
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Martin Koníček

Debugger Frontent for the SharpDevelop IDE

Department of Software Engineering

Supervisor of the master thesis: Mgr. Pavel Ježek

Study programme: Computer science

Specialization: Software systems

Prague 2011

I would like to thank my supervisor Pavel Ježek for his time and his very helpful, constructive

advice on this thesis.

I would like to extend a very honest “thank you” to David Srbecký, the author of the

SharpDevelop Debugger and Daniel Grunwald, the lead developer of SharpDevelop IDE. They

were both very helpful and the work on this thesis probably wouldn’t start without them. I

would also like to thank Christoph Wille for running the project, Siegfried Pammer and Matt

Ward for all their contributions and enthusiasm and of course Mike Krüger for originally

starting the SharpDevelop project. They all deserve much respect for their work.

Last but not least, I thank Google for supporting students to work on interesting open source

projects.

I declare that I carried out this master thesis independently, and only with the cited sources,

literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 121/2000

Coll., the Copyright Act, as amended, in particular the fact that the Charles University in

Prague has the right to conclude a license agreement on the use of this work as a school work

pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague Martin Koníček

Název práce: Debugger Frontent for the SharpDevelop IDE

Autor: Martin Koníček

Katedra / Ústav: Department of Software Engineering

Vedoucí diplomové práce: Mgr. Pavel Ježek

Abstrakt:

Cílem této práce je prozkoumat nové přístupy k ladění kódu na platformě .NET framework, se

zameřením na visualizaci dat v laděném programu. Specifické cíle této práce jsou: (a)

implementovat nástroj, který zobrazuje datové struktury v laděném programu jako

orientované grafy, (b) zlepšit způsob, jakým jsou běžně visualizovány kolekce objektů díky

implementaci nového nástroje, který zobrazuje přehled obsahu objektů v kolekci, a zároveň

efektivně podporuje všechny užitečné typy kolekcí. Práce je implementována pro integrované

vývojové prostředí pro .NET SharpDevelop. Autor spolupracuje s členy SharpDevelop týmu a

výsledky práce jsou již součástí nové verze SharpDevelopu.

Klíčová slova: ladění programů, Integrované vývojové prostředí, visualizace dat, .NET

Title: Debugger Frontent for the SharpDevelop IDE

Author: Martin Koníček

Department: Department of Software Engineering

Supervisor of the master thesis: Mgr. Pavel Ježek

Abstract:

The overall goal of the thesis is to explore new approaches to debugging managed code,

namely visualization of data in the program being debugged. Particular goals of the work are:

(a) to build an object graph visualizer, which displays selected data structure used in the

program as directed graph, (b) improve visualization of object collections by providing an

overview of collection contents and supporting broad range of collection types.

The work is implemented for the SharpDevelop open source IDE for .NET. The author

cooperates with the SharpDevelop team and the results of the work have been already

incorporated into the new version of the IDE.

Keywords: debugging, IDE, data visualization, .NET

Contents

1. Introduction ..7

1.1 Style conventions..7

1.2 Terminology..7

1.3 Context...7

1.4 Motivation ..7

1.4.1 Object graphs ..8

1.4.2 Collections ... 10

1.4.3 Debugger tooltips... 12

1.5 Goals .. 12

1.6 Preview .. 13

1.6.1 Object graph visualizer .. 13

1.6.2 Collection visualizer.. 14

1.6.3 Debugger tooltips... 14

1.7 Contribution of this thesis ... 15

1.8 Background .. 15

2. Analysis .. 17

2.1 Introduction to the SharpDevelop IDE ... 17

2.2 The architecture of SharpDevelop ... 18

2.2.1 Reusable parts of SharpDevelop ... 18

2.2.2 ICSharpCode.Core .. 19

2.2.3 ICSharpCode.SharpDevelop... 22

2.2.4 NRefactory .. 22

2.2.5 ICSharpCode.SharpDevelop.Dom.. 23

2.2.6 Future of NRefactory and Dom .. 23

2.2.7 Debugger.. 24

2.3 Fundamental problem of debugging ... 29

2.4 Division of work ... 31

2.5 Collections... 32

2.5.1 Types of collections... 32

2.5.2 First approach – treating all collections as IEnumerable ... 34

2.5.3 Second approach – special case for IList ... 35

2.5.4 Third approach – converting IEnumerable to IList... 35

2.5.5 Conclusion ... 36

2.6 Object graph visualizer.. 36

2.6.1 Existing work ... 37

2.6.2 What needs to be done .. 37

2.6.3 Graph building... 38

2.6.4 Graph layout ... 44

2.6.5 Graph transitions ... 50

2.7 Collection Visualizer ... 51

2.7.1 Existing work ... 52

2.7.2 What needs to be done .. 53

2.7.3 Grid columns, generic vs. non-generic collections .. 53

2.8 Debugger tooltips .. 54

2.8.1 Existing work ... 54

2.8.2 What needs to be done .. 55

3. Implementation .. 56

3.1 Common base for visualizing collections .. 56

3.2 Object graph visualizer.. 57

3.2.1 Graph building... 58

3.2.2 The ObjectGraph... 58

3.2.3 Graph layout ... 60

3.2.4 Graph matching... 66

3.2.5 Graph drawing and transitions .. 66

3.2.6 The result... 66

3.3 Collection Visualizer ... 68

3.3.1 Lazy loading items when scrolling ... 68

3.3.2 Expanding rows of the grid.. 69

3.3.3 Lazy loading columns (object properties) .. 70

3.3.4 The result... 70

3.4 Debugger tooltips .. 71

3.4.1 Integration of visualizers.. 71

3.4.2 The result... 72

4. Conclusion and future work.. 74

References .. 76

Appendices ... 78

User manual .. 78

Content of CD.. 78

Table of listings and figures ... 79

7

1. Introduction

The ideas for this thesis are based on a desire for better debugging features in current IDEs. A

vision about innovative ways of debugging, namely debugging object graphs and collections

was implemented in form of new functionality for SharpDevelop – the open source IDE for

.NET. This thesis first describes the motivation behind this functionality – i.e. why to build

new features even though developers could live without them so far. Then, detailed analysis of

the work is presented, including an overview of SharpDevelop architecture and means of

integration of the work into SharpDevelop. Finally, the Implementation section describes the

design and highlights interesting parts of the implementation.

1.1 Style conventions

The following style conventions are used throughout the document:

 Text in italics denotes special terms and definitions.

 Fixed-width font is used for code and pseudocode listings and references to symbols.

1.2 Terminology

Debugger – a program which controls execution and observes state of another program.

Debuggee – the process being debugged by the debugger.

IDE – Integrated development environment. A collection of software developments tools such

as a code editor, a debugger etc.

By the term collection this thesis refers to .NET Lists, ObservableCollections, arrays, or any

other IEnumerables. Similar classes exist in other environments and most ideas mentioned in

this thesis would apply also to them.

1.3 Context

This thesis is about debugging managed programs in the context of .NET environment.

Therefore, whenever the text mentions classes and their instances, it refers to managed .NET

instances, references etc. Likewise, the term object properties in the context of this thesis

refers to standard .NET properties – i.e. a getter and/or a setter method usually with a backing

field. Still, a lot of concepts and ideas described in this thesis can be directly applied to other

managed environments, for example Java.

1.4 Motivation

Debuggers and Integrated Development Environments are a very live topic in software

engineering and they have seen a lot of improvement in the last years. However, current

debuggers still do not solve some scenarios sufficiently – this section identifies such scenarios.

8

1.4.1 Object graphs

Currently, most visual debuggers are similar in terms of presenting data from the debuggee

(the program being debugged) to users. The most typical way of presenting such data are

watches, which show variables in current scope in a tree view fashion - if an object contains

references to other objects, these become its children in the tree. Debugger tooltips are a very

similar feature to watches; the difference is that debugger tooltips allow users to explore

values of expressions by pointing mouse cursor directly at expressions in code. This makes

debugger tooltips easier to use than watches, since users do not have to look for the right

variables in the watch window and switch their focus between the watch window and the

code editor.

Figure 1 – Watch window and debugger tooltips in Eclipse 3.5 (watch window is called "Variables" in
Eclipse)

But neither debugger tooltips nor watches are perfect for all scenarios – take, for instance, a

structure of two objects having a reference to each other:

Figure 2 – Two instances having a reference to each other

Figure 2 shows a simple data structure as usually depicted by people. However, the following

figure shows how such structure is presented by watches or debugger tooltips:

9

Figure 3 – Data structure from Figure 2 presented by debugger tooltips in Visual Studio 2010

The problem is that using current debugging tools, users have very little means of

determining how the data structure actually looks in reality. In the example from Figure 3 the

tooltips can be expanded infinitely.

Another problem which is not very well solved today is visualization of changes. If a user

performs a step in the debugger how can he or she determine what changes occurred in the

state of the program? Sometimes the change is easy to understand from the code, as in:

IFoo foo = GetFooImplementation(context);

But if the code being stepped over changes multiple variables, it is useful to see what just

happened. This is solved in some IDEs by highlighting variables whose values were just

changed.

10

Figure 4 – In the Visual Studio 2010 Locals window, values of variables changed by debugger step are
highlighted automatically.

Unfortunately, this approach is not great for visualizing changes in data structures. What if an

item was inserted into a linked list, or what if a tree rotation occurred? I realized this problem

when teaching Introduction to programming to university freshmen. What I frequently

observed was that there had been code on one side of the whiteboard and a drawing of a data

structure on the other side. The teacher was explaining the code by pointing to the current

“instruction pointer” with a finger and moving the finger from one line of the program to the

next line. At the same time a student was updating the drawing of a data structure by erasing

parts of it and drawing new parts, as the structure was being modified. By seeing how each

statement modified the data structure the students could clearly see how the program works.

After several weeks of running this university class I had an idea – why not automate the

process? The IDE could actually let users step through the code and draw and update data

structures in a similar way we did in the class.

1.4.2 Collections

The second issue with current debuggers are insufficient possibilities to explore and

understand contents of collections of complex (i.e. non-primitive) objects. For example, when

debugging a program that works with a collection of objects of type Person, such collection is

commonly visualized in the following way in current debuggers:

11

Figure 5 – Debugger tooltip in Visual Studio 2010 showing contents of a collection of objects

The problem is that such view does not provide almost any information – there is no way to

get an overview of the contents of the collection and there is also no way to quickly locate

individual items based on their properties. The only possibility is to drill down the items of

the collection, opening and closing them one by one, which takes a lot of time. Combined with

the fact that collections are one of the most common data structures, this is a serious

shortcoming of current debuggers.

Figure 6 – Debugger tooltip in Visual Studio with one collection item expanded. The interesting property
was declared in a base class so expanding multiple times was needed to locate the desired property.

In Visual Studio, debugger support for DebuggerDisplayAttribute and

DebuggerTypeProxyAttribute [1], [2] partially solves this problem but these attributes have

to be included in the code being debugged and also provide only hard-wired view of

individual fields or properties.

Apart from general issues with debugging collections, there are issues specific to

SharpDevelop. SharpDevelop’s integrated debugger currently lacks support the IEnumerable

type and does not support large collections efficiently (expanding contents of a large

collection can block whole SharpDevelop for a long time, depending on the size of the

collection).

12

1.4.3 Debugger tooltips

Debugger tooltips are a feature similar to watches, as shown on the following screenshot:

Figure 7 – Debugger tooltips in SharpDevelop 3

The advantage of debugger tooltips compared to watches is that users can just point a mouse

cursor at anything they are interested in. They don’t have to look for variables in the watch

window which typically contains more than a dozen of available variables. Debugger tooltips

are a frequently used feature of Visual Studio’s integrated debugger and SharpDevelop

implements them as well. However, the debugger tooltips in SharpDevelop 3 are missing two

very important features: support for large collections, and support for the IEnumerable type.

The importance of support for IEnumerable is very high since typical programs use

IEnumerable extensively. Moreover, the UI of SharpDevelop 3 was built using Windows Forms

and starting with SharpDevelop version 4.0, Windows Forms has been deprecated in and the

UI of SharpDevelop has been rewritten to WPF, which means that completely new tooltips

implemented in WPF are needed. This thesis covers a new implementation of debugger

tooltips for SharpDevelop 4.0.

1.5 Goals

To address the issues identified in section 1.4 (Motivation), this thesis sets the following goals:

 Provide a way for users to explore state of data structures in a debuggee in a similar way

people draw data structures on a whiteboard.

 Make it possible for users to see how data structures are being changed by stepping in

the debugger. The more understandable the visualization of the change, the better.

 Provide a way for users to get an overview of contents of collections of objects, in an

easier, faster way than using watches and debugger tooltips.

13

 Add support for IEnumerable collections to SharpDevelop’s integrated debugger.

 Add efficient support for large collections (tens of thousands of items) to SharpDevelop’s

integrated debugger.

 Reimplement SharpDevelop’s debugger tooltips in WPF, also adding support for

IEnumerable collections and large collections.

 Make it possible to open debugger visualizers from the debugger tooltips; make the

integration extensible, enabling users to implement new debugger visualizers.

 Implemented features should work when debugging C# and VB .NET code.

1.6 Preview

To give the reader a better overview of what this thesis is about, this section presents a short

preview of some of the results of this thesis.

1.6.1 Object graph visualizer

Our first addition to SharpDevelop’s integrated debugger is a visualizer of object graphs.

Figure 8 – Object graph visualizer showing in-memory instances and references between them

While debugging, the Object graph visualizer lets users explore object graphs referenced by

the variables in user code. For example, if there is an instance of a linked list in the program,

the visualizer displays the linked list in a similar fashion it is commonly drawn on a

whiteboard. The graph is updated live as the user steps in the debugger and the state of the

data structure changes.

14

1.6.2 Collection visualizer

The second addition to SharpDevelop’s integrated debugger is a collection visualizer – a new

way to explore contents of collections of objects.

Figure 9 – Collection visualizer showing contents of a collection of objects in the debugger

The Collection visualizer provides insight into the contents of collections of objects. The main

point is that it displays properties of the collection items in a way which makes multiple

properties of each item visible at once.

1.6.3 Debugger tooltips

The third implemented as a part of this thesis are debugger tooltips for SharpDevelop.

Figure 10 – New debugger tooltips for SharpDevelop 4, with support for visualizers

Debugger tooltips are a popular feature of Visual Studio. SharpDevelop 3 has debugger

tooltips but two important features were missing - support for IEnumerable collections, and

15

support for large collections. As a part of this thesis the tooltips were reimplemented in WPF

for SharpDevelop 4.0, including added support for IEnumerable collections and large

collections.

1.7 Contribution of this thesis

As a result of this thesis SharpDevelop is currently the only IDE to have the features described

in the thesis and we are expecting user feedback to see how these features help users in their

every-day development tasks. Some users have already provided positive feedback – for

example, they expressed a need for a better Collection debugging support in their favorite

IDEs.

Note that this thesis is not about implementation of a similar feature to Visual Studio’s

debugger visualizers [3]. In Visual Studio, users can include custom debugger visualizers for

custom types into their code and Visual Studio then offers these visualizers in its debugger

tooltips. Since the approach used in Visual Studio would be too limiting for the visualizers

described in this thesis, we rather implement visualizers directly in SharpDevelop and

provide extensibility points for other visualizers to be added in form of SharpDevelop AddIns.

Functionality similar to Visual Studio’s user defined visualizers is not supported in

SharpDevelop yet but the SharpDevelop team welcomes contributors who would like to work

on this (we would be glad to help with the implementation). There are also many other

interesting areas to work on, for example background compilation or refactorings.

1.8 Background

The first ideas for this thesis come from the beginning of 2009 when I was experimenting with

visualizing object graphs using the Visual Studio debugger [4], thinking about improving the

way people debug data structures. Then I found about the Google summer of code 2009

program. Seeing that SharpDevelop IDE was among the mentoring organizations and the team

even wanted to improve their debugger, applying to SharpDevelop in Google summer of code

was a no-brainer.

Google summer of code [5] is a program run by Google. Open source organizations apply to

the program and Google selects the most attractive organizations to participate. Among

participating organizations are such ones as Eclipse, Firefox, gcc, Haskell, Mono, Ogre3D,

OpenOffice, Scala and many others. The students then apply to individual organizations with

detailed proposals of their ideas. Google distributes approximately 1000 slots to the

organizations, based on how popular the organization is (that is how many applications the

organization received). For example, SharpDevelop had five slots in 2009. Then it is up to the

mentoring organization members (that is, the long-term contributors to the open source

project) to select the students they like the most. These students then work for 3 months

fulltime on their projects and receive $5000 from Google, provided the mentoring

organization confirms that the student did a good job. The not-so-unofficial goal of Summer of

code is that students stay with the project after the summer and become contributors.

My experience with working on SharpDevelop has been very positive mainly because the

SharpDevelop team is made by the best programmers I have had an opportunity to work with.

They deserve a lot of respect not only for contributing their skills and free time, but also for

16

the quality of their work. SharpDevelop is a very good source for learning about design, coding

practices and technologies. Moreover, the team members are helpful and discussions with

them are always effective.

Figure 11 - SharpDevelop meeting in August 2009 in Bad Ischl, Austria. Left to right: Tomasz Tretkowski
(Gsoc: C++ Backend Binding), Daniel Grunwald (Senior Developer, Architect), Martin Koníček (Gsoc:
Debugger visualizers), Siegfried Pammer (Gsoc: Xaml Binding), David Srbecký (Debugger), Peter
Forstmeier (SharpDevelop Reports), Christoph Wille (Project Management).

17

2. Analysis

Having the motivation and high-level goals for the thesis set, this section provides necessary

introduction to SharpDevelop IDE and debugging and provides detailed analysis of the

possible ways of reaching the goals.

2.1 Introduction to the SharpDevelop IDE

SharpDevelop [6] is a free open source IDE for .NET written almost entirely in C#. The

development of SharpDevelop started in 2000 and as of April 2011 SharpDevelop supports C#

4, Visual Basic 10, F#, IronPython, Boo and C++.

Figure 12 – SharpDevelop IDE

The level of support for the individual languages varies. For example, F# code-completion is

currently under development. Support for C# in SharpDevelop is well comparable to Visual

Studio and in some areas, SharpDevelop surpasses Visual Studio. Regarding C++ support,

Visual Studio definitely surpasses SharpDevelop, but C++ is not the main focus of

SharpDevelop. All this information is for SharpDevelop 4.0 as of April 2011.

SharpDevelop runs on Windows (for Linux there is MonoDevelop which was forked from an

early version of SharpDevelop). SharpDevelop uses .NET SDK for the build process (that is

MSBuild and the compilers for individual languages). SharpDevelop 4.0 supports targeting

.NET versions 2.0, 3.0, 3.5 and 4.0. SharpDevelop uses the project and solution file format of

Visual Studio – therefore, it can be used side-by-side with Visual Studio.

SharpDevelop (as of April 2011) does not fully support the following functionality:

18

 Web application development. It is possible to build and debug an ASP.NET application

using SharpDevelop [7]. However, the tooling (.aspx code completion etc.) is not

implemented.

 WPF designer is work in progress.

As SharpDevelop is completely free, it makes sense to compare it to the Express version of

Visual Studio. SharpDevelop has the following features which are not present in Visual Studio

Express:

 Integrated profiler

 NUnit integration (with test runner in SharpDevelop)

 Subversion and Git integration out of the box

 Code coverage

 ILSpy integration (open source .NET decompiler, developed by the SharpDevelop team)

 Reports (developed as part of SharpDevelop)

 Debugger visualizers

 Productivity features (ReSharper-like context actions, navigation shortcuts, etc.) [8]

 Extensibility

Of course, there are many small differences on both sides, but the list should provide a basic

overview.

The last mentioned feature, Extensibility, is important: SharpDevelop can be extended or

modified in almost any way. Its API is well designed and in case there would be an extension

point missing, the team is open to good contributions. Being an open source IDE written

entirely in C# makes SharpDevelop a very interesting project for programmers interested in

.NET who would like to learn advanced topics and have their work used by many people

(SharpDevelop is currently being downloaded around two thousand times a day).

2.2 The architecture of SharpDevelop

This section provides a high-level look at the architecture of SharpDevelop, its extensibility

model and how the Debugger visualizers fit into the picture.

2.2.1 Reusable parts of SharpDevelop

Several parts of SharpDevelop are written as standalone libraries. These include:

 ICSharpCode.Core – the generic extensibility framework on which SharpDevelop is built

 NRefactory (C# and VB parser and AST)

 ICSharpCode.SharpDevelop.Dom (representation of type system)

 AvalonEdit [9] (code editor with syntax highlighting and code completion window)

 Debugger

 Profiler

19

 Usage data collection (collecting data about how users interact with the application and

uploading them to a server)

 Reports (reporting library)

All of these libraries are completely reusable. Most of them are integrated into SharpDevelop

by AddIns which act as a “glue” to provide the functionality of the libraries in SharpDevelop.

E.g. Debugger.Core is a managed debugger library and Debugger.AddIn contains user interface

and SharpDevelop-specific logic. Similarly, AvalonEdit is a code editor with support for syntax

highlighting and AvalonEdit.AddIn adds SharpDevelop-specific behavior, like split-view,

debugger tooltips, context actions etc.

2.2.2 ICSharpCode.Core

SharpDevelop is an application built using a generic extensibility framework called

ICSharpCode.Core (further referred to as the Core). The Core provides an AddIn

infrastructure, where AddIns can extend almost anything, including other AddIns. The main

point of the Core is to allow users to provide extension points in their applications very easily.

The Core was developed for the purposes of SharpDevelop but it is a standalone framework

on which SharpDevelop is built.

ICSharpCode.Core for WPF and Windows Forms applications

There are two versions of the Core: ICSharpCode.Core.WinForms and

ICSharpCode.Core.Presentation, designed to be used in Windows Forms and WPF applications

respectively. They both reference the assembly ICSharpCode.Core which contains all the

common non-UI-specific functionality.

The AddIn tree

The extensibility infrastructure provided by the Core is called the AddIn tree. AddIns are

defined in XML files with .addin extension. There are several standard tags, the basic one

being a tag called Path which essentially enables adding extension points. In the following

example three ToolBarItems are being added to the AddIn tree path called

“SharpDevelop/Browser/Toolbar”:

<Path name = "/Browser/Toolbar">

 <ToolbarItem id = "Back"

 icon = "Icons.16x16.BrowserBefore"

 tooltip = "${res:AddIns.HtmlHelp2.Back}"

 class = " SharpDevelop.BrowserDisplayBinding.GoBack"/>

 <ToolbarItem id = "Separator1" type = "Separator"/>

 <ToolbarItem id = "Home"

 icon = "Icons.16x16.BrowserHome"

 tooltip = "${res:AddIns.HtmlHelp2.Homepage}"

 class = "SharpDevelop.BrowserDisplayBinding.GoHome"/>

 [...]

Listing 1 - .addin file defining three ToolbarItems

Then the application built using the Core can use the following call which returns a ToolStrip

object with three buttons and a separator, as defined in the .addin xml file :

20

var toolStrip = ToolbarService.CreateToolStrip(this, "/Browser/Toolbar");

Listing 2 – Obtaining items for a Toolbar, defined in Listing 1

Such functionality by itself wouldn’t be very interesting. The interesting part comes when

someone else writes an AddIn for the application, specifying the following in the .addin

definition file:

<Path name = "/Browser/Toolbar">

 <Condition name="IsSolutionOpen" action="Disable">

 <ToolbarItem id = "SyncHelpTopic"

 icon = "Icons.16x16.ArrowLeftRight"

 tooltip = "${res:AddIns.HtmlHelp2.SyncTOC}"

 class = "HtmlHelp2.SyncTocCommand"

 insertafter = "Separator1"/>

 [...]

Listing 3 – A different AddIn adding another ToolbarItem

Now, the call to ToolbarService.CreateToolStrip will return a ToolStrip with four

buttons thanks to the fact that the AddIn tree combines all the AddIn definitions together. By

creating the toolbar using the Core API, the host application has made its toolbar extensible.

The more the host applications uses such calls, the more extensible it will be.

Listing 3 also shows a standard construct called Condition. The Condition causes the

ToolbarItem to be enabled only if the SolutionOpen condition evaluates to true. The

Condition has custom logic implemented in a C# class, which has to be registered in the

following way:

<Runtime>

 <Import assembly=":HelpAddin">

 <ConditionEvaluator name="IsSolutionOpen"

 class="HelpAddin.IsSolutionOpenConditionEvaluator"/>

[...]

Listing 4 – Registering a ConditionEvaluator

In the listings 1 and 3 one can also notice that each of ToolbarItem xml tags has a number of

attributes. The attribute class determines the name of the class the toolbar button click. The

insertafter attribute specifies at which position the item should be inserted. Insertafter refers

to an id of another item. The final order of items is resolved from the insertafter relations by a

topological sort algorithm.

So far the examples have shown two types of tags which can be inserted inside a Path in the

AddInTree: Condition and ToolbarItem. These xml tags are called codons in SharpDevelop

terminology. There are six types of default codons:

 Class - Creates object instances by invocating a type's parameterless constructor.

 FileFilter - Creates file filter entries for the OpenFileDialog or SaveFileDialog.

 Include - Includes one or multiple items from another location in the addin tree. You

can use the attribute "item" (to include a single item) or the attribute "path" (to

include all items from the target path).

21

 Icon - Used to create associations between file types and icons.

 MenuItem - Creates a menu item (WinForms on WPF depending on the version of Core

used).

 ToolbarItem - Creates a toolbar item (WinForms on WPF depending on the version of

Core used).

The class codon is very useful when providing extensibility not related to user interface. A

typical usage is to register classes at a well-known Path, while all of these classes implement

an interface provided by the host application:

<Path name="/SharpDevelop/Debugger/Visualizers">

 <Class class="Debugger.AddIn.Visualizers.ObjectGraphVisualizer" />

</Path>

Listing 5 – Registering service implementations at a well-known path

Then the host application can obtain all the available implementations:

AddInTree.BuildItems<IVisualizer>("/SharpDevelop/Debugger/Visualizers");

Listing 6 – Obtaining all implementation from a well-known path in the AddIn tree

Such call assumes that all the classes registered at the Path /SharpDevelop/

Debugger/Visualizers implement the IVisualizer interface.

Lazy loading

To improve application startup time, the parts of the AddIn tree are only loaded when needed.

For example if an AddIn adds items to a menu, the AddIn assembly will not be loaded until the

menu is opened for the first time.

Extensibility

So far, six default types of codons (Class, FileFilter, Include, Icon, MenuItem,

Toolbar) were described. All the codons are actually not hardwired into the AddIn tree

implementation. There is a generic mechanism of turning codons (i.e. the xml tags) into

objects, and this mechanism is extensible. We will not go into details here because there is an

excellent article by Daniel Grunwald [10] covering this topic and more.

Localization

ICSharpCode.Core provides support for localization. Localization strings are stored in

standard .NET resource files with extensions denoting culture, such as

“StringResources.de.resx”. The individual strings can have arbitrary identifiers but a

namespace-like notation is usually used to prevent collisions. The strings are then accessible

in XAML using a markup extension:

"${res: AddIns.Profiler.ProfilingView.CpuCyclesText}"

Listing 7 – Accessing localized strings from XAML

And in code using e.g.

22

StringParser.Parse("${res:AddIns.Profiler.ProfilingView.CpuCyclesText}")

Listing 8 – Accessing localized strings from C#

In SharpDevelop itself, the resource files are being generated by a custom tool from a

translation database filled by contributors using a translation website1.

Remarks

For more information about SharpDevelop.Core see [10] and [11].

2.2.3 ICSharpCode.SharpDevelop

As said before, SharpDevelop is an application built using ICSharpCode.Core. The codebase of

SharpDevelop itself consists of many AddIns. Even the IDE “itself” is an AddIn contained in

the project ICSharpCode.SharpDevelop, with the AddIn definition file

ICSharpCode.SharpDevelop.addin. The SharpDevelop AddIn contains the base of

SharpDevelop UI and a part of functionality but it is not a working IDE - it rather provides

interfaces to be implemented by other AddIns. For example, code editing, code completion,

and debugger are all implemented as AddIns extending ICSharpCode.SharpDevelop.

2.2.4 NRefactory

NRefactory is a standalone library providing object model for C# and VB code. NRefactory is

important to this thesis because the debugger is using NRefactory extensively to represent

expressions to be evaluated.

NRefactory contains a lexer and a parser of C# and VB languages2. The main use of NRefactory

is parsing of source code and providing a Syntax tree of the code. There are many possible

types of nodes in the syntax tree, for example ForStatement, SwitchStatement,

MemberReferenceExpression, BinaryOperatorExpression etc. For example the following

code snippet is parsed into the following syntax tree:

var foo = Foo.Size + 2;

Listing 9 – Sample code to be parsed by NRefactory

VariableDeclaration(Name=foo)

 Intializer=

 BinaryOperatorExpression(op=Add)

 MemberReferenceExpression(MemberName=Size)

 IdentifierExpression(Identifier=Foo)

 PrimitiveExpression(Value=2)

Figure 13 – Parse tree for the the code snippet from Listing 9

The important fact to realize is that the syntax tree does not contain any semantic information

– for example it is not known whether Foo is a class, a local variable, or a property.

1 From a personal point of view, it is a rewarding feeling to add a new string into the UI and see it
translated into ten languages by people from around the world.
2 The lexer and parser are kept up to date with most recent language specifications changes.

23

Visitors

NRefactory uses the classical Visitor pattern for all operations on the syntax tree: the root of

the class hierarchy, INode, defines a method AcceptVisitor and each specific type of node

overrides AcceptVisitor to call a specific version – e.g. ForStatement.AcceptVisitor calls

visitor.VisitForStatement(this). The logic of the tree traversal is implemented in

AbstractAstVisitor from which users can derive new visitors to implement new

operations, getting interesting information about the tree.1

2.2.5 ICSharpCode.SharpDevelop.Dom

In the previous section 2.2.4 (NRefactory) it was stated that the NRefactory syntax tree does

not contain any semantic information – in Figure 13 it can be seen that Foo is an Identifier but

no more information is provided – there is no information about whether it is a class, a

property, a field or a local variable.

Of course, the IDE needs a lot of semantic information about the code to provide features such

as Go to definition, Find references or Code completion. The semantic understanding of the code

is provided by ICSharpCode.SharpDevelop.Dom. The Dom provides an object model for

representation of classes, methods, types, parameters etc. An important part of the Dom are

resolvers (that is implementations of IResolver). Resolvers accept the identifier Foo from

our example plus context (position in the source code file) and return information telling

whether the symbol is a class, a property or other symbol, where to find its definition etc.

In order for the resolvers to be able to work correctly, the Dom representation of all the

symbols in the currently open solution is needed. When a solution is opened, SharpDevelop

parses all the files to build an initial Dom representation. When files are being edited,

SharpDevelop is reparsing the files in background and updating the Dom representation.

ICSharpCode.SharpDevelop.Dom depends only on NRefactory and is therefore reusable

outside of SharpDevelop. The principle of programming against interfaces is strictly followed,

so for example PythonClass (coming from the IronPython backend binding) implements

Dom.IClass and the code in Dom can work with it without knowing anything about Python.

Similarly, concrete implementations of IResolver provide resolvers implementing the

semantic rules of C#, VB, Xaml and the other supported languages.

2.2.6 Future of NRefactory and Dom

In retrospect, the decision to split the syntactic and semantic representation of code into

NRefactory and Dom was not the best one – there could be a unified representation bringing

the facilities of NRefactory and Dom together. Also, NRefactory was designed when C# and VB

were identical languages differing only in syntax. However, the features of C# and VB cannot

be mapped 1:1 anymore. As a result, new version of NRefactory [12] has been designed to be

used in the future versions of SharpDevelop.

There is also a very interesting initiative from Microsoft to open the internals of their

compiler which could be very interesting for SharpDevelop and many other tools dealing with

source code. The problem with the current compiler is that it acts as a black box, consuming

1 AbstractAstVisitor is intented for read-only operations. If an operation needs to modify the parse tree,
it should subclass AbstractAstTransformer.

24

source code and producing binary output. In the process of turning the source code into

bytecode, the compiler produces large amount of very useful semantic information about the

code, and then throws it away.

IDEs and other tools have to re-implement the logic that is already present in the black-box

compiler – NRefactory contains a full C# parser, the resolvers implement type inference and

overload resolution exactly according to the C# language specification etc. All these features

are present in the compiler but not accessible (yet).

Note that the Scala programming language already has an open compiler (called Presentation

compiler [13]) exposing all its understanding of the code so for example the Scala IDE for

Eclipse [14] and Ensime IDE for Emacs [15] are both using the Presentation compiler.

2.2.7 Debugger

SharpDevelop ships with an integrated debugger. The overall schema of interaction of the

debugger with the debuggee is the following:

Figure 14 – Overall shema of debugging. An important fact to realize is that the debuggee lives in a separate
process.

SharpDevelop’s integrated debugger consists of two components – Debugger.Core and

Debugger.AddIn. Debugger.Core is a standalone debugging library for .NET and

Debugger.AddIn integrates this library into SharpDevelop.

Debugger.AddIn

Debugger.AddIn is essentially SharpDevelop’s integrated debugger. It contains all the IDE-

specific logic and user interface, including the Debugger tooltips and Debugger visualizers.

Debugger.AddIn relies on Debugger.Core for most of its functionality, for example setting

breakpoints, stepping, or evaluating expressions.

Debugger.Core

Debugger.Core is a standalone debugging library for .NET. It provides features typically

present in debuggers: attaching to and controlling a user program, stepping, setting

breakpoints, exploring state of the variables in the program etc. Debugger.Core uses a low-

level debugging COM API provided by the .NET runtime [16]. Parts of this section are based on

information from David Srbecký, namely [17].

25

Architecture

Debugger.Core consists of four cleanly separated layers. Starting from the lowest layer, these

layers are:

 COM API: The low-level unmanaged debugging API of the .NET framework. The API

contains interfaces such as ICorDebug or ICorDebugManagedCallback.

 COM wrappers: Auto-generated thin layer over the COM API which makes it a bit easier to

use. It converts 'out' parameters to return values and tracks returned COM objects so that

they can be explicitly released (this is necessary so that the debugger does not lock

assemblies). The layer also contains several hand-written methods that handle marshaling

of strings and other objects.

 NDebugger: The debugging library itself. It provides access to variables and types via

reflection-like interface. It provides commands for setting breakpoints, stepping and

basically everything usually expected from a debugger.

 ExpressionEvaluator: Extension on top of NDebugger which can evaluate C# expressions.

ExpressionEvaluator depends on SharpDevelop's NRefactory.

Fundamentals of debugging

The debugger can start a new debuggee process or it can attach to an existing one. While the

debuggee is running, there is not much the debugger can do. Almost all operations are

forbidden. The debugger has to wait until the debuggee pauses - usually because user's

breakpoint is hit. Once the debuggee is paused, the debugger can investigate its state - it can

look at the call stack, read local variables and so on. Stepping or pressing "Continue" will put

the debuggee into running state again. An important thing to realize is that the debugger and

the debuggee are running in separate processes.

Sample

To demonstrate Debugger.Core in practice, let’s look at an example of its usage. Assume we

have the following “Hello world” program:

class Program

{

 public static void Main(string[] args)

 {

 string message = "Hello World!";

 System.Console.WriteLine(message);

 }

}

Listing 10 – Sample program to be debugged

This program can be debugged using the following code:

26

NDebugger debugger = new NDebugger();

Breakpoint breakpoint = debugger.AddBreakpoint("Program.cs", 6);

breakpoint.Hit += delegate { Console.WriteLine("Breakpoint hit"); };

// Start the debugee

Process process = debugger.Start("HelloWorld.exe", "C:\\", null);

// Waits until the breakpoint is hit if it did not

// already happen.

process.WaitForPause();

// The breakpoint hit message should be shown now

// Show the name of the current method on the stackframe

Console.WriteLine("Current method =

" + process.SelectedStackFrame.MethodInfo.FullName);

// Get reference to the local variable

Value localVariable =

 process.SelectedStackFrame.GetLocalVariableValue("message");

Console.WriteLine(string.Format("message = {0} (type: {1})",

 localVariable.AsString(), localVariable.Type.Name));

// Resume execution after the breakpoint

process.AsyncContinue();

Listing 11 – Sample usage of the debugger

The program produces the following output:

Breakpoint hit

Current method = Program.Main

message = Hello World! (type: String)

Listing 12 – Ouput of the program from listing 10

Investigating state of variables

The sample code in the previous section showed that it is possible to obtain values of

variables defined in the debuggee process. This section described how the process of

obtaining values of variables works and what the design decision were when building this

part of the debugger API.

Values

Listing 11 in the previous section showed a statement for obtaining the value of a variable:

Value localVariable =

 process.SelectedStackFrame.GetLocalVariableValue("message");

Console.WriteLine(string.Format("message = {0} (type: {1})",

 localVariable.AsString(), localVariable.Type.Name));

Listing 13 – Getting values of variables using the debugger

The object returned by the GetLocalVariableValue call is of type Debugger.Value. The

Debugger.Value class has an AsString() method which returns a string representation of

the value of the variable.

What exactly is the Debugger.Value? As said before, the debugger and the debuggee are

running in separate processes. That means a Debugger.Value cannot hold a direct reference

to an instance in the debuggee process (because memory spaces of individual processes are

27

strictly separated by the operating system). Instead, some sort of interprocess communication

must be used. The ICorDebug API used by the Debugger.Value class under the hood takes of

this communication.

If the value in the debuggee is of primitive type like string or integer, its actual content can be

requested. However if the value is a class, we must enumerate its fields and properties and

get the values for the ones that we are interested in. We are of course free to get fields of the

new values as well and drill down as much as we want to.

There is a good reason why this model is appropriate. The debugger does not know that the

user will create a field "myHelloWorldMessage" and therefore it cannot reference it. Even if

direct reference to the object in the other process was somehow available, the debugger

would still have to use reflection to figure out what fields the object contains and then get

their values one by one. In fact, most of the debugger's API inherits from the abstract

reflection classes (like Type, MethodInfo) so anyone familiar with reflection should have no

problems using the debugger API.

Lifetime of Values

The .NET garbage collector (GC) presents a significant complication to the debugger. When

the debuggee is paused no code can be executed including the garbage collector so it is safe to

investigate it as much and as long as we want. However, if the debuggee is resumed even for

just a few instructions, the GC might have been run and it might have moved all variables

around in memory. The GC takes care to update all references within the debuggee so that it

does not even notice. However, it unfortunately does not tell the debugger. This means that

whenever the debuggee is resumed, all debugger's Values become invalid because they might

be pointing to wrong memory (Value holds a reference to the COM object identifying the value

in the debuggee). The next time the debuggee is paused, it has to obtain all values again. This

problem is more problematic than it might initially seem - getting a value of a property or

calling Object.ToString() both require that the debuggee is resumed for a while so that the

methods can be injected into the debuggee and executed. Imagine that we are debugger

tooltips to drill down to object "foo.bar.Person" which contains two properties - FirstName

and Surname. After we evaluate the "FirstName" property, all values will become invalid and

we will have to obtain "foo.bar.Person" again just so that you we evaluate "Surname".

Permanent references

The ICorDebug API provides a facility to get around the problem with the lifetime of Values –

it is possible to create a strong handle, which does not become invalid when the debuggee is

resumed and always points to the right place in the memory where the debuggee instance

resides, even after the target instance was moved by the garbage collector. This functionality

is accessible using the Value.GetPermanentReference() method in Debugger.Core. In this

thesis, we refer to Values returned from GetPermanentReference() as Permanent references.

It seems that the problem with the lifetime of Debugger.Values is solved by immediately

obtaining a Permanent reference immediately when obtaining any Debugger.Value.

However, the documentation states that user code should never keep many Permanent

references (more than a few hundred). Therefore, the problem remains as we are allowed to

create Permanent references and use them shortly but we cannot keep many of them as long

as we need to.

28

Expressions

To get around the problem with Garbage collection invalidating Values, Debugger.Core

provides Expressions, using NRefactory.Ast.Expression. An Expression is a tree which

represents a way to obtain a Debugger.Value.

Expressions can be turned into their string representation (e.g. "foo.bar.Person“) and parsed

from a string in C# format. This functionality is provided by NRefactory. Expressions can be

evaluated by calling Expression.Evaluate(), producing a Debugger.Value. This is the main

point of expressions in the debugger – instead of keeping a Debugger.Value and never

knowing when it becomes invalid, we keep an Expression an evaluate it whenever we need its

value. Indeed, this how all the UI of SharpDevelop’s integrated debugger uses Expressions:

When the user has foo.bar open in a debugger tooltip and expands Person, the debugger

tooltip generates an expression foo.bar.Person and then evaluates it.

At one point in the past, the Value class was designed so that it would remember the

expression using which it was obtained and automatically reevaluate itself if needed.

However, this approach turned out to be quite difficult to debug since a relatively simple call

could cause complicated chain of events. The expression based approach is more explicit and

thus allows better reasoning about the program - both in terms of behavior and performance.

Expression evaluation

Expression.Evaluate() is implemented in the ExpressionEvaluator class which acts as a

visitor, traversing the syntax tree of the Expression. This design takes advantage of the fact

that expression evaluation can be defined recursively:

For example, when evaluating expressions list[i+3].Name or person.Name, list[i+3] or person is

evaluated first and then the field or property called Name is evaluated on the result of the

evaluation. To evaluate list[i+3], i+3 is evaluated and the result is passed as a parameter to the

indexer of list.

This is exactly how ExpressionEvaluator works. Methods calls are also supported (so

foo.Bar(foo).Foo can be evaluated).

Caching

For better performance, the ExpressionEvaluator caches results of evaluations in form of

Permanent references. This is useful because often a series of Expressions like

this.Person.FirstName, this.Person.LastName and so on are evaluated and thanks to caching,

this.Person is evaluated only once. When the debuggee is resumed by user request (for

example by a debugger step) the cache is cleared.

Performance tricks

There are some clever tricks used to improve performance of the evaluation. For example, in

.NET it is very common to have properties with getter methods just returning a backing field,

such as (in C#).

string Name { get { return this.name; } }

Listing 14 – Property with a backing field

or

29

string Name { get; set; } // backing field is generated by the compiler

Listing 15 – Property with an auto-generated backing

Exploiting the fact that getting values of fiels is much faster that using getters (which requires

resuming the debuggee and waiting for result), the value of the field is returned directly when

possible.

This is done by looking at IL of the getter method to see if it is a method in the form return

field;. Such IL can have four different versions when generated by Microsoft’s C# compiler

(depending on the property being instance/static and the backing field being

explicit/generated). The pattern to recognize all four versions is the following (can be found

in DebugMethodInfo.cs):

nop || nothing

ldarg.0; ldfld || ldsfld

 <field token>

stloc.0; br.s; offset+00; ldloc.0 || nothing

ret

Listing 16 – IL structure of a property getter returning value of a backing field

The type system

The debugger can not only provide information about the values in the debuggee, but also

about their types. In fact, to be able to obtain contents of a complex value (instance of a class)

we must know the type of the value to be able to iterate its fields and properties and get their

values one by one. This is a very common pattern used everywhere in SharpDevelop,

including the Debugger visualizers.

The API provided by the debugger to investigate the types in the debuggee is very easy to

understand if one is familiar with Reflection. In fact, the API is exactly the same as the

reflection API. The class DebugType implements the abstract class System.Type, so it has

methods such as GetProperties() and GetMethods() which return

System.Reflection.PropertyInfo, MethodInfo etc. They actually return debugger-specific

implementations of these types but that is not a concern to the user.

Again, under the covers, the debugger uses the low level COM API provided by the .NET

runtime (for example the IMetadataImport interface).

Multithreading

Unfortunately from the specification of the underlying ICorDebug API, all the debugger calls

have to be invoked from the main thread. Evaluating multiple expressions at once would be a

performance improvement for some parts of the code working with the Debugger API

(including the Debugger visualizers) but it is unfortunately not possible.

2.3 Fundamental problem of debugging

There are several important facts to realize about debugging in general when properties are

involved. The first fact is that the debugger is actually changing the state of the debuggee by

observing it. This is because the only correct way to get a value of a property is to invoke its

getter, and if the getter has some side effects it can change the state of the program.

30

Another fact to realize is that it is not always easy to correctly determine the values of all

properties of an object. Take, for example, the following class:

public class Tricky

{

 int a;

 int b;

 public int A {

 get {

 b++;

 return a;

 }

 }

 public int B {

 get {

 a++;

 return b;

 }

 }

}

Listing 17 – Class with two property getters incrementing each other

After creating an instance of this class, debugger tooltips in Visual Studio 2010 show an

incorrect state of the instance:

Figure 15 – Debugger tooltip in Visual Studio 2010 showing „incorrect“ state of an instance

The state displayed in Figure 15 definitely does not correspond to reality – the debugger read

both of the properties A and B so the actual values of the fields are a=1, b=1. But what are the

actual values of properties A and B?

If a value of a property is defined by calling a getter of the property and reading the return

value, then reading the value of A changes the value of B and vice versa, which means values of

both A and B cannot be determined at the same time. The debugger could get around the

problem with values of fields by first evaluating all properties and then all fields (here the

evaluation was apparently done in aplhabetical order) but the debugger can never display

„correct“ values for both properties A and B because such pair of values does not exist.

The problem might seem a little theoretical, but there are very practical scenarios which

exhibit similar problems:

31

public class Caching

{

 object cachedInstance;

 public object Instance {

 get {

 if (cachedInstance == null)

 cachedInstance = new object();

 return cachedInstance;

 }

 }

}

Listing 18 – Property getter caching a value

Figure 16 – Debugger tooltip in Visual Studio 2010 showing incorrect state of an instance

The situation in Figure 16 could be solved by first evaluating properties and then fields. But

what if there is another property which only reads cachedInstance? Then the value of such

property would be shown incorrectly if it were evaluated before evaluating Instance. Next

solution would then be evaluating all properties twice, which would incur a large performance

overhead (especially concerning the expensiveness of the debugger API) and still would not

solve all cases – when there are more instances shown at the same time (watch window, or

multiple levels of a debugger tooltip expanded), all of them would have to be updated because

a property getter could also change other instances.

Probably the only relatively reasonable solution to the problems with reading values of

properties is evaluating properties first and fields after them, which would solve some

common scenarios like the one in Figure 16, but such solution would have to evaluate all

properties even when they would be out of view (scrolled away) which would again incur

mostly unnecessary performance overhead. As seen on the screenshot, current debuggers do

not try to solve these problems – the user has better understanding of the code and can

reevaluate relevant parts as needed.

2.4 Division of work

In the motivation section it was stated that this thesis aims to solve issues with the current

state of debugging Object graphs and Collections and to improve SharpDevelop’s debugger

tooltips in the direction of collection support. As visualizing changes in object graphs and

visualizing contents of collections are distinct topics, it was decided (after a discussion with

the SharpDevelop team) that there will be two new separate features in SharpDevelop – the

Object graph visualizer and the Collection visualizer. The third feature are the debugger

tooltips. The debugger tooltips will conceptually stay the same as they were in SharpDevelop

32

3, but will be re-implemented in WPF with added proper support for debugging collections.

This thesis will analyze the Object graph visualizer, the Collection visualizer, and the Debugger

tooltips mostly separately but it will also identify common functionality shared by these three

features – such as collection support.

2.5 Collections

From the goals set for the Collection visualizer and Debugger tooltips, it is clear that both of

them will handle collections – the Debugger tooltips need support for IEnumerable collections

and large collections and the Collection visualizer will handle the same types of collections as

well. As for the Object graphs – the individual nodes in actual object graphs can, indeed, also

be collections, therefore it would be best to support collections in the Object graph visualizer

as well.

The common requirement for all of the visualizers is that large collections are supported

without significant degradation in performance. In the previous version of SharpDevelop,

when a collection variable was expanded in the debugger tooltips, the tooltips first obtained

all of the collection items from the debugger and only then displayed first few items. Since the

communication with the debugger has to be done on the main thread (as discussed in section

2.2.7 (Debugger)), the whole IDE was blocked for up to minutes, depending on the size of the

collection.

This thesis takes a lazy approach to getting items of collections from the debugger – only the

first few items needed to be displayed are obtained and as the view is scrolled more items are

being pulled from the debugger. This approach can be applied to all of the visualizers.

2.5.1 Types of collections

The basic inheritance hierarchy of .NET collection interfaces is the following.

33

Figure 17 - .NET collections inheritance hierarchy

As seen from the diagram, all the collection types in .NET framework implement IEnumerable.

Also, when dealing with user-defined collection types (including enumerators implemented

using the yield return construct in C#), it is safe to assume that any user type that has

semantics of a collection will implement IEnumerable. Therefore by supporting IEnumerable,

all possible types of collections would be supported.

However, the IEnumerable interface itself is very basic – it only enables sequential iteration

over the collection, without random access. The following three sections analyze possible

approaches to supporting collection types in the visualizers.

34

2.5.2 First approach – treating all collections as IEnumerable

The starting point for all the visualizers is a Debugger.Value or

NRefactory.Ast.Expression (which, when evaluated, yields a Debugger.Value). First, it

must be verified that the debuggee instance represented by the Debugger.Value implements

System.Collections.IEnumerable, which can be done by examining

Value.Type.FullName. Then it is possible to obtain the individual Values representing the

items: the method GetEnumerator() is invoked and the result is stored as a Permanent

reference. Then, whenever the collection view is scrolled and more items are needed, the

MoveNext() method and Current getter are invoked on the enumerator object to obtain a

Value representing the next item. When MoveNext() returns false, there are no more items

available.

A very important requirement in all of the visualizers is that the individual items of collections

can be expanded further. To expand an item, an identification of the item is needed – either a

Debugger.Value or an Expression. For Debugger.Values obtained from an enumerator,

there are no corresponding Expressions – the instances returned from the enumerator can

be new objects which cannot be reached through any variables in user code simply because

the user code does not reference the instances. The only remaining possible identification of

the Debugger.Values obtained from the enumerator are therefore the Values themselves, in

form of Permanent references (because without Permanent references they would all become

invalid immediately when obtaining the next item). The problem is that scrolling the view of

the collection would cause more and more Permanent references to be kept and, by

specification, holding many Permanent references is not allowed.

The only solution possible here would be not to hold any identification of the

Debugger.Values and when an item at index i is expanded, iterate over the collection from

the beginning (by obtaining a new enumerator) to the i-th item and expanding it. Such

solution would not be very efficient and moreover, the item obtained by re-enumerating the

collection could be a different instance from the one which is being expanded.

Pros

 One implementation supports all types of .NET collections.

 Supports infinite collections. It is not a problem if MoveNext() never returns false - first

few items will be displayed immediately and more and more items will be obtained as

needed.

Cons

 Expanding individual items is not really possible (only by re-enumerating the collection

from the beginning).

 Fast scrolling (faster than items can be obtained from the debugger) is not possible due

to the sequential nature of IEnumerable interface.

 If a collection only implements IEnumerable, the number of items (needed to display an

accurate scrollbar) cannot be determined. The only possible solution would be

evaluating MoveNext() and Current in loop, which is unacceptably slow. Evaluating

System.Linq.Enumerable.Count(e) would count the items quickly but it cannot be

guaranteed that the debuggee process references System.Core. The difference between

evaluating MoveNext() in a loop and evaluating Count() is that each MoveNext() call

35

needs an expensive interprocess debugger API call, while Count() is one debugger API

call and all the work is done directly in the debuggee. Injecting a foreach loop into the

debuggee to emulate missing System.Linq.Enumerable.Count() is not possible, as the

debugger API only supports expressions, not statements (foreach is a statement).

Summary

The cons of the IEnumerable solution are significant and it can be observed that all of them

are caused by the simple nature of the IEnumerable interface allowing only sequential access

to the items. The problem with determining the length of the collection and fast scrolling

cannot be resolved. Expanding can be solved only partially by re-enumerating the collection

always from the beginning, possibly obtaining wrong instances. The Pros of this solution are

outweighed greatly by its Cons.

2.5.3 Second approach – special case for IList

In the .NET collection interface hierarchy there is an interface called IList which adds an

indexer allowing random access to the items (the ICollection interface is not interesting in our

scenario because it only adds the Count property and otherwise has exactly the same

drawbacks like IEnumerable). This section explores the possibilities of dealing with

collections that also implement IList. It can be verified that a Debugger.Value implements

System.Collections.IList by examining Value.Type. The individual items from the IList

can be obtained by invoking the indexer getter on the Debugger.Value representing the

whole IList instance.

Pros

 Expanding individual items is not a problem: to expand an item at position i, it is

sufficient to remember the Permanent reference representing the whole IList and invoke

the indexer on this Permanent reference, passing i as a parameter.

 The length of the collection is immediately known by evaluating the “Count” property on

the IList Value. A scrollbar of correct size can be displayed.

 There are no limitations on the speed of scrolling. If properly implemented, it will be

possible to skip evaluation of items which are being scrolled over fast.

Cons

 Works for IList but not for IEnumerable.

Summary

The Pros of making a special case for IList are so significant that it is definitely worth it to

support IList separately. When an instance does not implement IList and only implements

IEnumerable, a fallback to the basic IEnumerable solution can be implemented.

2.5.4 Third approach – converting IEnumerable to IList

There is another possible approach to IEnumerable which is not immediately obvious –

having an expression e representing an IEnumerable<T>, by evaluating an Expression

“new List<T>(e)“, the IEnumerable<T> gets fully enumerated directly in the debuggee (as if

the debuggee itself called new List<T>(e)) and a Value representing the new List is returned.

Then the visualizers can access the List items randomly and get the Count of the List, enabling

expanding, accurate scrollbar, and fast scrolling. The constructor of List<T> is always

36

available because List<T> resides in mscorlib.dll which is always loaded in any .NET process

(mscorlib defines all the system types, like System.Int32 or System.String).

The solution is then to visualize ILists using the Second approach and visualize

IEnumerable<T> by converting it into IList and then also using the Second approach.

Pros

 All the Pros of the Second approach hold not only for IList and IList<T>, but also for

IEnumerable<T>.

Cons

 This solution cannot be applied to non-generic IEnumerable collections. Unfortunately,

there is no method in .NET 2.0 mscorlib (we want to support .NET 2 programs) that

accepts non-generic IEnumerable and returns an IList. Injecting a piece of code that

would emulate this functionality into the debuggee is not possible using the debugger

API, as the debugger API only supports expressions, not statements.

 Infinite IEnumerable<T> collections are not supported – the evaluation will timeout.

2.5.5 Conclusion

From the three approaches, the last one was chosen to be used in both the visualizers and the

Debugger tooltips. It has very strong Pros only at the cost of not supporting non-generic

IEnumerable and infinite collections, which are both rare cases. To support these two cases,

the fallback to the first approach can be implemented, but it was decided not to do so – it

would mean maintaining more code only two support two uncommon cases which arguably

most programmers almost never encounter (actually we had the First approach implemented

but removed it for maintainability reasons – the First approach works with Debugger.Values

while the Third approach enables working with Expression consistently everywhere).

Note: Experiments with Visual Studio 2008 show that its integrated debugger timeouts when

expanding an infinite IEnumerable collection in a debugger tooltip. This indicates that the

Visual Studio debugger is probably using an approach similar to our Third approach.

Expression caching

The visualizers will be getting the individual collection items by evaluating Expressions such

as list[i].Name. In section Expression evaluation (subsection of 2.2.7), it was stated that the

ExpressionEvaluator internally caches Permanent references of evaluated expressions. This

means that when scrolling a view of a collection, more and more Permanent references would

be held by the Expression cache. To solve this problem, after a discussion with David Srbecký

a method to clear the Expression cache was added to Debugger.Core and the visualizers will

call this method periodically to avoid holding many Permanent references when working with

large collections.

This concludes the analysis of handling collections in the visualizers.

2.6 Object graph visualizer

The high level idea of the Object graph visualizer is the following:

37

The user enters an expression to be visualized. The visualizer explores the object graph

starting at this expression and presents it to the user in a similar way people draw data

structures on a whiteboard. When a step in the debugger is performed, the drawing of the

graph is updated using a transition from the old state to the new state. The transition should

help users understand the changes that occurred during the debugger step.

2.6.1 Existing work

There have been attempts to implement something similar. Probably the most significant

effort so far has been the Data Display Debugger [18] which is a graphical frontent to the

command line debuggers like GDB or a Python debugger pydb. Unfortunately, none of these

debuggers support debugging managed .NET programs.

Figure 18 – DiplayDataDebugger showing a graph of in-memory structures in a C program

2.6.2 What needs to be done

The basic requirement for the Object graph visualizer is that an object graph for a given

expression is presented to the user in a similar way people draw the object graphs on a

whiteboard. Can the task be split into separate parts / steps? Yes it can, at least into these two

independent steps:

1. Building the graph - given an expression, determine the vertices and edges of the graph

2. Drawing the built graph to the screen

The second step can be split into two independent steps:

 Determining the layout of the graph (that is the positions of nodes and edges on a

plane)

 The actual drawing to the screen

38

The last required feature are Graph transitions which visualize the changes caused by steps in

the debugger. This leaves us with:

1. Graph building

2. Graph layout

3. Graph drawing

4. Graph transitions

As said, the first three steps can be done independently; but what about the last step – Graph

transitions? Will Graph transitions be a completely separate step or will they interact with

Graph building / layout / drawing?

Graph transitions

To decide how Graph transitions integrate with the rest of the algorithm, one has to realize

how debugger steps work. During a debugger step, a temporary breakpoint is placed at the

location of the next code segment and the debuggee is resumed to run at full speed until it hits

the breakpoint. When the temporary breakpoint is hit, the control is returned to the debugger.

Graph transitions should visualize the change caused by the debugger step, by moving existing

nodes to their new positions, and making it clear which nodes have been added and removed.

A natural idea would be to obtain some kind of a diff from the debugger describing the

changes which occurred and based on this diff then produce the transition. Unfortunately, the

debugger has no control over the debuggee while the debuggee is running and obtaining such

state diff directly is not possible.

However, we propose that it is still possible to infer a diff based on observations of the

debuggee state before and after the step. After the debugger step is finished and the control is

returned to the debugger, a new Object graph is built, reflecting the current state. The

instances found in this new Object graph are compared to the instances found in the old

Object graph from before the step and as a result of this comparison a diff describing the

changes is obtained. Using this diff a graphical transition explaining the changes can be

produced.

The conclusion to this section is that Graph building, Layout and Drawing will not depend on

Graph transitions. Graph transitions will use the information obtained in the Graph building

phase to infer a diff between two Object graphs and produce a graphical transition from the

first graph to the second one.

2.6.3 Graph building

Definition: Object graph is an oriented graph, where vertices represent in-memory instances.

Let vA and vB denote two vertices representing two instances A and B in the debuggee process.

There is an oriented edge from vA to vB if and only if instance A has a direct reference to B

(through a field or a property).

The problem: Given a reference to an instance in the debuggee, build an object graph

representing all instances reachable from this instance (up to a maximum depth in case the

graph is too large).

39

The algorithm

We propose the following algorithm to build an object graph given an expression e. The

algorithm is quite straightforward – it does a DFS walk down the object graph in the

debuggee, checking for already seen nodes. The checking for already seen nodes is done by

the function GetSeenNode which is crucial because it enables detecting shared references and

loops correctly. The result is a graph having the same “shape” as the object graph in the

debuggee (in other words the graph built by this algorithm is isomorphic to the actual graph

in the debuggee).

// evaluate the Expression e to obtain a Value

value = Evaluate(e)

// build the graph

graph = BuildGraph(value)

// value is a Debugger.Value representing an instance in the debuggee process

BuildGraph(value):

 If maximum recursion depth has been reached, return null.

 node = create a new graph node representing this value

 // get all instances this instance points to

 foreach referencedValue in GetReferencedValues(value)

 // do we already have a node reprenting this referenced instance?

 existingNode = GetSeenNode(referencedValue)

 // if yes, just add an edge to this node

 if existingNode != null then MakeEdge(node, existingNode)

 // otherwise continue recursively

 else MakeEdge(node, BuildGraph(referencedValue))

Listing 19 – Graph building algorithm

Will this be possible to implement? The calls Evaluate and GetReferencedValues will need

to access the debugger API. Both of them will be possible to implement: evaluating

expressions as well as enumerating fields and properties of objects is supported. What

actually makes the Object graph special is the function GetSeenNode. Without this function

the algorithm would be equivalent to expanding debugger tooltips or watches recursively and

wouldn’t follow the actual structure of the object graph. The main question therefore is

whether and how GetSeenNode will be possible to implement.

Analysis of GetSeenNode

In our algorithm, the GetSeenNode function takes a reference to an instance in the debuggee

(a Debugger.Value) and returns a graph node that has been already created for this instance,

or null if such node doesn’t exist in the graph yet.

To be able to distinguish which Debugger.Values have been seen from those which haven’t,

the algorithm will have to keep some unique identifiers of the Debugger.Values. One option

would be to add some extra information directly to the instances in the debuggee, but that is

not possible, as in .NET it is not possible to add fields to objects at runtime1. Not being able to

1 It would be possible to create a Dictionary directly in the debuggee by evaluating an expression
“dict=new Dictionary<object, int>()“ and track instances using this Dictionary by evaluating dict[o] and
dict.Add(o, new_id). However, a Dictionary uses user defined instance equality (overridden

40

add unique identifiers to the instances in the debuggee process means that unique identifiers

have to be added to the Values living in the debugger process. Permanent references

represent a possible unique identification. Expressions represent another possibility because

when evaluated they also uniquely identify Values. As it will be shown, Permanent references

and Expressions are mostly interchangeable for the purposes of building the Object graph.

A first solution using Expressions follows. The algorithm works with Expressions and keeps

an Expression for every node in the graph. GetReferencedExpressions creates Expressions

by appending all field and property names to given Expression, based on the actual type of the

Expression (the Type is determined by evaluating the Expression). For example, by appending

property name FooProp to object foo.bar we get an expression foo.bar.FooProp.

BuildGraph(expression):

 If maximum recursion depth has been reached, return null.

 node = create a new graph node representing this expression

 foreach referencedExpression in GetReferencedExpressions(expression)

 existingNode = GetSeenNode(referencedExpression)

 if existingNode != null then MakeEdge(node, existingNode)

 else MakeEdge(node, BuildGraph(referencedExpression))

Listing 20 – Graph building algorithm using Expressions

In order to determine whether an Expression identifies an already seen instance,

GetSeenNode queries the debugger to compare the Expression to all of the seen Expressions

(by evaluating Expressions such as foo.bar.Name == e, where e is replaced by all the

expressions seen so far, such as foo.bar etc.). This works because an expression a==b

evaluates to true if an only if expressions a and b refer to the same instance in the debuggee,

because evaluating an expression a == b is equivalent to executing a == b in the debuggee1.

Pseudocode for GetSeenNode follows:

GetSeenNode(Expression exprToTest)

foreach node in graphNodesSoFar

 if Evaluate(BinaryOpExpression(op.Equals, node.Expression, exprToTest))

 return node

return null

Listing 21 –GetSeenNode has to compare given Expression to every other known Expression

As can be seen from the pseudocode, every call of GetSeenNode has to perform many

Evaluate calls, which is the most significant problem of this algorithm because GetSeenNode

will be called once per edge and it needs do up to n Evaluate calls, the total number of

Evaluate calls in O(n.E) where n is the size of the resulting graph and E is the number of edges

in the graph. We implemented this algorithm and found it to be too slow. Even though the

graphs to visualize will usually not be very large, the Evaluate calls are unfortunately so

expensive that this algorithm is unacceptable.

GetHashCode and Equals methods) while in the Object graph visualizer we are interested in instance
equality.
1 Evaluating a==b does not execute a==b directly in the debuggee, but is evaluated recursively using the
ExpressionEvaluator (see section Expression evaluation), which must be implemented correctly so that
the expected behavior is met.

41

The algorithm using Permanent references would be exactly the same, including the needed

calls to the debugger in a loop, expect it would work with Permanent references. Permanent

references provide instance addresses (offsets in the memory space of the debuggee) but

these are not usable as they can be changed by the garbage collector which moves the

instances around during the run of the graph building algorithm when the debuggee is being

resumed and paused again. Therefore, addresses cannot be used as unique instance identifiers

and the only way to use Permanent references is the same way as using Expressions.

The conclusion is that the main problem with identifying debuggee instances by Expressions

or Permanent references is that GetSeenNode has to compare all the unique identifiers one by

one by querying the debugger. The best solution to this problem would be some different

form of unique identification of instances in the debuggee such that GetSeenNode could run

faster than in O(n), ideally in O(1) in average case.

.NET hash codes

Could standard .NET hash codes serve as unique identifiers in the Object graph building

algorithm?

In CLR, the runtime representation of every instance has a data member which stores the hash

code for the instance. This data member is assigned by the CLR and it is accessible from

managed code through RuntimeHelpers.GetHashCode(Object) method which returns the

same value as the default Object.GetHashCode(). While Object.GetHashCode() can be

overridden to define equality semantics for structures and classes,

RuntimeHelpers.GetHashCode(Object) always returns the original hash code assigned by

the runtime. In the Object graph visualizer we are interested in instance equality to display

actual state of objects in memory, not user defined equality. Therefore the default hash codes

(accessible through RuntimeHelpers.GetHashCode) will be used. The default hash codes

have a good property that they never change during the lifetime of an instance and, being

integers, they can be used as keys for a hash table.

However, there is no guarantee that the hash codes will be unique – there is no guarantee that

two different instances will have different hash codes. The “theoretical” reason behind this is

that the hash code is a 32-bit integer (on a 32-bit system), hence the space of all hash codes is

limited and it can be guaranteed that sooner or later two different objects with the same hash

code will be encountered. There is, however, one very practical reason. One could think that

32-bit space is large enough and in practice different instances with same hash codes would

almost never be encountered in a given small object graph. However, our tests on CLR

(Microsoft’s implementation of CLI) are quite surprising. The following code generates new

objects until two different objects with same hash code are encountered. It turns out that such

case occurs very quickly, after creating as few a few thousand instances:

42

Hashtable hashCodesSeen = new Hashtable();

LinkedList<object> l = new LinkedList<object>();

int n = 0;

while (true)

{

 object o = new object();

 // remember instances to be sure they don't get collected

 l.AddFirst(o);

 int hashCode = o.GetHashCode();

 n++;

 if (hashCodesSeen.ContainsKey(hashCode))

 {

 // same hashCode seen twice for DIFFERENT instances

 Console.WriteLine("Hashcode seen twice after „ + n + „steps“);

 break;

 }

 hashCodesSeen.Add(hashCode, null);

}

Listing 22 – Generating instances until a hash code collision is found

During our tests, the output of the program was Hashcode seen twice after 5322 steps, which

means that the possibility of different objects having same hash codes is very real and must

definitely be accounted for. The article [19], which was the original source for this experiment,

gives very similar results.

Interestingly, during our tests, the output was always the same on a given machine. This

shows that the hash code generation on the current implementation of the CLR is

deterministic.

The final algorithm

The final Object graph building algorithm takes advantage of the .NET hash codes while

correctly accounting for different instances having same hash codes. This is done by looking

up graph Nodes by hash codes and comparing instance addresses1 in case of hash code

collisions to be sure the hash code collision was not a coincidence. The main BuildGraph

algorithm stays almost the same as in the first version, with the exception that graph Nodes

are being added into a hashcode->Nodes hashtable. Ideally, when there are no hash code

collisions, the hashtable will contain exactly one Node for every hash code.

hashtable: 'hashCode' -> (list of objects with hash code == 'hashCode')

BuildGraph(value):

 If a maximum recursion depth is reached, return null.

 node = create a Node for this value (holding a Permanent reference)

 add the node to the hashtable,

 key=value.HashCode // HashCode being the in-debuggee hash code

1 Each graph Node holds a Permanent reference to be able to access the address of the in-debuggee
instance it represents.

43

 foreach referencedValue in GetReferencedValues(value)

 existingNode = GetSeenNode(referencedValue)

 if existingNode != null then MakeEdge(node, existingNode)

 else MakeEdge(node, BuildGraph(referencedValue))

Listing 23 – The final Object graph building algorithm

GetSeenNode then takes the advantage of the hashtable in the following way:

GetSeenNode(value) {

 candidates = hashtable[value.HashCode] // instances with same hashCode

 if no candidates, the object is new

 if some candidates, compare their addresses to o.Address

 if no address equal, o is new // hashCode collision was a coincidence

 if some address equal, o already seen

Listing 24 – The final version of GetSeenNode, using .NET hash codes for quick lookup

GetSeenNode only works with addresses of Permanent references, which is safe because

getting addresses of Debugger.Values does not resume the debuggee and therefore the

addresses are guaranteed to be fixed during the execution of GetSeenNode.

Note: As said in the previous section (.NET hash codes), the algorithm always obtains hash

codes by invoking RuntimeHelpers.GetHashCode() in the debuggee. If the algorithm instead

used Object.GetHashCode() and user code would override GetHashCode to always return

zero (for example), the algorithm would still work. The whole algorithm would, however, run

in O(n.E) (n being the number of vertices and E being the number of edges in the object graph)

– the same as the original slow algorithm.

Expanding nodes

The graph building algorithm as described can be considered finished. It handles very large

(up to infinite) graphs by limiting the maximum depth of recursion.

There is, however, one user experience aspect that deserves analysis - when the user enters

an expression which evaluates to a very large object graph expanding the whole graph up to

some maximum depth would be a bad user experience:

 If the maximum depth is small, nodes the user is actually interested in can be missing

from the graph.

 If the maximum depth is large, too many nodes are shown while the user is not

interested in most of them; the drawing is confusing. Visualization takes too much time

to show nodes that are not needed.

Instead of always traversing the whole graph, a solution is proposed where users can choose

which nodes to include in the graph by expanding them manually. The algorithm stays

essentially the same but it is split into steps determined by user actions. The body of the

Expand function called when a Node is being expanded is the same as the body of the original

loop iterating over all Node properties.

44

// a property is being expanded on this node

Expand(node, propertyName)

 // get the value of the property being expande

 targetValue = EvaluateProperty(node, propertyName)

 // and add the value to the graph

 // (either an edge to an existing node, or a new node)

 existingNode = GetSeenNode(targetValue)

 if existingNode != null then MakeEdge(node, existingNode)

 else MakeEdge(node, NewNode(targetValue))

}

Listing 25 – Expanding a property in the Object graph

The algorithm does not recalculate the whole Object graph on every Expand action it assumes

that property getters don’t have any side effects on the rest of the graph, which is a reasonable

tradeoff between graph correctness and expand performance. Having property getters modify

other properties is rarely done in practice – the only reasonable use case is when a property

getter caches a value in a field or a data structure. Such scenario would be solved by

reevaluating all the properties of the instance instead of evaluating a single property. In

principle, property getters could modify also anything in the any other instances of the graph,

but that would a very bad programming practice and it is practically never done, therefore it

was decided not to make the general case much slower in order to account for a theoretical

edge case. After the graph is rebuilt completely (either when requested by user or after a

debugger step) the graph is in correct state. See also section 2.3 (Fundamental problem of

debugging) for more general discussion on the problems with determining debuggee state.

Of course, apart from Expanding, there will be also a Collapse feature, which consists of

removing the target Node and all its inbound and outbound edges from the graph.

2.6.4 Graph layout

Having the Object graph (that is, a graph inside the debugger isomorphic to the actual graph in

the debuggee) built, this section focuses on how to position the vertices and edges of the

Object graph on a 2D plane so that it looks natural to users.

Dynamic graphs and incremental stability

There is one special requirement to the Graph layout – the Object graph visualizer deals with

dynamic graphs, which directly relates to the Graph transitions feature.

There is a problem with calculating layout for dynamic graphs – if the layout algorithm does

not account for graph dynamicity, a small change to the graph can cause drastic changes to the

layout. Say for example that one node or edge is added to the graph and most nodes are

rearranged completely in the new layout. In other words, such layout is incrementally

unstable. In our scenario, incremental instability would mean large groups of nodes moving

around randomly when a debugger step introduces only small changes to the graph, which

would certainly mean bad user experience. The solution should therefore aim for incremental

stability of the layout.

45

Existing layout engines

Graph layout is a not a new problem so naturally, existing solutions were researched. A good

comprehensive list of graph layout engines can be found at [20]. The list does not include

Dynagraph, which was also considered. As SharpDevelop is LGPL-licensed free software, any

commercial solutions were out of question. Apart from being free, any code included in

SharpDevelop must come from a live, maintained project.

Most of the layout engines also handle rendering of graphs. However, the Object graph

visualizer has a special requirement for graph transitions, where existing nodes move to their

new positions after the graph is changed. The visualizer needs to control these transitions and

to be able to do so, the information about the positions of individual nodes is needed – if the

layout engine acts as a black box producing images, it might be well usable in some scenarios

but not for the Object graph visualizer.

Out of all the existing layout engines, only Graphviz and Dynagraph were considered an

analyzed in detail. All the other layout engines were ruled out quickly – the reasons are

summarized in the following table.

Layout engine free maintained suitable
Graphviz
MAGL x
ILOG Diagram for
.NET

x

Dynagraph x
Diagram.NET x
Omnigator x
Pajek x
Piccolo x
Flare x (Flash)
UbiGraph x (client-server)
aiSee x (low quality output)
Graph# x (did not exist at the time

of our research)
Circos x (only circular layouts)
Cytoscape x (standalone app, not a

library)
Treemaps x (Java)
QuickGraph x (graph algorithm library,

does not deal with graph
layout)

NodeXL x (implemented in Excel)
Table 1 –Graph layout engines considered during our research

Dynagraph

Dynagraph [21] is an incremental layout engine based on the code of Graphviz. Being an

incremental layout engine means that it is actually designed to work with dynamic,

incrementally changing graphs. Dynagraph is a standalone executable with an API which

works by writing text commands to standard input and parsing responses from standard

output (there is also a partial, undocumented COM interface).

46

Pros

Dynagraph is the only layout engine dealing with incremental layouts by accepting commands

such as “add edges between nodes A and B” and responding in the terms of “node B moved

down by 2cm, added edge A->B as a straight line” [22].

Cons

Dynagraph is an unmaintained library (last update from 2007), which makes it unfortunately

not suitable for being used in SharpDevelop.

Graphviz

Graphviz [23] is a mature, widely used graph layout and visualization toolkit running on Linux

and Windows. Graphviz consists of set of executables (dot, neato, etc.) where each of these

implements one particular layout algorithm. All of the executables act as batches accepting

command line parameters and standard input and returning results (text, image) using

standard output or writing to a file.

Graphviz provides ways for users to control the layout to some degree using node clusters,

explicitly specified edge endpoints etc. The following graph, which looks almost exactly like

what the Object graph visualizer should look like, was rendered using Graphviz:

Figure 19 – A graph rendered using Graphviz

Pros

The output of dot layout algorithm (Figure 19) seems suitable to the needs of the Object graph

visualizer.

Graphviz separates layout calculation from rendering: a graph (plain vertices and edges) can

be passed to Graphviz and the same graph with added position information is returned. There

are several formats in which the result can be returned, configurable using command line

switches.

47

Graphviz is fast – for the purposes of the Object graph visualizer where the graphs are not

very large (up to 20 nodes and 60 edges), the time needed to calculate graph layout including

launching the dot executable was under 200ms on a modest machine1.

Cons

As Graphviz does not have any notion of dynamic graphs, its layouts can suffer from

incremental instability – when a graph is slightly changed by a debugger step and the layout is

recalculated, the layout can differ a lot visually from the previous layout. Graphviz does not

provide any option to calculate new layout incrementally based on old layout and a graph diff.

Including Graphviz binaries would add 10MB to the size of SharpDevelop installer, while the

whole SharpDevelop setup is currently only 15MB. The problem is that the Graphviz

executables statically link a lot of other libraries and even when dot.exe or neato.exe are given

parameters specifying text-only input and output, these executables won’t start without

libraries for image encoding. This point alone is enough to say no to Graphviz because adding

10MB of binaries to SharpDevelop to support a single feature is unacceptable. The solution

would be either to modify Graphviz code or ask users to install Graphviz.

Graphviz API is text based – using Graphviz from an application means launching a separate

executable, writing graph specification to the standard input, and parsing response from the

standard output, which is not trivial. If a rendering of the graph is needed, Graphviz can write

the output to a file and the host application can then read the image file.

Conclusion – Tree layout algorithm

The conclusion of our research of existing graph layout engines is that no existing solution fits

the scenario of the Object graph visualizer for SharpDevelop and therefore a new solution will

be implemented.

One option is to design an incremental layout algorithm which takes an existing layout and a

graph diff as input and produces a new layout, trying to make only small changes to the layout

when the diff is small. When designing such algorithm, methods used in Dynagraph would be

studied as a starting point.

Another option is a solution which does not deal with graph diffs at all. We propose that it is

possible to design a graph layout algorithm, specialized for dealing with object graphs (graphs

of data structures), which has no notion of incremental layout but still produces layouts that

behave well in terms of incremetal stability. The idea for the algorithm comes from two intial

observations: first, object graphs are very often close to trees (the numbers of edges is not

much larger than n-1, where n is the number of nodes), and second, the edges in object graphs

have a special meaning – the edges represent named object fields and properties.

The algorithm is the following: when the input graph is a tree, layout it using a standard tree

layout algorithm: Place the root to the top, order the child subtrees by names of properties

they represent and place the child subtrees next to each other below the root. Example:

1 Laptop with 1.6Ghz Pentium CPU, 2GB RAM.

48

Figure 20 – Example of a tree layout

Pseudocode of the standard tree layout algorith follows. The algorithm is done in two

recursive passes over the tree, which we call Measure and Arrange:

Measure(node):

 foreach child in node.Children

 Measure(child)

 subtreeW = node.Children.Sum(n => n.Width)

 node.treeW = max(node.ownW, subtreeW);

Listing 26 – Measure layout pass

Arrange(node, position)

 subtreeW = node.Children.Sum(n => n.treeW)

 node.Pos = CenterHorizontally(position, node.ownW, subtreeW)

 currentChildPos = position

 foreach child in node.Children

 Arrange(node, currentChildPos)

 // place next child subtree next to this child subtree

 currentChildPos.X += child.treeW

Listing 27 – Arrange layout pass

The important case is when the input graph is not a tree. In such case, select some subset of n-

1 edges to obtain a tree, layout it using the tree layout algorithm, fix the layout, and then add

the remaining edges to the layout. Example:

49

Figure 21 – Example of a tree layout when the input graph is not a tree. The graph is the graph from Figure
20 with two edges added.

The only thing remaining to be resolved is how to select the subset of the n-1 edges when the

graph is not a tree.

Selecting tree edges

One possible approach is to start in the root of the graph and do a standard DFS1. The edges

traversed by the DFS are declared tree edges. Because the DFS enters and leaves every node

exactly once, the subgraph formed by the selected edges will indeed be a tree. Pseudocode

follows: in the beginning, Traverse(root) is called which traverses the whole graph and

marks n-1 edges as tree edges. There is a helper structure called nodeAlreadySeen used to

mark visited nodes.

Traverse(node):

 nodeAlreadySeen[node] = true

 foreach edge in node.OutgoingEdges

 if not nodeAlreadySeen[edge.target]

 edge.IsTreeEdge = true

 Traverse(edge.target)

Listing 28 – Selecting tree edges in a graph using DFS

This approach works, but unfortunately does not behave well in terms of incremental stability

– here is an example:

1 Depth-first search.

50

Figure 22 – From left to right: an edge is being added to a tree, tree edges are selected using DFS, and new
Tree layout is calculated based on the selected tree edges.

The problem is that when a node has multiple possible parents, DFS selects one of the parents

quite arbitrarily – the paths in the graph are traversed in alphabetical order, given by the

names of edges. This problem can be resolved by replacing DFS by BFS1 (using a queue

instead of a stack to traverse the graph) because BFS selects the parent based on the distance

from the root. BFS prefers short paths, not arbitrary paths. For comparison, here is the exact

same situation as in Figure 22, now using BFS to select the tree edges:

Figure 23 – The same situation as in Figure 22, but different set of tree edges is selected using BFS,
resulting in much more intuitive behavior

There is no strict proof that the layout generated by the tree layout algorithm using BFS for

edge selection is incrementally stable because there is no strict definition of “small change of

the layout proportional to the change of the object graph”. However, our tests show that in

practice this is a good algorithm when dealing with incrementally changing data structures.

This specific version of the tree layout algorithm also has a good property of fixed alphabetical

ordering of outgoing references which is a familiar concept to users.

Edge routing

In the layout, not all edges are drawn as straight lines. When an edge drawn as straight line

between two nodes would cross other nodes, it is routed as a curved line avoiding the nodes.

Calculating the curved paths for edges is called edge routing. Graphviz provides a good edge

routing algorithm but again, including 10MB of binaries into SharpDevelop is unacceptable

and moreover the communication with Graphviz is done via standard input and output so a

parser of edge routes returned from Graphviz would have to be implemented. We decided to

implement an edge routing algorithm ourselves – the details are provided in the

Implementation section.

2.6.5 Graph transitions

In the previous section a layout algorithm was presented which is sufficiently incrementally

stable even while not accounting for incremental graph updates explicitly. This section

1 Breadth-first search.

51

discusses how to produce smooth transitions between two layouts of two object graphs,

visually explaining changes caused by a debugger step.

The transitions should move existing nodes from the old layout to their new positions in the

new layout and visually indicate which nodes were added and removed. To be able to produce

such transition it must be known which nodes from the old layout and the new layout

represent the same debuggee instances, which nodes were added and which nodes were

removed. We call this information a graph diff and the process of producing a graph diff is

called graph matching.

To realize the matching, hash codes, Permanent references and addresses can be used, in a

similar way to how they are used in Graph building. For every node in the old and the new

graph, a Permanent reference and a hash code of the debuggee instance is stored. Then for

every node in the new graph a matching node in the old graph can be found quickly using the

stored hash code and comparing instance addresses to make sure the hash code equality was

not a coincidence (like in the Object graph building algorithm). Pseudocode follows:

FindMatchingNodeInOldGraph(Node nodeInNewGraph):

 find a node in the old graph by nodeInNewGraph.hashCode

 if found, compare found.PermRef.Address and nodeInNewGraph.PermRef.Address

 if the addresses are the equal, return the found node

Listing 29 – Node matching in order to build a graph diff

This algorithms works because the hash codes of instances never change during their lifetime

(using RuntimeHelpers.GetHashCode). The nodes from the new graph without matching

nodes are marked added. The nodes from the old graph without matching nodes are marked

removed. The graph diff then consists of a list of pairs of matching nodes, a list of removed

nodes, and a list of added nodes. Given such diff and two graph layouts, a transition can be

produced in the following way: fade out removed nodes, fade in added nodes and move

matched nodes from their old positions to their new positions. The same technique can be

applied to edges: edges connecting matched nodes are moved to their new positions, all the

remaining edges from the old layout are faded out and the edges from the new layout are

faded in.

2.7 Collection Visualizer

The Collection visualizer should provide a new way to explore collections of objects in the

debugger. It should help users understand contents of collections more easily than watches or

debugger tooltips. The following solution is proposed: Display a grid where rows represent

individual items of the collection and columns represent properties of individual items.

52

Figure 24 – The Collection visualizer – rows represent collection items and each column represents one
public property.

This advantage of this approach is that users get a good overview of the contents of the

collection and can locate individual items quickly. Compare this to using watches or debugger

tooltips, where individual items have to be expanded and collapsed one by one to accomplish

the same goal.

The Collection visualizer will use the same approach to accessing individual items of

collections described in section 2.5 (Collections) – a special case for IList plus conversion of

IEnumerable<T> to IList<T>. Therefore, the Collection visualizer inherits the properties of the

solution – non-generic IEnumerable as well as infinite IEnumerable will not be supported but

the number of items will be known, scrolling will be fast, and it will be possible to further

expand individual rows.

2.7.1 Existing work

There are some existing tools to visualize collections in the debugger in a way similar to our

proposition, for example [24] (a debugger visualizer for Visual Studio). However, this

visualizer is designed only to visualize one type of objects specific to one application – e.g. a

ShoppingCart. In other words, the visualizer is not generic. A generic visualizer for List and

Dictionary types exists [25] but due to the architecture of Visual Studio Visualizers, the

collection items need to marked with the [Serializable] attribute which can’t be always

guaranteed and requires users to change their code in order to view data. Also, if the

visualizer wanted to support IEnumerable, every IEnumerable class would have to be

registered manually by users as Visual Studio debugger visualizers can't be registered for

interfaces [26].

Our collection visualizer should be completely generic – it should work for collections

containing any types of objects out of the box, and it shouldn’t need to transfer the whole

collection from the debuggee to the debugger in order to display first few items. We haven’t

found any existing generic solution which accomplishes this.

53

2.7.2 What needs to be done

Summarizing the previous thoughts, here are the requirements for the Collection visualizer:

 Display contents of a collection of objects: rows represent objects, columns represent

their properties.

 Support IEnumerable<T>, IList, IList<T> and one-dimensional arrays.

 Should not suffer a noticeable slowdown for collections containing thousands of items.

 Should work out of the box, without any need to manually register types or modify code.

 Will be a standard part of the IDE so no additional downloads are needed.

2.7.3 Grid columns, generic vs. non-generic collections

The main difference between the Collection visualizer and the Debugger tooltips is that the

Collection visualizer presents values of multiple properties of all the items at once, using one

column for each property. This brings us to an important question: Given a collection, how to

determine what the columns will be?

If all the items of the collection were guaranteed to be of same type, it would be certainly a

correct solution to make one column per each public property of this type (possibly also

including properties from base classes). The problem is that the collection can, in fact, contain

items of various types and it is not possible to know all these types in advance because

determining them is too expensive due to the expensiveness of the debugger API calls.

Realizing that it is not possible to have full information about types of all the items, there are

three options:

1) Look at the first item in the collection and use its public properties.

Pros:

 None.

Cons:

 The columns for the whole collection are determined only by the type of the first

item.

 When subsequent items have additional properties, these properties will not be

shown.

 When subsequent items miss some of the properties, the cells will be empty.

2) When scrolling and evaluating new items, add columns to the grid dynamically when

new properties are encountered.

Pros:

 All of the properties of every item are always shown.

Cons:

 When items miss some of the properties, the cells will be empty.

54

 A complicated solution.

 Columns being added when scrolling are not a good user experience.

3) Look at the generic parameter of the collection (IList<T>, IEnumerable<T>) and use the

public properties of the parameter type T.

Pros:

 The columns represent the type of the whole collection.

 Collection can contain only subclasses; therefore no cells will be empty.

Cons:

 Does not support non-generic IList (non-generic IEnumerable was decided not to

be supported in general).

 When the items are subclasses of T, the properties defined in the subclass are not

shown.

From the three solutions, the third one was chosen because its Cons are the least significant –

non-generic ILists are not a common case (a fallback to the first solution could be

implemented for non-generic ILists). Regarding the second Con: If the collection is of type

IEnumerable<ICar> and the user knows that all the items are actually of type Truck, the user

can add a cast to (IEnumerable<Truck>) which will cause all properties of the Truck type to

be shown.

2.8 Debugger tooltips

The third feature we built as a part of this thesis are the debugger tooltips for SharpDevelop 4.

The goal is to re-implement the existing debugger tooltips in WPF and add support for

IEnumerable collections and large collections.

2.8.1 Existing work

SharpDevelop 3 has debugger tooltips implemented using Windows Forms and there is also a

very similar feature in Visual Studio and other IDEs.

Figure 25 – Debugger tooltips in Visual Studio 2010 and Eclipse 3.5. The feature is has a different name in
each IDE but it is essentially the same.

55

2.8.2 What needs to be done

The debugger tooltips in SharpDevelop 3 have cleanly separated user interface code from the

underlying data model, which means the data model can be reused. Support for IEnumerable

collections will be added to the data model according to section 2.5 (Collections). The user

interface implemented in Windows Forms will be removed from SharpDevelop and re-

implemented using WPF.

Integration of the Debugger visualizers with the Debugger tooltips will be implemented so

that the visualizers can be opened directly from tooltips. This integration should be extensible

so that new visualizers become available in the tooltips.

56

3. Implementation

This section highlights interesting parts of the implementation of Debugger visualizers for

SharpDevelop and documents the codebase and design decisions.

In the SharpDevelop codebase [27], most of the Debugger visualizers code is located in the

Debugger.AddIn project (AddIns/Debugger/Debugger.AddIn folder), specifically in subfolders

Visualizers and Tooltips. The code of SharpDevelop and Debugger.Core is very well designed

and needed only minor modifications to integrate the debugger visualizers and debugger

tooltips. The directory structure of the code is the following (namespaces mostly follow

directory structure):

Debugger.AddIn

Tooltips – logic and UI of debugger tooltips

TreeModel – data model for the debugger tooltips

Visualizers

 Commands – opening visualizers from debugger tooltips

 Common – code shared by multiple visualizers (such as collections support)

 GraphVisualizer –Object graph visualizer

 Drawing – rendering of the graph using WPF

 ExpandedPaths – remembering expand state between debugger steps

 Layout – calculation and representation of layout

 SplineRouting – reusable implementation of edge routing

 Object graph – building and representation of the Object graph

 CollectionVisualizer – Collection visualizer

 Presentation – WPF-related reusable code

 Utils –generic reusable code

AvalonEdit.AddIn

 CodeEditorView.cs – integration of debugger tooltips with the code editor

3.1 Common base for visualizing collections

All of the visualizers are dealing with collections in essentially the same way, described in

section 2.5 (Collections). Each of the visualizers has a different data model for collection items

(tooltips show a tree of Expressions, the Object graph visualizer has edges outgoing from

property trees, and the Collection visualizer uses a grid) but they all essentially handle

57

collections as described in the Collections section of the Analysis - converting IEnumerable to

IList by constructing a List in the debuggee by evaluating an expression such as “new

List<T>(enumerable)” where T is the generic parameter of the type of the enumerable variable

in debuggee, and then accessing individual items of the List by evaluating expressions such as

list[i]. If an instance already implements IList, the conversion is skipped (this check is

implemented in TypeResolver). The conversion of IEnumerable to IList is implemented in

DebuggerHelpers.

3.2 Object graph visualizer

In section 2 (Analysis), the high level architecture of the Object graph visualizer was outlined.

It was decided that building and layout of the graph will be separate steps, and a Tree layout

algorithm, which does not work incrementally but behaves well in terms of incremental

stability, was proposed. The following diagram shows a design following the decisions from

section 2.6 (Object graph visualizer):

Figure 26 – Basic design of the Object graph visualizer

Of course, constructing a static ObjectGraph and presenting it to users is only half of the

picture. As further discussed in section 2 (Analysis), the changes which occur during debugger

steps are being visualized by smooth transitions between graphs. The transitions are

produced using graph diffs which are inferred by comparing graph state before and after each

debugger step. The following diagram explains the design of the Object graph visualizer the

best:

58

The main window of the Object graph visualizer, from where all the processes outlined in the

diagram are coordinated, is implemented in ObjectGraphControl.

3.2.1 Graph building

The graph building algorithm including the decisions behind it was largely described in the

Analysis section. In the implementation, this algorithm resides in the ObjectGraphBuilder

class. Its method BuildGraphForExpression takes an NRefactory.Ast.Expression and

produces an ObjectGraph.

3.2.2 The ObjectGraph

The ObjectGraph is composed of a collection of ObjectGraphNodes. An ObjectGraphNode

represents one debuggee instance and contains a tree of properties of this instance, grouping

the properties by their visibility and class where they were declared. The properties are

represented by PropertyNodes, each containing an ObjectGraphProperty, pointing to a

target ObjectGraphNode, thus representing a named edge. There also also special nodes in

the property tree used to group PropertyNodes into subtrees, like BaseClassNode or

NonPublicMembersNode.

Lazy evaluation of properties

The ObjectGraphProperties inside ObjectGraphNodes are lazily-evaluated. When a node

contains many properties, only the first few are evaluated and when the contents of the node

are scrolled, the properties coming into view are being evaluated as needed.

Figure 27- Design of the Object graph visualizer

59

Figure 28 – UI for ObjectGraphNode (implemented by PositionedGraphNodeControl). The properties out of
view have not been evaluated yet and will be evaluated when they are scrolled into view.

This saves a lot of performance especially when objects have a lot of properties. The lazy

evaluation is controlled by user interface because only the UI has exact information about

which properties are currently in view. The implementation exploits the fact that WPF

ListView pulls items from its ItemsSource as the items come into view. As the ItemsSource

for the ListView, an instance of VirtualizingObservableCollection is supplied.

VirtualizingObservableCollection adds on-demand evaluation support to an existing

ObservableCollection (Decorator pattern).

Collections

When an ObjectGraphNode represents a collection, the collection is converted to a List using

the common approach, the Count property of the List is evaluated and a flat list of empty

ObjectGraphProperties is generated quickly – each ObjectGraphProperty representing

one item of the List (with Expressions list[0] up to list[Count-1]) – this logic is implemented in

ObjectGraphBuilder. The lazy evaluation then works using exactly the same mechanism as

the lazy evaluation of properties described in the previous section.

Figure 29 – ObjectGraphNode representing a collection

Expanding nodes

As discussed in section 2.6.3 (Graph building), the ObjectGraph returned from the

ObjectGraphBuilder is not fully expanded up to some given maximum depth but users

control which individual nodes are expanded by clicking a plus button next to fields and

properties.

60

When a field or property is being expanded, its target is evaluated and either a new node is

added to the graph, or only an edge to an existing node is added in case the target was already

present in the graph. Then the layout for the whole graph is recalculated. When a field or

property is collapsed, its target is removed from the graph including all its inbound and

outbound edges. Expanding and collapsing is implemented in ObjectGraphControl –

PositionedNodeControls raise events and ObjectGraphControl reacts to them by

implementing the logic just described.

Remembering expanded nodes between debugger steps

A large part of the design of the Object graph visualizer focuses on debugger steps. The

expanding of nodes must also fit into the picture – namely, when some nodes are expanded,

these nodes must also stay expanded after a debugger step. Considering the fact that after the

debugger step the ObjectGraph is being rebuilt from scratch, the information about expanded

nodes must be kept somewhere separately. The structure holding this information is called

simply Expanded. The Expanded structure holds the information about expanded nodes by

holding a set of string expressions describing expanded paths in the graph, such as a[0].left,

a[0].left.right etc. After a debugger step, the same paths are expanded again, which is

equivalent to the user manually clicking the same plus buttons on the same nodes. Of course,

these nodes might not represent the same debuggee instances anymore but this approach is

quite intuitive and behaves as expected.

An implementation detail is that re-expanding of the right paths after a debugger step is not

implemented by repeatedly invoking an Expand function but instead the expanding is

incorporated right into the graph building algorithm. The ObjectGraphBuilder gets the

Expanded data structure and when recursively exploring the graph, it only follows the paths

which are present in the Expanded set.

3.2.3 Graph layout

This section describes our Tree layout algorithm in detail. The whole layout algorithm

consists of two separate steps:

 Calculating the positions of nodes (node layout)

 Calculating the paths of edges (edge routing)

Naturally, edge information is involved in the first step as well. The separation into two steps

means that after the node positions are determined, the positions are fixed and only then edge

paths are being added to the layout. The dot algorithm implemented in Graphviz uses exactly

the same separation into two steps.

As the calculation of node positions was largely described in section 2.6.4 (Graph layout), this

section focuses mainly on the algorithm for calculating edge paths.

TreeLayouter, PositionedGraph

The algorithms described in this section and section 2.6.4 (Graph layout) are implemented in

classes TreeLayouter (responsible for node layout) and EdgeRouter (responsible for edge

routing). The TreeLayouter takes an ObjectGraph as input, calculates node positions, calls

EdgeRouter to calculate edge routes, and produces a PositionedGraph.

61

The difference between ObjectGraph and PositionedGraph is that ObjectGraph is an UI-

independent model of a graph of debuggee instances and PositionedGraph also contains

position information for nodes and positioned paths for edges. The PositionedGraph is not

produced by copying an ObjectGraph; it rather wraps the ObjectGraph and adds position

and UI information.

To be able to work with real sizes, the PositionedGraph is WPF-dependent and contains the

WPF user interface elements for graph nodes (PositionedGraphNodeControl) and edges

(System.Windows.Shapes.Path).

Node layout

In section 2.6.4 (Graph layout), the Tree layout algorithm for calculating positions of nodes

was proposed. The algorithm is implemented exactly as described, by selecting a tree

subgraph of the input graph using BFS and then recursively traversing the tree twice – first to

calculate the areas needed for the subtrees and then arranging the subtrees next to each

other. The implementation can be found in the TreeLayouter class.

Similarity to WPF’s “Measure-Arrange” layout algorithm

The two recursive passes over the tree are named Measure and Arrange in our algorithm. The

fact that the two layout passes in WPF are named the same is not a coincidence – the layout

algorithms in WPF and many other UI frameworks work on exactly the same principle.

In WPF the user interface elements are organized into a tree called the Visual tree. When an

UIElement is asked for its size (Measure() method) it asks its children for their desired sizes

so that it can determine its own desired size. When an UIElement is told its new position

(Arrange() method) it also repositions its children, knowing their sizes because Measure() is

called before Arrange() for any element.

In WPF the users can define their own user interface elements and completely control the

layout by subclassing FrameworkElement and overriding the MeasureOverride() and

ArrangeOverride() methods. This is also how existing UIElements are implemented. For

example, StackPanel is a panel which stacks its children next to each other – this logic is

implemented in the ArrangeOverride method of the StackPanel.

Edge routing

After the node positions are calculated and fixed, the paths for graph edges are determined.

The problem: Given a set of positioned rectangles on a 2D plane and a set of directed edges

between pairs of rectangles, find paths for the edges so that the paths avoid the rectangles and

look natural.

Example of a solution (Graphviz):

62

Figure 30 – Edges routed using Graphviz

As discussed in section 2.6.4 (Graph layout), after researching available solutions it was

decided that a custom solution would be implemented for the purposes of the Object graph

visualizer. The implementation presented in this section is not WPF-dependent and can be

reused as-is in other applications; this is achieved by following a common practice of

programming against interfaces.

Our algorithm

The first decision that has to be made when designing an edge routing algorithm is whether

the edges will be routed globally or independently (one by one):

 Global routing tries to minimize the total number of edge overlaps while making the

individual edge paths look natural.

 One-by-one routing calculates each edge path independently from others, trying to

make each edge path look natural.

Like the edge routing algorithm used by Graphviz [28] [29], our algorithm processes edges

one by one, treating each edge as separate input. The Graphviz paper [28] also mentions a

possibility of a global algorithm that would try to make edges avoid each other or emphasis

routing edges in parallel but does not provide any ideas for such algorithm.

When designing the algorithm, two important observations were made:

 The most natural path is a straight line and when there is a rectangle blocking the

straight line, the path must be broken around some corners of the rectangle. There is no

need to break paths in open space. Therefore, the interesting points in the plane are the

corners of the rectangles.

 To make edge paths look natural to users, the edge paths should be relatively close to

closest possible paths, while not bending too sharply.

The algorithm works in the following way: First a visibility graph is built, where vertices

represent the corners of all the rectangles and edges connect pairs of vertices which can be

connected by straight lines without intersecting any rectangles (each edge endpoint is visible

63

from the opposite edge endpoint). The pairs of vertices where the edge would be blocked by a

rectangle are not connected. Then, to find routes for edges, shortest path are found in the

visibility graph.

Determine edge start and end points in the plane:

For each edge e in G:

 Determine edge start and end point of edge e:

 take a straight line from the center of edge’s source rectangle

 to the center of edge’s target rectangle.

 Where this line intersects the source rectangle is the start point es

 analogically end point et

Build the visibility graph:

Build the following graph Gv (visibility graph):

V = {every 4 corners of all rectangles on input
1
} ∪ {all start and end points of

all edges}

E = {pairs (u, v) from V where u is visible from v: straight line can be drawn

from u to v without crossing the body of any rectangle}

Find edge routes (each edge independently):

For each edge e in G:

 In Gv find shortest path from es to et (using A* or Dijkstra’s algorithm)

 Smoothen the path by replacing each sharp join by a bend (join smoothing)

Our implementation has time complexity of O(n3) where n is the number of rectangles due to

the construction of visibility graph: O(n2) vertex pairs are tested for visibility and each test

needs O(n) line-rectangle intersections. The time complexity could be probably reduced but

for our needs this is sufficient (note that Graphviz also uses an O(n3) implementation).

The following figure shows an example of a result of our implementation:

1 Note: the vertices of the visibility graph do not lie exactly in the corners of the rectangles but further
from the rectangles by a small offset so that the paths go around the rectangles, not directly through
their corners.

64

Figure 31 – Edge paths calculated using our implementation

The implementation is completely reusable and can be found in the namespace

Debugger.AddIn.Visualizers.Graph.SplineRouting. The reusability is achieved by

defining simple interfaces such as IPoint, IRect, IEdge and programming against them. Any

representation of a graph implementing these simple interfaces is then a suitable input to the

algorithm.

Join smoothing

The last step of the algorithm, join smoothing, is used to replace sharp joins on shortest paths

in the visibility graph by smooth bends. As a result, the output is visually much more

appealing. The following two figures show a comparison of an edge path with and without join

smoothing used:

Figure 32 – Edge path without smoothing (a shortest path in the Visibility graph)

65

Figure 33 – The path from Figure 32 with smoothing applied

The principle of the join smoothing method is the following: Given two consecutive line

segments, replace the segments by a Bezier curve of order 3 (extended by a straight line

segment at each end):

Figure 34 – Sharp join is replaced by a bezier curve

In Figure 34, the tangents of the bezier curve are aligned with the original lines of the edge

path. The distance of the control points (circles in the figure) from the join point controls the

smoothness of the curve. The curve continues by a straight line on both ends, following the

original lines.

Edge overlaps

Routing edges independently can result in edge crossings and overlaps. To deal with possible

confusion caused by edge overlaps, highlighting of edges under cursor is implemented in the

GraphDrawer.

Figure 35 – Edge under mouse cursor is highlighted in bold and a tooltip is displayed.

66

Multiple edges, self-edges

The implementation also deals with situations when there are multiple edges between one

pair of rectangles. This is solved by distributing the edge start and end points along the border

of the rectangles. Self-edges are solved in the same way.

Figure 36 – Multiple edges between two rectangles and self-edges

Explicitly determined start and end points

Some layout engines (including Graphviz) let users specify starting and ending points of

edges. This feature could be useful in the Object graph visualizer because the edge outgoing

from an object property could start directly next to the title of the property. We considered

this and concluded that the layout would get problematic when the contents of nodes are

scrolled – the edge point would have to move and the edge would have to be re-routed when

scrolling. Therefore it was decided not to implement this feature for now.

3.2.4 Graph matching

Graph matching is used to produce graph transitions between two graph states. Graph

matching is implemented as described in the Analysis section in the class GraphMatcher

which accepts two ObjectGraphs and produces a GraphDiff object containing a list of pairs

of matched nodes, a list of nodes which were added in the new graph, and a list of nodes

which were removed from the old graph. Figure 27 explains this process the best.

3.2.5 Graph drawing and transitions

After the layout of ObjectGraph is calculated by the TreeLayouter producing a

PositionedGraph where nodes and edges are already represented by WPF elements, graph

drawing is the final step which actually draws the PositionedGraph to screen. Graph drawing

is implemented in the GraphDrawer class, which positions graph nodes and edges on a WPF

Canvas. GraphDrawer also produces the transitions by creating a set of WPF Animation

objects (one animation per each node and edge) based on a GraphDiff. The animations

transform existing graph drawing to its new state.

While positioning the edges on the Canvas, GraphDrawer also adds tooltips to the edges,

which appear when mouse cursor is hovered over the edges.

3.2.6 The result

The following two figures show the final state of the Object graph visualizer in context of

SharpDevelop:

67

Figure 37 – Object graph visualizer showing the state of the debuggee

The next figure shows the changed state of the object graph after a debugger step is

performed:

Figure 38 – Object graph updated after a step in the debugger

All of the work described in this thesis is included in standard releases of SharpDevelop 4.x.

The easiest way to try the Object graph visualizer is to download a stable release or a nightly

build of SharpDevelop (which always contains the newest version).

68

3.3 Collection Visualizer

Section 2.5 (Collections) identified the conceptual difference between IList and IEnumerable

collections and the need for obtaining collection items lazily. An important question of how to

determine the columns for the Collection visualizer’s grid was also resolved. The Collection

visualizer, implemented in CollectionVisualizerWindow, follows these decisions. This

section covers the data model of the visualizer, the implementation in WPF and explains how

not only rows, but also columns of the grid are evaluated lazily for best possible performance.

3.3.1 Lazy loading items when scrolling

Following the common approach to collections, any collection which is not an IList is

converted to a List prior to being visualized. The implementation uses a WPF ListView

(containing a GridView) and exploits the way in which ListView accesses items from its

ItemsSource. When the ItemsSource is an IList, the ListView accesses the items which are

needed to be rendered using the IList’s indexer.

Our implementation supplies a special collection, called VirtualizingCollection, as the

ListView.ItemsSource. This collection is a wrapper around some data source (in our case

the debuggee collection) and when asked for an item at index i it queries its underlying data

source for item i, returns it and caches it. This principle is often referred to as data

virtualization.

Figure 39 (Class diagram) – Data virtualization using VirtualizingCollection<T>

The top half of the class diagram in Figure 39 is a generic data virtualization implementation.

The bottom half is specific to debugging. The items returned by the indexer of

ListValuesProvider are instances of ObjectValue – a representation of a collection item

specific to the Collection visualizer. ObjectValue contains the index of the item in the

collection and a map of values of item’s properties.

The map of property values in ObjectValue is used to provide indexing by property name,

which is used by the data binding of dynamically created ListView columns (based on the

69

generic type parameter type of the collection as discussed in section 2.7.3). The following

listing shows how columns are created dynamically and prepared to be bound to

ObjectValues.

foreach (var member in itemTypeMembers) {

 var memberColumn = new GridViewColumn();

 memberColumn.Header = member.Name;

 // "{Binding Path=[Name].Value}"

 memberColumn.DisplayMemberBinding=new Binding("["+member.Name+"].Value");

 gridView.Columns.Add(memberColumn);

}

Listing 30 – Data binding of ObjectValues to GridView columns

Note on generic data virtualization

Note that in our case, the only way to get a set of items from the debugger is to query items

one by one. However, there are scenarios where querying a range of items at once is faster

than obtaining items one by one (for example relational databases). In such scenario it is

reasonable to implement paging mechanism in the concrete value provider so that when the

provider is asked for an item at position i it queries and caches a number of items around

index i (because it is very likely that these items will be needed soon).

3.3.2 Expanding rows of the grid

Sometimes also the values shown in individual grid cells are complex objects. The values in

grid cells are obtained by invoking the standard ToString() method which only returns the

name of the type (when not overridden) which is not a desirable way of presenting complex

objects.

Figure 40 – The values of property Badge are complex objects.

Thanks to the design of general handling of collections described in section 2.5 (Collections), it

is possible to implement expanding of individual rows in the following way: display an expand

button next to each grid row and when it is clicked, open a Debugger tooltip for expression

70

c[i], where c is the Expression referring to the whole collection instance and i is the index of

the row. Another option would be to add columns representing properties of the inner

complex object (in Figure 40 the Badge column would be replaced by columns representing

individual properties of the Badge class).

This feature is not implemented yet but will be implemented.

3.3.3 Lazy loading columns (object properties)

We implemented a column-selection feature so that users can select only the columns they are

interested in (see top right corner of Figure 40). The columns which are hidden are not

evaluated, which improves performance. This is achieved thanks to the way the

ObjectValues are bound to the GridView (see Listing 30Listing 30) – when a column is

hidden, it is removed from the GridView (this is implemented in GridViewColumnHider) and

the ListView stops evaluating the binding for this column. When the column is displayed

again, the ListView only evaluates the bindings for the items which are in the visible range.

This means that the Collection visualizer is as lazy as possible – only what needs to be

rendered is obtained from the debugger.

3.3.4 The result

The following figure shows the current state of the Collection visualizer:

Figure 41 – Final state of Collection visualizer

The Collection visualizer has been successfully tested on the following types: array, List<T>,

ArrayList, HashSet<T>, IEnumerable<T>, IQueryable<T>, ObservableCollection<T>,

ReadOnlyCollection<T> and IParallelEnumerable<T>. The types of collection items

tested were various classes and structures (including a class with inheritance hierarchy of

depth 4 containing generic classes). We are also using the Collection visualizer while working

on SharpDevelop.

71

3.4 Debugger tooltips

Unlike with the two previous visualizers, the data model for the Debugger tooltips was

already present in previous versions of SharpDevelop (see the Debugger.AddIn.TreeModel

namespace). Thanks to the clean separation of data representation from user interface the

whole tree model was reused and a new type of node called IEnumerableNode was added to

support IEnumerable collections in the Debugger tooltips. The main part of the work on the

Debugger tooltips was to implement the user interface including the lazy evaluation of values

from the debugger (see the Debugger.AddIn.Tooltips namespace) and integrate the new

implementation into SharpDevelop’s code editor (see the CodeEditorView class in

AvalonEdit.AddIn). The user interface of the tooltips is implemented using WPF Popups

containing DataGrids (see DebuggerTooltipControl).

3.4.1 Integration of visualizers

The new implementation of Debugger tooltips adds extensible support for Debugger

visualizers:

Figure 42 – Debugger tooltips offering available Debugger visualizers for current value

To add a new debugger visualizer to SharpDevelop, one has to implement a simple interface

IVisualizerDescriptor and register it in the .addin definition file at a well known path

/SharpDevelop/Services/DebuggerService/Visualizers . The following two listings show how

existing visualizers are registered:

<Path name="/SharpDevelop/Services/DebuggerService/Visualizers">

 <Class class="Debugger.AddIn.Visualizers.ObjectGraphVisualizerDescriptor" />

 <Class class="Debugger.AddIn.Visualizers.CollectionVisualizerDescriptor" />

</Path>

Listing 31 – Object graph and Collection visualizers registered in the Debugger.AddIn.addin file

72

public class ObjectGraphVisualizerDescriptor : IVisualizerDescriptor

{

 public bool IsVisualizerAvailable(DebugType type) {

 return !type.IsAtomic() && !type.IsSystemDotObject();

 }

 public IVisualizerCommand CreateVisualizerCommand(Expression expression) {

 return new ObjectGraphVisualizerCommand(expression);

 }

}

public class ObjectGraphVisualizerCommand : ExpressionVisualizerCommand

{

 [...]

 public override string ToString() {

 return "Object graph visualizer";

 }

 public override void Execute() {

 if (this.Expression != null) {

 var objectGraphWindow = ObjectGraphWindow.EnsureShown();

 objectGraphWindow.ShownExpression = this.Expression;

 }

 }

}

Listing 32 – VisualizerDescriptor tells when the visualizer is available, and returns a Command which
defines the logic for opening the visualizer

The data model for the Debugger tooltips (ExpressionNode) then contains a list of available

visualizers, obtained using the following call (see subsection AddIn tree of section 2.2.2):

AddInTree.BuildItems<IVisualizerDescriptor>("/SharpDevelop/Services/DebuggerServ

ice/Visualizers", null);

Listing 33 – Obtaining the list of available visualizers for the Debugger tooltips

3.4.2 The result

The following figure shows the current state of the new Debugger tooltips for SharpDevelop:

73

Figure 43 – New Debugger tooltips for SharpDevelop 4.0

Text visualizer and XML visualizer

Apart from the Object graph visualizer and Collection visualizer, two simple visualizers which

were missing in previous versions of SharpDevelop were implemented (and registered as

described in section 3.4.1 (Integration of visualizers)): Text visualizer and XML visualizer.

Both are used to view long strings. The XML visualizer uses the XML syntax highlighting

feature built into AvalonEdit.

Figure 44 – Debugger visualizer for XML strings

74

4. Conclusion and future work

Section 1 explained the motivation for this thesis and set goals for innovative debugger

features for the SharpDevelop IDE. Section 2 discussed how to design algorithms for the

visualizers around numerous limitations of the Debugger API and resolved questions where

multiple solutions were possible by identifying pros and cons of every solution; more often

than not, compromises between feature completeness, performance and code maintainability

had to be made – a constant factor in the field of Software engineering. Section 3 discussed

details of the implementation, integration of the work into the SharpDevelop IDE and

extensibility.

The initial goals were to implement a visualizer of data structures in the debuggee and to

improve visualization of collections, in general and also specifically in SharpDevelop. These

goals were met and the work is already a part of the standard release of the SharpDevelop

IDE. As the Debugger tooltips and Debugger visualizers build on top of NRefactory, they are

usable when debugging code written in C# and VB .NET. This thesis should provide a good

starting point for anyone wanting to build on our work – SharpDevelop is a live project

downloaded approximately two thousand times a day, used by developers around the globe. I

plan to continue working on SharpDevelop as well.

There are many possible future improvements to SharpDevelop’s integrated debugger. The

following list provides several ideas:

 The Object graph visualizer could display a graph not only for one expression, but a

combined graph for multiple expressions (for example all local variables). This would

be useful for debugging algorithms where different variables point to different

instances in a data structure, or instances are moved between data structures.

 The Object graph visualizer could also remember scroll offsets in individual nodes.

Currently after a debugger step, content of nodes is scrolled to the top.

 Implement expanding of individual rows in the Collection visualizer.

 Integrate the Collection visualizer directly into the Debugger tooltips: A debugger

tooltip is essentially a grid with two columns: name and value. There could be an

option to expand the Debugger tooltip by adding more columns, thus having the same

view the Collection visualizer provides directly in the Debugger tooltip.

 In the Debugger tooltips, an option could be added to show properties from all base

classes so that users do not have to search for a property by expanding Base class

nodes.

 Support DebuggerDisplayAttribute and DebuggerTypeProxyAttribute [1], [2].

 Implement functionality identical to Visual Studio’s support for user defined debugger

visualizers. The best way would be to directly support all existing visualizers for

Visual Studio – this would be an interesting project as it would need some IL

manipulation.

75

 Implement more visualizers, such as Display Data Debugger’s visualizers for array of

numbers.

Figure 45 – GNU Data Display Debugger’s visualizers for arrays of numbers

76

References

1. DataTips, Visualizers and Viewers Make Debugging .NET Code a Breeze. MSDN Magazine.

[Online] 5 2004. http://msdn.microsoft.com/en-us/magazine/cc163974.aspx.

2. Enhancing Debugging with the Debugger Display Attributes. MSDN Library. [Online]

http://msdn.microsoft.com/en-us/library/ms228992.aspx.

3. Visualizers. MSDN Library. [Online] http://msdn.microsoft.com/en-

us/library/zayyhzts.aspx.

4. Konicek, Martin. Debugger Visualizer for Visual Studio. Coding time blog. [Online]

http://coding-time.blogspot.com/2009/03/debugger-visualizer-for-visual-studio.html.

5. Google Summer of Code Website. [Online] http://code.google.com/soc/.

6. SharpDevelop Website. [Online] http://www.icsharpcode.net/opensource/sd/.

7. Marcu, Eusebiu. SharpDevelop Classic ASP.NET websites using IIS Express. SharpDevelop

blog. [Online] 28. 12 2010.

http://community.sharpdevelop.net/blogs/marcueusebiu/archive/2010/12/28/sharpdevelo

p-classic-asp-net-websites-using-iis-express.aspx.

8. Konicek, Martin. New productivity features in SharpDevelop 4 Beta 2. SharpDevelop blogs.

[Online] 1. 8 2010.

http://community.sharpdevelop.net/blogs/martinkonicek/archive/2010/08/01/resharper-

for-sharpdevelop-new-features.aspx.

9. Grunwald, Daniel. Using AvalonEdit (WPF Text Editor). CodeProject. [Online] 2009.

http://www.codeproject.com/KB/edit/AvalonEdit.aspx.

10. Grunwald, Daniel. Building Applications with the SharpDevelop Core. [Online] 3. 1 2006.

http://www.codeproject.com/KB/cs/ICSharpCodeCore.aspx.

11. Grunwald, Daniel. Line Counter - Writing a SharpDevelop Add-In. [Online] 18. 7 2006.

http://www.codeproject.com/KB/cs/LineCounterSDAddIn.aspx.

12. NRefactory repository. GitHub. [Online] https://github.com/icsharpcode/NRefactory/.

13. Building an IDE with the Scala Presentation Compiler. The Ensime blog. [Online] 2010.

http://ensime.blogspot.com/2010/08/building-ide-with-scala-presentation.html.

14. Scala IDE for Eclipse. [Online] http://www.scala-ide.org/.

15. Ensime. GitHub. [Online] https://github.com/aemoncannon/ensime.

16. Debugging Interfaces. MSDN Library. [Online] http://msdn.microsoft.com/en-

us/library/ms404484.aspx.

77

17. Srbecký, David. Internals of SharpDevelop's Debugger. David Srbecký's blog. [Online]

http://community.sharpdevelop.net/blogs/dsrbecky/archive/2010/07/29/debugger.aspx.

18. DisplayDataDebugger Website. [Online] http://www.gnu.org/software/ddd/.

19. Griffiths, Ian. The Rules for GetHashCode. IanG on Tap. [Online] 2004.

http://www.interact-sw.co.uk/iangblog/2004/06/21/gethashcode.

20. Saveen, Reddy. A List of Tools for Automatic Graph and Diagram Layout. Saveen Reddy's

blog. [Online] 2009. http://blogs.msdn.com/b/saveenr/archive/2009/07/29/a-list-of-tools-

for-automatic-graph-and-diagram-layout.aspx.

21. Woodhull, Gordon. Dynagraph Web site. [Online] http://www.dynagraph.org/.

22. Dynagraph documentation. Dynagraph Web site. [Online]

http://www.dynagraph.org/documents/dynagraph.html.

23. Graphviz Web site. [Online] http://www.graphviz.org/.

24. Hayden, David. Create a Debugger Visualizer in Visual Studio 2005 for Custom Types and

Classes. David Hayden's blog. [Online] 2005.

http://davidhayden.com/blog/dave/archive/2005/12/26/2645.aspx.

25. Carvalho Liedke, Daniel. A Generic List and Dictionary Debugger Visualizer for VS.NET.

CodeProject. [Online] 2008. http://www.codeproject.com/KB/macros/ListVisualizer.aspx.

26. Code for Rapid C# Windows Development eBook + LINQPad and Data Tools. CodePlex.

[Online]

http://rapiddevbookcode.codeplex.com/wikipage?title=EnumerableDebugVisualizer.

27. SharpDevelop repository. GitHub. [Online]

https://github.com/icsharpcode/SharpDevelop.

28. Dobkin, David P. et al. Implementing a General-Purpose Edge Router. 1997.

29. Ellson, John et al. Graphviz and Dynagraph – Static and Dynamic Graph Drawing Tools.

2003.

78

Appendices

Content of attached CD

The file system structure of the attached CD is the following:

overviewVideo – short screen recording showing an overview of the features described in this

thesis

SharpDevelop – source code of the most recent version of SharpDevelop. The source code for the

work described in this thesis can be found in project Debugger.AddIn, according to the beginning

of section 3 (Implementation). To run SharpDevelop, run SharpDevelop.exe. SharpDevelop can

work with Visual Studio solutions.

samples – sample code to test the features described in this thesis

thesis – an electronic version of this thesis

User manual

Software requirements: Installed .NET Framework 4 (SharpDevelop is built against .NET 4).

The usage of the Debugger tooltips and Debugger visualizers is quite intuitive. While

debugging code in SharpDevelop and the code is paused (for example because a breakpoint

was hit) hover the mouse cursor over a variable in the code - this works like in any other IDE.

A debugger tooltip is displayed showing the value of the variable. If the variable is a complex

object it is possible to expand the tooltip. The visualizer selector (magnifying glass icon) in the

debugger tooltip offers visualizers available for the current variable. Select Object graph

visualizer or Collection visualizer. Object graph visualizer is available for any complex type;

collection visualizer is available for collections.

Object graph visualizer

The Object graph visualizer displays the graph of instances in memory of the debugged

program and references between them. To expand a node, click one of the plus buttons inside

the displayed node (if available). The graph can be re-evaluated by clicking the Inspect button.

Zooming is possible using the Zoom slider or by using Ctrl + Mouse wheel. There are two

layout modes – Left to right and Top to bottom, which can be switched using the Combobox.

When a debugger step is performed, the state of the graph is updated.

79

Collection visualizer

The collection visualizer displays contents of collections in a form of a grid. Each grid row

represents one collection item and each grid column represents one public property. To show

or hide individual grid columns, use the Combobox in the top right corner.

Table of listings and figures

Listing 1 - .addin file defining three ToolbarItems.. 19

Listing 2 – Obtaining items for a Toolbar, defined in Listing 1 .. 20

Listing 3 – A different AddIn adding another ToolbarItem ... 20

Listing 4 – Registering a ConditionEvaluator .. 20

Listing 5 – Registering service implementations at a well-known path .. 21

Listing 6 – Obtaining all implementation from a well-known path in the AddIn tree............... 21

Listing 7 – Accessing localized strings from XAML ... 21

Listing 8 – Accessing localized strings from C#.. 22

Listing 9 – Sample code to be parsed by NRefactory ... 22

Listing 10 – Sample program to be debugged ... 25

Listing 11 – Sample usage of the debugger... 26

Listing 12 – Ouput of the program from listing 10.. 26

Listing 13 – Getting values of variables using the debugger... 26

Listing 14 – Property with a backing field .. 28

Listing 15 – Property with an auto-generated backing... 29

Listing 16 – IL structure of a property getter returning value of a backing field 29

Listing 17 – Class with two property getters incrementing each other... 30

Listing 18 – Property getter caching a value.. 31

Listing 19 – Graph building algorithm .. 39

Listing 20 – Graph building algorithm using Expressions ... 40

Listing 21 –GetSeenNode has to compare given Expression to every other known

Expression... 40

Listing 22 – Generating instances until a hash code collision is found .. 42

Listing 23 – The final Object graph building algorithm... 43

Listing 24 – The final version of GetSeenNode, using .NET hash codes for quick lookup........ 43

Listing 25 – Expanding a property in the Object graph... 44

Listing 26 – Measure layout pass .. 48

Listing 27 – Arrange layout pass ... 48

Listing 28 – Selecting tree edges in a graph using DFS.. 49

Listing 29 – Node matching in order to build a graph diff ... 51

Listing 30 – Data binding of ObjectValues to GridView columns.. 69

Listing 31 – Object graph and Collection visualizers registered in the

Debugger.AddIn.addin file. .. 71

Listing 32 – VisualizerDescriptor tells when the visualizer is available, and returns a

Command which defines the logic for opening the visualizer. .. 72

Listing 33 – Obtaining the list of available visualizers for the Debugger tooltips 72

Figure 1 – Watch window and debugger tooltips in Eclipse 3.5 (watch window is

called "Variables" in Eclipse) ...8

80

Figure 2 – Two instances having a reference to each other ...8

Figure 3 – Data structure from Figure 1 presented by Debugger tooltips in Visual

Studio 2010..9

Figure 4 – In the Visual Studio 2010 Locals window, values of variables changed by

debugger step are highlighted automatically. ... 10

Figure 5 – Debugger tooltip in Visual Studio 2010 showing contents of a collection of

objects ... 11

Figure 6 – Debugger tooltip in Visual Studio with one collection item expanded. The

interesting property was declared in a base class so expanding multiple times was

needed to locate the desired property.. 11

Figure 7 – Debugger tooltips in SharpDevelop 3 ... 12

Figure 8 – Object graph visualizer showing in-memory instances and references

between them .. 13

Figure 9 – Collection visualizer showing contents of a collection of objects in the

debugger .. 14

Figure 10 – New debugger tooltips for SharpDevelop 4, with support for visualizers............. 14

Figure 11 - SharpDevelop meeting in August 2009 in Bad Ischl, Austria. Left to right:

Tomasz Tretkowski (Gsoc: C++ Backend Binding), Daniel Grunwald (Senior

Developer, Architect), Martin Koníček (Gsoc: Debugger visualizers), Siegfried Pammer

(Gsoc: Xaml Binding), David Srbecký (Debugger), Peter Forstmeier (SharpDevelop

Reports), Christoph Wille (Project Management). .. 16

Figure 12 – SharpDevelop IDE ... 17

Figure 13 – Parse tree for the the code snippet from Listing 9 ... 22

Figure 14 – Overall shema of debugging. An important fact to realize is that the

debuggee lives in a separate process. ... 24

Figure 15 – Debugger tooltip in Visual Studio 2010 showing „incorrect“ state of an

instance .. 30

Figure 16 – Debugger tooltip in Visual Studio 2010 showing incorrect state of an

instance .. 31

Figure 17 - .NET collections inheritance hierarchy .. 33

Figure 18 – DiplayDataDebugger showing a graph of in-memory structures in a C

program.. 37

Figure 19 – A graph rendered using Graphviz .. 46

Figure 20 – Example of a tree layout ... 48

Figure 21 – Example of a tree layout when the input graph is not a tree. The graph is

the graph from Figure 17 with two edges added. .. 49

Figure 22 – From left to right: an edge is being added to a tree, tree edges are selected

using DFS, and new Tree layout is calculated based on the selected tree edges. 50

Figure 23 – The same situation as in Figure 19, but different set of tree edges is

selected using BFS, resulting in much more intuitive behavior. ... 50

Figure 24 – The Collection visualizer – rows represent collection items and each

column represents one public property. ... 52

Figure 25 – Debugger tooltips in Visual Studio 2010 and Eclipse 3.5. The feature is has

a different name in each IDE but it is essentially the same. .. 54

Figure 26 – Basic design of the Object graph visualizer ... 57

Figure 27- Design of the Object graph visualizer ... 58

file:///D:/text/DebuggerVisualizers/DebuggerVisualizers.docx%23_Toc290556286

81

Figure 28 – UI for ObjectGraphNode (implemented by PositionedGraphNodeControl).

The properties out of view have not been evaluated yet and will be evaluated when

they are scrolled into view... 59

Figure 29 – ObjectGraphNode representing a collection. .. 59

Figure 30 – Edges routed using Graphviz ... 62

Figure 31 – Edge paths calculated using our implementation. .. 64

Figure 32 – Edge path without smoothing (a shortest path in the Visibility graph). 64

Figure 33 – The path from Figure 30 with smoothing applied. ... 65

Figure 34 – Sharp join is replaced by a bezier curve.. 65

Figure 35 – Edge under mouse cursor is highlighted in bold and a tooltip is displayed. 65

Figure 36 – Multiple edges between two rectangles and self-edges. .. 66

Figure 37 – Object graph visualizer showing the state of the debuggee. .. 67

Figure 38 – Object graph updated after a step in the debugger. ... 67

Figure 39 (Class diagram) – Data virtualization using VirtualizingCollection<T>. 68

Figure 40 – The values of property Badge are complex objects. ... 69

Figure 41 – Final state of Collection visualizer. .. 70

Figure 42 – Debugger tooltips offering available Debugger visualizers for current

value... 71

Figure 43 – New Debugger tooltips for SharpDevelop 4.0 .. 73

Figure 44 – Debugger visualizer for XML strings... 73

Figure 45 – GNU Data Display Debugger’s visualizers for arrays of numbers. 75

Table 1 –Graph layout engines considered during our research .. 45

