
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Michal Papež

SOFAnet 2

Department of Distributed and Dependable Systems

Supervisor: RNDr. Tomáš Bureš, Ph.D.

Study program: Computer Science, Software Systems

2011

I would like to thank to my supervisor for all the advice he gave me and for aiming
my work on the most valuable topics out of the potentially broad scope of this thesis.
I would also like to thank to my family and girlfriend for their support, tolerance
and all the many little things that have brightened my days of work spent in front
of a computer screen.

I declare I have written my master thesis by myself and with exclusive use of refer-
enced sources. I agree with its lending and publishing.

In Prague, Michal Papež

2

Title: SOFAnet 2
Author: Michal Papež
Department: Department of Distributed and Dependable Systems
Supervisor: RNDr. Tomáš Bureš, Ph.D.
Supervisor’s e-mail address: bures@d3s.mff.cuni.cz

Abstract: The aim of SOFAnet 2, as a network environment of the SOFA 2 com-
ponent system, is to exchange components between SOFAnodes in a simple and
rational way. Current concerns of the SOFA 2 users about software distribution are
analyzed and discussed. New high level concepts of Applications and Components
are defined together with their mapping to SOFA 2 first class concepts, means of
distribution and removal. Furthermore a methodology to keep SOFA 2 repository
clean is introduced. All new elements as concepts and operations are studied using
a formal set model. The proposed concept of SOFAnet 2 is proved by a prototype
implementation.
Keywords: distributed systems, component systems, software distribution

Název práce: SOFAnet 2
Autor: Michal Papež
Katedra (ústav): Katedra distribuovaných a spolehlivých systémů
Vedoucí diplomové práce: RNDr. Tomáš Bureš, Ph.D.
e-mail vedoucího: bures@d3s.mff.cuni.cz

Abstrakt: Cílem SOFAnet 2 jakožto síťového prostředí komponentového systému
SOFA 2 je jednoduchá a rozumná výměna komponent mezi jednotlivými uzly. Sou-
časné požadavky uživatelů SOFA 2 na distribuci software jsou analyzovány a disku-
továny. Protože koncepty SOFA 2 nejsou navrženy pro účely distribuce, byly zave-
deny nové koncepty pro aplikace a komponenty. Tyto nové koncepty jsou mapovány
na koncepty SOFA 2 a studovány na formálním množinovém modelu. Pomocí to-
hoto modelu jsou definovány operace pro distribuci, instalaci a odstranění aplikací
i komponent. Jsou také navržena pravidla, podle kterých je možné vyčistit repoz-
itář SOFA 2 od nepotřebných částí software. Koncept SOFAnetu 2 je ověřen na
prototypové implementaci.
Klíčová slova: distribuované systémy, komponentové systémy, distribuce software

3

Contents

1 Introduction 7
1.1 Distributed Hierarchical Component Systems 7
1.2 Software Distribution . 8
1.3 Goals . 8

1.3.1 Current Concerns for SOFA 2 Users 8
1.4 Structure of the Thesis . 9

2 Context and Previous Work 10
2.1 SOFA . 10
2.2 SOFA 2 . 10
2.3 SOFAnet . 10

2.3.1 First thoughts of SOFAnodes and SOFAnet 10
2.3.2 SOFAnet Variant by Petr Panuška 11
2.3.3 SOFAnet Variant by Ladislav Šobr 12
2.3.4 Space for Improvement . 13

3 Analysis 14
3.1 Use Cases in Focus . 14

3.1.1 Stake Holders . 14
3.1.2 Distribution . 14
3.1.3 Keeping Repository Clean . 17

3.2 Addressing the Use Cases with SOFA 2 Concepts 18
3.2.1 First Class Concepts in SOFA 2 19
3.2.2 Need for New High Level Concepts 20
3.2.3 Mapping of the New Concepts to the SOFA 2 Concepts 21

3.3 Methodology to Keep the Repository Clean 24
3.3.1 Which Entities Are Useless . 24
3.3.2 What We May Want to Uninstall 25

3.4 Non-functional Requirements . 25
3.4.1 Ergonomics of the Solution . 25
3.4.2 Consistency and Concurrency in SOFA 2 26

3.5 Requirements in Detail . 26

4 Model of the Solution 27
4.1 Repository as a Set . 27
4.2 Defining High Level Concepts . 28

4.2.1 Dependency Closures . 28
4.2.2 Application . 29
4.2.3 Component . 30
4.2.4 Package . 30

4

4.3 Semantics of the Use Cases . 30
4.3.1 Operations with Repository 31
4.3.2 Off-line Application Transfer 31
4.3.3 On-line Application Transfer 33
4.3.4 Making Order in a Repository 33
4.3.5 Uninstallation . 36
4.3.6 Garbage Collection . 38

4.4 Distribution Package Implementation 39
4.4.1 Entity Package . 39
4.4.2 Composition of Distribution Package 40

5 Implementation 43
5.1 SOFA Tools API . 43

5.1.1 Introduction to SOFA Tools API 43
5.1.2 Concept of Actions . 43
5.1.3 Common Interface to SOFAnet 2 Actions 43
5.1.4 Actions for Distribution . 45
5.1.5 Actions for Unistallation . 45
5.1.6 Supporting Actions . 46
5.1.7 Set Operations with Entities 46
5.1.8 Addressing Consistency and Concurrency 48

5.2 GUI . 48
5.2.1 Introduction to SOFA 2 IDE 48
5.2.2 SOFA Net View . 49
5.2.3 Extensions to the SOFA Repository View 50

5.3 CLI . 50
5.3.1 Introduction to Cushion . 51
5.3.2 CommonPackagingCLI Class 51
5.3.3 SOFAnet 2 Actions in Cushion 51

6 Evaluation and Related Work 52
6.1 Evaluation . 52

6.1.1 The Main Use Cases . 52
6.1.2 Use Cases Not In Our Main Focus 52

6.2 Related Work . 53
6.2.1 COM/DCOM, EJB, CCM and Fractal 53
6.2.2 OSGi Service Platform . 54
6.2.3 Universal Packaging . 54
6.2.4 Update Services . 55

7 Conclusion and Future Work 56
7.1 Summary . 56
7.2 Contribution . 56

5

7.3 Comparison to Previous Work . 56
7.4 Future Work . 57

Bibliography 58

Appendices 61

A Catalogue of Requirements 61
A.1 Data dictionary . 61
A.2 Priorities . 61
A.3 Overview . 62

A.3.1 Package creation . 62
A.3.2 Package administration . 63
A.3.3 Package transfer and distribution 64
A.3.4 Non-functional . 64

A.4 Requirements Description . 64
A.4.1 Package creation . 65
A.4.2 Package administration . 69
A.4.3 Package transfer and distribution 76
A.4.4 Non-functional . 79

B Contents of the Enclosed DVD 82

6

1. Introduction
Various computer programs are a considerable part of our everyday life and the ex-
tend of using computers not only for work is continuously increasing. Moreover many
complex computer systems are directing important processes as money transfers and
water distribution remain unseen for most of us. The size of such systems is also
growing rapidly, because the tasks that we performed by many stand alone systems
are now desired to be integrated and performed by one coherent system. The new
systems of various state bureaus are a good example. Therefore, the software de-
sign, development and maintenance are more complex and demanding. The software
engineering is a designated engineering discipline which is concerned with all those
aspects of the software life cycle.

1.1 Distributed Hierarchical Component Systems

Many systems, starting approximately from an information system for a middle-sized
company, are seldom deployed on one machine. Their parts are distributed to allow
balancing of the load of the computers, their CPU, memory, disk, networking usage
and more. Often, companies have designated machines tailored for a particular task,
such as database machines with super-fast raid arrays, computing machines with
multiple CPUs, web-hosting machines with extended security and defense, etc.

When designing a large and complicated system, the overall mental complexity
is very simplified when the system can be split into a number of logically separated
parts. The logical and functional separation of parts is also crucial for development
and maintenance, because it allows localization of modifications and concurrent work.
Once those parts are treated as black-boxes that communicate with each other only
using well defined interfaces, we are close to the level of abstraction that is necessary
to develop large systems. Based on the communication protocol, the tightness of
coupling and some other properties, we can call those black boxes components or
services.

A component system is a facility that allows software development based on
components. Each component system has a component model which defines basic
relations, properties and behavior of all concepts the system operates with. Compo-
nent based software engineering is an acknowledged way of developing large software
systems, although its popularity is currently dropping in favor of service orientation.

Many companies have developed their proprietary component systems. For ex-
ample, the Microsoft’s COM and DCOM [1] were quite popular for developing ap-
plications for Windows around the year 2000, but it has been deprecated in favor
of the .NET Framework [2]. Enterprise Java Beans [3] is still a popular component
system to build enterprise applications.

Some systems were implemented according to a well known standard. For example

7

VisiBroker [5] is a commercial product implementing the CORBA Component Model
[4] standardized by the Object Management Group. Many non-commercial and open
source implementations exist too. Component models of these systems mostly do not
offer advance features such as hierarchical composition of components or multiple
communication styles. On the other hand, they have support guaranteed by their
vendor and offer large plateaux of tools that were proven working on many large
projects.

From the academic component system, we can name for example SOFA 2 [8] and
Fractal [9]. Although the academic component systems offer many advanced features
as those mentioned above, they are not widely accepted by industry. A discussion
on their common shortcomings can be found in [14].

1.2 Software Distribution

Software distribution is not only related to trading with applications or software in
general. In distributed environment, even a small part of software may be distributed
among the nodes of single vendor. A typical example of a scenario that lowers the
costs of developing large system is distribution of a component for reuse.

For the SOFA component system [17] a distribution framework called SOFAnet
was worked out on a middleware level to a stage of prototype implementation [20].
It is focused not only on component distribution, but also on e-commerce support,
sharing and searching. As the SOFA component system evolved into SOFA 2, a
similar network environment for the new component system became desired.

1.3 Goals

The main goal of the thesis is to propose a way of exchanging components between
SOFA 2 repositories and develop prototype implementation as a proof of concept. The
way of distribution should be as rational as possible and allow the users to distribute
what they really want to distribute. We prefer developing a rather simple and usable
solution compared to proposing a complex system that can not be implemented to
usable state in scope of a master thesis.

1.3.1 Current Concerns for SOFA 2 Users

We want to bring the most value to the users, therefore their current concerns are
put under focus. We will focus on the fundamental use cases such as the following
ones, because they are not sufficiently coved by the current SOFA 2 implementation:

• Store application or a set of components in a single file. Then install it from
that file in another repository.

• Basic peer-to-peer distribution of applications or components.

8

• Application uninstallation.

• Keeping trash in a repository under control.

We feel that support for the above mentioned use cases should be provided sooner
then we can start to think about corporate networks. The corporate networks are
not the primary concern for the users yet, so they are dropped from the scope of this
thesis. That means that we focus on distribution and uninstallations in more depth,
but we omit licensing, sharing and searching networks proposed in the previous
SOFAnet implementation for corporate intranets [19].

1.4 Structure of the Thesis

The chapter 2: Context and Previous Work describes briefly the SOFA 2 compo-
nent system and provides background information about previous work related to
the SOFAnet. The chapter 3: Analysis complements it with detailed analysis. The
next chapter 4: Model of the Solution mathematically models the proposed solution
using sets and chapter 5: Implementation provides description of the prototype im-
plementation. The chapter 6: Evaluation and Related Work gives evaluation of the
presented solution with respect to the goals of the thesis and the primary use cases
(that are defined in chapter 3: Analysis). The overview of the related work is also
presented in this chapter. The last chapter 7: Conclusion and Future Work gives a
conclusion, as well as future work ideas.

9

2. Context and Previous Work

2.1 SOFA

SOFA (SOFtware Appliances) [6] is a research project introduced in [17]. SOFA
is meant to be a component-based platform-independent architecture for software
development (e.g. component system). The authors of [17] established the terms
SOFAnode and the SOFAnet. The SOFAnode allows component storage, creation
and execution, while the SOFAnet is a network interconnection of SOFAnodes that
facilitates electronic trading with components.

After its introduction in [17], the SOFA project targetted mainly the structure
of the SOFAnode. The SOFAnet was nearly left intact for five years until [18] and
[19]. Its evolution began at almost the same time the main part of the SOFAnode,
hand written template repository, was to be reimplemented [7]. The original SOFA
project was soon after that abandoned in favor of its new version, the SOFA 2.

2.2 SOFA 2

The core features of SOFA 2 were introduced in [14] and [15]. In comparison to
SOFA, SOFA 2 component model is defined using a MOF-based meta-model [10],
which allows generation of model handling code. Therefore the SOFA 2 model can be
modified with ease and can be more complex. Many new features were introduced. A
new approach to implementation and extension of the controller part of components
[16] is among the most important ones. The new controllers are micro-component
based and a brand new micro-architecture meta-model was added to support them.
They allow changes in component control chain similarly to AspectJ [11] approach.
Also, component connectors became first class concepts.

The main resource of the SOFA 2 project related papers and documentation is
[8].

2.3 SOFAnet

2.3.1 First thoughts of SOFAnodes and SOFAnet

The idea of connecting SOFAnodes into SOFAnet has been here for a relatively long
time. In 1998, the idea of the functional parts of the SOFAnodes and how they should
be connected into SOFAnet was published in [17]. SOFAnet was intended to allow
both manual and automatic distribution (triggered by an event) of components, using
both push and pull methods1. No implementation was mentioned.

1Pushing is a means of transfer that is initiated by sender. It is also called sending. Similarly,
pulling (or downloading) is initiated by receiver.

10

2.3.2 SOFAnet Variant by Petr Panuška

Based on the view of SOFAnet in [17], the concept has been worked out by Petr
Panuška [18] in depth.

Bundle

Panuška introduced a bundle as a packaging abstraction of the SOFA project. The
bundle is a set of components with their implementations. It is realized as a JAR
file [13] containing files with implementations of components and a manifest file that
describes the content of the bundle.

Panuška’s bundle could contain only one implementation of component2, without
including the required sub-components. Therefore, the bundle could contain some-
thing so small that it was almost no use by itself (especially when the required
sub-components were missing).

On the other hand, the bundle could contain any arbitrary collection of imple-
mentations of components. We could include a few full-fledged applications inside
such bundle too.

Bundle offer

A bundle offer is the second abstraction introduced by Panuška. Its purpose is to
inform another SOFAnode what components are available for download and where.
It contains a set of identifiers of components (name and version pairs), and each
of the identifiers of components is accompanied with a name of node where the
implementation of component can be obtained.

The implementation of the bundle offer is almost identical to the implementa-
tion of the bundle. All the important information is contained in the manifest file
inside a JAR file. Therefore the only difference to bundle is, that the files containing
implementations of components are omitted.

Use cases for SOFAnet

Panuška also described several use cases and business processes supported by the
SOFAnet and SOFAnodes, namely:

• Making a Deal

• Sending patches for free

• Update downloading

The main scenario, Making a Deal, covers bundle creation, sending and installation
and therefore shapes a base of distribution functions.

2Component implementation is a basic runtime unit of SOFA. It comprises of Architecture,
Frame, Interface Types and optionally a code for primitive component.

11

2.3.3 SOFAnet Variant by Ladislav Šobr

A more ambitious and deeper vision of SOFAnet was presented one year later in [19]
by Ladislav Šobr. He added licensing models and incorporated license into the struc-
ture of Panuška’s bundle. Furthermore, he worked out a concept of three networks
cooperating with each other and with SOFA runtime too.

Three Networks of SOFAnet

Distribution Network The Distribution Network primarily transfers bundles be-
tween SOFAnodes. It utilizes both the push and pull transfer models. It is
targeted on the Internet.

Share Network The main goal of a share network is to share bundles among SO-
FAnodes and facilitate license management of the bundle in a corporate envi-
ronment (on a subset of intranet). For each bundle it has a star topology with
one share manager.

Search Network The search network facilitates searching for share managers over
intranet. It transmits search queries and replies.

Capabilities of the Prototype Implementation

The prototype implementation was intended as a platform for future development
and as a proof of concept. It could not be perfected because of the amount of work
required.

It offered some interesting functions. For example bundles could be set to be
handled automatically by triggers (on new bundle creation, arrival, sending, etc.).

When the SOFA runtime was missing a component, it could utilize the search
network to look for it over corporate intranet. When a share manager of a bundle
containing the missing component was found, it was asked whether the bundle could
be obtained. If there were some free licences or the bundle could be uninstalled from
some other SOFAnode, the bundle was transferred and installed on the node that
was missing the component. This way, the missing component was obtained without
any user intervention. The runtime could continue with instantiating the component
or application transparently.

On the other hand, there was poor support for software removal among others.
Only single bundle at a time could be removed and the dependencies between bundles
and components in general were not handled by uninstallation functions at all.

The solution as a whole is relatively complex. There is a lot of structures and
servers to be maintained and kept consistent with the central template repository,
including the structures holding installed bundles, shared bundles, bundle offers,
contracts, triggers etc.

12

2.3.4 Space for Improvement

Although the previous work on SOFAnet is extensive, there is still some room for
improvement.

Evolution of SOFA

All the work on the SOFAnet mentioned above was done for SOFA. However, the
SOFA evolved in SOFA 2 and everything, including the core interfaces, was re-
designed and reimplemented. Not only the previous implementation might not be
optimal according to the new SOFA 2 visions, but it is even unusable for SOFA 2
without huge modifications3.

Unit of Distribution

The basic unit of distribution for all the previous implementations is the Panuška’s
bundle. As we have described above, in the extreme case, only an implementation of
a single component is distributed in a single bundle. Such a bundle does not have
much sense by itself. We feel that such a unit of distribution is too finely grained,
because it does not reflect well what the users would normally like to distribute.

Fundamental Use Cases Not Covered

Also, we felt that the most frequent and fundamental cases of use are not sufficiently
covered. For example:

Storing an application on a disk or even dumping a whole repository on disk.

Direct transfer of an application. It is currently troublesome to set up, and the
unit of distribution is too finely grained.

Uninstallation that takes dependencies between bundles and components into ac-
count.

Keeping the repository clean is also desired. The users are currently concerned
that there is a lot of garbage left in the repository when it is used for a longer
period.

We would like to recreate the SOFAnet for SOFA 2 and focus on the fundamental
scenarios as those mentioned above at the same time.

3It might be even faster to reimplement everything from scratch.

13

3. Analysis

3.1 Use Cases in Focus

3.1.1 Stake Holders

The figure 3.1: Stake Holders shows the basic Stake Holders intended to use SO-
FAnet 2 specific features. Node Administrator is a person who installs and uninstalls
components and applications, configures the SOFA 2 node and takes care of deployed
applications. An Assembler composes new components from subcomponents and also
composes applications. The offerings of the new components and applications and
also their acquisition are tasks performed by Distribution Managers. The Distribu-
tion Managers also set the distribution policies. In reality some of those roles may
be represented by a single person. In an extreme case one person can even perform
all of them.

Our set of the basic stake holders is smaller in comparison to [18]. We have omit-
ted Users who only run applications and Developers who develop new components,
because we are focused only on the features of the proposed SOFAnet 2 and not on
the features of SOFA 2 in general.

3.1.2 Distribution

In this section we will describe the scenarios of usage that are related to distribution
of software objects. In our case we will focus on applications and components. The
basic distribution unit, that the system will use to distribute applications or their
parts, will be called package1.

Off-line Application Transfer

The Off-line Application Transfer use case describes how an application is trans-
ferred between two SOFA 2 nodes. The nodes do not need to be connected to the
Internet. Any of the common means of large file transfer can be used to transfer a
package containing the application.

Main successful scenario specification:

1a. Distribution Manager D1 offers an application to Distribution Manager D2.
D2 accepts the offer.

1We decided to use the word “package” instead of the word “bundle”, because the latter would
recall the bundles introduced in [18]. For the purpose of the analysis we do not want to fix ourselves
to the idea of the Panuška’s bundle. Our use cases are different and there are some substantial
changes in the model when comparing SOFA to SOFA 2. Later in the thesis we describe our
reasons for using a different basic unit of distribution then Panuška’s bundle.

14

Figure 3.1: Stake Holders

2a. Assembler A1 assembles a package file containing the application.
3. D1 sends the package using any common means of (possibly large) file transfer.
4. D2 receives the package.

5a. Node Administrator N2 installs the application packed in the package.

It is also desirable to have the possibility to transfer components to another
SOFA 2 node for later reuse. The following variant of the Off-line Application Trans-
fer use case describes the scenario.

Component transfer variant specification:

1b. D1 offers a set of components to D2 for reuse. D2 accepts the offer.
2b. Assembler A1 assembles a package file containing the set of components (in-

cluding all subcomponents).

. . .
5b. Node Administrator N2 installs the components packed in the package.

On-line Application Transfer

The On-line Application Transfer use case describes how an application is trans-
ferred between two SOFA 2 nodes that are connected via Internet.

15

Main successful scenario specification:

1a. Distribution Manager D1 offers an application to Distribution Manager D2.
D2 accepts the offer.

2a. Assembler A1 assembles a package containing the application.
3a. Node Administrator N1 installs the package on the SOFA 2 node of D2 using

a direct connection.

The next variant is quite similar, the only difference is that it is concerned with
components.

Component push variant specification:

1b. Distribution Manager D1 offers a set of components to Distribution Manager
D2 for reuse. D2 accepts the offer.

2b. Assembler A1 assembles a package containing the set of components (including
all subcomponents) and installs it on the SOFA 2 node of D2 using a direct
connection.

3a. Node Administrator N1 installs the package on the SOFA 2 node of D2 using
a direct connection.

The following two variants have the step where the Stake Holders make a deal
in common with the main scenario and its first variant. However the actor that
performs the transfer using the system under discussion (SuD) is different. The
authors of [17] propose that the SOFAnet utilizes not only a push model, where
the distributors of a bundle push it into the SOFA node of a customer. They propose
also a pull model, where the customer “downloads” the bundle from the distributors
SOFA node. Therefore the actors that initiate the transfer of the software parts in
the following two variants are not the distributors.

Application pull variant specification:

1a. Distribution Manager D1 offers an application to Distribution Manager D2.
D2 accepts the offer.

2c. Assembler A2 assembles a package containing the application from the SOFA 2
node of D1 using a direct connection.

3c. Node Administrator N2 installs the package (on the SOFA 2 node of D2).

Component pull variant specification:

1b. Distribution Manager D1 offers a set of components to Distribution Manager
D2 for reuse. D2 accepts the offer.

2d. Assembler A2 assembles a package containing the set of components (including
all subcomponents) from the SOFA 2 node of D1 using a direct connection.

3c. Node Administrator N2 installs the package (on the SOFA 2 node of D2).

16

3.1.3 Keeping Repository Clean

In section 2.3: SOFAnet we named a few articles that discuss the distribution of
software between SOFA nodes. However, the software we obtained is getting out-
dated and eventually is replaced by a newer version. Our license contract may also
expire. In such cases we also want to get rid the software that should be no longer
used. Therefore software removal is needed for prospective future implementation of
software licensing and sharing into SOFAnet 2. Another valid reason for software
removal, probably the most frequent one, is that we just do not need it anymore.

Uninstallation

The Uninstallation use case describes how an application should be removed from
a SOFA node. This task is important for Node Administrators, that are the only
actors interacting with the SuD here.

Main successful scenario specification:

1. Node Administrator N1 asks the SuD to uninstall an application from a SOFA 2
node.

2. Node Administrator N1 is presented a list of software objects that will be
removed from the SOFA 2 node.

3a. Node Administrator N1 confirms that the objects can be removed. The SuD
removes them. All parts of other applications and software objects under devel-
opment must remain in the SOFA 2 node and be functional. No useless parts
of the removed application should remain.

Refine Objects to Remove variant specification:

3b. Node Administrator N1 wants to keep some of the objects. They tell the system
which objects to keep.

4b. Node Administrator N1 is again presented with a list of software objects that
will be removed from the SOFA 2 node.

5b. Node Administrator N1 confirms that the objects can be removed. The SuD
removes them. All parts of other applications and software objects under devel-
opment must remain in the SOFA 2 node and be functional. No useless parts
of the removed application should remain.
(Same as 3a)

Garbage Collection

SOFA 2 node can be accessed by various tools that allow creation or removal of
first class entities. Those tools are intended to be the primary tools for Developers

17

and Node Administrators, so these actors will always interact with the repository by
means that go around the interface of SOFAnet 2.

We want to provide the Node Administrators with functions that clean the repos-
itory from unusable parts of software, because there always may be some software
part left over during development or even normal operation no matter how we design
and implement the SOFAnet 2.

The following Garbage Collection use case describes how a Node Administrator
interacts with the system when they remove unusable software objects from a SOFA
node.

Main successful scenario specification:

1. Node Administrator N1 asks the SuD to remove all useless software objects
from a SOFA 2 node.

2. Node Administrator N1 is presented a list of software objects that will be
removed from the SOFA 2 node.
(Same as point 2 of the Uninstallation use case)

3a. Node Administrator N1 confirms that the objects can be removed. The SuD
removes them. All parts of applications and software objects under development
must remain in the SOFA 2 node and be functional. No useless software parts
should remain.

Refine Objects to Remove variant specification:

3b. Node Administrator N1 wants to keep some of the objects. They tell the system
which objects to keep.
(Same as point 3b of the Uninstallation use case)

4b. Node Administrator N1 is again presented with a list of software objects that
will be removed from the SOFA 2 node.
(Same as point 4b of the Uninstallation use case)

5b. Node Administrator N1 confirms that the objects can be removed. The SuD
removes them. All parts of applications and software objects under development
must remain in the SOFA 2 node and be functional. No useless software parts
should remain.
(Same as 3a)

3.2 Addressing the Use Cases with SOFA 2 Con-
cepts

SOFA 2 is a distributed system that exclusively uses a central repository to persist
various concepts. We should focus on the concepts the repository stores first and
then we can see if our use cases are sufficiently covered with the existing concepts.

18

3.2.1 First Class Concepts in SOFA 2

In the following paragraphs we briefly describe 2 nine first class concepts of SOFA 2.

Frame

Frame represents a view on a component from outside. It is a collection of pro-
vided and required interfaces. Every component has to implement a frame, even the
top-level component implements frame with no interfaces. The components having
the same frame are interchangeable. Therefore the frame acts to some extend as a
component type.

Code Bundle

The Code Bundle represents an archive containing code for interface types, primitive
components, connectors, etc. It can also be used to store application specific data.

Interface Type

Every interface, being a communication endpoint for a component, has to refer to an
Interface Type object. The Interface Type object specifies interface implementation3

stored in a Code Bundle.

Architecture

Each component is defined by an Architecture referencing the frame the compo-
nent implements. There are two basic types of components: primitive and composite
ones. Primitive components contain just the business code which implements the
methods of their provided interfaces. Composite components consist of several sub-
components and don’t include any direct business code.

Assembly

The Assembly describes the structure of an application by a tree structure where
each node holds the reference to the Architecture of a component. Architectures of
sub-components are described by child nodes. This structure therefore describes how
each of the composite components should be composed and also how the application
should be composed from components.

2For more details please refer to [23]. Another comprehensible description of the main meta-
model entities can be found at [21]. The micro architecture meta-model entities are nicely described
in [24].
3The current implementation of SOFA 2 uses Java classes for that purpose. However, SOFA 2

is designed to be language independent.

19

Deployment Plan

Deployment Plans carry the information on where the components of the application
will be deployed as well as the values of properties that will be passed to them at
their startup.

Micro Component

Micro Components are elements of “micro-architecture meta-model”. They are the
basic building blocks of the SOFA 2 controller part. Each of them defines a collection
of provided and required micro-interfaces. A Micro Component also has to specify its
implementation. Therefore it plays a combined role of the Frame and Architecture
together in the (normal) meta-model and introduces some additional functionality.

Micro Interface Type

The Micro Interface Type fulfils the same purpose as Interface Type in the SOFA 2
meta-model, but only for Micro Components.

Aspect

All Micro Components and control interfaces, that extend a controller part of a
component, are put together in an aspect. The Aspect contains information about
new control interfaces, instantiation of the Micro Components, and their connections.

3.2.2 Need for New High Level Concepts

From the list of first class concepts in SOFA 2 we can see that the concepts of
applications and components are represented by Assemblies and Architectures. From
the data model point of view, they provide us with all the information we need for
both applications and components, including:

• name
• version
• previous version of the concept (if it is not brand new)
• complete structure of the sub-components where desired4

On the contrary the SOFA 2 concepts are not designed to support distribution in
the first place. They are tailored for the purpose of software development and reuse,
therefore they have much finer granularity. The use cases operate with applications
or components like they are whole and can be used without obtaining and installing

4In case of Architectures, a sub-component can be defined two ways: by an Architecture or by
Frame. It’s up to developers how flexible they want the component Architecture definition to be.
In case of Assemblies, we always have the full information about all the components used.

20

additional software parts. Therefore from the conceptual point of view we need to
introduce something new to cover the use cases. The Assemblies and Architectures
do not fit as they are.

3.2.3 Mapping of the New Concepts to the SOFA 2 Con-
cepts

Most of the SOFA 2 entities5 rely on other entities from the same repository. The
kinds of dependencies between entities are derived from a SOFA 2 meta-model and
from the choice of what will be a first class concept and what will not6. The choice of
the first class concepts is important because they are persisted in the repository on
their own, not as an owned part of any other concept. On the contrary the concepts
of lower classes are stored with a first class concept and can not be persisted on their
own.

In the figure 3.2: SOFA 2 Meta-model we can see various dependencies (denoted
as arrows) between the main SOFA 2 entities. For example Architecture implements
Frame. Some dependencies may be more difficult to see, but we also have to take
them into account. A simple example is that a Frame depends on potentially many
Interface Types, because it provides and requires Interfaces and each of the Interfaces
has its Interface Type. Interfaces are not first class concepts, so they are stored as a
part of a Frame in the repository.

The dependencies between the entities that are part of the SOFA 2 micro-
architecture meta-model can be seen in the figure 3.2: SOFA 2 Meta-model. These
entities and dependencies are not important for the distribution set of use cases, but
we will need to track them when removing entities and keeping the repository clean.

Knowing about the direct and transitive dependencies between entities, we can
introduce our concepts of Application and Component and map them to the SOFA 2
concepts.

Application

The most comfortable for user would be, if we could distribute a whole application
including the SOFA 2 runtime and repository. Unfortunately there is no support for
that in the runtime nor in the design of SOFA 2. Therefore we will try to distribute at
least everything that is kept in the repository and fills the purpose of an application.

The closest to application from the point of launching are Deployment Plans. But
the authors of SOFA 2 did not intend Deployment Plans for distribution, because
they are of local nature.

The second closest is Assembly. It holds the information we want to know about
an application and it allows us to generate Deployment Plans. Therefore it is by

5By the word “entity” we mean the first class concepts that are stored in a repository
6We have discussed the actual first class concepts in SOFA 2 in section 3.2.1: First Class Con-

cepts in SOFA 2 in more detail.

21

Figure 3.2: SOFA 2 Meta-model
Originally published in [21].

SOFAnet 2 concept SOFA 2 concept
Application Assembly and all entities it requires:

• Architectures
• Frames
• Interface Types
• Code Bundles

Component Architecture and all entities it requires:
• Architectures
• Frames
• Interface Types
• Code Bundles

Table 3.1: Mapping of the New Concepts to SOFA 2 Entities

22

Figure 3.3: SOFA 2 Micro-architecture Meta-model
Originally published in [21], modified.

far the best candidate. However it is only a description of application structure, the
implementation of the application is not a part of the Assembly as an entity. On the
other hand, the Assembly holds the references on the entities the application should
be composed of. It depends on them, on some of them directly, on some transitively.
Therefore we can introduce an Application7 as an Assembly and all entities it directly
or transitively requires. The table 3.1: Mapping of the New Concepts to SOFA 2
Entities summarizes what kinds of entities will be inside the transitive dependency
closure8 of an Assembly.

It is common for applications to share some parts. Our Applications can share
resources too, because they can share some entities. Anytime an Application would
be distributed, it would be distributed with the shared entities, because they are
part of the closure. When another Application, that is using particulary the same
entities, is installed, the entities that are in common among the two Applications
should be present exactly once in the repository.

Component

The closest SOFA 2 concept is Architecture. We introduce a Component as an Archi-
tecture and all entities that it directly or indirectly requires. The table 3.1: Mapping

7By the italic font face we will emphasize that we have a defined concept in mind.
8We will introduce the closure formally in the next chapter.

23

of the New Concepts to SOFA 2 Entities lists the entities that will be inside the de-
pendency closure. The Component is introduced similarly to Application, therefore
the previous paragraph about resource sharing holds true for Components too.

3.3 Methodology to Keep the Repository Clean

3.3.1 Which Entities Are Useless

In the section 3.1: Use Cases in Focus we have presented two use cases that address
the removal of entities from the repository. The Actors of the use cases are concerned
with which entities should remain in the repository. They want to keep everything
that is important for them, but they want to get rid of the entities that they have
no use for.

Using Applications

In the section 3.2.3: Application we have introduced a concept of Application, be-
cause we think it addresses our software distribution use cases, the best. The Ap-
plication should be the most important concept for the users. However its concept
does not cover Deployment Plans, because they are of local nature. But the users
definitely want to keep them since they are used for launching of the Applications.
From the Applications perspective this is all we need to keep:

• Everything we need to launch an application.

• Everything that is part of our Application concept.

Marking Entities under Development

The actors also want to keep what they are developing right now. All kinds of repos-
itory first class concepts can be under development at any given moment, so we
can not succeed in introducing a concept with more coarse granularity. The smallest
unit has to be an entity anyway. Therefore we propose marking of entities that are
under development. The same dependency closures that we introduced for Applica-
tions and Components may be utilized. This way there would be no need to mark
every entity that is part of current development. It should be enough to mark the
entity that transitively uses all the others9. Maintaining a single entity mark or small
set of marks in the worst case should be comfortable enough for the user, provided
that the tools will implement reasonable default handling of the marks. This could
for example involve automatic marking of every committed entity into repository to
protect it from being accidentally considered a garbage.

9For example an Assembly Descriptor or a Deployment Plan.

24

3.3.2 What We May Want to Uninstall

In the Uninstallation use case the Node Administrator wants to remove an Appli-
cation. The removal of an Application will probably take place most often. But the
question is what other concept may the users want to remove? In the section 3.3.1:
Which Entities Are Useless we were looking from a different perspective: What the
users normally want to keep. But every piece of software we wanted to keep may
be of no use anymore and we may want to remove it. Therefore there is another
important object of uninstallation, a Deployment Plan. It is relatively easy for a
Deployment Plan to become useless even though the Application it launches is still
working. All it takes is to change the configuration of the SOFA 2 node by removing
or renaming some docks.

Developers may also want to remove a whole part of an application they devel-
oped. In this case it is hard to determine automatically what should or should not be
removed. Basically the unit is an entity here again. According to the section 3.1: Use
Cases in Focus this is not our main concern. But we should provide an acceptable
way. For example we can put in use the marks proposed in section 3.3.1: Which
Entities Are Useless. That way we should obtain a solution that is more resistent
to Node Administrators’ errors in comparison to letting the Node Administrators
remove the entities one by one by hand.

To summarize, the objects for which the uninstallation functions should be im-
plemented are:

• Applications

• Deployment Plans

• Any entity in general. But this is not our main concern.

3.4 Non-functional Requirements

3.4.1 Ergonomics of the Solution

The users’ content is one of our main concerns. When performing frequent tasks, our
users will probably be interested in the simplicity and efficiency of the interface of
tools. A transfer of an application is a good example of such a task. The interface
should allow to transfer the application with the least effort, that means using only
one click if possible.

For more advanced users or the users with higher demands on customizing the
operations, a Command Line Interface (CLI) should be available. This interface
should provide the user with the best possible control of the operations performed.

Only one GUI and one CLI should be needed, preferably integrated into the
existing SOFA 2 tools as an extension. The new SOFAnet 2 tools have to be able
to operate with the existing tools side by side. For example, no conflict should arise

25

when a developer uses SOFA 2 IDE (without any extension) to develop an application
and at the same time SOFAnet 2 CLI to obtain components for reuse.

3.4.2 Consistency and Concurrency in SOFA 2

The SOFA 2 repository can be accessed by multiple tools at any given instance.
Certainly, our solution should not break the repository. Therefore all the actions the
SOFAnet 2 tools will perform upon the repository should be somehow synchronized
with the other tools or the repository should be accessed read-only. Furthermore any
new information stored in the repository by SOFAnet 2 should be organized in such
a way, that the other tools will still work as expected.

In case there will be any data stored outside the repository, the SOFAnet 2 tools
should be able to work even when the repository is accessed by the tools that are
not SOFAnet 2 aware and the external data are not updated accordingly.

Therefore we will design our solution in such a way that all information is stored
solely in the repository if possible, because the repository is the only place designed
for data persistence.

3.5 Requirements in Detail

In the early state of analysis a rather large catalogue of requirements was elaborated.
We focused on a subset of the requirements gathered later. Because the catalogue
is not an important point of this thesis, we present it in appendix A: Catalogue of
Requirements. To put our first thoughts of all the desired features in contrast to the
prototype implementation (see chapter 5: Implementation), we describe the status
of the current implementation in the catalogue too.

26

4. Model of the Solution
In this chapter we will introduce a mathematical model of the proposed solution.

4.1 Repository as a Set

SOFA 2 repository stores various entities. First we need to introduce entity types,
then we can introduce entities.

Definition 1. Entity Type Set is a set T = { Architecture, Aspect, Assembly, Code
Bundle, Deployment Plan, Frame, Interface Type, Micro Component, Micro Inter-
face Type }.

We will denote this set by T. Its elements are called Entity Types.

The entities are uniquely identified by their name and version in the repository.
The version itself contains information about all previous versions of the entity and
is implemented so that it should be globally unique. Therefore the entities that have
the same name and version are considered equal1.

To model our solution, we need to calculate dependency closures for SOFA 2 en-
tities, so we need the basic information for their computation. During runtime we are
able to access the entities that an entity directly depends on. Also in the repository,
each first class concept stores the information about its direct dependencies. We can
make the direct dependencies part of our entity model, because this information is in
fact contained in the first class entity and it has the same accessibility as the entity
itself.

Definition 2. Entity is a quintuple e = (n, v, t,D, I), where n is the entity’s name,
v is the entity’s version, t ∈ T is the entity’s type, D is a set of entities on which the
entity directly depends and I is an (arbitrary) set of additional information.

We will denote a set of all entities by E. We can then state that D ⊂ E.

The purpose of a repository is to persist entities. Therefore it is sufficient for
our model to understand a repository as a set of entities. We will not take such
implementation details as locks on the repository and on particular entities into
account. However, the set I in the definition of entity can be used as a base for
extensions of our entity model. We introduced it to our definition not only because
we will need it to recognize entities under development, but also because there is in
fact something quite similar in the SOFA 2 meta-model.

In the figure 3.2: SOFA 2 Meta-model we can see that every VersionedEntity
has any number of Infos and each of the Infos has a name and value (both are
Strings). As long as any additional information we want to keep with an entity can
be converted into a string or a small set of strings, this a good facility for storing it.
1For details on versioning and how versioned entities are manipulated in repository see Section

5.3. in [21]

27

Definition 3. State of Repository (in a given moment) is a set of entities, that are
present in the repository (at that moment).

It will be usually denoted by R, obviously R ⊂ E.

For convenience we will define the following set of auxiliary functions.

Definition 4. Let e = (n, v, t,D, I) be an entity, R ⊂ E a set of entities. Then
functions dep, req, and type are defined as follows:

• req(e) = D

• type(e) = t

• dep(e, R) = {d ∈ R : e ∈ req(d)}

The purpose of functions req and type is just to simplify the notation. The func-
tion dep is used to find out all entities from a given set, that are direct dependants
of a particular entity. It is meant to work in the opposite direction to function req,
which returns a set of entity’s direct requirements.

4.2 Defining High Level Concepts

To define the new concepts of Applications and Components that we introduced in
section 3.2.3: Mapping of the New Concepts to the SOFA 2 Concepts we need to
define a closure of dependencies.

4.2.1 Dependency Closures

Requirements Closure

Definition 5. Let e be an entity and A a set of entities. Then function requirements
is defined as follows:

• requirements(e) = {e} ∪
(⋃

r∈req(e) requirements(r)
)

• requirements(A) =
⋃

a∈A requirements(a)

The requirements function computes the closure of dependencies iteratively from
direct dependencies. Equivalently we could also define the requirements function
upon an entity e using the following formula:

requirements(e) = {e} ∪ requirements(req(e))

From this variant the implementation is straightforward using recursion.

28

Consistency of the Repository

The Requirements Closure can be also used to describe whether or not a repository
is in a consistent state.

Definition 6. Let R be a State of Repository. We say that the Repository is in
Consistent State iff2 the following formula holds true:

requirements(R) ⊆ R

We can also say that R is consistent.

The definition says in other words that all requirements for all entities from the
repository have to be in that repository too.

Dependants Closure

Definition 7. Let e be an entity, R and A sets of entities. Then function dependants
is defined as follows:

• dependants(e, R) = {e} ∪
(⋃

d∈dep(e,R) dependants(d,R)
)

• dependants(A,R) =
⋃

a∈A dependants(a,R)

The dependants function works in the opposite direction to the requirements
function. It will come in use when we reason about entities that should be removed
with an Application, Component or with an entity in general. Again, the dependants
function upon an entity e and a set of entities R can be equivalently defined using
the formula:

dependants(e, R) = {e} ∪ dependants(dep(e, R))

However, the implementation of this function will be a bit more complicated if we
take speed into consideration. It might be useful to cache the results of the dep(e, R)
somehow.

4.2.2 Application

We define an Application according to the notion presented in section 3.2.3: Appli-
cation.

Definition 8. Let a be an entity and R a set of entities. An Application is a pair
(a,R), where type(a) = Assembly and requirements(a) = R.

We will call a the main entity of the Application.

2if and only if

29

4.2.3 Component

Similarly, we define a Component according to the section 3.2.3: Component.

Definition 9. Let c be an entity and R a set of entities. A Component is a pair
(c, R), where type(c) = Architecture and requirements(c) = R.

We will call c the main entity of the Component.

4.2.4 Package

Our use cases (see section 3.1: Use Cases in Focus) require the SOFAnet 2 package
to hold either a set of Components or a single Application. We do not want to be
too restrictive, because we think an abstraction is more than appropriate here. From
our point of view, the package should contain an arbitrary set of important concepts
and everything those main concepts need for their proper functioning in order to be
reasonable for users. Therefore we will define a package in this more abstract sense.

Definition 10. Let M and R be sets of entities. A Package is a pair (M,R), where
requirements(M) = R.

The set M is called the set of the main entities.

We can easily see that the ability of a package to hold Components and Ap-
plications is not compromised by our definition. For each main entity m that is
an Assembly, there is a whole Application in the package (obviously m ∈ M =⇒
requirements(m) ⊆ requirements(M)). The same is true for Components.

For convenience we will define some auxiliary functions on packages too.

Definition 11. Let p = (M,R) be a package. Then the functions contents and
mains are defined as follows:

• contents(m) = R

• mains(m) = M

4.3 Semantics of the Use Cases

In this section we will describe the semantics of the use cases introduce in section 3.1:
Use Cases in Focus. We will focus on the derivation of the new state of the repository
in case of a successfully finished use case scenario. For clarity and simplicity we will
not reason about the repository states in cases of scenario interruption3.

3In all our use cases the modification of the repository contents happens in the last step. There-
fore we do not miss any possible repository state caused by scenario termination before the last
step. We leave the solution of a possible premature termination during the last step (like hitting a
cancel button or killing the process in extreme case) on implementation.

30

4.3.1 Operations with Repository

To describe what happens to the content of a repository we need to introduce a nota-
tion that describes the change. Assuming we have two states of the same repository,
Rbefore and Rafter. Rbefore describes the state of the repository before a particular
action and Rafter after it. It is common in literature to note the immediate transition
as Rbefore → Rafter.

This is useful when we want to emphasize the order of states and their relations.
However, for our description semantics of the use cases, we will usually use only two
states for each repository. We do not want to use more because we want to abstract
from the intermediate states during the process updating the repository contents.
On the other hand we want to describe the exact relation between the former and
the new State of the Repository and some other inputs if they apply.

For this purpose we find a notation that uses functions more appropriate.

Definition 12. An Operation with Repository is a function f with at least one
parameter p0 where the first parameter p0 is a State of Repository and the codomain
of f is the set of all States of Repositories.

If Rbefore and Rafter are two States of the Repository R, p1, . . . , pn are function
parameters and n ∈ N ∪ {0}, we can denote:

Rafter = f(Rbefore, p1, . . . , pn)

We say that Rbefore is the initial state before the operation f and Rafter is the final
state after it.

4.3.2 Off-line Application Transfer

The steps 1a, 3 and 4 of the Off-line Application Transfer use case do not require
any user interaction with the system, therefore they are not important from the
semantics point of view. We need to model the package creation described in step
2a and package installation described in step 5a.

Definition 13. Package Creation Function is a function create package defined for
any set of entities M and a State of Repository R as follows:

create package(M) =

{
(M, requirements(M)) if M ⊆ R and R is consistent

undefined otherwise

We can see that the codomain of the create package function is a set of all
packages, because its value is defined according to the definition 10.

Definition 14. Package Installation is an Operation with Repository that is defined
as a function install package for any State of Repository R and a package p as
follows:

31

• R is consistent : install package(R, p) = contents(p) ∪R

• undefined otherwise

Theorem 1. In cases where the Package Installation operation is defined, it results
in a the repository being in consistent state.

Proof. Let Rbefore and Rafter be two States of the Repository R and p a package,
where Rafter = install package(Rbefore, p). For any entity e ∈ Rafter the following
holds true:

• If e ∈ Rbefore then requirements(e) ⊆ Rbefore, because Rbefore was consistent.
From the definition 14 we can see that Rbefore ⊆ Rafter. Therefore we can
conclude that

requirements(e) ⊆ Rafter

• If e /∈ Rbefore then e ∈ contents(p), which means

requirements(e) ⊆ requirements(mains(p))

requirements(e) ⊆ Rafter

We can see that ∀e ∈ Rafter : requirements(e) ⊆ Rafter. According to the definition
6 we conclude that

requirements(Rafter) ⊆ Rafter

which means that the repository is in consistent state.

By now we have defined everything we need to define the semantics of the Off-line
Application Transfer use case.

Semantics of the Off-line Application Transfer Use Case

Inputs: S - Consistent state of the source repository.
Tbefore - Consistent state of the target repository.
M - A set of main entities, M ⊆ S, chosen by Assembler

A1.

Results: p - The package the Businessman B1 sends to Business-
man B2.

Tafter - Consistent state of the target repository after a suc-
cessful scenario.

Semantics: p = create package(M)
Tafter = install package(Tbefore, p)

32

4.3.3 On-line Application Transfer

The On-line Application Transfer use case does nothing special in comparison to
the Off-line Application Transfer use case from the repository point of view. In both
cases some software parts are taken from one repository and installed into another
repository. Of course the actors initiating the changes in the system are in some points
different. But the characteristics of actor should have no impact on the semantics of
the action, assuming the action is given exactly the same inputs. Therefore we can
define semantics of the On-line Application Transfer use case right away.

Semantics of the On-line Application Transfer Use Case

Inputs: S - Consistent state of the source repository.
Tbefore - Consistent state of the target repository.
M - A set of main entities, M ⊆ S, chosen by either As-

sembler A1 or Assembler A2.

Results: Tafter - Consistent state of the target repository after a suc-
cessful scenario.

Semantics: Tafter = install package(Tbefore, create package(M))

We can see there is only one point of difference between the semantics of the
two use cases: There is no package among the (intermediate) results. Otherwise the
state of the repository Tafter is obtained the same way. This is indeed what we want,
because it is reasonable to obtain the same repository state no matter how we transfer
the package.

4.3.4 Making Order in a Repository

In the step 2 of the Uninstallation use case the Node Administrator is presented a
list of software objects, that will be removed from the SOFA 2 node. Therefore the
list of objects (SOFA 2 entities seem to be fitting for this purpose) should be among
intermediate results of the uninstallation. The kinds of objects the users usually
want to keep in the repository and those they may want to remove were discussed
in section 3.3.1: Which Entities Are Useless. We will now introduce a few functions
that will concretize the ideas presented there.

Entities We Usually Want to Keep

Definition 15. Entity under Development is an Entity e = (n, v, t,D, I), where
? ∈ I. The element ? is called the Development Mark.

Definition 16. Let e = (n, v, t,D, I) be an entity and R ⊂ E a set of entities. Then
functions info, assemblies, deployment plans, and developed are defined as follows:

• info(e) = I

33

• assemblies(R) = {∀a ∈ R : type(a) = Assembly}

• deployment plans(R) = {∀d ∈ R : type(d) = Deployment Plan}

• developed(R) = {∀d ∈ R : ? ∈ info(d)}

Definition 17. Let R be any State of Repository. Then the function entities2keep
is defined as follows:

entities2keep(R) = requirements(assemblies(R) ∪ deployment plans(R) ∪
developed(R))

The the definition 17 defines a function that returns all the entities that should
be kept in the repository according to the ideas presented in section 3.3.1: Which
Entities Are Useless. All applications are kept, because an application is defined as
an Assembly and its requirements closure. All Deployment Plans and Entities under
Development are kept too with all the entities they (directly or indirectly) require.

Entities That Are Becoming Useless

The function entities2keep is tightly related to the function that calculates the
entities that should be uninstalled with a given entity. Any time we want to remove an
entity e we need to remove the dependants(e) too to keep the repository consistent.
In general, everything we remove needs to be removed with all entities that depend
on it.

When we remove a top entity of some concept, for example an Assembly or De-
ployment Plan, we would like to remove everything that will become useless once
the top entity is removed too. Therefore, we would like to remove requirements(e) if
possible, and then also dependants(requirements(e)) because of repository consis-
tency. In other words we would like to remove everything that the top entity needed,
since it is potentially useless, and also everything that needed those entities in order
to keep the repository consistent.

However, applications share components. It might happen, that we can not re-
move all the requirements(e), because any other application than e may be using
some entity from it. The same is true for the Deployment Plans and it is even true for
entities in general. Therefore we need to subtract entities2keep(R \ dependants(e))
from the list of entities scheduled for removal in order to keep all other Applications,
Deployment Plans and the Entities under Development working.

Trouble with Relating Applications to Deployment Plans

There is one problem that can be seen only when the SOFA 2 meta-model is carefully
examined. The Assembly Descriptors are not directly connected in the meta-model
with the Deployment Plans that were constructed from them. How can we figure out
which Deployment Plans was created from which Assembly Descriptor then?

34

The only way (beside of introducing changes into the meta-model) seems to be to
compare the structure described by a particular Assembly Descriptor 4 to structures
of all Deployment Plans5 and see which Deployment Plan fits. If we would like to
introduce such mechanism into our model of solution, we would need to work not
only with SOFA 2 first class entities, but more likely with all its entities in order to
stay on a consistent level of abstraction. That would blow our model many times in
size, break its simplicity and the chances of reuse.

We decided to keep using only the first class entities in our model of solution.
Therefore we sacrifice some precision in the cases where a Deployment Plan needs to
be removed due to an Application removal. In such cases, the entities that are only
part of a Deployment Plan but not part of the Application, may not be properly
uninstalled. However, this should be rare and it affects only the highly deployment-
specific entities as Aspects and Micro Components. Moreover, this compromise will
only affect the Uninstallation function.

Definition of the Function Computing The Entities to be Removed

Definition 18. Let R be any State of Repository and e an entity. Let K be a set of
entities, that satisfies:

K =

{
dependants(e) ∪ deployment plans(R) if assemblies(dependants(e)) 6= ∅
dependants(e) otherwise

Then the function entities2remove is defined as follows:

entities2remove(R, e) = dependants(requirements(e)) \ entities2keep(R \K)

The set K in the definition 18 is a set of entities that lose their protection by
the entities2keep function. In other words, these are the concepts that do not need
to keep working after the removal of an Uninistallation of an entity (or Application,
Component, . . .). Certainly, if we remove the entity e, we do not insist on keeping
it working. But we can not keep the entities that are dependant on it too, otherwise
the repository will be inconsistent. Therefore the dependants(e) are always inside
the set K.
4The Assembly Descriptor describes the structure of an application by a tree structure of In-

stance Assembly Description nodes connected by Top Level Instance and Sub Component Instance
relations. The nodes hold the references to Architectures of all Components and their Subcompo-
nents too. Therefore this structure describes how each of the composite Components should be
composed and also how the Application should be composed from Components.
5The Deployment Plan describes the structure of an application to launch by a tree structure

of Instance Deployment Description nodes, that are connected by Top Level Instance and Sub
Component Instance relations too. However the nodes have a different type than those in case of
an Assembly. They hold more references: Architectures to be instanced and Code Bundles to be
loaded.

35

In the first case of the definition of K, the deployment plans(R) are also included
in the set K. We need to include the Deployment Plans that deploy an Application
we need to remove. Otherwise only the Assembly on the top of the Application would
be removed, because all the components used by the Application are referenced from
its Deployment Plan. We think this is not the behavior users would expect. We have
to include all the Deployment Plans from the repository and not just some of them,
because of the problem of relating the Applications to Deployment Plans.

By the inclusion of all Deployment Plans from the repository we can not break
any Deployment Plans that are not related to the entity we remove. Only the entities
that are in dependants(requirements(e)) may be removed. Only those Deployment
Plans, that require an entity to be removed, are removed. But all the entities that
are required for the Applications we keep are kept too. Therefore all the Deployment
Plans deploying the Applications we keep will also remain.

If there was such a mechanism that could tell us which Deployment Plans were
created for the Applications we want to remove, we would add only those Deployment
Plans to the set of “not defended” entities K.

4.3.5 Uninstallation

We are now equipped with the precise definition of a function that computes the set
of entities that should be removed during uninstallation. We can now proceed to the
definition of the Uninstallation Operation and to the semantics of the Uninstallation
use case.

Definition 19. Uninstallation is an Operation with Repository that is defined as
a function uninstall for any Consistent State of Repository R and an entity e as
follows:

uninstall(R, e) = R \ entities2remove(R, e)

Theorem 2. The Unistallation Operation results in a repository being in a consis-
tent state.

Proof. In the final state of the repository after the operation, every entity needs
to have all its requirements in the repository too. Otherwise the repository is not
in a consistent state. We remove only the entities given by the entities2remove
function value. Therefore it is enough that each entity from the set returned by the
entities2remove function is in the returned set together with all its dependants.

The entities2remove function can be rewritten as

entities2remove(. . .) = dependants(. . .) \ requirements(. . .)

because the requirements(. . .) computed inside the entities2keep function are
subtracted from the dependants(. . .) inside the entities2remove function.

36

Let’s examine the result of the entities2remove function. Let D be any set re-
turned from the entities2remove function. For a proof by contradiction, let e1 and
e2 be two entities, where e1 ∈ D, e2 ∈ dependants(e1) and let’s assume e2 /∈ D. This
is the only case the repository consistency condition would break.

e1 ∈ D =⇒ e1 ∈ dependants(. . .) =⇒ e2 ∈ dependants(. . .)

e1 ∈ D, so it was returned from the dependants(. . .) closure. Obviously, e2 was
also returned from dependants(. . .), because e2 ∈ dependants(e1).

e2 ∈ dependants(. . .) ∧ e2 /∈ D =⇒ e2 ∈ requirements(. . .)

e2 was also returned from dependants(. . .) and it was not in the result, so e2 ∈
requirements(...), otherwise it were in D.

e2 ∈ dependants(e1) =⇒ e1 ∈ requirements(e2)

We know that e2 ∈ dependants(e1). The closures work in opposite directions, so
e1 ∈ requirements(e2). Furthermore we can deduce that:

(e2 ∈ requirements(. . .)) ∧ (e1 ∈ requirements(e2)) =⇒ e1 ∈ requirements(. . .)

e1 ∈ requirements(. . .) =⇒ e1 /∈ D

If e1 ∈ requirements(. . .), it would have been subtracted from the result of
dependants(. . .). Therefore e1 /∈ D and our assumption breaks.

We can conclude that the condition for the repository consistency can never break
as a result of Unistallation Operation.

Semantics of the Uninstallation Use Case

Inputs: e - Top entity of the concept to be uninstalled.
Rbefore - Consistent state of the repository.

Results: U - A set of entities scheduled for removal. It is presented
to the Node Administrator during steps 2 and 4b of the
Uninstallation use case.

Rafter - Consistent state of the repository after a successful
scenario.

Semantics: U = entities2remove(Rbefore, e)
Rafter = Rbefore \ U = Rbefore \ entities2remove(Rbefore, e)

We have proved the repository will be in a consistent state after the Uninstallation
Operation and therefore after a successful scenario of the Uninstallation use case.
But there is still one open question about the entities that are left in the repository:
May the Uninstallation Operation leave in the repository any “useless” entities? We

37

will understand the “useless” entities as the entities that are not in the result of the
entities2keep function6.

It may introduce some garbage in the repository in cases of Application removal,
because of the problem with Deployment Plans and Assemblies relation, that were
discussed in section 4.3.4: Making Order in a Repository. We think the most common
cases are those where the Deployment Plans are not using the entities that are not
part of the Application (like Micro Components and Aspects7). In cases where only
such Deployment Plans are removed (as a result of removing Application), no new
garbage will be introduced.

If there was such a mechanism that could tell us which Deployment Plans were
created for an Application we need to remove, the cleanest solution would be to
uninstall those Deployment Plans prior to the uninstallation of the Application.

We suggest that the tools that perform the Uninstallation Operation also offer
the user a default option to trigger a Garbage Collection after the Uninstallation
is finished. This will clean all the garbage that may be in the repository before the
Uninstallation or that might be introduced by it. The semantics of the Garbage
Collection follows in the next section.

4.3.6 Garbage Collection

Semantics of the Garbage Collection Use Case

Inputs: Rbefore - Consistent state of the repository.

Results: G - A set of entities scheduled for removal. It is presented
to the Node Administrator during the steps 2 and 4b
of the Garbage Collection use case.

Rafter - Consistent state of the repository after a successful
scenario.

Semantics: G = Rbefore \ entities2keep(Rbefore)
Rafter = entities2keep(Rbefore) = Rbefore \G

Process of the Garbage Collection

According to the semantics we have just presented and the Garbage Collection use
case, the action could be implemented in the system as follows:

1. The set of garbage will be found using the formula presented in the semantics:

G = Rbefore \ entities2keep(Rbefore)

6We will define the semantics of Garbage Collection in the section 4.3.6: Garbage Collection in
this sense.
7The exception are the internal entities. But internal entities should be excluded from all repos-

itory operations and never be considered “useless”.

38

2. The set of garbage will be presented to the user.

3. They decide, if it should be removed as a whole, if some entities should be
marked as Entities under Development or if they just want to ignore the
garbage and cancel the operation.

4. If the user agrees to remove the garbage as a whole, it is removed. Otherwise if
the marks on entities have been updated, the process should be invoked again
from point 1 (rather on demand).

4.4 Distribution Package Implementation

The implementation of a Distribution Package8 is important on a different level of
abstraction than the implementation of tools and actions. The Distribution Package
implementation is playing a role of an interface, because it should not be dependent
on the implementation of the tools, but all the tools should use it. It should be also
resistent to various changes in SOFA 2 in general, even in its meta-model if possible.

4.4.1 Entity Package

In the definition 10 we have proposed an abstraction of the distribution package.
Our model of the solution operates on entities contained in the abstracted distri-
bution package. Therefore we think the entities contained in the package should be
accessible randomly, one by one by the tools that implement the functions related
to the distribution packages.

The same rules about resistance to changes should apply to how the entities
should be stored inside the distribution package. We decided to see this representa-
tion of an entity as another package called Entity Package, because even though the
distribution of single entities is not our main concern, it should still be possible.

Entity Package Implementation

In order to maximize the independence of the entity package on the implementation
of the SOFA 2 tools, it was necessary to use the basic entity description the tools are
using for entity creation in the package. The basic information about the entity is by
default stored in a few files (that the tools can operate), therefore the entity package
is implemented9 as a zip archive. Because it contains a single entity, the name of this

8From this section onwards, we will need to distinguish two types of packages. One is the package
discussed earlier. We will call it a Distribution Package in the rest of this chapter to emphasize its
application or component distribution purpose. The other type of a package is an Entity Package,
which will be discussed in the next subsection.
9The implementation of the entity package was first described in [22] by the author of this

thesis. However, in this early stage of SOFAnet 2 development the two types of packages were not
distinguished.

39

archive was fixed to <name of the entity>-<version of the entity>.sp. This naming
convention tells the tools which entity is inside the package without the necessity to
extract the archive.

The archive contains two or three files:

adl.xml Definition of the entity described by SOFA 2 architecture description lan-
guage file. See Part IV, SOFA 2 ADL Developer Guide in [22] for SOFA 2 ADL
description.

contents.xml Contains name, version, type and tags of the entity and lists all
its dependencies by their name and version (see listing 4.1: Entity Package
contents.xml). The contents.xml file is meant to be processed by tools first,
because they should check that all the dependencies of the entity are satisfied.

<name of the entity>.jar Contains the code of the entity. Present only if the
entity has some.

<?xml version ="1.0" encoding ="UTF -8"?>
<sofa_package >
<name >org.objectweb.dsrg.sofa.examples.logdemo.assm.LogDemo </name >
<version >4 a87f0d8515fa5cdd81ae0e1626e4e3769220594 </version >
<type >assembly_desc </type >
<tags >
<tag >current </tag >

</tags >
<dependencies >
<depends >
<name >org.objectweb.dsrg.sofa.examples.logdemo.arch.LogDemo </

name >
<version >574 e0ec44fb2c1a09e246d829bd6cfd8c5b070a5 </version >

</depends >
...
<depends >
<name >org.objectweb.dsrg.sofa.examples.logdemo.arch.Logger </

name >
<version >da1a752b079a3d30a18b042ac3c20f4d018aa832 </version >

</depends >
</dependencies >

</sofa_package >

Listing 4.1: Example of entity package contents.xml file

4.4.2 Composition of Distribution Package

The distribution package is composed of several files stored in a zip archive. Its
structure is partially similar to the structure of an entity package.

The archive contains two types of files:

40

contents.xml Contains the name, version and type of the distribution package. For
all main entities it lists their name, version and type. Furthermore all entities
contained in the package are specified by their name and version. See listing 4.2:
Distribution Package contents.xml for example. The contents.xml file is meant
to be processed by package handling tools first. It should avoid the necessity
to extract the contained entities in order to just examine the package.

<name of the entity>-<version of the entity>.sp Entity Packages. There is
one such file for each entity contained in the distribution package.

<?xml version ="1.0" encoding ="UTF -8"?>
<sofanet_distribution_package >
<name >logdemo </name >
<version >1.0 </ version >
<type >Application </type >
<main_entities >
<main_entity >
<name >org.objectweb.dsrg.sofa.examples.logdemo.assm.LogDemo </

name >
<version >4 a87f0d8515fa5cdd81ae0e1626e4e3769220594 </version >
<type >assembly_desc </type >

</main_entity >
</main_entities >
<contained_entities >
<contained_entity >
<name >org.objectweb.dsrg.sofa.examples.logdemo.frame.Tester </

name >
<version >3 b9343ef66d34fe19d02a13b1364549e8169421f </version >

</contained_entity >
...
<contained_entity >
<name >org.objectweb.dsrg.sofa.examples.logdemo.assm.LogDemo </

name >
<version >4 a87f0d8515fa5cdd81ae0e1626e4e3769220594 </version >

</contained_entity >
</contained_entities >

</sofanet_distribution_package >

Listing 4.2: Example of distribution package contents.xml file

The distribution package contains many zip archives (entity package), but it is
also a zip archive of its own. It can be understood as a two layer archive, each
layer represents a different level of abstraction. An overview of the whole structure
is presented in figure 4.1: Tree Structure of the Distribution Package.

41

Figure 4.1: Tree Structure of the Distribution Package

42

5. Implementation
The main business logic of the SOFAnet 2 is implemented in a module called SOFA
Tools API, which we describe in the following section. The description of the graphi-
cal and command line user interfaces of SOFAnet 2, which both use the shared logic
in the SOFA Tools API, is presented in the second half of this chapter.

5.1 SOFA Tools API

5.1.1 Introduction to SOFA Tools API

SOFA Tools API (further just API) provides a set of functions covering essential
development and deployment tasks. It is intended to contain the common application
logic of all SOFA 2 tools. Today it is a stand-alone module shared among Cushion,
SOFA 2 IDE and MConsole. Its placement in the architecture of SOFA 2 is illustrated
in figure 5.1: Placement of SOFA 2 Tools API in the SOFA 2 Framework.

5.1.2 Concept of Actions

From the client’s point of view, the API is a set of actions, each implementing
one functionality. An action is a class with various perform1 methods. It typically
interacts with the repository and workspace2. The actions also provide some outputs
such as errors, warnings and informational messages. For more information about the
API and actions, please refer to [22].

5.1.3 Common Interface to SOFAnet 2 Actions

The actions that were previously implemented in the API were mostly operating
on entities and were relatively quick. The SOFAnet 2 actions operate mostly on
packages and can take extensive amounts of time. Therefore the typical interface of
those actions is somewhat different. It usually operates with two concepts described
in the following paragraphs.

DistributionPackageInfo Class

The DistributionPackageInfo class encapsulates information about a package, in-
cluding:

• name
1An action is usually initialized in its constructor. The operations the action implements are

performed inside its perform method, which should get all its inputs as parameters passed to it
upon call. For more details see [22].
2A storage of entities, that are in the process of creation or are checked out for modifications.

43

Figure 5.1: Placement of SOFA 2 Tools API in the SOFA 2 Framework
Originally published in [22].

• version
• type (e.g. single Application, single Component, multiple Components, etc.)
• main entities (Assemblies and Architectures)
• all the contained entities

It can provide the same information that is contained in the distribution package
contents.xml file (see section 4.4.2: Composition of Distribution Package for more
details). An instance of the DistributionPackageInfo class can be created from
this file or from a collection of entities taken from the repository. In this case, the
contained entities are computed on demand (using the requirements closure).

IProgressNotification Interface

The IProgressNotification interface was created to allow passing of progress in-
formation from actions, that are expected to run for a long time. It can also pass a
request for early termination from a user interface (UI) to the action logic. An inter-
face was chosen, because progress notification is desirable also in the form of Eclipse
progress dialog3, while the API should stay as platform-and-framework independent
as possible. This way, the IProgressNotification can be implemented inside the
client Eclipse application.

There is one default implementation of the IProgressNotification, that is
used for convenience whenever no progress notification is required. It is called Null-
ProgressNotification class, because it discards all progress information calls and

3SOFA 2 IDE is built upon Eclipse Framework.

44

always tells the action to continue its work.

Input and Output Stream Factories

Both the entity packages and the distribution packages are expected to be transferred
by various means. For example, an entity package may be stored by itself on a disk
or it may be stored inside a distribution package, which is then transferred over the
Internet. Therefore, the concept of input and output stream factories was introduced
to the interfaces of actions.

The IInputStreamFactory and IOutputStreamFactory are generic interfaces to
create input and output streams. They are implemented by the ZipInputStream-
Factory, ZipOutputStreamFactory, FileInputStreamFactory and FileOutput-
StreamFactory and allow chaining. The package transfer over the Internet is imple-
mented as an inner class, that implements both IInputStreamFactory and IOutput-
StreamFactory using a byte array and is being chained with the zip stream factories.

5.1.4 Actions for Distribution

Export and Import

The Export and Import actions handle entity packages. The Export is for package
creation, Import for installation into a repository.

CreatePackage and InstallPackage

Similarly to the way how Export and Import work with entity packages, the Create-
Package and InstallPackage actions handle distribution packages. Please refer to
the section 4.3.2: Semantics of the Off-line Application Transfer Use Case for the
description of their semantics.

TransferPackage

The TransferPackage action supports the On-line Application Transfer use case.
Although its semantics was defined in section 4.3.3: Semantics of the On-line Appli-
cation Transfer Use Case using a create package function, it does not create a full
fledged package. It transfers only the entities that have to be transferred, because it
is desirable to spare time by lowering the amount of data to be transferred. It also
eliminates unnecessary entity queries to both repositories by utilizing caches. The
requirements of the entities, that are present in the target repository prior to the
transfer, are not even queried from the source repository.

5.1.5 Actions for Unistallation

The actions that handle removal of entities are using IRemovalConfirmation inter-
face. This interface should be implemented in the client of the API and let the user

45

confirm the list of entities to be removed (or cancel the operation).

GarbageCollect

The GarbageCollect action is implemented according to the section 4.3.6: Seman-
tics of the Garbage Collection Use Case. When a Node Administrator decides to
refine the set of entities to be removed, the MarkDevelopment action (described in
the section 5.1.6: Supporting Actions) should be utilized.

Uninstall

The Uninstall action supports the Uninstallation use case. It should be used to-
gether with the MarkDevelopment action the same way as the GarbageCollect
action. The GarbageCollect action should be optionally triggered by the client of
the API after a successful uninstallation.

5.1.6 Supporting Actions

The main actions described above are accompanied with the following auxiliary
actions.

AvailablePackages

The AvailablePackages action examines a repository and returns a list of available
component and/or application packages.

ExaminePackage

Use the ExaminePackage action to get a user friendly description of a distribution
package. Both the packages created from a repository during runtime and package
files are supported.

MarkDevelopment

The MarkDevelopment action can set, unset and query the Development Marks on
entities (see the definition 15 in section 4.3.4: Making Order in a Repository).

5.1.7 Set Operations with Entities

EntitiesFilter

In the previous chapter a model of the solution has been introduced. In the model,
the repository and packages are modeled as sets. To implement the calculations with
sets required by the model, a class called EntitiesFilter was created.

46

Given a repository, the class evaluates an expression with operators, parentheses,
basic set constructors and functions. It returns a set of entities as a result. During
the evaluation, internal entities are not taken into account, because they should not
be manipulated.

We feel that set operations upon entities may be utilized for various purposes.
The class was made extensible to maximize its chances of reuse.

Basic Set Constructors

Basic Sets act as terms for the expression. In order to create a basic set, the entities
from a repository are filtered based on:

• name
• version
• type
• tag
• development marks

The names, versions and tags are matched using regular expressions. A constructor
that creates a set containing only a given entity is supported too.

New basic set constructors can be easily added. Each basic set constructor im-
plements a IFilter interface. New set constructors can be passed to the Entities-
Filter instance while calling its constructor.

Operators

Furthermore, these operators are supported on sets:

• union
• intersection
• complement

All the operators are build-in and can not be easily customized.

Functions

Functions were introduced to allow the computations of closures. All functions must
implement the IFunction interface. Custom implementations can be passed to the
EntitiesFilter instance while calling its constructor too. By default, two functions
implementing the closures are recognized, namely:

• dependants
• requirements

Both of them take only one parameter, because they operate on the repository that
was given to the EntitiesFilter instance upon its construction.

47

Example

In the the definition 18 in the section 4.3.4: Making Order in a Repository we have
defined a set K. In one of the cases, K can be computed using the following formula:

K = dependants(e) ∪ deployment plans(R)

This formula can be evaluated by the EntitiesFilter class. First, the instance of
the class needs to be created for the repository R. Then the following String can
be passed as an expression for evaluation:

dependants(entity=< e.name >:< e.version >) OR type=deploymentplan

The result of the evaluation will be the desired value of the set K.

5.1.8 Addressing Consistency and Concurrency

Only One Interface for the Repository

The SOFAnet 2 implementation introduced no changes in the repository or its inter-
face4. Therefore it accesses the repository in a common way with all the other tools.
No inconsistencies should be introduced by sequential operations of various tools, no
matter whether they are aware of SOFAnet 2 or not.

Locks on the Repository

The concurrent operation of the tools on a single repository is solved by non-
mandatory locks, implemented on the repository server side. Those locks were hon-
ored by some of the more complex actions even previously. The SOFAnet 2 actions
of course acquire a lock when needed. Therefore the operations that can influence
the repository consistency or have important results5 are forced to be running se-
quentially.

5.2 GUI

The Graphical User Interface (GUI) for the SOFAnet 2 was integrated into the
SOFA 2 IDE.

5.2.1 Introduction to SOFA 2 IDE

The SOFA 2 IDE is a graphical environment for developing SOFA 2 applications.
It is built as an Eclipse IDE [12] plug-in. Its architecture is well described in [22],
therefore we will focus only on the integration of the SOFAnet 2 features.
4RepositoryAgent and RepositoryFacade classes.
5For example CreatePackage or Uninstall actions do lock the repository. On the other hand,

ExaminePackage action does not, because it introduces no changes to the repository and its result
is only informative.

48

Figure 5.2: SOFA Net View in Two Panel Mode

5.2.2 SOFA Net View

A new view called the SOFA Net View was introduced into the SOFA 2 Repository
Perspective.

Single and Two Panel Mode

The view can be set to work in Single or Two Panel Modes (see figure 5.2: SOFA
Net View in Two Panel Mode for example). The Single Panel Mode is convenient
when a user wants to see whole entity names and versions, because both of them are
quite long. The Two Panel Mode is intended to be used when transferring packages
between repositories.

49

Drag and Drop

The TransferPackage action is invoked when a selection of Applications and Com-
ponents is dragged and dropped on a SOFAnode location. The selection can be
dropped into both panels no matter where the selection was chosen from.

Context Menu Actions

There are multiple actions available through the context menu. On the SOFAnode
Location, the InstallPackage action is enabled.

For selections of Applications and Components, the CreatePackage and Exam-
inePackage actions are available.

Toolbar Extensions

The contents of the SOFA Net View toolbar is changing with the view mode. There
are three groups of buttons in the Two Panel Mode and two groups of buttons in
the Single Panel Mode. The missing group in the Single Panel Mode is the tree
navigation button group for the second panel.

There are two important buttons in the action group in the middle. One is for
switching the panel modes of the view. The other is invoking the ExaminePackage
action, that examines a package file.

5.2.3 Extensions to the SOFA Repository View

The uninstallation and garbage collection functions were integrated in the SOFA
Repository View.

Its label provider was updated to display the status of the Development Marks.

Context Menu Actions

The other actions were added to the context menu as follows. On the SOFAnode
Location, the GarbageCollect and Import actions are available.

When a single entity is selected, the Uninstall and MarkDevelopment actions
can be invoked. For one or more selected entities, the Export action is enabled.

5.3 CLI

The Command Line Interface (CLI) for the SOFAnet 2 is a part of the development
and management command line tool for SOFA 2 called Cushion.

50

5.3.1 Introduction to Cushion

Cushion is a thin shell wrapping the SOFA Tools API. It uses the concept of actions
too.

The main purpose of the Cushion actions is to parse the textual form of the
parameters, convert them to the form the API accepts and delegate the call the
corresponding action in API. Therefore the actions in Cushion usually directly cor-
respond to the actions in API.

Please refer to [22] for more details.

5.3.2 CommonPackagingCLI Class

In Cushion, each action should parse its own command line parameters and also
should provide the user with help. However, the parameters of the SOFAnet 2 actions
mostly overlap. Therefore the CommonPackagingCLI class was introduced to hold all
the common parameters, their help strings and handle their parsing. This way, the
CLI for all the SOFAnet 2 actions is consistent and easy to modify.

5.3.3 SOFAnet 2 Actions in Cushion

In case of the SOFAnet 2, the Cushion actions exactly correspond to the actions
in the API. These were described in section 5.1.4: Actions for Distribution, section
5.1.5: Actions for Unistallation and section 5.1.6: Supporting Actions.

51

6. Evaluation and Related Work

6.1 Evaluation

This section presents the evaluation of our SOFAnet 2 prototype implementation,
that is on the enclosed DVD (see appendix B: Contents of the Enclosed DVD for
details). The latest version is available for download from [25].

6.1.1 The Main Use Cases

The implementation was tested to support the main use cases presented in section
3.1: Use Cases in Focus in the first place. During the development, small examples
called LogDemos, that are part of SOFA 2 distribution were used. For final testing,
SOFA SHOP, that is also available in the SVN repository of the SOFA 2 [25], was
utilized as an example of larger and more complex application.

The implementation proved to handle all the use cases well. The GUI is more
comfortable because it provides better overview and displays in advance information
about what exactly will be done. On the other hand, the CLI displays information
only when user asks for it. The CLI also has better mechanisms to choose the concepts
we want to operate with. Therefore, it does not query unnecessary data and saves a
considerable amount of network traffic.

Both interfaces work fast enough, although a progress feedback is necessary. For
example, the on-line transfer of an Application will take from tens of seconds to a
few minutes depending on its size. The operation can be performed approximately
20 % to 30 % faster by the CLI, because the CLI does not pre-compute what should
be transferred only to show the list to the user in advance.

6.1.2 Use Cases Not In Our Main Focus

Our solution is focused on the high level concepts of Applications and Components.
Sometimes, although it is not our main concern, someone may want to distribute
some software parts with finer granularity. For example, someone may want to dis-
tribute a new Aspect or a Frame with Interface Types. How our prototype imple-
mentation handle this case?

Even such use cases are supported, but in a bit more complicated way. In case
of the off-line transfer, entity packages can be created by either SOFA 2 IDE or
Cushion1. These tools allow exporting a root entity with all its requirements into
a directory. The user that has to pack those entity packages manually into some

1Utilizing Export action. The SOFA 2 IDE does not support entities from the micro-architecture
meta-model. Cushion supports all entities except Deployment Plans.

52

kind of archive. The receiver of such an archive needs to unpack it and then use our
system to install all the entities2.

For on-line transfer the RepositoryCloner3 class can be abused. This class is
intended to clone runtime form of entities, so it is the most fragile tool if the versions
of SOFA 2 on both sides are not perfectly matching. On the other hand, this is now
the only tool that can transfer even Deployment Plans.

The unistallation was proposed in such a way, that it works not only with Appli-
cations and Components, it can uninstall any entity in general. However, we are not
sure whether it makes a good sense. It is accompanied with garbage collection that
works on entity level.

To sum up, even though the fine granularity support was not our main concern,
it is possible to achieve with the current prototype implementation.

6.2 Related Work

SOFA 2 is not the only component system of its kind and the SOFAnet 2 is cer-
tainly not the only solution that covers software distribution in scope of component
systems. A representative selection of projects that are either component systems
or target component distribution follows. Their capabilities compared to SOFAnet 2
are discussed shortly.

6.2.1 COM/DCOM, EJB, CCM and Fractal

We have mentioned the Microsoft’s Component Object Model (COM) and Dis-
tributed Component Object Model (DCOM) [1], Enterprise JavaBeans (EJB) [3],
CORBA Component Model (CCM) [4] and Fractal [9] in chapter 1: Introduction.
Those component systems correspond to the SOFA 2. Some are more similar such as
Fractal, some less, like COM, which is closed proprietary technology without support
for distributed computing. These component systems either do not target software
distribution at all or it plays a marginal role for them.

EJB distributes and deploys applications in JAR [13] files. The JAR files are a
product of application compilation, therefore only the developers or especially trained
administrators know precisely about their dependencies and are able to transfer
larger applications from one corporate environment into another.

The CCM specification deals with packaging. In defines Component, Assembly
and Software Descriptors. Furthermore packages in form of zip archives consisting
of one Software or Assembly Descriptor and files containing implementation of com-
ponents can be composed. The Descriptors contain additional information such as
name, author, target platform or dependencies and are implemented as a xml file. All

2Import action should be used for that purpose. It can install an entity with all its requirements
from a given directory. However, the user needs to know which package contains the root entity.
3Contained in the org.objectweb.drsg.sofa.repository package.

53

the implementations of components are uniquely identified by the Universal Unique
Identifier (UUID), which is used in COM and DCOM too.

6.2.2 OSGi Service Platform

OSGi Service Platform [26] is a standard describing dynamic module system for
Java. Its specification is based on bundles. Both applications and components can
come in a form of a bundle, for which a full life cycle is defined. The bundles can
be installed, started, stopped, updated and uninstalled without requiring a reboot,
and all of this can be done using remote access. They can cooperate using services,
which they can look up in a service registry. Therefore they are able to adapt to the
addition or removal of services during runtime.

Although the OSGi was focused on embedded systems like home electronics at
the time of its introduction, today it is being used even for enterprise applications,
because it is one of the most advanced module systems for Java. For example, the
main unit of distribution and deployment in the Spring Framework [27] is an OSGi
bundle and Eclipse IDE uses OSGi as its runtime and plug-in module system too.

There are several certified implementations of OSGi [26]. For example Knopfler-
fish [28] and Equinox [29], and many other without certification like for example
Oscar [30]. However, the means of bundle transfer are left by the standard on imple-
mentation. The vendors have created Bundle Repositories and support only a pull
model. Many OSGi Bundle Repositories that allow automatic bundle installation
with a transitive closure of bundle’s dependencies are available.

6.2.3 Universal Packaging

There are many formats of packages for software distribution, that are usually close-
knit to a particular operating system or platform.

From the platform related, a representative example is a JAR file [13] used in the
Java 2 Platform [31]. It is a zip archive that contains implementations of classes and
meta-data information in so called manifest file. The meta-data from the manifest
file is not used by the packaging system itself (e.g. for package installation), therefore
this kind of package is one of the simplest we can find.

From the many package formats tightly bound to operating systems, the formats
of the RPM Package Manager [32] and Debian Packages [33] are representative.
Both of them are used in various GNU/Linux [34] [35] distributions. They are more
advanced in comparison to JAR files, because they contain information about config-
uration, dependencies and installation, that the packaging system actually utilizes.
We think that the MSI format of the Windows Installer [36] fits in this category too,
because it is a bare data file.

The last approach is utilizing directly executable packages. Such packages include
complete package management system inside. They are common for applications run-
ning on Microsoft Windows [37] operating systems. Some applications are distributed

54

in the form of Shell scripts for GNU/Linux platforms, like for example NetBeans IDE
[38].

6.2.4 Update Services

Both the users and the vendors usually want to keep the installed software up-to-date
with the least possible effort for the users. Update services are based on a pull model
of software distribution. The service on the user’s computer contacts the providers
update repository and searches available updates. Not only for security reasons, the
users are usually asked if they want to download and install the updates found.

The operation systems equipped with their package management system, like the
RPM or Debian based, usually utilize an integrated update service.

Commercial software providers employ proprietary update services, that usually
take care of all the provider’s product installed on a user’s computer. We can mention
for example Windows Update [39], Adobe Updater [40] or Omaha [41], also known
as Google Update. Some programs occasionally have simple update systems built
into them.

55

7. Conclusion and Future Work

7.1 Summary

This thesis builds up on a rich plateaux of previous work on the original SOFAnet.
Our goal was to recreate the SOFAnet for SOFA 2 emphasizing reasonable distribu-
tion and fundamental use cases.

A detailed analysis was done. New high level concepts were introduced to rea-
sonably reflect our main use cases. A mapping of the new concepts to the SOFA 2
concepts was presented. Furthermore, a methodology to keep the repository clean
was worked out. The proposed solution was mathematically modeled and tested upon
a prototype implementation, which has proven to fulfill our requirements.

On the other hand, the thesis has been focused only on the distribution and
fundamental use cases. Many features of the former SOFAnet have not been discussed
nor implemented. Of the most important ones we can mention licensing and the
search and share networks.

The main goals of the thesis were achieved.

7.2 Contribution

The thesis has contributed to the SOFA 2 project in many areas.
We have worked out a new high level abstraction, namely Applications and Com-

ponents, and provided its mapping to the lower abstraction level (SOFA 2 entities).
We have also implemented a way of reasonable component and application ex-

change between SOFA 2 repositories, both using a direct connection over the Internet
and file based.

SOFAnet 2 is also a way of keeping order in the repository. Methodology was
proposed and functions for Application uninstallation and garbage collection were
implemented.

7.3 Comparison to Previous Work

On first glance, SOFAnet 2 seams to be simpler in comparison to the original SO-
FAnet. We have not covered all the scope of SOFAnet, because our goals were some-
what different and more focused. Moreover, we have worked out deeper all the topics
we were concerned about.

We were interested in the fundamental use cases around high level content, that
were not sufficiently covered. Our way of distributing software parts in file based
packages is new to SOFA 2 (and SOFA too). Also, the new SOFAnet 2 has been
concerned about uninstallation and keeping the repository clean. Making order in
the repository is a brand new and desired feature. The uninstallation was mentioned

56

in the previous implementation of SOFAnet, but it was not aware of dependencies
between entities. Therefore it was barely usable from our point of view.

On the other hand, many features of the original SOFAnet were not discussed at
all, like licensing, triggers for automatic software distribution, and bundle searching
and sharing in corporate networks. It was not possible in scope of a master thesis to
cover all those topis and provide a reasonable and usable solution for the fundamental
use cases at the same time. Therefore, we leave those topics for future work.

7.4 Future Work

There are many areas left for future work. As we have stated in the paragraph above,
we have dropped many features of the original SOFAnet from the thesis. It was either
because of the amount of work required or since they were not the current concern
of our users.

From the field we were focused on we think that easy distribution of software to
many receivers at once would bring a good value to the users. This can be imple-
mented as a stand-alone distribution server from which the receivers can pull the
software. Such a server could also allow access control and monitoring of the dis-
tribution in form of statistics and reports. To allow pushing software to multiple
receivers at once, the current tools can be easily extended.

Many more features similar to the one mentioned above, that are desired but
not implemented in the prototype implementation, can be found in appendix A:
Catalogue of Requirements.

57

Bibliography
[1] Microsoft Corporation, Component Object Model (COM), [Online]. Avail-

able: http://www.microsoft.com/com/

[2] Microsoft Corporation, .NET Framework, [Online]. Available: http://
www.microsoft.com/net/

[3] Oracle Corporation, Enterprise JavaBeans, [Online]. Available: http://
www.oracle.com/technetwork/java/javaee/ejb/

[4] Object Management Group, CORBA Component Model, [Online]. Avail-
able: http://www.omg.org/technology/documents/formal/components.htm

[5] Borland Software Corporation, VisiBroker, [Online]. Available: http:
//techpubs.borland.com/am/visibroker/v80/

[6] SOFA Component System, [Online]. Available: http://sofa.ow2.org/sofa1/
index.html

[7] Hnětynka, P., Píše,M.: Hand-written vs. MOF-based Metadata Repositories:
The SOFA Experience, Proceedings of ECBS 2004, Brno, Czech Republic, IEEE
CS, May 2004.

[8] SOFA 2 Component System, [Online]. Available: http://sofa.ow2.org/

[9] Fractal Component System, [Online]. Available: http://fractal.ow2.org/

[10] Object Management Group, MetaObject Facility, [Online]. Available:
http://www.omg.org/mof/

[11] AspectJ, [Online]. Available: http://www.eclipse.org/aspectj/

[12] The Eclipse Foundation, Eclipse IDE, [Online]. Available: http://www.
eclipse.org/

[13] Oracle Corporation, JAR File Specification, [Online]. Available: http://
download.oracle.com/javase/6/docs/technotes/guides/jar/jar.html

[14] Bureš, T., Hnětynka, P., Plášil, F.: SOFA 2.0: Balancing Advanced Fea-
tures in a Hierarchical Component Model, Proceedings of SERA 2006, Seattle,
USA, IEEE CS, ISBN 0-7695-2656-X, pp. 40-48, Aug 2006.

[15] Bureš, T., Hnětynka, P., Plášil, F.: Runtime Concepts of Hierarchical Soft-
ware Components, In International Journal of Computer & Information Science,
Vol. 8, No. S, ISSN 1525-9293, pp. 454-463, Sep 2007.

58

http://www.microsoft.com/com/
http://www.microsoft.com/net/
http://www.microsoft.com/net/
http://www.oracle.com/technetwork/java/javaee/ejb/
http://www.oracle.com/technetwork/java/javaee/ejb/
http://www.omg.org/technology/documents/formal/components.htm
http://techpubs.borland.com/am/visibroker/v80/
http://techpubs.borland.com/am/visibroker/v80/
http://sofa.ow2.org/sofa1/index.html
http://sofa.ow2.org/sofa1/index.html
http://sofa.ow2.org/
http://fractal.ow2.org/
http://www.omg.org/mof/
http://www.eclipse.org/aspectj/
http://www.eclipse.org/
http://www.eclipse.org/
http://download.oracle.com/javase/6/docs/technotes/guides/jar/jar.html
http://download.oracle.com/javase/6/docs/technotes/guides/jar/jar.html

[16] Bureš, T., Mencl, V.: Microcomponent-Based Component Controllers: A
Foundation for Component Aspects, in Proceedings of 12th Asia-Pacific Software
Engineering Conference (APSEC 2005), Dec 15-17, 2005, Taipei, Taiwan, pp.
729-738, ISBN 0-7695-2465-6, ISSN 1530-1362, IEEE Computer Society Press,
Dec 2005.

[17] Plášil, F., Bálek, D. and Janeček, R.: SOFA/DCUP: Architecture for Com-
ponent Trading and Dynamic Updating, Proceedings of ICCDS’98, Annapolis,
Maryland, USA, IEEE CS Press, May 1998.

[18] Panuška, P.: An Approach to SW Distribution, Reviewed section of Proceed-
ings of the Week of Doctoral Students 2003 conference (WDS 2003), pp.118-123,
Matfyzpress, Charles University in Prague, Prague, Czech Republic, June 2003.

[19] Šobr, L.: Network Environment of the SOFA Architecture, Master thesis,
Charles University in Prague, 2004.

[20] Šobr, L., Tůma, P.: SOFAnet: Middleware for Software Distribution over In-
ternet, Proceedings of the 2005 Symposium on Applications and the Internet
(SAINT’05), Washington, DC, USA, IEEE Computer Society, ISBN 0-7695-
2262-9, pp.48-53, 2005.

[21] SOFA 2 Component System User’s Guide, [Online]. Available: http://sofa.
ow2.org/docs/

[22] SOFA 2 Component System Developers’s Guide, [Online]. Available: http://
sofa.ow2.org/docs/

[23] Hnětynka, P., Plášil, F., Bureš, T., Mencl, V., Kapová, L.: SOFA 2.0
metamodel, Charles University in Prague, Tech. Rep. 2005/11, Dec 2005.

[24] Keznikl, J., SOFA 2 runtime support for dynamic languages, Master thesis,
Charles University in Prague, 2010.

[25] SOFA 2 Project SVN Repository, [Online]. Available: svn://svn.forge.
objectweb.org/svnroot/sofa

[26] OSGi Alliance, OSGi Service Platform, [Online]. Available: http://www.
osgi.org

[27] SpringSource, Spring Framework, [Online]. Available: http://www.
springsource.org/

[28] Makewave, Knopflerfish Pro 3, [Online]. Available: http://www.makewave.
com/

[29] The Eclipse Foundation, Equinox 3.2, [Online]. Available: http://www.
eclipse.org/equinox/

59

http://sofa.ow2.org/docs/
http://sofa.ow2.org/docs/
http://sofa.ow2.org/docs/
http://sofa.ow2.org/docs/
svn://svn.forge.objectweb.org/svnroot/sofa
svn://svn.forge.objectweb.org/svnroot/sofa
http://www.osgi.org
http://www.osgi.org
http://www.springsource.org/
http://www.springsource.org/
http://www.makewave.com/
http://www.makewave.com/
http://www.eclipse.org/equinox/
http://www.eclipse.org/equinox/

[30] Hall, R. S., Oscar, [Online]. Available: http://oscar.ow2.org/index.html

[31] Oracle Corporation, Java 2 Standard Edition, [Online]. Available: http:
//download.oracle.com/javase/

[32] RPM Package Manager, [Online]. Available: http://www.rpm.org/

[33] Software in the Public Interest, Inc., Debian Packages, [Online]. Avail-
able: http://www.debian.org/distrib/packages

[34] Free Software Foundation, Inc., GNU Operating System, [Online]. Avail-
able: http://www.gnu.org/

[35] Linux Kernel, [Online]. Available: http://www.kernel.org/

[36] Microsoft Corporation, Windows Installer, [Online]. Available: http://
msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx

[37] Microsoft Corporation, Windows, [Online]. Available: http://www.
microsoft.com/windows/

[38] Oracle Corporation, NetBeans IDE, [Online]. Available: http://
netbeans.org/

[39] Microsoft Corporation, Windows Update, [Online]. Available: http://
update.microsoft.com

[40] Adobe Systems Incorporated, Adobe Updater, [Online]. Available:
http://www.adobe.com/support/downloads/product.jsp?product=
165&platform=Macintosh

[41] Google Incorporated, Omaha, [Online]. Available: http://code.google.
com/p/omaha/

60

http://oscar.ow2.org/index.html
http://download.oracle.com/javase/
http://download.oracle.com/javase/
http://www.rpm.org/
http://www.debian.org/distrib/packages
http://www.gnu.org/
http://www.kernel.org/
http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx
http://www.microsoft.com/windows/
http://www.microsoft.com/windows/
http://netbeans.org/
http://netbeans.org/
http://update.microsoft.com
http://update.microsoft.com
http://www.adobe.com/support/downloads/product.jsp?product=165&platform=Macintosh
http://www.adobe.com/support/downloads/product.jsp?product=165&platform=Macintosh
http://code.google.com/p/omaha/
http://code.google.com/p/omaha/

A. Catalogue of Requirements
This catalogue further elaborates the use cases from section 3.1: Use Cases in Focus
and adds requirements desired for any package distribution and management system.
For a description of Stake Holders please refer to section 3.1.1: Stake Holders.

A.1 Data dictionary

The following table summarizes and describes the terms that were used without
definition in the use cases. It also brings up some new terms that were needed to be
introduced in the requirements.

name description
package The basic unit that the system will use to distribute applica-

tions, their parts or application updates.
update package Special kind of a package, that brings updates and that is

dependent on the preceding base version package.
entity SOFA2 entity, the smallest complete part of an application,

that can be stored in SOFA2 repository and operated by
SOFA2 tools.

repository SOFA2 repository ; it stores all information about application
components (in form of entities) as data and also some meta-
data.

package repository Stores packages that were transferred to the local SOFAnode.
It is accessible only locally and only for the node administra-
tor. See requirement AM1 for details.

distribution server Place where packages are accessible by node administrators
over the Internet.
This might by realized for example as a running server in-
stance that is waiting for the connections. See requirement
D5 for details.

A.2 Priorities

When planning work on a system of significant size, it is useful to assign priorities
to the tasks in the catalogue separately. We decided to denote the priorities in the
following manner:

61

abbrev name description
E Essential Cannot be done without.
H High value Can be done without, although it may be very undesirable

to do so.
L Follow on It is not clear whether they should be included in the first

release.
O Count with Not included in the first release, but are desirable in the

future.
X Exempt Features that are not going to be implemented.

A.3 Overview

We have extracted the requirements from the use cases (section 3.1: Use Cases
in Focus) and added other requirements that are usually desired for any package
management system. Because they are numerous, the tables below are presenting an
overview, detailed description follows in formatted paragraphs.

A.3.1 Package creation

Defining new packages

abbrev priority short description
CN1 E Guidelines and tool(s) to generate packages
CN2 E Specify which entities should be included in a package
CN3 L Specify dependencies on other packages
CN4 L Decide which entity to pack and which to obtain elsewhere
CN5 L Find out easily the packages on which to depend
CN6 X Specify files to be delivered with a package
CN7 X Specify dependencies on files

Defining update packages

abbrev priority short description
CU1 H Deliver updates in form of complete/whole packages
CU2 L Deliver updates in sparse packages
CU3 L Deliver cumulative updates
CU4 X Deliver change at the file level

62

Tools behavior

abbrev priority short description
CT1 E Manual creation using interactive CLI
CT2 H Manual creation using script
CT3 L Manual creation using GUI
CT4 X Automatic package creation for new application versions

A.3.2 Package administration

Monitoring

abbrev priority short description
AM1 X Manually obtain and submit packages
AM2 E List content and meta-data of a package
AM3 H Search local packages by meta-data
AM4 H Search on known distribution servers on request
AM5 L Search on known distribution servers on request by meta-data
AM6 L Automatically check distribution servers for updates
AM7 X Browse packages by groups

Installation

abbrev priority short description
AI1 E Install a package
AI2 E Install an update package
AI3 H Download required third party bundles
AI4 L Install specific updates
AI5 L Automatic update download and installation
AI6 X Partial installation of a package
AI7 X Manage multiple versions of a similarly named package
AI8 X Preserve customizations to files across updates

Removal

abbrev priority short description
AR1 L Uninstall a package
AR2 L Uninstall an update package
AR3 X Remove package from local package repository
AR4 X Uninstall a package without source
AR5 X Uninstall an update package without source
AR6 L Remove not used entities after update
AR7 X Remove not used files after update

63

A.3.3 Package transfer and distribution

abbrev priority short description
D1 E Create an off-line distributable file
D2 H Deliver packages in a compressed format
D3 H Direct connection to both sides
D4 L Direct connection with one supplier and multiple receivers
D5 L Post packages and let the node administrators pull them
D5.1 L.E Authorized access
D5.2 L.H Limit access to contents by node administrator
D5.3 L.H Show package meta-data to node administrator
D5.4 L.H Show package content and meta-data to distribution manager
D5.5 L.L Public access
D5.6 L.L Report number of downloads by a node administrator
D5.7 L.O Report results of the installation to distribution manager
D5.8 L.O Send email notifications to node administrators/companies
D6 X Licensing and license enforcement

A.3.4 Non-functional
abbrev priority short description
NF1 E Complete command line functionality
NF2 L GUI
NF2.1 L.E GUI works with SOFA 2 IDE
NF2.2 L.E GUI provides package creation and distribution through GUI
NF2.3 L.L Package installation, monitoring and uninstallation
NF2.4 L.H GUI works with SOFA 2 MConsole
NF3 H Minimize UIs required for package management functions
NF4 H High quality error messages
NF5 H Relevant information should be logged to a log file
NF6 H SOFA 2 autoconfiguration as default.
NF7 L Sufficient busy/progress feedback

A.4 Requirements Description

This section presents in detail the requirements gathered in an early stage of the
analysis. We have worked out the use cases that are desirable for any package man-
agement system, therefore the catalogue we made is relatively large. It was clear that
we need to focus our work on a subset of the requirements. Certainly the subset that
covers the use cases that are now the most important for users (see section 3.1: Use
Cases in Focus) was chosen.

To put our first thoughts of all the desired features in contrast to the prototype
implementation, we specify the status of requirement support after its description.

64

We want to emphasize that we present the requirements as they were made in the
early analysis stage, only their current support statuses was added.

A.4.1 Package creation

Guidelines and tool(s) to generate packages

Abbreviation: CN1
Priority: Essential
Description: Tool(s) that support the creation of a package must be imple-

mented. The tool(s) must guide the assembler through all the
steps of package creation and therefore should be preferably in-
teractive.

Status: Done.

Specify which entities should be included in a package

Abbreviation: CN2
Priority: Essential
Description: The system should allow the assembler to choose the entities that

should be inside the package. It should be able to include all de-
pendencies of a chosen entity or select and deselect entities using
filters. The filters should allow to choose the entities for example
depending on:
• name
• applications they are part of
• whether they are developed in-house or not
• distributor
• author
• license
• source
• packages this entity is part of
• commit date

and should also allow wildcards.
Status: The tools only support packages created from Applications and

Components. These can be chosen by name, version and tag. All
dependencies are always included, because they are integral parts
of those concepts.

65

Specify dependencies on other packages

Abbreviation: CN3
Priority: Follow on
Description: The system should allow the assembler to set automatically the

dependencies on other packages. The assembler should also have
the possibility to edit the list of generated dependencies manually
or to construct the list from scratch.

Status: Not supported. The tools only support packages created from Ap-
plications and Components. All dependencies are always included,
because they are integral parts of those concepts. Finer granularity
is not our main concern now.

Decide which entity to pack and which to obtain elsewhere

Abbreviation: CN4
Priority: Follow on
Description: The system should allow the assembler to decide whether the

required entity or entities (according to some filter) or whole re-
quired packages are packed or whether they are left as depen-
dencies for the node administrator to resolve (this task might be
supported also).

Status: Irrelevant, because no dependencies between packages can arise.
All required entities are integral parts of the concepts a package
is composed of.

Find out easily the packages on which to depend

Abbreviation: CN5
Priority: Follow on
Description: The system should inform the assembler in which packages the

required entities belong.
Status: Irrelevant, because no dependencies between packages can arise.

All required entities are integral parts of the concepts a package
is composed of.

Specify files to be delivered with a package

Abbreviation: CN6
Priority: Exempt
Description: The system should be able to deliver files in the packages. That

might be for example scripts for database creation, tools for con-
figuring the delivered application or just data files.

Reason: It’s not clear how files fit in SOFA 2 ideas. The meta-model does
not handle them.

66

Specify dependencies on files

Abbreviation: CN7
Priority: Exempt
Description: It should be possible to state that the package is dependent on a

file (database, native library, configuration, . . .), that is not nec-
essarily delivered by the system in any package.

Reason: It’s not clear how files fit in SOFA 2 ideas. The meta-model does
not handle them.

Deliver updates in form of complete/whole packages

Abbreviation: CU1
Priority: High value
Description: The system should allow to deliver updates in a such form, that

allow either installation over the previous version of a package or
an installation from scratch.

Status: Done.

Deliver updates in sparse packages

Abbreviation: CU2
Priority: Follow on
Description: The system should allow to deliver a minimum-sized update, that

would contain only the entities updated since the previous version
of a package and that are required to run the application/library.

Status: Not implemented. All required entities are integral parts of the
concepts a package is composed of. Therefore this is not possible
with the current package implementation.

Deliver cumulative updates

Abbreviation: CU3
Priority: Follow on
Description: The system should be able to merge several sparse packages (de-

scribed in CU2) into one cumulative package.
Status: Not implemented. All required entities are integral parts of the

concepts a package is composed from. Therefore this is not possi-
ble with the current package implementation.

67

Deliver change at the file level

Abbreviation: CU4
Priority: Exempt
Description: The update packages should contain new versions of files, if the

file has changed since previous version of application/library.
Reason: It’s not clear how files fit in SOFA 2 ideas. The meta-model does

not handle them.

Manual creation using interactive CLI

Abbreviation: CT1
Priority: Essential
Description: The system should have a command line tool, that allows the

assembler to interactively create a package.
Status: Done.

Manual creation using script

Abbreviation: CT2
Priority: High value
Description: The system should have a command line tool, that reads a script

file and creates a package described in the script. The script for-
mat should be universal enough to help the assembler create var-
ious types of package, mainly the update ones. The script format
should also support the creation of successive update packages
without changing the script.
Therefore, the script should for example do without exact versions
or entities ’ names.

Status: Partially done. Cushion supports scripts. The features related to
the update packages were not implemented at all.

Manual creation using GUI

Abbreviation: CT3
Priority: Follow on
Description: The system should have a tool with graphical user interface, that

allows the assembler to create a package interactively .
Status: Done.

68

Automatic package creation for new application versions

Abbreviation: CT4
Priority: Exempt
Description: When a new version of an application or a library is finished

(eg. new Deployment Plan is committed in the stable repository),
the system should automatically create an update package, which
might optionally be for disposal using the distribution mechanism
the system.

Reason: It is not clear how this should exactly work and what should
trigger the automatic creation. The value of such a functionality
for users is probably low.

A.4.2 Package administration

Manually obtain and submit packages

Abbreviation: AM1
Priority: Exempt
Description: When the node administrator receives a package in a file, they

should have an option to submit the package to the local pack-
age repository. Here the package should be available for search in
sense of for example requirement AM3, but also all other package
installation and removal functions should work upon the packages
stored in a local package repository.

Reason: Dropped because of simplicity and consistency reasons. It can in-
troduce consistency problems when some of the SOFA 2 tools are
not aware of it. All persistent data should be included preferably
only in the repository.

List content and meta-data of a package

Abbreviation: AM2
Priority: Essential
Description: The node administrator should have an option to list all the en-

tities in a package, and all the meta-data, that are stored on the
package level (not by individual entities in the package). This
function should be available not only for all packages stored lo-
cally in a package repository (accessed by package name), but also
for individual packages in form of files stored in various places on
a file system (accessed by complete path).

Status: Done.

69

Search local packages by meta-data

Abbreviation: AM3
Priority: High value
Description: The node administrator should be provided with a function for

searching all the packages stored in the local package repository.
The system should be able to list all the packages by various filters
on meta-data. The filters should allow to choose the packages for
example depending on:
• name
• applications they are part of
• whether they are created in-house or not
• distributor
• author
• source
• license
• license-type
• creation date
• entities included
• dependent packages or entities
• required packages or entities
• excluded packages or entities (conflicts)

and should also allow wildcards.
Status: Partially supported. Package resources are searched in a repository

by name, type, version or tag.

Search on known distribution servers on request

Abbreviation: AM4
Priority: High value
Description: Search for availability of packages by their name or search for

package updates by name on all known distribution servers on
request.

Status: No proper support. Only one repository can be searched at a time.
The tools do not distinguish between regular packages and update
packages yet.

70

Search on known distribution servers on request by meta-data

Abbreviation: AM5
Priority: Follow on
Description: Search for availability of packages or package updates on all known

distribution servers on request. Search should be provided by the
meta-data of the package, as described in requirement AM3. Ex-
tends requirement AM4.

Status: No proper support. Only one repository can be searched at a time.

Automatically check distribution servers for updates

Abbreviation: AM6
Priority: Follow on
Description: When any of the system tools starts, it should check whether there

is a new update on any of the known distribution servers. This
functionality should be optional, so that the node administrator
tells the system for example in a configuration file, that it should
not automatically query the distribution servers.

Status: No support. A list of distribution servers or repositories to query
is not implemented nor maintained.

Browse packages by groups

Abbreviation: AM7
Priority: Exempt
Description: When searching or listing the packages, the tools should be able

to sort of filter the packages according to the type or target field
of the application or library (for example network management,
software development, office, core system functions, etc.).

Reason: It is too complicated compared to a relatively low value. The
assembler would have to specify the target field of the application
or the package. This might end up so, that all the packages are in
one group called “general” or “unspecified”.

Install a package

Abbreviation: AI1
Priority: Essential
Description: The node administrator needs to install packages. The packages

may come in form of files or may be available on distribution
servers.

Status: Done. A distribution server is not a dedicated server. Packages
are available directly from a repository.

71

Install an update package

Abbreviation: AI2
Priority: Essential
Description: The node administrator needs to update packages. The update

packages make come in form of files or may be available on dis-
tribution servers.

Status: Done, but the tools do not distinguish between regular packages
and update packages yet.

Download required third party bundles

Abbreviation: AI3
Priority: High value
Description: During the installation of a new package or an update package, the

node administrator should be given an option to let the system
download required third party entities or packages from distribu-
tions servers and repositories over the Internet.

Status: No support. Dependencies between packages can not arise with
the current package implementation.

Install specific updates

Abbreviation: AI4
Priority: Follow on
Description: The node administrator should be allowed to install a specific ver-

sion of a package (update), even if a newer version of the package
is available (and known to the system).

Status: Done.

Automatic update download and installation

Abbreviation: AI5
Priority: Follow on
Description: Provide a tool that automatically finds package updates on known

distribution servers, downloads them, stores them in the local
package repository and installs them. All these functions should
be provided as fully automatic. The interface of this tool should
allow scheduling in Cron or Windows Scheduler.

Status: No support. The tools even do not distinguish between regular
packages and update packages yet.

72

Partial installation of a package

Abbreviation: AI6
Priority: Exempt
Description: Provide functions to install only some entities from a package.
Reason: This function would damage the applications in the repository or

even the repository itself.

Manage multiple versions of a similarly named package

Abbreviation: AI7
Priority: Exempt
Description: The system should allow to install and manage multiple versions

of a package with the same name. That means multiple versions
of the same package and also different packages with the same
name (eg. from different distributors).

Reason: If the package name is not an unique identifier of a package, what
should be the identifier then?

Preserve customizations to files across updates

Abbreviation: AI8
Priority: Exempt
Description: The changes that the node administrator made to a file should be

preserved when an update package (that modifies the same file)
is installed.

Reason: It’s not clear how files fit in SOFA 2 ideas. The meta-model does
not handle them.

Uninstall a package

Abbreviation: AR1
Priority: Follow on
Description: The node administrator should be provided with functions for

manually selecting a package to remove and be notified of depen-
dencies prior to removal. If there are some packages, that depend
on this package, he or she should have an option to cancel or re-
move it with all the dependent packages. The package should be
removed with all updates.
Conflicting situation is, when an entity from the package that is
to be removed is installed also with another package.

Status: Partially done. Each of the (update) packages have to be unin-
stalled separately.

73

Uninstall an update package

Abbreviation: AR2
Priority: Follow on
Description: As in requirement AR1, the node administrator should be pro-

vided with functions for removing an update package, leaving the
updated package in the state it was just before applying the up-
date package.

Status: Done. Update package can be removed, because the tools treat it
like a normal package.

Remove package from local package repository

Abbreviation: AR3
Priority: Exempt
Description: It should be possible to remove the contents of a package from the

local package repository. For the purpose of searching and manip-
ulating functions, the meta-data of the package should remain
in the package repository until all entities from the package are
completely removed from the SOFAnode.

Reason: Local package repository was dropped because of simplicity and
consistency reasons.

Uninstall a package without source

Abbreviation: AR4
Priority: Exempt
Description: As in requirement AR1, the node administrator should be allowed

to remove a package that is not in the local package repository
and its source (distribution server or file) is not available. For this
function, the meta-data of the package have to be stored in the
local package repository.

Reason: Local package repository was dropped because of simplicity and
consistency reasons.

74

Uninstall an update package without source

Abbreviation: AR5
Priority: Exempt
Description: As in requirement AR2, the node administrator should be allowed

to remove an update package that is not in the local package repos-
itory and its source (distribution server or file) is not available.
For this function, the meta-data of the update package have to be
stored in the local package repository.

Reason: Local package repository was dropped because of simplicity and
consistency reasons.

Remove not used entities after update

Abbreviation: AR6
Priority: Follow on
Description: After a package is updated or upon request, the node adminis-

trator should be asked whether he or she wants the system to
remove entities that are no longer used (in scope of the entities
brought by the base package and the update chain preceding the
last update). He or she should also be warned if there are some
customizations in such files.
This is in conflict with requirement AR5. Some updates then may
become unremovable, if some of the packages from the update
chain or the base package are not available.

Status: No support. The tools do not distinguish between regular packages
and update packages yet. File will not be supported at all.

Remove not used files after update

Abbreviation: AR7
Priority: Exempt
Description: After a package is updated or upon request,the node administrator

should be asked whether he or she wants the system to remove
files that are no longer used (in scope of the files brought by the
base package and the update chain preceding the last update).
This is in conflict with requirement AR5. Some updates then may
become unremovable, if some of the packages from the update
chain or the base package are not available.

Reason: It’s not clear how files fit in SOFA 2 ideas. The meta-model does
not handle them.

75

A.4.3 Package transfer and distribution

Create an off-line distributable file

Abbreviation: D1
Priority: Essential
Description: The packages should be created in form of a file if requested. The

file format should allow all usual distribution means of files, for
example on CD, posting on a web etc. The distribution of the file
is then left on the distribution manager and is not covered by the
system.

Status: Done.

Deliver packages in a compressed format

Abbreviation: D2
Priority: High value
Description: The packages should be distributed in compressed form (e.g. zip)

to save disk space and/or network bandwidth.
Status: Done.

Direct connection to both sides

Abbreviation: D3
Priority: High value
Description: The system should allow the distribution manager to connect via

direct connection to both source (where the package is to be cre-
ated) and target (where the package should be installed) SOFAn-
odes, if both of them are accessible through the Internet.
The distribution manager creates a package the same way as when
it should be distributed by file, except the package is not stored
on file system. The package is then transferred on the target SO-
FAnode and installed in the same manner as if the package file
was supplied. The distribution manager therefore fulfils also the
roles of the assembler and node administrator. He or she is pre-
sented the same information by the system, as when creating and
installing a package that is distributed by file.

Status: Done.

76

Direct connection with one supplier and multiple receivers

Abbreviation: D4
Priority: Follow on
Description: The system should allow the distribution manager to connect via

direct connection to one source SOFAnode (where the package is
to be created) and multiple target SOFAnodes (where the pack-
age should be installed), if all of them are accessible through the
Internet.
The creation and installation of the package should follow the
same rulee as described in requirement D3. The installations on
target machines should be sequential in order not to flood the dis-
tribution manager by information from different sources at once.

Status: Not supported.

Post packages and let the node administrators pull them

Abbreviation: D5
Priority: Follow on
Description: After the package is created, the system should optionally store

the package in such a manner, that it is accessible by node ad-
ministrators over the Internet.
This might by realized for example as a running server instance
that is waiting for the connections. The distribution manager is
provided with a text description how to connect to the new server.
He or she distributes this information to node administrators,
which pull the package(s) from the server.
The place, where the packages are posted for internet access will
be called package repository in the following paragraphs.

Status: Not supported.

Authorized access

Abbreviation: D5.1
Priority: Follow on . Essential
Description: The node administrators have to authorize themselves by user-

name and password for access to the package repository.
Status: The package repository is not implemented.

77

Limit access to contents by node administrator

Abbreviation: D5.2
Priority: Follow on . High value
Description: The node administrators should have access to only limited con-

tent of the package repository. The limits should be set by the dis-
tribution manager for node administrators according to the user-
name of their company. The smallest unit of access to be limited
should be a package.

Status: The package repository is not implemented.

Show package meta-data to node administrator

Abbreviation: D5.3
Priority: Follow on . High value
Description: The node administrators should have an option to list the meta-

data of a package prior to pulling it from the package repository.
Status: The package repository is not implemented.

Show package content and meta-data to distribution manager

Abbreviation: D5.4
Priority: Follow on . High value
Description: The distribution manager should have an option to list the con-

tent and meta-data of selected package without pulling the whole
package from the package repository.

Status: The package repository is not implemented.

Public access

Abbreviation: D5.5
Priority: Follow on . Follow on
Description: The package repository should allow access without authoriza-

tion (username and password). Such access should be restricted
to some packages defined by the distribution manager.

Status: The package repository is not implemented.

Report number of downloads by a node administrator

Abbreviation: D5.6
Priority: Follow on . Follow on
Description: The distribution manager should have an option to find out, how

many times was a package downloaded and by whom. The system
also should aggregate the information by node administrators or
companies.

Status: The package repository is not implemented.

78

Report results of the installation to distribution manager

Abbreviation: D5.7
Priority: Follow on . Count with
Description: The report containing number of downloads from requirement

D5.6 should also provide the number or percentage of success-
ful and failed installations.

Status: The package repository is not implemented.

Send email notifications to node administrators/companies

Abbreviation: D5.8
Priority: Follow on . Count with
Description: The system should send a notification, when a new package is

available for a node administrator or a company. It’s upon dis-
tribution manager ’s decision, whether the system will send the
notification. This might be possibly overridden by the preferences
of each node administrator.

Status: The package repository is not implemented.

Licensing and license enforcement

Abbreviation: D6
Priority: Exempt
Description: The system should support various means of licensing (eg. free

copying, as a book, limiting number or running applications, . . .).
Users or node administrators should be forced to obey the license
agreement by the system. The license enforcement shouldn’t be
easy to break.

Reason: Licensing is out of scope, it’s not the aim of the system. Real
license enforcement is not practically possible in an open source
system.

A.4.4 Non-functional

Complete command line functionality

Abbreviation: NF1
Priority: Essential
Description: Virtually all of the basic package management and distribution

operations must be available through CLI mode.
Status: Done.

79

GUI

Abbreviation: NF2
Priority: Follow on
Description: The basic package management and distribution operations must

be available through GUI.
Status: Done.

GUI works with SOFA 2 IDE

Abbreviation: NF2.1
Priority: Follow on . Essential
Description: The GUI must be an Eclipse plug-in that operates side by side

with SOFA 2 IDE or as an optional add-on to it.
Status: Done.

GUI provides package creation and distribution through GUI

Abbreviation: NF2.2
Priority: Follow on . Essential
Description: The basic package creation and distribution operations must be

available through GUI.
Status: Done.

Package installation, monitoring and uninstallation

Abbreviation: NF2.3
Priority: Follow on . Follow on
Description: The GUI must provide the functionality to install a package. It

should also provide an interface to search the installed packages
by various meta-data and uninstall a package upon request.

Status: Done.

GUI works with SOFA 2 MConsole

Abbreviation: NF2.4
Priority: Follow on . High value
Description: The GUI must be an Eclipse plug-in that operates side by side

with SOFA 2 IDE or as an optional add-on to it.
Status: Done.

80

Minimize UIs required for package management functions

Abbreviation: NF3
Priority: High value
Description: Preferably, a single GUI and a single CLI should be all that is

needed to carry out basic package management and update oper-
ations.

Status: Done. The SOFA IDE and Cushion are the only UIs used.

High quality error messages

Abbreviation: NF4
Priority: High value
Description: The program should report what went wrong. If the error is ex-

pected during development, the system should also report what
is the expected cause. The location and possibly full stack trace
should be written only to a log file, not on a console.

Status: Done.

Relevant information should be logged to a log file

Abbreviation: NF5
Priority: High value
Description: The SOFA 2 logging system (log4j) should be used. The logging

configuration/settings should be shared with SOFA 2.
Status: Done.

SOFA 2 autoconfiguration as default.

Abbreviation: NF6
Priority: High value
Description: The tools should be aware of SOFA 2 autoconfiguration and use

it as a default for connecting to repository whenever possible.
Status: Not supported. The SOFA IDE and Cushion are not aware of

SOFA 2 autoconfiguration.

Sufficient busy/progress feedback

Abbreviation: NF7
Priority: Follow on
Description: Both the CLI and GUI should report some progress for all the ac-

tions that are expected to take 3 seconds or longer. The progress
bar should be used where applicable, actions done should be re-
ported elsewhere.

Status: Done.

81

B. Contents of the Enclosed DVD
This thesis is accompanied by a DVD-ROM containing binaries and source code of
the prototype implementation. The DVD-ROM is organized as follows:

readme.txt A description of the contents of the enclosed DVD-ROM and instruc-
tions for using it.

master-thesis.pdf An electronic version of this thesis in PDF format.

bin/ Binary distribution of the SOFAnet 2 prototype implementation.

bin/sofa/ Prepared SOFA 2 environment including a repository filled with
some examples. Cushion is included too.

bin/sofa-alternate-repo/ An empty SOFA 2 repository configured to run
on an alternative port. A distribution of Cushion configured to use the
alternative port is included too. This repository should be able to run
on the same machine with the SOFA 2 environment mentioned above.
Included for testing purposes.

bin/eclipse/ Binary form of Eclipse plug-ins that build up the SOFA 2 IDE
with SOFAnet 2. Please read readme.txt for details on installation.

src/ Source code of the prototype implementation.

82

	Introduction
	Distributed Hierarchical Component Systems
	Software Distribution
	Goals
	Current Concerns for SOFA 2 Users

	Structure of the Thesis

	Context and Previous Work
	SOFA
	SOFA 2
	SOFAnet
	First thoughts of SOFAnodes and SOFAnet
	SOFAnet Variant by Petr Panuška
	SOFAnet Variant by Ladislav Šobr
	Space for Improvement

	Analysis
	Use Cases in Focus
	Stake Holders
	Distribution
	Keeping Repository Clean

	Addressing the Use Cases with SOFA 2 Concepts
	First Class Concepts in SOFA 2
	Need for New High Level Concepts
	Mapping of the New Concepts to the SOFA 2 Concepts

	Methodology to Keep the Repository Clean
	Which Entities Are Useless
	What We May Want to Uninstall

	Non-functional Requirements
	Ergonomics of the Solution
	Consistency and Concurrency in SOFA 2

	Requirements in Detail

	Model of the Solution
	Repository as a Set
	Defining High Level Concepts
	Dependency Closures
	Application
	Component
	Package

	Semantics of the Use Cases
	Operations with Repository
	Off-line Application Transfer
	On-line Application Transfer
	Making Order in a Repository
	Uninstallation
	Garbage Collection

	Distribution Package Implementation
	Entity Package
	Composition of Distribution Package

	Implementation
	SOFA Tools API
	Introduction to SOFA Tools API
	Concept of Actions
	Common Interface to SOFAnet 2 Actions
	Actions for Distribution
	Actions for Unistallation
	Supporting Actions
	Set Operations with Entities
	Addressing Consistency and Concurrency

	GUI
	Introduction to SOFA 2 IDE
	SOFA Net View
	Extensions to the SOFA Repository View

	CLI
	Introduction to Cushion
	CommonPackagingCLI Class
	SOFAnet 2 Actions in Cushion

	Evaluation and Related Work
	Evaluation
	The Main Use Cases
	Use Cases Not In Our Main Focus

	Related Work
	COM/DCOM, EJB, CCM and Fractal
	OSGi Service Platform
	Universal Packaging
	Update Services

	Conclusion and Future Work
	Summary
	Contribution
	Comparison to Previous Work
	Future Work

	Bibliography
	Appendices
	Catalogue of Requirements
	Data dictionary
	Priorities
	Overview
	Package creation
	Package administration
	Package transfer and distribution
	Non-functional

	Requirements Description
	Package creation
	Package administration
	Package transfer and distribution
	Non-functional

	Contents of the Enclosed DVD

