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V Praze dne Vojtěch Pleskot
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Chapter 1

Theoretical models

1.1 Higgs boson and τ-lepton in SM and in MSSM

1.1.1 SM Higgs boson

Higgs boson is the last undiscovered particle predicted by the Standard Model (SM in what
follows). It is used in the description of the so-called spontaneous electroweak symmetry
breaking and in generation of particle masses through the famous Higgs mechanism. The
point is that the exact SU(2) × U(1) electroweak symmetry predicts zero particle masses;
this of course contradicts the experimental results - particles have masses - and thus the
symmetry has to be broken. Higgs boson couplings relevant for the Higgs boson decays
are proportional to particle masses1. Thus we can roughly say that it decays with the
highest probability to pair of the heaviest particles over the threshold (given by Higgs
boson mass mH)2. For mH less than ≈ 120 GeV the Higgs boson decays dominantly to bb̄
pair with BR ≈ 90%. The second decay H → ττ have much lower but still non-negligible
branching ratio (BR ≈ 10%) in this region. As mH increases the decay H → WW
becomes more and more important and at mH ≈ 120 GeV it starts to dominate. In the
region 120GeV < mH < 160GeV at least one of the W bosons is of course virtual. The
mH -dependence of branching ratios is in Figure 1.1 which was taken from [1]. For more
information on the Electroweak theory see for example [2]. Direct measurement of Higgs
boson existence (and of its mass) was made at the accelerator LEP at CERN and at the
accelerator Tevatron in Fermilab. Four experiments at LEP concluded that Higgs boson
with mass under 114.4 GeV does not exist with 95% confidence level ([3]). The results
from Tevatron yield exclusion of the mass region 158 − 175 GeV ([4]). The expectations
of Higgs boson mass were made on the basis of perturbative high-order corrections. The
theoretical results (including Higgs boson mass) were fitted to set of high-precision data.
Thus the 95% one-sided confidence level upper limit on mH was set to 158 GeV. But
sensitivity of these corrections to Higgs boson mass is weak (roughly speaking logarithmic)

1gWWH = gmW , gZZH = gmZ/2 cos θW , gffH = −gmf/2mW , where f is arbitrary fermion
2It is exactly true for fermions; for gauge bosons the situation is a little more complicated - the decay

to W+W− dominates on all the region above it’s threshold
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Figure 1.1: mH dependence of SM Higgs boson branching ratios

and thus their prediction power is not very strong. For more information see [4].
Only the exclusions of some Higgs boson masses were made so far. The question of it’s

existence or non-existence (and thus of it’s mass of course) still remains open. It is the
task of accelerator LHC at CERN to continue the Higgs boson searches. LHC provides
protons collisions with center-of-mass energy 7 TeV at the moment but the nominal value
is 14 TeV. By the end of the year 2012 enough data should be collected to either prove or
exclude the Higgs boson existence up to the mass of 600 GeV.

1.1.2 Minimal Supersymmetric Standard Model

Introduction

The minimal supersymmetric extension of SM (i.e. Minimal Supersymmetric Standard
Model, MSSM) states that each particle from the SM has it’s supersymmetric partner
(sparticle).3 Supersymmetric particles have different spin (and therefore different statistical
behavior) than their SM partners - SM bosons have MSSM fermionic partners and SM
fermions have MSSM bosonic partners. There are two complex Higgs doublets in MSSM
(H1, H2) and five physical Higgs bosons (three of eight original Higgs fields are eliminated
as Goldstone bosons to generate three gauge boson masses): two of them are electrically
charged (H+, H−) and three of them are neutral - CP-odd A, CP-even H which is called
heavy Higgs boson and another CP-even h, called light Higgs, which could be identified

3But the supersymmetry has to be broken so that the supersymmetric partners of SM particles had
different masses; if the supersymmetry was not broken some MSSM particles would have been observed in
the past which is obviously not the case
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with SM Higgs boson. Supersymmetric fermionic partners of Higgs bosons are called
Higgsinos. There is one vacuum expectation value associated with neutral component of
each Higgs doublet (v1, v2). The original Higgs fields mix to form physical Higgs fields (mass
eigenstates). There are two mixing angles. For example: H+ = sin β(H−

1 )∗ + cos βH+
2 ,

where tan β = v2/v1. The other mixing angle α can be expressed in terms of the angle β
and CP-odd Higgs boson mass mA. At the tree level the masses of MSSM Higgs bosons can
be expressed in terms of these two free parameters (mA, β) and of gauge bosons masses.
Thus the Higgs bosons masses are given by:

m2
H± = m2

A + m2
W (1.1)

m2
H,h =

1

2
(m2

A + m2
Z ±

√

(m2
A + m2

Z)2 − 4m2
Am2

Z cos2 2β) (1.2)

On the basis of these formulae we can derive following constraints on the Higgs bosons
masses:

mH± ≥ mW (1.3)

mH ≥ mA ≥ mh (1.4)

mh ≤ mZ (1.5)

m2
h + m2

H = m2
A + m2

Z (1.6)

From it follows that the light Higgs boson bare mass is smaller than that of Z boson (which
contradicts the experimental results because Higgs boson has not yet been observed).
However, if radiative corrections are included, mh could increase to about 130 GeV.

One of new important concepts in MSSM is R-parity. It is internal symmetry whose
value for each particle is defined to be

R = (−1)3B+L+2s (1.7)

where B, L and s are the particle’s baryon number, lepton number and spin respectively.
Thus R = 1 for all conventional matter particles and R = −1 for their superpartners.
In MSSM the R-parity conservation is postulated. The postulate has these important
consequences:

• In accelerator experiments, sparticles can only be produced in pairs

• The lightest sparticle (LSP) is stable and if it is electrically neutral it could be
non-baryonic dark matter candidate

• The decay products of all other sparticles must contain an odd number of the lightest
sparticles; and since the LSP have no electric or strong charge in MSSM they cannot
be detected. In accelerator experiments at least 2mLSP missing energy has to be
associated with each SUSY event.

For more information on the MSSM see [6], [7] and [8].
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MSSM Higgs bosons production processes in pp collisions

The Higgs bosons couplings to other particles are also functions of unknown mixing angle
β (in addition to other parameters). Thus the production (as well as decay) processes have
to be discussed in the dependence of this parameter. In general there are four main MSSM
Higgs production processes:

• gluon-gluon fusion: gg → h/H/A

• vector boson fusion: qq′ → q′′q′′′ + W ∗W ∗/Z∗Z∗ → q′′q′′′ + h/H

• associated production with heavy quarks (i.e. t or b in final state): gg/qq̄ → q′q̄′ +
h/H/A

• associated production with vector boson: qq̄′ → W/Z + h/H

The light Higgs boson is similar to that from SM and thus it’s dominant production
process is the gluon-gluon fusion. The CP-odd Higgs boson A cannot be produced in the
second and the fourth reaction because it does not couple to vector bosons in MSSM. As
we said already the H and A Higgs bosons couplings depend on the parameter β. For low
values of tanβ (i.e. tan β ≈ 3 or less) H and A couplings to up-type quarks are enhanced
and the dominant production process is gluon-gluon fusion, especially via the top quark
loop. For high tanβ (i.e. tan β ≈ 30 or greater) the couplings to down-type quarks are
enhanced and the dominant production process is associated production with b-quarks,
but gluon-gluon fusion via b-quark loop contributes significantly too.

MSSM Higgs boson decays

The light Higgs boson has couplings similar to SM Higgs boson whose decays were briefly
discussed in Section 1.1.1. Here we are going to discuss the decays of H and A bosons.
The heavy Higgs bosons decays strongly depend on tan β. For low values of this parameter
the couplings to up-type quarks are enhanced and (when allowed) the decay to pair of top
quarks dominates. In lower mass region (mH/A ≈ 130− 300 GeV) A decays dominantly to
bb̄ and ττ (BR ≈ 90% and BR ≈ 10% respectively) and H decays dominantly to WW , bb̄,
ZZ and hh. For high values of tanβ the couplings to down-type quarks are enhanced and
the dominant decay processes are thus H/A → bb̄ with BR ≈ 90% and H/A → ττ with
BR ≈ 10% in practically all the allowed mass region.

1.1.3 τ-lepton

τ is the heaviest lepton in SM. It was discovered in 1975 in the laboratory SLAC (USA)
at the e+e− accelerator SPEAR. It’s neutrino was confirmed much later - at the beginning
of new millennium - in experiment DONUT in the laboratory FNAL (USA). τ -lepton’s
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mass is mτ ≈ 1.777 GeV and thus it can decay hadronicaly in contrast to other leptons4.
Thanks to the lepton universality it has the same basic properties as muon and electron
apart from the mass. But the decay rate of the process h → ττ is much bigger than that
of processes h → ee, h → µµ due to the above mentioned fact that Higgs boson couplings
to fermions is proportional to fermion masses. Thus we can write:

Γ(h → µµ) =
m2

µ

m2
τ

Γ(h → ττ) (1.8)

Γ(h → ee) =
m2

e

m2
τ

Γ(h → ττ) (1.9)

τ leptonic decays have branching ratio approximately 35% (17.4% for τ → µνµντ and
17.8% for τ → eνeντ thanks to the lepton universality). τ -lepton hadronic decays have
BR ≈ 65% and are dominated by τ → ρντ process with BR ≈ 25%. The second most
important hadronic decay is τ → πντ (BR ≈ 11%). The remaining hadronic decays are
of little importance in the context of this thesis. For more information see [5]. MSSM
τ -lepton has the same behavior as in SM and thus all the discussion above is valid for it
as well.

4The lightest charged hadron is π-meson with mπ ≈ 140 MeV; this fact kinetically forbids muon
(mµ ≈ 105 MeV) and electron (me ≈ 0.5MeV) to decay hadronicaly
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Chapter 2

Angular Correlations

2.1 Introduction

In this section we are going to develop one method of Higgs boson CP measurement. As
discussed in Section 1.1.2 there are two CP-even and one CP-odd Higgs bosons in MSSM.
The method to be developed can distinguish CP-even from CP-odd Higgs boson on the
basis of angular correlations of hadronic decay products of τ -leptons born in Higgs boson
decay. The directions of these hadrons (either π-meson or ρ-meson) are correlated due
to the correlation of spins of the two τ -leptons and due to the parity violation in weak
interactions (neutrinos/antineutrinos are born left/right-handed in the τ−/τ+ decays). An
instructive insight to the problem can give us considerations based on angular momentum
quantum mechanical treating. The most important point is that spin-angular part of the
wave function of τ -leptons born in CP-odd Higgs boson decay is antisymmetric with respect
to the τ -leptons exchange:

|τ+τ−〉 ∼ 1√
8π

(

|τ−
↑ 〉|τ+

↓ 〉 − |τ−
↓ 〉|τ+

↑ 〉
)

(2.1)

whereas in the case of CP-even Higgs boson it is symmetric

|τ+τ−〉 ∼ 1√
8π

(|τ−
↑ 〉|τ+

↓ 〉 + |τ−
↓ 〉|τ+

↑ 〉) (2.2)

if we choose appropriate orientation of axes of the Higgs boson rest frame with respect
to the direction of τ -leptons (see Section 2.2.1). The notation is such that for example
|τ−

↑ 〉 denotes τ -lepton with third component of its spin oriented in the direction of z-axis
of the Higgs boson rest frame and the remaining symbols are analogic. The relative sign
propagates into the form of the overall angular distribution. Detailed study of this quantum
mechanical problem is in Appendix A. The angular distribution can not only be used in
the Higgs boson CP determination but also in distinguishing of the h/H/A → ττ event
from its main background in the region of not very high Higgs boson masses which is the
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H

h

−q′
τ+

q

τ−

−p′

π+

−k′ ν̄

p

π−

k ν

Figure 2.1: Feynman diagram of cascade Higgs boson decay into two pions and two
neutrinos

process Z → ττ . Detailed study of all these angular distributions (on the basis of quantum
field theory) are going to be performed in this thesis.

The difference between CP-odd and CP-even Higgs boson that is relevant for this
thesis is that the CP-odd one has an additional Dirac γ5 matrix in it’s (Yukawa) coupling
to τ -leptons, namely:

Lint = gAττ τ̄γ5τA (2.3)

Lint = gHττ τ̄ τH (2.4)

For completeness, the notation that we are going to use in what follows is such that H
denotes CP-even Higgs boson (regardless of its type) and A denotes the CP-odd one.

2.2 CP-even Higgs boson decays

2.2.1 Two pion final state

Squared matrix element

In this section we are going to calculate the angular distribution of products of process

H → τ−τ+ → νπ−ν̄π+ (2.5)

Tree level Feynman diagram of this process is in Fig. 2.1. In all the thesis we will neglect
the higher-order perturbative corrections. We will express the result as a function of three
independent angles whose meaning is as follows (see also Fig. 2.2):
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H τ−τ+

z

π−

ν

π+

ν̄

θθ′

Figure 2.2: Geometry of the Higgs boson decay

• θ is polar angle of π− in τ− rest frame (all the three axes of this frame has the same
directions as those of Higgs boson rest frame)

• θ′ is polar angle of π+ in τ+ rest frame (all the three axes of this frame has the same
directions as those of Higgs boson rest frame)

• φ is azimuthal angle between π− and π+ transverse components directions (transverse
with respect to the z-axis) in any frame (τ−, τ+ or H rest frame) - thanks to the
fact that movement of τ -leptons is in the z-axis only, transverse components of pions
momenta are not influenced by Lorentz boosts. We choose the frames such that the
decay τ− → π−ντ is in x− z plane. Then the angle φ is azimuthal angle of π+ in τ+

rest frame.

We will use the approximation of very narrow τ -lepton decay width, in other words we will
consider the τ -leptons to be on-shell. We explain what we mean:

Relevant form of the fermion propagator in momentum representation is:

SF(q) =
/q + mf

q2 − m2
f + imfΓf

(2.6)

where mf , Γf are the fermion’s mass and decay width respectively. Considering that the
τ -lepton decay width is very narrow we approximate the square of non-matrix part of the
propagator by δ-function, i.e. we do the substitution

∣

∣

∣

∣

∣

1

q2 − m2
f + imfΓf

∣

∣

∣

∣

∣

2

≈ 1

P
δ(q2 − m2

τ ) (2.7)

where P is a constant factor with dimension of square of mass. Since are aim is to calculate
the angular distribution we do not care about value of this overal constant factor. Thus in
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the square of matrix element the nominators of τ -lepton propagators will remain untouched
whereas the product of two denominators yields δ-function in this approximation. Thanks
to this δ-function we are allowed to replace q2 by m2

τ in all the squared matrix element.
Since we use this equality (q2 = m2

τ ) we effectively assume the τ -leptons to be on-shell
although we describe them by propagator (which is in general related to off-shell particles).

Matrix element of τ -lepton decay is:

M(τ− → π−ντ ) = −GF cos θCfπūL(k)/p(1 − γ5)u(q) (2.8)

where GF is Fermi weak constant, θC is Cabbibo angle and fπ is pion decay constant. For
details see [2]. Taking into account (2.8), matrix element of the whole process is:

M= gHττ (−GF cos θCfπ)2 × ūL(k)/p(1 − γ5)
1

/q − mτ

1

−/q′ − mτ

/p′(1 − γ5)vR(k′)

= gHττ (−GF cos θCfπ)2 × 4ūL(k)/p
1

/q − mτ

1

−/q′ − mτ

/p′vR(k′) (2.9)

Let us define:

C ≡
(

gHττ (−GF cos θCfπ)2
)2 16

R
δ(q2 − m2

τ )δ(q
′2 − m2

τ ) (2.10)

where constant factor R is remnant of the denominators of the propagators. Thus the
squared matrix element can be written in the following way:

|M|2 = C × v̄R(k′)/p′(−/q′ + mτ )(/q + mτ )/puL(k) ×
×ūL(k)/p(/q + mτ )(−/q′ + mτ )/p′vR(k′) (2.11)

After detailed calculation given in Appendix B.1 we obtain the following result:

|M|2 = C × 2m6
τ

(

2(q · k)(q · k′) + 2(k′ · q′)(k · q′) +

+(2(q · q′) − 2m2
τ )(k · k′) − 2(q · k′)(k · q′) − 2(q · k)(q′ · k′)

)

(2.12)

Scalar products

Due to the Lorentz-invariance of scalar product of two four-vectors we can evaluate different
terms appearing in |M|2 in different reference frames (these frames will be the rest frames
of τ -leptons and of Higgs boson). We have to calculate these scalar products:

(k · q), (k′ · q′), (k · q′), (q · k′), (q · q′), (k · k′) (2.13)

In order to evaluate the products we will boost the vectors q and q′ to the rest frames of
τ+ and τ− respectively and the vector k′ to the rest frame of τ−. We will use following
notation:
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• β is the velocity of τ− in CMS of the Higgs boson and γ is the corresponding Lorentz
γ-factor

• β ′ = −β is the velocity of τ+ in CMS of the Higgs boson and γ′ is the corresponding
Lorentz γ-factor

• subscript says in what frame the corresponding object is expressed (for example
kCMSτ+ means the four-vector of neutrino expressed in τ+ rest frame).

Detailed calculation of the scalar products (2.13) is given in Appendix B.2. Here we present
the results:

(k · q) =
∣

∣

∣

~kCMSτ−

∣

∣

∣mτ (2.14a)

(k′ · q′) =
∣

∣

∣

~k′
CMSτ+

∣

∣

∣mτ (2.14b)

(k · q′) =
∣

∣

∣

~kCMSτ−

∣

∣

∣ γ
mH

2

(

1 − 2β cos θ + β2
)

(2.14c)

(k′ · q) =
∣

∣

∣

~k′
CMSτ+

∣

∣

∣ γ
mH

2

(

1 + 2β cos θ′ + β2
)

(2.14d)

(q · q′) =
m2

H − 2m2
τ

2
(2.14e)

(k · k′) =
∣

∣

∣

~kCMSτ−

∣

∣

∣

∣

∣

∣

~k′
CMSτ+

∣

∣

∣×
(

1 + β2

1 − β2
(1 − cos θ cos θ′) +

+
2β

1 − β2
(cos θ′ − cos θ) − sin θ sin θ′ cos φ

)

(2.14f)

where
∣

∣

∣

~kCMSτ−

∣

∣

∣ and
∣

∣

∣

~k′
CMSτ+

∣

∣

∣ can be expressed in terms of particle masses, see (B.17a).

Integration of the squared matrix element

We instituted the previously calculated scalar products in (2.12) using the software Mathematica.
The result is:

|M|2 = C × 1

2
m4

τ (m
2
H − 4m2

τ )(m
2
τ − m2

π)2(1 + cos θ cos θ′ − sin θ sin θ′ cos φ)(2.15)

Now, we have to integrate it over the Lorentz invariant phase space of four particles
(LIPS4). Details of the integration are in Appendix B.3. The result is:

dΓ =
1

2mH

1

π2(8π)4

√

1 − 4m2
τ

m2
H

|~pCMSτ− |
∣

∣

∣

~p′CMSτ+

∣

∣

∣

m2
τ

|M|2dq2dq′2d cos θd cos θ′dφ(2.16)

Final result

The desired angular distribution of two pions born in decay (2.5) is thus:

1

Γ

dΓ

d cos θd cos θ′dφ
=

1

8π
(1 + cos θ cos θ′ − sin θ sin θ′ cos φ) (2.17)
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2.2.2 One pion and one ρ-meson final state

In this section we are going to present the result of calculation of angular distribution of
one pion and one ρ-meson born in the cascade decay

H → τ−τ+ → νρ−ν̄π+ (2.18)

Our notation will be the same (i.e. the angle variables now relate to ρ−-meson instead
of to π−-meson). We will not give details of the calculation because it is similar to the
case of two pion final state (see Section 2.2.1). There is just one difference between the
two cases - ρ-meson is vector meson (whereas pion is pseudoscalar) and thus the τ -lepton
decay matrix element has the following form:

M(τ− → ρ−ντ ) = −GF cos θCfρūL(k)/ǫ∗(p, λ)(1 − γ5)u(q) (2.19)

We can see that the ρ-meson polarization vector substituted the momentum in the matrix
element (compare with (2.8)).

Matrix element of the whole process is:

M = gHττ (−GF cos θCfπ)(−GF cos θCfρ) ×

×ūL(k)/ǫ∗(p, λ)(1 − γ5)
1

/q − mτ

1

−/q′ − mτ

/p′(1 − γ5)vR(k′) (2.20)

Due to the presence of polarization vector in (2.20) there appears an additional term in
the squared matrix element with respect to (2.11). We have to sum over three polarization
states of the ρ-meson which gives:

3
∑

λ=1

ǫµ(p, λ)ǫ∗ν(p, λ) = −gµν +
1

m2
ρ

pµpν

The term with pµpν has exactly the same structure as (2.11) but the term with gµν is new
with respect to (2.11). Nevertheless, we will not give details of the calculation of this term
here.

After all the calculation machinery (including the narrow τ width simplification discussed
in Section 2.2.1) the result is:

|M|2 = C ′ × 1

2m2
ρ

m2
τ (m

2
τ − m2

π)(m2
τ − m2

ρ)(m
2
H − 4m2

τ )(m
2
τ + 2m2

ρ) ×

×
(

1 +

(

m2
τ − 2m2

ρ

m2
τ + 2m2

ρ

)

(cos θ cos θ′ − sin θ sin θ′ cos φ)

)

(2.21)

where

C ′ ≡ (gHττ (−GF cos θCfπ)(−GF cos θCfρ))
2 16

R
δ(q2 − m2

τ )δ(q
′2 − m2

τ ) (2.22)
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The angular distribution of pion and ρ-meson from the process (2.18) is:

1

Γ

dΓ

d cos θd cos θ′dφ
=

1

8π

(

1 +

(

m2
τ − 2m2

ρ

m2
τ + 2m2

ρ

)

(cos θ cos θ′ − sin θ sin θ′ cos φ)

)

(2.23)

We can see that the angular-dependent part is suppressed by a factor (m2
τ − 2m2

ρ)/(m2
τ +

2m2
ρ) with respect to the two pion final state topology.

2.2.3 Two ρ-meson final state

We are going to present the result of calculation of angular distribution of two ρ-mesons
born in the cascade decay

H → τ−τ+ → νρ−ν̄ρ+ (2.24)

Matrix element of this process is:

M = gHττ (−GF cos θCfρ)
2 ×

×ūL(k)/ǫ∗(p, λ)(1 − γ5)
1

/q − mτ

1

−/q′ − mτ
/ǫ∗(p′, λ′)(1 − γ5)vR(k′) (2.25)

Now, both pion momenta are substituted by ρ-meson polarization vectors in the matrix
element. This yields two polarization sums and three different terms in the squared matrix
element (two of them has the same structure as in one pion and one ρ-meson case). We
will not give details of the calculation of the third term. We just present the result:

|M|2 = C ′′ × 1

2m4
ρ

(m2
H − 4m2

τ )(m
2
τ − m2

ρ)
2(m2

τ + 2m2
ρ)

2 ×

×


1 +

(

m2
τ − 2m2

ρ

m2
τ + 2m2

ρ

)2

(cos θ cos θ′ − sin θ sin θ′ cos φ)



 (2.26)

where

C ′′ ≡
(

gHττ (−GF cos θCfρ)
2
)2 16

R
δ(q2 − m2

τ )δ(q
′2 − m2

τ ) (2.27)

The angular distribution of two ρ-mesons born in the process (2.24) is:

1

Γ

dΓ

d cos θd cos θ′dφ
=

1

8π



1 +

(

m2
τ − 2m2

ρ

m2
τ + 2m2

ρ

)2

(cos θ cos θ′ − sin θ sin θ′ cos φ)



(2.28)

We can see that the angular-dependent part is suppressed by a factor (m2
τ − 2m2

ρ)
2/(m2

τ +
2m2

ρ)
2 with respect to the two pion final state topology.
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2.3 CP-odd Higgs boson decays

As stated in Section 2.1 (equations (2.3),(2.4)), the CP-odd Higgs boson coupling to
τ -leptons differs from that of CP-even Higgs boson by an additional γ5 apart from the
magnitude of the coupling constant. Matrix element of it’s decay to a pair of τ -leptons
reads:

M(A → τ−τ+) = gAττ ū(q)γ5v(q′) (2.29)

In all this section we will use the same notation as in previous Section 2.2. In fact all the
calculations are practically the same as before - there is just one difference: the additional
γ5 in the vertex (2.3) effectively changes the sign in front of τ+ momentum. Thus we may
just slightly modify the previously obtained results in order to get the angular distribution
of CP-odd Higgs boson decay. For example the matrix element of CP-odd Higgs boson
decay with two pions in final state is:

M = gAττ (−GF cos θCfπ)2 ×

×ūL(k)/p(1 − γ5)
1

/q − mτ
γ5

1

−/q′ − mτ

/p′(1 − γ5)vR(k′) (2.30)

and the squared matrix element is:

|M|2=−
(

gAττ(−GF cos θCfπ)2
)2 16

R
δ(q2 − m2

τ )δ(q
′2 − m2

τ ) ×

×Tr
(

/k′ 1 + γ5

2
/p′(−/q′ + mτ )γ5(/q + mτ )/p/k

1 + γ5

2
/p(/q + mτ )γ5(−/q′ + mτ )/p′

)

=D × Tr(/k′1 + γ5

2
/p′(/q′ + mτ )(/q + mτ )/p/k

1 + γ5

2
/p(/q + mτ )(/q

′ + mτ )/p′) (2.31)

where

D ≡
(

gAττ (−GF cos θCfπ)2
)2 16

R
δ(q2 − m2

τ )δ(q
′2 − m2

τ ) (2.32)

The expression (2.31) is really the same as (2.11) apart from the sign in front of the τ+

momentum q′ (and the overall constant factor of course).

2.3.1 Two pion final state

The process in question is:

A → τ−τ+ → νπ−ν̄τπ
+ (2.33)

Matrix element of this process is in equation (2.30). The result is:

|M|2 = D × 1

2
m4

τm
2
H(m2

τ − m2
π)2(1 + cos θ′ cos θ + sin θ sin θ′ cos φ) (2.34)

The angular distribution of two pions born in the decay (2.33) is:

1

Γ

dΓ

d cos θd cos θ′dφ
=

1

8π
(1 + cos θ cos θ′ + sin θ sin θ′ cos φ) (2.35)
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2.3.2 One pion and one ρ-meson final state

The process in question is:

A → τ−τ+ → νρ−ν̄τπ
+ (2.36)

Matrix element of this process is:

M = gAττ (−GF cos θCfπ)(−GF cos θCfρ) ×

×ūL(k)/ǫ∗(p, λ)(1 − γ5)
1

/q − mτ

γ5
1

−/q′ − mτ

/p′(1 − γ5)vR(k′) (2.37)

The result is:

|M|2 = D′ × 1

2m2
ρ

m2
Hm2

τ (m
2
τ − m2

π)(m2
τ − m2

ρ)(m
2
τ + 2m2

ρ) ×

×
(

1 +

(

m2
τ − 2m2

ρ

m2
τ + 2m2

ρ

)

(cos θ cos θ′ + sin θ sin θ′ cos φ)

)

(2.38)

where

D′ ≡ (gAττ (−GF cos θCfπ)(−GF cos θCfρ))
2 16

R
δ(q2 − m2

τ )δ(q
′2 − m2

τ ) (2.39)

The angular distribution of pion and ρ-meson born in the decay (2.36) is:

1

Γ

dΓ

d cos θd cos θ′dφ
=

1

8π

(

1 +

(

m2
τ − 2m2

ρ

m2
τ + 2m2

ρ

)

(cos θ cos θ′ + sin θ sin θ′ cos φ)

)

(2.40)

2.3.3 Two ρ-mesons final state

The process in question is:

A → τ−τ+ → νρ−ν̄τρ
+ (2.41)

Matrix element of this process is:

M = gAττ (−GF cos θCfρ)
2 ×

×ūL(k)/ǫ∗(p, λ)(1 − γ5)
1

/q − mτ
γ5

1

−/q′ − mτ
/ǫ∗(p′, λ′)(1 − γ5)vR(k′) (2.42)

The result is:

|M|2 = D′′ × 1

2m4
ρ

m2
H(m2

τ − m2
ρ)

2(m2
τ + 2m2

ρ)
2 ×

×


1 +

(

m2
τ − 2m2

ρ

m2
τ + 2m2

ρ

)2

(cos θ′ cos θ + sin θ sin θ′ cos φ)



 (2.43)
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where

D′′ ≡
(

gAττ (−GF cos θCfρ)
2
)2 16

R
δ(q2 − m2

τ )δ(q
′2 − m2

τ ) (2.44)

The angular distribution of pion and ρ-meson born in the decay (2.36) is:

1

Γ

dΓ

d cos θd cos θ′dφ
=

1

8π



1 +

(

m2
τ − 2m2

ρ

m2
τ + 2m2

ρ

)2

(cos θ cos θ′ + sin θ sin θ′ cos φ)



(2.45)

2.4 Summary of the results

Let us write and discuss the results obtained in this Chapter. General form of our angular
distributions is

1

Γ

dΓ

d cos θd cos θ′dφ
=

1

8π
(1 + F × (cos θ cos θ′ + S × sin θ sin θ′ cos φ)) (2.46)

where the factors F and S are summarized in Table 2.1. From this table we can see that

CP-even Higgs boson CP-odd Higgs boson

hadrons F S F S

π−π+ 1 -1 1 1

ρ−π+

(

m2
τ−2m2

ρ

m2
τ+2m2

ρ

)

-1
(

m2
τ−2m2

ρ

m2
τ+2m2

ρ

)

1

ρ−ρ+

(

m2
τ−2m2

ρ

m2
τ +2m2

ρ

)2

-1
(

m2
τ−2m2

ρ

m2
τ +2m2

ρ

)2

1

Table 2.1: Parameters of angular distributions

the presence of ρ-mesons in final state results in suppression of the angular-dependence
of the distribution with respect to the two pion final state topology. And we can also
see (which is our main goal) that CP-odd and CP-even Higgs boson differ in the sign in
front of the term sin θ sin θ′ cos φ. We can see that CP-even Higgs boson prefers opposite
directions of transverse momenta components of final state hadrons whereas the CP-odd
one prefers the final state hadrons to have the same directions of these components. This
fact in principle allows to distinguish Higgs bosons with combined parities CP = 1 and
CP = −1. In reality this may not be possible because in hadrons collisions, which is the
case of LHC, it is impossible to precisely reconstruct the Higgs boson rest frame due to the
presence of two undetectable neutrinos in final state. We can use the so-called collinear
approximation but in this approach we expect the transverse correlation to be destroyed.
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2.5 Z boson decay

As stated already the Z boson decay to τ -leptons represents the main background to Higgs
boson decays to these leptons in the region of not very high Higgs boson masses. Our
goal is to show that we can distinguish the background processes Z → ττ from the signal
ones on the basis of angular distribution of final-state hadrons. Contrary to the previous
two cases we will consider only the two-pion-final-state decay here. We will see that the
differentiation is possible thanks to the longitudinal spin effects and that the transverse
spin effects are suppressed a lot even in the case of two pions in final state. If we do
not consider the transverse spin effects (i.e. if we integrate the angular distribution over
the angle φ) the angular distributions appropriate to CP-even and CP-odd Higgs boson
become the same. Thus the following discussion is valid for both CP-even and CP-odd
Higgs boson.

The calculation of angular distribution in the case of Z boson decay is more complicated
because of the complicated Zττ vertex and the vector-boson character of Z. Feynman
diagram of this process is in Figure 2.3. We assigned h as the momentum of decaying
Z boson and ǫ(h, λ) it’s polarization vector where λ = +,−, 0 denotes respectively positive,
negative and zero helicity. Matrix element of the process is given by:

Z

h, ǫ(h, λ)

−q′
τ+

q

τ−

−p′

π+

−k′ ν̄

p

π−

k ν

Figure 2.3: Feynman diagram of the cascade Z boson decay into two pions and two
neutrinos.

M =
g

2 cos θW
(−GF cos θCfπ)2 ×

×ūL(k)/p(1 − γ5)
1

/q − mτ
/ǫ(h, λ)(v − aγ5)

1

−/q′ − mτ

/p′(1 − γ5)vR(k′) (2.47)

where

v = −1

2
+ 2 sin2 θW ≈ −0.19
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a = −1

2
θW ≈ 23◦ (2.48)

We will not perform the calculation of the squared matrix element because it is somewhat
lengthy and all the techniques are the same as before. Contrary to Higgs bosons cases
there appear terms like Tr(/k′/ǫ∗/k/ǫγ5) and Tr(/k′ /q′/ǫ∗/q/k/ǫ) in the squared matrix element.
The expression of these traces in terms of our variables (angles θ, θ′ and φ defined as
before) is tedious but it is feasible. After having expressed the individual terms we used
Mathematica to simplify all the expression.

We calculated the decay of polarized Z boson for each helicity state separately. The
polarization vectors for individual helicity states expressed in Z boson rest frame are:

ǫµ(h, +) =
1√
2
(0, 1, i, 0) (2.49)

ǫµ(h,−) =
1√
2
(0, 1,−i, 0) (2.50)

ǫµ(h, 0) = (0, 0, 0, 1) (2.51)

The results are:

|M(0)|2 ∼ 2v2m6
τ (m

2
τ − m2

π)2(1 + cos θ cos θ′ − sin θ sin θ′ cos φ) (2.52)

|M(+)|2 ∼ 1

2
m4

τ (m
2
τ − m2

π)2(v2m2
Z − 2avm2

Z

√

1 − 4m2
τ

m2
Z

+ a2(m2
Z − 4m2

τ )) ×

×(1 − cos θ cos θ′ − (cos θ′ − cos θ)) (2.53)

|M(−)|2 ∼ 1

2
m4

τ (m
2
τ − m2

π)2(v2m2
Z + 2avm2

Z

√

1 − 4m2
τ

m2
Z

+ a2(m2
Z − 4m2

τ )) ×

×(1 − cos θ cos θ′ + (cos θ′ − cos θ)) (2.54)

From these expressions we can see that square of the matrix element M(0) (which is the
only one that contains transverse spin correlation) is suppressed by factor m2

τ/m
2
Z with

respect to the others. In the case of unpolarized Z boson decay we thus have:

|M|2 ∼ 1

3
(|M(0)|2 + |M(+)|2 + |M(−)|2)

∼ 1

3
m4

τ

(

m2
τ − m2

π

)2 (

m2
Z

(

a2 + v2
)

− m2
τ

(

4a2 − 2v2
))

×

×
(

1 +
2avm2

Z

√

1 − 4m2
τ

m2
Z

(cos θ′ − cos θ)

(m2
Z (a2 + v2) − m2

τ (4a2 − 2v2))
−

−(m2
Z (a2 + v2) − m2

τ (4a2 + 2v2))

(m2
Z (a2 + v2) − m2

τ (4a2 − 2v2))
cos θ cos θ′ −

− 2v2m2
τ

(m2
Z (a2 + v2) − m2

τ (4a2 − 2v2))
sin θ sin θ′ cos φ

)

(2.55)
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It can be simplified if we neglect the terms proportional to m2
τ/m

2
Z :

|M|2 ∼ 1

3
m4

τ

(

m2
τ − m2

π

)2
m2

Z

(

a2 + v2
)

×

×
(

1 +
2av

a2 + v2
(cos θ′ − cos θ) − cos θ cos θ′

)

(2.56)

From this relation we can see that there are two things that make the difference between
this angular distribution and that from the Higgs boson decay. First of all it is the sign in
front of the product of the two cosines. It can be seen on Figures 3.7 and 3.8 that are 2-D
histograms of the two cosines. Secondly there are the terms linear in cosines that were not
present in the case of Higgs boson decays. It can also be seen on Figure 3.8 - one of the
two “peaks” is higher than the other. It is thanks to the presence of these two terms and
to the fact that the relative sign between them is negative.

This behavior of the angular distribution from Z-boson decay makes it possible to
distinguish this background process from the signal one. We can conclude it even in
situation when we do not know the exact polarization of Z-boson if we assume that the
longitudinal polarization does not dominate very much over the other two polarizations.
In this situation we can write:

1

Γ

dΓ

d cos θd cos θ′
=

1

4
(1 − cos θ cos θ′ + k(cos θ′ − cos θ)) (2.57)

where k is constant factor that depends on the Z boson polarization state.
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Chapter 3

Simulation

3.1 General aspects of Monte Carlo methods

The Monte Carlo methods form a very large class of probabilistic computational algorithms
based on repeated processing of randomly chosen inputs. Their use is advantageous if
deterministic (”exact”) result cannot be obtained because of the difficulty of it’s computation.
Thanks to the idea of Stanislaw Ulam the first serious use of a Monte Carlo method was
made at Los Alamos Scientific Laboratory in forties during the work on the Manhattan
project. The name Monte Carlo was invented by John von Neumann and it references to
the Monte Carlo Casino in Monaco (in a casino it is also the chance that arranges that after
high number of repetitions it is the casino owner who wins the money; here the chance
arranges that after high number of repetitions it is the physicist who wins the correct
enough result).

There are a lot of different Monte Carlo methods but each of them has the same basic
strategy. This strategy consists of three points:

• random generation of input from a predefined domain using a certain specified
probability distribution

• performance of deterministic computation with the generated input

• aggregation and evaluation of the results obtained by individual computations

As every method based on chance, Monte Carlo technique gives results with required
accuracy after high enough number of repetitions. Here we have to repeat the first two
steps in order to get high enough statistics.
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3.2 Monte Carlo in high energy physics

3.2.1 Basic structure of high-energy processes

Within the frame of quantum field theory all the process dynamics is described by Lorentz
invariant matrix element. Nevertheless, the calculation of matrix element is so difficult
that it has to be approximated by first few (often just one) terms of it’s perturbative
expansion. The main contribution comes from the first nontrivial term which is given by the
so-called tree-level Feynman diagram. Contributions of higher-order terms are considered
as (small) corrections. However, this perturbative treatment has it’s limitations. One of
them is the description of multiparton final state topologies because of the necessity of
calculation of too many and too high-order terms within this approach. Some processes
cannot be treated perturbatively at all because of large (running) coupling constant. In
this case some additional approaches have to be used. Fortunately it turns out that the
high-energy processes can be divided into several (“independent”) parts. Thus the usually
used structure scheme of high-energy process is the following:

• in case of colliding hadrons: determination of colliding partons momenta on the base
of parton distribution functions

• initial-state radiation, i.e. branching of particles that appear in the hard process as
initial-state particles (e.g. q → qg, e → eγ, . . .)

• hard ”skeleton” process given by (perturbatively calculated) matrix element

• final-state radiation, i.e. branching of particles that appear in the hard process as
final-state particles

• hadronization, i.e. creation of real observable hadrons from final-state QCD partons

Nevertheless, the problem of high-energy process cannot be treated “on paper” (or at
least it would be very difficult even in the simplest cases) although the simplifications are
substantial. Therefore it is the role of Monte Carlo method to calculate predictions that
would be comparable with experiment. The corresponding Monte Carlo based programs are
called Monte Carlo event generators and could be imagined like (virtual) particle colliders
(event producers).

Another large area where the Monte Carlo methods are widely used in high-energy
physics is the detector simulation. Because the passage of particles through matter is
statistical process it is very convenient to use statistics-based method to simulate it.
Physicists use the detector simulations mainly to plan and optimize new detectors and
their data analysis strategies. The event generators give the necessary input to detector
simulations.
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3.2.2 Pythia and Tauola

One of the most popular Monte Carlo event generators is Pythia. It offers a lot of
hard processes simulations as well as initial and final-state radiation mechanism and a
hadronization model (Lund string model). It also offers beam remnants treating (i.e.
interactions of the partons that do not undergo hard process) which is of course necessary
for the full collision simulation. In this thesis we used Pythia to generate Higgs boson in
pp-collisions and it’s decay into τ -leptons. When treating τ -lepton decays Pythia always
assumes the τ -leptons to be unpolarized and therefore to decay isotropically. For our
purpose (study of angular distribution of τ -leptons decay products) we had therefore to
use some other program in addition. It’s name is Tauola and it is inteded to treat τ -leptons
decays more precisely than Pythia. It therefore includes τ polarization effects. For more
informations on Pythia see [9] or [10] which is valid even for great part of the Pythia 8
(C++ version) used while working on this thesis.

Tauola can be used with any MC generator that produces events with τ -leptons and
whose output is in HEPEVT or HepMC format. Tauola has two interfaces whose task is
to prepare input parameters (with use of given event record) for Tauola program itself and
to insert τ -leptons decay products into the original event record. The two interfaces are
the following:

• Tauola Fortran Interface: it’s input is HEPEVT event record

• Tauola Universal C++ Interface: it’s input is HepMC event record

. Tauola works in the following way:

• event record generated by some external MC generator is searched for τ -leptons and
τ neutrinos

• production vertex is identified for each particle found in the previous step; the
particles are then grouped to pairs originating from the same vertex

• in case of τ production from the Z/γ∗ all the hard process leading to τ production
should be reconstructed in order to calculate spin correlations correctly; sometimes
this could be done only approximatively. In the case of τ production from the Higgs
boson no information about the hard process is necessary thanks to the zero spin of
this particle

• using all these informations the spin density matrix is (approximatively) calculated

• each τ pair is decayed with the spin effects included in the spin density matrix

• τ -leptons decay products are written to the event record

More information on Tauola can be found in [11] or [12]. Information on how Tauola
treats the polarization effects in Z/γ∗ → τ−τ+ production is in [13].
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3.3 Simulation results

In this section we are going to present results obtained by simulation of H/A → τ−τ+ →
π−/ρ−ντπ

+/ρ+ν̄τ decays. As stated above we used Pythia to generate Higgs boson production
and it’s decay to pair of τ -leptons. And we used Tauola to perform the τ -leptons decays.
Because Higgs boson is spin-zero particle the angular distribution of it’s decay products
does not depend on the process leading to it’s production. Thanks to this we could have
chosen any process to produce the Higgs boson. We wanted, however, to simulate protons
collisions so that it matched the real life case (LHC). As discussed in Section 1.1.2 there
are four main Higgs boson QCD production processes in pp-collisions in MSSM. In our
simulation we chose the process that is probably the most important for low values of tanβ
and that is of importance even in region of high values of this parameter, i.e. gluon-gluon
fusion. We set the center-of-mass energy to 7 TeV. For the Z boson production in 7 Tev
center-of-mass pp-collisions we used the process of fermion-antifermion anihilation.

On Figures 3.1-3.6 there are histograms (distributions) of angle φ defined in Section 2.2.
Figures 3.7 and 3.8 show 2-D distributions of variables cos θ and cos θ′ for the case of Higgs
boson (either CP-even or odd) and Z boson decay. Nice comparison of the two distributions
is in Figure 3.9. Figures 3.10 and 3.11 show 2-D distributions of pion energies in the
decaying boson rest frame and in the laboratory frame for the case of Higgs boson and Z
boson decay respectively. Figure 3.12 shows the distributions of pions invariant masses for
both cases of Higgs and Z boson decays. The last Figure 3.13 shows comparison of two
methods of signal and background differentiation (ROC curves for laboratory energies of
pions and for pions invariant masses).

From Figures 3.1-3.6 we can see that the MC results match the (on the tree-level)
predicted ones if we realize that the pictures show the angular distribution integrated over
cos θ and cos θ′, i.e. (1/Γ)(dΓ/dφ):

1

Γ

dΓ

dφ
=

1

2π

(

1 + S × F × π2

16
cos φ

)

(3.1)

with S and F given by Table 2.1. Numerical values of the coefficient S × F × π2

16
for

individual cases are summarized in Table 3.1. The values obtained by MC simulation are
presented in the Table 3.1 as well (they are obtained by the relation p0/p1 between the two
fit parameters; the errors are estimated using standard techniques, see for example [14]).

CP-even Higgs boson CP-odd Higgs boson
hadrons theory MC theory MC
π−π+ -0.617 -0.622 ± 0.005 0.617 0.615 ± 0.005
ρ−π+ -0.280 -0.268 ± 0.005 0.280 0.274 ± 0.005
ρ−ρ+ -0.124 -0.115 ± 0.005 0.124 0.129 ± 0.005

Table 3.1: Coefficients: theory and Monte Carlo
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The difference between 2-D distributions of variables cos θ and cos θ′ for Higgs boson
and Z boson is clearly visible from Figures (3.7 and 3.8). More discussion is in Section 2.5.

Distributons of energies in the decaying boson rest frames are very similar to those of
cos θ, cos θ′ (3.7 and 3.8) because the pion energy in CMS of Higgs (Z) boson (E, E ′ for
π−, π+ respectively) is linear function of cos θ in case of π− and of cos θ′ in case of π+:

E = γ
(

p0
CMSτ− + β |~pCMSτ−| cos θ

)

(3.2)

E ′ = γ
(

p′0CMSτ+ − β
∣

∣

∣

~p′CMSτ+

∣

∣

∣ cos θ′
)

(3.3)

The distributions of pion energies in the laboratory rest frame differ for the case of Higgs
and Z boson as we can see from the Figures 3.10 and 3.11. In principle it is thus possible
to distinguish the signal and background on the basis of experimentaly accessible pions
energies in the laboratory frame.

The distributions of pions invariant masses (Figure 3.12) for both cases of Higgs and Z
boson decays differ too so that they could also be used to distinguish signal and background.
From Figure 3.13 we can see that the signal and background differentiation is better to
do on the basis of pions invariant masses than on the basis of their laboratory energies.
The ROC curve for pions laboratory energies was made with respect to the cuts on sum
of these energies. This curve is below the ROC curve for pions invariant masses on all the
interval (0, 1) which means that for any value of Z events rejection we obtain higher Higgs
efficiency with the invariant-mass-based method.
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Figure 3.1: Distribution of angle φ in H → τ−τ+ → π−ντπ
+ν̄τ process.
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Figure 3.2: Distribution of angle φ in H → τ−τ+ → ρ−ντπ
+ν̄τ process.
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Figure 3.3: Distribution of angle φ in H → τ−τ+ → ρ−ντρ
+ν̄τ process.
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Figure 3.4: Distribution of angle φ in A → τ−τ+ → π−ντπ
+ν̄τ process.
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Figure 3.5: Distribution of angle φ in A → τ−τ+ → ρ−ντπ
+ν̄τ process.
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Figure 3.6: Distribution of angle φ in A → τ−τ+ → ρ−ντρ
+ν̄τ process.
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Figure 3.8: Distribution of variables cos θ and cos θ′ in Z → τ−τ+ → π−ντπ
+ν̄τ process.
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Figure 3.10: Distribution of pions energies E, E ′ from H/A → τ−τ+ → π−ντπ
+ν̄τ process

in CMS of Higgs boson and in laboratory frame.
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+ν̄τ process in
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Chapter 4

Conclusions

In this diploma thesis the angular correlations of hadrons from decays H/A → τ−τ+ →
π−/ρ− ντ π+/ρ+ ν̄τ were studied. Angular distributions of hadrons were calculated in
the first non-trivial order of perturbation theory in the frame of MSSM. They were also
calculated on the basis of general quantum-mechanical orbital momentum considerations.
Results are summarized in equation (2.46) and in Table 2.1. The most important point is
that the distributions for CP-even Higgs boson H and for CP-odd one A differ in the sign
in front of the term that correlates transverse components of hadrons momenta.

We also studied the angular correlations in the decay Z → τ−τ+ → π−ντπ
+ν̄τ that

represents the most important background in the region of not very high Higgs boson
masses. We came to conclusion that in principle it is possible to distinguish this background
process from the signal one with use of the correlation of longitudinal components of
hadrons momenta - the sign in front of the term cos θ cos θ′. This different sign propagates
to differences in the distributions of pions energies (Figures 3.10 and 3.11) and pions
invariant masses (Figure 3.12).

Simulations of all the processes were made with use of MC generators Pythia 8 and
Tauola. The simulation results are in agreement with our tree-level based theoretical
results. It holds because Tauola uses the same angular distributions (see [15] with citation
of [16]). However, we used different calculation techniques to recover these results.
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Appendix A

Calculation based on angular

momentum considerations

Here we are going to derive the angular distribution of pions from h/A → τ−τ+, τ∓ →
π∓ντ (ν̄τ ) cascade decay on the basis of considerations about angular momentum. We are
going to derive and numerically express the wave function of τ−τ+ pair born in decay
of H/A. Then we will calculate the probability of finding neutrinos with general spin
direction within such a wave function (the probability that a taoun decays into neutrino
going in given direction is determined by scalar product of their spin functions). This will
immediately give us the desired angular correlation of pions because neutrino’s spin and
momentum are correlated (neutrinos are left-handed and anti-neutrinos are right-handed)
and the directions of momentum of pion and neutrino are opposite in τ -lepton rest frames.
Notation that we are going to use is the same as in all the thesis. In addition ~n will denote
the orientation of spin of neutrino in τ− rest frame, ~n′ will denote the orientation of spin
of anti-neutrino in τ+ rest frame. They can be expressed in terms of angles θ, θ′, φ:

~n = (sin θ, 0, cos θ)
~n′ = (− sin θ′ cos φ,− sin θ′ sin φ,− cos θ′) (A.1)

First we find out which values of total spin are allowed for τ−τ+ pair. In the case of
CP-even (CP-odd) Higgs boson, we know that the final state of it’s decay products is
CP-even (CP-odd) too. For a fermion-antifermion system we know that:

C(f f̄) = (−1)l+s (A.2)

P(f f̄) = (−1)l+1 (A.3)

CP(f f̄) = (−1)s+1 (A.4)

If we want the final state to be CP-odd, the total spin has to be 0 (CP conservation). It
means that the relative orbital momentum has to be 0 as well (total angular momentum
conservation; neutral Higgs boson have zero spin). If we want the final state to be CP-even,
the total spin has to be 1. It means that the relative orbital momentum has to be 1 as
well.
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A.1 CP-odd Higgs boson

Assuming that the τ -lepton polarization is taken with respect to the z-axis we use the
following notation (|τ−

↑ 〉 denotes the spin function: the subscript says whether the spin
aims in the direction of z-axis - ↑ - or in the opposite direction - ↓):

|τ−
↑ 〉 =

(

1
0

)

, |τ−
↓ 〉 =

(

0
1

)

|τ+
↑ 〉 =

(

1
0

)

, |τ+
↓ 〉 =

(

0
1

) (A.5)

The spin-angular part of the wave function of τ -leptons born in the CP-odd Higgs boson
decay is (as stated above total spin is 0 in this case and angular momentum is 0 too):

|τ+τ−〉 ∼ Y 0
0

1√
2

(

|τ−
↑ 〉|τ+

↓ 〉 − |τ−
↓ 〉|τ+

↑ 〉
)

(A.6)

Let us rotate the neutrino spin functions from frames where they are simple, i.e.

|νsimp〉 =

(

1
0

)

, |ν̄simp〉 =

(

0
1

)

(A.7)

to respective τ -lepton’s rest frames (these simple neutrino spin functions are chosen such
that the directions of z-axes of the rotated rest frames are the same as the pions momenta
directions). Thus we obtain:

D( 1

2
)(0, θ, 0) =

(

cos θ
2

− sin θ
2

sin θ
2

cos θ
2

)

(A.8)

D( 1

2
)(φ, θ′, 0) =

(

e−
i
2
φ cos θ′

2
−e−

i
2
φ sin θ′

2

e
i
2
φ sin θ′

2
e

i
2
φ cos θ′

2

)

(A.9)

|ν〉 = D( 1

2
)(0, θ, 0)

(

1
0

)

=

(

cos θ
2

sin θ
2

)

|ν̄〉 = D( 1

2
)(φ, θ′, 0)

(

0
1

)

=

(

−e−
i
2
φ sin θ′

2

e
i
2
φ cos θ′

2

) (A.10)

Now we have all we need to calculate the angular distribution:

〈ν|〈ν̄|
(

|τ−τ+〉
)

∼ 〈ν|〈ν̄|Y0
0

1√
2

(

|τ−
↑ 〉|τ+

↓ 〉 − |τ−
↓ 〉|τ+

↑ 〉
)

(A.11)

Using (A.7) and (A.10) we can write:

〈ν|〈ν̄|
(

|τ−τ+〉
)

∼ Y0
0

1√
2

(

cos
θ

2
e

i
2
φ cos

θ′

2
− sin

θ

2

(

−e−
i
2
φ sin

θ′

2

))

(A.12)
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and consequently

∣

∣

∣〈ν|〈ν̄|
(

|τ−τ+〉
)∣

∣

∣

2 ∼
∣

∣

∣Y0
0

∣

∣

∣

2 1

2

(

cos2 θ

2
cos2 θ′

2
+ sin2 θ

2
sin2 θ′

2
+

+2Re

(

cos
θ

2
cos

θ′

2
sin

θ

2
sin

θ′

2
e−iφ

))

(A.13)

After some simple manipulation with trigonometric functions and after institution Y0
0 =

1/
√

4π we finally obtain:

∣

∣

∣〈ν|〈ν̄|
(

|τ−τ+〉
)∣

∣

∣

2 ∼ 1

16π
(1 + cos θ cos θ′ + sin θ sin θ′ cos φ) (A.14)

And thus

1

Γ

dΓ

d cos θd cos θ′dφ
=

1

8π
(1 + cos θ cos θ′ + sin θ sin θ′ cos φ) (A.15)

A.2 CP-even Higgs boson

The spin-angular part of wave function of τ -leptons born in the CP-even Higgs boson decay
is (as stated above total spin is 1 in this case and angular momentum is 1 too):

|τ−τ+〉 ∼ 1√
3

(

Y1
1|τ−

↓ 〉|τ+
↓ 〉 − Y0

1

1√
2

(

|τ−
↑ 〉|τ+

↓ 〉 + |τ−
↓ 〉|τ+

↑ 〉
)

+ Y−1
1 |τ−

↑ 〉|τ+
↑ 〉
)

(A.16)

where Ym
l = Ym

l (θ∗, φ∗) are functions of directions of τ -leptons momenta in the Higgs boson
rest frame. But we can choose the coordinate system arbitrarily. We choose it such that
the z-axis of this system have the same direction as the momentum of negative τ -lepton

(which means that θ∗ = 0 and so Y1
1 = Y−1

1 = 0, Y0
1 =

√

3
4π

). After this choice we can
write:

|τ+τ−〉 ∼ − 1√
8π

(

|τ−
↑ 〉|τ+

↓ 〉 + |τ−
↓ 〉|τ+

↑ 〉
)

(A.17)

After calculations analogic to those done in previous Section A.1 we finally obtain:

∣

∣

∣〈ν|〈ν̄|
(

|τ−τ+〉
)∣

∣

∣

2 ∼ 1

16π
(1 + cos θ cos θ′ − sin θ sin θ′ cos φ) (A.18)

And thus

1

Γ

dΓ

d cos θd cos θ′dφ
=

1

8π
(1 + cos θ cos θ′ − sin θ sin θ′ cos φ) (A.19)
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Appendix B

Detailed calculation of squared

matrix element

B.1 Squared matrix element

We are going to perform detailed calculation of the squared matrix element from Section 2.2.1.
Process to be calculated is described by Feynman diagram 2.1. Corresponding matrix
element is given by (2.9). It’s complex conjugate is

M∗ = gHττ (−GF cos θCfπ)2 × 4v̄R(k′)/p′
1

−/q′ − mτ

1

/q − mτ
/puL(k) (B.1)

The squared matrix element is:

|M|2 = C × v̄R(k′)/p′(−/q′ + mτ )(/q + mτ )/puL(k)ūL(k)/p(/q + mτ )(−/q′ + mτ )/p′vR(k′)

= C × Tr
(

/k′ 1 + γ5

2
/p′(−/q′ + mτ )(/q + mτ )/p/k

1 + γ5

2
/p(/q + mτ )(−/q′ + mτ )/p′

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1 − γ5)(−/q′ + mτ )(/q + mτ ) =
= (1 − γ5)(−/q′/q + m2

τ ) + (1 − γ5)mτ (−/q′ + /q)
= (−/q′/q + m2

τ )(1 − γ5) + mτ (−/q′ + /q)(1 + γ5)
(1 − γ5)(1 + γ5) = 0
(1 − γ5)(1 − γ5) = 2(1 − γ5)
(1 + γ5)(1 + γ5) = 2(1 + γ5)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= C × Tr
(

/k′ /p′mτ (−/q′ + /q)/p/k
1 + γ5

2
/p
(

(−/q /q′ + m2
τ ) + mτ (−/q′ + /q)

)

/p′
)

= C × Tr
(

/k′ /p′mτ (−/q′ + /q)/p/k
1 + γ5

2
/pmτ (−/q′ + /q)/p′

)

= C × Tr
(

/p/k/pmτ (/q − /q′)/p′ /k′ /p′mτ (/q − /q′)
1 + γ5

2

)

(B.2)

Using the energy-momentum conservation

p = q − k
p′ = q′ − k′ (B.3)
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and the fact that with good accuracy neutrino can be considered as being massless (i.e.
/k/k = k2 = 0) the last expression is equal to:

|M|2 = C × m2
τTr

(

/q/k/q(/q − /q′)/q′ /k′ /q′(/q − /q′)
1 + γ5

2

)

(B.4)

In order to continue we recall the well known formulas from arithmetic of γ-matrices:

γµγν = −γνγµ + 2gµν (B.5a)

Tr(γµγν) = 4gµν (B.5b)

Tr(γµγνγ5) = 0 (B.5c)

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (B.5d)

Tr(γµγνγργσγ5) = 4iǫµνρσ (B.5e)

/a/a = a2 (B.5f)

Now we can finish the calculation and express the squared matrix element in terms of
scalar products of particles momenta:

|M|2 = C × m2
τTr

(

/q/k/qm
2
τ
/k′m2

τ

1 + γ5

2
− /q/km2

τ /q′ /k′m2
τ

1 + γ5

2
−

−m2
τ /k/qm

2
τ
/k′ /q′

1 − γ5

2
+ m2

τ /km2
τ /q′ /k′ /q′

1 − γ5

2

)

= C × m6
τTr

(

1

2
/q/k/q /k′ − /q/k/q′ /k′1 + γ5

2
−

−(−/q/k + 2(k · q))(−/q′ /k′ + 2(k′ · q′))1 − γ5

2
+

1

2
/k/q′ /k′ /q′

)

= C × m6
τTr

(

1

2
/q/k/q /k′ +

1

2
/k/q′ /k′ /q′ − /q/k/q′ /k′1 + γ5

2
− /q/k/q′ /k′1 − γ5

2
+

+2(k · q)/q′ /k′1 − γ5

2
+ /q/k2(k′ · q′)1 − γ5

2
− 2(k · q)2(k′ · q′)1 − γ5

2

)

= C × m6
τ

1

2
Tr
(

/q/k/q /k′ + /k/q′ /k′ /q′ − 2/q/k/q′ /k′ +

+2(k · q)/q′ /k′ + 2(k′ · q′)/q/k − 2(k · q)2(k′ · q′)
)

= C × m6
τ

1

2
4(2(q · k)(q · k′) − m2

τ (k · k′) + 2(k · q′)(k′ · q′) − m2
τ (k · k′) −

−2(q · k)(q′ · k′) + 2(q · q′)(k · k′) − 2(q · k′)(k · q′) +

+2(k · q)(q′ · k′) + 2(k′ · q′)(q · k) − 2(k · q)2(k′ · q′))
= C × 2m6

τ (2(q · k)(q · k′) + 2(k′ · q′)(k · q′) + (2(q · q′) − 2m2
τ )(k · k′) −

−2(q · k′)(k · q′) − 2(q · k)(q′ · k′)) (B.6)
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B.2 Scalar products

Now, we are going to evaluate scalar products (2.13) in terms of variables cos θ, cos θ′ and
φ. We are going to use the same notation as in Section 2.2.1.

Thanks to the energy-momentum conservation in the Higgs boson rest frame we have:

qCMSH =

(

mH

2
, 0, 0,

√

m2
H

4
− m2

τ

)

q′CMSH =

(

mH

2
, 0, 0,−

√

m2
H

4
− m2

τ

) (B.7)

The Lorentz transformations then give:

q0
CMSτ+ = γ (q0

CMSH − β ′q3
CMSH)

q3
CMSτ+ = γ (q3

CMSH − β ′q0
CMSH)

q′0CMSτ− = γ
(

q′0CMSH − βq′3CMSH

)

q′3CMSτ− = γ
(

q′3CMSH − βq′0CMSH

)

β =
√

1 − 4m2
τ

m2
H

γ = mH

2mτ

(B.8)

Therefore we can write:

(k · q′) = k0
CMSτ−q′

0
CMSτ− −

∣

∣

∣

~kCMSτ−

∣

∣

∣ q′
3
CMSτ− (− cos θ)

=
∣

∣

∣

~kCMSτ−

∣

∣

∣

(

q′
0
CMSτ− + q′

3
CMSτ− cos θ

)

=
∣

∣

∣

~kCMSτ−

∣

∣

∣ γ
(

q′
0
CMSH − βq′

3
CMSH + cos θ

(

q′
3
CMSH − βq′

0
CMSH

))

=
∣

∣

∣

~kCMSτ−

∣

∣

∣ γ
(

q′
0
CMSH (1 − β cos θ) − q′

3
CMSH (β − cos θ)

)

=
∣

∣

∣

~kCMSτ−

∣

∣

∣ γ
mH

2

(

1 − 2β cos θ + β2
)

(B.9)

The calculation of (k′ · q) in CMS of τ+ is analogic:

(k′ · q) =
∣

∣

∣

~k′
CMSτ+

∣

∣

∣ γ
mH

2

(

1 + 2β cos θ′ + β2
)

(B.10)

The evaluation of (q · q′) is very simple:

(q · q′) =
1

2

(

(q + q′)
2 − q2 − q′

2
)

=
m2

H − 2m2
τ

2
(B.11)

Now we will evaluate the last term: (k · k′). To do that we are going to boost the vector
k′ to the τ− rest frame. This vector can be expressed in terms of θ′ and φ:

k′0
CMSτ+ =

∣

∣

∣

~k′
CMSτ+

∣

∣

∣

k′1
CMSτ+ = −p′1CMSτ+ = −

∣

∣

∣

~k′
CMSτ+

∣

∣

∣ sin θ′ cos φ

k′2
CMSτ+ = −p′2CMSτ+ = −

∣

∣

∣

~k′
CMSτ+

∣

∣

∣ sin θ′ sin φ

k′3
CMSτ+ = −p′3CMSτ+ = −

∣

∣

∣

~k′
CMSτ+

∣

∣

∣ cos θ′

(B.12)

35



The vector kCMSτ− is given by:

k0
CMSτ− =

∣

∣

∣

~kCMSτ−

∣

∣

∣

k1
CMSτ− = −p1

CMSτ− = −|~kCMSτ−| sin θ
k2

CMSτ− = −p2
CMSτ− = 0

k3
CMSτ− = −p3

CMSτ− = −|~kCMSτ−| cos θ

(B.13)

We have to calculate the relative speed of tauons - in other words the speed βCMSτ+

τ− of τ−

in τ+ rest frame:

βCMSτ+

τ− =
β − β ′

1 − ββ ′
=

2β

1 + β2
(B.14)

And the corresponding γ-factor:

γCMSτ+

τ− =
1 + β2

1 − β2
(B.15)

We can finally express (k · k′) in terms of variables cos θ, cos θ′ and φ:

(k · k′) =
∣

∣

∣

~kCMSτ−

∣

∣

∣

∣

∣

∣

~k′
CMSτ+

∣

∣

∣×
(

1 + β2

1 − β2
(1 − cos θ cos θ′) +

+
2β

1 − β2
(cos θ′ − cos θ) − sin θ sin θ′ cos φ

)

(B.16)

In case of π− in final state we have

|~pCMSτ−| =
∣

∣

∣

~kCMSτ−

∣

∣

∣ = k0
CMSτ− =

m2
τ − m2

π

2mτ

(B.17a)

p0
CMSτ− =

m2
τ + m2

π

2mτ

(B.17b)

and in case of ρ− in final state the pion mass is replaced by ρ-meson mass. Analogic
expressions are of course valid for π+ and ρ+.

B.3 Integration of the squared matrix element

We use standard techniques of integration over the Lorentz invariant phase space of four
particles LIPS4:

dLIPS4 = (2π)4δ4(h − p − k − p′ − k′)
d3p

(2π)32p0

d3k

(2π)32k0

d3p′

(2π)32p′0

d3k′

(2π)32k′
0

(B.18)

dΓ =
1

2mH
|M|2dLIPS4 (B.19)

36



where h denotes the Higgs boson momentum. Well known relation between dLIPS4 and
dLIPS2 is:

dLIPS4(M → m1 + m2 + m3 + m4) =
1

(2π)2
dLIPS2(M → m12 + m34) ×

× dLIPS2(m12 → m1 + m2) dLIPS2(m34 → m3 + m4)dm2
12dm2

34 (B.20)

dLIPS2 is given by:

dLIPS2(m12 → m1 + m2) =
1

16π2

|~pCMS|
m12

d cos θdφ (B.21)

where |~pCMS| is magnitude of center-of-mass momentum and θ, φ are center-of-mass spherical
coordinates. Thanks to these relations we can write:

dΓ =
1

2mH

|M|2 1

(2π)2
dLIPS2(mH → m12 + m34) ×

×dLIPS2(m12 → mπ− + mν) dLIPS2(m34 → mπ+ + mν̄)dm2
12dm2

34

= f(θ, θ′, φ)δ(m2
12 − m2

τ )δ(m
2
34 − m2

τ ) dLIPS2(mH → m12 + m34) ×
×dLIPS2(m12 → mπ− + mν) dLIPS2(m34 → mπ+ + mν̄)dm2

12dm2
34

= f(θ, θ′, φ)
4

(8π)4

√

1 − 4m2
τ

m2
H

|~pCMSτ−|
mτ

∣

∣

∣

~p′CMSτ+

∣

∣

∣

mτ

d cos θd cos θ′dφ (B.22)
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