack Richards and Danny Hill correctly argue in [2], the interesting
data from sports and competitions is not only the scores and who won and who lost.
Statistics and records are as much important as the scores, especially to couches,
more knowledgeable fans, media, but also to wide public. The task of collecting
the statistics then becomes even more di�cult when we want to manage a whole
tournament.

The task of keeping the scores and other statistical data was very tedious in the
past and required a lot of people. Personal computers made this task potentially
much easier, but to my best knowledge, no tournament management system exists
that is free and open on one hand and easy to use and universal on the other.

1.1 Motivation

During Eurobot 2008 Czech cup, I was responsible for keeping the scores and present-
ing them to the audience. This was done using a computer to make the presentation
of the scores easier. For more information on the Eurobot competition, see [5].

The application that was used back then (and also in the following and several
preceding years) was a rather complicated spreadsheet in Microsoft Excel. It was not
very trivial for anyone to understand the principles of the spreadsheet as there were
a lot of complicated formulas, cross-references, hidden values and other workarounds
that prevented one to grasp the overall concept of the �le. This solution was the
outcome of incremental programming e�orts of several people over several years of
lifetime of the spreadsheet. When a problems arose in the application, it was hacked
with an ad-hoc workaround instead of being solved and this hack was carried on to
the next version, making it even more complicated.

Moreover, during the use of the score-keeping system, an unexpected situation
or two arose almost every year that called for editing some automatically updated

9

10 1 Introduction

values by hand with the possibility of breaking chains of inter-referencing cells and
causing a cascade of problems later, which sometimes did indeed happen. Nothing
is then more unnerving than delegates from the a�ected teams, complaining about
the wrong score of their teams while you are already trying to �x the problem.

More issues included misuse of the system due to incomplete understanding of
how it worked. This caused problems similar to those already described � frustrated
contestants, confused audience and embarrassed organizers.

Presentation of the scores was also tedious as it consisted of doing the following
procedure every time the scorekeeper changed the scores and wanted to show them:
one had to locate the right tab, where the scores were presented in the desired format,
switch the spreadsheet application to full-screen view, hide the mouse pointer so
that it would be invisible on the projector, unfreeze the projector and freeze it back
so that the audience would not see the scorekeeper writing down the scores. Of
course, this was not very user-friendly and sometimes one forgot to do a step in this
sequence, causing the presentation to look unprofessional.

To address the previously mentioned problems, I began to think about a more
robust computer system that would solve them and this work is the result.

1.2 Structure of the work

The rest of the text is organized as follows: Chapter 2 analyzes the requirements on
the system, describes several existing applications that solve similar problems and
speci�es the data model design that will be used in the system. Chapter 3 contains
details about my implementation of the design. Chapter 4 describes the application
from a user's point of view. Chapter 5 shows a case study that uses the application
to manage matches in the Eurobot 2010 competition. Chapter 6 concludes the
achievements of this work. The appendix chapters describe the incorporated Lua
scripting API, explain unclear terminology and list the contents of the accompanying
CD.

Chapter 2

Design and analysis

This chapter analyzes the requirements on the application and looks at existing
software. Also, characteristics of various tournament types are observed and a data
model with a means to manipulate the data is provided that will suit these charac-
teristics. At the end of the chapter, the model is compared with the initial require-
ments.

2.1 Requirements

As a result of my analysis that considered the issues that were experienced with the
solutions mentioned in section 1.1, following requirements arose:

Universality

The system has to be designed in such a way that will allow its use in a wide variety
of tournaments and competitions. Parts of the application should be script-able
and editable by the user so that it can be modi�ed to the speci�c needs of the given
event. Should a particular employment of the system show that the system misses
a feature important for that employment, the design of the system should make it
easy to add support for the feature in a future version.

Modularity

This requirement is actually a means of achieving universality. By making the
application modular (together with open design), we will allow its users to change
parts of it for something that they already use or design a speci�c module that will
suit their needs perfectly.

Usability

Use of the system should not be limited to programmers or people pro�cient with
information technology. This will allow the referees and scorekeepers to use the

11

12 2 Design and analysis

application without help from a tournament system administrator. The typical user
of the application understands the rules of the game and wants to use the system
to record anything that the rules allow without having to learn to program.

Auditability

Audit in this case does not mean an external third party scrutiny of the system,
but an action performed by the system administrator that leads to identi�cation of
a problem. The system should log all important actions to allow the administrator
to �nd out how the problem was created.

Recoverability

After identifying the problem, the administrator � or maybe even the user � has
to solve it somehow. This should not be very di�cult and the system should be
prepared for such interventions.

Open design

In case of more serious problems, one sometimes has to modify the underlying data
manually. This would be impossible if the data format would be proprietary or
poorly documented. The data should thus be easy to access manually � that is
without the mediation of the application � and it should be presented in a format
that is easily editable. The system itself should also be well documented and its
source code available. Open source code will allow other people to build upon or
extend the application with new features in the future.

Multi-platform use

Small hobbyist tournaments or competitions usually do not have several computers
at their disposal and they may not have the time, resources or interest in buying or
installing a speci�c hardware or software. The system should therefore be compilable
with and able to run on most of the major operating systems.

Cost

Because we did not want to spend money for such a speci�c software as a score-
keeping system when it gets used just once a year and because it could show that the
newly acquired application misses an important feature, we understand that other
small tournament organizers face the same restrictions. A cost-free open-source
application is a solution to this problem.

2.2 Existing applications 13

2.2 Existing applications

To better illustrate the variety of tournament managements systems available on the
world wide web, I will describe a few examples in detail. The choice of the individual
applications is not based on any rigid criterion, instead I chose the applications that
stood out the most because of their position in web searches, good presentation and
professional look and feel or features that make them representatives for a certain
group of applications.

TMS � Tournament Management System (Tennis)

Figure 2.1: Data input GUI of Tournament Management System

T.M.S. Tournament Management System [16] is a good representative of the
commercial tournament management software. The graphical user interface looks
neat and professional (see Figure 2.1) and the application o�ers a lot of interest-
ing features like site scheduling, automatic or manual draw making, sheet printing
and Internet publishing. The o�cial website claims that the United States Tennis
Association has purchased a nationwide license for this system.

The system goes a long way in simplifying the usability, which is due to its
commercial nature, but let's look at how it would comply with my other criteria.

Universality and modularity are not ful�lled in this application, because it is
intended for use in tennis tournaments and there is one modi�cation that allows it
to be used for racquetball. One might argue that it is a specialized application and
it is not intended to be universal or modular, but for my application I chose di�erent
goals.

Error detection and recovery is not needed as in our case because the applica-
tion does not automatically count score and other statistics. In case of assistance,
one could also call the support hot-line (which is available with nearly all of the
commercial solutions).

14 2 Design and analysis

Regarding the application itself, it is not multi-platform and it is closed-source.
It is also not free � users have to pay annual subscription fees and also pay for
publishing the tournaments.

STRONGVON

Strongvon [15] is another example of a commercial tournament management system.
It is strongly oriented on Internet publishing and registration, but also includes
bracketing tools. However, according to their own website, the application can save
only wins/losses and cannot display scores or other statistics.

Figure 2.2: Online bracket view in Strongvon

The program's features include automatically grouping competitors into groups
based on various criteria, registration of the competitors online or printing tourna-
ment brackets and schedules.

As for my criteria, Strongvon seems (and claims) to be relatively universal, al-
though they mention martial arts several times on the website. However, it is not
modular and thus not customizable. Strongvon's source is closed and the use of
the application is not free. Similarly to previous application, Strongvon utilizes the
pay-per-use scheme to charge its users.

David �afránek's Tournament Manager

David �afránek's Tournament Manager [3] is a specialized tournament manager for
chess tournaments that features swiss system or round-robin tournaments, managing
multiple tournaments simultaneously or a lot of chess-related statistics. However,
it lacks the more advanced usability related features of the commercial applications
like printing out the draws, Internet publishing or online registration.

If we look at the criteria, universality is obviously not ful�lled, modularity nei-
ther. Nevertheless, the application is relatively usable and it is free, although not
open-source. It also does not run on multiple platforms.

2.3 Data model 15

Figure 2.3: David �afránek's Tournament Manager

Conclusion

Research shows that the supply of computerized tournament management solutions
on the market is relatively vast. Nevertheless, most of these tools are online and
commercial and the rest is either narrowly specialized, too restrictive or lacking
important features. Moreover, some of the commercial solutions tend to utilize a
pay-per-usage approach, requiring the user to pay a prede�ned amount of money
not only for every tournament, but also for every contestant that enters the compe-
tition. Together with limitations on the number of teams and contestants and other
restrictions, these systems will not be an alternative for many of their potential
users.

2.3 Data model

The current design makes the application adaptable to various types of sports and
competitions by providing a means to de�ne behavior of the system in particular
situations. It also tries to be as general as possible while keeping in mind the common
characteristics of most competitions. The latter is important to di�erentiate the
system from a general-purpose database application. I observed these characteristics
to be able to derive properties of the underlying data model of the system.

Object analysis

The data of my system is object-oriented in that it will be able to combine related
data into objects and provide polymorphism and basic inheritance � so that for
example all types of contestants will the share some properties.

I will illustrate the need for types in my object system on the case of matches.
Generally speaking, a tournament is a series of events that is either homogeneous
or heterogeneous. An example of a homogeneous tournament is virtually any pro-
fessional sports league, be it association football, ice hockey, baseball or a variety

16 2 Design and analysis

of other competitive sports. On the other hand, decathlon, triathlon, athletics and
similar tournaments all consist of more types of contests and are thus heterogeneous.
The existence of heterogeneous tournaments implies for the application the possi-
bility to de�ne more types of matches and be able to use them in one tournament.

However, what both homogeneous and heterogeneous tournaments share is that
they have a certain structure. They consist of single matches that can be grouped
together in rounds, tables and similar group-like con�gurations. Matches that con-
sist of multiple rounds and require the teams to win a prede�ned number of times
to win the entire match (playo� matches in the National Hockey League in the USA
but also other playo� matches in various sports all over the world) can also be con-
sidered a group of matches. Some matches are played twice with the teams switching
home and away roles, for example in association football. All these examples lead
to the need of a grouping feature in the system � matches have to be group-able
and the whole group has to be able to determine winners of the group in a similar
way as a match does. In fact, the groups themselves can also be included in further
groups, which leads to a tree-like hierarchical system of match groups and matches.

So far, I considered only games that feature two contestants and have a winner
and a loser. But there can also be matches with more contestants, as for example
in racing competitions. Most card games can also accommodate � if not require �
more than two players. Similarly, sometimes we do not want to know only the winner
of the match, but we also want to determine positions of the other contestants. These
examples led me to use a variable number of contestants and winners or in other
words inputs and outputs of the matches and match groups.

Players or teams (I have called them actors since my early analysis of the system,
although contestants would be a more appropriate term), matches and match groups
(called tables in some places of the source code) are enough object types to model
entities in the most basic scoring systems, but sometimes the user will need to de�ne
another object type to represent other real-world entities such as venues, referees
or track checkpoints as well as imaginary helper objects to store various data. The
application has to allow the user to do so by adding a third type of objects besides
contestants, matches and match groups. I chose to call them simply objects.

Object model

As was revealed in the above analysis, my system will work with four types of
objects: actors, matches, tables and objects. The user will de�ne derived types (or
sub-types) from these basic types and will be able to create and delete instances of
these sub-types. The instances will contain as member variables simple data such
as strings, numbers or boolean values, but also references to other instances.

The object model will also need to include variable-size arrays to accommodate
matches of variable contestant number, as per my analysis. These arrays will how-
ever be useful in other cases such as list of team's players, list of goals or similar
events in a match, list of checkpoints of a racing track and so on.

Apart from instances of four types of objects, the object will also need to support

2.3 Data model 17

global variables to allow the user to save data that is relevant to the tournament as
a whole.

Data back-end

The described object model is just an abstraction over a back-end data storage. In
order to ful�ll the openness requirement, the data model needs to be implemented
either by plain text �les or a freely available database management system. The im-
plementation details of the abstraction should be documented, so that an advanced
user or administrator, who wishes to work with the data without the help of the
tournament management application, is able to do so.

Object model extension

Figure 2.4: Data model of my system

The object model, as I described it, only serves as an abstraction over the data
back-end. But in the application, I will need to have certain pre-de�ned globals,
for example an array of actors that will contain references to all contestants. For
the purposes of the graphical application, the instances will also need to have auto-
matically created implicit variables that will contain various graphics-related data,
for example the position of the object on the screen. There will also be connections
� a facility to connect outputs of matches and match groups with inputs of other
matches and match groups.

All these requirements (apart from connections) can be realized in our object
model, but it would be impractical to create the needed variables manually every
time a new tournament is created or an object is instantiated. The tournament
manager extension to the object model will do that for us. As for the connections,
they will be stored in the data back-end separately from the object model. They
cannot be built on top of the model without di�culties because they connect various
object types (matches or match groups).

18 2 Design and analysis

Communication patterns

The application will not communicate directly with the data back-end. Instead, it
will do that with the help of either the tournament extension to the object model or
directly the object model. Figure 2.4 describes communication patterns inside the
data model and between the data model and the rest of the system.

2.4 Event system

The model, as I have presented it so far, can describe the tournament's state at a
given time. However, we also need to record changes somehow. For this, I have
designed an event system, which consists of a set of user-de�ned events that can be
executed to modify the data model. The time in my tournament management system
will be discretized and an event will be a transition between two time intervals that
represent two states of the data model.

An event can happen on demand from a user such as a referee or scorekeeper or
it can be delivered to the application from an automated sensor somewhere in the
�eld. Upon the arrival of an event, the application will parse its arguments and run
the event handling routine that will have been de�ned in a scripting language by
the administrator before starting the system. Events will be logged and it will be
possible to reconstruct the whole tournament just by reading this log.

Short example

To clarify the model a little bit, let's observe the change of data by events on a
simple example. For the purpose of the example, I will show only the part of the
data that is changing.

There will be an object of base type match with an identi�er �match1�. Sub-
type of this object is not so important, we only know that it contains two integer
variables � home and away � that will keep the score of the match.

For the purpose of modifying the score, there will be an event named �score�
that will have three arguments. These arguments will be named �match�, �home�
and �away� and their types will be match, integer and integer respectively. Follows
a pseudo-code description of the event. Note that the actual implementation might
look di�erent, based on the used scripting language.

event score(match match, integer home, integer away) {
match.home := home
match.away := away

}

This is how the data might look after a few invocations of this event. Do not
get confused by mixing of views of the data with scripting language pseudo-code �
odd lines show current state of data, even lines are pseudo-code that is about to be
executed by the scripting language interpret.

2.5 Modules 19

match1{home = 0; away = 0}
score(&match1, 1, 0); //Home team just shot a goal

match1{home = 1; away = 0}
score(&match1, 1, 1); //Away team shoots one as well

match1{home = 1; away = 1}
//And so forth

Ordering group outputs

In order to be able to implement quali�cation tables, two extra arrays of actors and a
special ordering event will be a part of each match group. The arrays will be named
input and output ordering arrays and they will be connectible by connections inside
the match group. When an actor in the input ordering array changes, the ordering
event for the given match group type will be executed and, will determine the correct
ordering of the actors and will set the output ordering array correspondingly. That
way, order of the outgoing actors will not have to be de�ned by the connections
only, but will be modi�able by an event. The ordering event will also be runnable
manually.

Thus, to create a quali�cation table, one would just add the quali�cation matches
inside the match group and when all of the matches are �nished (or in any time in
between � ideally after a single match is �nished), the ordering event would be
executed to sort the table's players according to their performance in the matches.

2.5 Modules

For more complex uses, one application will not su�ce. A setup, where there are
several people working simultaneously on several computers and inputting various
statistical data, is easily imaginable. Simply running more instances of the tourna-
ment management application would be an option, but since all of them would have
to share the same data back-end, this could bring concurrency problems like reading
a temporary value of a variable or overwriting a value that has just been written by
another user. Put into terms of the data model abstraction, transitions between the
states must be atomic and the event handler execution must be serialized.

To allow serialization of the events, the system has to be divided into several
applications that communicate with a central data host application. This central
application provides the data model abstraction over the data back-end and is ac-
cessible via a dynamically linked library that is provided with the system. All
applications that need to communicate with the central module then have to be
linked against this library. The communication mechanism should allow the appli-
cations to run either all on one machine or to be distributed over the network for
easier collaboration of multiple users. A basic tournament planner and event ex-
ecutor applications will be available without programming anything, so that users
without too speci�c needs will be able to use the system.

20 2 Design and analysis

2.6 Design vs. requirements

The design ful�lls all of my requirements mentioned at the beginning of this chapter.
The system will be universal for several reasons. The underlying data model

is general enough to suit a wide variety of tournaments and it can be modi�ed by
de�ning own sub-types and own events. Modularity will be satis�ed due to network
nature of the whole system and also because the presentation modules will be able
to directly read the database without having to communicate with the data model.

Usability cannot be hindered anyhow by the design � the implementation of
the graphical front-end of the application will decide, whether the application will
be intuitive or not. Auditability will be satis�ed due to various logging facilities,
mainly the event log. Recoverability is ensured by the nature of the underlying data
back-end, because the whole database schema can be periodically backed up. Also,
in the case of less severe problems, one might be able to modify the data directly
because of the open nature of the data model. Which leads us to the requirement
on open-design. Apart from the open and documented format of the data model,
this will be ensured by the open-source nature of the code, although this is an
implementation detail, as well as the multi-platform nature of the used tools and
the zero cost of the application for the users.

Chapter 3

Implementation

This chapter contains information about the programming languages and other tech-
nological instruments that I used in the application implementing my data model,
looks at the implementation from a broader perspective, describes how the original
design was modi�ed and for what reasons and also contains detailed implementation-
level description of parts of the application such as the graphical user interface,
embedded scripting language and individual classes.

3.1 Technologies

C++

I chose C++ [1] as the main programming language for my application because of
its multi-platformness, the right level of abstraction from the hardware speci�cs (C
being too low-level and python too abstract, for comparison), availability of a lot
of libraries and mostly because of my previous experience with the language. The
C++ STL library is also used.

MySQL

MySQL is an open-source database system. [9]
The idea of using text �les as the data back-end was quickly abandoned. Al-

though text �les would have an advantage of being easily editable, working with
them would either mean a signi�cant overhead (because searching in a text �le
would be linear in the �le's length) or I would end up designing my own database
management system. Using a third-party database management system is much
more convenient for me as a programmer of the application and does not impose
too much restrictions on the users of the system if an open and widely adopted
alternative is chosen. Moreover, database management systems provide additional
features that might prove useful � for example backups or user management.

The two open database management systems that I was considering were SQLite
and MySQL. I chose MySQL because I was familiar with it and also because there

21

22 3 Implementation

might be a need to use my system over a network and read the data by more clients,
which the o�cial SQLite website states as a reason to consider not using SQLite
[14].

Lua

Lua is a lightweight embeddable scripting language. [11]
Lua was chosen as a scripting language because of its simplicity, �exibility and be-

cause it is easily embeddable. As opposed to the data back-end, complex additional
features in the scripting language would be unnecessary because event handlers are
intended to be as small and quick as possible.

Regarding the performance of Lua, the o�cial website of Lua claims:

�Lua has a deserved reputation for performance. To claim to be �as fast
as Lua� is an aspiration of other scripting languages. Several benchmarks
show Lua as the fastest language in the realm of interpreted scripting
languages.�

Qt

Qt is a multi-platform GUI toolkit. [17]
It was chosen because it is open and multi-platform. It is also well documented

and has many interesting features.

Mysql++

Mysql++ [10] is used as interface with the MySQL C API [10]. It is a C++ MySQL
wrapper that uses similar principles as STL.

SCons

SCons is a software construction tool. [13]
I use SCons as the build management tool, because it is an interesting alternative

to the traditional Unix make tools. Although the current build was tested only on
GNU/Linux, it should not be very di�cult to adapt it to other systems due to SCons'
multi-platform nature. SCons is written in the Python programming language. [12]

Operating system

The operating system that was used for development was the Ubuntu GNU/Linux
distribution. However, the system is multiplatform and can be compiled on a variety
of other major operating systems.

3.2 General view 23

3.2 General view

The application can be divided into several distinct components, each having a well-
de�ned purpose and consisting of several singleton classes. The main entry function
of the program instantiates these classes, connects them together by giving them
pointers to the other singletons, parses the arguments using the argument parser
class and executes the actions that correspond to the parsed arguments and then
enters a loop by calling the Qt function QApplication::exec(). The event-based
Qt GUI library then executes my functions and thus returns control to my code.

Three main components

The Qt-based part of the application displays the main window, handles the events
for the GUI elements such as button presses, drag and drops or mouse movements.
The code for this part of the application is in the src/qt directory. Most of the
code involves creating new classes for graphical representation of matches and match
groups and enabling the user to interconnect them interactively. This part also
includes displaying a console for debugging and similar purposes, wherein the user
can access the Lua environment without having to use events.

Figure 3.1: MVC view of the system. Classes are solid-lined rectangles, dotted rectangles
are parts of MVC. Solid arrows denote �ow of control inside the dotted rectangles, while
the dashed lines represent communication that will have to be realized over the network, if
the application is to be divided.

Another distinct part of the application is the data model that handles con-
nection to the back-end database system and provides the object abstraction over
the database. Another important task for this part of the system is to provide an
observer mechanism, so that other parts of the application can be noti�ed when
something in the data model changes.

Last component of the system is the Lua environment. It provides a C++ ex-
tension to the original Lua C API, handles the initialization of the Lua environment

24 3 Implementation

and creates the objects and tables that are speci�c to the tournament manager ap-
plication � the so-called Lua scripting API. Another important task for the Lua
environment is to load events from text �les and allow them to be executed.

Deviations from the design

Due to the fact that implementing the original design in its completeness would
be way out of the scope of this work, I did not subdivide the system into several
applications that communicate over a network and made the whole system as one
application instead. However, the application was still programmed with modularity
in mind, so as not to decline from the original design too much and to allow future
division of the application into the originally proposed components.

To see how the division of the application is possible, let's observe how the three
main parts of the application communicate and how that resembles the Model-View-
Controller design pattern. To divide the application, it would su�ce to separate the
data model part, that corresponds to the �Model� in the MVC pattern, together
with the Lua scripting API from the rest of the system. It would be necessary to
add a network communicator and serializer to the Model and create a library that
would need to be linked to the other applications communicating with the Model.

In the �gure 3.1, you can see that the data model and Lua scripting API form
the �Model� part of the MVC design pattern, whereas the Qt part of the application
together with the TournamentController class form the �View-Controller� part.
Each new application that will want to communicate with the data model will have
to implement the View and Controller patterns.

3.3 Use of the Observer pattern

Observer is one of the behavioral design patterns that were described in Design
Patterns, Elements of Reusable Object-Oriented Software [4], whose main purpose
is to �De�ne a one-to-many dependency between objects so that when one object
changes state, all its dependents are noti�ed and updated automatically�. This is
something that is needed in my application � when some data in the data model
change, all the depending instances need to be noti�ed to be able to re�ect these
changes. For example, if a match is added via the scripting API, the graphical
front-end has to display a new graphical element that will correspond to this new
match object. There are many such places in the code.

The original Observer design pattern, as described in Design Patterns, consists of
a Subject class that provides an interface to attach and detach Observers and that
has a method notify(), which noti�es the attached Observers of a state change in
the Subject. The second class that participates in the design pattern is the epony-
mous Observer class. This class has a pure virtual method update() that is called
inside the Subject's notify() method. The book then adds another two classes to
this design pattern � ConcreteSubject and ConcreteObserver. ConcreteSubject

3.3 Use of the Observer pattern 25

calls the notify() method whenever that is necessary and ConcreteObserver im-
plements the update() method from the interface of the abstract class Observer.

Modifying the pattern

My approach is a little bit di�erent. Instead of a Subject class that has to be
derived from, I used a class called Observable that is added as a member to the
class that needs to be observed. The disadvantage of this approach is that I have
to create special methods for IObserver (that is how I named my Observer class)
attachment in each observed class. An advantage on the other side is that I can have
multiple Observables inside one class, which is needed because the only class that
needs to be observed in my application is the ObjectManager. The Observable's
notifyObservers(int) method then corresponds not to the change of its state, but
to a certain signal that may interest the IObservers. The integer parameter of this
method identi�es the type of the signal.

Because I am able to identify the signal type in the IObservers, I can attach
them to multiple Observables and according to the signal type decide what to do in
the notify(int) method. Thus the dependency in my adaptation of the IObserver
pattern is not one-to-many, but many-to-many.

The references to depending IObservers in Observable are stored in a linked list,
because the list needs to be iterated over. I also store pointers to the Observables
that the given IObserver depends on, because when the IObserver is deleted, it
needs to tell the Observable to delete it from its list of pointers. However, this
in turn creates the need to disconnect the IObservers from an Observable if it is
deleted, otherwise the IObservers would have a pointer to an invalid Observable
object.

This design worked well for a long time, until I decided to disconnect IObservers
from Observables as a reaction to certain signals. What happened was that in-
side the Observable::notifyObservers(int), the Observable was iterating over
its IObservers using a list iterator. It called the incriminated IObserver, which
decided that it needed to be removed from this Observable and removed itself.
However, this caused the iterator to be invalidated and further iteration over the
Observable's IObservers was prevented. I solved this problem by setting the
pointer to the IObserver to 0 instead of removing the list item. That way, iteration
can continue and next time, when a 0 is encountered instead of a valid pointer, the
Observable removes that list item safely.

Observation patterns

As the authors of [4] correctly point out in chapter one of their book, design patterns
have a disadvantage to them: they often rely on dynamic object composition and the
patterns of inter-referencing objects cannot be easily derived from the source code.
The dynamic composition patterns of the objects that take part in the Observer
design pattern in my application can be seen in the �gure 3.2.

26 3 Implementation

Figure 3.2: Diagram of observation patterns throughout the application

3.4 Match interconnection GUI 27

Most of the descriptions in that �gure are self-explanatory, but I will describe
one of the observation relations in detail, because it is important. It is the one that is
described as �Propagation of actors� and leads from the ConnectionObserver inside
the TournamentManager to the ObjectManager, where the ConnectionObserver is
registered as an array member observer.

At the start of the application, the TournamentManager looks at all the connec-
tions that are stored in the database and for each such connection it creates and
stores within itself a ConnectionObserver instance. This observer is then registered
in the ObjectManager to observe changes of a single array member � the source
of this connection. When that array member is changed, the ConnectionObserver
sets its destination array member to the same value. This is how propagation of
actors through connections is done.

Note that there are no cycle detectors yet, so you could create a cycle with the
connections, which would throw the application into an endless loop, because a new
connection always propagates its source as if it has just been changed. As soon as
you �nish the cycle, the last connection starts propagating its source value along
the circle, which never stops.

3.4 Match interconnection GUI

The graphical user interface contains a part of the data model for the purpose
of drawing the tournament structure and letting the user change it in an inter-
active way. This is all done inside a Qt drawing platform. The data is kept in
QGraphicsItem objects that are part of a QGraphicsScene, which is displayed in
a QGraphicsView widget in the main application window. The Match, MatchGroup
(this corresponds to the table base type in the data model) and Roster classes, that
were described in the �gure 3.2, are an example of such QGraphicsItems.

The basic class of the interconnection GUI is Connectable. It is a QGraphicsItem
that contains a numerical identi�er and a name. A Connectable can have number
of outputs and inputs. It is painted onto the graphics scene as a rectangle of the
given base color with inputs on the left and outputs on the right side of the rect-
angle. All the entities that can be connected via connections are of a subclass of
Connectable. Each such subclass has a unique identi�er that is returned by the
virtual connectableType() method and can be used to determine the class of the
Connectable.

Connections

Connections (the relevant class is named PlayerConnection) are another type of
QGraphicsItem in the interconnection framework. They have two Connectable
pointers and contain information about the port type � input or output � and
number of the two ports � source and destination � that they connect. In order
to be able to draw itself, the connection has to know the positions of its source

28 3 Implementation

and destination ports. When the redraw is needed, the connection asks its source
and destination Connectables about the positions. This is done by calling the
portPosition(...) method of Connectable. This is a virtual method, so the
individual Connectable sub-classes can re-de�ne the position of their ports this
way if needed.

Connections are created using a drag-and-drop mechanism. Clicking on a port
of a Connectable and dragging the mouse pointer away creates a MatchMimeData
object that contains information about the Connectable and the port being dragged.
Upon dropping the mime data object onto the destination port, the destination
Connectable performs a few checks, orders the source and destination port so that
the output port is �rst and tells the TournamentController object to create a new
connection.

Scenes

There are more than one QGraphicsScenes in the main window and they are stored
in a hash-table, indexed by numerical identi�ers. The main tournament structure
is always in the scene with the index 0. For each table in the data model there is
a scene, indexed with that table's numerical identi�er. All matches and tables that
are grouped in the given table are then drawn in that scene instead of the scene with
index 0. The main window contains widgets that can change between the displayed
scenes.

Connectables

Apart from the obvious Connectables like Match and MatchGroup, there are several
other types that are mostly used inside MatchGroups.

First such Connectable is GroupInputs class. This class represents the input
array of a match group. It is the same array that is represented by the MatchGroup's
inputs. However, GroupInputs belong to the scene that has the numerical identi�er
of the given match group and they can be used to propagate the input values of the
match group further inside the group. Class GroupOutputs serves similar purpose,
only for match group's outputs.

Another Connectable is OrderOMatic. This is a Connectable that represents
the ordering mechanism inside match groups. The inputs of the OrderOMatic cor-
respond to the input ordering array of the match group and outputs to the output
ordering array.

The last Connectable is the Roster, which is a representation of the global
variable that holds all the actors in the data model.

3.5 Incorporating Lua 29

3.5 Incorporating Lua

All the information about the state of the Lua interpreter is saved in a structure
called Lua state. This state is created and initialized in the LuaEnvironment class.
LuaEnvironment also loads the standard Lua libraries into the state and registers
the objectManager and eventManager with the use of a C++ wrapper that I created.
A wrapper is needed because the Lua C API is able to register a C function (that
follows a pre-de�ned protocol) into the Lua state, but not a method of a C++ class.

C++ wrapper

The main class of the C++ wrapper is LuaScriptApi. This class provides methods
for registration of C++ objects and their methods into the Lua state as well as
methods for inspection of the registered classes and methods.

To be able to understand the registration mechanism of the wrapper, one needs
to �rst know several things about the Lua C API. One needs to understand how the
Lua C API communicates with the Lua interpret, how the C functions are registered
into Lua in the plain C API and what the protocol that they must follow looks like.

Communication with Lua is done by the use of a Lua value stack. Values are
pushed onto the stack in the C code and the Lua C API functions work with these
values. To register a C function into Lua, pointer to the function has to be pushed
onto the stack and can then be saved into a variable inside Lua using the C API. The
function has to have a single parameter of type lua_State* and its real parameters
can be found on the stack at the time of the execution. Return values are pushed
onto the stack as well and the return value of the function in C is an integer value
that should be set to the number of Lua return values pushed.

To register a method of a C++ object into Lua using the wrapper, a string
identi�er has to be set for the object �rst. Then, a registration method of the
LuaScriptApi has to be called with the name and signature of the method that
is to be registered. The information is saved inside the LuaScriptApi object for
argument type-checking purposes. After that the proxyMethod of the LuaScriptApi
is registered into Lua with two upvalues (that is values that can be registered with
the function and the function can later access them): identi�er of the object and
name of the method. The function is saved inside Lua under the method name in a
table named after the C++ object.

When called, the proxy method looks at the two upvalues and �nds the corre-
sponding method information in LuaScriptApi. It checks the argument number
and types according to the method's signature, creates one list out of the arguments
and another one for the results and calls a method callMethod of the registered
C++ object (pointer at the object was also part of the saved method information).
The callMethod method then looks at the name of the method to be called and
calls it, giving it arguments from the list of arguments. Then, it modi�es the result
list (both lists were passed to the C++ object from the proxyMethod by reference)
and returns.

30 3 Implementation

The callMethod method is a pure virtual method of ILuaScriptable abstract
class. The method has to be de�ned in the classes derived from ILuaScriptable.
For the purposes of method name comparison, ILuaScriptable contains a trie
(see Appendix B) that can be utilized to be able to use a switch command in the
callMethod.

Events

Events are handled inside the the EventManager class. They are loaded from a
directory and a new Lua table is created that contains them. The table is then
saved as tmgr.events.

Each event is a Lua function and arguments of the event are accessible as local
variables of the function. This is achieved by saving the all of the event's arguments
in a local table args by adding the following code as the �rst line of the event's
body:

local args = {...}

Each argument is then converted to a line that is added to the beginning of the
function's body in the following manner:

local home_goals = args[1]

In the previous example, home_goals has to be substituted by the name of the
argument and the args table is indexed with the argument's order in the event
de�nition.

After the argument de�nitions, the body of the event is appended and the whole
code is loaded into Lua as a function and saved into the event table under the name
of the event.

3.6 Database organization

This section will describe all the database tables that the application uses to save
its data.

Global variables

Each global variable's name is saved in the var table together with its type. For
each tournament manager type (see section Types in Appendix A), there is a table
named var_typename, where typename is the name of the given type. This table
contains values of global variables of that type indexed with the variable's name.

3.6 Database organization 31

Arrays

Instantiation of a new array consists only of assigning a unique reference number
to that array. The highest used reference numbers for arrays of non-array types are
saved in a table named array_instance_numbers. When a new array is created,
the corresponding record in this table is incremented by one and the incremented
number is assigned to the new array. Variables of array type are represented only
by their array reference number (also called array id) in the database.

Values of all arrays are saved in tables named array_typename, where type-
name is a name of a non-array type. The values are indexed by the reference id of
their array and by their ordering number � their index inside the array.

Object model variables

Each new sub-type in the object model is saved into a table named types together
with a number that indicates, which of the four base types is the base for the new
sub-type.

Two further tables exist for each sub-type. One of them is meta_typename,
where typename is the name of the new sub-type. This table contains two columns:
colid and coltype, which contain name and type (represented by a number) for each
member variable in the sub-type. The second table is named table_typename,
where typename is again the name of the sub-type. This table contains records for
each instance of the sub-type and its columns correspond to the member variables
of the sub-type.

A record for each instance is also saved into one of the four tables that are
named base_basetypename, where basetypename is name of the base type of
the instance � actor, match, table or object. These tables contain information
about the sub-type of the instance, so that the system knows, in which of the
table_typename tables it should look for the instance's values. They also contain
mapping of the instance names to numerical reference identi�ers that are used as
keys in the table_typename tables. These identi�ers are also saved in variables
that are of one of the four base types (so, when assigning an actor instance to a
variable, for example, only its identi�er is saved inside the variable), similar to the
arrays.

Connections

Connections are saved in a separate table connections. Columns from_arr and
to_arr contain array identi�ers of the source and destination arrays, whose mem-
bers this connection links. The member indices for the source and destination array
members are saved in columns from_nr and to_nr, respectively. Columns from
and to are identi�ers of the source and destination objects. The type of these ob-
jects can be derived from the type column. All the possible connection types are
listed in the �le src/connectionType.h of the source code.

32 3 Implementation

3.7 Important classes

This is just a quick overview of what some of the classes in my application do. It is
not meant as a complete source code description. If more thorough understanding of
the code is required, reading the source code documentation or the source code itself
is recommended. Some of the classes that were already mentioned in the preceding
description are not listed here in order to avoid repetition. The classes that are
listed here are alphabetically sorted. After the name of each class, the path to the
�le where the class header can be found is provided.

Arguments src/arguments.h
Parses the command-line arguments and stores their values for further query-
ing. The allowed parameters and �ags have to be set in order for the class to
recognize them. Else, the parsing method returns false to denote failure.

DatabaseConnector src/databaseConnector.h
Handles the connection to the database and provides an intermediate layer
between the database and the application. In theory, this is the only class that
would have to change when changing the underlying data back-end, although
in practice use of constructs speci�c to SQL wasn't avoided in a few places in
higher layers.

Event src/lua/event.h
A container class for event information. It also handles putting the event body
together with all the implicit code that needs to be prepended before the main
code.

EventDialog src/qt/eventDialog.h
GUI-related class that creates a dialog box with input widgets for each event
so that they match the event's arguments.

EventManager src/lua/eventManager.h
Event manager loads events into the Lua environment and allows them to be
executed from the outside of Lua.

GuiController src/qt/guiController.h
A helper class that o�oads some GUI modi�cation tasks from the main win-
dow.

Logger src/logger.h
A class that takes care of the output of debugging information, error messages
and standard messages. Unlike the other classes, it is globally referable instead
of being referenced in all classes that use it, simply because almost any part
of the application uses it.

3.7 Important classes 33

LuaHighlighter src/qt/luaHighlighter.h
Gives Lua highlighting capabilities to the user interface to make writing Lua
code easier.

MainWindow src/qt/mainWindow.h
Creates the main window of the application, handles click events of its buttons,
manages QGraphicsScenes that represent the individual match groups and
also indexes all the Connectables, so that tournament controller can check,
whether a Connectable needs to be created or just reloaded.

ObjectManager src/objectManager.h
Object manager provides the object model abstraction to the database, as per
the design. It allows for creation of new sub-types and their instances, can
read and modify their data and contains methods for registration of various
types of observers.

ObjectMetadata src/objectMetadata.h
Contains information about an object sub-type such as its name, base type
and member data (or columns). It has to be provided to the ObjectManager
to create new types. The object meta-data should not be created manually,
but using the TournamentManager that adds all the implicit columns that are
needed in the tournament manager extension of the object model.

StringMatcher src/lua/StringMatcher.h
A trie-based string-to-integer mapping class.

TmgrType src/tmgrType.h
An enumeration type of all the possible variable types in the object model.
Several utility functions for parsing and various conversions are also included
in the source �le.

TournamentController src/tournamentController.h
The tournament controller controls loading of data into the main window and
also takes care of refreshing the data if it is told by the Observers that refresh
is needed. It also contains a few methods related to connection creation.

TournamentManager src/tournamentManager.h
Provides the tournament manager extension to the object model. It takes care
of the connection creation, running of the Order-o-matic and input or output
number modi�cation.

Chapter 4

Application description

When talking about the use of the system, it is important to distinguish between
several di�erent perspectives. The information that a user of the application needs to
know varies depending on the role that the user takes. My description of the system
takes this into account and each section of this chapter looks at the application from a
di�erent standpoint. First, the responsibilities of the administrator and programmer
are listed and then the use of the application is described from an ordinary user's
point of view.

4.1 Administrator

Duties of the administrator of the tournament management system include compi-
lation and installation of the system and preparation of the database. Let's look at
these duties closer.

Compilation

Before compiling the application, the administrator should install development ver-
sions of the needed libraries. The operating system documentation should describe
how to do this. The required libraries are:

libc Standard C library

libc++ Standard C++ library (STL)

dl Dynamic linking library

qt4 [17] Qt 4 application and UI framework. Before compilation, the QTDIR en-
vironment variable should be set to the installation directory of Qt. Some
systems do not set this variable.

mysql [9] MySQL C API library

35

36 4 Application description

mysql++ [10] MySQL++ C++ wrapper

lua [11] Lua language library

The default build system is SCons [13], so it should also be installed along with
a Python interpreter. To compile the application, it should su�ce to simply run
`scons' in the directory where the source code was unpacked (that is one level up
from the src directory). To also generate debug information and force the program
to output debug messages to a text �le, the debug compilation variable should be
set to 1, so the compilation command would be `scons debug=1'.

Installation

Installation is trivial. It only consists of copying the executable into a desired
directory and setting the PATH environment variable, so that the system can be
run from the command line.

Requirements on the hardware

The system can be run on a single computer, provided that a database server can
be run on it too. If that is not the case, the communication with the database
can be realized over a network. In that case, networking hardware needs to be
included in the requirements. If a presentation is required, the network will be
probably necessary anyway to connect the presenting computer to the database.
The presenting computer also has to have a data projector or at least a large enough
display so that the presentation is clearly visible to everyone at the event. Of course,
custom solutions like displaying the score on a huge digital display are possible as
well due to the open nature of the database.

Preparation of a new tournament

Every tournament needs to load its de�nition �les from two directories. One is
named events and contains event de�nition �les and the other one is named types
and contains type de�nition �les. When the application is run, these directories
can be either speci�ed with a parameter or the application searches for these two
subdirectories in the current working directory. The administrator should decide
about the location of these directories.

The administrator should also create a new MySQL database for the application
and grant rights to a user that will be used to run the application.

4.2 Programmer

A programmer in the context of my application is a person with an analytic mind
and at least some programming experience. He or she should think about all the

4.2 Programmer 37

statistics and information that will need to be kept in the system, create an object
model that will contain all the needed data and analyze the events that will be
needed to modify the data.

The programmer should not forget to bear in mind the structure of the tour-
nament when creating the analysis, because a speci�c structure of a tournament
can create need for additional types and events (especially match group types with
their ordering events). Apart from the obvious score setting and similar events, data
entry events will also be needed, such as naming events or events for registration of
contact information of the individual players.

De�ning new types

After the analysis is �nished, the programmer has to de�ne new types according to
the analysis. Each type is de�ned in a separate �le in the types subdirectory. The
�le can have any name, but a good convention is to give it the name of the type
that it de�nes. Each type de�nition �le has the following structure:

New sub-type name First thing in the �le should be the name of the new type. It
must contain only alphanumeric characters or underscores and it should begin
with an alphabetic character. It also must not be longer than 54 characters.

Base type name Next is the name of the base type for this new sub-type. This is
one of the four: actor, match, table, object.

Member variables Then, for each member variable of the new type, write its
tournament manager type name (see Section Types in Appendix A) followed
by the variable name.

When all types have been de�ned, the programmer should load them into the
database. This is done by running the application (see Running the application in
Section User) with one additional parameter: --types. When set, this parameter
tells the application to load type de�nitions from the given directory. If the database
is not empty, it can be cleared with the --delete-everything parameter. These
two parameters can be combined to reload the type de�nitions. But be careful �
this also deletes all the data that could have been in the database.

De�ning events

Similar to the de�nition of new types, each event has its own �le in the events
subdirectory. Again, the �le can have any name, but giving it the name of the event
is recommended. The structure of event de�nition �les is as follows:

Event name First comes the event name. The name should contain only alphanu-
meric characters or underscores and should not begin with a digit.

38 4 Application description

Number of arguments The event parser must know how many arguments will
follow, so a number is required here.

Arguments For each argument, write the type of the argument (tournament man-
ager type, that is) followed by the argument's name.

Event body Everything that follows after the argument de�nition is considered
Lua code and will constitute the event body.

De�ning ordering events

De�nition of ordering events is similar to normal events with a few distinctions.
The event name has to be order_matchgroup, where matchgroup is the name of the
match group sub-type that we are de�ning an ordering event for. Also, all ordering
events must have only one argument of type table. At the execution time, this
argument will contain reference to the match group that has to be ordered.

Creating scorekeeper's guide

In most of the cases, the tournament programmer will not be using the system him-
self or herself, so an important part of the programmer's work should be creating a
short guide where the basic idea behind the system is described. Even more impor-
tant is to include descriptions of all the events in the system with their arguments
and their purpose.

The guide should also contain description of the typical work-�ow when using the
tournament (Something like �At the beginning, you do XYZ for each team. Then,
you start the tournament by clicking ABC and handle the individual matches with
FOO and BAR...� and so forth), so that even an uninformed user can quickly start
managing the tournament.

4.3 User

A user is anyone who will work with the running application, so user categories
like tournament planner, referee, statistician or scorekeeper all belong here. I will
describe how the whole application can be used and leave up to the reader to decide
which part of the description is relevant to which user category.

Running the application

The application has several parameters and �ags that can be set. Flag --help or
-h lists them all. This is a list of the other parameters:

--db=NAME This mandatory parameter has to be set to the name of the database
scheme that should be used.

4.3 User 39

--user=USER This parameter is also mandatory and sets the user-name used in
the database connection.

--pass=PASS Also a mandatory parameter that sets the password used when con-
necting to the database.

--server=HOST This parameter de�nes the ip address or DNS name of a computer
where the database server is running. Default value is localhost.

--events=DIR When set, this parameter loads events from the given directory.
If not set, the application looks for the events subdirectory of the current
working directory.

--types=DIR When set, this parameter loads type de�nition �les from the given
directory. This needs to be set only when initializing the tournament.

--delete-everything Deletes everything in the given database, so that it can be
re-initialized. This parameter should be used with care.

Creating a shortcut for running the application is recommended. That way, a less
pro�cient user can run the application without knowing anything about command
line and arguments.

Main window description

Figure 4.1: The main window of my application

40 4 Application description

The main window of the application can be seen in the �gure 4.1. The user interface
is divided into three tabs: Tournament, Events and Console. The Tournament
tab can be used to create new actors, matches or match groups and allows them to
be connected. The Events tab serves for execution of events and the Console tab
can be used to debug the application by editing and executing Lua code.

Tournament tab

The right side of the Tournament tab contains the tournament structure viewer.
When the application is started, it shows the uppermost level in the match group
hierarchy � that is the whole tournament. If there is a match group in the tour-
nament, its contents can be displayed by selecting it in the viewer and clicking the
View Match Group button. The viewer will display structure of the match group.
To get back, either the View Tournament button can be used or the navigation
arrows at the top of the viewer. The arrows can switch back and forth between
recently displayed scenes.

The viewer also serves for manipulation with the connectables and most impor-
tantly for connection creation. New connections can be easily created using the
drag-and-drop method by dragging from one of the two ports to be connected and
dropping over the second one.

Buttons in the General tab will now be described. Add Match Group, Add
Match and Add Actor all work in the same manner. They show a dialog box
that lets the user select the desired type of the new object from a list that shows
all the de�ned sub-types of the given base type. The dialog box also contains a text
edit line, where a name for the new object should be entered. When no name is
given, the system will generate one that will consist of an underscore followed by
the numerical id of the new object. Delete Actor is pretty self-explanatory. It
lets the user select one from all of the actor instances and then deletes the selected
instance.

Another group of related buttons serves for modi�cation of the input or output
number of matches and match groups. To change the input or output number, the
user selects one or more matches and match groups and clicks one of the buttons
Add input, Remove input, Add output or Remove output and the selected
connectables' number of inputs or outputs is changed.

The Delete selected button deletes all selected matches and match groups.
The Connections tab has several features related to connection manipulation.

Multi-connection helper lets the user connect all of the possible inputs or out-
puts between two Connectables. To do this, one of the two Connectables has
to be selected and then one of the two buttons Set from or Set to clicked and
the Connectable is saved as one end of the multi-connection. Then the second
Connectable has to be selected and the second button clicked and the connections
are automatically created. The blank space under Connection remover can be
used as a drag-and-drop target to remove all connections from the port from which
the drag-and-drop originated.

4.3 User 41

Events tab

If the --events parameter was set when running the application, each loaded event
shows here as a button that displays an event dialog box. This dialog box contains
input elements for all of the event's arguments. Each event button is movable by
clicking the small blank square button on the left, so the buttons can be re-arranged
at will.

Some buttons also have automatically created shortcuts, so that the user does
not need to move hands from the keyboard. The shortcuts can be activated by
pressing the [ALT]+[key] combination, where key corresponds to the underlined
letter on the button label. If there is no such letter, it could not be chosen from the
letters of the button label without colliding with other shortcuts.

Console tab

This tab provides a console that can be used to run simple Lua commands as well
as complex scripts. The scripts are written into the left part of the tab, while the
right part serves as an output window. The Execute button executes the script
that is on the left and any eventual error messages are displayed in the status line
at the bottom of the tab. The menu group Console contains commands for loading
and saving the scripts and for clearing the script and output windows.

Chapter 5

Case study

This chapter describes all the steps that are needed to create a tournament on a
speci�c example � the Eurobot 2010 competition [6]. The setup was successfully
tested on the real data from the competition. In addition to using the application
itself, an example is given at the end of this chapter that shows the possible solution
to presenting the data and generating the needed paperwork like match sheets. All
the �les needed to recreate the example can be found on the accompanying CD.

The scoring system of Eurobot competitions is not trivial and by using it as a
case study, I show the power of my system that stems from the use of a scripting
language to handle events. The implementation of quali�cation and playo� phases is
also noteworthy, as they resemble those used in other tournaments and competitions.

5.1 Administrator's work

Situation

Figure 5.1: Situation in our case study

I will skip the software installation as there is not much to describe. As for
the hardware, the Eurobot committee have a projector at their disposal and there
is usually only one person �lling in the tournament data, so I decided to have
everything on one machine � the database server, the tournament manager and

43

44 5 Case study

presentation of the data as well. Presentation will be realized using html pages
generated by php, so if the situation in the venue would require it, it would be
possible to connect a dedicated presentation computer to the main computer. The
whole situation is clear from the �gure 5.1.

MySQL setup

Let's presume that the MySQL server is installed and running. We now need to
create a MySQL table and a user that will have all the rights to this table. This can
be done for example in the MySQL Administrator application. In this study, I named
the table �tmgr� and the user �tmgr_host� with the password set to �tmgr_host�.
Note that this is not a strong password at all, but in our case, we do not need to
worry about anyone abusing or changing our data. In case of a bigger system or if
running on a shared network, a stronger password would be necessary.

Other setup

All the event de�nitions and type de�nitions are located in a directory named
eurobot (the exact location is not important). In this directory, two shortcuts
will be created that run the application with di�erent parameters. The �rst short-
cut is intended to do the initial setup, as it erases all the data and reloads the types.
It could also be called without the --delete-everything parameter, but then it
could not be used for re-initialization. The second one is then intended for normal
use. They execute the following commands:

Initial setup:
tmgr --db=tmgr --user=tmgr_host --pass=tmgr_host --delete-everything/

--types=./types

Normal run:
tmgr --db=tmgr --user=tmgr_host --pass=tmgr_host

Also, to enable the presentation using php, a web-server has to be installed with
a php module and be able to access the database.

5.2 Programming the logic

After everything has been set up correctly, we can begin with de�nition of our types
and events. However, before we delve into the programming itself, we need to make
a short analysis of all the requirements on our scoring system and think about how
we will implement them. I took the rules that would be relevant to the scoring
system from the o�cial Eurobot 2010 rules [7].

5.2 Programming the logic 45

Relevant rules

The basic premise of the competition is that each competing team builds a robot to
face other teams' robots in a series of friendly matches (that means no destructive
behavior). All matches follow the same rules. Each match takes 90 seconds and
the robots must collect as much fruit, vegetables and corn as they can during this
time without bumping into the other robot or otherwise preventing the other team to
score. The rules are relatively complex, but the subset that interests the programmer
of the score-keeping system is small:

Team colors In each match, two teams compete and their sides are colored yellow
and blue.

Points The robots can collect three types of objects on the play-�eld, each having
a di�erent scoring value. Tomatoes score 150 points each, ears of corn 250
points each and oranges 300 points each. These points constitute the team's
base score in a match.

Penalizations They are subtracted from the team's base points in a match, each
one subtracting 20% of the base score or 150 points, whichever is larger. The
points can go below zero this way.

Bonus points At the end of a match, the resulting points are compared and the
winner is declared. The winning team gets a 200 point bonus. Loser gets 50
points. If the teams tie, they both get 100 points. If a team has zero or less
points, it loses automatically even if it has more than the opponent. In case
of a so-called scratch (disquali�cation from the match), the incriminated team
gets 0 bonus points and the opposing team wins (unless it was also scratched
or had a score of zero or less)

Disquali�cations They will be either from a single match (scratch) or from the
whole competition. In the latter case, the team will be automatically scratched
from each subsequent match and will not be able to play in the �nal rounds.

Warnings They will be issued to a team for various forbidden actions and will be
recorded in the score-keeping system for future reference. Repeated miscon-
ducts of the same kind will result in in-match penalties.

Quali�cation rounds The quali�cation will consist of several rounds so that each
team gets to play at least �ve matches. At the end, the top eight teams with
the highest score will continue to the playo� rounds. In case of a tie, the
bonus points will be used to determine the better team. If there is still a tie,
an extra tie-breaking match can be issued to count towards extra points that
will decide which team is better.

Playo� rounds The playo� matches will be played in the best-of-three format, so
the team will have to win two times in order to stay in the competition. If

46 5 Case study

a match ends in a tie, double defeat or double scratch, it is repeated. If the
repeated match also ends in a tie, double defeat or double scratch, the team
with better qualifying position is the winner.

The basic approach

Now that we have all the requirements written down, we can start deliberating
about the object types and events that will be needed and how everything will be
put together. Most of the score-keeping will be pretty straightforward � there
will be a current match that will be displayed in the presentation (if simultaneous
matches would be needed, an other method would have to be used), a scoring event
that will set the score of the current match and an event that will �nish the match.
The match-�nishing event will add the score to both teams and assign the teams to
the outputs of the match.

Finishing playo� matches would have to be di�erent, because their score does
not add to the team scores anymore. We could add another match type, but it will
be better to have a single �ag that will say whether the match is a quali�cation
match or a playo� match. One more match �ag will be needed to denote an extra
match. This is the tie-breaking match in case of equal points after quali�cation
rounds. When the match �nishing event is called, it will have a few �ags to denote
the match type and will �nish the match according to these �ags.

The playo� best-of-three matches could also be implemented as another match
type, but since the individual matches in the playo� rounds do not di�er from the
quali�cation matches, we would be creating unnecessary duplicate types. Instead, we
will have a match group that will contain the individual matches and will determine
who is the ultimate winner depending on their outcomes.

I will add one extra feature to the system � a possibility to erase matches. It
sometimes happens that the scorekeeper inputs the data incorrectly. While this can
be solved by backing the database up and resetting it to a previous state, a more
consistent and elegant solution would be to provide events that would take care of
this. There will be an event that will be able to erase the data from a given match,
according to its type. If the match is �nished, the event will correctly subtract
the match's points from the participating team points, whereas if the match is still
running, this event will only reset the data.

Object types

Eurobot only has one type of teams and matches, so there will be a single match
type named eurobot_match and a single actor type named eurobot_team.

The eurobot_team type will contain a name for the description of the team,
variables to hold the points, bonuses and extra points from the quali�cation phase,
number of quali�cation matches played (this is a good statistic to show in the quali�-
cation ranking) and the quali�cation rank. It will also need to carry disquali�cation
information and information about the issued warnings.

5.2 Programming the logic 47

The eurobot_match type will contain more information. It will have to remem-
ber the number of items collected by each team, each team's base points, bonus
points and �nal points, the number of penalties issued against each team and also
all the warnings given to each team. It also has to contain scratch information for
both teams and because we will handle di�erent types of matches di�erently, also a
few �ags to denote match type.

The rest of the types are match group types. The match_2_of_3 type will
contain information about the number of wins of two teams, so its de�nition is
short. Another match group type is team_permutation. The ordering event of
this match group will create a pseudo-random permutation seeded with the given
number, so that the team seeding is random. Other match group types serve only
for grouping purposes and have no member data. These are qualification and
qualification_round.

All contents of the types subdirectory are listed below (and can be found on the
accompanying CD):

eurobot_team.txt:
eurobot_team
actor
string name
int points
int bonuses
int extra
int qualification_order
int qualification_matches
bool disqualified
bool violent
bool shutdown
bool damage
bool unfair

eurobot_match.txt:
eurobot_match
match
int t1_oranges
int t1_tomatoes
int t1_corns
int t1_points
int t1_bonus
int t1_final
int t1_penalties
bool t1_scratch
int t2_oranges
int t2_tomatoes

int t2_corns
int t2_points
int t2_bonus
int t2_final
int t2_penalties
bool t2_scratch
bool t1_violent
bool t1_shutdown
bool t1_damage
bool t1_unfair
bool t2_violent
bool t2_shutdown
bool t2_damage
bool t2_unfair
bool finished
bool final_match
bool extra_match

team_permutation.txt:

team_permutation
table

int seed

48 5 Case study

match_2_of_3.txt:
match_2_of_3
table
actor actor1
int wins1
actor actor2
int wins2

quali�cation.txt:
qualification
table

quali�cation_round.txt:

qualification_round
table

5.3 Events

Event de�nitions will be slightly more complicated, but not much. Note that al-
though the �les are named so, they are strictly speaking not Lua code (because the
�rst few lines are not in Lua).

Due to their length, not all event de�nitions are shown. The complete code of
all event de�nitions used in the case study can be found on the accompanying CD.

Initialization

Let's start with the initialization. A global variable current_match will be needed
and the initialization event will create it. That is all it will do.

init.lua:
init
0

--Initialization event that creates globals
omgr.newGlobal("match", "current_match")

After initializing the tournament and creating the tournament structure, we will
want to set team names and the name_team event will do exactly that.

name_team.lua:
name_team
2
actor team
string name

team.name = name

Managing matches

The start_match event only sets the current_match global variable. There is also
a fail-safe to avoid starting a �nished match multiple times and an if statement
that ensures that the tournament has been initialized. In order to restart a match,

5.3 Events 49

it would have to be erased �rst (see further).

start_match.lua:
start_match
1
match match

if match.finished then return end

if tmgr.globals.current_match == 0 then
tmgr.events.init()

end

tmgr.globals.current_match = match

Follows the core of the system � the scoring event score. First, this event
does a few checks and then the scoring begins. Disquali�ed teams are automatically
scratched from the match, base points and bonus points are calculated for each team
and the winning team is determined.

Some of the longer sections are skipped in the code of this event. Such sections
are denoted by [...] in the code.

The event has to be run even if no team has scored any point, because it has to
set the bonus points. Note that the winner is set only in case of no tie.

score.lua:
score
10
int tomatoes_blue
int oranges_blue
int corns_blue
int penals_blue
bool scratch_blue
int tomatoes_yellow
int oranges_yellow
int corns_yellow
int penals_yellow
bool scratch_yellow

if tmgr.globals.current_match == 0 then
tmgr.events.init()

end

local match = tmgr.globals.current_match
if match == 0 then return end

local blue = match._in[1]

50 5 Case study

local yellow = match._in[2]
local points, penal, p1, p2

--Automatically scratch disqualified teams
if blue.disqualified then scratch_blue = true end
if yellow.disqualified then scratch_yellow = true end

--Calculate blue points
[...]
match.t1_points = p1

--Calculate yellow points
[...]
match.t2_points = p2

--Calculate blue bonus
[...]

--Calculate yellow bonus
[...]

--Calculate final outcome and determine the winning team
match.t1_final = p1 + match.t1_bonus
match.t2_final = p2 + match.t2_bonus

--Only set the winner if there is no tie
if match.t1_final > match.t2_final then

match._out[1] = match._in[1]
match._out[2] = match._in[2]

elseif match.t2_final > match.t1_final then
match._out[1] = match._in[2]
match._out[2] = match._in[1]

end

The previous event can be run multiple times, because it only sets the match
data. When the match has ended and the correct score has been set, the event
finish_match has to be run in order to re�ect the match's outcome in the rest
of the tournament. The event has two parameters that determine the match type.
After doing the necessary checks, the event adds the match points to the teams that
earned them. If the extra_match �ag is set, the points are not added to the teams'
quali�cation points, but to their extra points instead. Whereas, if the final_match
�ag is set, no points are added at all, because only the winner of a �nal match is
important.

After adding the points, the event looks at the parent table and if it is of type

5.3 Events 51

match_2_of_3, the win of this match's winner (if there is one) is added to the win
count in the table data. An ordering event of the parent table is then called so that
it can correctly set its outputs if this win is the second win of the team.

Another event is erase_match. This event checks, whether the match has been
�nished already. If it was, the erase_match event subtracts the match points from
the data of the participating teams. Regardless of whether the match has been
�nished, the event also sets all its data members to default values � that is either
to 0 or false.

The ordering events

We can now manage matches and keep the scores. We should de�ne the events that
will order the match groups according to these scores.

The ordering event order_qualification sorts the teams in the quali�cation
table into the correct order and sets their data member qualification_order ac-
cordingly. First, a list is created that contains all the input teams. This list is
then sorted using the given sorting function that follows the ordering rules that we
de�ned in our analysis. The sorted list is then traversed one more time to determine
the ranks of all the teams and the output array is �lled with the input teams in the
new order.

Ordering event order_match_2_of_3 only checks its member variables that were
set by the child matches. If it �nds that one of the teams has won enough times, it
sets the outputs correctly.

The last ordering event is order_team_permutation. Together with the seed
event, these two events ensure the pseudo-random seeding of teams into the qual-
i�cation matches. A seed is set to an arbitrary number using the seed event and
the order_team_permutation event is called automatically to permutate the teams.

order_team_permutation.lua:

order_team_permutation
1
table perm

local out_num, list, current_output, it, _in, _out

_in = perm._order_in
_out = perm._order_out

out_num = perm._out_num
list = {}

--Initialize the list with input teams
it = _in.iterator
while it.current ~= 0 do

52 5 Case study

--table is a Lua library object that contains table
--manipulation functions
table.insert(list, it:get())
it:next()

end

--Now, randomly remove teams from the input list and
--write them into the outputs
math.randomseed(perm.seed)
current_output = 1
while table.maxn(list) ~= 0 and current_output <= out_num do

_out[current_output] =
table.remove(list, math.random(1, table.maxn(list)))

current_output = current_output + 1
end

Disquali�cations and warnings

The last rule that needs to be implemented are disquali�cations and warnings. Dis-
quali�cation is easy, because is consists only of setting or un-setting the disquali-
�cation �ag in a team. Issuing warnings is also straightforward � we just set the
corresponding �ags in the team data and if a match is running, also in the match
data. A problem comes when we want to erase the warnings. If we remove the warn-
ings from a player, they will still remain in the match (we have no way of knowing
in which of the matches the warning was issued). If we erase them in the match, we
cannot remove them from the player because the player could have had the same
warning from an earlier match as well and it should not be erased.

However, we only need to save the warnings for future reference, so we can a�ord
to sacri�ce a little of our system's robustness for the sake of simplicity here. Thus
the warning data will be erased in the erase_match event and erasing warnings from
the player will be handled by a special event called erase_warning.

5.4 Creating the tournament structure

Finally, it is time to start the application with the initialization parameters and
plan the tournament. There were ten teams in the 2010 competition, so we will add
ten actors of type eurobot_team and give them either some meaningful names, or
simply �team1�, �team2� and so on. Note that these are only the instance names.
To set the real team names, we would have to run the name_team event, but we
will run events after we have prepared the whole tournament structure so as to stay
consistent.

5.4 Creating the tournament structure 53

The overall picture

The tournament will have a team_permutation table that will permutate our teams.
The permutation will then be fed into a qualification table that will itself contain
�ve interconnected qualification_rounds. The top eight teams from the quali�-
cation table will then continue into the elimination phase that will consist of four
quarter�nal matches, two semi�nals, small �nale and �nale. All these matches will
be realized as match_2_of_3 match groups. A better understanding of the intercon-
nection of the tournament elements can be obtained from �gure 5.2.

Figure 5.2: The top-level structure of the tournament

Inside the tables

The permutation table will be very simple. All its inputs will be fed into the Order-
o-matic and from there they will continue to the outputs. The ordering event will
handle the permutation for us. The interconnection is pictured in the �gure 5.3.

The inputs of the quali�cation table have to be connected to the Order-o-matic
and then to the output. We also need the same teams in each of the �ve quali�cation
rounds. We will use a little trick here so that the connections look more tidy and
do not cross each other as would be the case if we connected the group inputs to
inputs of each quali�cation round. We connect the inputs to the �rst round, then
we connect the outputs of the �rst round to the inputs of the second round and
so on, until we have connected all rounds into a chain that leads to the Order-o-
matic. Each round will connect its inputs to the outputs inside itself, so it will be
equivalent to connecting everything to the inputs of the whole quali�cation table.
The situation in the quali�cation table can be seen in the �gure 5.5.

Each quali�cation round will contain four matches that will be connected to the
table's inputs in such a manner that they form matches of a round-robin tournament.
The outputs will not be connected anywhere because we will not need to propagate
the winners of the individual quali�cation matches anywhere. The Order-o-matic

54 5 Case study

Figure 5.3: Inside the team_permutation table

Figure 5.4: Situation inside a quali�cation round

Figure 5.5: Connections inside the quali�cation table

5.5 Presentation 55

will also be left unused here. Look at the �gure 5.4 for reference on the situation
inside a single quali�cation round. Note that the connections to the matches will
look di�erent in each round or else same teams would play against each other in
each round.

On-the-�y modi�cations

The system allows the user to modify the tournament on-the-�y easily. Reducing
or increasing the player number is very quick using the graphical interface. Only
the matches need to be modi�ed inside each round to match the new number of
contestants. Adding extra match is one click of a GUI button and connecting its
two inputs.

5.5 Presentation

Presentation of the data is not handled by the application, but with the knowledge
of the database structure, it is easy to implement by reading the data from the
database. The separation of the data back-end layer from the rest of the application
has the advantage of being able to use a system of choice to read and process the
data. For this case study, I chose php-generated html pages. All the php �les can
be found on the enclosed CD.

Because reading the data from the database manually would be cumbersome, I
created a simple php class called TmgrViewer that simpli�es this task. In its con-
structor, it connects to the MySQL database and maintains the connection during
its lifetime. It can then be used to get globals, instance data and array values.

I created four php pages to show various data from the tournament. The �rst one
displays the progress of the ongoing match in a nice graphical manner suitable for
a projector (�gure 5.6). Another page shows the team rankings in the quali�cation
phase (�gure 5.7). The other two pages are intended to be used by the referees and
the scorekeeper. One shows the list of all matches and their status for the reference
of the organizers (�gure 5.8). The match list page contains links to the last page
that generates so-called match sheets for each match (�gure 5.9). The match sheets
are used by the referees to write down the match report (results, notes, etc...) of
each match and are used as a backup in case of failure of the electronical system
and also as an o�cial means to archive the outcomes. The match sheet page can be
printed out for each of the matches at the beginning of the tournament to hand out
to the referees.

56 5 Case study

Figure 5.6: Score of the current match

Figure 5.7: Presentation of quali�cation standings

5.5 Presentation 57

Figure 5.8: List of all the tournament matches

Figure 5.9: Match sheet with automatically entered data

Chapter 6

Conclusion

In this work, I have created a data model for modeling tournament systems and an
event model that serves for manipulation and management of the data. I have also
programmed an application implementing the designed model. The functions and
features of the application were then shown on a case study that uses the application
to manage the robotic competition Eurobot 2010. Both the application and the case
study can be found on the included CD.

The data and event model that I created proved very universal and was appli-
cable to the Eurobot 2010 competition without problems. The modular design of
my application was also a good choice and I harnessed it when creating special pre-
sentation and match sheet generation php pages in the case study. Multiplatform
technologies allow to use the application on a variety of operating systems.

Using the database back-end ensures that the data is accessible manually without
the application, which enhances recoverability. Also, it allows to use external tools
such as simple custom scripts that can be utilized to provide backup capabilities.

After the administration and programming has been done, use of the application
to manage the tournament is simple. The user interface is visual and intuitive and
is therefore usable even by less experienced users.

A slight disadvantage might be the learning curve that is associated with creation
of new tournament de�nition �les, because adapting the system to new conditions
requires knowledge of the data model and the Lua scripting API. I shortly considered
several ways to make adaptation of the system to another type of competition easier,
but concluded that universality comes at a price of greater complexity and decided
not to sacri�ce the abilities of the application for slightly more user-friendly behavior.

6.1 Future work

The current system meets all of the initial requirements, but there is much room for
improvement and the application can be expanded in several ways.

One of the major improvements would be to split the application into modules
as it would make it possible for more people to use the system simultaneously. To

59

60 6 Conclusion

do this, it would be needed to create a communication library that would ensure
serialization of the requests from all the clients, as I originally proposed. This
improvement would make the system more modular and even more universal.

Another area of possible improvements lies in the graphical part of the applica-
tion. Although the graphical representations of the tournament matches and match
groups serve their purpose well and the connection system is intuitive, a lot can be
done to make the menus better, create tool-tip texts to provide in-application help
and give the user more alternatives to accomplish a certain task, for instance by
using keyboard shortcuts.

It would be also nice to provide a way to backup the data and allow the user to
create restore points that can be used to revert the tournament to saved previous
states. Together with serialization and logging all the data manipulation through
the central module of the system, it would also be possible to revert the state of the
tournament to any point in the past � not only the saved ones.

Automatization is also a possible direction to take when improving the applica-
tion. Some connection patterns will be common to more tournament types and it
would be very useful to be able to create these patterns automatically and avoid the
so far necessary use of the mouse during the creation of the tournament structure.
A feature that would allow duplication of match groups would also be very useful.

Lastly, it would also be possible to create a default presentation module for the
application. Its abilities could include generating web-pages and various paperwork
or displaying data over a live video stream.

Appendix A

Lua script API

This chapter contains all the information that is needed to write event handler rou-
tines in Lua. Basic knowledge of Lua lexical conventions is assumed. The complete
language reference of Lua can be found in [8].

In the description of the system's scripting API, following conventions are used:

� Object identi�ers are printed in bold.

� Source code snippets and examples are written with a monospace font

� Methods and member functions are described by their signature written with
a monospace font (although they are actually not Lua code) followed by the
description of what they do in italics. Note the di�erence between a method
and a member function in Lua � method has an implicit and hidden �rst
parameter �self�. Methods are accessed by a colon instead of a dot. In this
text, methods will be distinguished from member functions by preceding their
name with a colon.

� Function signatures are written in the form rettype name(params), where
�rettype� is a return type (or a list of return types) of the function or method
and �params� is a list of parameters separated by commas. For each of these
parameters, �rst their type and then their name are given. The names are
given only to be able to reference the parameters in the text description of the
functions. An example:

crop_table(table t, number size)

A.1 Object manager

The object manager can be accessed in Lua by the global table omgr. It contains
three functions that create new globals, create object instances and delete object
instances. They are:

61

62 A Lua script API

boolean newGlobal(string type_name, string name)
Creates a new global of type type_name named name. Returns true in case of

successful execution and false otherwise (mostly because the given name is not valid
or already occupied). For info on what is a type name, see section Types.

number newInstance(string object_type_name, string name)
Creates a new instance of sub-type object_type_name with an identi�er name.

name can be an empty string, in which case the application creates one, beginning
with an underscore (which is normally an invalid name). Return value is the refer-
ence id of the newly created instance or zero in case of failure.

boolean deleteInstance(userdata to_delete)
Deletes the given instance. The to_delete argument has to be a Lua userdata

object, created by the tournament manager Lua table.

A.2 Tournament manager

The tournament manager table contains instance databases for the four base types
for access to all the instances in the data model. It also contains the global variable
manipulator for access to global variables and the event manager for event execution
(that is, if one wants to nest an event execution inside an event handling routine).
Nesting of the events should be used with care though � there is no in�nite recur-
sion detection and the event execution could end in an in�nite loop of calls. The
tournament manager table is saved as a global Lua variable (this should not be
confused with global variables in my data model) under the identi�er tmgr.

Instance databases and instance manipulators

The instance database objects are saved inside the tmgr table under the identi�ers
actors,matches, tables and objects. So to access an actor instance database, you
type tmgr.actors. It is worth noting here that the dot syntax in Lua is syntactic
sugar, so the previous code is equivalent to tmgr[“actors”].

Each instance database is a userdata object that can be indexed with the iden-
ti�er of an existing instance of the given base type in order to obtain an instance
manipulator userdata object. If no instance with the given identi�er exists, the
instance database returns 0. The instance database cannot be indexed with a non-
existent identi�er nor can it be used to save an instance under another identi�er. It
can only construct instance manipulator userdata objects.

Instance manipulator objects are Lua userdata objects that correspond to a
single instance in the data model. They can be used to read and write member
variables of their instance. To read a member variable value, index the instance
manipulator with the variable's identi�er. Similarly, to assign a member variable,
assign the indexed instance manipulator. The manipulator objects can be freely

A.2 Tournament manager 63

copied in the event code. Also, wherever a reference to an instance is needed, either
the manipulator or a reference id can be supplied. As an example, here is a Lua
code that increases the value of a member variable:

--We save the manipulator in a local variable
local match = tmgr.matches.match1
--Then we increment the score for the home team
match.home_score = match.home_score + 1

By saving the value using the instance manipulator, we saved the value into the
underlying data model.

Note that we could also have written:

tmgr.matches.match1.home_score = tmgr.matches.match1.home_score + 1

Apart from the user de�ned member variables, there are three useful system
read-only variables that can also be read by the instance manipulator. They are
_name, which is the name of the instance, _id, which is the instance's numerical
identi�er and _type_name, which contains a string with the name of this instance's
sub-type. The last one can be used as a run-time type information for example to
check for instance types before attempting to read a variable that is de�ned only in
some sub-types.

Implicit variables

The tournament manager extension over the object model creates implicit variables
in match and match group types to be used by the system. Some of them are useful
to the event programmer because they provide valuable information. These implicit
variables are listed here.

Match and match group variables

array_actor _in
An array with the actors entering the match or match group. The actors are also

called inputs of the match or match group.

array_actor _out
An array with the outgoing actors. The actors are also called outputs of the

match or match group.

table _table
The parent match group of this match or match group. If the match or match

group has no parent, this variable is zero.

64 A Lua script API

int _in_num
Number of inputs of this match or match group.

int _out_num
Number of outputs of this match or match group.

Match group-only variables

array_actor _order_in
The array with inputs of the Order-o-matic.

array_actor _order_out
The array with outputs of the Order-o-matic.

Global variable manipulator

The global variable manipulator object acts as a table that is indexed with the
identi�er names of the global variables. The object itself can be accessed at the
index globals under the tmgr table. Reading values of the global variables and
writing them works in the same manner as in instance manipulators.

A.3 Arrays

Arrays are created automatically if an array global variable is created or if a new
instance is created with an array member variable. Arrays can be assigned, but
this does not involve copying, only references are assigned. In many cases, assigning
arrays can be avoided and is strongly discouraged. If you need to reference common
data from multiple places, do it via references to an instance of base type object.

If you index the global variable manipulator or an instance manipulator with the
name of an array variable, what you get is an array manipulator userdata object.
This object can be indexed in order to access the values inside the array in the same
manner as one accesses member variables:

--Incrementing the first array value by five
array[1] = array[1] + 5

The array values can be read or written into. Note that array indices have to be
natural numbers, that means positive non-zero integers. A zero index is reserved to
be used as an invalid index for the purposes of array iterators.

Values inside arrays cannot be erased, with the exception of data model object
arrays (for example array of actors). Values in such arrays can be erased by assigning
zero value to an array member. Another di�erence between object arrays and the

A.3 Arrays 65

other array types is that object arrays can be safely indexed with indices of non-
existing array members, in which case the array returns 0 (invalid reference) as
opposed to the other array types that end the script execution on invalid index.
Note that this does not apply to setting new values � in that case, assigning to an
invalid index is perfectly legal and creates a new array value.

An array manipulator also has a method for automatically appending a value to
the end of the array. Its signature is as follows:

:append(type new_value)
Append a new value at the end of the array

The same could be accomplished by �nding the current index of the back_iterator,
incrementing it by one and assigning to it (and in fact, this is exactly what the
:append(...) method does).

Array iterators

Apart from direct access to the values inside an array, one can get forward or back-
ward iterators for iterating over the values in ascending or descending order, re-
spectively. To get the iterator, index an array manipulator either with iterator or
back_iterator:

--Accessing an array iterator
local it = array.iterator

Array iterator is a simple Lua table, not a userdata object. But it contains sev-
eral member values, member functions and methods. Follows a description of these
member values and functions.

int id
Member variable containing the numerical identi�er of the array that this itera-

tor is tied to.

int current
Index of the value that the iterator is currently pointing at.

int type
Type of the array values casted to an integer. See the source code �le tmgrType.h

to see which number corresponds to which type.

int :next()
This method increments the current index to the index of the next value in the

array (which does not necessarily have to be the next integer number, because the
array can have gaps) and returns the new value. If there is no valid next index, zero

66 A Lua script API

is returned.

int :prev()
This method decrements the current index to the index of the previous value in

the array (which does not necessarily have to be the preceding integer number, because
the array can have gaps) and returns the new value. If there is no valid preceding
index, zero is returned.

type :get()
Returns a value that the iterator currently points at. The type of the returned

value is the same as the type of all values in the array (naturally).

:set(type new_value)
Sets the value of the array member that the iterator is currently pointed at to the

value provided. The method has no return value.

To iterate over an array, you then use the while loop construct as follows:

--Use of the forward iterator
local it = tmgr.globals._roster.iterator
while it.current ~= 0 do

print (it:get().name) --Do something with the iterator
it:next() --Increment the iterator

end

To iterate the array backwards in the same example, you would simply change
iterator to back_iterator and it:next() to it:prev().

A.4 Events

All the events that are loaded at the start of the application are saved into the
table events in the tmgr table. The values saved are actually functions, whose
parameters match those in the corresponding events. Thus, in order to execute an
event from Lua, call the function that resides in the events table under the index
that is the same as the event's name. Here's an example that uses the scoring event
that was used in the design description to erase the score of the current match:

tmgr.events.score(tmgr.globals.current_match, 0, 0)

A.5 Types

In some places of the scripting API, one has to provide a type name. This can be
either a name of a sub-type derived from the four base types (actor, match, table

A.5 Types 67

or object) or a name of a tournament manager type, depending on the context in
which the type name is required. If a sub-type name is required, you have to use
the name of a sub-type that was declared before launching the application.

If a tournament manager type name is needed, use one of the following or precede
one of the following type names with a pre�x array_, in which case the type will be
an array of variables of the given type. Arrays of arrays are forbidden, so you can
append the pre�x to the type name just once. The tournament manager types are:

int An integer number

�oat A �oating-point decimal number

string A string

bool A boolean value (true or false)

object Reference to an instance of an object sub-type

actor Reference to an instance of an actor sub-type

match Reference to an instance of a match sub-type

table Reference to an instance of a table sub-type

Appendix B

Terminology

Throughout this work, I use several terms that might not be obvious to everyone.
Also, some widely known terms can be used with a di�erent meaning or in a di�erent
context. This glossary lists those terms and clari�es their meaning.

Actor: See: Base type

Base type: One of the four general types (actor, match, table, object) in my object
abstraction over the back-end database. Actor represents a player, team or
other kind of contestant in a tournament. Match is pretty self-explanatory.
Table is a grouping of matches or tables in a tournament. It can represent a
round, quali�cation table, phase or any other similar group of matches. Object
represents other objects that do not fall into the previous three categories.
Speci�c sub-types must be derived from these base types in order to use them.

Best-of-three: A playo� match format that consists in playing three subsequent
matches and declaring winner the team that wins at least two of them. Often,
if a team has won twice in the �rst two matches, the third match is dropped.

Bracketing: Creating tournament brackets � that is selecting the players that
will play together in one match, planning the structure of the matches and
drawing it on the paper. In context of tournament management applications,
bracketing denotes the ability to plan tournament brackets in the application
and often also the ability to print the brackets out. See also: Drawing

Double-elimination: See: Elimination

Drawing or draw making: This notion can be a bit misleading, because in sports
a draw means an inde�nite outcome of the match (noone has won). However,
in context of tournament management, draw making is the act of selecting the
players that will play against each other in a match. It is actually similar to
and by my de�nition a subset of bracketing. See also: Bracketing

69

70 B Terminology

Figure B.1: Single-elimination tournament for eight players

Elimination: A tournament scheme that eliminates (hence the name) players out
of the tournament after one or two losses, depending on whether the scheme
used is single-elimination or double-elimination respectively. See �gures B.1
and B.2 for reference.

In single elimination, each round consists of half the matches and players than
in the previous round, resulting in a binary tree of matches and a logarithmic
number of rounds in the tournament. Only winners are kept in the tournament
each round and they continue to the next round. In double elimination, losers
are given one more chance to win the tournament and play a parallel single-
elimination, whose winner ultimately faces the winner of the main elimination
tree to determine the winner of the whole tournament.

If the number n of contestants in the �rst round is not a power of 2, we can
add a 0th round that will consist of m = n− 2⌊log2(n)⌋ matches, so that we have
2⌊log2(n)⌋ contestants in the 1st round, which is a power of two. Those players
that won't play a match in the 0th round will automatically advance into the
1th round (this is called a bye).

Match: See: Base type

Member function (Lua): See: Method (Lua)

Method (Lua): In Lua, tables can hold member variables as well as member func-
tions. These functions are not di�erent from global functions in that they are
not tied to their table in any way. Methods are a mere syntactic sugar � a
di�erent way to call member function. To call a function as a method, use
colon instead of dot to separate the name of the table and the function. When
a member function is called this way, the containing table or object is auto-
matically provided to the function as the �rst parameter. It can be accessed
inside the function as a variable named self.

71

Figure B.2: Double-elimination tournament for eight players

--Calling the member function as a function
tab.func()
--Calling the member function as a method
tab:func()

Object: See: Base type

Round-robin: In general, this term means a cyclic list of items that has no end
or beginning. In tournament management, round robin denotes a tournament
scheme, where all the players but one are put into a cyclic list. The list is then
rotated each round to pair players together to form matches in that round.
See �gure B.3 for a better understanding of how this works.

After playing a predetermined number of rounds (possibly N − 1 where N
is the number of contestants), the tournament is �nished and the winner is
determined by a number of wins, score or by similar means. If there is an odd
number of contestants, a dummy contestant can be placed in each round that
will be played by one of the contestants, but the dummy's score won't count
toward the �nal score of the contestant that plays the dummy.

Single-elimination: See: Elimination

72 B Terminology

Match 1. 2. 3. 4.

Players O1 O2 Ð→ O3 Ð→ O4
vs. ↗ vs. vs. vs. ⤸

Players O8 ←Ð O7 ←Ð O6 ←Ð O5
Round 1

Match 1. 2. 3. 4.

Players O1 O8 Ð→ O2 Ð→ O3
vs. ↗ vs. vs. vs. ⤸

Players O7 ←Ð O6 ←Ð O5 ←Ð O4
Round 2

Match 1. 2. 3. 4.

Players O1 O7 Ð→ O8 Ð→ O2
vs. ↗ vs. vs. vs. ⤸

Players O6 ←Ð O5 ←Ð O4 ←Ð O3
Round 3, etc.

Figure B.3: First three rounds of an eight-player round-robin tournament

Sub-type: See: Base type

Swiss pairing: A tournament scheme in which the individual players are assigned a
rating that is calculated by a given formula and changes according to outcomes
of the tournament matches. The tournament in this system is divided into
rounds and an adequate opponent is selected for each player in each round,
based on their ratings before the start of the round. The idea behind this
system is to pair players, whose performance during the tournament is similar.
The winner of the whole tournament is usually determined by the performance
score, which means there is no elimination round at the end of the tournament.
Note that as described, the scheme could theoretically pair the same players
in more than one round, so there is often a condition in the pairing algorithm
that prevents this and pairs di�erent players instead.

Table: See: Base type

Trie: A tree-like data structure in which branches of each node are indexed by
characters. Traversal of the structure is done by iterating over characters of
a string and going down the corresponding branch for each of the characters.
The structure is used to map strings to other values and �nd the mapping
very quickly.

Appendix C

Contents of the CD

The compact disc that is enclosed in this work contains the text of the work in a
digital form, source code and programmer documentation of the application and also
the whole case study. This chapter describes the directory structure of the CD. The
directory structure and contents of the disc are also described in a �le README.TXT
in the root directory on the disc.

app This directory contains all the data that is related to the application. The
SConstruct build con�guration �le is located here. The directory also contains
the LICENSE.TXT with license information for the source code. The license
information is also prepended to each source �le separately.

src The src directory contains the whole source code of the application and
its graphical interface.

lua This directory contains code for the parts of the application that use
the Lua scripting language.

qt This directory contains the graphical user interface source code.
res The icon images for the two arrows used in the graphical interface

are here as well as their license.

doc This directory contains the source code documentation for the application
and the programmer's documentation (which is most of the Chapter 3).

work The LATEXsource �le for this work is contained in this directory as well as all
the images that are used in it.

illustrations Svg sources and rendered raster images of my illustrations used
in the work can be found here.

case study This directory contains the whole Eurobot 2010 case study.

events This directory contains the event de�nition �les for the case study.

types This directory contains the type de�nition �les for the case study.

73

74 C Contents of the CD

presentation The presentation �les for the case study can be found in this
directory.

References

[1] Stroustrup B.: The C++ Programming Language
http://www2.research.att.com/~bs/C++.html.

[2] Richards J., Hill D.: Complete Handbook of Sports Scoring and Record Keeping,
Parker Publishing Company, Inc., West Nyack, N.Y., 1974.

[3] Tournament Manager - Safrad's Pages,
http://safrad.own.cz/Software/TournamentManager/index.html.

[4] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns, Elements of
Reusable Object-Oriented Software, pages 293-303, Addison-Wesley, 1994.

[5] Eurobot o�cial website. http://www.eurobot.org.

[6] Eurobot 2010, Czech cup o�cial website. http://www.eurobot.cz.

[7] Eurobot 2010 rules. http://www.eurobot.org/eng/rules.php.

[8] Ierusalimschy R., de Figueiredo L. H., Celes W.: Lua 5.1 Reference Manual,
Lua.org, 2006. http://www.lua.org/manual/5.1.

[9] MySQL :: The world's most popular open source database.
http://www.mysql.com.

[10] MySQL++. http://tangentsoft.net/mysql++.

[11] The Programming Language Lua. http://www.lua.org.

[12] Python Programming Language � O�cial Website. http://www.python.org.

[13] SCons: A software construction tool. http://www.scons.org.

[14] SQLite Home Page - Appropriate Uses For SQLite.
http://www.sqlite.org/whentouse.html.

[15] Strongvon website. http://strongvon.com.

[16] TMS - Tournament Management System.
http://www.tennisinformation.com/products.

75

76 REFERENCES

[17] Products � Qt - A cross-platform application and UI framework.
http://qt.nokia.com/products.

