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Title: Parameterized Complexity

Author: Ondfej Suchy

Department: Department of Applied Mathematics
Advisor: Prof. RNDr. Jan Kratochvil, CSc.
Advisor’s e-mail address: honza@kam.mff.cuni.cz

Abstract: This thesis deals with the parameterized complexity of NP-hard graph
problems. We explore the complexity of the problems in various scenarios,
with respect to miscellaneous parameters and their combinations. Our aim
is rather to classify in this multivariate manner whether the particular pa-
rameters make the problem fixed-parameter tractable or intractable than
to present the algorithm achieving the best running time. In the questions
we study typically the first-choice parameter is unsuccessful, in which case
we propose to use less standard ones.

The first family of problems investigated provides a common generalization
of many well known and studied domination and independence problems.
Here we suggest using the dual parameterization and show that, in contrast
to the standard solution-size, it can confine the inevitable combinatorial
explosion. Further studied problems are analogues of the Steiner problem
in directed graphs. Here the parameterization by the number of terminals
to be connected seems to be previously unexplored in the directed setting.
Unfortunately, the problems are shown to be intractable with respect to
this parameter. Finally, the problems of partitioning the graph into classes
of the same size, satisfying some further constraints, are considered. The
problems turn out to be one of a few which are polynomial-time solvable
on graphs of bounded treewidth, but not fixed-parameter tractable. More
fine-grained structural parameterizations are then employed and proved to
be successful.

Keywords: parameterized complexity, graph, Steiner problem, generalized dom-
ination, equitable partitions
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Nazev prace: Parametrizovana slozitost
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Katedra (ustav): Katedra aplikované matematiky
Skolitel: Prof. RNDr. Jan Kratochvil, CSc.

e-mail Skolitele: honza@kam.mff.cuni.cz

Abstrakt: Tato prace se zabyva parametrizovanou slozitosti NP-tézkych grafo-
vych problému. Zkoumame slozitost problému v ruznych scenaiich, vzhle-
dem k rozlicnym parametrum a jejich kombinacim. Nasim cilem je spiSe
rozlisit v tomto mnohorozmérném smyslu, zda dany parametr déla problém
parametrizované dostupnym, nebo nedostupnym, nez ptedstavit algorit-
mus, ktery dosahuje nejlepsi mozné casové slozitosti. V otazkach, které
studujeme, je typicky parametr prvni volby neuspésny a tak vyuzivame
méné standardnich parametru.

Prvni zkoumand mnozina problému je spole¢nym zobecnénim mnoha dobie
znamych a prostudovanych problému dominance a nezavislosti. Navrhu-
jeme zde pouzit dualni parametrizaci a ukazeme, ze narozdil od standardni
parametrizace velikosti feSeni, tato parametrizace dokaze ohrancit nevyh-
nutelnou kombinatorickou explozi. Dalsi studované problémy jsou analogii
Steinerova problému v orientovanych grafech. Parametrizace pomoci poctu
terminalu se jevi jako diive neprobadand alternativa v orientovaném pro-
sttedi. Bohuzel ukazeme, ze zkoumané problémy jsou nedostupné vzhledem
k tomuto parametru. Na problémy déleni grafu na stejné velké ¢asti, které
spliiuji néjaké dalsi podminky, se zamétujeme v posledni casti. Ukazuje
se, ze tyto problémy jsou jednémi z mala, které jsou na grafech omezené
stromové §itky sice fesitelné v polynomialnim case, ale nejsou parametrizo-
vané dostupné. Vyuzijeme tedy jemnéjsich strukturalnich parametrizaci a
ukézeme, ze tyto jsou uspésné.

Klicova slova: Parametrizovand slozitost, graf, Steineruv problém, zobecnénd
dominance, vyrovnana rozdéleni
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Chapter 1

Introduction

Classical complexity treats the problems according to whether they admit an
algorithm solving them in polynomial time in terms of the input size or not. Un-
fortunately, many (if not most) interesting problems turned to be NP-complete,
which means that a polynomial algorithm optimally solving them is fairly im-
probable.

This turned the attention to approximation algorithms which should be able
to output a solution to the problem that is reasonably close to the optimal one in
time polynomial in the input size. But for many applications such an approximate
solution is not suitable. Also measuring the running times only in terms of the
input size effectively ignores any structure of the instances.

Abrahamson, Ellis, Fellows, and Mata [AEFM89] were the first to propose to
study the problems also with respect to some additional measure, the parameter,
distinguishing whether there is an algorithm that can optimally solve all instances
which have this parameter bounded by k in time O(f(k) - n¢), where f is some
function, n is the input size and c¢ is a constant independent of k or whether
such an algorithm would require time O(nf®) for some function f, that is, the
exponent depends on k.

This idea was further elaborated by Downey and Fellows [DF92b, DF92a]
in a series of papers in which they established the theory of fixed-parameter
tractability and completeness. The series culminated in the ground-breaking
textbook by Downey and Fellows [DF98], which attracted many people to the
field and started a rapid development of the field.

Although since 2004 the International Symposium (formerly workshop) on Pa-
rameterized and Exact Computation (IPEC) devoted to results on parameterized
complexity and exact moderately-exponential algorithms is organized, the papers
involving parameterized complexity are accepted on a wide range of conferences
devoted to graph problems, algorithms and complexity.

With the growing number of papers it was more and more clear, that the
algorithms used to show fixed-parameter tractability often use techniques specific
for the field. The 2006 Niedermeier’s book [Nie06] summarizes such techniques,
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2 CHAPTER 1. INTRODUCTION

while the monograph by Flum and Grohe [FG06] from the same year concentrates
more to the intractability theory and maps various emerging complexity classes.

Since then the advancement in the field did not stop. Since the beginning it
was noted by Downey and Fellows that parameterized complexity can be under-
stood as a framework to measure the effectiveness of polynomial preprocessing.
The method most related to this perspective, the kernelization, has now its own
theory, and quite recently, in 2009, a tradition of workshops solely devoted to
this method was started.

The big advantage of parameterized complexity is that a single problem can
be studied from various points of view, using the virtually infinite set of possible
parameters. The intractability shown for a problem with respect to a particular
parameter does not mean that parameterized complexity was unsuccessful for the
problem, but, instead, that more work should be done to reveal more suitable
parameters for the problem which can possibly capture its hardness.

Also parameterized complexity enables us to study the complexity of a prob-
lem with respect to various parameters and their combination in a multivariate
manner as suggested recently by Fellows [Fel09] and Niedermeier [Niel0]. Such a
study then helps to understand where the complexity of the problem comes from
and why it is so hard to solve.

This thesis presents such a multivariate analysis of several problems in the
graph theory for which the parameter that is considered to be the standard one,
or the first to try fails to capture the hardness of the problem.

The first part of the thesis is devoted to a brief state-of-the-art overview of
parameterized complexity. As the field is already very wide, it is out of scope
of this thesis to completely summarize it. Instead, we only include topics most
related to the further chapters and those that we find crucial to give the reader
an overview of the area.

After giving the basic definitions in Chapter 3 and summarizing various mea-
sures used as parameters of problems in Chapter 4, we concentrate on the most
important method of the parameterized algorithmics, the kernelization, and the
theory related to it in Chapter 5. Chapter 6 presents other important algorithmic
methods used to show fixed-parameter tractability. Finally, Chapter 7 presents
the methods and classes of parameterized intractability.

The second part of the thesis is devoted to the multivariate analysis of several
concrete NP-hard problems in the graph theory. In Chapter 8 we study Steiner
problems in directed graphs. As these were known to be intractable with respect
to the solution-size, we examine the influence of another parameter, the number
of terminals. Unfortunately, we are not able to mimic the undirected case, where
this parameter leads to fixed-parameter tractability. Instead, we show that the
problems are intractable even with respect to a combination of the mentioned
parameters. This is complemented by algorithmic results for some special cases.

Chapter 9 is devoted to the study of domination-type problems. We first show
that for a wide class of such problems the standard parameterization by a size



of the solution fails to confine the combinatorial explosion. Then the situation is
examined with respect to the dual parameterization, for which the tractability is
achieved. Additionally, we study closely related problems which pose parity-type
constraints on the number of neighbors in the sought set, also with respect to the
dual parameterization.

In the last Chapter 10 we aim on partitioning a graph into parts that are as
close in size as possible, that is, their sizes differ by at most one. Such parti-
tions are called equitable. In the two studied problems we make the partitions
produced satisfy two natural conditions—either we require every partition to in-
duce connected subgraph, or to induce an independent set. As the problems are
known to be hard with respect to the most obvious parameter — the number of
partition classes—we examine them with respect to various structural measures.
Namely the problems turn out to be intractable with respect to the treewidth,
the pathwidth and the feedback vertex set number, while tractable with respect
to the vertex cover number and the max leaf number. The hardness result for
the first problem holds even for planar graphs.



CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries

2.1 Sets, numbers, languages, formulas

Through the thesis we use standard notations. By N we denote the set of all
positive integers (natural numbers), whereas Ny denotes all non-negative integers.
We also denote EVEN = {0,2,4,6,...} the set of all even non-negative integers
and ODD = {1,3,5,...} the set of all odd positive integers. We call a set
A C Ny cofinite if its complement A = Ny \ A is finite and recursive if there
is a deterministic algorithm that given n € Ny correctly decides whether n € A
in a finite time.

Set of all subset of a set S is denoted P(S). If S is a set and r € Ny then
(f) :={A C S| |A| =r} denotes the set of all r-element subsets of S. As usual,
we let |A| denote the cardinality of the set A. We say that Vi, V,,...,V, is a
partition of a set V ifand only if | J;_, V; = V,and Vi, j, 1 < i < j <r: VinV; = 0.
A partition is equitable if Vi, j,1 <i<j <r:||Vi| = |V;]| <1.

For a function h and a subset S of its domain, we denote the restriction of A
to S by h|s. We use the standard O() notation to compare asymptotical growth
of functions, although when talking about exponential functions sometimes the
O*() notation is used, which suppresses the polynomial factors of the functions.

An alphabet is any finite set. Most often the alphabet {0, 1} can be used for
our purposes. Elements of the alphabet are called symbols. A word or a string
in an alphabet is a finite sequence of symbols. We denote by ¥* the set of all
words in the alphabet ¥ and by |y| the length of the word y, i.e. the number of
(occurrences of) symbols in it. A language is a set of words.

In a decision problem we are given some input and a guestion and the task
is to decide whether the answer to this question is yes or no. When studying
decision problems we encode them in some suitable alphabet. This way the set of
all inputs to the decision problem with the positive answer corresponds to some
language over this alphabet. Hence we use the terms decision problem and lan-
guage as synonyms. We also assume that it is easy to recognize whether a string

5



6 CHAPTER 2. PRELIMINARIES

constitutes an encoding of an input of the problem or not. More details on the de-
cision problems and their encodings can be found in any standard computational
complexity textbook, e.g. [ABQ9].

The running time or time complexity of an algorithm is the maximum num-
ber of steps it performs on inputs of given length. We do not examine the space
complexity of algorithms in this thesis. When talking about algorithms we de-
scribe them and measure their complexity on the RAM (Random Access Machine)
model with unit cost per arithmetic operation, with the restriction that the bi-
nary encoding of every number involved in the computation must be polynomial
in the input size (so we cannot abuse this model). For complexity considerations
the Turing Machine (TM) model is used more often. Although the time complex-
ity with respect to this models generally differs, if the question is only whether
there is an algorithm running in polynomial time (polynomial algorithm), the
model chosen does not matter [CR72]. The class of all decision problems having
a polynomial algorithm that correctly decides whether the input string is in the
corresponding language or not is called P. Such problems are called polynomially
solvable.

The class NP (stands for nondeterministic polynomial time) contains problems
having certificates of solution that can be checked in polynomial time. More
precisely for such languages there is a polynomial-time checker algorithm taking
inputs formed by two strings, such that for every string in the language there is a
witness string of size polynomial in the size of the original string that makes the
checker accept this pair of strings. By contrast, for a string not in the language,
there is no complementary string of polynomial size that would make the checker
accept.

A problem is NP-hard if every problem in NP can be reduced to it in polyno-
mial time and NP-complete if it is NP-hard and in NP. A language L C ¥* is in
coNP if its complement ¥* \ L is in NP. Finally, if there is a function a : N — »*
(advice), a polynomial p : N — N, and a polynomial algorithm A(z,y, z) such
that for every n € N the length of the string a(n) is at most p(n) and z is in
the language L if and only if there is no y € ¥* |y| < p(|z|) that would make
A(x,y,a(]z|)) accept, then the language L is in the class coNP /poly. In this case
we also say that it is in coNP with a polynomial advice, or it has coNP circuits.
Refer to [AB0Q9] for a deeper account on computational complexity.

2.2 Graphs

Our notation in the graph theory is standard, for the terms that we forgot to
mention here, we refer the reader to any basic graph theory textbook as Matousek
and Nesetfil [MNQO9] or West [Wes96].

In most of the thesis we speak about undirected graphs. A graph G is a pair

(V,E), where V = V(G) is the set of vertices and E(G) = E C () is the set
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of edges. When we talk about several graphs, we sometimes call the vertices
of some of them nodes to distinguish them from the vertices of the others. We
consider only simple finite loopless graphs thorough the thesis. We denote the
set of all such graphs G. If there is an edge between two vertices v and v, that
is {u,v} € E, we say that the vertices u and v are adjacent or neighbors and
also that they are endpoints of the edge {u,v}. A complement of a graph G is a
graph G = (V, (3) \ B).

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C E(G)
and it is an induced subgraph if E(H) equals E(G) N (V(QH)). Conversely, H is
a spanning subgraph if V(H) = V(G). If S is a subset of the vertex set V(G)
then we denote the subgraph (S, E(G)N (g)) induced by the set S by G[S], while
G\ S denotes the graph G[V(G) \ 5] (especially if v € V(G) then we use G \ v
in the meaning of G\ {v}). Similarly, if e is an edge of G, then G\ e denotes the
graph (V(G), E(G) \ {e}).

A k-clique is a graph or a subgraph on k vertices having an edge between any
two of them. Conversely an k-independent set is an induced subgraph on k ver-
tices with no edges. A path of length t € Ny is a (sub)graph formed by distinct ver-
tices v, v1,. .., v, and edges {vg, v1}, {v1,v2},. .., {vi_1,v:}. The vertices vy and
vy are its endpoints. Finally, a cycle of length ¢t > 3 is a graph or subgraph formed
by distinct vertices vy, ..., v; and edges {vy,vo}, {va, v3}, ..., {vi_1, v}, {vg, 01} IE
weights on edges are given then the length of a path refers to the sum of weights
of the involved edges.

We call a graph connected if there is a path between any two of its vertices.
Maximal connected subgraphs of a graph are called connected components. If a
graph does not contain a cycle as a subgraph then it is called a forest. A tree is
a connected forest. A distance distg(u,v) between two vertices u and v is the
length of a shortest path between them. A radius of a graph is the minimum
number r such that there is a vertex that is in distance at most r from any other
vertex of this graph.

A (proper) k-coloring of a graph G is mapping ¢ : V(G) — {1,...,k} such
that no two adjacent vertices receive the same color (number). The set of all
vertices that receive a particular color in the coloring is called a color class.
A graph is k-colorable if there is at least one proper k-coloring of it. Graphs
that are 2-colorable graphs are also called bipartite and denoted (Vi, Vs, E) or
(V1 U Va, E), where V; and V; are the color classes. We also say that V; and V5
are the partitions of a bipartition of the vertices.

The set of all vertices adjacent to a vertex v is called the (open) neighborhood
of v and denoted N(v) while N[v] = N(v) U {v} denotes the closed neighborhood
of v. The degree deg(v) of a vertex v is the size of its (open) neighborhood. A
vertex is isolated if it has empty neighborhood. A graph is d-reqular if every
vertex has degree d. A 3-regular graphs are also called cubic. A matching is a
1-regular subgraph and it is perfect if it is spanning. A graph is d-degenerate if
every its (non-empty) subgraph (including itself) has a vertex of degree at most
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d.

An edge contraction is an operation which removes an edge from a graph while
simultaneously merging together its two endpoints, removing the possibly arisen
paralel edges. The graph obtained from a graph G by contacting an edge e is
denoted by G - e. Note that any connected graph can be contracted to a (graph
having) single vertex by means of edge contractions. A graph H is a minor of
a graph G, if it can be obtained from G by a sequence of vertex deletions, edge
deletions and edge contractions. A graph H is an induced minor of G if it can be
obtained by a sequence of vertex deletions and edge contractions only. A graph
class C is (induced) minor closed if any (induced) minor of a graph in C is again
in C, respectively.

By subdividing an edge we mean replacing it by a path of length 2. Note
that if we subdivide an edge and then contract any of the two edges of the newly
introduced path, we obtain the original graph. A graph G is a subdivision of a
graph H if it can be obtained from H by subdividing edges. A graph is planar
if it can be embedded into a plane without edge crossings. It is well known
that a class of planar graphs is proper minor closed and also closed under taking
subdivisions. A class of graphs is proper if it is nonempty and does not contain
all graphs.

In some parts of the thesis (especially in Chapter 8) we deal with directed
graphs. A directed graph (digraph) is a pair D = (V, A), where V = V(D) is again
the set of vertices (or nodes more often this time) and A(D) = A CV x V is the
set of arcs. Although we generally allow loops in this case, they play no role in
our consideration - they are of no use nor make any obstacle for the solution of
our problems. We use (u,v) to denote the arc directed from the vertex u to the
vertex v (starting in u and ending in v) and in this case we also say that u has an
arc to v (it is an in-neighbor of v) and v has an arc from wu (it is an out-neighbor
of u).

The notion of (induced) subgraph works analogously as in the undirected case.
A directed path from a vertex u to a vertex v is a subgraph of D formed by vertices
u = vg,v1,...,v9 = v and arcs (vg,v1), (v1,v2),..., (vi_1,v) for some t € Ny,
while a directed cycle is a subgraph ({vy, ..., v}, {(v1,v2),..., (vi—1,v), (v, v1)})
for some t € N. We say that u is connected to v and v is reachable from w if there is
a directed path from u to v. A graph D = (V, A) is strongly connected if between
each pair of vertices u and v there is a path from u to v and a path from v to u. It is
(weakly) connected if its underlying graph (V, {{u,v} | (u,v) € A or (v,u) € A})
is connected.

In a directed graph D = (V, A), the in-neighborhood N~ (u) (out-neighborhood
N*(u)) of a vertex u is the set of vertices which have arcs directed to u (from u),
and the in-degree deg™ (u) (out-degree deg™ (u)) of a vertex u denotes the size of
the in-neighborhood (out-neighborhood) of the vertex u. The terms neighborhood
and degree refer to the union of the in- and the out-neighborhood and the sum
of in- and out-degree in this case, respectively. A vertex with deg™ (u) = 0 is a
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source, and a vertex with deg® (v) = 0 is a sink.

2.3 Graph Widths

In this section we introduce some of the graph width measures that are used later
in the thesis. We start by the most renowned one, the treewidth introduced by
Robertson and Seymour [RS84].

A tree decomposition of a graph G = (V, E) is a pair (T, 0), where T is a tree
and o : V(T') — P(V) is a mapping assigning to each node z of the tree a subset
V.. of vertices of the graph G called a bag, that satisfies the following:

(i) Every vertex w € V' is in some bag,

(ii) for every edge {u,v} € E there is an x € V(T') such that {u,v} is a subset
of the bag V., and

(iii) for every vertex u € V if there are two bags V, and Vj, containing u then
for every z on the unique path from z to y in T, u is contained in V.

The width of the tree decomposition (7', 0) is the size of the largest bag minus
one.

The treewidth of a graph tw(G) is the minimum width of a decomposition over
all tree decompositions of G.

Restricting the tree involved in the tree decomposition to be a path we ob-
tain path decompositions and the pathwidth pw(G) of a graph, another measure
introduced by Robertson and Seymour.

Although the treewidth is probably the most widely used measure for sparse
graphs, it is not suitable for dense graph, although they can also have simple
structure. For that purpose, the clique-width was introduced by Courcelle and
Olariu [CO00]. The definition we give is inspired by one given in [HOSGOS].

Let k be a positive integer. We call (G, \) a k-labeled graph if G is a graph
and A : V(G) — {1,2,...,k} is a mapping. The number \(v) is called label of a
vertex v. We introduce the following operations on labeled graphs:

(1) For every i in {1,...,k}, we let o; denote the graph with only one vertex
that is labeled by ¢ (a constant operation).

(2) For every distinct ¢ and j from {1,2,...,k}, we define a unary operator
n;; such that n, ;(G,\) = (G',\), where V(G') = V(G), and E(G') =
EG)U{vw | v,w € V,\(v) =i, \(w) = j}. In other words, the operator
adds all edges between label-i vertices and label-j vertices.

(3) For every distinct ¢ and j from {1,2,...,k}, we let p,; be the unary
operator such that p;,—;(G,\) = (G, ), where X (v) = j if A(v) = 4, and
N (v) = A(v) otherwise. The operator only changes the labeling so that the
vertices that originally had label ¢ will now have label j.
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(4) Finally, @ is a binary operation that makes the disjoint union, while keeping
the labels of the vertices unchanged. Note explicitly that the union is
disjoint in the sense that (G, \) @ (G, \) # (G, ') for any X as the former
has twice the number of vertices of the later.

A k-expression is a well-formed expression ¢ written with these symbols. The
k-graph produced by performing these operations in order therefore has vertex
set the set of occurrences of the constant symbols in ¢; and this k-graph (and any
k-graph isomorphic to it) is called the value val(t) of t. If a k-expression ¢ has
value (G, \), we say that t is a k-expression of G. The clique-width of a graph
G, denoted by cwd(G), is the minimum k such that there is a k-expression of G.

Finally the following notions capture classes of graphs that do not have
bounded treewidth (for any number there is a graph in the class with treewidth
larger than that number), while they are still sparse and exhibit some struc-
ture. The concept of classes of graphs of bounded expansion was introduced by
Nesetfil and Ossona de Mendez in [NOdMO05] and in the series of journal pa-
pers [NOAMO08b, NOdM08c, NOdAMO08d]. The concept of nowhere dense graphs
was introduced by the same authors in [NOdMO08a] and [NOdMO08e].

An r-shallow minor of a graph G is a graph that can be obtained from a
subgraph of GG by contracting a family of disjoint connected subgraphs, each
having radius bounded by r. The subgraph must be taken so that the result is
a simple graph. The density of a graph is the ratio between the number of its
edges and the number of its vertices. The grad (greatest reduced average density)
of rank r of a graph G equals to the largest density of an r-shallow minor of G.
We denote the grad of rank r of G by V,.(G). A class C of graphs has bounded
expansion if there exists a function f : N — N such that for every G € C and
every r > 0 integer V,.(G) < f(r).

A class of graphs C is said to be nowhere dense if for every r there is a graph
H such that H is not an r-shallow minor of any G € C.

Examples of classes of graphs with bounded expansion include proper minor
closed classes of graphs, classes of graphs with bounded maximum degree, classes
of graphs excluding a subdivision of a fixed graph, classes of graphs that can
be embedded on a fixed surface with bounded number of crossings per each edge
and many others [NOdMO08b, NOdMO08c, NOdMO08d]. It can be shown, that every
class of graphs with locally bounded tree-width or locally excluding a minor is
nowhere-dense [NOdM08a, NOdMO8e].
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Chapter 3

Basic Definitions of
Parameterized Complexity

In this chapter we present the basis of parameterized complexity with focus on
tractability. As the fixed-parameter tractability became well known approach for
solving NP-complete problems, there are several textbooks presenting compre-
hensively the field (except for some recent developments). The corner-stone was
laid by Downey and Fellows in [DF98], more recently Niedermeier [Nie06] focused
on the algorithmics and Flum and Grohe [FG06] on the complexity theory.

3.1 Parameterization and Parameterized Prob-
lem

Parameterized complexity is a framework to measure hardness of instances of
computational problems in a multi-dimensional manner. To this end, we first
need a notion of another measure apart from the size of the instance.

Definition 3.1. A parameterization of a decision problem P € ¥* is a com-
putable function x : ¥* — ¥*.

Example 3.2. Suppose that we are going to investigate the problem of VERTEX
COVER. Here one is given a graph G and £ € N and the question is whether
there is a set of vertices of size at most k, such that each edge of the graph has
at least one endpoint in this set (such a set is called a vertex cover). Hence we
assume, that an instance of this (decision) problem is an encoding of a pair (G, k)
in some alphabet 3, G being a graph and k£ € N. Then the so-called solution-size
parameterization gives (the encoding of) k if the input represents a pair (G, k)
and (the encoding of) 1 otherwise. If a parameterization is, as in this example,
a projection of the input to one of its components, we will usually use the name
of this component to denote the parameterization.

13
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Parameterized complexity deals with parameterized problems:

Definition 3.3. By a parameterized problem L we mean any subset £ C 3* x 3%,
where ¥ is some finite alphabet. An instance of the parameterized problem L is
any pair (z, k) € ¥* x ¥*, where x is called the main part and k is the parameter
(of the instance). We call (x, k) a yes-instance for the parameterized problem £
if (x,k) € £ and a no-instance otherwise.

A parameterization provides a connection between classical decision problems
and parameterized problems:

Definition 3.4. If P C X* is a decision problem, and « : ¥* — »* a parameteri-
zation, then we denote by k-P the parameterized problem x-P := {(x,x(x)) | x €
P}. If the parameterization is clear from the context (especially for the so-called
standard parameterization) we often omit its specification and use P also for the
parameterized problem.!

Remark 3.5. Some authors [FGO06] define the parameterized problem as a pair
(P, k) and require the parameterization to be a polynomial-time computable
function k : ¥* — N. We prefer to use definition as stated above, as we neglect
the possible time needed to evaluate the parameterization. There are also some
parameterizations for which it is not possible to compute them in polynomial
time, justifying our decision (see Section 4.4).

We defer the discussion on whether the parameter must be an integer after
the main definition of parameterized algorithmics.

3.2 Fixed-Parameter Tractability

The main goal of parameterized complexity was always to decide which parame-
terized problems are fixed-parameter tractable and which are not.

Definition 3.6. We say that a parameterized problem £ C ¥* x ¥* is fized
parameter tractable if there is an algorithm that correctly decides whether an
instance (z,k) is in £ in time f(k) - |z|® for some function f : ¥* — N and
some constant c¢. Such an algorithm is called a parameterized algorithm or fpt-
algorithm. The class of all fixed parameter tractable problems is denoted FPT.

Remark 3.7. Distinguishing the cases f(k) < |z| and f(k) > |z| one can see that
an (f(k) - |z|°)-algorithm also runs in time (f(k))? + |z|*. On the other hand,
an (f(k) + |z|°)-algorithm also runs in time 2f(k) - |z|¢, as we assume both |z|
and f(k) to be at least one. Hence FPT is also a class of par. problems having
(f(k) + |z|°)-algorithms.

L As there is no standardized way to denote the parameterization of the problem, some tradi-
tional names of decision problems already use the dash. In these exceptional cases we keep the
traditional names and, thus, the part before the dash is then not necessarily a parameterization.
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Definition 3.8. A parameterized problem £ C »* x >* is in the class XP if there
is an algorithm that correctly decides whether an instance (z, k) is in £ in time
f(E) - |z|9%®) for some functions f and g : ¥* — N.

Definition 3.9. We say that a (decision) problem P is (in)? FPT (in XP) with
respect to the parameterization x (or parameterized by k) if the parameterized
problem x-P is in FPT (in XP), respectively. Again, if clear from context we
sometimes omit the parameterization.

Ezxample 3.10. VERTEX COVER is FPT with respect to k. We will prove that in
Section 5.1 (and also 6.1).

The fundamental difference between the FPT and XP algorithmic running-
times laid the corner-stone of parameterized complexity. It is obvious that FPT
C XP, while it is known that XP ¢ FPT [DF98].

Remark 3.11. We have allowed the parameter to be an arbitrary string. But in
some cases (e.g. when talking about polynomial functions of the parameter) it is
necessary to restrict the parameter to be formed by a (single) integer. Therefore
some authors require the parameter to be an integer [FG06]. On the other, hand
it is sometimes natural to consider for example a graph or a pair of numbers as a
parameter. It is easy to check that if there is an fpt-algorithm deciding whether
(x,k) € ¥* x ¥* is a yes-instance of the problem running in time f(k) - |z|® for
some function f : ¥* — N and some constant ¢, then the algorithm also runs
in time f'(|k|) - |z|¢ for some f': N — N. Hence, we can replace the parameter
k € 3* by the parameter |k| € N if necessary, without affecting the membership
of a particular problem in FPT (or XP). However, if the parameter particularly
is formed by an r-tuple (a1, as,...,a,) € N” of natural numbers, we prefer to
replace it by the sum a; + as + - - - + a, € N, as this preserves the polynomiality
of functions of the parameter.

2The letters FPT are often used as an acronym for fixed-parameter tractable. Therefore we
often say that a problem is FPT, instead of saying that it is in FPT
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Chapter 4

Parameterizations

In the previous chapter we have said that parameterized complexity relies strongly
on having further measure on the instances of the problem apart from the input
size. In this chapter we discuss some of the measures used. We would like to
remark that when talking about complexity of graph problems mostly the number
of vertices n and sometimes the number of edges m are used to measure the size
of the input. These quantities, although closely related to, are also quite different
than the actual bit-size of the input. But they are quite unsuitable for our purpose
by the following reason.

It is easy to see, that if a parameterization grows monotonically with the
input size and is unbounded (or it is lower bounded by such a function) then any
decidable problem is FPT with respect to this parameterization. Hence we head
for parameterizations unrelated to the input size. Also, as the dependence of
running time of fpt-algorithms on the parameter is mostly exponential or worse,
there is a strong need for parameterizations that remain small on some reasonable
part of the instances that are (though to be) practical.

4.1 Solution-Size and its Dual

As the vast majority of decision problems originate from optimization problems,
their instances are usually equipped with a number k£ representing the size of the
sought solution. Or, in view of the definition of the class NP, the size of the
witness we search for. This number is widely used; such a parameterization is
called the standard parameterization or the parameterization by the size of the
solution.

The disadvantage of this parameterization is that we sometimes cannot expect
it to be small. On the other hand, there is usually an input-size related upper
bound for the parameter, the answer being trivial above it. Then we can use the
parameter saying how far from this upper bound we can get. This is called the
dual parameterization and the corresponding parameterized problem is called the

17
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parametric dual of the original parameterized problem. For example, if we have
a graph problem where we search for a vertex subset S of size k satisfying some
condition, and the size of the vertex set V is n, then the dual parameterization
assigns to such an instance the number n — k, that is the size of V' '\ S. Or,
equivalently, we can keep the parameter to be k£ and change the question to be
“Is there a set of size n — k7”7

Special case of the solution-size parameterization is when the input is
weighted, i.e., we are given weights on the elements that we can use in the
solution an the question is, whether there is a solution with total weight not
exceeding the given bound (budget). As a rule, in this case, it is necessary to
normalize the weights in some sense, as otherwise (in most cases) any instance
can be transformed to an instance with the budget 1 (dividing all the weights
by the budget), effectively ruling out the possibility of the problem being FPT
(unless it is in P) with respect to the parameterization by the budget. Hence we
either allow only integer weights, or take the ratio between the budget and the
minimum weight used as a parameter (or force the minimum to be 1).

4.2 Parameterization Above Tight Lower
Bound

Sometimes there is an unbounded growing function f of the size of the input |z|,
such that whenever the parameter k is less than this function f(|x|), then the
answer is trivial. This means always yes or always no, depending only on the
problem considered. As an example consider MAX d-SAT. Here one is given a
propositional formula in form of conjunction of m clauses, each formed by exactly
d literals and the question is whether it is possible to satisfy at least k£ clauses
simultaneously. By a simple probabilistic argument one can show, that it is
always possible to satisfy at least 1 —27¢ fraction of the clauses. Hence whenever
we are asked whether it is possible to satisfy k < m(1—27%) clauses we can simply
answer yes. Otherwise there is less than k/(1 — 27%) clauses containing less than
d-k/(1 —27%) variables and any brute force algorithm can be used to show the
fixed-parameter tractability of the problem with respect to the parameter k.

Of course this algorithm is somewhat unsatisfactory. The question arises,
wheather we can get a bit more, than what we are quaranteed. That is to
pose a question: “Is it possible to satisfy at least m(1 — 279) + k clauses?” or,
equivalently, parameterize the problem by max{k — m(1 — 27%),1}. If the lower
bound used is tight, then such a parameterization is called the parameterization
above tight lower bound. To see that the bound from our example is tight it
is enough to consider a formula formed by a blocks of all 2¢ possible clauses on
some d variables, taking different variables for different blocks. As often the lower
bound is obtained by some probabilistic argument, this kind of parameterization
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is also often called the parameterization above average.

There are several positive results for such parameterizations, to see the one
for the above example refer to [AGK*10].

4.3 Further Natural Parameters

Definition of some other problems already shows off some natural parameters.
Graph problems often include several “request” that should be satisfied simulta-
neously. As the number of the request can be often assumed to be small it forms
a natural measure to parameterize with.

A typical example of such problem is STEINER TREE, where we are given an
edge weighted graph G = (V| E), a subset of vertices T (called terminals) and a
natural number p € N. The question is whether there is a connected subgraph
of G of weight at most p containing all vertices of 7. While p can be regarded
as the size of the solution, |T'| provides a further natural parameter—we will see
further in the thesis that even much more useful.

Another example can be found in the more recently studied k-LOCAL SEARCH
FOR TRAVELING SALESPERSON [Mar08]. In this problem we are given a graph
with positive weights on edges and a Hamiltonian cycle in it and the question is
whether we can find a Hamiltonian cycle which uses at most k£ edges not used by
the original cycle and its weight is smaller than the weight of the original one.
Here the number k£ can be hardly called size of the solution. Similar parameter
is involved in CONSERVATIVE COLORING where we are given a graph which has
all vertices except for one properly colored by k colors and we search for a proper
coloring of that graph with k& colors which differ from the original one on at most
¢ places [HN10]. Again, ¢ is a natural parameter which does not represent the
solution-size.

Further natural parameters appear in the problems where we search for a
consensus. For example in one problem in voting systems we are given several
linear orders on the candidates representing the votes and we search for a linear
order that is reasonably close to the given orders in a given distance measure.
Such a problem offer several natural parameters as the number of voters, number
of candidates, the sum of the distances to the consensus or the maximum distance
and many further. Moreover for each of them there is a natural scenario, where
it is reasonable to assume that this parameter will be small [BGNOS|.

Natural parameters appear also in many other areas, for example for geomet-
rical problems in higher dimensions it is natural to consider the dimension of the
problem as a parameter [KnalQ]. For string problems the size of the alphabet is
often considered, etc.
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4.4 Structural Parameters - Graph Widths

In praxis, many graph problems come with instances formed by sparse graphs,
often having some additional structure. The most obvious sparsity measure is
the average degree or the closely related degeneracy (see Section 2.3 for the
definitions). Although these parameters are quite useful for many problems, for
many others they provide too little structure.

The situation improves when we restrict our attention to the most studied
class of sparse graphs — planar graphs. Or more generally we parameterize
our problems be the genus of the graph, which is FPT to determine [Moh99].
Although many hard problems become tractable on graphs of bounded genus,
still there are many more, that are NP-complete even on planar graphs Hence
many other measures — graph widths — were introduced to really catch the
structure of graphs. . Nowadays there are dozens if not hundreds of such widths.!

If we should present some of the widths, we have to start with the treewidth.
Introduced by Robertson and Seymour [RS84] in 1984 it is the most widely rec-
ognized and definitely the most successful of them.

Interestingly it is NP-hard given G and k to decide whether the treewidth
of G is at most k& [ACP8T7], while it is FPT parameterized by k as there is an
algorithm, whose running time is linear for every fixed k [Bod96]. Since the
algorithm actually finds the decomposition in case one exists, this implies the
existence of an optimal decomposition with linear number of nodes. While this
algorithm is completely impractical due to the huge function f(k) involved in
the running time, there are practical algorithms constructing a decomposition of
width 3k +2 if the treewidth of G is at most k [Ree92| and, if this is not sufficient,
heuristic approaches are used [BK10].

Hence, if we parameterize the problem by the treewidth, it is convenient (but
should be mentioned) to assume that we are given a decomposition, and the
complexity of the algorithm is actually measured with respect to the width of the
decomposition given. We just have to bear in mind that if we don’t provide the
algorithm with the optimal decomposition, the bound on the running time of the
algorithm being an expression of the treewidth should be actually considered as
an expression of the width of the decomposition given.

After the great success of the treewidth, the research aimed both to extend the
tractability results to wider classes of graphs as well as to further restrict the class
of graphs considered to achieve tractability for further problems. To compare the
measures we use the following notion. For two graph measures x,x" : G — N we
say that k is more restrictive than ' (k' is less restrictive than k) if there is a
function ¢ : N — N such that for every graph G € G : ¥'(G) < g(k(G)). If &
is both less and more restrictive than s’ then we say that they are equivalently

LOver 40 were mentioned on the 2009 workshop on Graph Classes, Optimization, and Width
Parameters (GROW).
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restrictive.

The intuitive meaning is that if we have a subclass of graphs such that the
values of some width are bounded by a constant on that class, then the values
of any less restrictive width are bounded by a constant too. For example the
pathwidth is more restrictive than the treewidth. Also if a problem is FPT
parameterized by x (without giving the decomposition) and ' is more restrictive
than x then the problem is automatically also FPT with respect to x’.

One important branch of the research was that although the cliques are easy
instances for most problems, their treewidth grows linearly with their order, treat-
ing them as being the hardest instances. Hence there was a call for a graph
parameter less restrictive than treewidth. This issue is addressed by the clique-
width, the rank-width, the module-width, or the boolean-width all of them being
equivalently restrictive. The definition of the clique-width is given Section 2.3.
We omit the definitions of the other as we do not need them for any of our re-
sults. See [HOSGOS§] for a survey on the properties of the clique-width and the
rank-width and [Rao08] and [BXTV09] for some properties of the module-width
and the boolean-width, respectively.

More related to our results are some widths that are more restrictive than
the treewidth. First, restricting the tree involved in the tree decomposition to
be a path we obtain the pathwidth pw(G) of a graph. The restricted structure of
the decompositions can help to devise algorithms, but there are very few exam-
ples of problems being intractable parameterized by the treewidth and tractable
parameterized by the pathwidth.

Another approach is represented by the feedback vertex set number fuvs(G),
which is the size of the minimum feedback vertex set in the graph G. A subset of
vertices S is a feedback vertez set for the graph G if the graph G'\ S is a forest. It
may seem strange at first sight to use the result of one optimization problem as
a parameter for another problem, but such parameterizations turn to be useful.
A natural restriction in this case for the decision version of the “parameterizing”
optimization problems is to be FPT with respect to the solution size. We also
need it to provide some structure that we can further use. In the case of feedback
vertex set number, we can start by doing the brute force on the (small) feedback
vertex set and afterwards the rest is just a forest that we can hopefully treat
easily. The feedback vertex set number is more restrictive than the treewidth as
it can be seen that always tw(G) < fvs(G). To see that, consider the width-1
tree decomposition of the forest G \ S and add S to every bag.

As further examples of this kind let us mention the vertex cover number ve(G),
which is the size of the minimum vertex cover of the graph and the max leaf
number ml(G), the maximum number of leaves in a spanning tree of a graph.
Both of them are more restrictive than both the feedback vertex set number and
the pathwidth. To see the later, the result of Kleitman and West [KW91] can
be used showing that if the maximum number of leaves in any spanning tree of
a graph G is k then G is a subdivision of a graph on at most 4k — 2 vertices.
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Hence, maybe, the minimum number of vertices and the minimum number of
edges of a graph our graph is a subdivision of would be a better candidate for
a parameterization. But ml(G) is used more often, maybe because there is no
short name for the other two.

Finally when talking about classes of graphs with locally bounded treewidth,
locally excluding a minor, of bounded expansion or nowhere dense, the sparsity is
actually measured by some function f : N — N or an infinite sequence of excluded
minors. Hence it can be hardly used as a parameter, even though some authors
talk about parameterized algorithms also in this case. Note in this direction, that
when talking about H minor free graphs, H or |H| is sometimes indeed used as
a parameter [AGOS].

4.5 Multivariate Approach

Parameterized complexity tends not only to treat the problems under different
parameterizations, but also in different scenarios, where the interplay between
more parameterizations influences the complexity of the problems. We are always
interested in the existence of an algorithm with a certain running time. In such a
scenario a parameterization x can play several different roles (the roles are ordered
from those putting the most restrictions on the parameterization to those putting
no restrictions):

e [t is a constant with a known value kg - we restrict our attention to instances
having the value of k equal to ky. Our algorithm quite possibly does not
work at all for instances having x different then kg and thus no dependence
of the running time on x is to be examined. As an example consider the
parameterization by the graph genus. Devising an algorithm just for planar
graphs equals restricting the genus to be 0.

e [t is a constant but the value is unknown - the algorithm works for all values
of k but the running time can depend on k quite arbitrarily, in particular s
can appear in an exponent of the polynomial in the running time. A typical
example is the number d in d-HITTING SET? when we examine families of
sets, each having at most d elements. It is supposed that this measure will
be very small when applying the scenario, say definitely less than 10.

e [t is a parameter - then k can only influence the multiplicative factor in the
polynomial running time. With such an influence the algorithm can grow
much higher, for some parameterized problems, values of parameter larger
than 100 can still give reasonable running times.

2d-HITTING SET: Given a family of sets, each with at most d elements and k € N, decide,
whether there are at most k elements, such that each set in the family contains at least one of
them (is hit).
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e It is just a variable without any influence on the running time of the algo-
rithm. This is included only for completeness, as this rather means that x
plays no role in this scenario.

To get better the idea, consider a scenario in which x; has known value kg, ks is
a constant, k3 forms the parameter and x4 is a variable. Then we are interested
in the existence of an algorithm which works for all instances having x; equal to
ko and its running time on an instance x is bounded by f(ko(x), k3(z)) - |2|92(®)
for some functions f and g.

It is important to note, that an FPT result for some scenario also applies
to scenarios where each parameterization plays the same or more restricted role.
On the other hand, a hardness result for a particular scenario also translates to
scenarios that are less restrictive. In particular, an fpt-algorithm with respect
to a single parameter also shows that the problem is in FPT with respect to
the combination of this parameter and any other. Conversely, a hardness result
for a combined parameterization means also hardness with respect to each single
parameter involved in the combination. This way the number of scenarios we
need to study to get the full picture can be significantly decreased.

Also note that it makes no sense to use several structural parameterizations
with the same role if one of them is more restrictive than the other (see Sec-
tion 4.4). Although there are several hardness results for a combination of two
incomparable structural parameters such as the pathwidth and the feedback ver-
tex set number, it seems complicated to use structures provided by two parame-
ters in combined matter to develop an algorithm.

The main purpose of studying different scenarios is not only to provide peo-
ple solving the problem the best suited tool for their particular case, but also to
understand where the hardness of the problem comes from, which is very impor-
tant from the theoretical point of view. Hopefully understanding of the problem
hardness can lead to even better tractability results for it. More ideas about how
to examine the problem in the fully multivariate manner can be found in [Fel09]
and [Niel0].
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Chapter 5

Kernelization Point-of-View

Kernelization is a natural formalization of a notion of effective polynomial pre-
processing in terms of parameterized complexity. It is known by many names
such as data reduction or reduction to a problem kernel. Of course efficient pre-
processing is not only a domain of the parameterized algorithms. As the use of
a kernelization makes no harm, it can be used prior to almost any approach for
solving the problem, such as heuristics or approximation algorithms.

5.1 Basic Ideas

We present the basic ideas on an example of the now legendary kernelization for
VERTEX COVER, which is attributed to Samuel R. Buss in [DF98], but nowadays
is considered rather folklore. Recall than in VERTEX COVER we are given a graph
G and a natural £ and the question is whether there is a set of at most £ vertices in
which every edge has at least one endpoint. The standard parameter (considered
here) is k.

First observation that can help to reduce the instance is that in an instance
of VERTEX COVER isolated vertices play no role. Hence we can replace G by
G \ I in our considerations, where I is the set of isolated vertices in G. This is
usually called a reduction rule. To see its correctness (soundness) it is necessary
to check that the instance produced by the rule is a yes-instance if and only if
the original one is. In our case this means that G has a vertex cover of size at
most k& if and only if G \ I does so, which is obvious.

Further consider a vertex v having more than k neighbors in G. It has to
take part in any vertex cover of size at most k£ as the cover cannot contain all
neighbors of the vertex. Thus G has a vertex cover of size k if and only if G — v
has a vertex cover of size at most k£ — 1, immediately leading to another reduction
rule. Note that, in contrast with the previous rule, this rule uses the value of the
parameter - it is parameter dependent. Of course parameter independent rules
are more desirable, as they can be used also on the optimization problem itself,
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not only on its (parameterized) decision variant.

To complete the kernelization we need a boundary lemma saying that if the
instance is reduced (none of the reduction rules can be applied to it any more)
then either the answer is trivial, or the size of the instance is bounded in terms
of the parameter. If the VERTEX COVER instance is reduced with respect to the
above two rules, then either it is a no-instance or it has at most k2 + k vertices,
as each vertex is non-isolated and thus must be in the cover or a neighbor of one
of (at most) k cover vertices, each of them having degree at most k. Obviously,
reduced yes-instance has also at most k? edges and thus can be described by
O(k? - log k) bits.

Now we are ready to give a formal definition of kernelization:

Definition 5.1. A kernelization of a parameterized problemi P C¥*xNisa
polynomial time evaluable function A that on the input (z, k) € ¥* x N produces
an instance (o', k') := A((z,k)) € ¥* x N such that

e (2/,k') is in P if and only if (z, k) is in P, and
e there is a function g : N — N such that |2'| < g(k) and k' < g(k).

The instance (2/, k") is called problem kernel and the function g is called the size
of the kernel. If we talk about g(k)-kernel for some function g we always mean,
that there is a kernelization with g being the size of the kernel.

5.2 Further examples

First we note that that our first example translates also to a generalization of
VERTEX COVER called d-HITTING SET: Given a family of sets, each with at
most d elements and k € N, decide whether there are at most k elements, such
that each set in the family contains at least one of them (is hit). Here, in conflict
with our notion (but in accordance with the literature), we consider k to be the
parameter and d to be a fixed constant, the case of d = 2 is exactly VERTEX
COVER.

Of course it doesn’t make sense to consider elements not contained in any set
of the family. Similarly a superset of another set in the family is redundant in
the instance. The mentioned “high degree” rule can be generalized to this case
by a notion of a sunflower:

Definition 5.2. Sets Sy, .. ., .S, form a sunflower if there is a (possibly empty) set
A :=(;_; Si (center) such that the intersection of any two sets S; and S;,j # i
is equal to A or, equivalently, if the sets S; \ A (petals) are disjoint.

"'We restrict ourselves here to parameters formed by a single integer, as we want to later
speak about polynomial functions of the parameter; see also Remark 3.5.
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If an instance of d-HITTING SET contains a sunflower with more than k petals
then in order to hit each set in the sunflower we have to select an element from
the center. This can be represented by adding the center into the instance and
removing all supersets of the center (in particular all sets of the sunflower).

Using the so-called Sunflower lemma or the Erdés-Rado Lemma (see [FGOG,
Lemma 9.7, p. 211]) one can show that an instance which has more than k%-d- d!
sets contains a sunflower with more than k petals that can be found in polynomial
time in both k and the size of the instance. Thus if a reduced family contains
more sets, it is a no-instance. With the k%-d-d! sets containing altogether at most
ke-d?-d! elements we arrive at an O(k?-d?-d!-(2logd+d- (log k+log d)))-kernel.
We mention in one of the next sections that this is asymptotically optimal.

The above example is included since most kernelizations in fact use some kind
of high degree rule. It is a local rule in the sense that it only examines an (r-
Jneighborhood of a vertex (or an element) an tries to replace it with something
simpler with the same function. On the other hand there are also global rules
examining the structure of the whole graph at once. We present an example
of a crown rule in one less ordinary, although well known application on the
parametric dual of GRAPH COLORING. Here the question is given a graph G on
n vertices and k € N can G be properly colored by at most n — k colors? It is
known as “How to Save k Colors in O(n?) Steps” [CFJ04].

Definition 5.3. A crown decomposition of a graph G = (V, E) is a partition
C'UHUB =V of the vertex set, such that

e (' is an independent set,
e there are no edges between C' and B, and
e there is a matching of size |H| between H and C.

The sets C', H, and B can be thought of as the crown, the head, and the body,
respectively.

Lemma 5.4. There is an algorithm, that in polynomial time finds either
e a matching of size at least k + 1, or
e a crown decomposition C'U H U B such that |B| < 3k.

The proof can be found in [CFJ04] and we omit it here.

To solve the dual of coloring, we run the algorithm on the the complement
G of the graph G. If we find a large matching, then obviously we can color
the matched vertices by a same color, obtaining a coloring with less than n — &
colors. If C' U H U B is a crown decomposition of G then C is a clique in G that
is connected to every vertex of B. Hence each vertex of C needs its own color
that, furthermore, cannot be used on B. On the other hand, due to the matching
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between H and C (in G) it is possible to use colors of C for the vertices of H.
Thus G can be colored with n — k colors if and only if G[B] can be colored by
|B| — (k — |C]) colors. Since B has at most 3k vertices, this directly yields a
kernel.

We remark, that via the crown decomposition we can similarly get a kernel
with 3k vertices (of bitsize O(k?)) also for VERTEX COVER. A survey of other
results on kernelization can be found in [GNO7].

5.3 FPT means Kernelization

The following theorem gives a notification of the importance of kernelization for
parameterized complexity.

Theorem 5.5. A decidable parameterized problem is FPT if and only if it has a
kernelization.

Proof. First suppose that P is FPT, that is, there is an algorithm running in
time f(k) - n° The promised kernelization works as follows: If f(k) < n then
it solves the instance in f(k) - n¢ < n“"l-time and outputs some (constant size)
trivial instance being in the language if and only if the input one is. Otherwise
n < f(k) and it outputs the same instance without a modification.

For the other direction it is enough to use any algorithm (ensured by the
decidability) on the output of the kernelization. ]

Having the above theorem in hand it may seem that having a kernelization
is just another name for being FPT. The important thing here is the size of
the kernel. From the above theorem we only get super-polynomial kernels (for
NP-hard problems). In fact, as noted by Bodlaender [Bod09], we cannot get a
constant size kernel for NP-complete problem (unless P=NP). What we can get
are kernels of polynomial size as we have seen in our example and such kernels are
of broad interest, as not only they often lead to the best known fpt-algorithms
for a particular problem, but as we have mentioned earlier, they can be used in
virtually any approach to solve the problem.

5.4 On the Non-Existence of Polynomial Ker-
nels

As we have already said, a (polynomial) kernelization for a problem is more valued
than just fixed-parameter tractability. The theory of parameterized hardness is
capable of showing fixed-parameter intractability (see Chapter 7) but it is not
fine-grained enough to provide any evidence that for a fixed-parameter tractable
problem there is presumably no polynomial kernel, or to even show that some



5.4. ON THE NON-EXISTENCE OF POLYNOMIAL KERNELS 29

kernel is asymptotically optimal in terms of its size. In this section we present
the framework that is capable of such results (under certain complexity theoretic
assumptions). We need the following definition of an algorithm doing an “OR”
of several instances:

Definition 5.6. A composition algorithm for a parameterized problem P C >* x
N is an algorithm that receives as input a sequence ((z1,k),..., (x4, k)), with
(x;, k) € ¥* x N for each 1 < i < t, uses time polynomial in Zﬁzl |z;| + k, and
outputs (y, k') € ¥* x N with

e (y,k') € P if and only if there is an 1 < i < ¢ such that (z;, k) € P and
e k' is polynomial in k.

A parameterized problem is compositional if there is a composition algorithm for
it.
We also need the following notion:

Definition 5.7. An unparameterized version of the parameterized problem P C
»* x N is the language P := {z01* | (z,k) € P}, where ¢ ¢ %, and 1* is a unary
encoding of k with 1 being an arbitrary symbol of 3.

It is important that in the unparameterized version of the problem the parameter
forms a lower bound for the input size, as it is encoded in unary. For most graph
problems this is the case anyway, thus taking the unparameterized version makes
no difference.

The main theorem of the framework states:

Theorem 5.8 (Bodlaender, Downey, Fellows, and Hermelin [BDFH09]; Fortnow
and Santhanam [I'S08]). Let P be a compositional parameterized problem whose
unparameterized version P is NP-complete*. Then, if P has a polynomial kernel

then NPCcoNP/poly. this would imply a collapse of the polynomial hierarchy to
the third level.

To use the framework, it is necessary to show the composionality of the prob-
lem considered. For many graphs problems this is easy, the composition algorithm
can simply return the disjoint union of the input graphs and leave k' := k. This
works for example for k-PATH, where one asks, whether a given graph GG contains
a path of a given length k € N, parameterized by k. But there are also prob-
lems for which the compositional algorithm is fairly complicated (cf. [DLS09]),
sometimes surprisingly also using the positive results known for the problem.

It is also possible to transfer the result obtained on one problem to another
problem for which we were unable to design compositional algorithm directly.
For that purpose the following transformation is used:

2As we mostly deal with NP-hard problems, this requirement is fulfilled as long as the
parameter can be upper-bounded by some polynomial of the input size.
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Definition 5.9 (Bodlaender, Thomassé, and Yeo [BTY08]). Let P C ¥* x N and
Q C ¥* x N be parameterized problems. We say that P is polynomial parameter
reducible to Q, written P <p;, Q, if there exists a polynomial time computable
function f : ¥* XN — ¥* x N and a polynomial p, such that for all (z,k) € ¥* xN

o (z,k) € Pif and only (2/, k') := f(z,k) € Q and
o k' < p(k).
The function f is called polynomial parameter transformation.

Proposition 5.10 (Bodlaender, Thomassé, and Yeo [BTYO08]). Let P and Q be
the parameterized problems and P and Q be the unparameterized versions of P
and Q respectively. Suppose that P is NP-complete and Q is in NP. If there is
a polynomial parameter transformation from P to Q, then if Q has a polynomial
kernel then P also has a polynomial kernel.

We believe that the usage of this proposition does not need any example, but
we mention that such a reduction exists showing that k-LEAF OUT-BRANCHING
has no polynomial kernel [FFL*09]. In k-LEAF OUT-BRANCHING we are given a
directed graph and k& € N and the question is whether the directed graph contains
a subgraph in which every vertex except for one has in-degree exactly 1 and k
vertices has out-degree 0. Another complicated transformation can be found in
Dom et al. [DLS09], where it is shown that for certain problems, the suitably
colored version of the problem has a kernel if and only if the uncolored version
does.

Recently Dell and van Melkebeek [DvM10] proved by a method to some ex-
tent similar to the above framework, that the O(k?log k)-kernel for d-HITTING
SET mentioned in Section 5.2 is presumably optimal up to a logarithmic fac-
tors. Namely they have shown, that there is no kernel of size O(k9~¢) for any
e > 0, unless NPCcoNP/poly. Furthermore they have shown that there are
no O(k*¢)-kernels for a class of graph deletion problems, where the task is to
delete at most k£ vertices from a given graph to obtain a graph that fulfill some
fixed subgraph-hereditary graph property. FEEDBACK VERTEX SET, BOUNDED-
DEGREE DELETION or PLANAR DELETION are examples of such a problems
(Here the task is to delete at most k vertices to obtain a forest, a graph with
bounded-degree, and a planar graph, respectively). We believe that this approach
will provide many further tight kernel lower bounds in the future.

5.5 Notion of Kernelization Relaxed

As the number of problems unlikely to have polynomial kernels grows, several
approaches to relax the notion of kernelization were made. The easiest way to do
this is to desist from the somewhat artificial requirement, that the result of the
procedure must be an instance of the same problem. More formally:
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Definition 5.11. A bikernelization from a parameterized problem P to a pa-
rameterized problem @ is a polynomial time evaluable function A that on the
input (z,k) € ¥* x N produces an instance (2, k") := A((z,k)) € ¥* x N such
that

o (2/,k') isin Q if and only if (z,k) is in P, and
e there is a function g : N — N such that |2'| < g(k) and &' < g(k).

The instance (z', k') is called a problem bikernel and the function g is called a
size of the bikernel.

Note that, similarly to Theorem 5.5, existence of a bikernel from P to a
decidable problem implies that P is FPT. Moreover, if P and Q are NP-complete
and the parameters are upper bounded by the size of the input, then P has a
polynomial kernel if and only if there is a polynomial bikernel from P to O.
Hence, this notion does not bring too much new.

In fact, the notion of bikernelization is very close to the so-called annotated
kernels. An annotation is additional information added to handle partially solved
instances during the run of an algorithm. An instance of the original problem
can be viewed as a special instance of the annotated problem. On the other
hand, although no polynomial kernel is known for the original problem, there can
be a polynomial kernel for the annotated problem (sometimes called annotated
kernel), as in this case some information can be stored in the annotation.

A well known example is the case of DOMINATING SET IN PLANAR (GRAPHS
where we are given a planar graph and £ € N and the question whether there is
a set of at most k vertices, such that each vertex not in this set has a neighbor in
it (is dominated). Here the annotation divides vertices into two groups — those
that are already dominated by vertices taken into a solution and removed from
the graph — these vertices are left in the graph as they can still dominate some
of the other vertices — those not dominated yet, which form the other group.
This way we can obtain a linear kernel for (ANNOTATED) DOMINATING SET IN
PLANAR GRAPHS [DF9S|

Another approach is based on the observation that for praxis it is still desirable
to produce polynomially many (in terms of the input size) polynomial (in terms
of the parameter) kernels. Such a reduction is often called Turing kernelization.
Fernau et al. [FFL09] showed that there is a cubic kernel for ROOTED k-LEAF
OUT-BRANCHING a variant of k-LEAF OUT-BRANCHING, where the root of
the sought out-branching is given. Hence k-LEAF OUT-BRANCHING can be
transformed into n Turing kernels, each of size O(k?), although it was shown
unlikely to have a standard polynomial kernel.

There is an active research in the area. The already mentioned results of Dell
and van Melkebeek [DvM10] show that the existence of a Turing kernelization
asking n!'~¢ queries each of size polynomial in k, for some € > 0 would imply the
collapse of the polynomial-time hierarchy.
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5.6 Similar approach - Win/Win

After applying the reduction rules, kernelization basically branches into two cases
according to the size of the reduced input: If the reduced input is too large than
the answer is trivial. If it is small, then the running time of an algorithm we
have will be hopefully affordable. It is not necessary to lower exactly the input
size. The only requirement is that the low value of the decisive measure provides
us with a (known) reasonable algorithm. This approach is sometimes called
Win/Win that is we “win” if the measure is high and also if it is low. The
measure used is mostly some graph width.

We give an easy illustrative example for MAX LEAF, where given a graph and
k € N we search for a spanning tree of the graph with at least k leaves, k being
the standard parameter. We start by doing (arbitrarily) a bread-first search from
some vertex. If the tree obtained has at least k leaves, we won. Otherwise each
layer contains at most k£ — 1 vertices. Note that the edges only appear inside
layers and between two consecutive layers. Hence we can easily obtain a path-
decomposition of width 2k — 2, forming a bag from each two consecutive layers.
As MAX LEAF is FPT with respect to the pathwidth (by a dynamic programming
on the path decomposition [Bod93], see Section 6.2 for such algorithms), we win
in this case also.

The very powerful “bidimensionality” approach that also significantly relies
on the win/win paradigm is described in Section 6.7 as it is also based on the
theory of minors.



Chapter 6

Further Algorithmic Methods

In this chapter we present the most important methods that are used to show
fixed-parameter tractability.

6.1 Bounded Search Trees

If there is a method, that is similarly important in showing fixed-parameter
tractability with respect to the solution size (or its dual) as kernelization, it
is definitely the method of Bounded Search Trees. Or, if you want, you can call
it Branching or Recursive algorithms. As there is not so much theory related to
this method, we cut its presentation in space.

The basic idea is very simple: Identify a set of objects, one of which must
be in the solution and try all possibilities to add one of them to a solution set.
Continue recursively searching for a one-smaller solution on each of the partially
solved instances. This gives a search tree of the recursive calls. This works for
the primal parameterization, if the dual parameterization is used, we talk about
objects that will not be a part of the solution

The important thing making this a special case of brute-force algorithms is
that the size of the search tree can be bounded in terms of the parameter. As the
depth of the tree is usually bounded by the solution size, it remains to bound the
number of solution possibilities in each call of the procedure. The set of objects is
usually constant size, but sizes bounded by the parameter are good as well. The
number of leaves of the search tree is then bounded by the k-th power of the size
of the set, while the number of internal vertices in the tree is upper-bounded by
the number of leaves. The time needed inside one recursive call (corresponding
to one node of the tree) is usually polynomial.

More involved algorithms usually add more than one object at once into the
solution (at least in some branches) doing the analysis of the size of the tree
more complicated. Also several different branching rules for different situation
usually form the whole algorithm. As the branching algorithms are widely used

33



34 CHAPTER 6. FURTHER ALGORITHMIC METHODS

in the area of moderately exponential exact algorithms for hard problems, the
ways to compute (an upper bound for) the running time can be found in any
standard textbook on algorithms (see for example [KT05]). For most of the
complicated branching algorithms it is hard to come with lower bound matching
(or approaching) the upper bounds and thus the actual time complexity is rather
unknown, which makes it harder to compare different branching algorithms.

The easiest example is the folklore O(2%-n)-algorithm for VERTEX COVER. It
is directly suggested by the definition of the problem — as each edge has to have
at least one endpoint in the cover, we try both possibilities, delete the appropriate
vertex from the graph (together with the incident edges), and continue recursively
on the rest, searching for a cover of size at least by one smaller. Obviously there
is no cover of size 0 for a graph with at least one edge, while for an edgeless graph
the empty set is a cover of size 0. It is immediate that such a search tree has
at most 2 leaves and, thus, O(2*) nodes, the time needed to process each node
being proportional to the number of vertices.

The algorithm can be improved by employing the idea that either a vertex is
a part of the cover, or all its neighbors are. In this case, the bigger the degree
of the vertex, the larger the progress we make (in one of the branches). Hence
it is preferable to process the vertices of the highest degrees first. Once there
is no vertex of degree at least 3 anymore, the minimum vertex cover for the
graph can be found in linear time. Hence whenever we branch, one branch has
the parameter reduced by at least 3, while the other by one. The resulting tree
has O(1.4656%) nodes, the time spent in each node is still linear, yielding an
O(1.4656" - n)-algorithm. This can be further improved to O(1.4656% - k% + k - n)
by first using the Buss’ Kernelization. Also note that 1.4656% - k* is O(1.4657%)
and therefore we can omit the factor polynomial in k as the base of the exponent
was already rounded up.

Further example is d-HITTING SET, which also admits a natural search tree
algorithm. Here for d € N fixed constant and £ € N parameter we are given
a family of sets, each with at most d elements and we should find at most k
elements that hit every of the given sets. That is, the solution must contain at
least one element out of each set. There is nothing easier than to take one set
and try each element as the one that hits this set. Delete all sets hit by this
element, decrease the parameter and continue recursively. We arrive at an O(d)
search tree for the problem.

Observe that a solution containing more elements of the set is considered
in several branches of algorithm — in each branch that corresponds to some
of the elements finally taken into the solution. We can actually partially avoid
this inefficiency. To this end, we need the following reduction rule: Whenever
an element u is contained in each set, where v is contained, delete v from all
sets (without changing the value of the parameter), as it is never worse to take
u whenever v should be taken. Now we force our algorithm to only consider
the solutions containing the first element of the set (in some order) in the first
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branch and delete it (as unusable) in all other branches. For each of the elements
u different from the first one, there is always a set that contains the first element
but not the element u. This set is not hit by the element u and has at most d — 1
elements as the first element was deleted from it. Therefore it allows for better
branching in the recursive call. This approach suggested in [NRO3] brings the
base of the exponent down to

d—1 4
a(d):T<1+ 1+m>7

which is a significant improvement at least for small values of d. For example
a(3) roughly equals to 2.41.

It is important to note, that in the above example, the rule has to be applied
at the beginning of each recursive call, as otherwise the condition can be violated
during the execution. This increases the polynomial time needed in each node.
On the other hand, this is greatly balanced by the improvement of the exponential
factor. Furthermore this time can be decreased using the kernelization from
Section 5.1. Usually (as in this case) the reduction rules are also used in between
the branchings, which is sometimes called interleaving (of the kernelization and
the search tree). This usually improves the performance both practically and
theoretically. Quite typically an fpt-algorithm is formed by a set of rules, some of
them being reduction rules (hopefully yielding a kernelization) and some of them
being branching rules.

6.2 Dynamic Programming and Algorithmic
Meta-Theorems

Dynamic programming is definitely the most successful technique for problems
parameterized by something else than the solution-size or its dual. It is based on
finding the solutions for the subproblems of the original problem, storing them
in a table and then combining the solution for smaller subproblems to obtain a
solution for larger subproblems.

Although the success of the method is very much connected with the suc-
cess of the treewidth and other structural measures, we prefer to start by an
example for STEINER TREE parameterized by the number of terminals to be
connected, as this is very close to our results presented in the second part of the
thesis. The algorithm we present is a modification of the famous Dreyfus-Wagner
Algorithm [DWT2] as presented in [DYW™07].

In STEINER TREE we are given a graph G = (V| F) with integral weights on
edges w : ' — N, a set of terminals 7' C V' and integers p € N. The question is
whether there is a tree of cost at most p containing all the terminals.
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We use two tables S and D: For any X C T and r € V the table entry
S(r, X) will store the smallest weight of a tree that contains vertices of X U {r}
(for a better imagination it can be viewed as rooted in r) and the table D(r, X)
will store an auxiliary number that in most cases equals the weight of a smallest
tree (rooted in r) that contains vertices of X U {r} in which either r has degree
at least two or r € X. As the answer is trivial for |T'| < 1, we assume |1 > 2.

The algorithm proceeds through all sets () # X C T from the smaller to the
larger ones and for each of them does the following two things: First, if X is
a singleton then we set D(r, X) := S(r, X) := 0 for {r} = X and D(r, X) :=
S(r,X) := oo for each r € V'\ X. Otherwise, for every r € V', we set

D(r,X) := O);Iér)l/igX(S(T’ Y)+S(r, X \Y)). (6.1)

Second, we obtain the values of S(r, X) for every r € V as

S(r,X) = Ivréi‘l;l(D(v,X) + distg(r,v)), (6.2)
where distg(r,v) is the length of the shortest path between r and v in G. This is
done by running Dijkstra’s Algorithm [Dij59] on S(r, X) initializing S(r, X) :=
D(r, X) for every r € V. The result of the whole algorithm is obtained as
S(r,T\ {r}) for an arbitrary r € T'.

The overall correctness of the algorithm follows from the claim, that the al-
gorithm correctly computes S(r, X) for every r € V and § # X C T. This is
easily seen if X = {x} as in this case Dijkstra’s Algorithm in fact computes the
shortest path from r to x. We further proceed by the induction on the size of the
set X.

Next we show that whenever the algorithm assigns a value t to a cell S(r, X) or
D(r, X) of the tables, there is a connected subgraph of weight at most ¢ containing
the vertices X U{r} justifying that. If the value of D(X,r) is set according to the
equation 6.1 then we obtain such a graph as the union of the graphs for S(r,Y")
and S(r, X \'Y). Similarly if the recurrence 6.2 is used, the graph is obtained as
the union of the shortest path from r to v with the graph for D(v, X).

Finally suppose that |X| > 2, the claim holds for every nonempty proper
subset of X and there is a tree 7" containing X U {r} of weights smaller than
S(r, X). Denote by v the vertex closest to r in 7" that is either in X or of degree
at least tree in 7" and P, the (possibly trivial) path between r and v.

If v € X then T\ (V(P,) \ v) forms a tree for {v} U (X \ {v}) and hence is
lower bounded by S(v, (X \ {v}), due to our assumptions, as ) # (X \ {v}) C X.
Thus w(T") > S(v, (X \ {v}) + w(P,) = S(v, (X \ {v}) + S(v,{v}) + w(P,) >
D(v, X) + distg(r,v) > S(v, X) — a contradiction.

Otherwise 7" \ V(P,) has more components. Then denote Y the subset of
X contained in the first component. The subtree of 7" induced by the first
component together with v is a tree for Y U {v} and therefore is lower bounded
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by S(v,Y) due to our assumptions, as ) # Y C X. Similarly, removing the
first component and P, \ v we obtain a tree for (X \ Y) U {v} lower bounded by
s(v, X\Y). Thus w(T") > s(v,Y)+s(v, X \Y)+w(P,) > D(v, X)+distg(r,v) >
S(r, X), contradicting our assumptions.

As to the time complexity, the equation 6.1 yields two table lookups for each
combination of ) CY C X C T and each r € V, hence the total time needed to
evaluate the recurrence 6.1 can be bounded by O(3IT.n). Further, in each of the
2Tl jterations of the cycle we execute once Dijkstra’s Algorithm, which can be
implemented to run in time O(nlogn + m) [FT87h]. Hence the whole algorithm
runs in time O(3/T!- n + 2/T/(nlogn + m)).

As we have said, dynamic programming is, among parameterized algorithmics,
mostly used in connection with the treewidth. To this end, usually the following
modified decomposition is used:

Definition 6.1. A tree decomposition (7', ¢) of a graph G = (V, E) is called nice
if it has a distinguished root and each node x is either a leaf or

e it has exactly one child y and there is a vertex v € V such that V,, = V,U{v}
(such a node is called introduce node), or

e it has exactly one child y and there is a vertex v € V,, such that V,, = V,\{v}
(forget node), or

e it has exactly two children y and z such that V, =V, =V, (join node).

We use G, to denote a subgraph of GG induced by the vertices of V, and all vertices
that appear in the bags of the subtree of T rooted in x.

Due to the following observation we can always assume that the decomposition
we are given is a nice decomposition with O(k - n) nodes.

Observation 6.2. Given a tree decomposition (T, o) of width k with O(n) nodes,
we can modify it to a nice tree decomposition with O(k-n) nodes in O(k-n) time.

We demonstrate the use of dynamic programming on a problem parameterized
by the treewidth on INDEPENDENT SET. In INDEPENDENT SET we are given a
graph and search for a maximum size independent set. A subset of vertices is
called independent if no two of the vertices are connected by an edge. We also
assume that the tree decomposition of width tw(G) is given on the input.

We associate with each node x a table A, indexed by all subset of V. The
number stored in the table on index S will represent the maximum independent
set I in GG, that intersect V, exactly in S or —oo if S itself is not an independent
set.

We fill the tables from leaves of the decomposition to the root assuming that
by the time we process a node, all its children were already processed (this is
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usually called bottom-up fashion). For the leaves we set A,(S) := |S] if S is an
independent set and A,(S) := —oo otherwise. If x is an introduce node with child
y, where the vertex v is introduced, we set again A,(S) := —oo if S is not an
independent set. Otherwise if v is contained in S, we set A,(S) := A,(S\{v})+1
and for v ¢ S we let A,(S) := A,(S). Similarly for a forget node forgetting vertex
v and S an independent set we set A,(S) := max{A4,(5), A,(SU {v})}. Finally,
let « be a join node with children y and z and S C V. If either A,(S) = —o0
or A,(S) = —oo then set A,(S) := —oo. Otherwise we let A,(S) := A,(S) +
A,(S) — |S|. The size of the maximum independent set in the graph is then the
maximum number stored in the table of the root.

The algorithm obviously runs in time O(2% - (k? 4+ k - n)) as there are at
most 28*! subsets of each V,. The correctness follows from that the algorithm
correctly fills all the tables. This is obvious for the leaves. Now we prove that
for the other nodes under the assumption that it was already proven for all
their children. For a forget node the independent set in G, intersecting V, in S
intersects V;, in S\ {v} and, hence, the correctness of the table directly follows
from the correctness of the tables of the children. Similarly for the introduce
node, the maximum independent set in GG, either contains v or not.

For the join node, assume that there is an independent set I in GG, intersecting
V, in S such that |I| > A,(S). Then I N V(G,) is an independent set in G,
intersecting V,, in S and thus [INV(G,)| < A,(S). Similarly [INV(G,)| < A.(S5)
and hence |I| < A,(S) + A.(S) — |S] = A,(S) —a contradiction. To finish the
proof, note that if I, is an independent set in G, and I, is an independent set
in G, both intersecting V, = V,, =V, in S, then I, U I is an independent set in
G, as there are no edges between G, \ V, and G, \ V, (vertices of an edge are
contained in one bag and, hence, can appear in only one subtree rooted at x).

There are many results similar to the example we gave. In fact, for any prob-
lem, that is expressible in the so-called Monadic Second-Order Logic (MSOL), a
similar algorithm exists.

The Monadic Second Order Logic (MSOL) over graphs uses the union of the
vertex set and the edge set as its domain and there are two unary predicates
— V(z) and E(z) to distinguish, whether the object x is a vertex or an edge,
respectively — and one binary I(v,e), which is true, if and only if v is a vertex
and e an edge incident to it. The quantification can be done over objects and
sets of objects (unary predicates), but not over relations of higher arity.

Often this variant is called MSO, as there is another variant MSO;, where the
domain is only formed by the vertex set and only one binary relation adj(u,v) is
available, coding the adjacency of the vertices. This variant is less powerful, as
it is unable to quantify over sets of edges.

The following result justifies the importance of the concept of tree decompo-
sitions:

Theorem 6.3 (Courcelle [Cou92]). Given an MSO, formula ¢, there is an al-
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gorithm that, given a graph G together with its tree-decomposition of width w,
decides whether G |= @, that is whether G is a model for ¢, in time O(f(p,w)-n),
where the function f is independent of G (it only depends on w and @) and n is
the number of vertices of the graph G.

The function f involved in the theorem is so huge, that it makes the theorem
mainly of theoretical interest. One-purpose dynamic programming algorithms as
the one for INDEPENDENT SET are to be used in praxis. The result can be also
strengthened in the sense, that in same linear time we can actually also find the
maximum of some linear objective function on the cardinalities of the involved
set variables. Recall that the tree-decomposition of the graph can be obtained in
linear time due to the result of Bodlaender [Bod96].

A similar result can be achieved with respect to the clique-width, we only
have to give up the quantification over sets of edges. Even this result can be
strengthened so that we can optimize a linear objective function of the cardinal-
ities.

Theorem 6.4 (Courcelle, Makowsky, and Rotics [CMR00]). Given an MSO; for-
mula @, there is an algorithm that, given a graph G together with its w-expression,
decides whether G |= ¢, in time O(f(p,w) - (n + m)), where the function f is
independent of G, n is the number of vertices and m the number of edges of the
graph G.

Finally if our problem can be defined in terms of the First Order Logic (FO),
where the quantification over sets is not possible at all, it can be decided on a
fairly general graph classes. The following results were proved in [DK09], but
similar results also appeared independently in [DKT09]. The results generalize
some older results on graphs of locally bounded treewidth and locally excluding
a minor.

Theorem 6.5 (Dawar and Kreutzer [DKQ9]). Let C be a nowhere dense class
of graphs. For every € > 0 there is a computable function f : N — N and an
algorithm which, given G € C and p € FO, decides whether G satisfies ¢ in time

f(el) - lGIe.

Theorem 6.6 (Dawar and Kreutzer [DK09]). Let C be a class of graphs of

bounded expansion. There is a computable function f : N — N and an algo-
rithm which, given G € C and ¢ € FO, decides whether G satisfies ¢ in time

f(p)-G].

6.3 Color Coding

It is no surprise that it is often easier to search only for solutions of a certain
type. The color coding technique does that by first coloring the vertices of the
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graph (adjacent vertices can receive the same color) and searching for a rainbow
solution, that is, a solution in which no two vertices are of the same color. As we
no longer search for a solution of certain size, but rather for a solution using once
each of the colors, dynamic programming can be usually used for the search. Of
course we do not always have to color vertices, there are many other parts of the
instances to be colored, such as edges.

The following clever way of coloring ensures that each possible solution is
colored in a rainbow manner at least in one of the colorings tried.

Definition 6.7. Let k,n € N. We say that H is a k-perfect family of hash
functions from {1,2,...,n} to {1,2,...,k} if for every S C {1,2,...,n} of size
k there is an h € H such that h|g is a bijection between S and {1,2,...,k}.

Lemma 6.8 (Naor; Alon, Yuster, and Zwick [AYZ95]). There is a k-perfect
family of hash functions from {1,2,...,n} to {1,2,...,k} of size |H| = 2°®).1ogn
that can be constructed in time 2°%) . n - logn.

To illustrate the technique we present the algorithm for k-PATH as stated in
the original paper of Alon, Yuster, and Zwick [AYZ95]. Recall that in k-PATH
we search for a path of given length k& (parameter) in a given graph. We start by
constructing the hash functions as guaranteed by the previous lemma. For each
h of the functions constructed we assign to each vertex v € V the color h(v) in
{1,...k} and search for a path formed by one vertex of each color.

This is done by a dynamic programming. With each vertex v € V we associate
a table S,(A) indexed by all non-empty subsets A of the color set {1,...k}.
The value on position S,(A) determines whether there is a path in G having an
endpoint in v an using one vertex of each color in A. The table is initialized by
setting S, ({h(v)}) := true and S,(A) = false for every other singleton set A.
Then the sets A are processed from smaller to larger, and S,(A) is set to true if
and only if ~(v) is in A and there is a neighbor u of v with S, (A\ {h(v)}) = true.
There is a rainbow path if and only if S,({1,...,k}) is true for some v € V.

It is not hard to see that the dynamic programming works correctly and
runs in time O(2* - k - |E|), we omit the proof here. The k-perfectness of the
hash family ensures that if a path of length k exists, then it becomes a rainbow
path by at least one function in the family and, hence, is found by the dynamic
programming. Therefore the whole algorithm runs in time O(2°®) . m -logn).

The idea used in the example can be generalized to any class of graphs with
low treewidth as follows:

Theorem 6.9 (Alon, Yuster, and Zwick [AYZ95]). Let H be a directed or undi-
rected graph on k wvertices with treewidth t. Let G = (V, E) be a (directed or
undirected) graph. A subgraph of G isomorphic to H, if one exists, can be found
in time 29|V [+ log |V|.
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6.4 Integer Linear Programming

In 1983 Lenstra [Len83] has shown that INTEGER LINEAR PROGRAMMING (or
ILP shortly) is FPT with respect to the number of variables of the instance. In
INTEGER LINEAR PROGRAMMING, given a p X n-matrix A and an n-vector b,
one asks for a vector z € NP such that Az < b (coordinatewise). The result
was later improved by several authors (see [AWWO02] for survey) to obtain the
following theorem:

Theorem 6.10 (Kannan [Kan87]). INTEGER LINEAR PROGRAMMING can be
solved using O(p>°PT°P) . L) arithmetic operations and space polynomial in L,
where L is the number of bits of the input.

Theorem 6.10 is very powerful to be used as a subroutine in other fpt-
algorithms, often yielding somewhat surprising results. Recently it is frequently
used in connection with structural parameterizations such as the vertex cover
number. Our example is not an exception from that. We present the result of
Fiala, Golovach, and Kratochvil [FGK09a] showing that EQUITABLE COLOR-
ING, where we ask for an r-coloring of the given graph with the sizes of any two
color classes differing by at most one, is FPT with respect to the vertex cover
number ve(G).

Let C be a vertex cover of size ve(G) of the graph G, and let {13, ..., I;} be the
partition of the remaining vertices according to their neighborhoods (¢ < 2v*(©)
as each vertex not in C' has neighbors only in C). Set s := %] and [ :==n —7s.
We search for a coloring with [ color classes of the size s + 1 and r — [ classes of
the size s.

Assume that only 7’ := min{vc(G), r} colors can be used on the vertices of C,
namely the colors 1,...,7. Even more specifically, we assume that among these
color classes 1,...,0', where I' < min{r’,l}, are of size s + 1 and the others are
of size s. Whenever there is an equitable r-coloring of G one can easily derive an
equitable coloring fulfilling the above assumptions by renaming the colors. Note
that (in the case r > 1) the colors ' +1,...,7 can be used on G \ C arbitrarily
and, hence, we do not have to care about these color classes once there is the
right number of vertices left for these classes.

For each I’ < min{7’, [} and each proper coloring Vi, ..., V,. of C we construct
a system of linear integer inequations with ¢ variables x; ;, for i € {1,...,t} and
j€{1,...,7"}. The variable z;; will denote the number of vertices of the color
j in the set I;. The inequations are as follows:

ZL’Z'J‘ Z 0,

x;; = 0, if color j is used in the neighborhood of I,

oy = s+1-]CnV ifjed{l,..., I},
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t
Sowy = s—ICOV]ifje{I+ 1),
=1

It is not hard to see that there is an integer solution to the above inequations if
and only if there is an equitable coloring of G extending the initial coloring of C'.
Also the ILP instance can be constructed in polynomial time given the coloring
of C. Since C has at most (7')"““) colorings and the number of variables is at
most 7’ - 2“’3(0), EQuiTABLE COLORING can be solved in FPT-time.

6.5 Iterative Compression

Iterative Compression is a method used almost exclusively for vertex deletion
problems parameterized by the size of the solution, where the task is to delete
some vertices from the graph to achieve some property. It iteratively produces
a solution for subproblems that is already one vertex bigger than the solution
we search for. Then it compresses the solution to hit the bound. If this is not
possible then there is no solution for the whole instance. Otherwise some more
vertices are considered in the subproblem so that the solution is again too big
and the next iteration is executed.

Our example is for ODD CYCLE TRANSVERSAL, where we aim to delete at
most k (parameter) vertices from a given graph G in order to make it bipartite.
The algorithm was first proposed by Reed et al. [RSV04] and the simplified version
we present appeared in [LSS09).

The main part of an algorithm based on iterative compression is the so-called
compression step. Here, given a solution of size k + 1 we are trying to find a
solution of size at most k or to show that no such solution exists. Before presenting
it, let us show how to solve the whole problem once we have an algorithm A for
the compression step.

Assume V(G) = {vy,...v,} and for ¢ € {k +2,...n — 1} denote by G, the
graph G[{v1,...,v;}]. First observe that for the graph Gy o any set of size k
constitutes a solution. Let us denote one of them Siio. Now for i € {k +
2,...n — 1} assume we have a solution S; of size at most k for G; and we want
to find one of size at most k for G;y1. The set S7,, := 5; U {vi;1} is a solution
for Gi;1 of size at most k4 1. If it is of size at most k& we denote S;1 1= Sj,;.
Otherwise we use the compression step to obtain a solution S;y; of size at most
k for G, being given the solution Sj,, of size k + 1. If there is no such solution
for GG, 11 then obviously there is no solution of size k also for the whole graph G.
At the end we either obtain a size-k solution S,, for GG,, = G or we know that
there is no solution of size at most k.

It remains to solve the compression step. Assume that we are given a solution
S’ of size k + 1 for a graph G and we search for solution S of size k. We start
be trying all possible partitions of S” into 7'U L U R. The vertices in 17" will be a
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part of the new solution, while the vertices of L and R will be on the left and the
right side of the bipartition provided by the new solution, respectively (they will
definitely not be a part of the solution). If there is an edge inside G[L] or G|[R]
then there is no chance to find a solution corresponding to this partition and we
continue with a further partition. Otherwise we make use of the following fact:

Fact 6.11. If H = (V, U V4, E) is a bipartite graph with the partitions Vi and Vs
then

e any trail from V; to V; has even length (i =1,2) and
e any trail from Vi to Vo has odd length.

The graph G\ S’ is bipartite. Let us call the partitions A and B, and denote
Ap, By, the neighbors of the set L in A and B, respectively. Similarly Ar and Bg
denote the neighbors of R. We further need the following lemma:

Lemma 6.12. If X is a subset of V'\ S" such that G\ (T'U X) is bipartite with
partitions Vi, and Vg such that L C Vy, and R C Vg, then in G\ (S'UX) there are
no paths between Ay and By, Ag and Bgr, Ar and Agr, and between By and Bpg.

Proof. Assume there is a path between Ay and By, then Fact 6.11 implies it has
an odd length as it goes from one partition of G\ S’ to the another. Hence it can
be prolonged to an odd trail from L to L in G\ (T"U X) which is a contradiction
with G'\ (T'U X) being bipartite. Similarly for the other combinations. O

Lemma 6.13. If X is a subset of V' \ S’ such that in G\ (S"U X) there are no
paths between Ay, and By, Ar and Bgr, Ar, and Ag, and between By, and Bg, then
G\ (T'UX) is bipartite with partitions Vi, and Vg such that L C Vi and R C Vj.

Proof. First note that in this case each path from L to L with internal vertices
from V'\ (S’ U X) is even. The same holds for such a path from R to R, while
any such path from R to L is odd. Thus if G \ (T'U X) is bipartite then the
partitions V7, and Vg can be taken such that L C V; and R C Vj.

Suppose that there is a cycle C'in G\ (TUX). If CN(LUR) # () then C'is even,
as the graph G\ 9’ is bipartite. Otherwise denote vy, ..., v; vertices of CN(LUR)
in order as they appear on the cycle, and for simplicity set vy := v;. The length
of the cycle can be counted as |E(C)| = S2\_) do(vi, vig1), where de(vi,viyy) is
the distance between v; and v;,; taken along the cycle C. It remains to observe
that the number of indices ¢ with v; € L and v;;1 € R equals the number of ¢’s
with v; € R and v;;; € L and hence C is again even. O

Due to the above lemma, to finish the compression step it is enough to find
X of size at most k — |T| such that in G'\ (S U X)) there are no paths between
the mentioned pairs of sets. But this is equal to finding a cut of size k — |T|
in G\ 5 between Ay, U Bg and Ar U Br. This can be done in time O(k - m)
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using standard flow techniques [FF56]. As this is done at most 3**! times in
the compression step and the compression step is executed at most n times, we
obtain an O(3% - k - n - m) running-time for the whole algorithm.

Iterative compression was several times the break-through tool on problems
resisting the research attacks for a long time before. A survey of known results
based on iterative compression can be found in [GMNO09).

6.6 Greedy Localization

Similarly to the previous technique, greedy localization uses some solution that is
not good enough as a starting point for the search for the desired one. In contrast
to the previous method, this time we use an inclusion maximal solution that is
found greedily.

The idea is best illustrated on PACKING 3-SETS where we are given a system
C of three-element subsets of a finite set S and an integer £ € N. The task is to
find a subsystem C’ of at least k& mutually disjoint sets. The result is due to Jia
et al. [JZC04] and actually uses the idea twice.

The algorithm first greedily locates an inclusion maximal subsystem C; of
system C formed by pairwise disjoint sets. We assume |C)| < k as otherwise we
are done. Each set in an optimal solution must contain at least one element of
UC} as Cj is maximal. Hence an optimal solution fits into one of the following
patterns:

C* = {{a1, *, %}, {ag, *, %}, ..., {ag, x,*}}, where a; € UC(’) are distinct.

Our algorithm will try all such patterns. Now assume that we have a pattern
P with some positions filled and some still carrying a wild-card symbol x. We
greedily try to fill the pattern into a pattern P’. That is we take the incomplete
sets in the pattern one by one and look for a 3-set of C that contains the elements
prescribed by the pattern and the other elements in it are not used anywhere else
in the partially filled pattern — that is they are nor in the prescribed pattern P
neither they have been already used to fill other set in P’.

If we succeed to fill the whole pattern, we have a solution. Otherwise consider
the set S which we were unable to fill. If every its completion contains elements
of some other part of P, that means the pattern P cannot be realized. Otherwise
to complete this set we have to use some elements already added to the other
sets in the pattern P’. As an optimal solution fitting the pattern (if it exists)
must add one of these elements into S we try all the possibilities to do so. The
element is added permanently to P and the algorithm recourses on it. This way
a solution must be revealed if one exists.

As to the running time of the algorithm, the first greedy search runs in time
O(|C]). As |Cj| < 3k there are at most (3:) “Initial patterns”. We are trying
to fill each of them by the recursive algorithm, that first runs a greedy search
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in O(|C|- k) time and then possibly runs some recursive calls, each corresponding
to an element added to some set. Hence there are less than 2k of such calls, and
for each of them the pattern is filled by one more element. Hence at latest on
level 2k of the recursion it is completely full and it either constitutes a solution
or some of its sets is not in C and the pattern can be discarded. Thus the overall
running time of the algorithm is O((3k)* - (2k)% - |C|).

6.7 Using the Theory of Minors, Bidimension-
ality

The theory of minors, developed mainly by Robertson and Seymour in their
famous Graph Minors series (started by [RS83]), is nowadays one of the most
important parts of the whole graph theory. It is no surprise, that it can be also
used in parameterized algorithmics. For the basic definitions related to the minor
theory refer to Section 2.2.

The following two essential results of Robertson and Seymour are of special
interest also for parameterized algorithmics:

Theorem 6.14 (Robertson and Seymour [RS04]). Any class of graphs has finitely
many minimal elements with respect to the minor relation. In particular, if C is a

minor closed class of graphs, then there is a finite set F(C) of obstructions such
that G € C if and only if there is no H € F(C) such that H is a minor of G.

Theorem 6.15 (Robertson and Seymour [RS95]; shorter proof published recently
in [KW10]). There is an algorithm that decides whether H is a minor of G in
time O(f(H) - |[V(G)|?), for some function f.

Putting Theorems 6.14 and 6.15 together we obtain the following corollary:

Corollary 6.16. Any minor closed graph class C can be recognized in a cubic
time.

Proof. Due to Theorem 6.14, graph G is in C if and only if there is no
minor H of G in F(C). By Theorem 6.15, this can be tested in time

@) <(ZH€HC) f(H)) : |V(G)]3>. It remains to note that >°; r ) f(H) is a finite
constant since F(C) is finite. O

It is very easy to use Corollary 6.16 in parameterized complexity. It is enough
to show that a set of yes-instances with a particular value of the parameter is
minor closed.

Example 6.17. Class of graphs having a vertex cover of size at most k£ is minor
closed — hence it can be decided in O(f(k) - n?)-time whether an n-vertex graph
G has a vertex cover of size at most k. To see the former it is enough to show
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that if G has an k-vertex cover C' then for every v € V(G) and every e € E(G)
the graphs G \ {v}, G\ e, and G - e have vertex cover of size at most k. For the
first two C'\ {v} and C constitute such a cover, respectively. If e = {z,y} is an
edge of G, the vertex z to corresponds to the union of x and y in V(G - e) and
x € Corye Cthen C\ {x,y} U{z} is such a cover for third case. Otherwise
we can use simply C.

Remark 6.18. In Example 6.17 we have shown, that it can be decided in O(f(k)-
n?)-time whether an n-vertex graph G has a vertex cover of size at most k, but we
have shown no algorithm for that. We only know that there is a cubic algorithm
for each fixed k, but the result gives no way to find the algorithm. Note that
our definition of the class FPT requires the existence of a single algorithm for
all values of the parameter. The class of problems for which there is a constant
c and for each fixed value of the parameter there is an O(n°)-algorithm is often
called non-uniform FPT.

The above result can be simply generalized to a whole class of graph problems:

Definition 6.19. Let C be a class of graphs. A graph G is in the class C @ kv if
and only if there is a set S C V(G) of size at most k such that G\ S is in C.

Observation 6.20. If C is a minor closed class, then so is C @ kv.

It is easy to see that edgeless graphs, forests and planar graphs form minor-
closed families of graphs. As a corollary of this fact together with the above
observation we get that not only VERTEX COVER, but also FEEDBACK VER-
TEX SET or PLANAR DELETION are in non-uniform FPT (Here the question is
whether it is possible to delete at most k£ vertices to obtain an edge-less graph, a
forest, and a planar graph, respectively).

The most powerful usage of the theory of minors is in the combination with
the graph width measures for the problems restricted to planar graphs, graphs
with bounded genus or graphs excluding a fixed graph as a minor [DFHT05]. We
present only the planar case. The other cases, although similar in the basic ideas,
are more complicated in details.

Theorem 6.21 (Robertson, Seymour, and Thomas [RST94]). Let [ > 1 be an
integer. Fvery planar graph of treewidth at least 61 — 4 contains an (I X 1)-grid as
a Mminor.

If we forbid ourselves edge deletions and instead of each vertex deletion we
contract the vertex to be deleted with some of its neighbors, we arrive at the
following corollary.

Corollary 6.22. Let [ > 1 be an integer. Fvery connected planar graph of
treewidth at least 61 — 4 can be transformed into a partially triangulated (I x [)-
grid using only edge contractions.
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Using the above theorem we can derive a fairly general result for problems that
are bidimensional. Intuitively, a parameterized graph problem is bidimensional if
it is closed under (at least some) minor operations and if the parameter for grids
grows linearly with the number of vertices of the grid. More formally:

Definition 6.23 (Demaine et al. [DEHT05]). A parameter P assigning an integer
to each graph is minor bidimensional with density o if

(1) P(H) < P(G) whenever a graph H is a minor of a graph G, and
(2) for the (I x I)-grid R, P(R) = (61)* + o(?).
The parameter P is called contraction bidimensional with density ¢ if
1) contracting an edge in a graph G cannot increase P(G),

(1)
(2) P(C) is at most P(G) whenever C' is a connected component of G,
(3) for any partially triangulated (I x 1)-grid R, P(R) > (61)* + o(I?), and
(4) 0 is the smallest real number for which this inequality holds.

The parameter P is called bidimensional if it is either minor or contraction bidi-
mensional.

It is usually very easy to prove that some parameter is bidimensional. We
have already shown that the vertex cover number satisfies the condition (1) for
the minor bidimensionality. If we notice, that an (I x [)-grid contains [ disjoint
parallel paths each of length [ and, thus, a matching of size [ - [[/2] we arrive at
the following observation.

Observation 6.24. Vertex cover number ve(G) is minor bidimensional with den-

sity 1/\/§

Similarly one can see that the minimum size of a dominating set in a graph
ds(@G) is closed under contractions of edges and taking connected components.
Furthermore, a partially triangulated (I x [)-grid contains (I — 2)? inner vertices,
among which no vertex can dominate more than 9 (including itself). Hence ds(G)
is contraction bidimensional.

The following theorem is a simple corollary of Theorem 6.21.

Theorem 6.25 (Demaine et al. [DFHTO05]). Let P be a bidimensional parameter.
Then for any planar graph G, tw(G) = O(/P(G)).

To use the above theorem we need to able to determine the treewidth of a
graph very quickly, the algorithm of Bodlaender [Bod96] is not fast enough for
our purpose. Fortunately, treewidth can be % approximated in planar graphs.
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Theorem 6.26 (Seymour and Thomas [ST94]; Gu and Tamaki [GT05]). There
1s an algorithm that given a planar graph G outputs in a cubic time a tree de-
composition of width w with the guarantee, that the treewidth tw(G) is at least
2w/3 (the algorithm actually computes an optimal so-called branch decomposition
of the graph G, from which such a tree decomposition can be derived).

The last important ingredient in a subexponential algorithm for computing a
bidimensional parameter is a fast algorithm for the computation of the param-
eter on graphs of bounded treewidth. We need an algorithm with running time
200w(@) . poly(n) or at least 9o(tw(G)?) -poly(n). Such an algorithm for the vertex
cover number can be derived from the algorithm for INDEPENDENT SET in Sec-
tion 6.2 and for (ANNOTATED) DOMINATING SET an algorithm can be devised
similarly.

Theorem 6.27 (Demaine et al. [DFHTO05]). If P is a bidimensional parameter
and there is an 2°0(D) . poly(|V (G)|)-time algorithm for its computation, then
it is possible to decide in time 2°0V%) . poly(|V (G)|) for a planar graph G whether
it has P(G) < k.

Proof. We prove the theorem for a parameter P that is minor bidimensional,
the case of contraction bidimensionality is similar. We assume that P(R) =
(81)% + o(1?) for every (I x [)-grid R. Hence there is some [y and 0 < §y < § such
that for every [ > [y and every (I X [)-grid R we have P(R) > (dol)>.

We use the algorithm from Theorem 6.26 to obtain a tree-decomposition of
width w. Due to Theorems 6.26 and 6.21 we know that the graph contains a
grid of side at least (2w/3)/6 = %. If gw > Iy and (§dp - w)*> > k then the
answer is no, as P is greater than k already on the § X g-grid contained in
G. Otherwise, we have a tree-decomposition of width at most max{9l, 96, vk}
and, hence, the problem can be solved in time 20max{90.95 V&) . poly (|V(G)|) =
2000 poly(|V(G)]). n

The running times can be sometimes further improved, if the dynamic pro-
gramming itself is designed more carefully using the properties of planar graphs.
The results further generalize in a certain way to a classes of graphs of higher
genus and classes excluding some fixed graph as a minor. See [DFHTO05] for
details of such generalizations.

Recent results [FLST10] also show that if the problem satisfies some further
conditions, then one can even obtain a polynomial kernel for it, by replacing large
parts of the graph with low treewidth and small boundary by equivalent smaller
parts.



Chapter 7

Intractability

As with the classical complexity, there is no way known to show unconditionally
the non-existence of an fpt-algorithm for a certain problem (such a result would
imply P#NP). Instead we use to show that the fixed-parameter tractability of
the problem considered would mean the same result for a wide class of other
problems. For that purpose we first need a notion of parameterized reduction.

7.1 Reductions, Classes

Definition 7.1. A parameterized reduction (fpt-reduction) from a parameterized
problem P to a parameterized problem Q is an algorithm that on an instance®
(z,k) € ¥* x N of P produces in time f(k) - |#|°M) an instance (2/, k') € ¥* x N
of O such that

e (z,k) € Pif and only if (2/, k") € Q, and
o K <g(k),

where the functions f and g depend only on k. A parameterized problem P is
fpt-reducible to a parameterized problem @ if there is a parameterized reduction

from P to Q.

Remark 7.2. We use the term reduction for both the classical polynomial time
many:one reductions and the parameterized ones. The meaning should be clear
from the context.

The essential property of parameterized reductions is that whenever P reduces
to @ (by an fpt-reduction) and Q is in FPT, then P is FPT as well. Note
that the second condition of Definition 7.1 is necessary for that purpose. It
also worth noticing, that kernelization (Definition 5.1) and polynomial parameter
transformation (Definition 5.9) are both special cases of parameterized reduction.

"'We give the definition of the parameterized reduction only for the case when parameter is
a single integer, but in the sense of Remark 3.5 it generalizes also to all other cases.
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Unlike the classical complexity, in parameterized complexity the classes of
intractability are primarily determined by their canonical complete problem, not
by a model of computation. To this end, we first need the following classes of
Boolean formulae.

Definition 7.3. A Boolean formula ¢ is 1-normalized if it is in the form of a
conjunction of disjunctions of two literals (it is an instance of 2-SAT).

For t € N;t > 1, we say that a formula ¢ is t-normalized if it is in the form of
a conjunction of disjunctions of conjunctions of.... of literals, where the conjunc-
tions and the disjunctions alternate ¢t — 1 times (a formula in conjunctive normal
form is 2-normalized).

A formula is called monotone, if it contains no negations and antimonotone if
every literal in it is a negation of a variable.

A weight of a Boolean assignment a : {x1,...,x,} — {true, false} is the number
of variables set to true.

Fundamental problems of parameterized intractability are the following:
WEIGHTED {~-NORMALIZED SATISFIABILITY.
Input: A t-normalized Boolean formula ¢ and k& € N.
Question: Is there a satisfying assignment for ¢ of weight exactly k7

WEIGHTED SATISFIABILITY.
Input: A Boolean formula ¢ and k € N.
Question: Is there a satisfying assignment for ¢ of weight exactly k7

WEIGHTED CIRCUIT SATISFIABILITY
Input: A Boolean decision circuit C' and k € N.
Question: Is there a satisfying assignment for C' of weight exactly k7

In all cases we use the weight of the sought solution k£ as a parameter. We will
further mention WEIGHTED MONOTONE ¢-NORMALIZED SATISFIABILITY and
WEIGHTED ANTIMONOTONE #-NORMALIZED SATISFIABILITY, the definitions
of these problems should be clear.

Now we are ready to introduce the basic classes of parameterized intractabil-
ity:

Definition 7.4. For every ¢t € N the class W[t] consists of all parameterized
problems that are fpt-reducible to WEIGHTED t-NORMALIZED SATISFIABILITY.
The classes of parameterized problems reducible to WEIGHTED SATISFIABILITY
and WEIGHTED CIRCUIT SATISFIABILITY are called W[Sat] and W[P], respec-
tively.

We say that a parameterized problem P is W{t]-hard if every problem in W{t] can
be FPT-reduced to P and W][t]-complete if it is W[t]-hard and in W[t]. Similarly
for W[Sat| and WIP].

Immediately from the definitions one can get the following hierarchy of the
parameterized complexity classes.
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FPT C W[1] € W[2] C... C W[t] C ... C W[Sat] € W[P] C XP

The reduction of an FPT problem to WEIGHTED 1-NORMALIZED SATIS-
FIABILITY can be done by first solving the problem (by its fpt-algorithm) and
outputting a constant-size instance with the same answer. For the last inequality
it suffices to use a trivial algorithm for WEIGHTED CIRCUIT SATISFIABILITY
that tries all weight k£ assignments and checks whether any of them is satisfying.

All of the above inequalities are supposed to be strict but so far we only know
that FPT C XP [DF98]. It is also interesting that it is not known, whether an
eventual collapse of two classes would propagate, either upwards or downwards.

As the W-classes serve to show that some problem is presumably not in FPT,

the following class can be used to show that some problem is not even in the class
XP.

Definition 7.5. A parameterized problem P C ¥* x ¥* is para-NP-complete if
there is a string kg € ¥* such that the ko-th slice of P, that is the set {(x, k) |
(x,ko € P}, is NP-complete.

A classical example of a para-NP-complete problem is GRAPH COLORING
parameterized by the number of colors to be used, as it is known to be NP-
complete even for 3 colors [GJ79).

It is not hard to see, that if there is a para-NP-complete problem in XP, then
P=NP.

7.2 Monotone/Antimonotone Collapse

The following well known theorem gives an overview what happens if we require
all literals of the formula to be positive or all of them to be negative.

Theorem 7.6 (Downey, Fellows [DF95a, DF95b]; Monotone/Antimonotone Col-
lapse). Let t € N. Then WEIGHTED MONOTONE #-NORMALIZED SATISFIABIL-
ITY s

o Wit]-complete if t is even,
o Wt —1]-complete if t is odd andt > 1, and
o FPT fort=1.

Conversely WEIGHTED ANTIMONOTONE ¢-NORMALIZED SATISFIABILITY iS

o W/t —1]-complete if t is even, and

o Wi/tj-complete if t is odd.
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It can be easily seen that every instance of WEIGHTED ANTIMONOTONE 1-
NORMALIZED SATISFIABILITY can be viewed as an instance of k-INDEPENDENT
SET (or k-CLIQUE equivalently) and vice versa and, hence, k-CLIQUE is W[1]-
complete. It is only slightly harder to show, that DOMINATING SET (also with
standard parameterization) is W|[2]-complete. Hence these two problems form a
graph problem basis for W[1] and W|2], the two complexity classes vast majority
of intractable natural problems fall in. There are also some quite natural problems
known to be W[t] for all ¢ € N, W[Sat] or W[P] complete, but the other classes
are mainly of theoretical interest.

To give a flavor of a parameterized reduction, we prove the theorem for
WEIGHTED ANTIMONOTONE 1-NORMALIZED SATISFIABILITY, which implies
that CLIQUE is W[1]-complete. Obviously it suffices to show the hardness.

Theorem 7.7 (Downey, Fellows [DF95b]). WEIGHTED ANTIMONOTONE 1-
NORMALIZED SATISFIABILITY is W/[I]-hard.

The proof is a modification of the original proof from [DF95b], where it was
stated in a much more general way.

Proof. We will reduce WEIGHTED 1-NORMALIZED SATISFIABILITY, as ex-
pected. Let (¢, k) be an instance of this problem with variables zy,...x,. We
will construct an equivalent instance 1, k' of WEIGHTED ANTIMONOTONE 1-
NORMALIZED SATISFIABILITY. For simplicity we assume 2 < k < n.

The variables of ¢ form &k blocks A' = {a},...,al} for 1 <[ < kand k —1
blocks B = {b} ; | 1 <4,j < n} for 1 <1 <k—1. Weset k' = 2k—1 as from each
of the blocks one variable is to be true. True variables in A blocks represent the
variables of ¢ set to true and the variables in B blocks represent gaps between

them. In particular, if a} is true, then the true variable in B' must be bé,j for

I+1
i+j

some j. Conversely if bﬁ,j is true, then in A the variable a1} must be true.

These restrictions are enforced by clauses as follows:

e There is at most one variable true in each block: for every 1 <[ < k and
all 1 <i,j,4, 5 <n add to ¢ the clause (—alV —dl,) if i # i’ and the clause
l l . . . . .
(=i Vv by ) i L <k —1and (i,5) # (¢, 7).

e The variable selected in A’ enforces the selection in B': for every 1 <[ <
k—1and every 1 <i,7,j < n add the clause (—a} Vv =bl, ) if i’ # i

e The variable selected in B! enforces the selection in A'™!: for every 1 <[ <
k —1 and every 1 < 14,4',j < n add the clause (ﬁbévj Voa Y if i £+

Since the construction can only handle gaps of positive size, we know that if
both a! and alt! are set to true, then i < i'.

The most important thing to realize is that the fact that some variable of ¢
is set to false is represented by a certain variable set to true in our construction.
Namely setting z,. to false can be represented by that
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1

1.y 18 set to true, or

e some of the variables a

e some of the variables bﬁvj witht <r<i+jand 1 <[ < k—1isset to true,
or

e some of the variables af, ... af | is set to true.

Denote the set of the above mentioned variables by .S,..
Now consider a clause C' of ¢. If (for some 1 < p,r < n) the clause C' is of
the form

o (z, V z,) then we add into 1 the clauses (—y V —z) for every y € S, and
z €S,

o (mxp V) (or (z, V —xp)) then we add into ¢ the clauses (—al V =) into
1 for every 1 <[ <k andy € S,

e (—z,V-a,) then we add into 1 the clauses (=alV—al) for every 1 < I,I' < k.

We claim that if the clause C' is not satisfied in the assignment examined,
then at least one of the added clauses is not satisfied as well. For the first case,
this holds since if neither x, nor z, is set to true, then at least one variable y € S,
is set to true and at least one variable z € S, is set to true and (—y V —z) is not
satisfied. Conversely, if all the newly added clauses are satisfied, then either no
variable of S, or no variable of S, is set to true and thus either x, or z, is set to
true and C' is also satisfied. For the other cases it can be seen similarly.

Hence, an assignment setting exactly the variables z;,,z;,,...,z; to true,
where 1; < iy < -+ < iy, satisfies ¢ if and only if the assignment setting exactly
variables af, 1 <1 < k and béz,z‘m—iz’ 1 <1 <Fk—1to true is satistying for 1.
This finishes the reduction, as the instance (¢, k") can be clearly constructed in
polynomial time. O

7.3 Characterization by Computational Models

Although we said that the parameterized hardness classes are not defined by
a computational model, there is actually a way to characterize the classes in
terms of Turing Machine computation [CF03]. We only show that for two most
important classes W[1] and W[2]. For that purpose let us first formally define a
Nondeterministic Turing Machine.

Definition 7.8. A Nondeterministic Turing Machine is a sextuple
(3,t,Q,s,A,0), where 3 is an alphabet, ¢t is the number of tapes, @ is a
set of internal states, s is the initial state, A C (@) is the set of accepting states
and 0 C (Q x X' x @ x Xf x {—1,0,1}") is the set of transitions. A quintuple
(p, (115, 7¢),q, (w1, ... ,wye), (M, ..., my)) being in § means that if the machine
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is in the state p reading the symbol r; on a tape i (for every 1 < i < t) it can
proceed to the state g, writing the symbol w; on the tape ¢ and moving the head
on this tape by m; (for every i).

Note that not only the set of transitions can contain several possible transitions
for one particular state and a t-tuple of symbols read, but it is also not required
to be total, that is it does not have to contain a transition for each combination
of state and ¢ symbols read. The maximum number of possible transitions from
a particular state when particular symbols are read is called the amount of
nondeterminism.

It was proven in [CI97] that the following natural parameterized analogue of
the Halting Problem is W([1]-complete:

SHORT NONDETERMINISTIC TURING MACHINE COMPUTATION

Input: A single-tape nondeterministic Turing machine M = (3,1,Q, s, A,0); a
positive integer k.

Question: Is there a computation of M (on the empty tape) that reaches an
accepting state in at most k steps?

Parameter: The allowed length of a computation k.

Note that for the result it is crucial that no bound is given for the size of
the alphabet, the number of states, nor to the amount of nondeterminism. The
problem is FPT for any of the parameterizations obtained by combining the
number of steps k£ with any of the aspects mentioned above [CI97].

Similarly, the following problem is complete for W[2] as shown in [Ces03]:

SHORT MULTI-TAPE NONDETERMINISTIC TURING MACHINE COMPUTATION
Input: A nondeterministic Turing machine M = (3,¢,Q, s, A,)); a positive
integer k.

Question: Is there a computation of M on the empty input that reaches an
accepting state in at most k steps?

Parameter: The allowed length of a computation k.

The result heavily depends on having unlimited number of tapes. Parame-
terized by k and t, the problem becomes equivalent to the previous one, that
is W[1]-complete [CI97]. A characterization of other classes by means of short
computations of alternating Turing Machines can be found in [CF03].

Although Turing Machine is a standard tool in complexity considerations,
RAM (Random Access Machine) model seems to be used more often when talking
about algorithms. We introduce the concept of non-determinism into this model
in a slightly unnatural way as proposed by Chen et al. [CEGO03].

In a nondeterministic random access machine (NRAM) model a single nonde-
terministic instruction "GUESS” is added to the standard deterministic random
access machine (RAM) model. The semantics of this instruction is: Guess a
natural number less than or equal to the number stored in the accumulator and
store it in the accumulator. Acceptance of an input by an NRAM is defined as
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usually for nondeterministic machines, that is, the program accepts the particular
input if there is a computation on it that ends by an execution of the ACCEPT
instruction. The steps of the computation of an NRAM that execute the GUESS
instruction are called nondeterministic steps.

To stay within the class W([1], the following restrictions should by put on a
program for NRAM.

Definition 7.9 (Chen, Flum, and Grohe [CFGO03]). An NRAM program P is
tail-nondeterministic k-restricted if there are computable functions f and ¢ and

a polynomial p such that on every run with input (z, k) € ¥* x 3* the program
P

e performs at most f(k) - p(|x|) steps;
e uses at most the first f(k) - p(|x|) registers;
e contains numbers < f(k) - p(|z|) in any register at any time;
and all nondeterministic steps are among the last g(k) steps of the computation.

The following characterization due to Chen, Flum, and Grohe [CFG03] seems
to be easier to apply then developing a reduction to a single-tape Turing Machine:

Theorem 7.10 (Chen, Flum, and Grohe [CFGO03]). A parameterized problem
P is in W[1] if and only if there is a tail-nondeterministic k-restricted NRAM
program deciding P.

The model can be further enriched by a nondeterministic instruction
FORALL, to obtain alternating RAMs. By restricting the number of times
the machine can switch from using the GUESS instruction to the FORALL
instruction and vice versa, one can characterize the other classes of the W-
hierarchy [CF03].

7.4 Multicolored Problems

In most reductions that directly reduce WEIGHTED ¢-NORMALIZED SATISFIA-
BILITY it is necessary to somehow represent, that some variable was not set to
true in the solution considered. This is usually done by representing the gap be-
tween two neighboring (in a certain order) variables set to true. Such reductions
are sometimes called gap reductions.

Another approach is to develop a problem in which the objects for a size-k
solution are picked from k groups, each object from a different group. Then the
case that an object is not picked into a solution is represented by picking another
object from the same group. The groups are usually referred to as colors and we
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speak about multicolored problems. The result from Section 6.3 suggests, that
the multicolored problem is usually no easier than the original one.

The problem most often used for hardness reductions is probably MULTICOL-
ORED CLIQUE. It can be found in older literature under the name PARTITIONED
CLIQUE, but it is nowadays more known under the other name.
MULTICOLORED CLIQUE (MCC)

Input: A graph G = (V, E), positive integer k& € N and a proper k-coloring
c:V—=A{L...,k} of G.

Question: Is there a multicolored clique in G, that is, a clique taking exactly
one vertex of each color?

Parameter: The number of colors k.

Note that any clique of size k in a graph properly colored by k colors must
take exactly one vertex of each color, and there is no clique of size more than k.

The following easy theorem was in fact proved in [Pie03], and recently redis-
covered by [FHRV09].

Theorem 7.11. MULTICOLORED CLIQUE is W/1/-complete.

Proof. We provide an almost trivial reduction from and to CLIQUE which we
have shown to be W[l]-complete in Section 7.2. Omitting the coloring from an
instance of MCC one obtain an equivalent instance of CLIQUE, which implies
that MCC is in W[1]. To show the W[l]-hardness we let G = (V, E), k be an
instance of CLIQUE. Consider an instance of MCC formed by G' = (V', E'),
where V! =V x {1,...,k} and E' = {{(u,9),(v,5)} | i # j A{u,v} € E}, the
number k, and the coloring ¢ : V' — {1,..., k} assigning to each vertex (v,1) its
second coordinate 1.

If {vy,..., v} is a k-Clique in G, then {(v1,1),..., (v, k)} is a multicolored
clique in G’. On the other hand if {(vy,1),..., (vg, k)} is a multicolored clique in
G’ then for every ¢ # j the set {v;,v;} is an edge of G and, thus, {v1,..., v}
Hence (G, k) is a yes-instance of CLIQUE if and only if (G, k, ¢) is a yes-instance
of MCC, which finishes the proof, as G’ can be constructed in polynomial time
and the parameter is preserved. O]

Note that the constructed instance of MCC has the same number of vertices
of each color and also the number of edges with endpoints colored by a particular
pair of colors is the same for each pair of colors selected. This property is also
often used in the reductions.

We also mention, that in many reduction from MCC, not only there are
gadgets for each color, that represent a selection of a vertex of this color, but there
are often gadgets for each pair of different colors representing the selection of an
edge between the vertices of the particular color. This simplifies the subsequent
check, whether the select objects form a clique. We just check, whether the
selected edges are incident with the selected vertices, which is often much simpler
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than checking whether the selected vertices are adjacent. This idea called edge
representation strategy was first introduced by Fellows et al. in [FHRV09].

A very simple example of a reduction starting from MULTICOLORED CLIQUE
(MCC) is to show that LisT COLORING is W[l]-hard parameterized by the
vertex cover number. This was first observed in [FFL*07] and so far constitutes
one of a few, if not the only example of a problem hard with respect to the vertex
cover number. We also mention that the paper is also the first one to show that
some problem is W[1]-hard with respect to the treewidth for which it also uses a
reduction from MCC together with the edge representation strategy.

In LisT COLORING we are given a graph G, a set of colors B and a mapping
L : V(G) — P(B) assigning to each vertex its list of available colors. The
question is whether there is a proper coloring ¢ : V(G) — B of G respecting the
lists. This means that for every v € V(G) we have c(v) € L(v).

Theorem 7.12. LisST COLORING is W/1/-hard parameterized by the vertex cover
number.

Proof. For the reduction, assume that we are given an instance of MCC with a
graph G having n vertices of each color out of {1,...,k}. The vertices of color
¢ are denoted v; 1, ..., v;,. We construct an instance of LIST COLORING formed
by a graph G’, a set of colors B = V(G) and a mapping L : V(G') — B. We
start by introducing k vertices aq, ..., ax; the vertex a; will have a list L(a;) =
{vi1,...,vin}. The colors chosen for these vertices should represent the selected
vertices of particular colors.

To ensure that the selected vertices form a clique, we do the following. For
each ¢ and ¢/, where 1 <1i < 4" <k, if for some 1 < j, 5 < n the vertices v; ; and
vy j» are not connected by an edge in G, we add a new vertex into G" which will
be connected to a; and a; and will have a list {v; ;, vy ;7 }. Hence, if the vertex q;
was assigned the color v; ; and the vertex ay the color vy j, then there would be
no chance to color this new vertex. Otherwise there is always at least one color
left.

It is easy to see, that this way x1, ...,z is a multicolored clique in G if and
only if the partial coloring f : {a4,...ar} — V(G), that assigns the color x; to the
vertex a; for every 7, can be extended to a proper list coloring of G’ respecting the
lists L. As the construction can be clearly done in polynomial time, it remains
to note that the set {ai,...a;} forms a vertex cover of size k for the graph G'.
Hence, the parameter of the new instance equals the parameter of the original
instance and the reduction is indeed a parameterized one. O
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7.5 Connections to the Exponential Time Hy-
pothesis

Although it is hard to believe that there could an f(k)n®M-time algorithm for
SHORT NONDETERMINISTIC TURING MACHINE COMPUTATION (which would
be implied by W[1]=FPT) still for some people less familiar with parameterized
complexity the following hypothesis is more plausible than that W[1]#FPT.

Hypothesis 7.13 (Exponential Time Hypothesis (ETH)). There is no algorithm
that solves n-variable 3SAT in time 2°0)

In fact, ETH is a stronger hypothesis — it implies W[1]#FPT, while it
is not known whether W[1]#FPT implies ETH. In particular Abrahamson et
al. [ADF95] have shown the following:

Theorem 7.14 (Abrahamson, Downey, and Fellows [ADF95]). If there is an
f(k)-n°W time algorithm for k-CLIQUE, then ETH fails.

This result was later strengthened so that it also excludes algorithms with
the exponent of the polynomial running time growing slower than linear in the
parameter:

Theorem 7.15 (Chen, Huang, Kanj, and Xia [CHKXO04]). If there is an f(k) -
n°®) time algorithm for k-CLIQUE, then ETH fails.

The result stated for CLIQUE can be easily translated to other problems.
Namely, if there was a parameterized reduction transforming an instance (G, k) of
k-CLIQUE to an instance (z', k') of a problem P with &' = O(k¢) then an algorithm
for P with running time f (/{;)no(’“l/c) would imply an f’(k)n°® algorithm for k-
CLIQUE and, thus, ETH would fail. As most of the parameterized reductions
known have either &' = O(k) or k' = O(k?) this provides a good lower bound for
many problems. Note that this way the results also translate to many problems
parameterized by a structural or other parameters.

Assuming ETH it is also possible to prove, that for certain problems the
dependence of the exponent of the exponential part of the running time on the
parameter is asymptotically optimal.

Theorem 7.16 (Cai and Juedes [CJ03]). If VERTEX COVER can be solved in
time 2°®) . nOW “then ETH fails.

Similar results can be proved also for problems on planar graphs, but here
the known (asymptotically optimal) algorithms are only exponential in the square
root of the parameter; see Section 6.7 for such algorithms.

Theorem 7.17 (Cai and Juedes [CJ03]). If VERTEX COVER, INDEPENDENT

SET, or DOMINATING SET can be solved in time 20(Vk) . pO() for planar graphs,
then ETH fails.
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The following is a further strengthening of ETH, which is definitely not so
widely believed as ETH itself.

Hypothesis 7.18 (Strong Exponential Time Hypothesis (SETH)). Let € > 0.
There is no algorithm that solves n-variable SAT in time (2 — €)™

Under this assumption, the lower bound for the running times of an algorithm
for DOMINATING SET can be further improved as follows.

Theorem 7.19 (Patrascu and Williams [PW10]). If for some k > 3 and € > 0,
k-DOMINATING SET can be solved in O(n*~¢) time then SETH fails.

This result can be again translated in a certain way to some W/[2]-hard prob-
lems. By contrast, an O(n%73) algorithm for k-CLIQUE is known [NP85]. This
suggests, that also some differences in the running times achievable for W{[1]-
complete and W|2]-complete problems are to be expected.
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Chapter 8

Steiner Problems

8.1 Introduction to Steiner Problems

8.1.1 Definition of Studied Problems

The Steiner problem is a traditional problem of both computational geometry and
theoretical computer science. Roughly the task is, given a set of points, to find
the cheapest way to connect them. While the statement is simple, the complexity
can be seen already on the oldest problem in the family: Given 3 points in a plane
find a point that minimizes the sum of Euclidean distances to the given points.
This question asked by Fermat in the 17*" century was first completely solved
at the beginning of the 19" century by Jakob Steiner, who gave the name to all
these problems. The generalization to more points was studied and solved by
Jarnik and Kossler [JK34].

The study of STEINER TREE in graphs goes back to Hakimi [Hak71]| (the
problem was also independently formulated by Levin [Lev71]), who showed that
CLIQUE can be reduced to STEINER TREE (the theory of NP-hardness was not
known yet). His work was complemented only a year later by Dreyfus and Wag-
ner [DW72], who showed that the problem can be efficiently solved by their
famous algorithm (presented in Section 6.2) if the number of terminals to be
connected is small.

In the undirected case, the situation is simple, an optimal solution is always
a tree — if a cycle was present, we could remove its heaviest edge, decreasing
the weight of the solution. If one moves forward to directed graphs, as proposed
already by Hakimi [Hak71], the situation becomes more complicated, as several
notions of connectivity are available. We concentrate on the following three NP-
complete [Fra92] Steiner problems in directed graphs.

For the DIRECTED STEINER TREE problem (DST), the task is to connect a
distinguished root vertex by directed paths to a set of given terminals. For the
STRONGLY CONNECTED STEINER SUBGRAPH problem (SCSS), the task is to
connect all terminals among each other, to achieve strong connectivity among
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them. Finally, for the DIRECTED STEINER NETWORK problem (DSN), the task
is to connect given terminal vertex pairs. Obviously, DST and SCSS are spe-
cial cases of DSN, whereas they are “incomparable” to each other. Following
the standard modeling, we always assume the underlying directed graph to be
complete; arcs that do not exist are modeled by assigning them the weight oco.

Formally, let W be some subset of N U {cc}. If V is a set of vertices, w :
V xV — W is a weight function!, and A C V x V is a set of arcs, then we
define w(A) := >, ,w(a). The problems studied in this chapter are formally
defined as follows:

DIRECTED STEINER TREE (DST):

Input: A set of vertices V', a weight function w : V xV — W, aset T CV of
terminals (I :=|T|), a root s € V', and a weight bound p € N.

Question: Is there a set of arcs A C V x V of weight w(A) < p such that in the
digraph D := (V, A) for every t € T there is a directed path from s to t?

STRONGLY CONNECTED STEINER SUBGRAPH (SCSS):

Input: A set of vertices V', a weight function w : V. x V — W aset S CV of
terminals ([ := |S|), and a weight bound p € N.

Question: Is there a set of arcs A CV x V of weight w(A) < p such that in the
digraph D := (V, A) for every s,t € S there is a directed path from s to ¢?

DIRECTED STEINER NETWORK (DSN):

Input: A set of vertices V', a weight function w : V x V' — W, [ pairs of vertices
(s1,t1), (S2,t2),...,(s1,t), and a weight bound p € N.

Question: Is there a set of arcs A C V' x V of weight w(A) < p such that in the
digraph D := (V, A) for every 1 < i <[ there is a directed path from s; to ¢;?

If an undirected graph being a part of a STEINER TREE instance contained
an edge {x,y} of weight 0, then this edge can be included in any solution to the
instance. Therefore having a path to vertex x is the same as having a path to
vertex y and vice versa and the edge {x,y} can be contracted without affecting
the weight of a solution. Thus an undirected graph is usually assumed to have
only edges of positive weights. The situation is different for directed graphs.
The digraph ({u, v, w}, {(u,w), (v,w)}) does not contain a directed path between
u and v in any direction, but if we contract any of its arcs we obtain such a path.

Therefore, to achieve full modeling flexibility (including the cases where one
wants to augment an already existing digraph), we sometimes also use arcs of
weight 0 to represent already existing connection structure that comes for free.
Hence, we distinguish between 0-DST and DST, indicating whether O-weights
are allowed or not (analogously, 0-SCSS, SCSS, 0-DSN, DSN). More precisely, in
0-DST, 0-SCSS, and 0-DSN the set W is a subset of Ny U {o0}.

LObserve that in this way we implicitly deal with complete digraphs in the sense that only
arc weights are specified.
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Allowing only arcs of weights 0 and 1 is studied and known in the literature as
augmentation problem [ET76], and allowing only arcs of weights 1 and co models
the case that one searches for a minimum-size subgraph, for example, including
the UNWEIGHTED DIRECTED STEINER TREE problem mentioned in [GHK™09].
Moreover, we consider the (maximum) ratio r of arc weights to be the quotient
of the maximum occurring arc weight and the minimum occurring arc weight,
excluding O-weights from consideration. If there are oo-weight arcs, then we call
this unbounded ratio. Clearly, a bounded ratio means that in principle every
arc is a candidate for being part of the connecting minimum-cost subgraph. It is
important to observe that a higher ratio makes the problem harder (or at least not
easier) as well as allowing arcs of weight 0 does. We set miny, := min(W \ {0})
and maxy = maxW (oo if contained in W). The ratio is then defined as
r = maxy /miny .

8.1.2 Complexity

Steiner-type problems were among the first to be shown to be NP-complete [GJ79]
and this is also the case for the three considered problems in directed
graphs [Fra92]. As such, the problems are one of the most intensively studied in
terms of the polynomial-time approximability. Unfortunately, in general terms,
one may say that the considered problems are hard to approximate. For instance,
it is known that 0-DSN cannot be approximated to within a factor of O(210g1_€”)
for any fixed € > 0, unless NP C TIME(2P°¥°e(™)) [DK99]. Herein, n denotes the
number of vertices and m the number of arcs of finite weight. The best known
approximation factor is O(I/2+€) for any fixed e > 0 [CEGS08]. Moreover, 0-DST
cannot be approximated to within a factor of (1—¢)In{ for any fixed € > 0, unless
NP C DTIME[n©Uegle™)] [Fei98]. The best known approximation factor for 0-
DST is O(1°) for any fixed € > 0 [CCC*99]. We refer to [Eve07, Khu95, KNO7| for
surveys on the numerous polynomial-time approximation results for Steiner-type
problems, which we omit here as we are more interested in other types of results.

Much less is known about the parameterized complexity of directed Steiner
problems. In the spirit of the multivariate algorithmics approach to compu-
tational intractability (Section 4.5), some meaningful parameterizations of the
considered Steiner problems are

e the parameter [ denoting the number of terminals to be connected;

e the weight p of the solution divided by the minimum arc weight miny,
(again excluding 0), giving the parameter p/ miny;* and

e the combined parameter (I, p/ miny ).

2This parameter naturally reflects the number of arcs in the spanning subgraph by providing
an upper bound on the number of (non-zero) arcs; it is the standard parameterization (see
Section 4.1).
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Note that (as already mentioned in Section 4.5) a parameterized hardness result
with respect to the combined parameter clearly means hardness results for each
single parameter and, by way of contrast, a fixed-parameter tractability result
for a single parameter trivially extends to the combined parameter.

In the basic STEINER TREE problem in undirected graphs any solution to
an instance with [ terminals has at least [ — 1 edges. Therefore the question is
rather how many additional edges are needed, which is equal to the number of
non-terminals in the solution. The problem is known to be W[2]-complete with
respect to this parameter [DF98], whereas it is FPT with respect to the number of
terminals by the Dreyfus-Wagner Algorithm [DW72]. We have already presented
this algorithm in Section 6.2, together with a way how to improve its running time
from the original O(3'-n+2'-n?+n?) to O(3"-n+2![(I+logn)n+m]) as proposed
by [DYW™07]. If the weights used are small (maxy is bounded by a constant),
then the running time can be further improved to O((2" - n? + nm)polylog(n))
using Mobius and Fourier transformations [BHKKO07]. Otherwise for every € > 0
and 1/2 < ¢ < 1 running time O((2 + €)' - nOU(=1089/9%)) can be achieved by
guessing 1/e new terminals to be added to split the instance to several smaller
instances [FKM™07].

All these results also transfer to the directed case in a certain way. In par-
ticular, the FPT-algorithm can also be used to solve 0-DST, yielding its fixed-
parameter tractability with respect to the number of terminals. Moreover, since
the SET COVER problem is W[2]-complete [DF98] and it can also be formulated as
a special case of both 0-DST and 0-SCSS [Fra92], it follows that 0-DST, 0-SCSS,
and 0-DSN are W/[2]-hard with respect to the parameter p/ miny,. We sketch in
Sections 8.2 and 8.3 reductions from WEIGHTED MONOTONE 2-NORMALIZED
SATISFIABILITY to make the presentation self-contained.

Finally, Feldman and Ruhl [FRO6] showed that 0-DSN can be solved in
O(mn*=24+n*"1logn) time using their O(mn*—3+n?-%logn)-time algorithm for
0-SCSS as a subprocedure. These algorithmic results directly lead to the question
whether there are polynomial-time algorithms whose polynomial degree is inde-
pendent of [. Thus, Feldman and Ruhl explicitly asked for the fixed-parameter
tractability of 0-DSN and 0-SCSS with respect to the parameter (.

In this chapter, which is based on [GNS09], we extend the above results
by initiating a systematic study of the parameterized complexity of the Steiner
problems discussed above (also see Table 8.1). First, we summarize the known
results for STEINER. TREE and show how to transfer them to the directed case
in Section 8.2. We complement this by showing that there is no polynomial
kernel even for DST (and 0-DST) with unbounded ratio, even with respect to the
combined parameter, unless NPCcoNP /poly. In Section 8.3 we focus on SCSS
and 0-SCSS. We answer the question of Feldman and Ruhl in a negative way,
showing that the problems are W[1]-hard with respect to combined parameter
(I, p/ miny ) if the arc weight ratio r is at least 9 (4 for 0-SCSS). On the other
hand, we show that 0-SCSS with ratio 1 and SCSS with ratio at most 2 are fixed-
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Table 8.1: Parameterized complexity results for DST, 0-DST, SCSS, 0-SCSS,
DSN, and 0-DSN. Herein, r denotes the ratio of the arc weights.

Parameter:
Probl.: l \ p/miny, \ combined
DST r > 1: FPT (Sec. 6.2) r >1: FPT (Sec. 6.2) r > 1: FPT (Sec. 6.2)
- r = 00: no poly. kernel r = 00: no poly. kernel r = 00: no poly. kernel
(Thm. 8.1) (Thm. 8.1) (Thm. 8.1)
0-DST r > 1: FPT (Sec. 6.2) r > 1: FPT (Sec. 6.2)
r = o0: no poly. kernel r > 1:W/[2]-h. [DF98] r = o0: no poly. kernel
(Thm. 8.1) (Thm. 8.1)
SCSS || »>9: W[1]-h. (Thm. 8.2) | » > 9: W[1]-h. (Thm. 8.2) | » > 9: W[1]-h. (Thm. 8.2)
- 2<r<9 open 2<r<9: open 2<r<9 open
r < 2: FPT (Thm. 8.4) r < 2: FPT (Thm. 8.4) r < 2: FPT (Thm. 8.4)
0-SCSS || » > 4: W[1]-h. (Thm. 8.3) r > 4: W[1]-h. (Thm. 8.3)
1<r<4: open r > 1: W[2]-h. 1<r<4: open
r =1: FPT (Thm. 8.5) [DF9S, Fra92) r =1: FPT (Thm. 8.5)
DSN r>9: W[1]-h. (Thm. 8.2) | » > 9: W[1]-h. (Thm. 8.2) | » > 9: W[1]-h. (Thm. 8.2)
- 1<r<9 open 1<r<9: open 1<r<9 open
r=1: in P (Obser. 8.6) r =1: in P (Obser. 8.6) r = 1: in P (Obser. 8.6)
0-DSN || 7 > 1: W[1]-h. (Thm. 8.7) r > 1: W2[-h. r > 1: W[1]-h. (Thm. 8.7)
T [DF98, Fra92] T

parameter tractable with respect to the number of terminals [. The last section
is devoted to DSN and 0-DSN. The hardness results which extend from the SCSS
and 0-SCSS case are further strengthened here even to the augmentation case of
0-DSN with ratio 1 with respect to the combined parameter. We also mention
how to use the algorithm devised for the special cases of 0-SCSS and SCSS to
improve the running times of the algorithm of Feldman and Ruhl for 0-DSN
and DSN in the particular cases. As indicated in Table 8.1, our work leaves
several challenges for future research, particularly concerning the parameterized
complexity for small arc weight ratios.

8.2 Steiner Trees

First we focus on DIRECTED STEINER TREE (DST) and 0-DIRECTED STEINER
TREE (0-DST). The methods from Section 6.2, where we have shown that the
undirected STEINER TREE is FPT with respect to the number of terminal [
can be also used for the directed case of both DST and 0-DST. It suffices to
consider S(s,X) and D(s,X) to be the minimum size of a tree with all arcs
oriented from s to the (other) leaves of the tree (with further constrains in case
of D(s,X)) as also mentioned in [DYWT*07]. This somehow follows from that
the algorithm uses Dijkstra’s Algorithm which also works for oriented graphs,
even when some arcs have weight 0. As all the better algorithms mentioned in
the introduction are basically still improvements of the same algorithm, they can
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be used, too. Note also that as any solution to DST must use at least [ — 1
arcs, we have [ < (p/miny ) + 1 whenever a solution is possible. Therefore DST
is fixed-parameter tractable for both single parameterizations by [ and p/minyy,
respectively, while 0-DST is fixed-parameter tractable with respect to [.

We have already mentioned that STEINER TREE is W[2]-hard with respect to
the number of non-terminals in the solution [DF98] and that result can be trans-
lated to 0-DST with respect to p/miny, [Fra92]. For completeness we now show
here a reduction from WEIGHTED MONOTONE 2-NORMALIZED SATISFIABILITY,
which was shown to be W[2]-complete by Downey and Fellows [DF95a, DF95b)]
as we have mentioned in Section 7.2, to both problems.

Suppose that we are given an instance of WEIGHTED MONOTONE 2-
NORMALIZED SATISFIABILITY formed by £ € N and a formula ¢ with clauses
Ci,...,C,, and variables x1,...,x,. For STEINER TREE we construct a graph
in which there is a designated root s and one vertex for each clause and each
variable. The vertices corresponding to the clauses are adjacent to vertices cor-
responding to variables occurring in the particular clause and nothing else and
the root is adjacent with all variable vertices. One is asked to connect the root
vertex with all clause vertices using at most k£ non-terminals — variable vertices.
The correspondence with weight k satisfying assignments of ¢ is obvious.

For 0-DST with ratio at least 1 we use the same vertex set and from each
variable vertex there is an arc of weight 0 to each clause this variable occurs
in. All the other arcs have weight miny, (recall that the underlying digraph is
complete). The task is again to connect the root to all clause vertices by arcs of
total weight at most k- miny,. It is easy to see that given an optimal solution
one can reroute the arcs of non-zero weight to make them originate from the root
and to end in some variable vertices. As there can be at most k arcs of non-zero
weight used in the solution it is again easy to see that the out-neighborhood of
the root s in such a solution one-to-one correspond to a satisfying assignment of
weight k for .

We can add to these results a proof for the “non-existence” of a poly-
nomial-size problem kernel for DST parameterized by the combined parame-
ter (I,p/miny ). Recall that this implies the non-existence of polynomial-size
problem kernels for the more general 0-DST case as well as for the single pa-
rameter case. To this end, we use the technique of Bodlaender et al. [BDEFHQ9]
introduced in Section 5.4.

Theorem 8.1. There is no polynomial-size problem kernel for DIRECTED
STEINER TREE with unbounded ratio with respect to the combined parameter
(I, p/miny ) unless NPCcoNP /poly.

Proof. We show the claim by applying the lower bound technique of Bodlaender
et al. [BDFHQ9] presented in Section 5.4 to DST. More specifically, we show that
there exists a composition algorithm for DST, which implies, according to the
lower bound technique, that a polynomial problem kernel for DST with respect
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to the combined parameter would lead to NPCcoNP /poly as the studied problem
is NP-complete, which clearly translates to its unparameterized variant.

Let (I1,1,d),...,(I,,l,d) be a set of DST-instances where, for 1 < i < r, I;
consists of a vertex set V;, a weight function w; : V; x V; — W, a set T; C V; of
terminals, a root s; € V;, and a weight bound p; € N. Moreover, [ = [T}| =--- =

|T.| and d = p;/ min{W,\{0}} = - -+ = p,/ min{W,.\ {0} }. By rescaling, without
loss of generality, we can assume that min{W; \ {0}} = --- = min{W, \ {0}}
and, thus, p; = -+ = p,. Now we show how a composition algorithm constructs

a DST-instance (1,1, 2d + 2[) which is a yes-instance if and only if there is one i
such that (I;,[,d) is a yes-instance. First, the algorithm adds a set U of [ + 1
new vertices to V := | J,.,., V;. Herein, one new vertex s is the new root and the
remaining [ new vertices form the new terminal set T := {t;,...,#}. The set of
weights of the new instance contains all possible weights of the original instances.
We set p := 2p; + 20 - miny. Let T; := {¢#%,...,t!} denote the respective terminal
sets of the given instances. The new weight function w is defined as follows:

o w((u,v)) :=w;((u,v)) if both u and v are from V;;

e w((u,v)):= o0 if u and v are from different instances;

o w((u,s)) = oo;

o w((s,u)) = p;+{-miny if u = s; for some 1 < i < r; otherwise, w((s,u)) :=
05

o w((t;,u)) :=o0 forall 1 <i<I;
o w((u,t;)) := miny if u = ¢ for some 1 < j < r; otherwise, w((u, t;)) := co.

Clearly, the above algorithm runs in polynomial time. To show that (1,1, 2d+
21) is a yes-instance if and only if one of (I;,1,d) is a yes-instance, observe that
from the new root s we can only use the arcs between s and the old roots s;. By
the weight upper bound p, we know that we cannot afford to use more than one
of such arcs. Therefore, connecting s to T' can be reduced to connecting one of
the old roots to its corresponding terminals. This completes the proof. O]

8.3 Strongly Connected Steiner Subgraph

In this section we focus on STRONGLY CONNECTED STEINER SUBGRAPH (SCSS)
and 0-STRONGLY CONNECTED STEINER SUBGRAPH (0-SCSS). We have said
that DST and SCSS are “incomparable” (there is no obvious reduction in either
direction), but this is not the case for 0-DST and 0-SCSS as 0-DST can be reduced
to 0-SCSS by the following simple reduction.

Given an instance (V,w,T,s,p) of 0-DST one can obtain an equivalent in-
stance (V,w', S,p) of 0-SCSS by setting S := T U {s}, w'(t,s) = 0 whenever
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t € T and w'(z,y) = w(z,y) for any other pair of z and y. It is easy to see that
there is a path from s to every t € T'in (V, A\ {(¢,s) | t € T'}) if there is a path
between any two vertices of S in (V, A). Conversely, if there is a path from s to
every t € T in (V, A) then in (V,; AU {(t,s) | t € T'}) obviously there is a path
between any two vertices of S. It remains to note that for any A C V x V we
have w(A\{(t,s) |t € T}) < w'(A) and w' (AU{(t,s) |t € T}) < w(A) and the
equivalence of the instances follows.

As a corollary of this reduction we get that 0-SCSS is W|[2]-hard with respect
to p/miny as so is 0-DST. This can be also deduced from the NP-hardness
reductions given by Frank [Fra92].

We further show in Subsection 8.3.1 that both problems are W|1]-hard with
respect to the combination of parameters p/miny, and [ even for rather small
ratios (at least 9 for SCSS and at least 4 for 0-SCSS). Then we complement the
results in Subsection 8.3.2 by showing the fixed-parameter tractability of SCSS
with ratio at most 2 with respect to each single parameter and of 0-SCSS of ratio
1 with respect to the number of terminals [.

8.3.1 Hardness with Respect to the Combined Parameter

We start with SCSS. We provide an fpt-reduction from MULTICOLORED CLIQUE
(MCC) which we have shown to be W[1]-complete in Section 7.4. Recall that
in MCC we are given an undirected graph that is properly k-colored and the
question is whether there is a size-k clique in it taking exactly one vertex from
each color class. The parameter is k.

Theorem 8.2. STRONGLY CONNECTED STEINER SUBGRAPH with arc-weight
ratio at least 9 is W/[1]-hard with respect to the combined parameter (I, p/miny ).

Proof. Let an undirected graph G = (V, E), an integer k € N, and a proper
coloring ¢ : V. — {1,...,k} form an instance of MCC. In what follows, we
construct an instance (V',w, S, p) of SCSS that corresponds to the given instance
of MCC in the sense that it is a yes-instance of SCSS if and only if (G, k,¢) is a
yes-instance of MCC. Since the instance will be constructible in polynomial time
and its parameters [ and p/miny, will be bounded by a function of the original
parameter k, the construction provides a parameterized reduction between the
problems, showing the hardness of SCSS with respect to the combined parameter.
The high-level idea of the construction of the corresponding SCSS-instance is as
follows:

First, for every fixed arc weight ratio r > 9, we use only two weights for
the arcs between the vertices in V', the cheap arcs having weight miny, and
the expensive arcs having weight maxy, (oo if the ratio is unbounded) with r =
maxyy /miny. It will be shown that there is always a solution using only cheap
arcs. Thus, we consider in the following only such solutions.
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Figure 8.1: Part of the construction from Theorem 8.2 with three vertices—uv
and w of color ¢ and u of color j—and two edges {u,v} and {u,w}. Only the
arcs of Y \ I' are drawn for simplicity. The gadget representing the choice of a
vertex of color ¢ is in the bottom left corner, the one for a vertex of color j in
the bottom right, the edge selection is represented as a selection of an arc from
color-i vertices to color-j vertices in top left and as a selection of an arc from
color-j vertices to color-i vertices in top right. The gadgets are interconnected
according to the incidence of the vertices and the edges.

Second, for each color i there is one terminal b; that has only cheap arcs to and
from vertex gadgets (which will be described later) representing the vertices in
the MCC-graph G of this color. Thus, the paths between b; and other terminals,
which consist of cheap arcs, have to pass through some arcs in some of these
vertex gadgets. This corresponds to taking some vertex from this color class into
the solution for the MCC-instance. A similar gadget is also used for every pair
of distinct colors, representing the choice of the edge connecting the vertices of
the appropriate colors (this corresponds to the edge representation strategy as
described in Section 7.4).

Third, the vertex gadget for a vertex v of G consists of two vertices ¢, and ¢,
and a cheap arc (¢, ). This arc is the only cheap one leaving ¢, and is also the
only cheap arc entering /. Taking this unambiguously defined arc in solutions
for the SCSS-instance represents the selection of the corresponding vertex into
the solution for the MCC-instance. The edges of G are encoded in a similar
way. Note, however, that every edge is encoded twice. Finally, the vertex and
edge gadgets are connected by cheap arcs according to the incidence so that the
selected edges are between the selected vertices.

After this informal high-level description of the parameterized reduction from
MCC to SCSS, we now come to the mathematical details. We construct our
instance (V',w,S,p) of SCSS as follows. The set of vertices V' consists of the
following six vertex subsets (see Fig. 8.1):
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B = {b1|1§7/§k}7 -D = {duw 'Uu’{u U}EE}
C = {c,|veV} D' = {d,,d,, | {u,v} € E},
¢ = {d |veV}, Foi= {fi|1<i,j <hki#j}

The following arcs are given the weight miny,, that is, they are cheap arcs
(see Fig. 8.1):

A = {ay = (bewy, ) | v €V,

A" = {al = (), b)) | v € VY,

B = {3, :=(c,,c)|veV},

L' = {y.:=(c cv)]uveV}

D = {0up = (€ dup), 0vu = (¢ dv) | {u, v} € EY,

D' = {d,,: (duw o)y Op = (dyy ) | {u,v} € B},

H = {euy:= (duv,d; v) € = (dv,u,d;’u) | {u,v} € E},

Z = {Guw = (fe ww)s Go = (fe(w)ew)> dow) | {u, v} € EY,

z' = {C’l/l,,’U _< u,mfcu),cv))7§v,u: (vmfcv) u))|{u U}EE}
Yy = AUAUBUTUDUD UHUZUZ.

All remaining arcs are set to be expensive arcs, that is, for (z,y) € (V xV)\ D)),
w((z,y)) := maxy (oo if the ratio is unbounded). The terminal set S is BU F
and hence | = |S| = |B| + |F| = k + k(k — 1) = k*. Finally, set p := (3k +
S5k(k — 1)) - miny,. It is clear that the instance is constructible in polynomial
time and that both [ and p/miny, only depend on the parameter k. Next, we
show that every size-k clique of the MCC-instance one-to-one corresponds to a
weight-p solution of the SCSS-instance.

“=7: If K is a multi-colored clique in G, then one obtains a set A of arcs that
form a solution to the SCSS-instance as follows:

= {av, mﬁv | v E K} U {5uva umeu,vagu,vag;,v | u,v € K7u 7£ U}'

To show that the vertices of S are mutually connected in the digraph (V' A),
assume that v, € K is the vertex of color h. Now, for every two terminals b,
and b;, the arcs o, By, 0 iy €055 O, o By, o, form a path from b; to b;. The
arcs au,, @;“ visvs s €vivys Gogo,s form a path from b to fi; and the arcs y, v, €v; 0,
v, oy ; B, a _form a path from fi; to b;. Hence, the set S is strongly connected
and with an easy calculation one shows w(A) < p.
“<": To show that a weight-p solution of the SCSS-instance implies a size-k
clique of the MCC-instance, we need the following claim:
Claim. For every set of arcs A C V' x V', there is a set of arcs A’ C ) with
w(A") < w(A) such that, for every two vertices x,y € V', if there is a path from x
to y in (V’, A), then there is a path from x to y in (V', A").
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Proof of Claim. We construct a set A’ by replacing each arc from A\ Y by
a set of arcs in ) and show that, for every (x,y) € A, there is a path from x
to y in (V, A’). Since the weight of the replaced arc is maxy, whereas the weight
of each replacement arc is minyy, if we introduce at most r replacement arcs for
each replaced arc, then w(A") < w(A) and the claim follows.

To define the set A, of the replacement arcs for a replaced arc e = (z,y) €
A\ Y, we distinguish several cases depending on whether the endpoints represent
a color, a pair of colors, a vertex, or an edge. Moreover, in order to decrease the
number of cases in the analysis, we build A, in three steps, first the replacement
arcs forming a path from x to some vertex ' € C’, then the replacement arcs
forming a path from some vertex vy € C to y, and, finally, the replacement arc
connecting x’ to . In the first step, we consider the following cases for x:

o If x = b; for some 1 < ¢ < k, then consider an arbitrary vertex v of
color ¢(v) = i, add the arcs a, and (3, to AL, and set 2’ := ¢.

o If v = ¢, for some v € V, then add the arc 3, to A, and set 2’ := ¢.
o If v = ¢ for some v € V, then add no arc to A, and set 2’ := z.

o If z = dy, for some u,v € V, then add the arcs €,,,9;,,, 5, to A;, and set

I A
' =c.

o Ifr =d,, for some u,v € V, then add the arcs §, ,, 3, to A, and set 2’ := ¢],.

o If x = f;; for some 1 < i,j <k, then consider an arbitrary edge {u,v} € E
such that c(u) = 7 and c(v) = j, add arcs Cuu, €uw, 0y, B to A, and set

.
=

In the second step, we consider y:

o Ify = b, for some 1 < i < k, then consider an arbitrary vertex v with c¢(v) =
i, add the arcs 8, and o, to AL, and set ¢/ := ¢,.

o If y = ¢, for some v € V, then add no arc to A, and set 3/ :=y.
o If y = ¢ for some v € V, then add the arc 3, to A, and set y' := ¢,.

o If y =d,, for some u,v € V, then add the arcs 3, and d,, to A, and set

/o
Y = cy.

o If y = d,, for some u,v € V, then add arcs By, 0y, €up to Ay and set
/

Y = cy.
o If y = f;; for some 1 <4, j <k, then consider an arbitrary edge {u,v} € E
such that c(u) = 7 and c(v) = j, add arcs By, duw, €uw, Gy, t0 AL and set

ro_
Y = Cy.
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In the third step, we add the arc (2’,y’) to AL. This arc exists since 2’ € C’, ¢ €
C, and I has an arc from u to v for every pair of vertices u and v with u € C’
and v € C. Altogether, we have added at most four arcs in the first step, at most
four in the second step, and the arc (z’,4’) in the third step to A.. That is, we
add at most nine replacement arcs for each arc from A\ ). Moreover, it is not
hard to check that the replacement arcs form a path from x to y. This finishes
the proof of the claim.

Given a solution A to the SCSS-instance, we can assume, due to the above
claim, that A € ). We take an arbitrary vertex f; ; € F. All the paths to and
from f; ; in ) pass through some vertex in DUD'. In order to connect f; ; to other
terminals, A must contain at least one arc from each of the sets Z, 2’ H, D, D’;
each of them having indices u and v such that ¢(u) = ¢ and c¢(v) = j. This
means that A contains a disjoint union of sets of at least five arcs, each of the
sets one-to-one corresponding to an f; ;. Now take an arbitrary vertex b, € B.
Clearly, A must contain two arcs «, and o, with ¢(u) = ¢ which connect b; to
all other terminals. Moreover, since the vertices in C' are sinks and the vertices
in C" are sources in the digraph induced by Y \ B, there is at least one 3, with
c(u) = i in A. This means that A also contains a disjoint union of sets of at
least three arcs, each of these sets one-to-one corresponding to a b;. Since the
above mentioned arcs together already give weight (5 - |F|+ 3 - |B|) - miny = p,
there is no other arc in A. Let K := {v € V | B, € A}. We show that K is a
multi-colored clique in G.

For each color i there is exactly one vertex of color 7 in K, since there is exactly
one f3, in A among those with ¢(u) = i, as we have shown above. It remains to
show that, for two arbitrary vertices ug and vy in K, there is an edge between wuy
and vg in E. As we have shown, there are exactly one d,,, exactly one 9, ,,
exactly one e,,, exactly one (,,, and exactly one ¢, , in A with c(u) = c(uo),
c(v) = ¢(vy), and {u,v} € E. It is not hard to see that the indices u, v must be
the same for these five arcs. Now, if u # wg, then 3, is not in A and ¢, is a source
in D = (V' A). Thus, there is a path t0 fe(uo).c(v) Only from ¢, dy ., and d,, ,
but from no vertex in S. This is a contradiction, since A is a solution. Hence,
u = ug. Similarly, v = vy and thus {ug, v} is an edge of G. H

A similar reduction as above also works for 0-SCSS; however, we can prove
hardness already for a smaller arc weight ratio.

Theorem 8.3. 0-STRONGLY CONNECTED STEINER SUBGRAPH with ratio at
least 4 is W/[1]-hard with respect to the combined parameter (1, p/miny ).

Proof. Giving a parameterized reduction from MCC to 0-SCSS, we use the same
construction as for the proof of Theorem 8.2 and only replace the weight func-
tion w by a function w’ that is defined as follows: For any z,y € V', we

set w'((x,y)) := miny if (z,y) € BUH, w'((z,y)) :=0if (z,y) € Y\ (BUH),
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and w'((z,y)) := maxy otherwise. We set p := k? - miny,. Again, S := BUF
and [ = k2.
It is not hard to check that if K is a multi-colored clique in G, then

A= {ava Oéfmﬁv | v e K} U {5u,v75;7m€u,va CU,U7CQ/L77J | u,v € K7u 7é U}

is again a solution to the instance (V’,w', S, p) of 0-SCSS. It is also not hard to
check that an analogue of the claim shown in the proof of Theorem 8.2 holds
in this case. It suffices to take the same replacement and then check that the
replacement arcs have weight at most 4 - miny,, whereas the replaced arc has
weight maxy, which is at least 4 - miny, since the ratio is at least 4.

It remains to show that if there is a solution A such that A C ), then there
is a multi-colored clique in G. To this end, first observe that in (V/, Y\ (BUH))
the vertices in C' and D are sinks, while the vertices in ¢’ and D’ are sources.
Thus, to connect the vertex b; to the other terminals, there must be at least
one 3, in A with ¢(v) = ¢ and, similarly, to connect f;; to the other terminals
it requires at least one €,, in A with ¢(u) =7 and ¢(v) = j. Summing these up,
we know that there is exactly one such arc in each of these subsets of ) and, by
similar reasons as in the proof of Theorem 8.2, the set K := {v | 8, € A} forms
a multi-colored clique in G. O]

8.3.2 Tractability for Small Ratios

Here, we present two fixed-parameter algorithms for two variants of SCSS and
0-SCSS that restrict the allowed arc weight ratio, respectively. Recall that in
Theorems 8.2 and 8.3 we have shown W{1]-hardness of SCSS for arc weight ra-
tio r > 9 and of 0-SCSS for r > 4. Now, we complement this with fixed-parameter
tractability results for » < 2 and r = 1, respectively, leaving a small gap of un-
settled cases.

Theorem 8.4. STRONGLY CONNECTED STEINER SUBGRAPH with ratio at
most 2 is solvable in O(2' - 12 +n?) or O(2W/™nwW) . (p/miny)? + n?) time.

Proof. We only consider the case that p/(2miny ) < | < p/miny,. Hamiltonian
cycle over terminals gives a total weight at most 2 - miny,. This means that
to strongly connect the terminals in S we need an arc set with a minimum
weight at least [ - miny, and a maximum weight at most [ - maxy < 20 - miny.
Thus, p > 2/ - miny, always gives yes-instances, while p < [ - miny gives no-
instances. Therefore, the parameters | and p/miny are linearly related to each
other and it suffices to show that the problem is solvable in O(2 - I? 4+ n?) time.
To this end, we claim that there is always a Hamiltonian cycle on S having
the minimum total weight among all arc sets strongly connecting S. Since a
minimum-weight Hamiltonian cycle on S can be found in O(2! - [?) time [HK62],
the theorem follows.
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Claim. Among all arc sets strongly connecting the terminals in S, there is always
one arc set A with a minimum total weight such that A induces a Hamiltonian
cycle on S.

Proof of Claim. Let A denote one arc set strongly connecting S with a min-
imum total weight. If A induces a Hamiltonian cycle on S, then we are done;
otherwise, we construct a new arc set A’ from A such that A’ induces a Hamil-
tonian cycle on S and w(A") < w(A).

Consider the digraph D’ resulting from removing isolated vertices from (V, A).
Since all terminals in S are strongly connected in D', there exist for each terminal
at least one incoming arc and at least one outgoing arc. For each terminal, we
arbitrarily add one of its incoming arcs and one of its outgoing arcs to two initially
empty sets I and O, respectively. We set X := I N O. Note that X C (S x 5).

Now consider the digraph D” induced by the arc set X. It consists of vertex-
disjoint cycles and paths which only pass through terminals, since I (or O)
contains exactly one incoming (or outgoing) arc for each terminal. With A ¢
(S x.S), D" cannot be a single cycle over all terminals. Now, repeat the following
procedure until all cycles in D", which consists solely of terminals, are destroyed.
Let C' be such a cycle in D" and let A” denote the arc set of D”. There must be
at least two arcs e and €’ in A\ A”, e leaving C' at a vertex u and €’ entering C' at
a vertex v. Then, delete the outgoing arc of u in D” and add e = (u,w) to D”".
If w is a terminal as well, then remove the arc in A” that ends in w. Observe
that after the procedure D” may contain non-terminal vertices and all terminals
induce a vertex-disjoint union of paths in D”.

Finally, connect these paths directly using arcs between their endpoints to
construct a Hamiltonian cycle of terminals. Let A’ be the arc set of this Hamil-
tonian cycle. It remains to show w(A’) < w(A). Note that each of these paths
induced by the terminals in D” has at least one outgoing and one incoming arc
in A attached to the endpoints of this path, respectively. Summing up over all
these paths, these arcs have a total weight at least 2n, - miny, with n, denoting
the number of paths. To connect the paths into a Hamiltonian cycle, we need at
most n, arcs; thus, w(A’) < w(A). O

Next, we consider the “augmentation case” of 0-SCSS, namely, the case that
there are only two weights and one of them is zero. We achieve fixed-parameter
tractability with respect to the number of terminals [.

Theorem 8.5. 0-STRONGLY CONNECTED STEINER. SUBGRAPH with ratio 1 is
solvable in O(4" + n®) time.

Proof. First note that in this case we have only two weights 0 and miny, = maxyy.
Suppose that we are given an input instance of 0-SCSS consisting of V', w, S
(where |S| = 1), and p. If p/miny > [, then the answer is always yes, since we
can connect all terminals to a cycle that costs at most [ - miny,. So, for the rest
of the proof we will assume that p/miny < [.
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We provide four polynomial-time executable data reduction rules that lead
to a problem kernel with at most 2 - 2! 4 [ vertices. Let Ay := {a € V x V|
w(a) = 0}. To simplify the presentation, the rules are described as modifications
of the digraph H := (V, Ap). The vertices of V' \ S are called non-terminals. In
the following, we use N1 (v) and N (v) to denote the sets of vertices which have
arcs in a set A directed from and to v, respectively. If clear from the context,
then we omit the index A. The rules are ordered and the next rule is always
applied after the previous one cannot be applied any more. Later rules never
produce a situation where an earlier rule could again be applied. The correctness
of the rules follows from the proven fact that an instance produced by a rule is a
yes-instance if and only if the original instance is a yes-instance.

Rule 1. Contract strongly connected components into a single vertex.

Since the arcs in Ay can be added to any solution, Rule 1 is clearly correct.
Moreover it can be exhaustively applied in O(n?) time.

Rule 2. For any non-terminal v € V' \ S with both N~ (v) # () and N*(v) #
(), delete v and connect its neighbors appropriately, that is, continue with the
digraph H' := (V\{v}, Ao\ ({v} x N (0)) U(N"(v) x {v}))U(N~ (v) x N (v))).

After this rule is exhaustively applied, there remain only sources, terminals,
and sinks in the digraph and the connections between them are preserved. Hence,
the resulting digraph does not depend on the order in which the vertices are
considered. To see the correctness of the rule, it is enough to realize that any
arc a ¢ Ao of the solution starting in v can be replaced by an arc starting in
some sink reachable from v in H. Similarly, any arc a ¢ Aj ending in v can be
replaced by an arc ending in some source, from which v can be reached in H.
This rule can be exhaustively applied in O(n?) time, since there are n vertices
and to apply the rule to one vertex takes O(n?) time.

Rule 3. Delete all weight-0 arcs between two non-terminals.

The rule can be applied in O(n?) time. The following claim shows its correct-
ness.

Claim. If the instance is reduced with respect to Rule 1 and Rule 2, then there
is an optimal solution that uses no arc of weight 0 between two non-terminals.

Proof of Claim. Suppose, on the contrary, that each optimal solution uses
some arc in Ag N ((V\ S) x (V\S)). Let A be an optimal solution with the
minimum number of such arcs and let a := (z,y) € AN Ay be such an arc, that
is, z,y € V' \ S. Clearly, x is a source and y is a sink in H = (V, Ag). There
is some arc in A ending in z and some arc in A starting in y since A\ {a} is
not a solution. We can assume that there is only one arc ending in x in A for
the following reason: If [N, (z)| > 2, then select an arbitrary 2’ € N, (z) and
replace the arcs ending in x (except (z/,x)) by arcs ending in 2’ and get another
optimal solution that satisfies this assumption. Let us call this unique arc (', x).
Similarly, we assume that there is a unique arc starting in y and we call it (y,y').

Let V; denote the minimal set S C V; € V such that A C 1V x Vj and
also assume that A is minimal in the sense that (4, A) is a strongly connected
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Figure 8.2: Illustration to the proof of the claim in Theorem 8.5. Solid lines
represent the sure connections in A. No other connections are possible in A,
except for those drawn by dotted lines. Dashed lines represent the arcs in A”\ A.

digraph. Now distinguish the following sets of vertices (see Fig. 8.2):

P = {veVy\{y} |3 apathin (Vy, A\ {a}) from v to y},
N = {veV\{z}|Fapathin (Vy, A\ {a}) from z to v},
O = W\ (PUNU{z,y}).

Observe that in A \ {a} there is no path from any vertex in N to any vertex
in P (in particular, N N P = {}), since otherwise there would be a path from x
to y different from (z,y) and, thus, A\ {a} would be a solution. There is also
no path from O to P and from N to O according to the definition of N, P,
and O. If N is empty, then A" := (A\ {(2/,z),a}) U{(2’,y)} is a better solution,
since (Vg \ {z}, A) is strongly connected, x is a non-terminal, and w((2’,z)) >
w((2',y)). Hence N is non-empty. Similarly, P is non-empty since otherwise
(A\A{a, (y,v")}) U{(z,y)} would be a better solution.

Since N is non-empty and (Vp, A) is strongly connected there must be some
arc from some vertex in N to some vertex outside N. But, as we have shown,
it can end neither in O nor in P nor in y. Hence it ends in x and thus 2’ € N.
Similarly, y' € P. Now let A" := (A \ {a, («",2), (y,y)}) U{(,¢), (y,z)}. To
check that H' := (Vj, A’) is again strongly connected, observe that there is a
path from z to y in H' formed by a path from x to 2’ (' € N), the arc (2/,y),
and a path from y' to y (v € P). The path from 2’ to = is formed by the
arc (2',y'), a path from ' to y, and the arc (y,z), and finally the path from y
to ¢ is formed by the arc (y,z), a path from z to 2/, and the arc (2/,y'). Since
w((2',x)) +w((y,y')) = 2miny > w((2',y')) + w((y,z)), we have w(A") < w(A).
Thus A’ is an optimal solution which uses fewer arcs of weight 0 between two
non-terminals—a contradiction.

Rule 4. If there are several non-terminals with the same neighborhood, then
delete all of them except for one.

Rule 4 can be exhaustively applied in O(n?) time by comparing the neighbor-
hoods of each of the O(n?) pairs of vertices in O(n) time, and if they are the same
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deleting one of them again in O(n) time. To see the correctness, observe that
we can reconnect the solution arcs with non-zero weight incident with deleted
vertices to make them incident with the appropriate remaining vertex without
affecting any connection between terminals.
Claim. If Rule 4 cannot be applied, then the digraph has at most 2-2'+1 vertices.
Proof of Claim. The neighborhood of a non-terminal is formed only by termi-
nal vertices. Moreover a non-terminal is always either a source or a sink. Thus,
there are at most 2 - 2! different neighborhoods and thus by Rule 4 at most 2 - 2/
non-terminals. Together with [ terminals this gives the claimed bound on the
number of the vertices.

By the above claim, we have at most 2 - 2! non-terminals in the reduced
instance. To solve 0-SCSS on the reduced instance, try all possibilities to connect
at most p/miny, sinks out of 2! many to at most p/miny, sources out of 2!
many and check whether in the resulting digraph the terminals are mutually
interconnected. This can be carried out in O((Qll) : (2;) 128 1) = O(47) time.
Thus, 0-SCSS with ratio 1 can be solved in O(4” 4 n3) time. O

8.4 Directed Steiner Network

Finally we look at DIRECTED STEINER NETWORK (DSN) and 0-DIRECTED
STEINER NETWORK (0-DSN), the most general of the problems. As such, the
hardness results given for SCSS and 0-SCSS in Theorems 8.2 and 8.3 also apply
for DSN and 0-DSN. Nevertheless, recall that the problems are known to be
solvable in O(mn*=2 + n4~1logn) and therefore are in XP with respect to the
number of terminals /, as shown by Feldman and Ruhl [FR06].

In Subsection 8.4.1 we show that in contrast to the fixed-parameter tractable
case of 0-SCSS, 0-DSN is W[1]-hard even in the augmentation case. We indi-
cate in Subsection 8.4.2 that the algorithms designed in proofs of Theorems 8.4
and 8.5 directly imply a significant running time improvement of the algorithm
by Feldman and Ruhl [FRO6] for these relevant cases.

Quite surprisingly even the case of DSN with ratio 1, that is the case where
all arcs have the same weight is not completely clear at first sight. Nevertheless
the following observation shows that this case is indeed in P.

Observation 8.6. DIRECTED STEINER NETWORK with ratio 1 is in P.

Proof. First observe that we can limit ourselves to arcs between terminals. If a
non-terminal was a part of an optimal solution, then we could reroute the arcs
incident with it to some terminal without increasing the weight of the solution.
Let V, (s1,t1),-..,(s;,t;) and p be an instance of DSN with ratio 1 (weight func-
tion is not necessary in this case) and consider the digraph D = (V;, A;), where
V, = Uizl{si,ti} is the set of terminals and A; := {(s1,%1),...,(s;,t)}-
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It is easy to see that each (weakly) connected component can be treated
separately. If such a component C' is acyclic (does not contain a directed cycle)
then C' can be linearly ordered in polynomial time by standard techniques so
that each arc ends higher in the order than it started. Now connect each vertex
except for the maximal one with its least successor in the order. It is easy to see
that this way we obtain a solution of weight (|C| — 1) - miny. As any solution
must use at least |C| — 1 arcs to make this component connected, the solution is
optimal.

If the considered component C' contains a cycle, then at least |C| arcs are
needed and any cycle over the vertices of C' constitutes an optimal solution. [J

8.4.1 Hardness for the Augmentation Case

The W(1]-hardness result shown in Theorem 8.3 for 0-SCSS with ratio at least 4
clearly extends to the more general 0-DSN problem. In what follows, however,
we strengthen the result by showing that, in case of 0-DSN, the W[1]-hardness
already holds for arc weight ratio r = 1. The reduction for 0-DSN with ratio 1
is again from MULTICOLORED CLIQUE. However, with now only one value of
non-zero weight allowed, a completely different construction is needed.

Theorem 8.7. 0-DIRECTED STEINER NETWORK with ratio at least 1 is W/[1]-
hard with respect to the combined parameter (I, p/miny).

Proof. We reduce from MULTICOLORED CLIQUE. For each edge and each vertex
color there is a pair of vertices that can be connected either directly or by one
of several paths formed by two arcs each, exactly one of them of weight zero.
The middle vertex of the chosen path represents the choice of the appropriate
edge/vertex. Formally, let G = (V| E), k, and ¢: V — {1,...,k} be an instance
of MULTICOLORED CLIQUE. We construct our instance of 0-DSN as follows. The
set of vertices V' consists of the following six vertex subsets (see Fig. 8.3):

B = {V,|1<i<k},
Fo={f;|1<i<j<k}

P {f 1< i< <k,

C .= Ule C;, where

Ci=A{c, |v eV, e(v) =i},

D :=<icj<p, Dij, where

D;j =A{dyy | {u,v} € E,c(u) =1,c(v) = j}.
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Figure 8.3: Part of the construction from Theorem 8.7 with three vertices—uv and
w of color i and u of color j—and two edges {u,v} and {u,w}. The 0-weight arcs
of A"UBUC are drawn as solid, the arcs of AUC" with weight maxy, as dashed
lines.

The following arc sets are important for the construction (see Fig. 8.3):

A = {ay = (bewy, ) | v E VY,

A= oy, = (e /c(v)) |ve Vi,

B = {Buv:=(cu,dun),Bou = (Cp,dyy) | {u,v} € E, c(u) < c(v)},
C = {Yuw = (fewew) duw) | {n,v} € B, c(u) < c(v)},

C' = {v = (duw, fouyew) | {us v} € B c(u) < c(v)}.

Now let w((z,y)) = 0 if (z,y) € A UBUC, and w((x,y)) := maxy =
miny, otherwise. The solution is required to connect for every ¢ the vertex b;
to vertex b; and for every 1 < i < j < k the vertices b;,b; and fi; to f] ;.
Hence | = k+ (3/2) - k(k — 1). Let the bound on the weight of arcs which are in
the solution be p = (k4 (1/2) - k(k — 1)) - miny.

It is clear that the instance is constructible in polynomial time and that both [
and p/miny, only depend on the parameter k. It remains to show that there is
a multi-colored clique in G if and only if there is a weight-p solution to the
constructed 0-DSN instance.

If K is a multi-colored clique in G, then we get a set A of arcs that form a
solution to the constructed 0-DSN instance by setting

A:={a,,d |ve K}U {6%1,,6@,”,%,@,7;7” | u,v € K, c(u) < c(v)}.

Indeed, if we assume that v; € K is the vertex of color ¢, then for each i < j the
arcs oy, and a;, form a directed path from b; to b; whereas the arcs o, Bu; 051 Yoy 0,
the arcs aw;, Bu;v,, Y, v, a0d the arcs yu, 0;, 1, ,, form the directed paths to f; ;
from b;, b;, and f; ;, respectively.
For the reverse direction, we make use of the following claim:

Claim. Every solution A C V' x V' to the constructed 0-DSN instance uses only
arcs in AU A" UBUCUC'. Moreover, for each vertex in B U F”, there is exactly
one arc in A incident with it.
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Proof of Claim. Let us concentrate on the arcs in X := (V' x V')\ (A'UBUC),
that is, the arcs of non-zero weight. The solution A contains at most p/miny, of
them. Each vertex in B has out-degree at least one with respect to ANAX since it
is connected to a vertex from B’ in (V’, A). For each 1 <i < j <k, at least one
of the vertices in DU U{fi;} has out-degree at least one in AN X since the vertex
fij is connected to f;.. But this already gives k + (1/2)k(k — 1) = p/miny arcs.
Hence no vertex in C U B’ U F’ has non-zero out-degree in X N A, the vertices
in B have out-degree exactly one, and for each 1 <i < j < k exactly one vertex
from D;; U {f;;} has out-degree exactly one. By similar reasons the vertices in
F’ have in-degree exactly one, for each 1 < ¢ < k there is exactly one vertex in
C; U{b} with in-degree one, and all the other vertices have in-degree zero.

Now suppose that for some i the solution contains arc (b;,z) where x ¢
C;U{b}. Then, however, either x € F"UB’\ {b,}, which is not possible since this
would mean that x has out-degree 0 in A and b; is not connected to b, or z € C.
In this case there must be an arc from some vertex in D to some vertex in C; or
to b, in A in order to connect b; to b.. Then, by a simple counting argument there
is some j such that there is an arc in A from b; to some vertex in F” which is
impossible as we have already shown. Similarly, we can show that the arc ending
in fj; starts in some vertex of Dj; U {f;;}. This proves the claim.

Given a solution A to the 0-DSN-instance, we can assume, due to the above
claim, that A C AUA'UBUCUC'. For each i denote with v; the uniquely
determined vertex such that the arc (b;,¢c,,) is in A. We claim that K := {v; |
1 < i < k} is a multi-colored clique in G. It is clearly multi-colored since the
vertex v; must have color i. Now, due to the claim, for each 1 <7 < j < k there
is exactly one edge {vj,v}} in E such that c(vj) = i, ¢(v}) = j, and %, v € A

Hence, if v] # v;, then there is no path in A from b; to f;; since there is no arc
from ¢,, to dy o, in B. Thus, v; = v;. By the same reasoning v; = v; and {vi,v;}
is an edge. This implies that K is a clique in G, completing the proof. [

8.4.2 Running-Time Improvements for Small Ratios

The DSN (0-DSN) algorithm developed by Feldman and Ruhl [FRO6] uses an
algorithm for SCSS (0-SCSS) as a subprocedure. Using the algorithms developed
in the proofs of Theorems 8.4 and 8.5 in case of arc weight ratios 2 and 1,
respectively, as the subprocedure, the running time of the overall algorithm of
Feldman and Ruhl can be significantly improved by roughly halving the degree of
its running time polynomial for the relevant case of these small arc weight ratios.

Corollary 8.8. DIRECTED STEINER NETWORK with ratio 2 and 0-DIRECTED
STEINER NETWORK with ratio 1 can be solved in time O((2% - [2 - n?)
and O(256" n?' + n?+3), respectively.

Proof. The DSN (0-DSN)-algorithm of Feldman and Ruhl [FR06] is based on
a simulation of a game in which one moves some tokens along the arcs of the




8.5. CONCLUSION 83

input digraph, the price of the move being the total weight of the arcs used. To
this end, they construct a so-called “game graph”, with vertices representing the
possible token positions and arcs representing the legal moves. For DSN (0-DSN)
with [ terminal pairs a game graph for [ tokens is constructed, and the solution
is then determined by a single shortest path computation in this graph. One
type of legal move is moving some k < [ tokens along some strongly connected
subgraph to their new positions. The price of such a move can be determined
by solving an instance of SCSS (0-SCSS) with up to 2/ terminals corresponding
to old and new positions of the tokens. For this computation our algorithms can
be used. Since there are at most n? such moves and the time needed to perform
the corresponding computations overshadows all other steps of the algorithm
(see Section 6.2 of [FR06] for the details on the time complexity of the original
algorithm), the result follows. O

8.5 Conclusion

In this chapter we contributed to parameterized complexity results for NP-hard
problems on directed graphs, still a comparatively little developed field within the
parameterized algorithmic graph theory (cf. [GY08]). We continued and extended
previous work of Feldman and Ruhl [FR0O6]. In particular, we examined the
impact of the ratio of the arc weights on the parameterized complexity of three
Steiner problems with respect to the considered parameterizations. Table 8.1
in Section 8.1 summarizes known results and indicates open questions. More
specifically, the parameterized complexity of SCSS, 0-SCSS, and DSN is unsettled
for some small values of the arc weight ratio. We conjecture that the problems
are hard in all these cases, but more clever arguments are needed to improve the
reductions.

Given the vast literature on approximation algorithms, one may find many
more questions to study concerning the parameterized complexity of network de-
sign problems in general, for instance, the connectivity augmentation problems
with arc reversal and complement operations [AHS02]. Finally, it would also
be interesting to investigate whether some restrictions on the structure of the
underlying graph, such as planarity, could lead to fixed-parameter tractability
results on Steiner-type problems (see Bateni et al. [BHM10] for some approxima-
tion results and Gassner [Gasl0] for NP-hardness of steiner forest on treewidth
3 graphs).
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Chapter 9

(Generalized Domination

9.1 Introduction to Generalized Domination

9.1.1 Definition

Roughly speaking, in domination-type problems one is asked to place some ob-
jects to a subset of important places so that every place has an object nearby.
This can mean placing a fire or police stations among villages of the country in
such a fashion that a village without a station has one in a neighboring village.
Among the first problems studied of such kind were also those asking for covering
of the chessboard with various pieces.

The study of domination-type problems in graphs goes back to Konig [Kén5b0)],
Berge [Ber62] and Ore [Ore62]. During the development of the NP-hardness
theory, domination problems were among the first to be studied and shown to be
NP-complete [GJ79]. Around 1980 many papers appeared, either introducing a
new variant of domination, showing its hardness or both. This resulted in that the
bibliography on domination in graph [HL90| collected by Hedetniemi and Laskar
soon grew over 500 entries. Hence an attempt to find a unifying generalization of
many previously studied variants was made. It is based on the following notion.

Definition 9.1. Let o, p be a pair of non-empty sets of non-negative integers. A
set S of vertices of a graph G is called (o, p)-dominating if for every vertex v € S,
we have |S N N(v)| € g, and for every v ¢ S, we have |S N N(v)| € p.

The concept of (o, p)-domination was introduced by J.A. Telle [Tel94a, Tel94b)]
(and further elaborated on in [TP97, HT98]). Although it cannot capture all the
different variants of domination studied (e.g., CONNECTED DOMINATING SET,
or CAPACITATED DOMINATING SET) it can also capture INDEPENDENT SET and
some of its variants. See Table 9.1 for some examples of how some variants of
domination can be expressed by various ¢ and p.

It is well known that the optimization problems such as MAXIMUM INDEPEN-
DENT SET, MINIMUM DOMINATING SET, etc. are NP-hard [GJ79]. Telle [Tel94a]
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Table 9.1: Overview of some special cases of (o, p)-domination and their param-
eterized complexity.

o p Problem name Parameterized
Complexity

Ny N Dominating Set Section 7.2

N N Total Dominating Set W(2]-hard [BK94]

No | {1} Efficient Dominating Set W(1]-hard [BK94]

{0} N Independent Dominating Set W[2]-complete [DF92b)]

{0} | Ny Independent Set Section 7.2

{0} | {1} | (1-)Perfect Code(Indep. Eff. D. S.) | W[1]-complete [DEF95a],[Ces02]

{r} | No Induced r-Regular Subgraph Wi1]-hard [MT06]

{0} | {0,1} Strong Stable Set W/[1]-hard

{1} | {1} Total Perfect Dominating Set W]1]-complete (Thm. 9.2)

has shown that whenever both o and p are finite and non-empty, and 0 ¢ p then
already the existence of a (o, p)-dominating set becomes NP-hard. On the other
hand, when both ¢ and p are either set of all odd or of all even non-negative
integers (ODD, EVEN), then the existence can be decided in polynomial time,
while if we ask for a (o, p)-dominating set of size at least k, exactly k, or at most
k the question is again NP-hard [HKT00]. Finally if 0 € p then the empty set is
(o, p)-dominating (regardless of o), but the question for (o, p)-dominating set of
size at least k is again NP-hard for every finite o and p # {0} [GKO07].

Although exact exponential time algorithms for (o, p)-dominating set were
designed [FGK*07, FGK*09b] (for the case that o and p have together at most
3 elements or they can be obtained from so few elements by adding all multi-
ples of some period m), the search for polynomial time algorithms focused the
attention to special graph classes. In this direction Kratochvil et al. [KMM95]
showed polynomial-time decidability of the existence problem for any pair of finite
o, p on interval graphs, Golovach and Kratochvil [GKO07] established a P/NP-
completeness dichotomy of this problem on chordal graphs and a way to clas-
sify o, p in this dichotomy which was later generalized to degenerate graphs by
the same authors in [GKO08]. The generalized domination problems for graphs
of bounded width-parameters (treewidth, branchwidth, cliquewidth, boolean-
width) were considered in [ABXR*10, BvLvRV10, vyRBR09, Chal0O, Tel94b,
TPI7].

9.1.2 Parameterized Complexity

Since the establishment of parameterized complexity domination-type problems
have been among the first ones intensively studied in the framework of this theory.
Actually Downey and Fellows in [DF98] state that the apparent parameterized in-
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tractability of DOMINATING SET was their first motivation to develop the theory.
As we have already said in Section 7.2, INDEPENDENT SET is W[1]-complete and
DOMINATING SET is W|[2]-complete, if parameterized by the solution-size k. A
number of domination-type problems is considered in [BK94|, where it is shown
(among other results) that TOTAL DOMINATING SET is W|[2]-hard and that
EFFICIENT DOMINATING SET is W[l]-hard. INDEPENDENT DOMINATING SET
is W[2]-complete [DF92b], while EFFICIENT INDEPENDENT DOMINATING SET
(also called PERFECT CODE) is W[l]-complete ([DF95a] shows W[1]-hardness
and [Ces02] shows W/[1]-membership). The proof of W][1]-hardness of STRONG
STABLE SET is not published (as we know) but easily follows from the W[1]-
hardness of INDEPENDENT SET. Again, all of the results are given with respect
to the standard solution-size parameterization k. The complexity of finding an r-
regular induced subgraph in a graph is studied by Moser and Thilikos in [MT06].
They proved that the problem is W[1]-hard when parameterized by the solution
size but FPT for the dual parameterization.

Parity constraints have been considered in [DFVW99]. A subset of a color
class of a bipartite graph is called odd (even) if every vertex from the other
class has an odd (even, respectively) number of neighbors in the set. Downey et
al. [DEVW99] show that deciding the existence of an odd set of size k, an odd
set of size at most &, and an even set of size k are W[1]-hard problems; somewhat
surprisingly, the complexity of EVEN SET OF S1ZE AT MOST k remains open.

All these individual results concern special (o, p)-dominating sets, and thus
call for a unifying approach. In this chapter, based on [GKS09], we initiate that
by giving general results for large classes of pairs o, p. Main results of this chapter
are given in Table 9.2. For completeness, we also included in this table results
which immediately follow from the fact proved by Telle [Tel94a] that it is NP-
hard to test the existence of a (o, p)-dominating set for any finite sets o and p
whenever 0 ¢ p. Following the approach of Telle [Tel94a] we focus mainly on
finite o and p, but we state the results in the most general form we were able to
achieve. Our second goal in this chapter is to study (many of) the above problems
from the dual parameterization point of view, both for the domination-type and
for the parity-type problems.

Formally, we consider the following (o, p)-domination problem

(0, p)-DOMINATING SET OF SIZE AT MOST k

Input: A graph G and k£ € N.

Question: Is there a (o, p)-dominating set in G of size at most k7
Parameter: solution-size k.

and its variants (o, p)-DOMINATING SET OF SIZE k, (0, p)-DOMINATING SET OF
SIZE AT LEAST n — k, and (o, p)-DOMINATING SET OF SIZE n — k; the meaning
should be clear. All these problems are parameterized by k, and in the latter
two, n denotes the number of vertices of the input graph.
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Table 9.2: Parameterized complexity of deciding the existence of a (o, p)-
dominating set of a given size.

size parameterized complexity
<k W]1]-complete for finite o, p, 0 ¢ p (Thm. 9.2)
=k W/[1]-complete for finite o, p, 0 ¢ p (Thm. 9.2)
>k para-NP-complete for finite o, p, 0 ¢ p [Tel94a]
< n —k | para-NP-complete for finite o, p, 0 ¢ p [Tel94a]
=n—k Open
>n—k FPT for finite or co-finite o, p (Thm. 9.12)

The first result of this chapter determines the parameterized complexity for
finite sets o and p. We prove in Section 9.2 that both (o, p)-DOMINATING SET
OF SIZE k and (o, p)-DOMINATING SET OF SIZE AT MOST k are W[l]-complete
problems whenever 0 ¢ p. The W[l]-membership is proved in a stronger form
when o is only required to be recursive but not necessarily finite. Recall that a set
of non-negative integers is called recursive, if there is a deterministic algorithm,
that given a non-negative integer k decides in finite time, whether k is in the set
or not.

We further study in Section 9.3 the dually parameterized problems and show
in an even more general way (also for co-finite sets) that these problems become
tractable. We prove that for non-empty sets of non-negative integers o and p
such that either o or & is finite (recall that X = Ny \ X for a set X of integers),
and similarly either p or p is finite, the (o, p)-DOMINATING SET OF SIZE AT
LEAST n — k problem is in FPT.

In Section 9.4 we show that a similar result cannot be expected for arbitrary
recursive sets ¢ and p. Even for the simplest case of sets that are neither fi-
nite nor cofinite, that is, for the parity case we prove W[l]-hardness if o,p €
{EVEN, ODD} (recall that EVEN = {0,2,4,6,...} and ODD = {1,3,5,...}).

As a tool for the previous result we consider the following parity problems on
bipartite graphs. Suppose that G is a bipartite graph and R, B is a bipartition
of its set of vertices (vertices of R are called red and vertices of B are blue).
A non-empty set S C R is called even if for every vertex v € B, we have
IN(v) N S| € EVEN, and it is called odd if for every vertex v € B, we have
|N(v) N S| € ODD. The following problem

EVEN SET OF SIZE AT LEAST r — k

Input: A bipartite graph G = (R, B, F') such that |R| = r and k € N.
Question: Is there an even set in R of size at least r — k7
Parameter: dual parameterization k.

and its variants EVEN SET OF SIZE r — k, ODD SET OF SIZE AT LEAST 7 — k,
and ODD SET OF SIZE r — k are the dually parameterized versions of ODD SET,
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Exact OpD SET, EVEN SET and EXACT EVEN SET studied in [DEVW99]. We
prove in Section 9.4 that all four of them are W[1]-hard. We believe that these
results are interesting by themselves. In particular it is unusual for parameterized
problems to have the same complexity for dual parameterizations.

Sections 9.5 and 9.6 are devoted to FPT results for sparse graphs and open
problems.

9.2 Complexity of (o, p)-DOMINATING SET OF SIZE
AT MOST k

Here we prove the following theorem.

Theorem 9.2. Let o and p be non-empty finite sets of non-negative integers,
0 ¢ p. Then both (o, p)-DOMINATING SET OF SIZE k and (o, p)-DOMINATING
SET OF SIZE AT MOST k are W/[1]-complete problems.

The remaining part of this section contains the proof of this theorem. First, we
prove W]l]-hardness. To do it, we introduce and consider an auxiliary problem.

9.2.1 At most a-Satisfiability

To prove the hardness part of Theorem 9.2, we are going to reduce from a special
variant of the WEIGHTED SATISFIABILITY problem. Recall that a weight of a
truth assignment is the number of variables having value true.

AT MOST a-SATISFIABILITY

Input: A 2-normalized monotone Boolean formula ¢ and k € N.

Question: Does ¢ allow a satisfying truth assignment of weight at most k£ such
that each clause of ¢ contains at most « variables which evaluate to true?
Parameter: weight of the assignment k.

We start with the proof of W[1]-hardness for this problem.

Lemma 9.3. For any a > 1, AT MOST a-SATISFIABILITY is W/1/-hard.

Proof. We provide a reduction from the following problem:

EXACT SATISFIABILITY

Input: A 2-normalized Boolean formula ¢ and k € N.

Question: Does ¢ have a satisfying truth assignment of weight at most k such
that each clause of ¢ contains exactly one literal which evaluates to true?
Parameter: weight of the assignment k&

In [DF95b| an easy reduction from PERFECT CODE (which is shown there to
be W[1]-hard) to a variant of EXACT SATISFIABILITY asking for an assignment
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of weight exactly k is given. This reduction produces only monotone formulas.
As it can be easily shown that all perfect codes in a given graph have the same
cardinality [Kra91] it follows that also our variant of the problem is W{[1]-hard,
even for monotone formulas.

It suffices to prove the lemma for o > 2 as AT MOST 1-SATISFIABILITY is the
same problem as EXACT SATISFIABILITY for monotone formulas.

We reduce from EXACT SATISFIABILITY. Let C1,...,C,, be the clauses of ¢.
We introduce « copies of  with different sets of variables, and denote them by
©1,--,9q. Let Ciq,...,C;. be the clauses of ;. Define ¥ = 3 A+ A g A
[(Cia V- VCar) N AN(Crm V-V Cyom)l, and let k' = ka.

Suppose that ¢ has a satisfying truth assignment of weight at most k& such
that each clause of ¢ contains exactly one variable with value true. Using the
same truth assignment for the sets of variables for each ¢; we get a satisfying
truth assignment of weight at most &’ for i such that each clause contains at
most « variables with value true.

For the converse, assume that ¢ has a satisfying truth assignment of weight
at most &’ such that each clause of ¢ contains at most « variables with value
true. Obviously each clause C;; contains at least one variable with value true,
but it cannot have two variables with value ¢rue, since otherwise the clause C ; vV
-V C,,; of ¥ would contain more than « variables of value true. So, all formulas
©; have a truth assignment such that each clause contains exactly one variable
with value true. It remains to note that by a pigeonhole principle at least one
formula ¢; has a truth assignment of weight at most (k'/a) = k as the formulas
have different sets of variables. O

9.2.2 The Proof of W[1]-hardness

This subsection contains the proof of W[1]-hardness of (o, p)-DOMINATING SET
OF SIZE k and (o, p)-DOMINATING SET OF SIZE AT MOST k by a reduction from
AT MOST a-SATISFIABILITY.

Suppose that ¢ and p are non-empty finite sets of non-negative integers and
0 ¢ p. Let us denote ppim = MINGC, Prae = MAX T, Gnin = Minp and G =
max p. Further we set t = max{i € Ny: i ¢ p,i+ 1 € p} (¢ is correctly defined
since 0 ¢ p), and @ = Gaz — t > 1.

We first construct several auxiliary gadgets. These gadgets “enforce” on a
given vertex the property of “not belonging to any (o, p)-dominating set” and
at the same time guarantee that this vertex has a given number of neighbors in
any (o, p)-dominating set in the gadget. To describe the properties formally, we
consider rooted graphs and introduce the following notion. Let G be a rooted
graph with a set of root vertices X. We call a set S C V(G) a (o, p)-dominating
set for G if [N(v) N S| € o for every v € S\ X, and |[N(v) N S| € p for every
v ¢S, vé¢ X (ie, the conditions from the definition of (o, p)-domination are
required for all vertices except for the roots).
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The gadget F'(s). The first gadget we introduce is the gadget F(s) (the number
in brackets always refers to the number of roots of the gadget). The construction
goes as follows (see Fig. 9.1): We take a complete graph K, . 41 with vertices
ai,y...,0p,..+1. For each vertex a;, we add @gpmae + 1 vertices b1, ..., 0i g 00t1
and join them to a; by edges. For each vertex b;;, we add gp, — 1 copies of
the complete graph K, . 1 and make one vertex of each copy adjacent to b; ;.
Finally, s vertices xy,...,xs are added and joined to a;. The resulting graph is
denoted by F(s) and z, ..., x, are its roots.

|
g\ Kpmin+1
./
T o/

Q;

(.../R\..
N
T

=

Pmax +1

Figure 9.1: Construction of F'(s)

Lemma 9.4. The graph F(s) has a unique (o, p)-dominating set S for F(s), and
this set has the following properties:

1. xq,...,xs & S,
2. a1 €8 (i.e., every root verter has exactly one neighbor in S),

3. S contains f = (Pmaz + 1) ((@maz + 1)(@min — 1) (Pmin + 1) + 1) vertices.

Proof. Let S consist of all vertices a; and all vertices of all (pmae + 1)(Gmae +
1)(¢min — 1) copies of K, . +1. It is easy to check that S is a (o, p)-dominating
set for F(s) and that S satisfies properties 1-3. We prove that S is unique. Let
S be a (o, p)-dominating set for F'(s). Suppose that some vertex a; is not in S.
If a neighbor b; ; is also not in S, then this neighbor can have at most g, — 1
neighbors in S, but this is impossible. So, all vertices b;;, 7 = 1,2, ..., @mas + 1
are in S, but then a; has at least ¢,,.. + 1 neighbors in S, and this is again a
contradiction. Hence all vertices a;, i = 1,2,..., pae + 1 are in S, and hence
all their neighbors (i.e., x1,...,2s and by1,...,0p, 00 +1.gmaet1) are outside S. It
follows that all neighbors of b; ; have to be included to S. This means that each
copy of K, . +1 has at least one vertex in .S and consequently all vertices of these
copies are included in S. O
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The gadget F’(s). We take gna, copies of F(1) and identify their roots into
one vertex x. Then s root vertices ¥y, ..., ys of degree one are added and each is
made adjacent to z. The resulting graph is denoted by F'(s).

Lemma 9.5. The graph F'(s) has a unique (o, p)-dominating set S for F'(s),
and this set has the following properties:

1. x,y1,...,ys &€ S, (i.e., roots have no neighbors in S)

2. S contains [ = ¢maz(Dmaz + 1) ((@maz + 1) (@min — 1) (Pmin + 1) + 1) vertices.

Proof. Clearly, the union of (o, p)-dominating sets for the copies of F'(1) is a
(0, p)-dominating set for F’(s), and this set has properties 1-2. Now note that
any (o, p)-dominating set S for F'(s) must include (o, p)-dominating sets for the
copies of F'(1), and by Lemma 9.4, x ¢ S. Since, by the same lemma, z has a
neighbor from S in each copy of F(1) and, thus, it has already g4, neighbors in
S, none of yy,...,ys isin S. O]

Using these gadgets we construct an auxiliary graph H(l) for every positive
integer [.

The H(l) gadget. We start with a complete graph K; with vertices z1,..., z,
which will be the only roots of H(l). We consider three cases:

Gmaz = Qmin = 1: A copy of F'(1) with the root y is added, and y is joined to
21,...,2 by edges.

Gmaz > Qmin = 1: We take ¢4, — 1 copies of F'(1) with a common root x, and
we add a copy of F’(1) with the root y. Vertices x and y are made adjacent to
Zlyevey”l

Gmaz = Gmin > 11 We introduce ¢q, — 1 copies of F(1) with a common root
x, and we add further ¢,,;, — 1 copies of F'(1) with a common root y. Vertices x
and y are made adjacent to zq, ..., 2.

Lemma 9.6. The graph H(l) has the following properties:

1. For any (o, p)-dominating set S for H(l), each root vertex has no non-root
netghbors in S.

2. Any (o, p)-dominating set S for H(l) contains exactly one root vertex.

3. For each root vertex z;, there is a (o, p)-dominating set S for H(l) which
contains z;.

4. Any (o, p)-dominating set S for H(l) contains h vertices, where

f/+17 imea$ZQmin:17
h:h<07p> = (qmax_l)f+fl+1a Zlmeax >szn: 17
(Qmax + Qmin — 2)f + 17 Zf Gmaz 2 dmin > 1
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Proof. By Lemmas 9.4 and 9.5, the vertices « and y do not belong to any (o, p)-
dominating set for H(l). Hence the first claim follows. The second claim follows
from the observation that every root vertex has an adjacent non-root vertex y
with ¢min — 1 neighbors in S (since y ¢ S, at least one root vertex has to be
in S) and a neighbor (z or y) with ¢, — 1 neighbors in S (and hence at most
one root vertex may be in S). To prove the third and forth claims, observe that
every (o, p)-dominating set for H(l) contains the union of the (o, p)-dominating
sets for all copies of F'(1) and of F'(1), which were used in the construction, and

this union plus one arbitrary root vertex z; is indeed a (o, p)-dominating set for
H(l). O

As a next step, we construct a selection gadget R(I) for every [ € N.

The selection gadget R(l). Take (pmin+1)Gman copies of H () which are denoted
H;;(l)forie{l,...,pmin+ 1} and j € {1,...,Gnin}. Let zY’j), . ,zl(i’j) be the
roots of H; ;(1). For each i € {1,...,pmin+1}, and each pair j, 7" € {1,..., ¢min},
Jj # Jj', the vertices of the root sets for H;;(l) and H,;(l) are joined by the

J) (4,5")

complements of perfect matchings, i.e., vertices 24" and zsf’ are adjacent if
and only if s # s'. Then for each j € {1,...,¢nin} and any s € {1,...,1}, the

vertices zgl’j), e ,zgp minthi) are made pairwise adjacent to form a clique. The
roots of this constructed graph R(l) are the vertices z%l’l), NN 21(1,1)'

Lemma 9.7. 1. Any (o, p)-dominating set S for R(l) contains exactly one
vertex from the set {z%l’l), . zl(l’l)}.
2. For any verter 2", there is a (0, p)-dominating set in R(l) which contains
this vertex.

3. Any (o, p)-dominating set in R(1) hasr = r(0, p) = (Pmin+1)@minh vertices.

Proof. Observe that any (o,p)-dominating set S for R(l) induces (o,p)-
dominating sets for the graphs H,;(l) for i € {1,...,pmin + 1} and j €
{1,..., Gmin}- Hence the first claim of the lemma follows from the second claim of
Lemma 9.6. To prove the second claim, consider the union of (o, p)-dominating

sets for the rooted graphs H; ; which contain the vertices 27 These sets exist

because of the third claim of Lemma 9.6. Note explicitly that for this set, 200
has exactly pm, neighbors in S and every other root vertex of H; ;(1) has exactly
@min neighbors in S by the first claim of Lemma 9.6 and the construction of R(1).
Therefore we have a (o, p)-dominating set in R(l) which contain 2"V The third

claim follows immediately from the fourth claim of 200, O]

Now we are ready to describe the reduction. Let ¢ be a formula as an input
of the AT MOST a-SATISFIABILITY problem. Let x1,...,x, be its variables, and
let C'y,...,C,, be the clauses.
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We take k copies of the graph R(n+ 1) denoted by Ry, ..., Ry, with the roots
of R; being denoted by z; ;. For each clause C a vertex Cj is added and joined by
edges to all vertices x; ;, 7 = 1, ..., k such that the variable z; occurs in the clause
Gs. Observe that vertices x; 11 are not joined with any Cj; they correspond to
the case that less than k variables is set to true. Now we distinguish two cases
(recall that ¢t = max{i € Ng: i & p,i + 1 € p}):

t = 0: In this case a copy of F’'(m) is introduced, and the m roots of this
gadget are identified with vertices C4,...,C,,. In this case we set k' = kr + f’.

t > 0: We construct ¢ copies of F'(m), and the roots of each copy are identified
with C1,...,C,,. In this case we set k¥’ = kr +tf.

The resulting graph is called G. The proof of W[1]-hardness is then concluded
by the following lemma.

Lemma 9.8. The formula ¢ allows a satisfying truth assignment of weight at
most k such that each clause of ¢ contains at most a variables with value true if
and only if G has a (o, p)-dominating set of size at most k'. Moreover, in such a
case the size of any (o, p)-dominating set is exactly k'.

Proof. Suppose that the variables x1, ..., x, have a satisfying truth assignment
of weight at most k such that each clause of ¢ contains at least one variable,
and at most « variables with value true. Without loss of generality we assume
that x; = true for j € {1,...,1}, x; = false for j € {{+1,...,n} and | < k.
We construct a (o, p)-dominating S set for G as follows. For each j € {1,...,1},
all vertices of the (o, p)-dominating set of R; which contains z;; are included
in S (see Lemma 9.7). Notice that the satisfying truth assignment can have
weight strictly lower that &, i.e. [ < k. In this case for each j € {l +1,...,k},
all vertices of the (o, p)-dominating set of R; which contains z;,4; are included
in S. For each copy of F(m) (or F'(m)), all vertices of corresponding (o, p)-
dominating sets (see Lemmas 9.4 and 9.5) for these rooted graphs are added to
S. By Lemmas 9.4, 9.5 and 9.7 we know that |S| = &’. By the same lemmas,
for any vertex v # C4,...,Cy,, the (o, p)-conditions are satisfied, and we have
to check them only for vertices Cs. Since Cs ¢ S (see Lemmas 9.4 and 9.5), it
is necessary to prove that [S N N(Cs)| € p. One more time using Lemmas 9.4
and 9.5 we note that C, has ¢ neighbors in S from gadgets F'(m) or F'(m). Each
clause C; contains at least one variable and at most o = ¢y,,4, — t variables with
value true. By the construction of S and Lemma 9.7, each vertex Cy has at least
one and at most & = @q, — t neighbors in S from gadgets Ry, ..., Rx. Therefore
t+1<|SNN(CY)| <t+a = Gmaz, and {t +1,..., Gz} < p.

Assume now that S is a (o, p)-dominating set of size at most k&’ in G. By
Lemmas 9.4, 9.5 and 9.7, S is the union of the (o, p)-dominating sets of the
graphs Ry, ..., Ry and the (o, p)-dominating sets for the gadgets F'(m) (or F'(m))
(note that it means that [S| = &’). It follows from Lemma 9.6 that for each i €
{1,...,k}, S contains exactly one vertex from the set {x;1,...,2; 41} For each
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Jj €{1,...,n}, we set the variable x; = true if z; ; € S for some ¢ € {1,...,k}
and x; = false otherwise. Clearly we have a truth assignment of weight at most
k. By Lemmas 9.4 and 9.5, vertices Cs are not in S, and each vertex C, has
t neighbors in S from gadgets F(m) or F'(m). Since S is a (o, p)-dominating
set, (g has at least one and at most ¢,.. —t = « neighbors in S from the
graphs Ry, ..., Rj. Recall that C; is not adjacent with vertices z; ,41. Hence the
neighbors of Cy in S are vertices z; ; for j € {1,...,n} which correspond to the
variables that were set true. It follows immediately that each clause C contains
at least one and at most o variables with value true. O

9.2.3 W][1]-membership

To complete the proof of Theorem 9.2, it remains to prove that our problems are
included in W[1]. Here we prove a slightly stronger claim.

Theorem 9.9. Let o be recursive, and suppose that p is finite or p = Ny. Then
the (o, p)-DOMINATING SET OF SIZE AT MOST k and (o, p)-DOMINATING SET
OF SIZE k problems are in W[1].

To show the membership of the problems in W[1]|, we use the characteri-
zation of WI[1| by Nondeterministic Random Access Machines as presented in
Section 7.3.

We introduce our program SigmaRho (Algorithm 1) for the case p is finite,
that takes a graph G and a positive integer k as an input and there is an accepting
computation of SigmaRho on G and k if and only if there is a (o, p)-dominating
set of size exactly k in G. We present it in a higher level language that can be
easily translated to the NRAM instructions. We will then show that this program
is tail-nondeterministic k-restricted (Definition 7.9).

Lemma 9.10. Let G be a graph and k € N. There is an accepting computation of
SigmaRho on G and k (see Algorithm 1) if and only if there is a (o, p)-dominating
set of size (exactly) k in G.

Proof. We will show that the program SigmaRho accepts the input if and only if
the set S guessed in step 2 is a (o, p)-dominating set of size k for the input graph
G. Clearly if the program accepts, then S contains k distinct vertices, otherwise
it would have been rejected in step 3. It is easy to see that the members of the
set S must satisfy the o-condition due to step 4. Now observe that the number
D(r) computed in step 5 denotes the number of pairs (R,v) such that R is a
subset of S of size r and v is a vertex not in S that has all vertices from R as
neighbors (the first term counts all such vertices v in V' and the second term
subtracts such vertices v that are in S). Hence this D(r) represents the number
of vertices outside S which have at least r neighbors in S with multiplicities, in
particular a vertex with ¢ neighbors in S is counted (i) times. Since, in the first
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Program SigmaRho(G = (V, E), k)
1 for r :=1to gner +1 do forall R € (‘:) do
L B(R) = | (] No(w)| = |{vlv € V,Yu € R : wo € E};
ucRk

Guess k vertices vy,...,v;, denote S = {vy,...,v};
forall 7,5,1 <i < j <k do if v; = v; then REJECT;
for i :=1 to k do if |{vj|v;v; € E}| ¢ 0 then REJECT;
for r := ¢z + 1 downto 1 do

[SLI" R

D(r) = Y (B(R)—|[]Ne(u)ns|) =

Re(7) uer
= Z H{vlv e V\ S,Vu € R:uv € E}|;
Re(7)
dmaz ¢
C(r) = D(r)— C(t) )5
3 (()-ew)

| if r ¢ p and C(r) # 0 then REJECT;
6 if 0¢pand} . ,C(r)#n—k then REJECT; else ACCEPT;

Algorithm 1: The algorithm from the proof of Theorem 9.9. Recall
that ¢ = maxp.

run of the cycle 5 with r = @4, + 1, we check that there is no vertex outside S
with more than ¢, neighbors in S, it follows that C(r) represents the number
of vertices outside S which have exactly r neighbors in S. It is now clear that if
r ¢ p and there is a vertex outside S with r neighbors in S (i.e., C'(r) > 0), then S
cannot form a (o, p)-dominating set. In the last step 6 we sum up the number of
vertices outside S that satisfy the p-condition and thus S (which satisfies all the
conditions checked by the previous steps) is (o, p)-dominating if and only if this
sum is equal to the total number of vertices outside S, i.e., n —k,or 0 € p. [

Lemma 9.11. Program SigmaRho is tail-nondeterministic k-restricted.

Proof. To prove the lemma, we prove the following claims.

Claim 1: There is a function g(k) such that steps 2-6 can be performed in at
most g(k) steps.

Proof of Claim 1: Step 2 is a simple k times execution of the "GUESS”
instruction. Hence it is carried out in O(k) time. Step 3 takes O(k?) time. If
a(k) denotes the maximum time needed for [ < k to decide whether [ € o (such a
function exists since o is recursive), then step 4 can be carried out in O(k*- a(k)).
We can also suppose that a(k) bounds any numbers involved in this computation
and the number of registers used. The cycle in 5 is executed constantly (¢maz +1)
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many times. The value D(r) is computed according to the first expression, where
there is at most O(k?m=*1) different indices for the sum, the first term means
just a table lookup and the second term can be determined in O((gmaez + 1) - k)
steps for each fixed index. The expression for C'(r) contains constantly many (at
most Gma.) terms. With the last step taking also constant time, this means that
steps 2-6 altogether can take at most g(k) = O(k%e=*24k?-a(k)) time. Since the
first nondeterministic instruction is in step 2, nondeterministic steps are among
the last g(k) steps.

Claim 2: Step 1 can be carried out in O(n%=*2) time.

Proof of Claim 2:There are at most O(nme=*1) subsets of size at most g+ 1
in V, |V| =n and for each subset R the computation of B(R) can be performed
in O((Gmaz +1) - n) time. Together with Claim 1 this shows the first condition of
the definition.

Claim 3: During the computation the numbers involved and the number of reg-
isters used are bounded by O(nime=*2) except for step 4, where the bound is
a(k).

Proof of Claim 3: There is n%ms=*1 many B(R)’s, a constant number of D(r)’s
and C(r)’s, k vertices of S, the input and an additional constant number of
variables for the indices stored during the computation. The B(R)’s are bounded
by n since they contain the number of vertices satisfying certain conditions. Each
D(r) is a sum of at most n?=t! B(R)’s and hence bounded by n?me=2 The
C(r) and the sum in the last step are sums of constantly many D(r)’s and C(r)’s,
respectively, hence bounded by O(n?me="2).

The bound for step 4 is proved in Claim 1. This shows the second and third
conditions of the definition, completing the proof. n

Proof of Theorem 9.9. The W[l]-membership of (o, p)-DOMINATING SET OF
SIZE k for the case p is finite is a direct consequence of Theorem 7.10 together
with Lemmas 9.10 and 9.11. To show the membership of (o, p)-DOMINATING SET
OF SIZE AT MOST k it suffices to add one more nondeterministic step “Guess
[ < k7 and the assignment “k := [” before Step 2 of SigmaRho. To modify the
program SigmaRho for the case p = Ny it is enough to omit Steps 1, 5, and 6. [

This completes the proof of Theorem 9.2.

9.3 Complexity of (o, p)-DOMINATING SET OF SIZE
AT LEAST n — k

Now we consider our problems for the dual parameterization. Note that the stud-

ied class contains (except for others) also VERTEX COVER (as a dual of INDE-
PENDENT SET), probably the most studied problem in parameterized complexity




98 CHAPTER 9. GENERALIZED DOMINATION

that is well known to be FPT (see Sections 5.1 and 6.1). The dual parameteriza-
tion of r-REGULAR INDUCED SUBGRAPH was shown to be FPT in [MT06]. We
provide a common generalization for these results.

Theorem 9.12. Let 0 and p be sets of non-negative integers such that either o
or @ is finite, and similarly either p or p is finite. Then (o, p)-DOMINATING SET
OF SIZE AT LEAST n — k is in FPT.

Proof. We present an algorithm (Algortihm 2) that is based on the bounded
search trees technique, presented in Section 6.1. At the beginning the algorithm
includes all vertices into the set S and then tries recursively excluding some of
the vertices to make S (o, p)-dominating. Once a vertex is excluded, it is never
included in the set again (in the same branch of the algorithm). Obviously at
most k vertices can be excluded from S to fulfill the size constraint.

We call a vertex v satisfied (with respect to the current set S) if it has the
right number of neighbors in S (i.e., v € S and [N(v) N S| € 0 or v ¢ S and
|IN(v) NS| € p), otherwise we call it unsatisfied. Let Dpq. denote maxo if o is
finite and max@ if 7 is finite. Similarly let g4, denote maxp or maxp. (It is
assumed here that max () = —oc.) Finally let b denote max{pmaz, Gmaz }- We call
a vertex v big if deg(v) > b+ k and small otherwise.

The main idea of the algorithm is that there is at most one way to make an
unsatisfied big vertex satisfied — to exclude it from S — and if this does not
work, there is no (o, p)-dominating set at all. On the other hand to satisfy a
small vertex, we must either exclude it or one of its first b neighbors that were
in S.

Procedure Exclude(S5)
if there is no unsatisfied verter then Return(S);Exit;
if |S| = n — k then Halt;
let v be an unsatisfied vertex;
if v is big then
if v e S and p is infinite then Exclude(S \ v);
| else Halt;
else
if v € S then Exclude(S \ v);
let {u1,...,u,} = SN N(v) be the set of included neighbors of v;
if »r =0 then Halt;
| for i:=1 to min{b+ 1,r} do Exclude(S \ {u;}).

Algorithm 2: The algorithm from the proof of Theorem 9.12.

The algorithm consists of a single call Exclude(V') and returns the set S
returned by the procedure or NO if no set was returned.

Claim 1: The algorithm Exclude(V) runs in O((b+ 2)* - n +m) time.
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Proof of Claim 1: First observe that since each recursive call reduces the size
of S by one, there can be at most k£ nested calls. With at most b + 2 recursive
calls made by one call this means altogether O((b + 2)¥) calls of Exclude. Note
that we can decide which vertices are satisfied at the beginning in O(m) time
and then update this before each recursive call in O(n) time. Since all the other
operations in one call can be also carried out in O(n) time, we get the claimed
running time.

Claim 2: 1If there is a (o, p)-dominating set O of size at least n — k, then the
algorithm returns some (o, p)-dominating set of size at least n — k.

Proof of Claim 2: We show that there is always a branch of the algorithm that
keeps O C S, thus we cannot miss O. A big vertex has always at least b neighbors
in any set of vertices of size at least n — k. Hence if the unsatisfied vertex v is big,
this means that o is finite, and since it is satisfied by O, this means v ¢ O, which
is the only branch tested by the algorithm (p must be infinite, because otherwise
there would be no (o, p)-dominating set). On the other hand, if v is small and
in S, then either v ¢ O or {uy, ..., Unin(p+1,3} € O because otherwise v would
have either the same neighborhood or at least b + 1 neighbors in O and it would
remain unsatisfied, since o is finite and thus b + 1 ¢ o. Similarly for the other
case.

Clearly if the algorithm returns a set S, then S is a (o, p)-dominating set of
size at least n — k, since all vertices are satisfied. This together with the two
claims completes the proof. O

9.4 Complexity of Parity Constraints

We proved that our problems are in FPT for the dual parameterization if o, p are
finite or co-finite. Now we show that it cannot be expected that similar results
could be established in more general cases. Particularly, these problems are W|1]-
hard for o,p € {EVEN,ODD}. Note that the sets EVEN and ODD constitute
the simplest examples of sets that are neither finite nor co-finite. This was also
one of the reasons why similar problems were studied in [HKT00].

9.4.1 Complexity for the Bipartite Parity Problems

Recall that it was shown by Downey et al. [DFVW99] that for a bipartite graph
G = (R, B, E), deciding the existence of an odd set of red vertices (i.e. of a
subset of R such that each blue vertex from B has an odd number of neighbors
in this set) of size k, an odd set of size at most k, and an even set of size k
are W[1]-hard problems. As a counterpart to these results, we first show that
all four parity problems for Red/Blue bipartite graphs are hard under the dual
parameterization.
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Theorem 9.13. The EVEN SET OF SIZE r — k, EVEN SET OF SIZE AT LEAST
r—k, ODD SET OF SIZE r — k, and ODD SET OF SIZE AT LEAST r — k problems
are all W[1]-hard.

Proof. We reduce from the following problem

ODD SET OF SIZE AT MOST k:

Input: A bipartite graph G = (R, B, F') and k € N.
Question: Is there an odd set in R of size at most k7
Parameter: solution-size k.

It should be noted that W[l]-hardness was stated in [DFVW99] for the exact
variant of the problem (i.e. for the question: Is there an odd set in R of size k7),
but for our variant of the question, the proof of [DEVW99] works the same. We
show that the problem remains W{[1]-hard if all blue vertices have odd degrees and
also if all of them have even degrees. Then we deduce the claims by considering

the set R\ S for a would-be odd set S C R.

Lemma 9.14. ODD SET OF SIZE AT MOST k remains W/1]-hard even if

1. all blue vertices have odd degrees;
2. all blue vertices have even degrees.

Proof. To prove the first claim, we reduce from ODD SET OF SIZE AT MOST k.
Let G = (RUB, E) and k be an instance of the problem and let B’ C B be the set
of vertices of even degree. If B’ = (), then we let H = G. Otherwise the graph H is
constructed as follows. Red vertices a, b, cq, ..., c. and blue vertices f,dy,...,ds
are added to G. Then all vertices of B’ are joined by edges with a, vertices a
and b are joined with dy, ..., ds, vertex b is connected with f, and finally each
vertex ¢; is joined with d;. The construction of H is shown in Fig. 9.2 a). Clearly,
all blue vertices of H have odd degrees. Let ¥ = kif B =0 and ¥ = k+ 1
otherwise. We prove that G has an odd set of size k if and only if H has an odd
set of size k'.

Figure 9.2: Construction of H in the proof of Lemma 9.14

If B" = (), then the claim is trivial. Suppose that B’ contains at least one
vertex. If S C R is an odd set in G of size at most k, then S U {b} is an odd set
in H which contains at most k£ + 1 vertices. Assume now that H has an odd set
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S of size at most k’. It is easy to see that b € S, as it is the only neighbor of f.
Suppose that a € S. But in this case ¢1,...,c, € S, and S contains at least k+ 2
vertices. This contradiction proves that a ¢ S, and therefore ¢y, ... ¢, ¢ S. Tt
remains to note that S\ {b} is an odd set in G of size at most k.

For the proof of the second claim, we again reduce from ODD SET OF SIZE
AT MOST k, and the reduction uses same ideas. Let here B’ C B be the set of
vertices of odd degree. We construct the graph H (see 9.2 b)) in a similar way
as it was done above. The only difference is that for the case B’ # (), vertex b
is replaced by two vertices b; and by with same neighborhoods. Parameter k" is
defined as before. We prove that G has an odd set of size at most k if and only
if H has an odd set of size at most k'.

If B = (), then the claim is trivial. Suppose that B’ contains at least one
vertex. If S C R is an odd set in G of size at most k, then S U {b;} is an odd set
in H which contains at most k 4 1 vertices. Assume now that H has an odd set
S of size at most k. Tt is easy to see that either by € S, by & S or by ¢ S, by € S.
Suppose that a € S. But in this case ¢1,...,c, € S, and S contains at least k+ 2
vertices. This contradiction proves that a ¢ S, and therefore ¢, ...,¢c, ¢ S. It
remains to note that S\ {b1, b2} is an odd set in G of size at most k. O

To complete the proof of W[l]-hardness of EVEN SET OF SIZE AT LEAST
r — k it is enough to observe that if all blue vertices have odd degrees then S is
an odd set of size at most k if and only if R\ S is an even set of size at least
r — k. The proof of W[1]-hardness for the EVEN SET OF SIZE r — k problem is
similar, we reduce from the exact variant of the ODD SET OF SIZE k problem.

For the proof of W[l]-hardness of ODD SET OF SIZE AT LEAST 7 — k, it is
sufficient to notice that if all blue vertices have even degrees, then S is an odd set
of size at most k if and only if R\ S is an odd set of size at least » — k. The proof
of W[1]-hardness for the ODD SET OF SIZE r — k problem is the same, we only
reduce from the exact variant of the ODD SET OF SIZE AT MOST k problem. []

9.4.2 Complexity of the (EVEN|ODD)-Domination Prob-
lems

The main result of this section is the WJ[l]-hardness of the (EVEN|ODD)-
domination problems under the dual parameterization. Note that, in contrast
to the previous subsection, these results are for general graphs.

Theorem 9.15. Let 0,p € {EVEN,ODD}. Then the (o, p)-DOMINATING SET
OF SIZE n — k and (0, p)-DOMINATING SET OF SIZE AT LEAST n — k problems
are W[1]-hard.

Proof. We prove this theorem for the (o, p)-DOMINATING SET OF SIZE AT LEAST
n — k problem. The proof for the (o, p)-DOMINATING SET OF SIZE n — k is done
by similar arguments. We consider several cases.
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1. o = p=EVEN
We use the following lemma:

Lemma 9.16. EVEN SET OF SIZE AT LEAST r — k remains W/1]-hard if all red
vertices have even degrees.

Proof. We reduce from the EVEN SET OF SIZE AT LEAST r — k problem by
replacing each blue vertex by two vertices with the same neighborhoods. Trivially
S C R is an even set in the obtained graph if and only if it is an even set in the
original graph. O

If all red vertices have even degrees then S C R is an even set if and only if
S U B is an (EVEN, EVEN)-dominating set. It follows immediately that G has
an even set of size at least r — k if and only if G has a (o, p)-dominating set of
size at least n — k for 0 = p = EVEN.

For the exact variant of the problem it is necessary to force all vertices of B
(more precisely all vertices of V' '\ R) to be in any (EVEN, EVEN)-dominating
set of size n — k. This can be done by adding to each vertex b € B an adjacent
clique with an even number of at least £+ 1 vertices. Any vertex of the clique not
included in the dominating set would have one neighbor less than any included
vertex of the clique, which is impossible. Since at least one vertex of the clique is
included, whole the clique must be included in any (EVEN, EVEN)-dominating
set of size n — k and hence b must be included as well, as each of the vertices of
the clique has an odd number of neighbors inside it. Note also that this way b
gains an even number of neighbors inside S.

2. o =p=0DD

Lemma 9.17. ODD SET OF SIZE AT LEAST r — k remains W/[1]-hard if all red
vertices have odd degrees.

Proof. We reduce from the ODD SET OF SIZE AT LEAST r—k problem. Consider
two copies of the instance of this problem. Denote by uq, ..., u, the red vertices
of the first graph, and by vy, ..., v, the red vertices of the second graph. Assume
that vertices wuy,...,us (vertices vq,...,vs correspondingly) have odd degrees,
and the other red vertices have even degrees. We introduce one additional red
vertex w. For each i € {1,...,s}, two blue vertices z;; and x;» are added and
joined by edges with u;, v; and w. For each i € {s+1,...,r}, we add one blue
vertex x;; and join it with w;,v; and w. If » — s is even, then one blue vertex y;
is introduced and joined with w, and otherwise two blue vertices ¥, y» are added
and joined with w. Denote the obtained graph by H (see Fig. 9.3). Clearly all
red vertices of H have odd degrees. Let k' = 2k. Now we prove that the original
graph G has an odd set of size at least r — k if and only if H has an odd set of
size at least 2r +1 — k',
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Figure 9.3: Construction of H in Lemma 9.17.

Suppose that G has an odd set S of size at least » — k. Denote by Sy the copy
of this set for the first copy of G, and by S5 the odd set for the second copy. It can
be easily checked that S;US;U{w} is an odd set in H of size at least 2r — 2k + 1.
Assume now that S is an odd set in H of size at least 2r + 1 — k’. Note that
w € S because of the presence of the vertex y;. Let S = SN {uy,...,u,} and
Sy = SN{vy,...,v.}. We claim that w; € Sy if and only if v; € S,. Suppose that
u; € Si. Since z;; has three red neighbors w;, v;, w and w,u; € S, v; € S also. It
remains to note that S (or Sy) is an odd set of size at least r — k in G. O

It is easy to see that if all red vertices in the Red/Blue bipartite graph G have
odd degrees then S C R is an odd set if and only if SU B is an (ODD,ODD)-
dominating set in G. Correspondingly GG has an odd set of size at least r — k if
and only if G has a (o, p)-dominating set of size at least n — k for o = p = ODD.

For the exact variant it is again necessary to force all vertices of B to be in
any (ODD, ODD)-dominating set of size n — k. This is done in similar way as in
the case 1 (the case 0 = p = EVEN) by adding to each vertex b € B two cliques
adjacent with b each having an odd number of at least k£ 4 1 vertices.

3. ¢ = ODD and p = EVEN

We reduce from (EVEN, EVEN)-DOMINATING SET OF SIZE AT LEAST n — k.
Consider two copies of the instance of this problem. Denote by uq,...,u, the
vertices of the first copy of the graph G, and by vy,...,v, the vertices of the
second copy. For each i € {1,...,n}, vertices u; and v; are connected by an edge,
two copies of stars K 941 denoted by 7, and T;, are introduced, and central
vertices of these stars are joined with u; and v;. Denote the obtained graph by H
(see Fig. 9.4). It is easy to see that H has n' = 2n(2k + 3) vertices. Let k' = 2k.
We claim that G has an (EVEN, EVEN)-dominating set of size at least n — k if
and only if H has an (ODD, EVEN)-dominating set of size at least n’ — k'
Suppose that S is an (EVEN, EVEN)-dominating set of size at least n — k in
G. Let S be the set of vertices of S in the first copy of G, and correspondingly
let Sy be this set in the second copy. It can be straightforwardly checked that
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Figure 9.4: Construction of H for the case 0 = ODD and p = EVEN

S'=5USU CJ (V(T;1) UV (T;2)) is an (ODD, EVEN)-dominating set of size

=1
at least n’ — k' in H.
Assume now that S’ is an (ODD, EVEN)-dominating set of size at least n' — &’
in H. Consider some star T; ;. Since this star has 2k +1 leaves and n’ —|S’| < 2k,
at least one leaf of T} ; is included in S’. Thus the central vertex of the star is

in S” as 0 = ODD, and hence every leaf is in S" as p = EVEN. Therefore all
vertices of the star are included in S’. It means that |J(V(7;1) UV (T;2)) C S".

Since the central vertex of each star has odd degree,Z i% has an even number of
neighbors in {u;,v;}, i.e. either w;,v; € S" or u;,v; ¢ S’. Hence each vertex
u; € S"if and only if v; € §'. It remains to note that S = {uy,...,u,} NS  is an
(EVEN, EVEN)-dominating set in G of size at least n — k.

4. ¢ = EVEN and p = ODD

We reduce from (ODD, ODD)-DOMINATING SET OF SIZE AT LEAST n — k.
Similarly as in the case 3, consider two copies of the instance of this problem.
Denote by uq, . . ., u, the vertices of the first copy of the graph G, and by vy, ..., v,
the vertices of the second copy. For each ¢ € {1,...,n}, vertices u; and v; are
joined by an edge, and then 2k + 2 vertices x; 1, ..., %; 2142 are introduced and
joined with u; and v;. Denote the obtained graph by H (see Fig. 9.5). This graph
has n’ = 2n(k + 2) vertices. Let k' = 2k. We prove that G has an (ODD, ODD)-
dominating set of size at least n — k if and only if H has an (EVEN, ODD)-
dominating set of size at least n’ — k’.

Suppose that S is an (ODD, ODD)-dominating set of size at least n — k in
G. Let S; be the set of vertices of S in the first copy of GG, and correspondingly
let Sy be this set in the second copy. It is easy to see that S’ = S; U Sy U

U{zi1,- .-, @i2ks2} is an (EVEN, ODD)-dominating set of size at least n' — &’
i=1

in H.
Assume now that S’ is an (EVEN, ODD)-dominating set of size at least n' — &’
in H. For each ¢ € {1,...,n}, at least one vertex x;; is in S’, since otherwise

there are at least k' + 2 vertices that are not included in S’. Therefore either
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Figure 9.5: Construction of H for the case 0 = EVEN and p = ODD

u;,v; € S or u;,v; ¢ S’ since 0 = EVEN. Hence all vertices x; 1, ..., ;2542 are
in S’ since otherwise z;; ¢ S’ would have an even number of neighbors in S’
contrary to p = ODD. Also for each vertex u;, u; € S’ if and only if v; € 5.
Note now that S = {us,...,u,} NS is an (ODD, ODD)-dominating set in G of
size at least n — k. ]

9.5 Complexity of (o, p)-DOMINATING SET OF SIZE
(AT MOST) k for Sparse Graphs

We have already mentioned in Section 6.2 that many problems which are difficult
for general graphs can be solved efficiently for sparse graphs. This is also the
case of (o, p)-DOMINATING SET.

If both ¢ and p are either finite or co-finite one can in linear time decide the
existence of a (o, p)-dominating set or even find the minimum and maximum car-
dinality of such a set on graphs of bounded treewidth [Tel94b, TP97, vRBR09],
graphs of bounded branchwidth or clique-width [BvLvRV10] or even graphs of
bounded boolean-width [ABXR*10]. Actually, one can show that on graphs of
bounded clique-width also by an argument somewhat similar to one bellow, us-
ing Theorem 6.4 (proved by Courcelle, Makowsky, and Rotics [CMRO00]), but the
mentioned specific results yield more practical running times. By way of con-
trast, when o is a set with arbitrary large gaps between two consecutive elements
and p is cofinite, then deciding the existence of (o, p)-dominating set is already
W([1]-hard [Chal0].

We prove that the existence of (o, p)-dominating set of a particular size can
be efficiently decided on much more general class of sparse graphs, namely on
nowhere-dense classes of graphs and classes of graphs with bounded expansion.
This result is a corollary of Theorems 6.5 and 6.6 (established in [DK09]).

Theorem 9.18. Let 0 and p be recursive sets of non-negative integers. Then
(0, p)-DOMINATING SET OF SIZE (AT MOST) k is FPT (with parameter k) on
classes of graphs of bounded expansion and nowhere dense graph classes.




106 CHAPTER 9. GENERALIZED DOMINATION

Proof. Using Theorems 6.5 and 6.6, it suffices to provide for each k£ the FOL
formula for “there is a (o, p)-dominating set of size (at most) k”. First note that
a set of size (at most) k is (o, p)-dominating if and only if it is (o, px)-dominating,
where o, = 0 N{0,...,k} and pr = pN{0,...,k}, as no vertex can have more
than k& neighbors in a set of size (at most) k. Since both ¢ and p are recursive,
sets oy and py can be computed in time a(k) for some a : N — N solely depending
on k.

Now we will gradually build a vocabulary, which will at the end allow us
to formulate the desired formula, deciding, whether vertices xy,...,z; form a
(0%, pr)-dominating set of size (exactly) k. The “at most” k formula can be
then easily obtained as a conjunction of formulas for sizes 0 to k. In what
follows, 1 < r < k, and formulas (except for those stated) also contain free
variables x1, ..., Ty.

selected(z) = \/($:$z)

at_least_r_sel neighs(v) = FJy;Jys. .. Elyr( /\ —(y: = yj)) A

1<i<j<r

A ( /T\ selected(y;) A adj(v, yz-))

=1

exact_r_sel_neighs(v) = (at_least_r_sel neighs(v)) A
A—(at least_(r + 1)_sel_neighs(v))
exact_0_sel_neighs(v) = —(at_least_1_sel neighs(v))
is_satisfied(v) = (selected(v) A \/ (exactnseLneighs(v))) v
reog
v <—|(selected(v)) A \/ (exact,r,sel,neighs(v)))
TEPK

Now the desired formula can be expressed as

(o, p)-dom set_of size k = Jr;3x,. .. Elxk( /\ —(z; = 33])> A
1<i<j<k

AVu(is_satisfied(v))

It is easy to see, that the formula can be constructed in a time solely dependent
on k and, hence, the result follows as a corollary of Theorems 6.5 and 6.6. O

9.6 Conclusion

In this chapter we studied the parameterized complexity of the (¢, p)-domination
problems. Our results give more or less general picture for finite sets o and
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p. Still, it would be interesting to extend these results for (o, p)-DOMINATING
SET OF SIZE k in the case 0 € p. We suppose that it would be a challenging
task to investigate the case of (possibly) infinite sets. We presented some partial
results in which o or p can be co-finite, but we leave open the question about
the parameterized complexity of (o, p)-DOMINATING SET OF SIZE (AT MOST) k.
Table 9.1 indicates that we can expect that these problems are W[1] or W[2]-hard
for majority of sets.

Another direction of the research is to consider the parameterized complexity
for different graphs classes. Particularly, we proved that the (o, p)-domination
problems are FPT for graphs of bounded expansion and nowhere dense graph
classes when parameterized by the solution size. It is known that some domi-
nation problems are FPT for the more general class of degenerate graphs (see
e.g. [AGO7, KC00]). These results can be easily generalized for (o, p)-domination
problems for some special sets ¢ and p. It is an interesting open problem whether
the results of Theorem 9.18 can be extended to degenerate graphs.

Finally, it is an interesting question, whether the FPT results of Sections 9.3
and 9.5 can be further strengthened to obtain polynomial kernels for such wide
classes of o and p. Such results are known for many problems that form special
cases of the problems we studied in these sections. But it seems hard to develop
a kernelization for the whole classes of o and p at once, since, for example, the
general framework developed by Fomin et al. in [FLST10] does not apply already
to the INDEPENDENT DOMINATING SET.
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Chapter 10

Equitable Partitions

10.1 Introduction to Equitable Partitions

Splitting a set of objects to parts of comparable sizes is a natural problem of the
everyday life. If the sizes of the partition classes differ by at most one, then such
a partition is called equitable. Graph theory can be used to represent various
relations among the objects to be respected, which could be done in various ways.
In this chapter, based on [EFGT09], we focus on two probably most natural con-
ditions. In the first studied problem, EQUITABLE CONNECTED PARTITION, each
partition is required to induce connected subgraph of the input graph, whereas
in EQUITABLE COLORING the partitions should induce independent sets, i.e., it
is a coloring. The sizes of the partitions should be as close as possible — the
partition must be equitable.
Formally the problems studied are as follows:

EQUITABLE CONNECTED PARTITION (ECP)

Input: A graph G = (V, E) and a positive integer r € N.

Question: Is there an equitable partition of V' into r classes Vi, V5, ..., V,, such
that each class of the partition induces a connected subgraph?

EQUITABLE COLORING (EC)

Input: A graph G = (V, E) and a positive integer r € N.

Question: Is there an equitable partition Vi, V5, ..., V, of the vertex set V such
that each partition induces an independent set?

In computer science these problems arise in various areas, particularly in the
area of load balancing and scheduling. For example, the connectivity require-
ments can be used to model some problems with paging and overlaying in design
of operating systems [DCBT74]. The ECP problem also arises in computational
social choice in the subject of redistricting [AltQ7]. Often the task of diving graph
into connected components of prescribed size was studied, sometimes with further
restrictions [KH78, PS81]. The problems studied by Ito et al. in [IGZNQ7, IZNQG]

109
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in this way are the closest to our setting. As shown in [Gy676, Lov77] it is always
possible to equitably partition an r-connected graph into r connected compo-
nents. On the other hand, ECP is known to be NP-complete, even for planar
graphs or for fixed r > 2 [DF85, GJ79].

EQUITABLE COLORING was introduced by Meyer [Mey73]|. Hajnal and Sze-
merédi [HS70] proved (in a different setting) that a graph with maximum degree
at most d has an equitable (d+ 1)-coloring. Kierstead et al. [KIKKMS10] presented
an O(dn?)-algorithm to find such a coloring. Furthermore, Kostochka and Nak-
prasit [KNO3] showed that an n-vertex d-degenerate graph of maximum degree
A has an equitable r-coloring for any r > max{62d,31dn/(n — A+ 1)}.

As GRAPH COLORING can be trivially reduced to EQUITABLE COLORING
by adding sufficiently large independent set, EQUITABLE COLORING is para-NP-
hard with respect to r even for planar graphs. Bodlaender and Jansen [BJ95]
showed that it is also NP-hard when restricted to cographs, bipartite graphs or
interval graphs. It follows that it is NP-hard on graphs of bounded clique-width.
On the other hand, polynomial time algorithms are known for trees [CL94] and
split graphs [CKL95].

Since the above results disqualify the only natural parameter r from being
successful for the problems from the parameterized perspective, we examine the
problems with respect to several structural parameters, possibly combined with
r. Namely, we consider parameterizations based on various combinations of:

e the treewidth of the input graph tw(G),

the pathwidth of the input graph pw(G),

the feedback vertex set number of the input graph fvs(G),

the vertex cover number of the input graph ve(G),
e the max leaf number of the input graph mi(G), and
e the number of partitions r.

It is widely believed, that almost every natural hard problem can be solved
efficiently on graphs of bounded treewidth. For our problems this is only true up
to some extend—both problems are in XP when parameterized by the treewidth.
This was proved by Bodlaender and Fomin [BF05] for EC and for ECP this
follows from the results of Tto et al. [IZNOG].

On the other hand, it was shown in [FFLT07] that EQUITABLE COLORING
is W[1]-hard when parameterized by tw(G) and r combined. There it is first
proved that a problem, in which we are given list of allowed colors for each vertex
and each color should appear given number of times, is W[1]-hard on forests of
depth at most 3 parameterized by the total number of colors in the instance.
Then, by adding a lot of independent vertices each with single-color list, it is
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observed there, that the problem remains intractable if the prescribed sizes of
the color classes are the same. Finally, the problem is reduced to the standard
EQUITABLE COLORING by adding a clique, so that the vertices of the cligue one-
to-one correspond to the colors, and enforcing the list by connecting each vertex
to the vertices of the clique that correspond to the colors the vertex is not allowed
to use. It is not hard to see that the instance constructed in this way in [FFLT07]
has not only low treewidth and low number of colors, but also low pathwidth and
low feedback vertex set number as the removal of the clique leaves a forest of
bounded depth. It follows that EC is also W[1]-hard with respect to the number
of partitions, the pathwidth and the feedback vertex set number combined. More
recently, it was shown in [FGK09a| that EC is FPT when parameterized by vc(G).

We prove in Section 10.2 that ECP is also W[1]-hard when parameterized
by pw(G), fvs(G), and r combined (the hardness with respect to the treewidth
follows). We further show there that this result holds true even for planar graphs.
On the positive side, we show that ECP becomes fixed-parameter tractable when
parameterized by ve(G), or by ml(G).

Section 10.3 is devoted to the EQUITABLE COLORING problem, and we com-
plement there the known results by showing that the problem is FPT when
parameterized by ml(G).

In the rest of the chapter, we will denote by [ := (n mod r) the number of
partition classes whose size is larger by one than the size of the other classes, i.e.,
we have r — [ classes of size s := |n/r]| and [ classes of size s + 1.

10.2 Equitable Connected Partition

We first look on the EQUITABLE CONNECTED PARTITION. In Subsection 10.2.1
it is shown to be W[1]-hard with respect to the combination of r, tw(G), fvs(G),
and pw(G). The result is strengthened in Subsection 10.2.2 also to planar graphs.
Complementary, we show in Subsections 10.2.3 and 10.2.4 that the problem is
fixed parameter tractable with respect to ve(G) and with respect to mi(G), re-
spectively.

10.2.1 Hardness with Respect to the Treewidth

This subsection is devoted to proving the following theorem:

Theorem 10.1. EQUITABLE CONNECTED PARTITION is W/[1/-hard with respect
to the pathwidth pw(G), the minimum size of a feedback vertex set fus(G) and
the number of partition classes r combined.

Proof. We provide a parameterized reduction from MULTICOLORED CLIQUE
(MCC) which is W[1]-complete (Theorem 7.11). Recall that in MCC we are
given an undirected graph that is properly colored by k colors and the question
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is whether there is a size-k clique in this graph consisting of exactly one vertex
from each color class. The parameter is k.

A basic building block of our construction is an anchor. It is a vertex (the root
of the anchor) with many neighbors of degree one (see Fig. 10.1). As the pre-
scribed class size will be much greater than one, the pendant degree one vertices
must belong to the same partition class as the root of the anchor. The number
of degree one vertices of an anchor will be chosen so that two anchors cannot
belong to the same class. We create exactly as many anchors as the specified
number of classes r of the equitable partition; thus there must be exactly one
anchor in each class. The situation can be viewed intuitively as if each class is
“started” with one single anchor and then some more vertices are to be added
later. The number of vertices that need to be added to the class started by a
particular anchor will differ for different anchors and is forced by the number of
pendant vertices that the anchor is “missing” relative to the prescribed class size.
Anchors will be denoted by uppercase letters and by connecting something to an
anchor we mean connecting it to the root of the anchor.

270171 a47a571 alfaLlfl b—ay
as — (lQ—l

%MM

Vt+1

® S .

Figure 10.1: Basic building blocks of our construction: An anchor (left), an (A, b)-
choice (right) and the way they are depicted in further figures (bellow).

We interconnect the anchors using a building block gadget called a choice. If
A ={ay,...,a;}, where 0 < a1 < az < az < ... < a; is a set of integers and
b > ay, then an (A, b)-choice is a path with t + 1 vertices vy, ..., vy, where each
vertex of the path can have some degree-one vertices pendant on it (see Fig. 10.1).
In particular, vertex vy has a; degree one vertices pendant on it, vertex v;,; has
b— a; pendant vertices, and for every i € {2,...,t}, the vertex v; has a; —a;_1 — 1
pendant vertices. Observe again that the pendant vertices must always fall into
the same class as their unique neighbor.

Now if an anchor X is connected to an anchor Y by an (A, b)-choice (which
is done by simply identifying the vertices v; and v;,; with the roots of the an-
chors X and Y, respectively), then there is an ¢, with 1 < ¢ < ¢, such that
the vertices vy,...,v; (and their pendant vertices) fall into the partition class
of X, while the vertices v;11,...,v:11 fall into the class of Y. The vertices vy
and vy, are identified with the respective anchors, and hence we do not count
them. Thus, the number of vertices from this choice that fall into the class of X
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is a; + 22-:2((% —aj_1 — 1)+ 1) = a; € A, while the number of vertices falling
into the class of Y is b —a; + Z;:Hl((aj —a;—1 —1)+1) = b—a;. Note that the
vertices pendant on v; and v, are in fact pendant on the roots of the appropriate
anchors, but we still consider them as a part of this choice.

The construction is based on sending “signals” between anchors. Let A and B
be two anchors connected by a choice. The vertices of the choice have to fall into
the two partition classes corresponding to A and B. The more vertices that fall
into the class of A the less vertices that will fall into the one of B. However,
since the sizes of the two classes differ by at most one, the class of B must
include vertices from somewhere else in the construction. This generates the
signal. The choices allow us to control the signal sent.

Now suppose that a graph G = (V, E), an integer k, and a coloring ¢ : V —
{1,...,k} form an instance of MCC. Also suppose that, for each ¢, there are n;
vertices of color ¢ denoted by v;, where 1 < p < n;. Furthermore, we give each
edge an integer ID, i.e., there is a bijective labeling | : £ — {1,...,|E|}. Our
construction has a selection gadget for each vertex color, which ensures both
the selection of a vertex of this color and the selection of edges from the selected
vertex to vertices of the other colors. This corresponds to the edge representation
strategy as mentioned in Section 7.4. The selection gadgets are interconnected
in a way that an equitable partition is only possible if the IDs of the “selected”
edges match.

The selection gadget for color ¢ is formed by 2(k — 1) anchors lef and sz"
where 1 < j < k and j # ¢, connected into a cycle, each having a connection
outside the gadget. The vertex selection is represented by a “big” signal that the
outgoing connections are unable to handle, and hence is forced to run along the
cycle without a change. The selection of an edge going from the selected vertex
to the vertices of color j is then done between N; and P]Z via a “small” signal
that equals the label of the selected edge. This signal is then sent to the anchors

N/, P/ of the selection gadget for color j, from anchor P! to N/ and from N;
to P/ (in opposite directions).

Now we present the selection gadget more formally. First let Zy := 2| E| + 10.
The “big” signal is formed by the order of the vertex selected times the number 7,
i.e., the possible signal states are A} := {p- Zy | 1 < p < n;}. As we mentioned,
the small signal is formed by the edge IDs. Between the anchors Nj and PJZ
both the big and the small signal is sent, and a particular small signal can only
be used with an appropriate big signal. Thus, between N; and sz" the possible
signal states are A% := {p- Zo + I({u,v}}) | c(u) = j and {u,v)} € E}. To catch
the order of the anchors along the cycle, we introduce the notion of successor. For
each j,1 < j <k set succ(j) :=j+1for j #k and j # (i — 1), set succ(k) :==1
and succ(i — 1) 1= succ(i). Now for each j € {1,...,k} \ {i}, the anchor P}
is connected to the anchor N, .., by an (Ap; ni - Zp)-choice, the anchor Nj is
connected to the anchor P by an (A%, n; - Zy + |E|)-choice, and the anchor Pj to
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the anchor N7, and the anchor P’ to the anchor N; by two ({1,...,|E[}, |E])-

choices (see Fig. 10.2).

(Aj_y.ni - Zo +|E])

-5 (Afsni - Zo)
N, Pis ,
J
!
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Figure 10.2: A part of the selection gadget with possible partition shown by
dashed line.

Now the class sizes are set such that each of the anchors in this selection
gadget needs to get n; - Zy+ | E| vertices from the choices that it is incident with.
Hence, if the anchor P; takes p - Zy vertices from the choice connecting it to
the anchor N, .., then the anchor N¢ ... gets (n; — p) - Zy vertices from this
choice, and it must get p - Zy + |E| vertices from the two remaining choices that
it is incident with. Since it can take at most |E| vertices from the connection
to the selection gadget for color succ(j), it must take at least p - Zy (but at

most p- Zo + |E| < (p+ 1) - Zy) vertices from the connection to P! . Hence,

. suce(j)" °
it has to take p- Zy + ({u, v, }) vertices for some c(u) = succ(j) and {u,v,} € E
from this connection and |E| — [({u,v}}) vertices from the connection to the
other selection gadget. Hence P}, gets (n; —p) - Zo + | E| — I({u, v,}) vertices

succ
from the connection from N’ and by a similar reasoning it is forced to

suce(F)?

take p - Z, vertices from the connection to N

succ(suce(f)) and [ ( {u7 ’U;g } ) vertices

from the connection to the other selection gadget. Thus the anchor Njucc(succ(j))

is again forced to select some edge incident with vertex v;, etc.

The anchor N? is connected to the anchor P! by a ({1,...,|E|}, |E|)-choice,
and the number of vertices it takes into its class out of this choice is |E| —
I({u,v}}), where v is the vertex selected in the selection gadget for color i,
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c(u) = j and {u,v;} € E. The number of vertices that the anchor P/ takes
out of this choice is I({w,v]}), where v is the vertex selected in the selection
gadget for color j, c(w) =i and {w, v} € E. Since the |E| vertices of the choice
must be partitioned into the classes of its endpoints, it follows that I({w,v7}) =
I({u,v,}) and {w,v)} = {u,v,} = {v),v,} is an edge of G. Hence a solution
for the constructed graph is possible if and only if the selected vertices form a
multi-colored clique in the graph G.

Now to determine the right size of the anchors, it is enough to ensure that
each class is more than half full, once the starting anchor is added. The maximum
demand (the number of vertices that should be added to its class except for itself
and vertices pendant on it) of any anchor is less than n - Zy + |E|, hence it is
enough to set the desired class size to s :== (2n+1) - Zy = (2n + 1) - (2| E| 4 10).

The number of partition classes r is equal to the number of anchors. Since
there are k selection gadgets, each containing 2(k — 1) anchors, we have 2k(k —1)
anchors in total. Now observe that if we delete all roots of the anchors, the
resulting graph consists of paths with pendant vertices. Hence, the roots form
a feedback vertex set in the graph, and the pathwidth of the graph is also bounded
by the number of roots plus one. The construction can be clearly carried out in
polynomial time; in particular, the graph has r - s = O(k?* - n3) vertices. O

10.2.2 Hardness for Planar Graphs with Respect to the
Treewidth

In the previous subsection we have shown, that ECP is hard with respect
to pw(G), fvs(G) and r combined. In this subsection, we prove that this is
true even in planar graphs:

Corollary 10.2. EQUITABLE CONNECTED PARTITION is W/1/-hard for planar
graphs with respect to the pathwidth pw(G), the minimum size of a feedback vertex
set fus(G) and the number of partition classes r combined.

Proof. The graph H’ constructed in Theorem 10.1 is in general not planar. But
there is a drawing of this graph such that only the edges of the choices connecting
two different selection gadgets cross. Moreover, we can assume that each pair
of them crosses at most once, and only in the edges of their paths, not in the
edges connecting the pendant vertices. We replace each such crossing one by one
by a planar crossing gadget, such that the resulting planar graph H has a solution
if and only if the graph H’ does.

Suppose that in our drawing of H' the ({1,...,|F|}, |E|)-choices between
anchors A and B and between C' and D cross. The crossing gadget is formed by
four anchors R, S, X, Y such that the anchor R is connected to A, X to C, S to
B, YtoDand X toY bya ({1,...,|E|}, |EF|)-choice, respectively. The anchor X
is connected to both R and S by ({z-(Zo+1) | 1 < z < |E|}, |E|-(Zy+1))-choices
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and Y is connected to both R and S by ({z-Zy | 1 < z < |E|}, |E| - Zy)-choices
(see Fig. 10.3). The anchors R, S and Y need |E|- (Zy + 1) vertices to be added
to their respective classes, while X needs |E| - (Zy + 2) vertices.

{z-(Zo+ 1) [1 <2 <|E}|E]- (Zo+1))

.....

({z-(Zo+1) | 1<z <|E|}|E|- (Zo+1))
({z-Zy |1 <2 <|E|}|E|- Zo)

Figure 10.3: The crossing gadget.

If X gets p-(Zp+1) vertices from the choice connecting it to R, then it can get
between 2 and 2- | E| vertices from the connections to Y and C, and, hence, out of
the choice connecting it to S it must take between |E|-(Zy+2)—p-(Zo+1)—2 <
(|IE|—p+1)-(Zo+1) and |E|-(Zo+2)—p-(Zo+1)—2-|E| > (|E|—p—1)-(Zy+1)
vertices. Therefore it must take (|E| —p) - (Zp + 1) vertices. The anchor Y works
in a similar way. Thus, if C' takes ¢ vertices from the connection to X, then X
gets |E| — g vertices, and takes ¢ vertices from the connection to Y; the anchor YV
does similarly, and thus D gets |E| — g vertices, as if it were connected to C'
directly.

Counting the number of vertices inside the crossing gadget and the demands
of the anchors, it follows that the number of vertices A get and the number
of vertices B get must also sum up to |E| as if they were connected directly.

It is easy to check, that the resulting graph H is planar, with pw(G) a fvs(H)
bounded in terms of k. Moreover it can be constructed in polynomial time and
has a solution if and only if the graph H’ constructed in Theorem 10.1 has. [

Since the treewidth of a graph is never greater than its pathwidth, we imme-
diately get (as mentioned in Section 4.4) also the following corollary:

Corollary 10.3. EQUITABLE CONNECTED PARTITION is W/[I]-hard for planar
graphs with respect to the treewidth tw(G).
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10.2.3 Tractability with Respect to the Vertex Cover
Number
The vertex cover is more restrictive than both the pathwidth and the feedback

vertex set number. Hence, it seems to be a suitable structural parameter for
ECP. Indeed, we show, that ECP is FPT with respect to this parameter:

Theorem 10.4. EQUITABLE CONNECTED PARTITION is in F'PT with respect to
the minimum size of a vertex cover ve(Q).

Proof. Assume that we are given a vertex cover C' C V of size ¢ := ve(G). If
not, we can compute it in time O(1.2738° 4 ¢n) by [CKX06]. Each class that
contains at least 2 vertices must contain some vertex of C'; otherwise, it would
not be connected. Hence, if the minimum size of each class s is at least 2, then
either 7 < ¢ or (G,r) is a no-instance. If s = 1, then we have [ classes of size
2 and r — [ of size 1. Since a size-2 class contains two vertices connected by an
edge, such a partition is in fact a matching of size [ in GG. The existence of such
a matching can be decided in polynomial time. The case of s = 0 is trivial and
yields a yes-instance. Hence, in what follows we can assume that s > 2 and r < c.

We search for an equitable partition such that the first [ classes are the larger
ones and the last » — [ are the smaller ones. We start by trying all possibilities
of partitioning the vertices of C' into r (not necessarily connected) non-empty
classes V., ..., V€. For each such partition, and each disconnected class V¢, we
try the possibilities of adding at most |[V;“| — 1 vertices of V' \ J;_, V,¥ into V¢
to make it connected. But we do not try all vertices. Instead, each vertex tried
must have a different neighborhood. We try all such possibilities with different
neighborhoods. It remains to distribute the remaining vertices among the classes
so that the partition becomes equitable. We construct a network such that there
is a flow of certain size in it if and only if the vertices can be distributed among
the classes.

Let us denote by D :=V \ |J_, V,¥ the set of vertices that are not used yet.
The network consists of three intermediate layers, in addition to the source z
and the target t. There are r vertices in the first layer, denoted aq,...,a,. For
every vertex a;, there is an arc connecting the source z to the vertex a; and its
capacity equals the number of vertices that should still be added into the class 7,
ie., s— |V ifi>1land s+1— |V ifi <. The second layer is formed by the
vertices of ', and for each i, there are arcs of capacity oo from a; to each vertex
in V. N C. The third layer is formed by vertices by, J C C, and there is an arc
between v € C' and by if and only if v € J. Such arcs have also infinite capacity.
Finally each b; is connected to ¢t by an arc with capacity equal to the number of
vertices in D with neighborhood J.

The flow on arcs between the vertices of C' and the vertices of type b; directly
shows how many vertices of the particular type should be put into the same
class as the vertex of C'. Hence it is easy to see that there is a flow of size |D|
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in the constructed network if and only if the vertices can be distributed among
the classes. Concerning the running time of the algorithm, there are at most r¢
different colorings of C; for each of them we try adding at most c—1 vertices to the
classes, each of at most 2¢ types. Hence there are at most 0(202) possibilities to do
so. The network can be constructed in time linear in the number of edges of the
original graph and the number of vertex types. The flow can be found in the time
cubic in the number of vertices of the network, i.e., O((2°4+2c+2)*) [GT86]. Hence
the overall running time of the algorithm is bounded by O(2¢° telegetde .2y

10.2.4 Tractability with Respect to the Max Leaf Number

In this subsection we prove that ECP is fixed-parameter tractable with respect
to the maximum number of leaves in a spanning tree of the input graph G:

Theorem 10.5. EQUITABLE CONNECTED PARTITION is in F'PT with respect to
the mazimum number of leaves in a spanning tree ml(Q).

Proof. We construct an instance of INTEGER LINEAR PROGRAMMING(ILP)
whose number of variables is a function of mi(G) for ECP. In Section 4.4 we
have mentioned that if mi(G) = k then G is a subdivision of some graph H on
(at most) 4k — 2 vertices [KW91] and that such a graph H can be easily found in
linear time. We say that a partition class is simple if it contains no vertex of H.
For an edge {u,v} of H we use P,, to denote the unique path in G having as
endpoints u and v with internal vertices in G \ H; let |P,,| denote the number
of its internal vertices.

We first branch on all possibilities of partitioning the vertices of H into at most
4k — 2 classes. Note that quite possibly 4k —2 < r. We construct an ILP instance
as follows. On the given branch, assume that the classes that are assigned the
vertices of H, according to the partition of the branch, are Vj,...,V,. Recall
that s := |n/r|. If a path P,, has at least s internal vertices, then it cannot be
fully contained in one class. Hence, it must be split into several parts. The first
part is put into the same class as the vertex u, the last part into the same class
as v and the rest is divided into several simple classes. Since the order of the
simple classes on the path does not matter, we only have to know the number of
classes having size s, and the number of classes having size s+ 1. Hence, for such
an edge {u,v} of H, we introduce four variables: t, ., and t, ., representing the
number of internal vertices of the path to be placed in the same class as v and
v, respectively, and a,, and b,, representing the number of simple classes of size
s and s+ 1 on P,,, respectively.

If a path P,, contains less than s internal vertices, then there is no simple
class on this path, and each vertex of the path is in the same class as one of the
endpoints. In particular, if © and v are in the same class, then the whole path
P,, is in that class. If u and v are in different classes, then we introduce two
variables t,, ., and %, ,, for that path, with the same meaning as in the previous
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case. To simplify the equations, we denote by E; the set {{u,v} € E(H) | |Py| <
s and v and v lie in different classes}, by Es the set {{u,v} € E(H) | |Puw| > s},
by F% the set {{u,v} € E(H) | |P,| < s and u,v € V;} and F3 := |J!_, Ei. The
class V; is connected if and only if the graph (V;, E%) is connected. We check
this before we call the procedure to solve the ILP. Finally, we introduce a {0, 1}-
variable ¢;, for each 1 <7 < p, so that the size of V; in the final partition will be
s 4 ¢;. The variables introduced are subject to the following constraints:

V{U,’U} - E1 U E2 : O S tu,uvytv,uvu
V{U/,'U} < E2 0 S Ay bu’uv
Vi,1<:1<p : 0<¢ <1,

The above formalize obvious matters pertaining to our approach. The follow-
ing constraints do the main work:

V{U,U} €k tu,uv + tv,uv = |Puv|7 (101)
V{u,v} € By : tyuw + touw + 5 aup + ($+ 1) - by = | Pl (10.2)
Vil<i<p : > I+ > tuw)t > [Pul=s+c(10.3)
veV(H)NV; {u,w}EE1UE, {u,v}eEg
P
Y awtY (1-c)=r—1 (10.4)
{u,v}€E> =1
D
> bt =L (10.5)
{u,v}eFEs =1

Equation 10.1 ensures that the paths corresponding to the edges in E; are
correctly divided. Equation 10.2 ensures the same for the edges in Fy. Equation
10.3 ensures that the classes containing some vertices of H have the right size, and
the last two equations (10.4 and 10.5) ensure that there are the right numbers of
the large and the small classes. It is easy to see that there is a solution to this ILP
instance if and only if there is an equitable connected partition of the vertices of G
with 7 classes, that extends the initial assignments made according to the branch
(partition of V/(H)) being explored. Since there are at most 4 - (42k) + 4k < 32k2
variables, each of them used at most three times, the overall size of the instance
is bounded by O(k?) and it can be solved in O((32k2)2532*+0(+:) . 12) time due
to the results of [F'T87a] mentioned in Section 6.4. This yields a running time of
O(m, - 2160k logk+o(k*log k) for the whole algorithm, where k = mil(G). O
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10.3 Equitable Coloring

In this section we show that EQUITABLE COLORING is in FPT with respect to
the maximum number ml(G) of leaves in a spanning tree of G. Since a graph with
bounded ml(G) contains a lot of induced paths, we first examine the situation
on the paths. There is a nice characterization lemma for that case:

Lemma 10.6. Let k > 2 be an integer. Let P be a path with endpoints possibly
colored by one of the colors 1,...,k. Let n be the number of uncolored vertices on
the path, and for everyi € {1,...,k} lett(i) € {0, 1,2} be the number of endpoints
colored by color i. Then P can be properly colored by the colors 1,..., k such that
there are n; + t(i) vertices of color i if and only if Y, n; = n and forevery i we
have 0 < n; < [3(n —t(i))].

Proof. The “only if” part is easy; the proof of the “if” part is by induction
on n. The cases n = 1 and n = 2 are trivial. For n > 3, let us assume
that [1(n —¢(1))] —n1 < [3(n —#(2))] —n2 < [3(n —t(3))] —nz < ... <
[2(n — t(k))] — nk. It is then easy to check that, for n > 3, we always have
[3(n —t(3))] — ng > 0. In what follows we distinguish several cases. In each
of them we can color the first uncolored vertex by one of the colors 1,2, and
color the rest using the induction hypothesis for the path starting with the newly
colored vertex, n’ := n — 1, with the sizes n of the color classes and the numbers
of the colored endpoints t'(i) set appropriately. To do so, it is enough to show
that [2(n' —#'(1))] —n} > 0 and [4(n' —#(2))] —nb > 0, since for i > 3 we have
[$(n' —t(i))] —n} > [5(n —t(i))] —1 —n; > 0. Note also that if we use the
color i € {1,2} then [5(n' — ()] —n} = [F(n —1— (¢t(i) —1))] — (n; — 1) =

[1(n—t(i))] — (n;) > 0. ?

e [f one of the endpoints has color 1, then we color its neighbor by 2. Since
n} =mny and ¢'(1) = ¢t(1) — 1, the induction hypothesis applies in this case.

e [f one of the endpoints has color 2, then we color its neighbor by 1. Since
ny = ng and t'(2) = t(2) — 1, the induction hypothesis applies in this case.

e In any other case we color the first uncolored vertex by color 1. Note that in
this case ¢(1) = ¢(2) = 0 and thus if [$(n —¢(2))] — no = 0 then necessarily
1./

ny = ny = [3n] and thus n must be even. But then [in'] = [$n] and

hence the induction hypothesis also applies.
m

Theorem 10.7. EQUITABLE COLORING is in F'PT with respect to the maximum
number of leaves in a spanning tree ml(G).

Proof. First we show that if there are many classes, then we have a yes-instance;
otherwise, we again construct an instance of ILP for EQUITABLE COLORING. It




10.4. CONCLUSION 121

is known that G is a subdivision of some graph H on (at most) 4k — 2 vertices,
for mi(G) = k [KW91]. Such a graph H can be easily found in linear time.
It follows that no vertex in G has degree more than 4k — 3 and thus, by the
mentioned result of Hajnal and Szemerédi [HS70], G has an equitable r-coloring
for every r > 4k — 2. For the rest of the proof we assume that r < 4k — 3. For
an edge {u,v} of H we again use P,, to denote the unique path in G having as
endpoints u and v with internal vertices in G \ H. Let |P,,| denote the number
of its internal vertices.

Now we try all the possibilities ¢ : V(H) — {1,...7} to color the vertices
of H. For each such possibility, we construct an instance of ILP, which will have
a variable ¢’ for each combination of color i and an edge {u,v} of H. This
variable expresses the number of the vertices of color ¢ on the path P,,. They
are subject to the constraints given by Lemma 10.6 and the constraints that
enforce the classes to have the right number of vertices. In the following formal
description of the constraints, for a logical formula ¢ the expression [p] is 1 if ¢
is true and 0 otherwise. Note that these expressions as well as the ceilings only
appear on the constant sides of the (in)equations.

V) € B(H),1<i<r : 0<g, < Bam () = 1] — [efv) = M ,

V{u,v} € E(H) = > g\ =|Pul,
=1

Vil<i<l @ > g,=stl- > [e(v)=1i],

{uv}eE(H) veV (H)
Vi,l+1<i<r : Z ¢, =s— Z[c(v):i].
{u,v}eE(H) veV (H)

Clearly, there is a solution for EQUITABLE COLORING if there is a solution to the
ILP for one of the colorings c. Since an instance X of ILP with ¢ variables can
be solved in time O(#>5+°() . | X|) (Theorem 6.10), the overall running time is at
most O((64k3)2564%*+0(k%)y)514(n)), where the polynomial is independent of k. [

10.4 Conclusion

As you may observe, the graphs constructed in the proof of W|[1]-hardness of ECP
are not even 2-connected. The connectivity seems to play a crucial role when
partitioning a graph into connected subgraphs. Namely, as we have mentioned,
Gyori [Gyo76] and independently Lovasz [Lov77] showed that an r-connected
graph can be partitioned into r connected partitions of prescribed sizes, even if
one vertex of each partition is given. Hence, we wonder whether ECP might
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be in FPT for 3-connected planar graphs, or for 3-connected graphs of bounded
treewidth.

It is also an interesting question, whether ECP is in XP or para-NP-complete
with respect to the clique-width. Further it would be nice to explore, whether
a planarity can be helpful in solving EQUITABLE COLORING particularly with
respect to some structural parameter such as the treewidth, as the results on d-
degenerate graphs ([KN03]) can become a more powerful tool in this case.




List of Considered Problems

(0, p)-DOMINATING SET OF SIZE AT MOST k

(0, p)-DOMINATING SET OF SIZE k

(0, p)-DOMINATING SET OF SIZE AT LEAST n — k

(0, p)-DOMINATING SET OF SIZE n — k

Input: A graph G = (V, E) such that |V| =n and k € N.

Question: Is there a set of vertices S C V of size at most k (exactly k, at least
n — k, exactly n — k) in which for every vertex v € S, we have |[SN N(v)| € o
and for every v ¢ S, we have |[S N N(v)| € p?

Parameterizations Considered: solution-size or dual parameterization k
Considered on pages: 86-90, 95, 98, 101, 103-105, 107

d-HITTING SET

Input: A family F of sets, each with at most d elements, and k£ € N.
Question: Is there a set of at most k elements, that contains an element from
(hits) every set in F?

Parameterizations Considered: solution-size k

Considered on pages: 22, 26, 27, 30, 34

k-LEAF OUT-BRANCHING

Input: A directed graph and k € N.

Question: Does the directed graph contain a subgraph in which every vertex
except for one has in-degree exactly 1 and k vertices has out-degree 0 (are leaves)?
Parameterizations Considered: number of leaves k

Considered on pages: 30, 31

k-LOCAL SEARCH FOR TRAVELING SALESPERSON

Input: A graph with positive weights on edges, a Hamiltonian cycle in it and
ke N.

Question: Can we find a Hamiltonian cycle which uses at most k edges not used
by the original cycle and its weight is smaller than the weight of the original one
Parameterizations Considered: locality k

Considered on pages: 19
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k-PATH

Input: A graph G and k£ € N.

Question: Does G contain a path of length k7
Parameterizations Considered: solution-size k
Considered on pages: 29, 40

0-DIRECTED STEINER NETWORK (0-DSN)

Input: A set of vertices V', a weight function w : V. xV — W (W C NyU {oc0}),
[ pairs of vertices (s1,t1), (S2,t2), ..., (s,t), and a weight bound p € N.
Question: Is there a set of arcs A C V' x V of weight w(A) < p such that in the
digraph D := (V, A) for every 1 < i <[ there is a directed path from s; to ¢;?
Parameterizations Considered: solution-size p/(min(W \ {0})), number of
terminal pairs [, ratio = (max W) /(min(W \ {0}))

Considered on pages: 6467, 79-83

0-DIRECTED STEINER TREE (0-DST)

Input: A set of vertices V', a weight function w : V xV — W (W C NyU{oc}), a
set T' C V of terminals such that |T'| = [, aroot s € V', and a weight bound p € N.
Question: Is there a set of arcs A CV x V of weight w(A) < p such that in the
digraph D := (V, A) for every t € T there is a directed path from s to ¢7
Parameterizations Considered: solution-size p/(min(WW \ {0})), number of

terminals [, ratio r = (max W) /(min(WW \ {0})
Considered on pages: 64-70

0-STRONGLY CONNECTED STEINER SUBGRAPH (0-SCSS)

Input: A set of vertices V', a weight function w: V xV — W (W C NyU{oo}),
a set S CV of terminals such that |S| = [, and a weight bound p € N.
Question: Is there a set of arcs A C V x V of weight w(A) < p such that in the
digraph D := (V, A) for every s,t € S there is a directed path from s to ¢?
Parameterizations Considered: solution-size p/(min(W \ {0})), number of
terminals [, ratio r = (max W) /(min(W \ {0}))

AT MOST a-SATISFIABILITY

Input: A Boolean formula ¢ in conjunctive normal form, without negations and
ke N.

Question: Does ¢ allow a satisfying truth assignment of weight at most k£ such
that each clause of ¢ contains at most « variables which evaluate to true?
Parameterizations Considered: weight of the assignment k

Considered on pages: 89, 90, 93

BOUNDED-DEGREE DELETION
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Input: A graph G, d € N and k € N.

Question: Is there a set of at most &k vertices such that its deletion turns G into
a graph with maximum degree at most d?

Parameterizations Considered: solution-size k

Considered on pages: 30

CLIQUE

Input: A graph and k € N.

Question: Does the graph have complete subgraph with at least k& vertices?
Parameterizations Considered: solution-size k

CONSERVATIVE COLORING

Input: A graph which have all vertices except for one properly colored by k
colors and ¢ € N.

Question: a proper coloring of that graph with k colors which differ from the
original one on at most ¢ places?

Parameterizations Considered: conservativeness c

Considered on pages: 19

DIRECTED STEINER NETWORK (DSN)

Input: A set of vertices V, a weight function w : V xV — W (W C N U{o0}),
[ pairs of vertices (s1,t1), (s2,%2), ..., (s,1), and a weight bound p € N.
Question: Is there a set of arcs A C V x V of weight w(A) < p such that in the
digraph D := (V, A) for every 1 < i <[ there is a directed path from s; to ¢;?
Parameterizations Considered: solution-size p/(min W), number of terminal
pairs [, ratio r = (max W) /(min W)

Considered on pages: 64, 67, 79, 82, 83

DIRECTED STEINER TREE (DST)

Input: A set of vertices V', a weight function w : VxV — W (W C NU{c0}), a
set T' C V of terminals such that |S| = [, aroot s € V, and a weight bound p € N.
Question: Is there a set of arcs A C V x V of weight w(A) < p such that in the
digraph D := (V, A) for every t € T there is a directed path from s to ¢?
Parameterizations Considered: solution-size p/(min W), number of termi-
nals [, ratio r = (max W) /(min W)

Considered on pages: 63, 64, 66-69

DOMINATING SET

Input: A graph G and k£ € N.

Question: Is there a set of at most k vertices, such that every vertex of G is
either a part of it or has a neighbor in it?

Parameterizations Considered: solution-size k, treewidth tw(G)
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EqQuiTABLE COLORING (EC)

Input: A graph G and r € N.

Question: Is there an r-coloring of the given graph with the sizes of any two
color classes differing by at most one?

Parameterizations Considered: number of partitions 7, treewidth tw(G),
pathwidth pw(G), feedback vertex set number fvs(G), vertex cover num-
ber ve(G), max leaf number mi(G)

Considered on pages: 41, 42, 109-111, 120-122

EQUITABLE CONNECTED PARTITION (ECP)

Input: A graph G = (V,E) and r € N.

Question: Is there an equitable partition of V' into r classes Vi, V5, ..., V,, such
that each class of the partition induces a connected subgraph?
Parameterizations Considered: number of partitions r, treewidth tw(G),
pathwidth pw(G), feedback vertex set number fvs(G), vertex cover num-
ber ve(G), max leaf number ml(G)

Considered on pages: 109-111, 115-118, 121, 122

EVEN SET OF SIZE AT LEAST r — k, EVEN SET OF SIZE r — k

Input: A bipartite graph G = (R, B, F') such that |R| = r and k € N.
Question: Is there a set of vertices S C R of size at least r — k (exactly r — k)
in which every vertex of B has an even number of neighbors?
Parameterizations Considered: dual parameterization k

Considered on pages: 88, 100-102

EVEN SET OF S1ZE AT MOST k, EVEN SET OF SIZE k

(also known as EVEN SET and ExacT EVEN SET)

Input: A bipartite graph G = (R, B, F) and k € N.

Question: s there a set of vertices S C R of size at most k (exactly k) in which
every vertex of B has an even number of neighbors?

Parameterizations Considered: solution-size k

Considered on pages: 87, 89, 99

EXACT SATISFIABILITY

Input: A Boolean formula ¢ in conjunctive normal form and k£ € N.
Question: Does ¢ allow a satisfying truth assignment of weight at most k£ such
that each clause of ¢ contains exactly one literal which evaluate to true?
Parameterizations Considered: weight of the assignment k

Considered on pages: 89, 90

FEEDBACK VERTEX SET
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Input: A graph G and k£ € N.

Question: Is there a set of at most &k vertices such that its deletion turns G into
a forest?

Parameterizations Considered: solution-size k

Considered on pages: 30, 46

GrAPH COLORING

Input: A graph G on n vertices and k£ € N.

Question: Can G be properly colored by at most k colors?
Parameterizations Considered: number of colors available k, dual parame-
terization n — k

Considered on pages: 27, 51, 110

INDEPENDENT SET

Input: A graph and k € N.

Question: Is there a subset of at least k vertices such that no two of the vertices
are connected by an edge?

Parameterizations Considered: solution-size k, treewidth tw(G)
Considered on pages: 37, 39, 48, 52, 58, 85-87, 97

INTEGER LINEAR PROGRAMMING (ILP)

Input: A p x n-matrix A and an n-vector b.

Question: Is there a vector z € NP such that Az < b (coordinatewise)?
Parameterizations Considered: number of variables p

Considered on pages: 41, 118, 120, 121

LisT COLORING

Input: A graph G, a set of colors B and a mapping L : V(G) — P(B) assigning
to each vertex its list of available colors

Question: Is there a proper coloring ¢ : V(G) — B respecting the lists? This
means that for every v € V(G) we have c(v) € L(v)

Parameterizations Considered: vertex cover number ve(G)

Considered on pages: 57

MAX d-SAT

Input: A propositional formula ¢ in form of conjunction of clauses, each formed
by exactly d literals and k& € N.

Question: Is it possible to satisfy at least m(1 — 27¢) + k clauses?
Parameterizations Considered: param. above tight lower bounds k
Considered on pages: 18

MAX LEAF
Input: A graph and k£ € N.
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Question: Is there a spanning tree of the graph with at least k leaves?
Parameterizations Considered: solution-size k
Considered on pages: 32

MULTICOLORED CLIQUE (MCC)

Input: A graph G = (V, E), positive integer & € N and a proper k-coloring
c:V —=A{L,...,k} of G.

Question: Is there a multicolored clique in G, that is a clique taking exactly
one vertex of each color?

Parameterizations Considered: number of colors k

ODD CYCLE TRANSVERSAL

Input: A graph G and k£ € N.

Question: Is there a set of at most k vertices such that its deletion turns G into
a bipartite graph?

Parameterizations Considered: solution-size k

Considered on pages: 42

ODD SET OF SIZE AT LEAST r — k, ODD SET OF SIZE r — k

Input: A bipartite graph G = (R, B, F') such that |R| =r and k € N.
Question: Is there a set of vertices S C R of size at least  — k (exactly r — k)
in which every vertex of B has an odd number of neighbors?
Parameterizations Considered: dual parameterization k

Considered on pages: 88, 100-102

ODD SET OF SIZE AT MOST k, ODD SET OF SIZE k

(also known as ODD SET and Exact ODD SET)

Input: A bipartite graph G = (R, B, F') and k € N.

Question: Is there a set of vertices S C R of size at most k (exactly k) in which
every vertex of B has an odd number of neighbors?

Parameterizations Considered: solution-size k,

Considered on pages: 87-89, 99-101

PACKING 3-SETS

Input: A system C of three-element subsets of a finite set S and an integer k£ € N.
Question: Is there a subsystem C’ of at least & mutually disjoint sets?
Parameterizations Considered: solution-size k

Considered on pages: 44

PLANAR DELETION
Input: A graph G and k € N.
Question: Is there a set of at most k vertices such that its deletion turns G into
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a planar graph?
Parameterizations Considered: solution-size k
Considered on pages: 30, 46

SHORT MULTI-TAPE NONDETERMINISTIC TURING MACHINE COMPUTATION
Input: A nondeterministic Turing machine M = (3,¢,Q,s, A, A); a positive
integer k.

Question: Is there a computation of M on empty input that reaches accepting
state in at most k steps?

Parameterizations Considered: allowed length of a computation k£, number
of tapes

Considered on pages: 54

SHORT NONDETERMINISTIC TURING MACHINE COMPUTATION

Input: A single-tape nondeterministic Turing machine M = (X,1,Q,s, A, A); a
positive integer k.

Question: Is there a computation of M (on empty tape) that reaches the ac-
cepting state in at most k steps?

Parameterizations Considered: allowed length of a computation k, size of
the alphabet |X|, number of states |@Q|, amount of non-determinism, their com-
binations

Considered on pages: 54, 58

STEINER TREE

Input: A graph G = (V, E) with integral weights on edges w : E — N, a set of
terminals 7' C V' and an integer p € N.

Question: Is there a tree containing all the terminals of cost at most p?
Parameterizations Considered: maximum number of non-terminals in a solu-
tion (solution-size parameterization above tight lower bound) p— |T'| + 1, number
of terminals |T|

Considered on pages: 19, 35, 63, 64, 66-68

STRONGLY CONNECTED STEINER SUBGRAPH (SCSS)

Input: A set of vertices V', a weight function w : V xV — W (W C N U{o0}),
a set S C V of terminals such that |S| = [, and a weight bound p € N.
Question: Is there a set of arcs A C V' x V of weight w(A) < p such that in the
digraph D := (V, A) for every s,t € S there is a directed path from s to 7
Parameterizations Considered: solution-size p/(min W), number of termi-
nals [, ratio r = (max W) /(min W))

Considered on pages: 63, 64, 66, 67, 69-72, 74, 75, 79, 82, 83

VERTEX COVER

Input: A graph G and k£ € N.
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Question: Is there a set of at most k vertices, that contains at least one endpoint
of each edge?

Parameterizations Considered: solution-size k

Considered on pages: 13, 15, 25, 26, 28, 34, 45, 46, 58, 97

WEIGHTED t-NORMALIZED SATISFIABILITY

Input: A t-normalized Boolean formula ¢ and k£ € N.

Question: Is there a satisfying assignment for ¢ of weight exactly k7
Parameterizations Considered: weight of the assignment &

Considered on pages: 50-52, 55

WEIGHTED ANTIMONOTONE t-NORMALIZED SATISFIABILITY
Input: A t-normalized antimonotone Boolean formula ¢ and k£ € N.
Question: Is there a satisfying assignment for ¢ of weight exactly k7
Parameterizations Considered: weight of the assignment &
Considered on pages: 50-52

WEIGHTED CIRCUIT SATISFIABILITY

Input: A Boolean decision circuit C' and k € N.

Question: Is there a satisfying assignment for C' of weight exactly k7
Parameterizations Considered: weight of the assignment k
Considered on pages: 50, 51

WEIGHTED MONOTONE t-NORMALIZED SATISFIABILITY

Input: A t-normalized monotone Boolean formula ¢ and k£ € N.
Question: Is there a satisfying assignment for ¢ of weight exactly k7
Parameterizations Considered: weight of the assignment k
Considered on pages: 50, 51, 66, 68

WEIGHTED SATISFIABILITY

Input: A Boolean formula ¢ and k € N.

Question: Is there a satisfying assignment for ¢ of weight exactly k7
Parameterizations Considered: weight of the assignment &
Considered on pages: 50, 89
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