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Chapter 1

Introduction

First of all, let me introduce my personal motivation. This work should be
a continuation of my creative e�orts in the �eld of non-linear spectroscopy
which I started a few years ago in my Bachelor's thesis. My goal then was
mainly to get familiar with basic principles and to make the �rst steps to
become a specialist in that �eld. But it was not my original intention to do
what I do now. Instead, I feel it was rather the process of photosynthesis
that attracted my attention. However, it did not take much time to realize,
that it is the spectroscopy that is able to give answers when we ask for the
mechanisms that are behind such complex molecular processes. Therefore, I
started to learn about such things as Red�eld theory, superoperator formal-
ism or exciton theory and in the same time I was also able to learn about the
primary processes of photosynthesis on far deeper level than I did ever be-
fore. And maybe most importantly I got familiar with various spectroscopic
methods that are used in modern spectroscopy, especially with the pump-
probe technique. On a purely phenomenological level I (with help of my
supervisor) managed to create a model which allowed me to study dynamics
and relaxation processes that take place in bacterial photosynthetic reaction
centers. And when I obtained results that were quantitatively correct I was
thrilled. �This is something that I have been studying for,� I said to myself
and it became an inspiration for me to try and do even more.

In this thesis, the main role plays the pump-probe technique. We tried to
achieve three goals. Firstly, the second chapter summarizes some fundamen-
tal facts about spectroscopy in general, it also gives short description about
a few chosen spectroscopic methods providing high resolution with the main
emphasis on describing all possible aspects of pump-probe technique, its es-
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sential characteristics and applications. Secondly, we decided to properly
formulate the theory that underlies the detection of non-linear optical sig-
nals and to derive the form of Liouville pathways which play the crucial role
in pulsed experiments such as �uorescence up-conversion, pump-probe or 2D
spectroscopy. This is the content of the third chapter. Finally, in the fourth
chapter we present our simulations that we obtained using the spectroscopic
program NOSE, while we focused on describing di�erences and similarities
between pump-probe and 2D.
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Chapter 2

Spectroscopy

Today, talking about spectroscopy means to take in consideration many
various �elds of study and many both simple and advanced theoretical prin-
ciples and experimental instrumentation. Vaguely speaking, spectroscopy
concerns the matter-radiation interaction which may provide experimenta-
tors with large amount of information about the studied system. On the
molecular level this information could be for example about the common
properties such as excited states energy, transition dipole moment etc., or
about dynamics (excited states lifetime etc.). Through spectroscopy one
may also reveal conformation of a molecule, or even its function in a bio-
logical system. The use of spectroscopy in biology, chemistry, and material
studies is nowadays quite common, because there is usually no other way to
look into the system on the molecular level.

In our work we specialize on recently developed modern type of experi-
ments, which are pump-probe, 2D spectroscopy and general N-wave mixing
non-linear experiments. In contrast to spectroscopy high resolution micro-
scopes like AFM (Atomic Force Microscope) or MFM (Magnetic Force Mi-
croscope) capable of scanning matter on the order of fractions of a nanome-
ter are extremely useful in determining atomic structure or inter-atomic
forces including electrostatic forces, atomic forces, Van der Waals forces and
chemical bonding. Nevertheless, there is another very ordinary �eld which
depends on our knowledge about radiation transfer, origin, and interaction,
and this is cosmology. And we must not forget that understanding of light-
matter interactions also plays an undoubted role in scienti�c description of
the process of seeing, structure of an eye.

Every spectroscopic experiment provides us with some kind of spectrum.
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The nature of each spectrum is determined by the nature of preceding exper-
iment. There is a vast range of types of spectra and every one of them di�ers
a little from each other. Some of them are two-dimensional whereas others
are three-dimensional, that is mostly when time-dependence is covered.

Probably the most fundamental experiment one can think of is the de-
termination of the frequency dependent absorption curve of a material. This
could be done by using two beams of radiation, the measuring one and the
reference one. While the reference beam passes along the sample, the mea-
suring beam goes right through it. By comparing the �nal intensities of
these two beams we are able to �nd out how big portion of radiation has
been absorbed.

Let us say that the intensity of the reference beam as it reaches a detector
is I0(ω) and similarly the intensity of the measuring beam is I(ω). By
taking the fraction of these two values we obtain the physical quantity called
transmittance

T (ω) =
I(ω)

I0(ω)
. (2.1)

Instead, we may also use absorbance A(ω), which is de�ned as a negative
value of decadic logarithm of transmittance, i.e.

A(ω) = − log T (ω) (2.2)

It is a very important quantity because it appears in Lambert-Beer's law
which states that the absorbance of a sample is directly proportional to
the concentration of the sample in a solution which is a property of great
signi�cance

A(ω) = ε(ω)cd. (2.3)

Here we see that the only three values that we need to know in order to
determine the absorbance A(ω) of a sample are the molar extinction coef-

�cient ε(ω) which is tabulated for many materials, the thickness of a sample
d and �nally its concentration c. As we can see in this situation we would
get an exact absolute value of A(ω) but despite of that in many other cases
just the overall pro�le of the absorption curve is su�cient enough. It always
depends on the goal we are trying to achieve.

Let us brie�y turn our attention to the absorption spectrum at this point.
What does its shape tell us about the material? First of all there is infor-
mation about the transitions between energy levels of the sample. We may
assume for a moment that there is an in�nitely narrow single absorption line
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in an absorption spectrum at the exact frequency ω. This would lead to the
conclusion that there exists an optical transition in the system given by the
energy di�erence of ~ω and that only photons carrying this particular energy
are absorbed. Of course, real spectrum comprises lines with certain widths.
Naturally broadened lines have lorentzian shape which could be written as1

L(ω) =
1

2π

γ

(ω − ω0)2 + (γ/2)2
, (2.4)

where ω0 is the position of the maximum on a frequency axis and γ is full
width at half maximum (FWHM). This particular form obeys the normal-
ization condition ˆ ∞

−∞
L(ω)dω = 1. (2.5)

There is also another widely used form of natural line-shape

L(ω) =
Γ2

(ω − ω0) + Γ2
, (2.6)

where Γ = γ/2. It is the Lorentz function as well but this time the nor-
malization is chosen so that L(ω0) = 1. In the former case L(ω0) would be
2/πγ.

At this point we can summarize that every absorption line is de�ned by
its shape, height and width. For a lorentzian line-shape we get a simple
connection between its width and excited state lifetime τ

FWHM = 1/τ. (2.7)

This means that if an excited state of a molecule had an in�nite lifetime the
width of its absorption line would be zero. This is never the case though.
On account of that let us take a brief but a little closer look into possible
line-shapes. Both de�nitions (2.4) and (2.6) apply for so called natural
line-shapes. What does it mean? It means that no external conditions are
taken into consideration. As the intention of this work is to concentrate
mostly on absorption in biological materials let us for example say we are
interested in the absorption spectrum of some chlorophyll pigment molecule.
The most straightforward extension of our investigative e�orts would be to
include so called bath, the natural environment of absorbing molecule. We

1De�nitions of line-shapes as well as some examples of broadening mechanisms were
taken from reference [12], chapter 3 �Widths and pro�les of spectral lines�.
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make it possible for the molecule to exchange energy with it. The energy
of the excited state is dissipated more quickly and a lifetime of an excited
state becomes shorter. With regard to the connection between the lifetime
of an excited state and the width of the absorption line the result of just
described e�ect is a spectral line broadening. Mathematically we can write
that τ from (2.7) becomes τ1 while τ1 < τ . τ1 is dephasing time caused
by relaxation. Because of electrostatic and Van der Waals forces molecule-
bath interaction may also cause some deformation in the molecule's structure
and thus change the frequency of a photon molecule absorbs2. These forces
may be as well seen as a reason for line broadening and for that purpose
there is a special function τ2(T ) associated with this e�ect. τ2(T ) is called
pure optical dephasing time and is a function of temperature T . In this
case FWHM would read

FWHM = γ =
1

τ ′
=

1

τ1

+
1

τ2(T )
(2.8)

This result could be of course derived theoretically using density matrix and
simple two-level system model.

Summarizing previous ideas we can present a unique de�nition which says
that homogeneously broadened lines have those transitions whose probabil-
ity of absorption or emission of radiation is equal for all the molecules of
a sample. In other words if a photon with frequency ω causes a transition
from ground to one of the excited states for one molecule of a sample with
probability P then after absorbing another photon of the same frequency
ω the very same transition will occur with the exactly same probability P
for any other molecule of the sample. Natural line broadening is a special
case of homogeneous broadening. On the other hand when the probability
of absorption or emission is not equal for all molecules and is rather given by
some kind of distribution function, we talk about inhomogeneous line broad-
ening. An example of such broadening is Doppler broadening which applies
to gaseous samples. Molecules of gas travel through space with a given ve-
locity that obeys Maxwell distribution of speed. Let us say we choose a
small group of molecules whose velocity component lies within the interval
(vz, vz + ∆vz). These molecules would be absorbing or emitting radiation
with a frequency ω = ω0 + vzk where ω0 stands for absorption frequency
of steady molecules and k is the absolute value of wave vector of radiation.
Next we de�ne γn to be ∆vzk. γn may be considered to be a frequency

2Such a shift in frequency is also referred to as solvent shift .
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Figure 2.1: Doppler e�ect causing inhomogeneous broadening. The picture
shows two homogeneous lines each corresponding to a di�erent subgroup of
molecules moving with a certain velocity.

interval (FWHM) of homogeneously broadened line belonging to the chosen
group of molecules inside much larger inhomogeneously broadened line of all
molecules of gas. For better understanding of the e�ect see the illustrative
Fig. 2.1.

Another example of inhomogeneous broadening, and this time closer to
study of biological materials, might be a sample localized inside an amor-
phous material or a real crystal lattice where each molecule is surrounded
by slightly di�erent environment (static disorder) that in�uences the value
of transition energy and thus makes the line inhomogeneous. In a perfect
crystal no such e�ect could be observed.

2.1 High resolution methods in spectroscopy

With a constantly increasing quality of spectroscopic instrumentation and
mostly with the invention of lasers few decades ago, it has gradually become
possible to study molecular systems with a great degree of precision. In other
words, spectral resolution increases. However, high spectroscopic resolution
does not have to be necessarily connected only to a better sensitivity in
frequencies, it may also refer to an improved resolution in time domain. In
high resolution spectroscopy it is always either time or frequency that is
taken into account, since there is no way to perform a measurement where
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the data output sensitivity would be comparable in both domains. Generally
we have

∆t∆ν ≥ 1 (2.9)

with ∆t being the pulse duration and ∆ν denoting a spectral bandwidth
(FWHM). For Gaussian-shape we may specify this inequality and come to
the form

∆t∆ν
.
= 0.44 (2.10)

This relation known as time-bandwidth product is essentially a prop-
erty of the Fourier transform and for a given spectral width it sets strict
lower limit for the pulse duration. For instance, a 10-fs pulse has a spectral
bandwidth (FWHM) of 4.4 ×1013 Hz for wavelength 100 nm.

Of course, this may cause some considerable di�culties while preparing
an experiment for a concrete system where for some reason we need to use
a laser pulse to excite only a certain part of absorbing molecules. Let us
for example imagine an absorption spectrum with three absorption bands
at 760 nm, 800 nm and 860 nm3. As in these days to generate as short
laser pulses as 10 fs, or even shorter, is a common thing, we are allowed to
achieve a very high time resolution since in pulsed experiments the resolution
is usually given merely by the duration of the pulse. And that is the point
where we have to choose, because if we decided to apply 10 fs pulse to
the mentioned system we would excite all of the three absorption bands
simultaneously. In order to selectively excite just a single type of molecules
to study its excited-state dynamics, spectral narrowing to about 30 nm is
required, which implies longer excitation pulse of the approximate duration
of 30 fs. In many delicate cases the excitation bandwidth has to be narrowed
even more (to less than 10 nm) for selective excitation. The corresponding
pulse duration is then somewhere around 100 fs.

What has been said above suggests that spectroscopic methods are bet-
ter to be split into two �elds where one of them will emphasize mostly on
achieving su�cient time resolution whereas the other one will stress on bet-
ter frequency/ or wavelength precision. That is what we have done here, we
divided high resolution spectroscopy on time and frequency domain and will
list a few interesting (but not necessarily most important) methods that are
used in modern science.

3These are quite common values that are in agreement with a standard absorption
spectrum of the bacterial photosynthetic reaction center consisting of a special pair, ac-
cessory bacteriochlorophyls and bacteriopheophytines, each absorbing at slightly di�erent
wavelengths.
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Figure 2.2: Grating infrared spectrometer

2.1.1 Frequency domain

High resolved infrared spectroscopy

Spectroscopic experiments are often similar for di�erent spectral regions.
The only thing one has to have on mind when doing experiments in in-
frared (IR) region is to use proper materials as the optical components of
an infrared spectrometer have to be transparent to IR light. The nature
of obtained spectra di�ers in each spectral area, those from ultraviolet and
visible parts are associated with electronic transitions while absorption in
IR occurs at frequencies where radiation energy correspond to vibrational
or rotational energy levels of the molecule. Electronic transitions energy
(∼ 15 000 cm−1) is typically by two orders of magnitude higher then that
of vibrational transitions (∼ 500 cm−1) and those of molecular rotations are
even much lower. This calls for a need of su�ciently high resolution since if
it was too low the vibrational peaks would join into one absorption band.

In principle there are two standard approaches to this task but nowadays
one of them almost entirely overshadowed the other one. The �rst and more
straightforward approach is based on a sequential scanning of intensities for
all frequencies in spectrum. The instruments working in such a mode are
called dispersive instruments. We will shortly describe the mechanisms of
the simple grating infrared spectrometer. Light from the IR source is divided
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into two beams, the �rst one is lead to a reference cell and the second to the
sample cell. The reference beam is attenuated and then both beams go to
the chopper, which is constructed so that it alternately allows light to pass
from the reference cell to the grating and then light from the sample cell to
the grating. At the grating light of a speci�c frequency is selected to pass to
the IR detector. The whole mechanism is equipped with a controlling system
that adjusts intensity of light coming from the reference cell, i.e. the degree
of attenuation. The conditions are eventually set so that the intensity of
both beams are identical. The amount of light absorbed is indicated by the
position of the attenuator. The illustration of grating infrared spectrometer
is shown in the Fig. 2.2. We did not yet mention its one last part, the slit. Its
importance lies in the fact that by alternating its width, which is adjustable,
one is able to control the resolution. However, the key role for us plays
the element of grating mechanism that allow to measure only one particular
wavelength at the time. This of course becomes increasingly time-consuming
when one desires to achieve higher resolutions since in that case more and
more steps have to be made. This little problem could be solved (and not
only this one) by applying the method of acquiring spectra through the
process of Fourier transformation (Fourier transform infrared spectroscopy
- FTIR). This method is quite old and is know since late 1960s, but at that
time it was not used commercially because the computational power was
not as good as today. This lead to the fact that Fourier-transform-based
spectroscopic systems were rather large and expensive. Nevertheless, this is
not a true anymore, the usage of such devices has become quite common.

The FTIR spectrometer works on entirely di�erent principle, it in fact
requires much simpler instrumentation, but far more complicated data pro-
cessing. The basic di�erence is that unlike the dispersion instrument the
FTIR spectrometer examines all the wavelengths coincidentally. Collimated
light from a broadband infrared source passes into the optical system and
impinges on a beam splitter. The beam splitter is made of a special ma-
terial that transmits half of the radiation and re�ects the other half. One
half is re�ected from the �xed mirror while the other half is re�ected from
the mirror that moves and then both beams impinge on a detector. As a
result the path-length of the two beams is di�erent (by optical path di�er-
ence � OPD) so there will be destructive and constructive interference. The
type of interferometer just described is known as Michelson interferometer
(see Fig. 2.3). The resulting signal depends on the velocity of the moving
mirror and contains a series of maxima and minima. It is called interfero-
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Figure 2.3: Michelson interferometer

gram which is a plot of relative intensity in dependence of relative mirror
position. The actual absorption spectrum could be obtained be taking the
Fourier transform of the interferogram. Compared to grating instruments
FTIR spectrometer has following advantages:

1. Higher spectral resolution - In case of FTIR the resolution is simply
given by the inverse value of the maximum achievable optical path
di�erence. For example, FTIR spectrometer MIR 8025TMhas spectral
resolution 0.02 nm at 700 nm. On the other hand with the dispersive
model CornerstoneTM 260 1/4 m Grating Monochromator the maxi-
mum resolution of 0.15 nm could be achieved. These number might
be also converted into inverse centimeters according to relation

δk =
107δλ

λ2

where δk means wavenumber resolution in cm−1 and δλ stands for
wavelength resolution in nm, λ for wavelength where the experiment is
performed. In the light of this equation we �nd that 0.02 nm resolution
corresponds to resolution of 0.5 cm−1.

2. Better signal-to-noise ratio - The fact that FTIR spectrometer collects
all the wavenumbers of light in one scan it shows that when spectra
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are measured under identical conditions (same time of the experiment,
same resolution, same source and detector) the signal-to-noise ration
of FTIR spectrum will be greater then that of a dispersive spectrum
by the factor of

√
N , where N denotes number of scans. We speak

about so called Fellget advantage. But this fact can be also seen
from another angle since we do have a choice whether to get higher
signal-to-noise ration for a given scan-time or shorter scan-time for
a given resolution � detection of spectra in short time also enables
time-resolved vibrational spectroscopy (especially Raman and reso-
nance Raman).

3. Higher energy throughput - Resolution in dispersive spectrometers is
obtained by the width of the slits which considerably decreases the
energy throughput. FTIRs have no slits and so again their e�ciency
is better. This observation is known as Jacquinot advantage.

Hole burning

Spectral hole burning �rst of all relies on existence of inhomogeneous
broadening and also on existence of some kind of molecular mechanism,
which alters the homogeneous absorption spectrum upon absorption of light.
High intensity spectrally narrow laser is needed as well. Hole burning en-
ables to study biologically important molecular complexes that normally
have low resolution at low temperatures. Molecules that are in resonance
with laser frequency are due to photochemical or non-photochemical trans-
formations removed from the absorption band. Consequently, hole is formed
at that frequency (see Fig. 2.4). When photochemical changes occur, the
excitation pulse causes molecules of the sample to interact with the environ-
ment and thus enabling their isomerization. Such a molecules with di�erent
structure (the photoproduct) contribute to absorption with a certain fre-
quency shift. In the photochemical case the shift is equal or bigger than
the inhomogeneous band width. In Fig. 2.4 recognize contribution of this
e�ect as a dashed anti-hole at the very right of the spectrum. If there are
non-photochemical changes the shift in frequencies of the photoproduct is
smaller than inhomogeneous band width and according to the picture 2.4
the photoproduct manifests itself as an anti-hole on the of the absorption
band. This is because in non-photochemical case the excitation pulse only
causes slight conformational rearrangements in the molecule's environment
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Figure 2.4: Depiction of spectral hole burned into an inhomogeneously
broadened spectral line. Molecules whose transition frequencies lie in the
spectral area of burning laser undergo photophysical or photochemical
changes which cause them to absorb on di�erent frequencies than before
excitation. As a result anti-holes are observed. The width of a typical hole
may be around 2 cm−1.

(the e�ect of solvent shift4).
The hole width δHB measured under proper experimental conditions de-

termines the homogeneous width of the optical transition Γhom through the
expression

δHB = 2Γhom + δL

where δL is the spectral width of the burning laser.

2.1.2 Time domain

Fluorescence up-conversion

Fluorescence up-conversion technique is used to record very short �uores-
cence lifetimes (femtoseconds). It is based on the nonlinear e�ect of sum
frequency mixing in nonlinear optical crystal. Fluorescence up-conversion
experiment is given by two phases. Firstly, the sample is illuminated by a
strong excitation pumping pulse that induces �uorescence which is lead by
mirrors to a nonlinear crystal. Secondly, the �uorescence light is overlapped

4For the de�nition of solvent shift see page 10.
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Figure 2.5: Fluorescence up-conversion principle. Fluorescence light and
probing (gate) pulse form together in a nonlinear crystal signal with gener-
ally some new direction and new frequency. This signal is then measured
and analyzed. By varying delay time between �uorescence and probe pulse
lifetime of the excited state could be calculated.

by a probing gate pulse and together they generate up-converted nonlinear
signal. Such a process is generally termed N-wave mixing a will be described
later in this work in section 3.3. Sum frequency mixing only occurs as long as
gate pulse and �uorescence are in the crystal at the same time and thus only
the light of a very short time window can be seen (a time window roughly
corresponding to the length of the gate pulse). Probing pulse is delayed
with respect to the pumping pulse and by varying the delay time �uores-
cence decay can be monitored in the time regime which allows to observe
the whole �uorescence time kinetics. Consequently, a relation between the
�uorescence intensity and the delay time can be found so that the lifetime
of the excited state could be deduced.

Single photon counting

Single photon detection technique � also called Time Correlated Single
Photon Counting (TCSPC)� is another way in �uorescence spectroscopy to
determine a lifetime of an excited state. But this time the resolution is
not as high as in the case of �uorescence up-conversion. The maximum
resolution goes not further than to a few picoseconds. It is thus not a true
high resolution method but it de�nitely has some speci�c characteristics
that are worth mentioning. The main advantage is that it can be used
to measure lifetimes over approximately seven orders of magnitude, from
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Figure 2.6: Fluorescence up-conversion experimental setup scheme. The
excitation pulse (green in the picture) is through a system of mirrors aimed
at the sample S and gives rise to �uorescence. Another (probing, red in the
picture) pulse is delayed according to excitation pulse by time τ , arrives at a
non-linear crystal and mixes there with a �uorescence signal. The frequency
of the resulting non-linear signal is �ltered by a monochromator (Mono),
signal is then ampli�ed by photomultiplier (PM) and registered in photon
counter (PC).
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Figure 2.7: Schematic time correlated single photon counting experimental
setup. The reference pulse sends a start signal to a counting mechanism,
which is stopped after a photon arrives to the detector. Once the time
between START and STOP is determined, the incident photon is registered
in the corresponding time channel of the memory histogram.

picoseconds to tens of microseconds. The lower limit is given by the jitter
of TCSPC electronics, while the upper limit arises from the time one can
a�ord to acquire data with reasonable precision.

TCSPC is a statistical method and a high repetitive light source is needed
to accumulate a su�cient number of photon events for a required statistical
data precision. The main principle is to detect single photons and measure
their arrivals to a detector in respect to a reference signal. It is schematically
depicted in the Fig.2.7. We see a light source that sends a reference pulse
into the detector. This pulse may be considered a START signal to an imag-
inary clock. Another pulse from the light source goes into the sample and
induces �uorescence signal. Single photons can be detected with photode-
tectors having an intrinsic high gain. The majority of these detectors are
photomultipliers. In a photomultiplier the photon is absorbed and causes
an emission of electron (or photoelectric current) which is then ampli�ed by
the system of dynodes that are able to multiply the electric current as much
as 100 million times. Also the single photon signal acts as a STOP signal
to our imaginary clock. The time measured for one START-STOP sequence
will be represented by an increase of a memory value in a histogram in which
the single channels represent steps in time. The resulting histogram counts
versus channels will represent the �uorescence intensity versus time. By
�tting the intensity values in histogram with an appropriate function the
excited state lifetime could be found.
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2.2 Basics of the pump-probe technique

In the introduction on spectroscopy we talked about the measurement of
absorbance as a function of frequency (or wavelength), which is a basic
experiment allowing us to look into some of the system's characteristics.
But if we want to �nd out more about the system, this method will not
be su�cient. Let us say our intention is to learn about the kinetics of the
system, about how system evolves in time. This is quite useful information,
especially when we study photosynthetic light-harvesting systems, because
the main interest of ours in this case is to see where the energy goes after
the system absorbs light. A few decades ago we were not able to study
photosynthetic systems' kinetics at that deep level as we are today. It was
not until the invention of ultrafast lasers when this area became accessible
and thus opened up new research opportunity and enabled investigation of
such a photophysical and photochemical reactions in real time. The time
scale on which the primary events of photosynthesis occur is in order of
hundreds or even tens of femtoseconds. E�ects of that kind belong to the
fastest events in biology. Nowadays that the duration of laser pulses can
sometimes go even as low as to the order of femtoseconds we have a really
powerful weapon in our hands, because the resolution of our experiment is
determined just with the laser pulse duration5. One of the experiments that
make use of ultrafast lasers is called pump-probe technique. We will talk
more about its various possible applications in the next section, here we will
merely try to explain its fundamental principles.

Pump-probe experiment is a two-step process, in the �rst step a frac-
tion of molecules is promoted to an electronically excited state by means of
an excitation (or pump) pulse. This fraction typically ranges from tenths
to tens of a percent. After that a weak probe pulse is sent through the
system, usually with such a weak intensity that any multiphoton processes
are avoided during probing. We may think of the probe pulse step as of a
simple absorption experiment. But as you can easily imagine, the result of
such absorption experiment will now vary with the time delay between the
pump and probe pulses and because eventually all of the excited molecules
will return back into the ground electronic state, after long enough time the
results will not be any di�erent from normal absorption spectra.

The scheme of the pump-probe experimental setup is depicted in the Fig.

5Depending on experimental setup the detector may also play a crucial role in �nal
resolution
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Figure 2.8: Pump probe experimental setup scheme

2.8 which may seem similar to that of �uorescence up-conversion. In fact,
the only di�erence is that in pump-probe we measure absorption, while in
�uorescence up-conversion we are interested in time evolution of �uorescence.
The common feature is that both methods are based on non-linear e�ects.

Let us designate the delay time as τ , and absorbance measured in the
time τ as A(ω, τ). Finally, let A0(ω) stand for the absorbance of the sample
without any pumping. Now we are able to de�ne new quantity ∆A(ω, τ) as

∆A(ω, τ) = A(ω, τ)− A0(ω), (2.11)

which we call transient absorption spectrum (or pump-probe spec-

trum6). ∆A(ω, τ) contains information on the dynamic processes that occur
in the system, such as excited-state population, electron transfer processes,
isomerization, and intersystem crossing. Generally, we can divide transient
absorption spectrum into a number of contributions from various processes.
Here is a list of these contributions:

1. The �rst contribution is by ground-state bleach (red line in the �gure
2.9). Through the action of the pump pulse promoting some frac-
tion of molecules to their excited states, absorption from ground state
decreases because of the lower number of molecules remaining in the

6We will use these two term interchangeably.
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ground state. Hence, the ground-state absorption becomes less than
that of the non-excited sample. Consequently, in transient absorp-
tion spectrum a negative signal is obtained in the frequency region of
ground state absorption.

2. Another contribution to ∆A(ω, τ) comes from stimulated emission
(green line in �gure 2.9). During this process a photon from the
pump pulse passes through the sample and induces another photon
emission by forcing a molecule at the excited state to get back to the
ground state. After that both of these photons travel in the same
direction and both are registered in a detector. Such a process re-
sults in an increase of the detected signal, corresponding to a negative
∆A(ω, τ) signal. Considering that Einstein coe�cients for absorption
and stimulated emission are identical the two of these so far mentioned
contributions will have the same spectral pro�le, only with stimulated
emission curve slightly shifted to the lower frequencies (Stokes shift).
It happens though that the Stokes shift is too small that both lines
are indistinguishable from each other.

3. The third contribution is provided by excited-state absorption (blue
line in �gure 2.9). In certain frequency regions excitation of a sample
may be followed by transitions to higher excited states. This results
in observing a positive signal in the transient spectrum.

4. The fourth possible contribution to the ∆A(ω, τ) is given by what we
call product absorption. Sometimes in photobiological system there
exist a possibility for excited molecules to undergo certain reactions
resulting in a long-lived molecular state, such as triplet state, charge-
separated state or isomerized state. Product absorption appears in the
transient spectrum as positive signal.

For a complete picture we would like to add that whenever there is an ab-
sorption or spontaneous emission process caused by the probe pulse, the
population of the excited state does not change signi�cantly. This assump-
tion could be made because of the relative weakness of the probe pulse in
comparison to the pump.

Lastly, we would like to present a very simple illustration of the pump-
probe experiment, it is shown in the �gure 2.10. It consists of a set of �ve
spectra and three di�erent peaks at identical positions for all of the �ve
lines, while each line corresponds to some particular delay time t between
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Figure 2.9: Schematic depiction of pump-probe absorption spectroscopy
principle. Red line - ground state bleach, green line - stimulated emission,
blue line - excited-state absorption, pink line - sum of these contributions

pump and probe pulses. The experiment has been performed on the solution
of [H2TPPS4]4− dissolved in the bu�er of pH = 8. However, it is not our
intention to go that far in details here as our main goal is mostly to stress
the essential characteristics of the spectrum. The sample has been excited
with the help of laser operating at the wavelength of 420 nm and after
that it has been probed throughout the range from 350 - 750 nm. At the
wavelength of 422 nm we can see the peak that has a descending tendency
in time. It could be easily veri�ed by normal absorption experiment that
this peak could be matched to ground state bleach (because the absorption
occurs at the same wavelength). The maximal size of the peak at the time
t = 0 is interpreted as a maximal amount of molecules in excited states. As
the experiment progresses in time this amount becomes gradually smaller
and smaller and at t = 10 000 ns the number of excited molecules reaches
near zero which is in agreement with the vanishing ∆A signal at this time.
The other peak at λ = 460 nm re�ects the origin of the new electronic
transition as is indicated by the fact that this peak is of opposite sign in
comparison to the ground state bleach. In other words the absorption has
increased in this region after the impingement of the excitation pulse. In
this case the new electronic transition emerged between the ground and �rst
excited triplet states. The last part of our spectrum is the wide band in the
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Figure 2.10: Example of a simple pump-probe experiment

red spectral region. It di�ers from the former two in its duration, which does
not get over the tenths of nanoseconds. That is why it could be considered
a manifestation of fast �uorescence. It is quite common to approximate the
changes in transient absorption spectra by a single exponential function in
the form

∆A(ω, τ) = ∆A(ω, 0) exp
(
−τ
τ̃

)
(2.12)

τ̃ denoting the lifetime of the excited state at frequency ω. Making use
of this relation both lifetime of �rst excited singlet state and �rst excited
triplet state was obtained.

This experiment is also a good demonstration of other two interesting
things. Firstly, it shows how strong the applicability of this method is. It
practically ranges from microseconds (which is the typical order of triplet
state's lifetime � measured in the experiment) to the order of magnitude
10−15 s (typical order of energy transfer rate in photosynthetic systems).
As we already mentioned above, the �nal resolution is mainly given by the
duration of both the pump and the probe pulses. Secondly, we would like
to mention one little technicality regarding the presented graphs in 2.9 and
2.10. While the former one is showed in a form where ground state bleach
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gives negative contribution the letter one depicts the same contribution in
the positive half-plane. Both of these alternatives satisfy de�nition (2.11)
and both of these alternatives could be seen in articles and may thus cause a
little confusion in the reader. However, recently there has been a prevailing
tendency to stick to the alternative from Fig. 2.9.

2.3 Applications of the pump-probe technique

If we wanted to list all possible applications of the pump probe technique,
it would surely be enough for a considerably large publication. Its usage in
molecular aggregate dynamics studies and biological systems research is ex-
tensively wide. Especially when talking about scienti�c e�orts on the �eld of
discovering function of photosynthetic systems it proved to be very valuable.
Despite the fact that nowadays we have at our disposal a great number of
other spectroscopic methods, it still occupies a unique and respected posi-
tion in the �eld. The common feature of all pump probe experiments is the
determination of temporal changes that occur under properly chosen light-
ing conditions. This means that in principle every pump probe experiment
has the same fundamental properties and in fact the only thing remaining is
to tell what exactly is changing, why is it changing and how. In the next few
lines we would like to provide some interesting (and in some cases maybe
even unsuspected) examples where pump probe showed really helpful. Af-
ter that we decided to include two short presentations with more complete
explanation of the investigated problem and interpretation of the obtained
spectra.

There is no need do debate that devices such as light emitting diodes
(LED) are now an indisputable part of humans life, and we could de�nitely
�nd more that one material applicable to their construction. We may for
instance mention organic light emitting diodes (OLED), or polymer light
emitting diodes (PLED). Both these devices are well suited for an experi-
mental treatment on the basis of pump probe. That is because we know that
a key process in molecular and organic electronics is triplet energy transfer.
What we talk about here is an energy migration along a selected molecular
structure that usually occurs in two di�erent modes. The �rst one is sin-
gle step tunneling and the second is know as multistep hopping. And that
is exactly the situation where we are able to study the energy transitions
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by implementation of the high resolution spectroscopic technique7 and eval-
uation of transient absorption data which provides us with a map of the
system's dynamics. This way we can �nd a crossover between the above
mentioned modes and hopefully use it for our advantage in the pursuit for
better understanding and designing energy transfer pathways in the LED
devices. However, these are not the only structures where triplet energy
transfer may be found. This rapid and e�cient transport of energy and
charge over tens to hundreds of nanometers is also crucial for thin �lm tran-
sistors, organic photovoltaic or long-distance energy transfer in proteins. For
more detailed investigation I refer to [10].

Another very nice example are studies performed with an intention to put
some light into mechanism of repair processes in DNA molecules. Following
information published in Ref. [5] we build our discussions upon the fact
that so called (6-4) photoproduct has detrimental e�ects on the replication
and transcription and may result in mutations and even cell death. (6-
4) photoproduct usually arises from actions of ultraviolet radiation and the
mechanism of its repair is still in the stage of poor understanding. Reactions
that underlie the repair are rather complex, but still with the help of ultrafast
spectroscopy some new insights may be revealed.

The other example comes from the �eld of capturing solar energy with
semiconductor solar cells which typically absorb photons with energies above
the semiconductor bandgap. The additional energy of these photons is con-
verted into so called hot charge carries (electrons and holes) that quickly
cool by sequential emission of phonons (this process standardly occurs on
the timescale of 1 ps). The maximum e�ciency of a semiconductor solar
cell is then determined by our technological ability to extract these hot
carrier and produce electrical current. Today it is not more than approx-
imately 30%. But there is a potential route to construct solar cell with
higher e�ciency, theoretically to as high as 66%, with help of semiconduc-
tor nanocrystals, or quantum dots, which in principle enable extraction of
hot carriers before they cool. Ultrafast absorption spectroscopy enables us
to successfully study electron transfer in these structures and hopefully to
make some new progress. As a reference to this topic we would like to refer
you to [9] where these problems are dealt with quite thoroughly. Authors
show here that electron transfer from the higher excited states of a colloidal
semiconductor nanocrystal (PbSe) to a common electron acceptor (TiO2) is

7Temporal resolution in order of few hundreds of femtoseconds is required to get some
results.
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indeed possible. And again, pump-probe experimental technique has been
used.

Let us dedicate the last paragraph to the application in x-ray powder
di�raction. Our goal in these kinds of detection is to �nd a charge density
map of a studied material, which can be derived from the di�raction pattern.
Standard methods used for this purpose are x-ray di�raction from polycrys-
talline samples or the Debye-Shererer di�raction technique. Naturally, both
of these methods lead in principle to the phase problem, the critical point
of x-ray di�raction. Reliable methods for solving this problem originated
long time ago and many information about crystallic structures have been
revealed. But there is a remarkable extension to these methods and that is
namely a study of atomic motions in femtosecond time domain8. This allows
for mapping molecular structure generated by basic chemical and biologi-
cal processes and for deriving transient electronics charge density maps. In
other words the sample is electronically excited via fast femtosecond pump
pulse at optical frequency and the resulting structural dynamics is probed
by hard x-ray (also femtosecond) pulse. This way a direct evidence of the ul-
trafast nature of the induced dynamics has been obtained for chosen samples
(see [3]).

After this short review of transient absorption spectroscopy applications
we decided to discuss two recent experiments more thoroughly in order to
bring at least a little more real image of the main characteristic features
about this strong and versatile method. The goal is not to provide any spe-
cialties as far as the applied experimental setup or exploited computational
methods of data interpretation are concerned. Respecting the intended ex-
tent and purpose of this thesis it is far enough for us to pay a brief but
careful attention to the resulting spectra and their proper interpretation.
After all, the capability of pregnant reading of the output plays often one of
the most important roles in spectroscopy.

2.3.1 Illustrative example no. 1

In recent time there have been many attempts not only to fully understand
but also to control the motion on a molecular scale. This aim of modern
science is nicely demonstrated in Ref. [8] where authors decided to reveal
molecular operations of rotaxane complexes where a macrocycle shuttles be-

8Pump-probe experimental scheme used in [3] provided experimentators with time
resolution about 100 fs and spatial resolution around 30 pm.
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tween two stations along an axle9. We can envision rotaxanes as macrocyclic
rings trapped onto a linear unit by two bulky substituents (stoppers). Ap-
proximate description of the structure of the particular rotaxane complex
studied in the cited experiment is depicted in the Fig. 2.11. It consists of two
stations (succin amide station � succ, green in the �gure � and naphtalimide
station � ni, grey on the �gure), one macrocycle (blue) and a hydrocarbon
chain, whereas in neutral molecule the macrocycle is predominantly hydro-
genbonded to the succ station. However, if an excitation light pulse of a
suitable wavelength is used the macrocycle may loose its a�nity to succ
station and start moving along the axle to the other station. Here, this
really happens. After the rotaxane is excited it undergoes fast intersystem
crossing into the triplet state and then the ni station is reduced from an
external donor to form a radical anion (process of charging in 2.11). Indeed,
the a�nity of the macrocycle to this anion is greater than to the succ sta-
tion. Therefore the macrocycle quickly makes its way to the other side of
the molecule and stays there until after the charge recombination of the ni
anion takes place.

In order to monitor molecular machine motion with su�cient enough
precision the experimental requirements are quite strong. Primarily, both
structural and temporal resolutions have to be reasonably high. Of course,
this goal could be easily achieved by employing the pump probe method10

where time resolution is determined by the pulse duration which could by
less than hundreds of femtoseconds. In this particular experiment there was
no need to go as far as into the femtosecond scale, because the main dynam-
ics of the molecular machine happen mostly at the order of nanoseconds,
hence a nanosecond pump pulse was applied. On the other hand, much
shorter probe pulse (100 fs) provided the experimentators with the spectral
bandwidth necessary to probe the entire rotaxane absorption spectrum in
one laser pulse. The results of the measurements are shown in Fig. 2.12.
The di�erence absorption spectrum has been scanned at the interval between
1580 and 1720 cm−1 and for ten di�erent delay times between pump and
probe pulses (listed in the Figure). We would like to remind that our picture
does not reproduct the original data, but only copies the most important
patterns.

Altogether, there are seven evident peaks in the spectrum and each peak

9Such a task is quite a challenge as some of the standard macroscopic concepts often
loose meaning on microscopic level.

10In this case time-resolved vibrational pump-probe has been adopted.
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Figure 2.11: Structure of the rotaxane molecular machine composed of two
stations (succ and ni) and one macrocycle. After excitation with the pump
light pulse rotaxane undergoes fast intersystem crossing relaxation into the
triplet state where is reduced by an external donor to the radical form. In
this form the radicalized ni station has greater a�nity to the macrocycle
than the succ station and the macrocycle starts to shuttle along an axle
between the stations. Using the pump-probe technique both rate constant
of the shuttling and binding energy of the macrocycle could be determined.
The numbers in the picture correspond to some prominent CO bonds and
their meaning is following: 1+7) ni station resides in its normal form 2) ni in
radical form 3) ni with the macrocycle bonded 4) alone succ station (without
the macrocycle) 5) succ with the macrocycle 6) macrocycle arriving to ni
radical
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Figure 2.12: Reconstruction of transient absorption spectrum of the rotax-
ane molecular machine in the spectral region from 1580 to 1720 cm−1 reg-
istered with help of vibrational pump-probe. The numbered spectral peaks
correspond to the CO bonds of rotaxane complex as shown in �gure 2.11.
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corresponds to some characteristic CO bond in the rotaxane structure. The
proper assignment of the peaks to the corresponding bonds is again appar-
ent from the �gure 2.11. Usually, steady-state absorption spectra could be
used to �nd the position of each particular peak in the spectrum. Here,
spectra of the initial, charged and �nal states had to be studied �rst. For
example, let us have a look at the peaks 1 and 7 which are assigned to the
uncharged ni station. It is obvious that in the whole time range there has
been no evolution in the number of uncharged ni in the sample. That is
because the charging event has already taken place in the �rst phase of the
experiment, i.e. at times under 120 ns. On the contrary there is clearly
something happening with the peak number 2. At the beginning it reaches
the highest values of di�erential absorption and as the experiment proceeds
it gradually loses its intensity. This e�ect might be interpreted as the de-
crease in the number of the radicalized ni stations which in the process of
shuttling are substituted by the (ni+macrocycle) complex that absorbs at
slightly di�erent frequency. This fact is also con�rmed by the increase of
intensity in the spectral region corresponding to the number 3 which de-
scribes the arrival of the macrocycle to the ni side of the rotaxane molecule.
As for the number 4 it again monitors the shuttling process, but now in
terms of the increase of the number of the alone succ stations (without the
macrocycle bonded). This is how an increase in absorption of the peak no.
4 is explained. Similarly we could describe the meaning of the remaining
peaks and its correspondence to the CO bonds in rotaxane complex.

To draw a conclusion we found out that the rotaxane undergoes a certain
dynamics that is connected with the shuttling process of the macrocycle.
From the spectrum 2.12 we are able to obtain the rate constants for the
observed events (in the simplest way using relation similar to 2.12) and thus
the shuttling time could be determined. But that is not all, these �ndings
could be expanded and other important information about the system may
be revealed. For example, with the help of Eyring equation

k(T ) =
kBT

h
exp

(
−∆G

RT

)
, (2.13)

where kB stands for Boltzmann constant, h for Planck constant, R for gas
constant, T for temperature and ∆G for the Gibbs free energy, it is possible
quantify the energy barrier that the macrocycle must overcome to escape
from the succ station. The only thing we have to do is to calculate the
temperature dependence of the rate constant k.
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Figure 2.13: A sketch of isomerization potential energy surfaces of rhodopsin
a and the corresponding structural changes rhodopsin undergoes as it pro-
gresses along the isomerization coordinate. Roughly speaking, during the
�rst 80 fs stimulated emission signal of decreasing frequency is observed
while after that the stimulated emission vanishes and an absorption shifting
into the blue region of the spectrum arises.

2.3.2 Illustrative example no. 2

The next illustration of pump-probe experimental method regards dynam-
ical processes in vision (according to Ref. [6]). The conversion of 11-cis
retinal chromophore to its all-trans form in rhodopsin has been for a long
time considered the primary photochemical event in vision. Rhodopsin is a
uniquely reactive pigment and the very �rst reactions that take place during
the perception of light usually occur within the mere 200 fs which suggests
an unusually fast energy redistribution. It is believed that this remark-
ably fast reactivity is caused by a conical intersection between the potential
energy surfaces of the ground and excited electronic states of rhodopsin.
For the purpose of registration of such events ultrafast optical spectroscopy
with a time resolution less than 20 fs has been used and the spectrum has
been registered from the middle visible to the near infrared. The main goal
should be here to present a plausible evidence for the existence and impor-
tance of conical intersections in visual photochemistry. That meas to track
the events along the rhodopsin isomerization coordinate and put a propriate
interpretation.

The photoisomerization was initiated with a 10-fs 500-nm pump pulse
that brought rhodopsin into the excited state and the duration of probe was
no longer than 15 fs. It is important to emphasize that these two facts are the
key to observing the transitions between the ground and excited states. The
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Figure 2.14: Two dimensional pump-probe spectrum showing dynamics
through the rhodopsin conical intersection.

evolution of the rhodopsin complex could be understood with the help of Fig.
2.13 where the approximate shape of both ground and excited state potential
energy surfaces along the isomerization coordinate is plotted. When the
incident light gets through the sample and the �rst excited state is populated
the rhodopsin transient absorption spectrum exhibits a positive signal which
is assigned to stimulated emission from the excited state. This signal rapidly
shifts to the red part of spectrum and at the same time looses its intensity.
Within approximately 80 fs it disappears which suggests rhodopsin to arrive
at the conical intersection of both potential energy surfaces. Right after
that there originates a negative absorption signal that initially appears at
1000 nm (the same wavelength where stimulated emission have vanished)
and gradually shifts to the blue and increases in intensity.

This course of events is mapped in Fig. 2.14 which shows a two-dimensional
transient absorption spectrum. The blue part represents spontaneous emis-
sion and the yellow part stands for absorption. As in the previous example,
we did not use the original date to make this plot, we only tried to capture
the characteristic behavior.

Again we saw how e�ective the pump-probe method might be. We have
intentionally chosen two examples from two relatively di�erent �elds to prove
its rather considerable universality. Besides that we have seen that depend-
ing on the purpose of the experiment the data can be presented in both one
dimensional and two dimensional way.
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2.4 Introduction to 2D spectroscopy

Two-dimensional spectroscopy is a revolutionary spectroscopic method that
provides new and interesting insights into understanding of complex molec-
ular systems. It contains a great amount of information that could be used
to study not only function of the molecules but it can also indirectly reveal
some structural features. It could be used to study population coherence
dynamics of excited molecules as well as to reveal inhomogeneous structures
of lineshapes.

2D spectroscopy could be performed in both visible and infrared region of
the spectrum and with femtosecond resolution. From practical point of view
its experimental realization corresponds to that of 4-wave mixing experiment
which we describe in great detail in the next chapter. The resulting two-
dimensional spectrum of a common molecular system usually shows many
peaks that overlap and are hard to separate. In an ideal spectrum we would
be able to distinguish diagonal and o�-diagonal peaks (cross-peaks). While
the diagonal peaks correspond to linear spectrum, the cross-peaks show cou-
pling between electronic excitations. The oscillations of cross-peaks reveal
electronic coherences and changes in their intensity is often the sign of re-
laxation processes. Finally, two-dimensional spectrum includes information
about absorption spectrum, stimulated emission or excited state absorption
(ESA).

As for the formal de�nition of the two-dimensional spectrum we decided
to postpone it to the next chapter since there is no easy and transparent
way to do that without having the whole non-linear theory built-up �rst.
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Chapter 3

Theory of nonlinear response

functions

In this chapter we are going to devote ourselves to description of the theory
behind measuring spectroscopic signal. Especially we are going to set for-
ward a theoretical method of interpreting a pump-probe experiment. This
will be our main goal here, but many of the facts explained will relate to
such general rules that they could very well �nd another usage in various
�elds of spectroscopy.

Our �rst step will be to remind ourselves of the Maxwell equations of
electromagnetic �eld, which is the standard set of four equation for the �elds
~E - electric �eld, ~B - magnetic �eld, ~D - electric displacement �eld and ~H
- magnetic displacement �eld. The four �elds are not independent of each
other. For ~D we have

~D = ε0
~E + ~P (3.1)

and similarly for ~H

~H =
~B

µ0

− ~M, (3.2)

where ~P stands for polarization and ~M for magnetization of a material, ε0

for vacuum permittivity, µ0 for permeability of a free space. However, we
do not assume our materials to be magnetic and so we neglect the second
term in equation (3.2) and consider ~H = ~B. On the other hand the po-
larization from Eq. (3.1) will become one of the most important quantities
for us. It usually comprises two parts, one that refers to the existence of
permanent dipoles in the system and one that re�ects the formation of tran-
sition dipole moments in molecules which is only possible if the sample has
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been exposed to some kind of electromagnetic �eld �rst1. Under its e�ects
some molecules undergo a process of excitation that changes the distribution
of charge density, making it inhomogeneous and creating thus a temporal
dipole. As soon as the deexcitation occurs transition dipole vanishes. From
these two possible forms of polarization we calculate only with the second
one, leaving out materials with permanent dipoles. We also do not consider
neither any electrical charges, nor any electric currents present. Omitting
the corresponding terms form Maxwell equations we can write these in the
form

∇ � ~B(~r, t) = 0, (3.3)

∇ � ~D(~r, t) = 0, (3.4)

∇× ~B(~r, t) = µ0
∂ ~D(~r, t)

∂t
, (3.5)

∇× ~E(~r, t) = −∂
~B(~r, t)

∂t
. (3.6)

We will not make any signi�cant use of the �rst two equations. Eq. (3.3) only

reminds us of the fundamental property of magnetic �eld, that ~B is purely
transversal. Eq. (3.4) shows that in neutral systems ~D is a transversal �eld

as well. But also the incoming �eld ~E will be considered not to contain
any longitudinal component, because the main role in all of our thought
experiments will be played by laser beams and pulses that propagate through
space in the form of electromagnetic waves. Consequently, polarization ~P
will not have any other chance, but to stay in transversal form either. Now
we can �nally turn our attention to the latter two equations from which we
are able to derive a di�erential equation that formally puts in connection
electric �eld and polarization. That equation reads as

∇×∇× ~E(~r, t) +
1

c2

∂2

∂t2
~E(~r, t) = −µ0

∂2

∂t2
~P (~r, t), (3.7)

where we made use of the identity

ε0µ0 =
1

c2
.

1Not any �eld of course, it has to contain frequencies that lay in the absorption band
of our sample.

37



3.1 What is a response function

Before we expand our thoughts in more detail let us formulate the key task.
Let us have a short look at the �gure 3.1. In any spectroscopic experiment
we deal with either light or some other kind of radiation. In order to get some
information and �nd out what is happening in a sample we use a light beam
and send it in. In our picture this is represented by Ein - an incoming electric
�eld. As the �eld travels through the sample it interacts with molecules and
induces polarization P which then back interacts with the �eld and makes
it change. Eout - an outgoing electric �eld - is a�ected by the polarization
and carries information about the system, it can be detected and analyzed.
The more we know about the outgoing signal, the more we can say about
the system. And the key for this purpose is just the polarization which is
responsible for all possible changes in electric �eld we measure. At the same
time polarization could be easily interpreted from microscopic point of view
and act as a connection between detected signal and dynamics deep inside
the system. Therefore, our aim is to follow this scenario:

1. Find a link between Ein and P (see this section)

2. Find a link between Eout and P (see section 3.3)

3. Find a link between macroscopic P and dynamics on microscopic level
(see section 3.4)

As the �rst possible approximation, let us assume that the polarization
~P (~r, t) depends on the incoming electric �eld ~E(~r, t) linearly. Most generally
this can be expressed as

~P (~r, t) =

ˆ +∞

−∞

~dr′
ˆ t

0

dt′S̄(~r − ~r′, t− t′) ~E(~r′, t′), (3.8)

where S̄(~r − ~r′, t− t′) is the linear response function or the �rst order
response function2. This de�nition will turn out to be very useful and of
great bene�t to us. For example, the whole theory of linear absorption can
be expressed in the language of response functions. In our next section we

2Since there are quite often used temporally narrow laser pulses in spectroscopy we
are allowed to take the expression of the electric �eld in terms of delta function which
says that the laser pulse of a certain magnitude acts in a certain time.

~E(~r, t) = ~E0δ(t− T ).
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EinEout

P

Figure 3.1: General process of light-matter interaction. Respective arrows
may be interpreted as follows: 1) Ein enters the sample and creates polar-
ization P . 2) Polarization a�ects incoming �eld. 3) A�ected �eld leaves the
sample an is registered by a detector.

are going to demonstrate how linear response function helps us to calculate
absorption coe�cient of a medium.

3.2 Linear absorption

Let our medium be a simple isotropic sample and let the incoming �eld be
in the form of a plane wave. We also choose the direction of its propagation
to be along one of the axes of the Cartesian coordinate system, let say z.
Electric �eld then reads

~E(~r, t) = ~E(z, t) = ~E0 exp(ikz − iωt). (3.9)

Now by substituting de�nition (3.8) into the original equation (3.7) we get

∇×∇× ~E(~r, t) +
1

c2

∂2

∂t2

ˆ +∞

−∞

~dr′
ˆ t

0

dt′ε̄(~r − ~r′, t− t′) ~E(~r′, t′) = 0, (3.10)

Also the response function could be considered localized in a concrete position given by
the vector ~R and again we can describe this property with a delta function δ(~r − ~R).
In the view of this choice there emerges a simple interpretation for the linear response
function according to which the polarization

~P (~r, t) = ~E0S̄(~r − ~R, t− T )

is nothing but a response to the �eld that acted at ~R at a time T before now.
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where by ε̄(~r − ~r′, t− t′) we denoted the dielectric function in space and
time domain de�ned as

ε̄(~r, t) = δ(~r)δ(t) +
1

ε0

S̄(~r, t). (3.11)

Having in mind condition (3.9) and by some formal rearrangements in the
expression of the second term in equation (3.10) we get to the conclusion
that dielectric function may as well be formulated in the wavevector and
frequency domain

ε̄(~k, ω) ~E(~r, t) =

ˆ +∞

−∞

~dr′
ˆ t

0

dt′ε̄(~r − ~r′, t− t′) ~E(~r′, t′) (3.12)

or shortly (reminding of the de�nition of Fourier transformation)

ε̄(~k, ω) =

ˆ +∞

−∞

~dr

ˆ t

0

dtε̄(~r, t) exp(i~k~r − iωt) (3.13)

Straightforward application of this procedure to the equation for the dielec-
tric function takes us to the well-know relation

ε̄(~k, ω) = 1 + χ̄(~k, ω) (3.14)

between ε̄(~k, ω) and χ̄(~k, ω) which is the linear susceptibility. As you can
see we introduced this fundamental quantity as the Fourier transform (FT)
of the �rst order response function.

ε0χ̄(~r, t) = FT(S̄) (3.15)

This means that every relation that involves susceptibility is also directly
related to the theory presented in this work. But before we move on to
the main goal of this section � �nding the dependence of linear absorption
coe�cient on χ̄ � we have to clear up one other thing. Again we talk about
familiar relation

ε̄(~k, ω) =
k2c2

ω2
(3.16)

which is easy to �nd because the second time derivative in equation (3.10)
now after transferring the dielectric function into wavevector and frequency
domain touches only the electric �eld ~E(~r, t) and thus it only gives factor
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ω2. And as for the �rst term the double vector product of the nabla operator
with the electric �eld could be rewritten according to the vector identity

∇×∇× ~F = ∇∇ � ~F −∇2 ~F , (3.17)

which gets even simpler when we recall that the �eld we treat has no lon-
gitudinal component and thus has zero divergence. In the case of (3.9) em-
ploying Laplace operator is the same as taking the second partial derivative
of z. Therefore the factor k2.

Thanks to the isotropic nature of our sample we need not consider ε̄(~k, ω)
a tensor. So from now on we take the liberty of giving up the bar symbol
and start to consider dielectric function a scalar. But we know it is still a
complex function and we can write for its square root√

ε(~k, ω) = n(ω) + iκ(ω) =
kc

ω
(3.18)

Here we have n(ω) � the index of refraction � and κ(ω) � the extinction
coe�cient. As the next step we express wavevector k and use it in the
de�nition of the plane wave (3.9). This yields

~E(z, t) = ~E0 exp(ik′z − iωt− 1

2
κa(ω)z), (3.19)

where renormalized wavevector k′ and absorption coe�cient κa(ω) are

k′ =
ωn(ω)

c
, (3.20)

κa(ω) =
2ωκ(ω)

c
. (3.21)

In this notation the �eld intensity is

I(z) ≈ | ~E(z, t)|2 = I0 exp(−κa(ω)z) (3.22)

Finally we are able to relate absorption coe�cient and linear response
function. We take the square root of equation (3.14) and divide the suscep-
tibility into its real and imaginary parts, Reχ(ω) = χ′(ω), Imχ(ω) = χ′′(ω)√

ε(ω) =
√

1 + χ′(ω) + iχ′′(ω) = n(ω) + iκ(ω). (3.23)
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Taking this expression to the power of two and solving for the imaginary
part we come to the conclusion that

κa(ω) =
ω

n(ω)c
χ′′(ω), (3.24)

and thus

κa(ω) =
ω

n(ω)c
Im

ˆ ∞
0

dtS(t) exp(iωt). (3.25)

3.3 N-wave mixing experiment

Now that we are familiar with a simple linear absorption experiment and
its relation to the linear response function, it is time to extend our theory
to involve also the cases of higher order. Firstly we have to realize that the
dependence (3.8) of the polarization on the incoming �eld we postulated is
not complete. Let us (for now at least formally) expand the polarization in
the orders of the incoming electric �eld, i.e. we suppose the expansion

~P (~r, t) = ~P (1)(~r, t) + ~PNL(~r, t), (3.26)

where ~PNL(~r, t) = ~P (2)(~r, t) + ~P (3)(~r, t) + . . . ,

~P (2)(~r, t) is proportional to | ~E|
2
, ~P (3)(~r, t) is proportional to | ~E|

3
etc. We

separated the polarization to linear and non-linear parts. Practically, this
means that if we return back to the Maxwell equation (3.7) and invoke the
de�nition (3.11) there will be no zero right-hand side in (3.10) any more.
~PNL(~r) will feature the term that is responsible for the changes of ~E(~r, t). If

we assume ~E(~r, t) to be a non-linear signal in a direction of our choice and
if we manage to integrate the Maxwell equation with the non-linear term on
the right side, we �nd the desired connection between the detected signal
and polarization. Equation we are about to solve has the form

∇×∇× ~E(~r, t) +
n2(ω)

c2

∂2

∂t2
~E(~r, t) = −µ0

∂2

∂t2
~PNL(~r, t). (3.27)

Here we made another important assumption, namely we neglected absorp-
tion putting absorption coe�cient equal to zero, κa = 0, thanks to which
ε(~k, ω) = n2(ω) The whole calculation is going to be much simpler that
way without loosing much of its precision. It is common to perform such
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k1

k3
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k2

k3

kS  =  -k1 + k2 + k3

Figure 3.2: 4-wave mixing

experiments under conditions where absorption is kept on minimal possible
extent.

Typical experiment where non-linear signal is generated is called N-wave
mixing experiment. You can see a scheme of this type of experiment on
the �gure 3.2. By 4-wave mixing we understand three di�erent �elds that
enter the sample and one non-linear signal leaving the sample in one of
the directions given by the directions of the tree incoming pulses. We will
represent the electric �eld corresponding to the incoming modes in the form

~E(~r, t) =
n−1∑
j=1

[ ~Ej(~r, t) exp(i~kj~r− iωjt) + ~Ej
∗
(~r, t) exp(−i~kj~r+ iωjt)], (3.28)

i.e. in the form of plane waves for all of which we have the same dispersion
relation3

kj =
ωjnj
c

. (3.29)

Similarly the non-linear polarization could be expanded as follows

~PNL(~r, t) =
∞∑
k=2

∑
s

~P (k)
s (t) exp(i~ks~r − iωst). (3.30)

3Again this is only true if κa is expected to be zero.
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4Index k indicates the order of polarization and s marks a particular com-
bination of incoming wavevectors and frequencies. It holds

~ks = ~k1 ± ~k2 ± · · · ± ~kn−1 and (3.31)

ωs = ω1 ± ω2 ± · · · ± ωn−1. (3.32)

Let us now restrict our discussion from three to one dimension, we choose a
speci�c direction, let us say along the z axis, and consider a geometry where
material occupies a slab of the thickness l, 0 < z < l, l being much larger
than the wavelength of radiation beam. This can also be expressed by the
condition

ksl� 1 (3.33)

For maximal simplicity we will not take into account all of the terms of the
sum (3.30), but shall focus just on a single Fourier component

~PNL(~r, t) = ~Ps(t) exp(iksz − iωst) (3.34)

and try to �nd a solution of the form

~E(~r, t) = ~Es(z, t) exp(ik′sz − iωst). (3.35)

We further assume that ~Ps(t) is slowly varying in time compared with the
optical period ∣∣∣∣ ∂∂t ~Ps(t)

∣∣∣∣� |ωs ~Ps(t)|. (3.36)

This allows us to rewrite equation (3.27) in this fashion

∇×∇× ~Es(z, t) exp(ik′sz)+
n2(ω)

c2
~Es(z, t) exp(ik′sz) = −µ0

∂2

∂t2
~Ps(t) exp(iksz),

(3.37)
where de�nitions (3.34) and (3.35) were employed, condition (3.36) was re-
spected and all temporal oscillation terms were truncated. The last thing
we have to do is to take care of double-rotation term. Recalling the already
mentioned property of the �eld ∇ � ~Es(z, t) exp(ik′sz) = 0 we get

∇×∇× ~Es(z, t) exp(ik′sz) = −∇2 ~Es(z, t) exp(ik′sz) =

4Due to the absence of absorption polarization is generated homogeneously throughout
the whole sample and thus its magnitude does not change with ~r. Only if absorption would
be included magnitude would come out to be space dependent.
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−[∇2 ~E(z, t)] exp(ik′sz)− 2ik′s[∇ ~Es(z, t)] exp(ik′sz) + (k′s)
2 ~Es(z, t) exp(ik′sz).

Using the slowly varying amplitude for ~Es(z, t) we can put ∇2 ~E(z, t) ≈ 0
and Maxwell equation will then gain the form

ik′s
∂ ~Es(z, t)

∂z
= −ω

2
s

2c
~Ps(t) exp(i∆kz) (3.38)

with ∆k denoting the di�erence between the combination of incoming wavevec-
tors and the wavevector of the generated wave, ∆k = ks− k′s. At the begin-
ning of the illuminated sample, at z = 0, the intensity of non-linear signal
is zero and grows as light moves further and arrives to its peak at the slab
interface z = l. Therefore, the �nal intensity of the signal can be obtained
by integrating the last equation according to z from 0 to l. The result for
~Es is

~Es(l, t) =
i

2n(ωs)

ωs
c
~Ps(t)

sin
(

∆kl
2

)(
∆kl

2

) exp

(
i
∆kl

2

)
(3.39)

and thus for the intensity we have

Is(l, t) =
cnsε0

2
| ~Es(l, t)|2 =

ε0c

8ns
ω2
s l

2|~Ps(t)|2
sin2

(
∆kl

2

)(
∆kl

2

)2 . (3.40)

For the limit case when l→∞ we get

Is(l, t) =
ε0c

8ns
ω2
s l

2|~Ps(t)|2δ(∆k) (3.41)

We have found the answer to the second point of the enumeration on page
38. The only remaining task is to create an e�cient microscopic theory for
~P . This problem will be dealt with in the section 3.4.

3.4 Third order response functions

From this point on we will have to abandon purely macroscopic descrip-
tion and have to use some knowledge of quantum mechanics. Accordingly,
density operator has to be presented as a quantum mechanical quantity de-
scribing the system. In the following we will not be using the wavefunction
|ψ〉, because it does not posses suitable properties for easy and comfortable
mathematical manipulating . Hence we introduce density matrix

ρ̂ = |ψ〉 〈ψ| . (3.42)
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With the help of ρ̂ we are able to de�ne macroscopic polarization as a

quantum-mechanical mean value of the polarization operator ~̂P (~r) which

is obtained by evaluating the trace of the product of ~̂P (~r) and the density
matrix

~P (~r, t) = Tr{ ~̂P (~r)ρ̂(t)}, (3.43)

where the trace is taken over all possible degrees of freedom that are in-
volved in our description. Polarization operator contains intrinsic informa-
tion about the treated system and can be expressed in the form of the sum

~̂P (~r) =
∑
m

~̂Pm(~r), (3.44)

where m stands for a particular molecule of the sample and by ~̂Pm(~r) we
characterize polarization of this single molecule. This polarization though is
given entirely by the transition dipole moment ~̂µm of the molecule5 m and
its position in the coordinate system and thus

~̂Pm(~r) = ~̂µmδ(~r − ~rm) with ~̂µm =
∑
a

qa(~̂ra − ~Rm). (3.45)

Transition dipole moment operator of a particular moleculem is proportional
to the sum over charges qa of all charged particles multiplied by the operator
of their position subtracted by the position of the molecule m.

In order to be able to study dynamics of the system we have to specify
Hamiltonian which in our case will be comprised of two terms, one that
describes the system itself and one that concerns the system-light interaction

Ĥ = ĤS + Ĥint. (3.46)

The interaction Hamiltonian is considered to be time dependent. The system
part of Hamilton operator however remains stationary. System's dynamics
will then be given by equation

∂

∂t
ρ̂(t) = − i

~
[(ĤS + Ĥint(t), ρ̂(t)]. (3.47)

5Since we assume the wavelength of the incoming light to be much larger than the
typical size of treated molecules dipole approximation may be applied and our statement
holds true. If the wavelength of light and the extend of molecules were of comparable
sizes everything would become a little bit more complicated.
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While the exact form of ĤS is not very important at this point, the inter-
action part has to be determined precisely. Unfortunately, there is no way
this Hamiltonian could be derived on concise and elementary basis. We then
refer to [11] for su�ciently detailed investigation of this matter. According
to [11] we have

ĤS = Ĥmol + V̂inter and (3.48)

Ĥint(t) = −
ˆ

~dr ~̂P (~r) ~E(~r, t), (3.49)

where Ĥmol stands for the Hamiltonian of isolated molecules including all of
their electronic and nuclear degrees of freedom and V̂inter represents electro-
static interactions between molecules. As you can see we marked polariza-
tion with a hat to remind us of the fact that it is the quantum mechanical
operator, but left the electric �eld without this sign. That is because we
use so called semi-classical description of light matter interaction

as many of various spectroscopic techniques are very well and su�ciently
described simply by treating electric �eld as an external parameter, which
is purely classical. Though this treatment would not be possible for exam-
ple for spontaneous emission where non-classical properties of light play an
important role, for our purposes this kind of approximation turns up to be
fully justi�ed. Therefore ~E(~r, t) is a classical quantity, i.e. the mean value
of quantum mechanical �eld.

Let us now put the de�nition of polarization operator (3.44) and (3.45)
into (3.49) with the result

Ĥint(t) = −
∑
m

~̂µm ~E(~Rm, t) (3.50)

and if only one single molecule is taken into account

Ĥint(t) = −~̂µ ~E(t) = −µ̂~n ~E(t) = −µ̂E(t), (3.51)

where ~n represents a unit vector in the direction of transition dipole moment
and scalar E(t) now stand for a projection of the electric �eld into the
direction of the dipole. Thus µ̂ denotes the absolute value of the vector of
transition dipole moment.

Before we proceed in our calculations we will implement one further ad-
justment into our formalism, namely the superoperator notation. The
implementation of superoperators makes good sense from practical point of
view as it makes the theory simpler and briefer. General superoperator S
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is a linear operator that acts on a vector space of linear operators. While
operators in Hilbert space may be notated in a form of matrices (objects
with two indices), superoperators take upon themselves the form of four-
dimensional objects with four indices. Nevertheless the linear algebra of
superoperators is similar to that of ordinary operators as well as the formal
treatment. Most frequently we see superoperators de�ned as commutators
or anti-commutators with the operator they are acting upon. In this fash-
ion we are able to de�ne Liouville superoperator (Liouvillian) L as a
commutator of Hamiltonian and arbitrary operator Ô

LÔ =
1

~
[Ĥ, Ô] (3.52)

and similarly we de�ne superoperator V as a commutator of the absolute
value of transition dipole operator and arbitrary operator Ô

VÔ =
1

~
[µ̂, Ô]. (3.53)

It is not that easy to show however that for the evolution superoperator U(t)
we have by analogy with the ordinary evolution operator Û(t)

U(t) = exp(iLt), (3.54)

We refer the reader to [11] where the analysis of this subject can be found.
Also without any proof we claim that action of the evolution superoperator
is connected with the action of the evolution operator as

U(t)ρ̂ = U(t)ρ̂(t)U †(t). (3.55)

The equal sign in the last four expressions deserves a little discussion. Since
we compare descriptions from two di�erent algebraic spaces we should pay
careful attention to its correctness. While superoperators act on Liouville
space, operators live in Hilbert space. Although the formal manipulation
is very similar and in fact everything we can do in Hilbert space usually
holds true in Liouville space as well, there is a peculiarity that is still recom-
mended to have on mind. Both superoperators and operators are ordinarily
represented by matrices which means that in one space ρ̂ has the form of
a vector (Liouville space) and in the other one it bears the form of matrix
(Hilbert space). But this formally shows up not to be a problem and the
equal sign is indeed fully justi�ed.
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So bringing superoperator notation into play equation (3.47) takes the
form

∂

∂t
ρ̂(t) = −iLS ρ̂(t)− iLint(t)ρ̂(t) (3.56)

and by applying de�nitions (3.51) and (3.53) we get

∂

∂t
ρ̂(t) = −iLS ρ̂(t) + iV ρ̂(t)E(t), (3.57)

which could be transcribed into interaction picture

∂

∂t
ρ̂(I)(t) = iV(I)(t)ρ̂(I)(t)E(t). (3.58)

Here, ρ̂(I)(t) = U †S(t)ρ̂(t), where US(t) = exp(−iLSt) is the evolution su-
peroperator with respect to the system and V(I)(t) = U †S(t)VUS(t). This
equation can be formally integrated

ρ̂(I)(t) = ρ̂(I)(t0) + i

ˆ t

t0

dt′V(I)(t′)ρ̂(I)(t′)E(t′), (3.59)

while this solution may be inserted into itself which leads us to the form

ρ̂(I)(t) = ρ̂(I)(t0) + i

ˆ t

t0

dt′V(I)(t′)ρ̂(I)(t0)E(t′) + (i)2

ˆ t

t0

dt′
ˆ t′

t0

dt′′V(I)(t′)×

×V(I)(t′′)ρ̂(I)(t0)E(t′)E(t′′) + (i)3

ˆ t

t0

dt′
ˆ t′

t0

dt′′
ˆ t′′

t0

dt′′′V(I)(t′)×

×V(I)(t′′)V(I)(t′′′)ρ̂(I)(t0)E(t′)E(t′′)E(t′′′) + · · · (3.60)

Now that we found the formal solution for ρ̂(I)(t) it is time to return back
from the interaction picture which could be accomplished by applying su-
peroperator US(t) on both sides of the last equation. At the same time we
assume that the whole time before we induced the dynamics the system
resided in equilibrium state and thus it will make no di�erence if we send
the initial time of the integration t0 to minus in�nity, t0 → −∞. The result
will not change. Then ρ̂(t0) = ρ̂(I)(t0) = ρ̂(−∞) = ρ̂eq will indicate the
equilibrium state of the system that remain unchanged under the action of
any evolution operator. Under these considerations

ρ̂(t) = ρ̂eq+i

ˆ t

−∞
dt′US(t)V(I)(t′)E(t′)ρ̂eq+(i)2

ˆ t

−∞
dt′
ˆ t′

−∞
dt′′US(t)V(I)(t′)×
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×V(I)(t′′)ρ̂eqE(t′)E(t′′) + (i)3

ˆ t

−∞
dt′
ˆ t′

−∞
dt′′
ˆ t′′

−∞
dt′′′US(t)V(I)(t′)V(I)(t′′)×

V(I)(t′′′)× ρ̂eqE(t′)E(t′′)E(t′′′) + · · · (3.61)

This is very important partial result, because as you see we managed to
expand density matrix operator into the orders of incoming electric �eld, the
same thing we did with the macroscopic polarization (see equation (3.26)).
In a short time we are going to be able to see the exact microscopic form
of both ~P (1)(~r, t) and ~P (3)(~r, t) which are the most relevant orders in the
expansion. Consequently, we are going to be able to see the form of S̄(1)

and S̄(3). Let us �rst turn our attention to the �rst order term, i.e. to the
integral

ρ̂(1)(t) = i

ˆ t

−∞
dt′US(t)U †S(t′)VUS(t′)ρ̂eqE(t′),

which could be transferred into the form

ρ̂(1)(t) = i

ˆ ∞
0

dτUS(τ)V ρ̂eqE(t− τ),

where we employed the substitution t − t′ = τ and used the property of
ρ̂eq that it does not evolve in time. Putting this expression into (3.43) and

considering only one molecule, i.e. ~̂P (~r) = ~̂µδ(~r − ~R), we get for �rst order
macroscopic polarization

~P (1)(~r, t) = i

ˆ ∞
0

dτTr
{
~̂µUS(τ)V ρ̂eq

}
E(t− τ). (3.62)

If we now compare this equation with (3.8), the de�nition of linear polar-
ization through �rst order response function, we �nd out that

S̄(1)(t) =
i

~
Tr
{
~̂µUS(t)[µ̂, ρ̂eq]

}
(3.63)

Since the response for negative times does not have any physical interpreta-
tion we will make a correction. We use the Heaviside step function Θ(t) = 1
for t > 0 and Θ(t) = 0 for t < 0 and the �nal form would then be

S̄(1)(t) = Θ(t)
i

~
Tr
{
~̂µUS(t)[µ̂, ρ̂eq]

}
. (3.64)
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The manipulation with third order term is a little more complex. This time
we have a triple integral to rearrange

ρ̂(3)(t) = (i)3

ˆ t

−∞
dt′
ˆ t′

−∞
dt′′
ˆ t′′

−∞
dt′′′US(t− t′)VUS(t′ − t′′)×

×VUS(t′′ − t′′′)VUS(t′′′)ρ̂eqE(t′)E(t′′)E(t′′′), (3.65)

where again we change some variables and use the stationary property of the
equilibrium density matrix. Let us put t3 = t− t′, t2 = t′ − t′′ = t− t3 − t′′
and t1 = t′′ − t′′′ = t− t3 − t2 − t′′′ which leads us to

ρ̂(3)(t) = (i)3

ˆ ∞
0

dt3

ˆ ∞
0

dt2

ˆ ∞
0

dt1US(t3)VUS(t2)VUS(t1)V×

×ρ̂eqE(t− t3)E(t− t2 − t3)E(t− t1 − t2 − t3). (3.66)

We have not strictly de�ned third order polarization yet. From the analogy
with the �rst order term we can de�ne

~P (3)(~r, t) =

ˆ ∞
0

dt3

ˆ ∞
0

dt2

ˆ ∞
0

dt1S̄
(3)(t3, t2, t1)×

×E(t− t3)E(t− t2 − t3)E(t− t1 − t2 − t3) (3.67)

thus �nally arriving to the expression in the form

S̄(3)(t3, t2, t1) = (i)3Tr
{
~̂µUS(t3)VUS(t2)VUS(t1)V ρ̂eq

}
. (3.68)

Again we do a correction and exclude all negative times to obtain

S̄(3)(t3, t2, t1) = (i)3Θ(t3)Θ(t2)Θ(t1)Tr
{
~̂µUS(t3)VUS(t2)VUS(t1)V ρ̂eq

}
.

(3.69)
Apparently, as simple as this expression may seem it in fact comprises of 8
di�erent terms since the V superoperator is de�ned as a commutator and it
acts on everything that stands on the right from it. One commutator would
give two terms, which means that in general n superoperators in the expres-
sion would lead to the sum of 2n addends. It could be demonstrated though
that each term has its complex conjugated partner and thus equation (3.68)
could be written as a sum of four functions plus their complex conjugates

S̄(3)(t3, t2, t1) =

(
i

~

)3 4∑
k=1

[Rk(t3, t2, t1)−R∗k(t3, t2, t1)] . (3.70)
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where R1(t3, t2, t1), . . . , R4(t3, t2, t1) are de�ned as

R1(t3, t2, t1) = Tr {µ̂(t1)µ̂(t1 + t2)µ̂(t1 + t2 + t3)µ̂(0)ρ̂eq} , (3.71)

R2(t3, t2, t1) = Tr {µ̂(0)µ̂(t1 + t2)µ̂(t1 + t2 + t3)µ̂(t1)ρ̂eq} , (3.72)

R3(t3, t2, t1) = Tr {µ̂(0)µ̂(t1)µ̂(t1 + t2 + t3)µ̂(t1 + t2)ρ̂eq} , (3.73)

R4(t3, t2, t1) = Tr {µ̂(t1 + t2 + t3)µ̂(t1 + t2)µ̂(t1)µ̂(0)ρ̂eq} . (3.74)

where we introduced time dependent dipole moment operator that is de�ned
as

µ̂(t) = U †S(t)µ̂ = U †S(t)µ̂US(t), (3.75)

which is also a de�nition of the interaction picture of the operator µ̂. The
equations (3.71)-(3.74) are so called Liouville pathways and they fully de�ne
the third order response function. The higher orders would be calculated
exactly in the same fashion with the only change in the number of the V
superoperators acting on the equilibrium density matrix operator ρ̂eq and
consequently the number of �nal Liouville pathways (16 for 4th order, 32
for the 5th order etc.). These higher orders are used rather exceptionally.
The next section will be dedicated to a brief description of how we got from
(3.68) to (3.70) and the common notation and depiction of the R functions.

3.5 Liouville pathways

Let us get back to the equation (3.68) for the third order response function
for a while. We know already that it comprises 8 di�erent terms, because the
V superoperator has the form of commutator. Each commutator contains
two terms, one where the operator acts from the left and one where it acts
from the right. This means that the 8 functions we are interested in are
merely the combinations of several possibilities where operators act from
left or right in di�erent fashion. In order to be more speci�c about this we
rewrite (3.68) in the language of commutators.

S̄(3)(t3, t2, t1) = (i)3Tr
{
~̂µUS(t3)

[
µ̂,US(t2)

[
µ̂,US(t1)[µ̂, ρ̂eq]

]]}
(3.76)

Even more precisely we should transfer the evolution superoperator to the
operator representation too. That would lead to

S̄(3)(t3, t2, t1) =
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= (
i

~
)3Tr

{
~̂µUS(t3)

[
µ̂, U †S(t2)

[
µ̂, US(t1)[µ̂, ρ̂eq]U

†
S(t1)

]
U †S(t2)

]
U †S(t3)

}
.

(3.77)
Here we choose one particular function, let us say R1 and provide a deeper
analysis. The treatment of the remaining functions would be a pure analogy
of what we show now. It comes from a convention that the R1 functions
corresponds to the case where transition dipole moment operator µ̂ acts
�rst from the left, then twice from the right and �nally from the left again
(this last action is the same for all functions and re�ects the de�nition).
Hence we have

R
(3)
1 (t3, t2, t1) = Tr

{
~̂µUS(t3)US(t2)US(t1)µ̂ρ̂eqU

†
S(t1)µ̂U †S(t2)µ̂U †S(t3)

}
(3.78)

and using the cycling invariance of the trace operator we can rearrange
everything so that the ρ̂eq goes to the very right position of the trace. After
doing that we expand the expression by insertion the unit operator in the
appropriate form, which would be here 1 = U(t)U †(t). This way we get to
the conclusion

R
(3)
1 (t3, t2, t1) = Tr

{
U †S(t1)µ̂US(t1)U †S(t1 + t2)×

×µ̂US(t1 + t2)U †S(t1 + t2 + t3)~̂µUS(t1 + t2 + t3)µ̂ρ̂eq

}
(3.79)

which is exactly Eq. (3.71).
Schematically we can represent theR1 pathway using a Feynman diagram

(see Fig. 3.3 � on the left) that transparently shows its whole structure. It
looks a bit like a ladder at the bottom of which we can imagine the beginning
of the time axis and at the top its end. We may further consider each rung
a moment where µ̂ acts on ρ̂eq and induces a certain dynamics by changing
the current state of density matrix. We also notice that each action of µ̂
is followed by the system's time evolution given by the operator US(t) and
of course the arrows indicate the side from which dipole moment operator
comes into action. Another representation of Liouville pathways is depicted
on the left side of the Fig. 3.3. The meaning of this scheme is that if
µ̂ acts from the left we move vertically and if µ̂ acts from the right we
move horizontally. Feynman diagrams and the corresponding schemes of
the remaining pathways are shown in �gures 3.4,3.5 and 3.6. Using this
symbolic notation is very comfortable and in case we would need it is always
possible to reconstruct the original formal mathematical objects.
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Figure 3.3: Feynman diagram and a schematic depiction of the Liouville
pathway R1 for a two-level system. This pathway goes through the system's
excited state.
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Figure 3.4: Feynman diagram and a schematic depiction of the Liouville
pathway R2 for a two-level system. This pathway goes through the system's
excited state.
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One other thing we have to mention here is that all the four diagrams and
schemes in the above mentioned pictures are shown for a two-level system
with only one excited state. The other diagrams for a multilevel systems
could be derived as well, but it would be a subject for another chapter which
unfortunately lays beyond intentions of this short introduction. But we still
owe an explanation on the account of the factual evolution of the two-level
system according the particular Liouville pathways and that is what we
would like to dedicate the following paragraph to.

Hamiltonian of the two-level system may be expressed in a diagonal form

ĤS = Ĥg |g〉 〈g|+ Ĥe |e〉 〈e| . (3.80)

Therefore the evolution operator of the system also takes upon itself the
diagonal form

ÛS(t) = Ug |g〉 〈g|+ Ue |e〉 〈e| . (3.81)

Transition dipole operator on the other hand is anti-diagonal and reads

µ̂ = dge |g〉 〈e|+ deg |e〉 〈g| . (3.82)

where dge and deg are complex numbers which satisfy relation d∗ge = deg, i.e.
are mutually complex conjugated. Finally we have to express density matrix
and we assume that in the initial phase it consists of a single non-zero term
that refer to the ground state

ρ̂eq = ρgg |g〉 〈g| . (3.83)

Let us now follow step by step the pathway R1 (Fig. 3.3) and imagine what
happens when transition dipole moment operator acts from the left on the
equilibrium density matrix. In the matrix notation we have

µ̂ρ̂eq =

(
0 dge
deg 0

)(
ρgg 0
0 0

)
=

(
0 0

degρgg 0

)
= degρgg |e〉 〈g| ,

and as we see density matrix has been brought from the ground state to one
of the coherence states which indeed agrees with the state that occupies the
�rst rung of the R1-Feynman diagram. After this there comes an evolution
in time, more precisely the evolution from some initial time t0 to time t1.
But since the evolution operator bears a diagonal form the will be no changes
as far as the state of density matrix is concerned.

US(t1)µ̂ρ̂eqU
†
S(t1) =

(
e−

i
~ Ĥgt 0

0 e−
i
~ Ĥet

)(
0 0

degρgg 0

)(
e+ i

~ Ĥgt 0

0 e+ i
~ Ĥet

)
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=

(
0 0

e−
i
~ Ĥetdegρgge

+ i
~ Ĥgt 0

)
= e−

i
~ Ĥetdegρgge

+ i
~ Ĥgt |e〉 〈g|

The next action of µ̂ comes from the right and it should bring the density
matrix into the excited state. This is really true as we know that

US(t1)µ̂ρ̂eqU
†
S(t1)µ̂ =

(
0 0

e−
i
~ Ĥetdegρgge

+ i
~ Ĥgt 0

)(
0 dge
deg 0

)
=

= |d|2
(

0 0

0 e−
i
~ Ĥetρgge

+ i
~ Ĥgt

)
ρgg |e〉 〈e| .

Hopefully this puts some more light into the presented form of Feynman
diagrams. From now on as the expression in the matrices get more and
more complicated we a�ord to simplify the notation and for every non-zero
term just use the symbol •. It is not hard to see that

US(t2)US(t1)µ̂ρ̂eqU
†
S(t1)µ̂US(t2) =

(
• 0
0 •

)(
0 0
0 •

)(
• 0
0 •

)
=

(
0 0
0 •

)
and

US(t2)US(t1)µ̂ρ̂eqU
†
S(t1)µ̂US(t2)µ̂ =

(
0 0
0 •

)(
0 •
• 0

)
=

(
0 0
• 0

)
After this there again follows one more time evolution and that is where the
Liouville pathway comes to an end.

3.6 Pulsed experiments

Now that we learned about Liouville pathways, we are able to derive even
more complete form of the third order polarization. In order to do that we
refer to the 4-wave mixing experiment showed in the Fig. 3.2. Let us look at
it in a slightly di�erent perspective. The three incoming pulses do not enter
the sample simultaneously, but there are de�ned time delays between them.
This fact is demonstrated in the Fig. 3.7 where the pulses are numbered
with respect to the order in which they get to the sample. They might be
described as plain waves allowing us to write the total incoming �eld in the
form

E(~r, t) = A1(t+ T + τ)e−iω1(t+T+τ)+i~k1~r + A2(t+ T )e−iω2(t+T )+i~k2~r+
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Figure 3.5: Feynman diagram and a schematic depiction of the Liouville
pathway R3 for a two-level system. This pathway goes through the system's
ground state.
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Figure 3.6: Feynman diagram and a schematic depiction of the Liouville
pathway R4 for a two-level system. This pathway goes through the system's
ground state.
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τ

t=0 tt=-Tt=-T-τ
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1 2 3

Figure 3.7: Depiction of three pulses entering the 4-wave mixing experiment
along with the delay times between them.

E(t− t3) E(t− t2 − t3) E(t− t1 − t2 − t3)
I 1∗ 2 3
II 1∗ 3 2
III 2 1∗ 3
IV 3 1∗ 2
V 2 3 1∗

VI 3 2 1∗

Table 3.1: Six possible contributions to non-linear signal in the direction
−~k1 +~k2 +~k3. Numbers 1,2 and 3 denote the corresponding plain wave from
Eq. (3.84), stars in the upper index indicate that the complex conjugate
term of the wave is used.

+A3(t)e
−iω3t+i~k3~r + c.c. (3.84)

At this point we make use of the Eq. (3.67) for the third order polarization
and see what happens if this form of total �eld is applied to it. Since the
electric �eld appears three times in the de�nition of third order polariza-
tion and the expression for the total �eld consists of six terms, we would
have to deal with 6 × 6 × 6 terms. But this number could be considerably
reduced by looking only at the signal in one particular direction. Let this
direction be −k1 + k2 + k3 which is a prominent direction used in many
applications. By doing that there remain 6 terms, which we schematically
arranged in the table 3.1 and assigned to roman numerals I-VI. To avoid
any misunderstandings we write the term VI explicitly, it reads

A∗1(t+T +τ−t3−t2−t1)eiω(t+T+τ−t3−t2−t1)A2(t+T −t2−t3)e−iω(t+T−t2−t3)×
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I −iω(t− τ) + iω(t1 + 2t2 + t3) DC
II −iω(t− τ) + iω(t1 + 2t2 + t3) DC
III −iω(t− τ) + iω(t1 + t3) NR
IV −iω(t− τ) + iω(t1 + t3) NR
V −iω(t− τ) + iω(t3 − t1) R
VI −iω(t− τ) + iω(t3 − t1) R

Table 3.2: Phases of six possible contributions to non-linear signal.

×A3(t− t3)e−iω(t−t3) =

= A∗1(t+T+τ−t3−t2−t1)A2(t+T−t2−t3)A3(t−t3)e−iω(t−τ)+iω(t3−t1). (3.85)

As you can see the term is characterized by its phase factor eiφ, φ being
the phase, in this case it is the factor e−iω(t−τ)+iω(t3−t1), which is termed
Rephasing (R). The other factors are known as Non-Rephasing (NR)
and Double Coherence (DC). The amplitudes are not so important for us
at this stage. The corresponding phase factors of the rest of the terms are
included in the table 3.2.

Our next step would be to closer investigate the four Liouville pathways.
We shall use the �rst pathway R1 as an example for which in the previous
section we derived the form

R
(3)
1 (t3, t2, t1) = Tr

{
~̂µUS(t3)US(t2)US(t1)µ̂ρ̂eqU

†
S(t1)µ̂U †S(t2)µ̂U †S(t3)

}
,

(see Eq. (3.78)). The evolution operator in this equation may be expressed
according to Eq. (3.81) and dipole operator has been de�ned by Eq. (3.82),
which allows us to perform the trace operation over electronic degrees of
freedom. This operation leads to

R
(3)
1 (t3, t2, t1) = |d|4TrBath

{
Ue(t3)Ue(t2)Ue(t1)ρ̂eqU

†
g (t1)U †e (t2)U †g (t3)

}
.

(3.86)
The operators Ug, Ue may be divided into two parts describing system and
bath separately, i.e.

Ug(t) = e−
i
~ εgtŨg(t), (3.87)

where εg stands for the energy of the ground state and Ũg(t) is the evolution
operator with respect to the bath degrees of freedom. Similarly

Ue(t) = e−
i
~ εetŨe(t), (3.88)
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L. pathway phase φ
R1 −iωeg(t1 + t3) NR
R2 −iωeg(t3 − t1) R
R3 −iωeg(t3 − t1) R
R4 −iωeg(t1 + t3) NR

Table 3.3: Phase factors eiφof the four Liouville pathways.

εe denoting the energy of excited state. Now by taking the last three ex-
pressions together we are able to determine the phase factor of R1. After
making all the necessary rearrangements we get

R
(3)
1 (t3, t2, t1) =

= |d|4e−iωeg(t1+t3)TrBath

{
Ũe(t3)Ũe(t2)Ũe(t1)ρ̂eqŨ

†
g (t1)Ũ †e (t2)Ũ †g (t3)

}
=

= |d|4e−iωeg(t1+t3)R̃1(t3, t2, t1) (3.89)

with ωeg = 1
~(εe − εg). It will surely not be surprising that the phase factor

we obtained is very similar to some of those in the table 3.2. In fact, they are
the same, but the sign is di�erent. The phase factors for all four Liouville
pathways are listed in the table.

Now, we can say that the third order polarization on one hand contains
terms that does not change much in time, or change relatively slowly (am-
plitudes of the �elds, R̃) and on the other hand includes phase factors that
change relatively rapidly (with optical frequencies). If the frequencies ω
and ωeg were the same or at least very near to each other (we could also
say that the frequency of the incoming laser pulses are in resonance with
the optical transition), the phase factors with opposite signs would cancel
and the integrand in (3.67) would not oscillate in the process of integration.
It would thus give a non-zero contribution. On the contrary if the phase
factors would take part in the integration, the oscillations would be simply
too fast and the result would be nearly zero. The condition ω ≈ ωeg allows
us to neglect all the fast oscillating terms, which is called Rotating Wave

Approximation (RWA). If we apply this approximation we �nd out that
the only non-zero contributions to the integral (3.67) are those where the
terms V or VI meet with R2 or R3 and those where terms III or IV meet
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with R1 or R4. Therefore, we have

~P (~r, t) =

(
i

~

)3 ˆ ∞
0

dt3

ˆ ∞
0

dt2

ˆ ∞
0

dt3

{[
R̃2(t3, t2, t1) + R̃3(t3, t2, t1)

]
×

× [V + VI] ei(ω−ωeg)(t3−t1) +
[
R̃1(t3, t2, t1) + R̃4(t3, t2, t1)

]
×

× [III + IV] ei(ω−ωeg)(t3+t1)
}
e−iω(t−τ). (3.90)

Finally, let us return for a moment to Eq. (3.85) that describes the form of
VI from the last equation and let us assume that the incoming laser pulses
are in�nitely short, so that we can write A(t) = δ(t). This presumption
implies t3 = t, t2 = T and t1 = τ . Obviously, all three times are positive.
But when do same thing with the terms III, IV and V we get negative values
for time t1 or t2 which is course in con�ict with the limits of the integration.
For this reason, not even these terms contribute to the polarization and we
may conclude that

~P (~r, t) =

(
i

~

)3

e−iωeg(t−τ)
[
R̃2(t, T, τ) + R̃3(t, T, τ)

]
. (3.91)

This means that only rephasing Liouville pathways give non-zero signal.
But there is a way to get signal from non-rephasing parts as well. Let us
suppose we change the sing of the delay time τ which would e�ectively lead
to reversing the order of �rst and second pulses, i.e. the second pulse would
strike in the system before the �rst pulse. Surely, this is something we can
do without loosing physical meaning of our calculations. But suddenly the
time t1 in our example would become negative. It could be shown that in
this case only non-rephasing pathways would create the signal which could
be expressed by following equation

~P (~r, t) =

(
i

~

)3

e−iωeg(t+τ)
[
R̃1(t, T,−τ) + R̃4(t, T,−τ)

]
. (3.92)

3.7 Heterodyne detection

The generation of non-linear signal through wave mixing has one great ad-
vantage and that is the possibility of sending the outgoing signal into the
new direction, di�erent from that of incoming waves. Thanks to this fact
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there are no background e�ects in the detection of such a signal. Despite this
advantage the non-linear signal is still very weak to detect, mostly because
of the quadratic dependence of measured intensity on polarization, equation
(3.40). Nevertheless, this little drawback could be easily obviated if we turn
to so called heterodyne detection. This means that we use another �eld with
the wavevector aiming in the same direction as the detected signal, which we
usually denote ELO � the local oscillator �eld. It holds that this additional
�eld is much stronger than the weak non-linear signal, i.e. ELO � ES. After
the signal passes through the sample we now observe the superposition of
the local oscillator �eld and the signal �eld resulting in the total detected
intensity

IT = ε0n(ω)c|ELO(t) + Es(t)|2 = ILO(t) + Is(t) + 2IHET (t). (3.93)

ILO represents the intensity of the local oscillator �eld alone and IHET stands
for the mixed, heterodyne signal for which we have

IHET (t) = ε0n(ω)cRe[E∗LO(t)Es(t)]. (3.94)

From the requirement on local oscillator �eld being much stronger than
detected signal, the second term in the last equation becomes negligible in
comparison with the remaining two. Then the �rst term is known and could
be subtracted and thus all important information is included in the third
term. The main advantage is evident from the �rst sight, we managed to
reduce the quadratic dependence of signal on polarization to plain linear.
This ensures much easier detection of weak non-linear signal. Besides, by
controlling the relative phase of ELO and Ps it becomes possible to probe
separately the real and imaginary parts of polarization, resulting in a phase
sensitive detection. If we use a simpli�ed version of equation (3.39) it will
turn out that the intensity is given by

I(t) = ε0n(ω)cRe[E∗LO(t)Es(t)] = ...− ωlIm[E∗LO(t)Ps(t)]. (3.95)

On the top of all if the signal is generated along the direction of one of
the incoming beams the heterodyne detection occurs intrinsically. This is
domain of such methods as stimulated Raman or photon echo, and of course
pump-probe. In case of the latter one we prove our statement in the next
section.
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3.8 Detection of pump-probe signal

Let us start our thinking about pump probe experiment by trying to �nd
what energy gets absorbed in the process of probing. In other words we
want to �nd the amount of energy added to the matter (or lost by the �eld).
Energy absorbed at a time t after the incidence of the light beam may be
de�ned as a trace over Hamiltonian operator acting on density matrix

< W (t) >= Tr
{
Ĥ(t)ρ̂(t)

}
, (3.96)

which could be formally di�erentiated according to t

d

dt
< W (t) >= Tr

{(
d

dt
Ĥint(t)

)
ρ̂

}
+ Tr

{
Ĥ(t)

(
d

dt
ρ̂(t)

)}
. (3.97)

Since our Hamiltonian is by the de�nition (3.46) divided into the stationary
system part ĤS and the time dependent interaction part Ĥint(t) the time
derivative of the system part gives zero and remains only the second term. As
a next step we employ Heisenberg equation (3.47) which implies the second

trace in the last equation to be zero, − i
~Tr

{
Ĥ(t)Ĥ(t)ρ̂(t)− Ĥ(t)ρ̂(t)Ĥ(t)

}
=

− i
~Tr

{
Ĥ(t)Ĥ(t)ρ̂(t)− Ĥ(t)Ĥ(t)ρ̂(t)

}
= 06. Now we include interaction

Hamiltonian (3.49), it yields

d

dt
< W (t) >= −

ˆ +∞

−∞

~dr

[
∂

∂t
~E(~r, t)

]
~P (~r, t). (3.98)

Lastly we have to express electric �eld and polarization in some way. As we
did in the section about N-wave mixing we write both �elds in the form of
a plain wave.

~E(~r, t) = ~E(t) exp(i~k~r − iωt) + ~E∗(t) exp(−i~k~r + iωt), (3.99)

~P (~r, t) = ~Ps(t) exp(i~ks~r − iωt) + ~P ∗s (t) exp(−i~ks~r + iωt). (3.100)

6We made use of the property of trace called cyclic invariance stating that for any two

arbitrary operators Ô, P̂ we have Tr
{
ÔP̂
}

=
∑

a 〈a| ÔP̂ |a〉 =
∑

a,b 〈a| Ô |b〉 〈b| P̂ |a〉 =∑
a,b 〈b| P̂ |a〉 〈a| Ô |b〉 = Tr

{
P̂ Ô
}
, where |a〉 and |b〉 are elements of an orthonormal basis

in Hilbert space.
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Of course, this is not exactly a complete description since both �elds should
be rather considered in a form of sum over several plain waves with di�er-
ent wavevectors and frequencies, but it is obvious that each term could be
treated separately, because they are totally independent of each other and
that is why we can a�ord to take just a single mode (i.e. single frequency
and direction of a plane wave). We then employ the slowly varying envelope
condition for the electric �eld, similar to the condition (3.36). In this case
the time derivative of the electric �eld will read

∂

∂t
~E(~r, t) = −iω

[
~E(t) exp(i~k~r − iωt)− ~E∗(t) exp(−i~k~r + iωt)

]
. (3.101)

Finally, the absorbed energy could be obtained after the integration over
both space and time period of the experiment. The result gains the form

SA(ω, t) = 2ωIm[E∗(t)Ps(t)], (3.102)

which we divide by the total incoming energy of the electric �eld

I =
cn(ω)ε0

2

ˆ +∞

−∞
dt|E(t)|2 (3.103)

and arrive to the expression

SA(ω) =
4ω

cn(ω)ε0

Im

´ +∞
−∞ dtE∗(t)P (t)´ +∞
−∞ dt|E(t)|2

. (3.104)

More frequently we would �nd useful the expression where instead of time
electric �eld and polarization are the functions of frequency which could be
simply done by the Fourier transform of the �nal equation. This enables us
to de�ne Sdisp(ω) as follows

SA(ω) =

ˆ +∞

−∞
dωSdisp(ω) (3.105)

where

Sdisp(ω) =
4ω

cn(ω)ε0

Im
E∗(ω)P (ω)´ +∞
−∞ dω|E∗(ω)|2

(3.106)

is exactly the form we were looking for.
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3.9 Two-dimensional coherent spectroscopy

According to Eq. (3.39) electric intensity of third order non-linear signal is
proportional to third order polarization, which in the language of response
functions is de�ned by equation (3.91). Two-dimensional spectrum may be
introduced as a double Fourier transform of this equation in times t and τ .

SR2D(ωt, T, ωτ ) =

ˆ ∞
0

dt

ˆ +∞

0

dτS(R)(t, T, τ) exp(iω(t− τ) exp(iωtt− iωττ)

where S(R) = R̃2(t, T, τ) + R̃3(t, T, τ). By doing that we obtained a plot
that evolves with the delay time T . But this signal is not complete since
it includes only rephasing Liouville pathways. As we mentioned at the end
of the section 3.6 we can reverse the order of �rst and second pulses giving
thus rise to non-rephasing part of the spectrum

SNR2D (ωt, T, ωτ ) =

ˆ ∞
0

dt

ˆ +∞

−∞
dτS(NR)(t, T,−τ)×

× exp (iω(t− τ)) exp(iωtt− iωττ), (3.107)

with S(NR) = R̃1(t, T,−τ)+R̃4(t, T,−τ). Total spectrum is given by the sum
of these two contributions. But very similarly we can proceed in de�ning
pump-probe spectrum. Again, Eq. (3.106) shows that pump-probe spectrum
is proportional to polarization

SPP(ω, T ) ≈ Im[E(ω)P (ω, T )] (3.108)

Here, in the �rst approximation we make the assumption that the electric
�eld in time domain has the form of ultrafast pulse and could be expressed
as delta function, i.e. E(t) = δ(t), which makes it a constant in frequency
domain, E(ω) = const. This means that we can calculate pump-probe signal
as an imaginary part of frequency dependent polarization, while the Fourier
transformation has been applied only to the variable t. The delay time τ is
considered to be zero in this case, which reduces the �rst two pulses to one.
Substituting (3.91) into the last expression we get

SRPP(ω, T ) ≈ Im[P (ω, T )] ≈ −Im
[
iS(R)(ωt, T, 0) exp(iωegt) exp(iωtt)

]
=

= Re
[
S(R)(ωt, T, 0) exp(iωegt) exp(iωtt)

]
(3.109)
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and analogically for non-rephasing signal

SNRPP (ω) ≈ −Im
[
iS(NR)(ωt, T, 0) exp(iωegt) exp(iωtt)

]
=

= Re
[
S(NR)(ωt, T, 0) exp(iωegt) exp(iωtt)

]
(3.110)

Now it is evident that qualitatively pump-probe spectrum is identical with
real part of 2D spectrum with a condition τ = 0 that reduces reduces two-
dimensional spectrum to one-dimensional. Besides, it could be proved that
if we integrate 2D spectrum along the ωτ axis we obtain pump-probe as well.
Another obvious observation lies in the fact that any additional information
connected with 2D spectra when compared to pump-probe comes mainly
from the shape of its peaks because changes in their magnitude are usually
noticeable in one-dimension too.
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Chapter 4

NOSE Simulations

Program NOSE1 is a computational package developed in Fortran with an
interface in Tcl language. It originated in the year 2005 and since then it has
been equipped with many subprograms that are able to calculate various
spectra including absorption and �uorescence spectra, circular dichroism,
photon echo or two-dimensional spectra. The communication with user is
realized through the command line and two input �les, the con�guration �le
(.conf) and the .ssf �le. In the con�guration �le it is necessary to specify
the output of the program and to insert the corresponding .ssf �le name,
in addition to that it is also possible to modify experimental conditions
here (i.e. to set the temperature). The parameters of the system of our
interest are all included in the .ssf �le. In my Bachelor's thesis [13] I made a
thorough description of both main �les and there is also a manual available at
the webpage of the project http://nose-project.sourceforge.net. Once
NOSE is installed on a computer it is really easy to use, since the only thing
one has to do is to type 'nose' and the name of the con�guration �le.

The idea of this work is to compare two non-linear spectroscopic meth-
ods, the pump-probe technique and 2D spectroscopy. The main conclusion
should be whether the information each method provides are comparable,
or if one of the methods gives any extra pieces of information that are not
apparent from the other one. The special attention will be devoted to elec-
tronic coherences, the phenomenon that has been recently observed in 2D
spectroscopy (see Ref. [14]). From our simulations we will try to determine
whether these e�ects are also included in pump-probe. These two methods
have many things in common, both are performed as pulsed experiments

1The abbreviation stands for NOnlinear Spectroscopy (made) Easy.
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with femtosecond resolution and both are meant to reveal dynamical pro-
cesses in the system. Even their de�nitions look quite similar.

In the next three sections of this chapter we developed three exemplary
situations, each one of them describing some di�erent aspect of the spectral
behavior. In the �rst we brought our attention to the process of relaxation,
whereas the other two deal with electronic coherences.

4.1 Relaxation

By relaxation we mean population transfer from higher to lower excited state
that is manifested in 2D spectrum by redistribution of peaks' amplitudes
and positions. Population peaks are those on the main diagonal, while
the o�-diagonal peaks always reveal the existence of resonance coupling or
relaxation between particular states. In our example we excited a coupled
two-level system, with transition energies at 9600 cm−1 and 10000 cm−1,
with a spectrally in�nitely broad pulse and for delay time T = 0 fs we
could see that the majority of population resides at the higher excited state
as is shown by Fig. 4.1. With an increasing delay time we can observe
that the population peak at 10000 cm−1 gradually fades and in the same
time there is a build-up of the crosspeak in the right bottom corner of the
spectrum. This scenario may be followed by looking at the pictures 4.2-
4.5. Although the di�erences are not so demonstrative the population peak
corresponding to the lower excited state clearly increases in intensity as
well. These facts con�rm the existence of relaxation dynamics. The last
thing worth mentioning is the presence of negative contributions for times
T = 0 fs and T = 700 fs, which are attributed to excited state absorption
(ESA).

Let us now have a look at what happens in the pump-probe spectrum,
which is plotted in the Fig. 4.6. The �rst peak at approx. 9400 cm−1increases
its height during the investigated time period more than twice and the re-
duction of the second peak at 10000 cm−1 is also quite signi�cant, from
which could be immediately made a conclusion that both 2D spectroscopy
and pump-probe technique are methods that are sensitive to population
transfer. Interesting thing on this spectrum is that the biggest change of
second peak's magnitude takes place during the �rst 350 fs, while the �rst
peak remains almost exactly the same. This may evoke a question where
the population from the higher excited state goes. The best explanation of
this problem seem to be the fact that for short times there are still serious
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e�ects of electronic coherences that has to be taken into account.
In the Fig. 4.7 the positions of maxima of both peaks from pump-probe

spectrum 4.6 as a functions of delay time T are plotted. When we �tted these
dependencies with single exponential curves we found that they exhibit the
same kinetics with the same rate constants, which determine the relaxation
time. A little more problematic might seem the idea of extracting the same
piece of information from 2D spectrum where we have twice as many peaks
then in pump-probe. In this case we would have to select the relaxation
crosspeak to obtain the same result. The other important feature of the
�gure 4.7 is the clear presence of oscillations for very short times under
100 fs which could be attributed to electronic coherences. The detail of this
e�ect is shown by the Fig. 4.8.

Let us now go on to our second example where electronic coherences have
been investigated under conditions where no relaxation takes place. Thus we
were able to study this interesting phenomenon in its pure form, relatively
isolated from other e�ects.
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T = 0 fs
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Figure 4.1: 2D correlation spectrum of relaxation between two excited states
at time T = 0 fs

T = 700 fs
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Figure 4.2: 2D correlation spectrum of relaxation between two excited states
at time T = 700 fs
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T = 1400 fs
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Figure 4.3: 2D correlation spectrum of relaxation between two excited states
at time T = 1400 fs

T = 2800 fs
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Figure 4.4: 2D correlation spectrum of relaxation between two excited states
at time T = 2800 fs
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T = 4200 fs
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Figure 4.5: 2D correlation spectrum of relaxation between two excited states
at time T = 4200 fs
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Figure 4.6: Pump-probe spectrum of the relaxation between two excited
states for delay times from T = 0 fs to T = 4200 fs.
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Figure 4.7: The process of relaxation from Fig. 4.6.
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Figure 4.8: Detail of the oscillations from Fig. 4.7
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4.2 Electronic coherences in the system with
strong coupling

The e�ect of electronic coherences and their manifestation in non-linear
spectra is not yet fully understood and lacks clear interpretation. We again
supposed a model system with electronic transitions on 9600 cm−1 and
10000 cm−1, but this time with strong coupling between excited electronic
states and with no relaxation e�ects taking place in the background.

In 2D spectra the most distinctive characteristic that reveals the pres-
ence of electronic coherences are the changes in the orientations of its cross-
peaks. We simulated our system's behavior for seven di�erent delay times
T . Starting with T = 0 fs, in the picture 4.9 we see that crosspeaks are
oriented in the direction of this arrow ↗, i.e. the direction is the same as
that of the main diagonal of the two-dimensional plot. As we proceed in
time the crosspeaks change their orientation and their shapes becomes quite
rounded (Fig. 4.10). We will designate this stage of the peak by the arrow
↑. For T = 18 fs (Fig. 4.12) the orientation becomes opposite to that in
T = 0 fs, which we represent by the arrow ↖. It is evident from the se-
quence of the pictures 4.9-4.15 that the crosspeaks directions evolve in this
fashion ↗ − ↑ − ↖ − ↑ − ↗ − ↑ − ↖. But it is not only orientation
of the crosspeaks that changes, it is their height. For times T = 18 fs and
T = 54 fs (the ↖ orientation) the peaks are much less intense than those
in times T = 0 fs and T = 36 fs (the ↗ orientation). This suggest that we
should be able to observe electronic coherences in pump-probe spectra as
well and in this case this is really true.

This fact is demonstrated in Fig. 4.16 where are pump-probe spectra of
all necessary delay times. As expected the peaks corresponding to T = 0 fs
and T = 36 fs are approximately twice as high as the peaks corresponding
to T = 18 fs and T = 54 fs. This is an interesting result, since in natural
molecular systems studied in real spectroscopic experiments, no such elec-
tronic coherences manifestation in pump-probe spectra have been observed
so far. The reason for this of course could be in di�erent experimental condi-
tions and also in the fact that real systems are more complex than a simple
two-level system. That is why in our third example we tried to �nd such
parameters of the system that would represent real molecular systems in the
most plausible way.
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Figure 4.9: 2D correlation spectrum of two strongly coupled excited elec-
tronic states at time T = 0 fs . The crosspeak orientation is ↗.

T = 9 fs
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Figure 4.10: 2D correlation spectrum of two strongly coupled excited elec-
tronic states at time T = 9 fs . The crosspeak orientation is ↑.
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T = 18 fs
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Figure 4.11: 2D correlation spectrum of two strongly coupled excited elec-
tronic states at time T = 18 fs . The crosspeak orientation is ↖.

T = 27 fs
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Figure 4.12: 2D correlation spectrum of two strongly coupled excited elec-
tronic states at time T = 27 fs . The crosspeak orientations is ↑.
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T = 36 fs
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Figure 4.13: 2D correlation spectrum of two strongly coupled excited elec-
tronic states at time T = 36 fs . The crosspeak orientation is ↗.

T = 45 fs
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Figure 4.14: 2D correlation spectrum of two strongly coupled excited elec-
tronic states at time T = 45 fs . The crosspeak orientation is ↑.
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T = 54 fs
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Figure 4.15: 2D correlation spectrum of two strongly coupled excited elec-
tronic states at time T = 54 fs . The crosspeak orientation is ↖.
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Figure 4.16: Pump-probe spectrum of two strongly coupled excited elec-
tronic states for delay times from T = 0 fs to T = 54 fs.
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Figure 4.17: Time evolution of the 10300 cm−1 peak magnitude for short
delay times.
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T = 0 fs

 9000  9300  9600  9900  10200  10500

frequency [cm-1]

 9000

 9200

 9400

 9600

 9800

 10000

 10200

 10400

 10600

fr
eq

ue
nc

y 
[c

m
-1

]

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Figure 4.18: 2D correlation spectrum of two weakly coupled excited elec-
tronic states at time T = 0 fs . The orientation of the crosspeak is ↗.

4.3 Weak electronic coherences

As in previous examples we suppose a two-level system with electronic tran-
sitions at 9600 cm−1 and 10000 cm−1. The main di�erence is that this
time the level of exciton coupling is considerably lower, which implies that
crosspeaks are much weaker in intensity compared to populations peaks on
the main diagonal. But despite this fact we should still be able to observe
electronic coherences when looking at the orientation of the crosspeaks. We
have no problem in doing that for delay time T = 0 fs (see Fig. 4.18). But
as the system evolves it becomes more and more di�cult to see the desired
patterns. With a little more trouble we are able to tell the orientation of
the crosspeak for time T = 28 fs (Fig. 4.20). However, in the Fig. 4.22 we
can barely see anything indicative.

As for the pump-probe spectra (Fig. 4.23) we come to the very same
conclusion as in the previous paragraph. There are some visible changes in
the peak height up to delay times around 50 fs but after that the changes
become too small. A plot of these changes is shown in the Fig. 4.24.

Hence, according to our simulations it shows up that electronic coher-
ences should be observable in both two-dimensional spectroscopy and pump-
probe experiments if the time resolution of the experiment is su�cient.
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Figure 4.19: 2D correlation spectrum of two weakly coupled excited elec-
tronic states at time T = 16 fs . The orientation of the crosspeak is ↑.

T = 28 fs
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Figure 4.20: 2D correlation spectrum of two weakly coupled excited elec-
tronic states at time T = 28 fs . The orientation of the crosspeak is ↖.
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T = 48 fs
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Figure 4.21: 2D correlation spectrum of two weakly coupled excited elec-
tronic states at time T = 48 fs . The orientation of the crosspeak is ↑.

T = 60 fs

 9000  9300  9600  9900  10200  10500

frequency [cm-1]

 9000

 9200

 9400

 9600

 9800

 10000

 10200

 10400

 10600

fr
eq

ue
nc

y 
[c

m
-1

]

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

Figure 4.22: 2D correlation spectrum of two weakly coupled excited elec-
tronic states at time T = 60 fs . The orientation of the crosspeak is (should
be) ↗.
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Figure 4.23: Pump-probe spectrum of two weakly coupled excited electronic
states for delay times from T = 0 fs to T = 54 fs
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Figure 4.24: Time evolution of the 10000 cm−1 peak magnitude for short
delay times.
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Chapter 5

Conclusion

The purpose of this thesis was to provide a review of the pump-probe exper-
imental technique and its applications to studies of molecular systems, and
to perform a comparison of the pump-probe with 2D coherent spectroscopy.
We also intended to set forward the fundamental concepts of the theory of
non-linear response functions that has a general signi�cance in spectroscopy,
since it applies to such experiments as �uorescence up-conversion, pump-
probe, two-dimensional correlation spectroscopy and other pulsed experi-
ments. The whole work was restricted to �rst and third order of perturba-
tion theory. Due to reasons of symmetry second order signal is not observed
for isotropic materials. Higher orders usually do not contain any signi�cant
additional information. From the theory presented here we derived the ex-
pressions that link intrinsic properties of the studied system with measured
signals. We introduced both de�nitions of two-dimensional spectrum and
pump-probe spectrum in terms of third order response functions. After that
we applied our results to analyze relaxation processes and e�ects of elec-
tronic coherences in two-dimensional spectra. The main goal was to decide
whether are these e�ects also included in pump-probe spectra. Therefore, we
compared data for three di�erent theoretical systems and came to the con-
clusion that pump-probe contains information about electronic coherences.

The simulations were performed with help of the spectroscopic program
NOSE, which is a computational package designed to calculate various kinds
of spectra (absorption, �uorescence, circular dichroism). Since there was no
section in the program that would be concerned with computing pump-probe
I had to get familiar with the code and to add it myself. I managed to create
a functional routine that gives pump-probe spectra for the case when the
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excitation pulse is in�nitely short, i.e. the case when the excitation is done
through the all wavelengths of the spectrum. It is my goal though to include
the case when excitation is spectrally localized in the future.

The three example theoretical systems we used for our simulations were
quite realistic. The �rst one was modeled to show that both two-dimensional
spectra and pump-probe are suitable to study population transfer. The
results were quite consistent in this particular case. Both methods exhibited
signi�cant changes when the delay time T of the incoming pulses was varied.
The observation that pump-probe reveals system's populational dynamics is
not new, but it served us as con�rmation for the results we achieved from
our theory. All of our simulations were performed with a simple two-level
system with resonance coupling between the two excited states, which makes
our data quite transparent.

More important were the other two simulations, which dealt with elec-
tronic coherences. That is a very interesting phenomenon observed in two-
dimensional spectra. Its connection to the internal properties of the system
is not yet fully cleari�ed, but it provides the information whether the energy
transport is coherent or not. However, there is not any observation up to
date of electronic coherence in pump-probe. The �rst simulation we did in
this context supposed a two-level system with strong coupling (400 cm−1)
between excited states. Our data revealed that electronic coherences which
take place in such a system are visible both in 2D and pump-probe. Due to
the strong coupling, this was not surprising as the intensity of the crosspeaks
in this case was comparable with that of population peaks. Consequently,
the changes in peaks' amplitude in pump-probe were rather signi�cant (for
the lowest and highest limit cases cca. 50% of the highest peak).

The last simulation assumed a system for which the electronic coupling
was considerably smaller than in the previous model (10 cm−1). As a re-
sult of this choice, the di�erences in intensities of population peaks and
crosspeaks increased and oscillations of crosspeaks were not combined with
changes in pump-probe peak amplitudes. But still we observed di�erences
in these amplitudes (for the lowest and highest limit cases cca. 20% of the
highest peak) for short delay times, cca. T < 50 fs. For longer times the
di�erences vanished. However, in 2D spectra we were not able to see orienta-
tions of the crosspeaks as clearly as we expected. Just like in the pump-probe
spectra, they were evident only for short delay times. The result from our
simulations is thus following: Electronic coherences should be recognizable
in two-dimensional coherent spectroscopy as well as in pump-probe spectra.
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