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1. Introduction

Potts model – a generalization of Ising model – plays an important role in statistical
physics, especially in the study of critical phenomena. It is also related to a number of
important condensed matter systems and outstanding problems.

In chapter two we will provide definition and history of Potts model and then re-
view some of the most important results. After that we will turn our attention to the
antiferromagnetic model.

In chapter three we will explore an useful tool called cluster expansion which provi-
des a systematic way for calculation of thermodynamics quantities for a certain class of
statistical models. We will first give an informal overview. Then we will make the state-
ments more precise by providing a rather general and rigorous mathematical treatment.
To illustrate the method, we will also provide a simple application to the Ising ferromagnet
on the square lattice.

In chapter four we will introduce Potts antiferromagnet on diced lattice and fi-
nally apply the knowledge obtained in chapters two and three to the calculation of low-
temperature free energy of this model.
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2. Potts model

2.1. Definition and history

Potts model is a generalization of Ising model to more than 2 spin states. Of course,
Ising models can be generalized in a number of ways and it is of interest that the model
first considered in the Ph.D. thesis of Renfrey B. Potts [1] was actually what is now a
called planar Potts model. This generalization relies on noticing that Ising model spin
states can be interpreted as 2 unit vectors lying in the plane and pointing in the opposing
directions. For a q-state planar Potts model we get q unit vectors pointing to equally
spaced directions differing by angle 2π/q and with Hamiltonian that only depends on the
angle between the spins.

Another possible generalization is to the following Hamiltonian for q spin states

H(σ) =
∑

〈i,j〉

−Jδ(σi, σj) (2.1)

which can alternatively be interpreted as a system of q vectors pointing in the directions
given by the vertices of the (q − 1)-dimensional simplex [2]. This, incidentally, coincides
with the planar Potts model in dimensions q = 2 and q = 3 but for the higher q they
differ. It is this second model – now called standard Potts model, or simply just Potts
model –, which has received so much attention.

2.2. Mean-field solution

The Potts model can be investigated in a number of ways, but the most straight-
forward one would be to apply mean-field approximation. It was shown by Mittag and
Stephen [3] that (d = 2)-dimensional Potts model has a first-order phase transition for all
q > 4 and the mean-field approximation is valid. More generally, it is expected that there
exists qc(d) for all dimensions, such that for all q > qc(d) the mean-field approximation
is valid. Likewise, there should exist dc(q) such that for q-state model for all d > dc will
the approximation again hold. The knows points therefore are qc(2) = 4 and dc(2) = 4
(this is of course the old result for Ising model). Monte Carlo simulations carried out by
Kirkpatrick [4] suggest that dc(1) = 6. Also qc(d) = 2 for d > 4 [5].

2.3. Re-expressing the partition function

There exist various forms of the Potts model partition function. Often the Peierls
contour argument [6] can be applied and we will make use of contours several times in
this article (see sections 3.1, 3.3 and 4.2). Here we will illustrate another useful form that
comes from combinatorics and graph theory [2].

Begin with the Hamiltonian (3.1) multiplied by −β

−βH(σ) = K
∑

〈i,j〉

δ(σi, σj) (2.2)

where K ≡ −βJ and rewrite its partition function

ZG(q,K) =
∑

σ

exp(−βH) (2.3)
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where the sum is over all the possible spin configurations in the following form

ZG(q,K) =
∑

σ

∏

〈i,j〉

(1 + vδ(σi, σj)) (2.4)

with v ≡ eK − 1. This is possible because the exponential for each term only takes on the
values of 1 and eK . Now expand the product to obtain sum over all the subgraphs of the
lattice G the model was defined on

ZG(q,K) =
∑

σ

∑

G′⊂G

∏

〈i,j〉

vδ(σi, σj) (2.5)

Notice that the product terms survive only if all the components of the graph carry the
same spin state. Also, every surviving term will be equal to vb(G

′) where b(G) is the number
of edges of the graph G. There will be precisely qn(G

′) such terms (one for each possible
choice of spin state for a given component) where n(G) is a number of components of the
graph G. So we arrive to

ZG(q,K) =
∑

G′⊂G

vb(G
′)qn(G

′) (2.6)

For zero-temperature antiferromagnet this gives

PG(q) =
∑

G′⊂G

−1b(G
′)qn(G

′) (2.7)

where PG(q) is a chromatic function counting number of ways the graph G can be colored
with q colors. Physical interpretation is that this gives a number of ground states and
therefore is connected to zero-temperature entropy for the given Potts model.

At the conclusion we note that the form (2.6) leads to a nice duality

ZG(q,K) = vb(G)q1−NDZD(q,K∗) (2.8)

where D is a dual graph to G, ND is the number of vertices in D and (eK−1)(eK
∗
−1) = q.

2.4. Relation to other models

Potts model is related to various other problems. This can give useful into Potts
model’s properties by analyzing other models and the Potts model results can be applied
to study these related models. We already noted in section 3.1 that standard and planar
Potts models are equivalent for q = 2 and q = 3 spin states. Let us now mention few
non-trivial relations.

2.4.1. Percolation model

Start with a graph G. Bond-percolation model assigns probability p that a given edge
will be occupied (and correspondingly 1− p that it will not be). Two vertices are said to
be in the same cluster if there exists a path between them through occupied edges. Then
one can investigate various properties of the clusters.

It can be shown that this is related is related to the q = 1 Potts model on G [7].
To make sense of the q = 1 limit one has to use the (2.6) re-expression of the partition
function or similar.
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To illustrate the connection one can for example show that [8]

c(r, p) =
[

∂

∂q
Γαα(0, r)

]

q=1

(2.9)

where c(r, p) is the probability that vertices at the origin and at r belong to the same
cluster and Γαα is the two-point correlation function of the corresponding Potts model.

These results can be generalized to site-percolation and mixed-percolation models
where not only edges, but also vertices have a probability to be vacant.

2.4.2. Vertex model

It can be shown that the two-dimensional Potts model is equivalent to ice-rule vertex
model [9, 10]. To define the vertex model take a graph H where each vertex has precisely
four neighbors. Then for each vertex consider the set oriented edges incident to it. Vertex
model assigns a weight to each set that contains precisely two ingoing edges and two out-
going edges. There are six distinct possibilities for such sets. This model can be regarded
as a crude model of ice, which is where the name comes from.

Now for a given graph G on which we would like to investigate the Potts model there
exists a (non-unique) graph G′ such that the vertex model formulated on G′ is related to
the Potts model on G by the following relation

ZPotts = qN/2ZV ertex (2.10)

where N is the number of vertices in G.

2.5. Potts antiferromagnet

Consider Potts model Hamiltonian as in (2.1) and take J negative. Then it is favorable
for neighbors to carry different spin values. This behavior is called antiferromagnetic and
it leads to many interesting properties. As already noted in the discussion of equation
of (2.7), at zero temperature this model is equivalent to the problem of graph coloring.
Usually (when q is high enough) there will be very many ways to color the graph and
correspondingly a non-zero entropy at the zero temperature.

To qualitatively investigate the antiferromagnetic properties, it is useful to first recall
the behavior of the ferromagnetic model. At low temperatures there is a tendency to
form clusters of the same spin value. . So in this class of models there usually appears a
(energetically-driven) long-range order.

Compare this with the antiferromagnetic case. If one takes q high enough then there
will be no long range order as there is no preference for any spin values at low tempera-
tures, so it essentially behaves as in the high temperature case. However when q is small,
there will be zero entropy at zero temperature. For example, take Ising model on square
lattice. There at the zero temperature the spins on even sublattice will take one value
and the spins on the odd the other. These sublattices will each behave as a ferromagnetic
one, so we do not get anything new.

But for some special values of q – imagine 2 < q < 4 – there could appear interesting
entropy-driven long-range order. And indeed, already in 1980 there were some indications
[11] for the existence of the ordered low-temperature phase. One expects that for a given
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graph G there should exist a value qc(G) such that for all q > qc(G) the model on G is
unordered at all temperature, at q = qc(G) the model will have a critical point at zero
temperature.

Note that this long-range order depends strongly on the underlying graph structure
and therefore it is very hard to analyze generally and to find all the universality classes
[12]. We will return to these considerations in chapter 4 where we will investigate q = 3
Potts antiferromagnet on a diced lattice.
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3. Cluster expansion

3.1. Prelude

Cluster expansion is a useful tool for computing the free energy of a given system.
The general idea behind this mechanism is that while partition function and free energy
both contain the same amount of information about the system, in some instances it is
much harder to compute the partition function because, as we will see, lot of terms in the
free energy expansion will vanish.

Because general cluster expansion in abstract setting is not an entirely trivial matter,
we will defer the formal treatment until the next section. Here we will just informally
illustrate the method on a concrete example.

Consider an Ising model on a square lattice with ferromagnetic interaction between
nearest neighbors. We will also enforce a homogeneous boundary condition to remove
degeneracy of the ground state. To employ the cluster expansion, we first note a well-
known Peierls duality between spin configuration and a set of mutually non-intersecting
contours over the dual lattice. From the point of view of the spin model, contour is a
boundary separating regions of different spin. 1) Which means a contour must be non-
intersecting closed line.
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Image 3.1: Contours for the Ising model on a square lattice

The duality is as follows. We start from the boundary of the lattice, assigning to
the lattice spins the value determined by the boundary condition. Every time we cross
some contour, we flip the spin value we are assigning. Conversely, if we are given a spin
configuration, we can easily determine the contours because these are just boundaries of
regions having the same spin. This is illustrated in the image 3.1 where the spin values
are denoted by + and −. There are two contours separating three regions.

Now the only thing remaining to establish the duality is to determine the energy
cost of a given contour so that we can give a Boltzmann weight to every contour set.
By definition, there is a spin flip at every line of the contour, so that total energy of the
system will be proportional to the sum of lengths of the contours plus the energy of the
ground state. The proportionality constant obviously depends only on the strength of the
neighboring spin interaction and will not be important for the rest of this discussion.

1) *
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We have thus reformulated the problem of ferromagnetic Ising model to the problem
of a set of mutually non-intersecting contours with energy proportional to their length.
The term non-intersecting is precisely what makes the cluster expansion work. This is so
because free energy of such a system can be shown to be equal to the sum over mutually
intersecting contours. Now, to see why this can be useful, consider N contours on a lattice
with L sites, L being much larger than the size of any contour. In the partition function
there are approximately LN terms because on a big lattice we are relatively free to position
small contours anywhere just keeping in mind they must not intersect. This is not so with
free energy. There we need contours to be intersecting, so the number of terms will be
proportional to L as now we only get to position contour system around as a whole. This,
as a nice by-product, also shows that free energy in large L limit is proportional to the
number of sites, as required for any well-behaved thermodynamic system.

3.2. Abstract treatment

In previous section we tried to illustrate the significance of the cluster expansion,
but it is not yet clear how to formalize our statements nor is it obvious how to carry
out an actual expansion for a given model. To elucidate these points, let us introduce an
abstract formalism in the language of graph theory (for more details see [13]). In this view,
previously mentioned contours will correspond to vertices, while the property of mutual
intersection of two such vertices will be modeled by edges. Let us begin then by giving a
few key definitions and proving the loosely stated statements in the previous section.

Definition 3.1. A graph G is a set of vertices V together with a binary relation
E ⊂ V × V . In the following, we will always require V to be countable and E to be
non-reflexive and symmetric. We write G = (V,E). We call the graph G connected (or
cluster) if there exists a path connecting every pair of vertices. We will use a notation
G(V ′) to denote a restriction to a subgraph (V ′, (V ′ × V ′) ∩ E). When we will need
to refer to the edge set of a given graph G, we will use notation E(G). We denote by
N(v) ≡ {v′ ∈ V |∃(v, v′) ∈ E} the neighbors of v.

Definition 3.2. Let G = (V,E) be a graph. Set I ⊂ V is called independent with
respect to G if ∀v1, v2 ∈ I (v1, v2) /∈ E. Let w : V → C be a complex function on the
vertices of V . For all finite L ⊂ V we define the partition function on L

ZL(w) =
∑

I⊂L

∏

v∈I

w(v) (3.1)

where the sum runs over independent sets of L with respect to G.

Definition 3.3. Let S be a set. A multiindex X on S is any function X : S →
N.1)0 ∈ N. We denote by X (S) the set of all multiindices on S. When there will be no
risk of confusion which set we are working with, we will simply denote this set as X .
When the multiindex X is defined on a set of vertices of a graph G, we say X is a cluster
whenever the graph G(supp(X)) is a cluster.

Observe that ZL(w) is a finite sum of real polynomials in w(v) taken as a vector in
CL. Therefore it is analytic in w(v). Moreover ZL(0) = 1 because the only contribution
to the sum is from the empty set. Therefore we have the following result

1) *
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Lemma 3.4. There exists U ⊂ CL, a neighborhood of 0, such that

∀w ∈ U logZL(w) =
∑

X∈X (L)

aL(X)wX (3.2)

where wX ≡
∏

v∈Lw(v)X(v).

Proof: Considering above remarks, ∀ε > 0 there exists a neighborhood of 0, Uε,
such that ∀w ∈ Uε |ZL(w)− 1| < ε. Therefore logZL(w) is analytic on Uε for any ε < 1
and it agrees with its Taylor expansion which is precisely what the formula says. �

Lemma 3.5. Coefficients aL(X) have the following properties

i) aL(X) = asupp(X)(X), so that the coefficients aL(X) are independent of the set
L. From now on we therefore write just a(X).

ii) a(X) = 0 whenever induced subgraph G(supp(X)) is not connected.

Proof:

i) Define w0 : V → C such that ∀v ∈ supp(X) w0(v) ≡ w(v) and w0(v) ≡ 0
otherwise. Then we can see that ZL(w0) = Zsupp(X)(w) and logZL(w0) = logZsupp(X)(w)
so that by Lemma 3.4 these functions have identical Taylor expansions and the claim
follows.

ii) Suppose G(supp(X)) is not connected. Then there must exists sets L1, L2 ⊂ V
such that E(G(supp(X))) = E(G(L1)) ∪ E(G(L2)) and E(G(L1)) ∩ E(G(L2)) = ∅. But
then to any independent subset of L1 we can append any independent subset of L2 to
get an independent subset of L which means that Zsupp(X)(w) = ZL1(w)ZL2(w) so that
logZsupp(X)(w) = logZL1(w)+ logZL2(w). From this it is clear that there are no non-zero
a(Y ) terms in logZsupp(X) if Y contains vertices of both L1 and L2. This is of course true
for Y = supp(X).

�

Now we can see that the only terms contributing to the logZL(w) come from con-
nected components of G which is of course where the name cluster comes from. However,
there is still one step left to perform. Until now, we have been restricting ourselves to
finite subgraphs of the original graph G. To compute the true partition function (or its
logarithm) for the whole graph G, we need to perform a limit with L ⊂ V arbitrary large.
Given that the following convergence condition is satisfied, this can indeed be done.

Definition 3.6. Let R : V → R. We say it satisfies a convergence condition if

∃r : V− > [0, 1) ∀v ∈ V R(v) ≤ r(v)
∏

v′∈N(v)

(1− r(v′)) (3.3)

Definition 3.7. Let R : V → R and L a finite subset of V . We call the set

DL,R ≡ {w : L → C|v ∈ L : |w(v)| ≤ R(v)} (3.4)

a polydisc.

Now we have everything in place to formulate the key result of this theory

8



Theorem 3.8. Cluster expansion. There exists a function a : X → R such that
a(X) = 0 whenever X is not a cluster. For every R satisfying a convergence condition
(3.3) it holds that

i) For every finite L ∈ V and for all w ∈ DL,R ZL(w) 6= 0 and

logZL(w) =
∑

X∈X (L)

a(X)wX (3.5)

ii)

∀v ∈ V
∑

X∈X ,v∈supp(X)

|a(X)wX | ≤ −log(1− r(v)) (3.6)

We will not prove this theorem. For more information see e.g. [13] and references
therein. For the proof of this theorem with slightly weaker (but easier to work with)
convergence condition, see [14].

Whenever the model under investigation enjoys the translational invariance (as is the
case with all the models defined on a lattice) there will be about L identical terms in the
cluster expansion that correspond to the cluster of the same shape, just translated. But
this is precisely what we need to make the free energy F an extensive variable. Therefore,
using an intensive free energy f we can write

−βf = lim
|L|→∞

1
|L|
logZL(w) = lim

|L|→∞

∑

X∈X

a(X)wX (3.7)

where in the last summation it is understood that we sum only over one cluster from each
translational orbit.

We will now compute few of the lowest order expansion coefficients as these will be
essential for our following work. For this we will need a definition

Definition 3.9. Let X be a multiindex and G = (V,E) a graph. We define a graph
θ(X) ≡ (V ′, E′) where the vertex set is V ′ ≡ {vi|∀v ∈ V, 1 ≤ i ≤ X(v)} and the edge set
has the following property ∀v, w ∈ V, 1 ≤ i ≤ X(v), 1 ≤ j ≤ X(w) (vi, wj) ∈ E′ ↔
(v, w) ∈ E. Also ∀i, j 1 ≤ i < j ≤ X(v) (vi, vj) ∈ E′.

and the following result [15]

Lemma 3.10.

a(X) =
1
X!

∑

G∈G|X|,G⊂θ(X)

(−1)|E(G)| (3.8)

where X! ≡
∏

v∈V X(v)! and Gn is a set of all connected subgraphs having n vertices.

As stated in lemma 3.5, the coefficients a(X) only depend on the supp(X), not the
whole graph. Therefore, the easiest way to compute these for small supp(X) seems to be
direct expansion of the partition function Zsupp(X). To simplify the notation a little bit,
let us write wi = w(vi). Let’s start with a graph containing a single vertex. For such a
graph we have

Z1 = 1 + w1 (3.9)

9



logZ1 =
∞
∑

k=1

(−1)k+1
wk
1

k
(3.10)

a1(n) ≡ a({n}) =
(−1)k+1

k
=
(−1)k+1(k − 1)!

k!
(3.11)

Thanks to lemma 3.10, we can immediately derive the following result

a(X) =
1
X!

∑

G∈G|X|,G⊂θ(X)

(−1)|X|+1(|X| − 1)! (3.12)

whenever G(supp(X)) is a complete graph. This is so because θ(X) will then also be
a complete graph and the summation in (3.8) will give the same result regardless of the
exact form of X.

Therefore we can write

a2(n,m) ≡ a({n,m}) =
(−1)n+m+1(n+m− 1)!

n!m!
(3.13)

a3(n,m, k) ≡ a({n,m, k}) =
(−1)n+m+k+1(n+m+ k − 1)!

n!m!k!
(3.14)

for the complete graph on two and three vertices respectively.

These simple closed forms only arise because the corresponding graph θ(X) has very
little structure. For generic clusters, one has to compute the coefficients one by one and
the calculation can be tedious. That being said, for the purposes of this article it is enough
to compute one more coefficient – the one whose cluster has three vertices and two edges
– a3−2 ≡ a({1, 1, 1}). For such a multiindex, θ(X) = G(supp(X)) and the only connected
subgraph on three vertices is the graph itself. Therefore, according to (3.8) we have

a3−2 = 1 (3.15)

3.3. Application to Ising model on square lattice

We will now formally reproduce statements about the ferromagnetic Ising model on
a square lattice given in section 3.1 and compute few first terms of the free energy. Given
a square lattice L, the energy of the configuration σ : L → {−1, 1} 1) We will refer to the
range of values as spins is defined to be

H(σ) = −J
∑

〈i,j〉

σiσj (3.16)

where J > 0 is a coupling constant and the summation is over the nearest neighbors of the
lattice. We will also assume a homogeneous boundary condition of the lattice. Partition
function for this model will be

Z =
∑

σ

exp(−βH(σ)) =
∑

σ

exp(K
∑

〈i,j〉

σiσj) (3.17)

1) *
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where we have used used a dimensionless coupling K ≡ βJ .

Now to establish Peierls duality, note that arbitrary configuration can be seen as a
family of regions of the same spin. Contour is then defined to be a loop on a dual lattice
that separates the regions of unequal spin. Because of the boundary condition, every
spin configuration is in one-to-one correspondence to a set of contours which represent
border lines (see image 3.1). Now, denote by σ0 a configuration that minimizes H. Such
a configuration must be clearly homogeneous and with the same spin as is required by
boundary condition. The corresponding contour set will therefore be empty. For every
other configuration there will be some contours present and for every line of such a contour
this will introduce an energy cost of 2J when compared with the σ0. We can thus re-express
the partition function Z by summing over all the possible sets of mutually non-intersecting
contours (denoted by Γ)

Z =
∑

Γ

exp(−β(H(σ0) +
∑

γ∈Γ

2J |γ|)) (3.18)

Z = Z0
∑

Γ

∏

γ∈Γ

exp(−2K|γ|) (3.19)

where the Z0 ≡ exp(−βH(σ0)) is an unimportant prefactor that can’t change the physics,
so we can safely omit it from now on.

As we can see, we obtained a partition function in a form that we investigated in
the previous section. The summation here is over independent sets of a graph that has
a set of all possible contours as a set of vertices and where there is an edge between
two such vertices precisely when they are intersecting. The weight for a given contour is
w(γ) = exp(−2K|γ|).

Let us now discuss first few summands of the cluster expansion. There is only one
(taking into regard the talk in section 3.2 about translational invariance) possibility for
the contour of length four (encircling one square in the lattice). There are two possibilities
for contours of length six (encircling two squares either vertically or horizontally). As for
the length eight, there are the following clusters with one contour – one possibility of
a contour encircling four squares, two possibilities for contours encircling three squares
in a row and four contours encircling three squares that remain when one one square is
removed from the above mentioned contour around four squares. As for the cluster on two
contours, we have one possibility for two contours of length four one above each other.
The other choice if the contours are touching on the side. This gives us two inequivalent
possibilities. We could continue, but this is enough for illustration purposes. According to
result (3.7) we can thus write

−βf = a1(1)(exp(−8K) + 2 exp(−12K) + 7 exp(−16K))

+ a1(2) exp(−8K)2 + a2(1, 1) exp(−8K)2 + · · ·

= exp(−8K) + 2 exp(−12K) +
11
2
exp(−16K) + · · ·

(3.20)

where we have used that a1(1) = 1, a1(2) = −12 , a2(1, 1) = −1.

11



4. Potts antiferromagnet on a diced lattice

4.1. Definition

To define diced lattice we have to start with a couple of definitions

Definition 4.1. Medial graph M(G) = (V ′, E′) of a graph G = (V,E) is obtained
by taking V ′ = E and taking (e1, e2) ∈ E′ whenever edges e1 6= e2 ∈ E have a common
vertex and belong to the same face.

Definition 4.2. Let V ′′ equal to the set of faces of G and let there be an edge
(f1, f2 ∈ E′′) whenever the faces f1, f2 are adjacent.

Now begin with a triangular lattice. Apply the above construction to obtain its medial
graph. This is called Kagome lattice. Diced lattice is then a dual of the Kagome lattice.
This lattice is bipartite meaning that the vertices can be divided in two disjoint sets such
that there is no edge between the vertices of the same set. This can be seen in the image
4.1.

Image 4.1: Diced lattice

Kotecký, Salas, and Sokal [12] showed that on such a lattice, 3-states Potts antiferro-
magnet will have a phase transition at a non-zero temperature.

4.2. Low temperature expansion

The Hamiltonian for Potts antiferromagnet is

βH =
∑

〈i,j〉

+Kδ(σi, σj) (4.1)

where the sum is over nearest neighbors and K = −βJ > 0 is the dimensionless coupling.
Partition function for this Hamiltonian is

Z =
∑

σ

exp(K
∑

〈i,j〉

δ(σi, σj)) (4.2)

where the first sum is over all spin configurations.

Following [12], we integrate the spins on the hexagonal sublattice and obtain model
on triangular lattice with triangle Boltzmann weights (w1, w2, w3)

w1 =e−3K + 2

w2 =e−2K + e−K + 1

w3 =3e−K

(4.3)

12



Image 4.2: Hexagonal and triangular lattices

depending on how many distinct spin values given triangle has.

In the image 4.2 one can see the remaining triangular lattice (shown with white
vertices and dotted edges) as well as its dual – the hexagonal lattice (black vertices and
full edges). It is this dual hexagonal lattice that will play the main role in the following,
because Peierls correspondence always passes from the graph to its dual. 1)Note that we
did not discuss this in the square lattice case because there the dual is again a square
lattice However, the notion of contour is slightly more complex this time because of the
three spin states. In particular, because contour separates the domains of different spins
it will have to carry a notion of two inner spin values. Therefore the contour will also have
to have inner structure that denotes distribution of these two spins. There will always be
two ways how to assign spin values to a given contour (see image 4.3 and note that the
values 2 and 3 can be swapped), so this does not give us an isomorphism, but it suffices
for the purpose of computing partition function.

1 1 1 1

1 1 1 1

1

1 1 11

1

1

1 1

1

1

1

1

1

1

1

1

2

2

2 2

23 3

3

3

Image 4.3: Peierls contour on a hexagonal lattice

The partition function – in the contour form – thus becomes

Z = 3
∑

Γ∈δhex

2|Γ|
∏

v∈hex

{

w1 ∀γ ∈ Γv 6∈ γ
w2 deg(v) = 2
w3 deg(v) = 3

(4.4)

where Γ is a contour set, δhex denotes the set of all contour sets on the hexagonal sublattice
and hex denotes hexagonal sublattice itself. We can carry out the production on the

1) *
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hexagonal sublattice and we obtain

Z = 3wN
1

∑

Γ∈δhex

2|Γ|xΓ2yΓ3 (4.5)

where N ≡ |hex| is the number of sites of the hexagonal sublattice, x ≡ w2/w1, y ≡ w3/w1
and Γi, i = 2, 3 denotes the number of vertices of degree i in the contour set. We can
already see that the partition function is in the form required by cluster expansion. If we
denote

w(γ) ≡ 2xγ2yγ3 (4.6)

then the partition function will have the form

Z = 3wN
1

∑

Γ∈δhex

∏

γ∈Γ

w(γ) (4.7)

and we can apply cluster theorem to obtain the free energy. But first, let us investigate
the zero temperature entropy.

4.2.1. Zero temperature entropy

We start with zero temperature computations because – as can be seen from (4.3) –
w3 and y terms are zero. This is just a restatement of a simple fact that at zero temperature
it is forbidden for the antiferromagnet to have nearest neighbors in the same state. Thanks
to this observation contours will have simple form that we have already encountered in
the previous chapter.

Also note that at zero temperature x = 1/2 and γ2 = |γ|. Therefore the longer the
contour, the less it contributes to the free energy. For the purposes of this work, we will
enumerate all the contours with number of vertices less than 22 (that gives us a rough
precision estimate 2−20 ≈ 10−6).

Note that to correctly compute the cluster expansion, we have count each contour
once and only once. But there can be many contours that differ only by rotation or
reflection. We will consider this set as a single contour and write down the corresponding
symmetry factor. This information – along with the length of the given contour – is shown
in tables A.1, A.2 and A.3.

To save space, we show just a dual graph of a subgraph bounded by a given contour.
The vertices of this graph belong to the triangular sublattice of the original diced lattice, as
discussed above. Recall that each of these contours only correspond to single vertex cluster.
One also has to consider the sets of mutually intersecting contours (these correspond to
higher coefficients in cluster expansion a(2), a(1, 1), etc.). Nevertheless, keeping in mind
that we want our contours to have less than 22 vertices and that the smallest contours
are of length 6 and 10, there are not so many possibilities left. All of these were accounted
for.

To obtain the entropy, we note that

F = U − TS (4.8)

At zero temperature there is zero energy. Putting this in (3.7) we obtain

s = kB lim
|L|→∞

1
|L|
logZL(w) (4.9)
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Plugging in (4.7) and second equality in (3.7) we get

s = kB(w1 +
∑

X∈X

a(X)wX) (4.10)

which, using the results found in the tables and the knowledge of a(X) given in (3.11)
through (3.15) evaluates to

s =kB
(

2−
1
3
(1836x20 − 566x18 + 252x16 − 72x14+

+ 66x12 − 18x10 − 6x6) + · · ·
)

(4.11)

s ≈ 2.032 kB (4.12)

4.2.2. Free energy at finite temperature

At finite temperature we also have to allow for more complex contours containing
degree three vertices. These can be presented as contours in tables in the previous section,
but now we allow for two colors of vertices (representing two possible spin values).

However, because near zero temperature w3 is almost zero, these contours will not
change the situation much. We can make this statement more precise by looking at the
graph 4.1

w3/w2

K

w
3
/w
2

32.521.51

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Graph 4.1: w3 decay

By requiring that K > 2 (low-temperature condition) so that the ratio w3
w2
= y

x <

2−3/2 we can usefully re-express the weight (4.6) as

w = 2x|γ|(
y

x
)γ3 (4.13)
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to easily consider which contours to include in our calculation in order to satisfy the rough
10−6 estimate using the fact that degree three vertex increases the precision about the
same as 3/2 of degree two vertices (keeping in mind that x ≈ 1/2 near zero temperature).
Also note that smallest contour that can contain a degree three vertex is the second one
in the table A.1 and it is already of the order 2−13. Therefore it suffices to consider only
single vertex clusters.

From (3.7), results from the previous section and accounting of the contours with
degree three vertices we finally arrive at the expression for the free energy

f =−
kBT

3

(

3w1 − 1836x20 + 566x18 − 252x16 + 72x14 − 66x12 + 18x10 + 6x6+

+
(

666x16 + 288x15 + 126x14 + 36x13 + 108x12 + 36x11 + 18x8
)

y2+

+
(

18x12 + 54x10
)

y4
)

(4.14)

This result with β = 1 is plotted in graph 4.2. Note that there should be a critical
point around K = 1.971 [12], but of course this can not show up in cluster expansion
which gives only analytical results.

Free energy

K

f

43.532.521.5

-2.03

-2.04

-2.05

-2.06

-2.07

-2.08

-2.09

-2.1

-2.11

-2.12

-2.13

Graph 4.2: Free energy
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5. Conclusion

The purpose of this work was to get familiar with the Potts model. In chapter two we
presented its definition and history. We reviewed the mean-field approximation, which is
very useful for providing basic information about the model, although one has be careful
because this approximation often fails in the cases one is most interested in.

As is often the case in statistical physics and combinatorics, there exist various useful
dualities between seemingly unrelated models and expressions. Thus we were able to
conclude relation of Potts model to the graph coloring problems. We looked at percolation
and ice-rule models and noted that Potts model can give useful insights into these models
as well (or vice-versa). We have also qualitatively discussed the behavior of the Potts
antiferromagnet. For the certain values of q there can appear an entropy-driven long-
range order in this model. This behavior depends strongly on the microscopic structure
of the lattice and still is not very well understood.

We have acquainted ourselves with the method of cluster expansion and in chapter
three gave an informal introduction as well as a rigorous treatment of the subject. With
the use of the famous Peierls duality we were then able to compute the low-temperature
free energy of the Ising model on a square lattice.

In chapter four we turned to the main subject of this work – investigation of the
Potts antiferromagnet on a diced lattice using the acquired knowledge of cluster expan-
sion. We were again able to use Peierls-like duality and by enumerating all the possi-
ble low-temperature clusters were able to derive the zero-temperature entropy and low-
temperature free energy.
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Appendix

In this section we present information on Peierls contours on a hexagonal lattice.

Contour Symmetry factor Length

1 6

3 10

2 12

3 14

6 14

3 14

12 16

3 18

12 18

6 18

6 18

Table A.1: Contours 1–11
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Contour Symmetry factor Length

2 18

6 16

3 18

6 18

12 18

12 20

12 20

12 20

6 20

6 20

12 20

Table A.2: Contours 12-22
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Contour Symmetry factor Length

6 18

6 18

2 18

3 20

12 20

12 20

12 20

1 18

6 20

12 20

12 20

6 20

Table A.3:Contours 22–34
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