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Abstract

A linear regression model, where covariates and a response are subject to errors, is consid-

ered in this thesis. For so-called errors-in-variables (EIV) model, suitable error structures

are proposed, various unknown parameter estimation techniques are performed, and recent

algebraic and statistical results are summarized.

An extension of the total least squares (TLS) estimate in the EIV model—the EIV

estimate—is invented. Its invariant (with respect to scale) and equivariant (with respect

to the covariates’ rotation, to the change of covariates direction, and to the interchange of

covariates) properties are derived. Moreover, it is shown that the EIV estimate coincides

with any unitarily invariant penalizing solution to the EIV problem.

It is demonstrated that the asymptotic normality of the EIV estimate is computationally

useless for a construction of confidence intervals or hypothesis testing. A proper bootstrap

procedure is constructed to overcome such an issue. The validity of the bootstrap technique

is proved. A simulation study and a real data example assure of its appropriateness.

Strong and uniformly strong mixing errors are taken into account instead of the inde-

pendent ones. For such a case, the strong consistency and the asymptotic normality of the

EIV estimate are shown. Despite of that, their practical applicability remains problematic.

A suitable block bootstrap method is proposed for the EIV estimate with weakly depen-

dent errors and, consequently, its justification is proved. Again, a computational efficiency

is demonstrated by simulations and a real data analysis.

In the end, a nonparametric extension of the EIV model is suggested and a way of

a smooth estimation is proposed.

Keywords

errors-in-variables, total least squares, consistency, asymptotic normality, equivariant esti-

mation, bootstrap, weak dependence, block bootstrap
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Preface

An intensive research has sprung up for methods to handle measurement errors or distur-

bances in input and output data simultaneously. Errors-in-variables serve as a regression

modeling technique, where both dependent and independent variables are considered to be

measured with errors.

The first chapter introduces our main concern—the errors-in-variables (EIV) model. We

will illustratively discuss its geometrical interpretation. The EIV model postulates an op-

timizing problem, which solution will be provided. Such an EIV solution is called the total

least squares (TLS) solution and its algebraic and spectral properties will be summarized.

An error structure from a stochastic point of view will be incorporated into the EIV model

and recent statistical properties of the TLS solution—thought as a suitable estimate—will

be provided.

The second chapter deals with a generalization of the TLS estimate—the EIV estimate.

The way, how the EIV estimate is constructed, provides us several invariant and equivariant

properties.

Unfortunately, the statistical asymptotic approximations concerning the EIV estimate

become problematic and computational useless. A feasible solution to this dilemma can be

found in the bootstrap approach. A proper bootstrap procedure will be proposed and its

justification provided in the third chapter.

In some realistic situations, the errors in the EIV model cannot be considered as indepen-

dent. The error structure—introduced in the first chapter and widely utilized in the third

chapter—will be generalized for the case of weakly dependent errors in the fourth chapter.

Consequently, a strong consistency and an asymptotic normality will be proved for the EIV

estimate, when the errors are (uniformly) strong mixing.

In the fifth chapter, a similar task concerning practical applicability of the results from

the fourth chapter arises again. Since we are not in the case of independent observations

any more, an advanced approach needs to be proposed to make the asymptotic inference
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computationally efficient. Therefore, a suitable block bootstrap technique will be presented.

We will also justify its usage by showing its asymptotic equivalence to the approximate

normality approach.

On the top of that, simulation studies and real data examples demonstrate results from

the third and the fifth chapter.

Finally, a linearity in the EIV model may sometimes seem restrictive. Hence, a nonlinear

attitude to the EIV model is discussed in the sixth chapter. A way of nonparametric modeling

in the EIV will be suggested as well with a possible way of estimation.

At the end, all the well-known definitions and theorems, which were frequently used

through the thesis, are recapitulated in the appendix.



Notation

a.s. . . . almost surely

[P]-a.s. . . . [P]-almost surely

D([P]-a.s.)←−−−−−−→ . . . approaching in distribution [P]-almost surely

D(P)←−−→ . . . approaching in distribution in probability P
ei . . . canonical vector, i-th element equal one and the rest are zeros

[P]-a.s.−−−−−→ . . . convergence [P]-almost surely

D−→ . . . convergence in distributionP−→ . . . convergence in probability PP∗([P]-a.s.)−−−−−−−−→ . . . convergence in probability P∗ [P]-almost surelyP∗(P)−−−−→ . . . convergence in probability P∗ in probability P
D[a,b]−−−−→ . . . convergence in Skorokhod space D[a, b]

O, o . . . deterministic Landau symbols, confer Appendix A.1

diag(x) . . . diagonal square matrix with diagonal elements from vector x

dim . . . dimension of a vector (sub)spaceE . . . expectation

iid . . . independent and identically distributed

I . . . identity matrix
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xii

ℑ . . . imaginary part of a complex number

I . . . indicator functionZ . . . integers, i.e., {. . . ,−2− 1, 0, 1, 2, . . .}

Ker . . . kernel of a linear mapping

δij . . . Kronecker deltaN . . . natural numbers, i.e., {1, 2, . . .}N0 . . . natural numbers with zero, i.e., {0, 1, 2, . . .}

[·] . . . nearest integer function

t−i . . . omitting the ith element from the original vector tP . . . probability

Range . . . range of a linear mapping (column space)

rank . . . rank of a matrixR . . . real numbers

ℜ . . . real part of a complex number

D[a, b] . . . Skorokhod space on interval [a, b]

W . . . standard Wiener process

OP, oP . . . stochastic Landau symbols, confer Appendix A.1

ti:j . . . subvector [ti, ti+1, . . . , tj−1, tj ]
⊤ of the original vector t

tr . . . trace of a matrix

⊤ . . . transpose of a vector or matrix

Var . . . variance

0 . . . zero vector or matrix
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Chapter 1
Introduction to Errors-in-Variables

Lasciate ogni speranza, voi ch’entrate.

[All hope abandon, ye who enter in.]

Dante Alighieri

Observing several characteristics—may be thought as variables—straightforwardly pos-

tulates a natural question: “What is the relationship between these measured characteris-

tics?” One of many possible attitudes can arise, that some of the characteristics might be

explained by a (functional) dependence on the other characteristics. Therefore, we consider

the first mentioned variables as dependent or response and the second ones as independent,

explanatory, or covariates.

1.1 Our Goals and Aims

Linear relationships are usually described by a linear regression where the response (regres-

sand) is the only observed variable encumbered by an error. On the other hand, all the

covariates (regressors) are considered to be measured precisely. Despite of this common ap-

proach, some situations can appear where it is more convenient and suitable, sometimes even

necessary, to assume that both regressand and regressors are subject to error (Madansky,

1959). Hence, a proper statistical model should be chosen to handle errors in all variables,

unsurprisingly called errors-in-variables model by Gleser and Watson (1973).

A prime motivation for this thesis is to introduce a regression model capable of handling

errors in the observed characteristics. Our goal is to clearly summarize already developed

properties of this model. Consequently, we want to derive additional important properties

of the model with errors in measurements, to extend its applicability, and to overcome some

problems that exist up to now. We mainly take into account modern asymptotic approaches

in order to finalize unsolved questions regarding the usage of regression model with errors

1



2 1.2 ERRORS-IN-VARIABLES MODEL

in variables. Therefore, we will concentrate on and incorporate:

� computational feasibility,

� invariant, equivariant and consistent estimation,

� finite sample and limiting behavior,

� robust approach,

� weak dependence of errors,

� simulation studies,

� real data analyses.

1.1.1 Main Ideas

As already mentioned in Preface of this thesis, a brief summary of known results is necessary.

Our regression model with errors in variables contains some unknown quantities, which needs

to be estimated in a reasonable manner. A way of equivariant estimation is presented in

order to preserve some natural and desired properties. Furthermore, a situation modeled

by the independent errors could not be suitable in each real-time scenario and asymptotics

for the estimates is required in that case. Large sample theory for dependent variables is

applied. In spite of this, theoretical knowledge does not have to provide solutions for the

real problems. Computational intensive methods, e.g., various versions of bootstrap, are

developed, their correctness proved and, moreover, their applicability demonstrated in the

simulations and on the real data as well.

1.2 Errors-in-Variables Model

Errors-in-variables (EIV) model

Y
n×1

= Z
n×p

β
p×1

+ ε
n×1

and X
n×p

= Z
n×p

+ Θ
n×p

(E)

is assumed, where β is a vector of regression parameters to be estimated, X and Y consist of

observable random variables (X are covariates and Y is a response), Z consists of unknown

constants and has full rank, and ε and Θ are composed of random errors such that the joint

distribution of the elements of [Θ, ε] is absolutely continuous with respect to the Lebesgue

measure.

EIV model (E) for the case when p = 1 can be graphically illustrated in the two-

dimensional setting as shown in Figure 1.1.
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-
x

6
y

zi

ziβ

xi

yi

[xi − θi, yi − εi]

[xi, yi]

Figure 1.1: Illustration of the EIV model.

EIV model (E) with non-random unknown constants Z is sometimes called functional

EIV model. On the other hand, a different approach may handle Z as random covariates,

which is called structural EIV model. We purely concentrate on the first mentioned case.

1.3 Algebraic Overview

Our proposed model of dependence contains errors in both the response variable (we think

only of one dependent variable) and the explanatory variables as well. But firstly, we just

try to find an appropriate fit for some points in the Euclidean space using a hyperplane,

i.e., approximating several incompatible linear relations. Afterwards, some assumptions on

the measurement errors are added and, hence, several statistical asymptotical properties are

developed.

Let us consider the overdetermined system of linear relations

Y ≈ Xβ, Y ∈ Rn, X ∈ Rn×p, n > p. (1.1)

Relations in (1.1) are deliberately not denoted as equations, because in many cases the exact

solution need not exist. Thereby, only an approximation can be found. Hence, one can speak

about the “best” solution of the overdetermined system (1.1). Nevertheless, the “best” in

which way?



4 1.3 ALGEBRAIC OVERVIEW

1.3.1 Singular Value Decomposition

Before inquiring into an appropriate solution of (1.1), we should introduce some very im-

portant tools for further exploration.

Theorem 1.1 (Singular value decomposition – SVD). If A ∈ Rn×p, then there exist or-

thonormal matrices U = [u1, . . . ,un] ∈ Rn×n and V = [v1, . . . ,vp] ∈ Rp×p such that

U⊤AV = Σ = diag {σ1, . . . , σq} ∈ Rn×p, σ1 ≥ . . . ≥ σq ≥ 0, and q = min {n, p} .
(1.2)

Proof. See Golub and Van Loan (1996).

In SVD, the diagonal matrix Σ is uniquely determined by A (though the matrices U

and V are not). Previous powerful matrix decomposition allows us to define a cutting point

r ∈ N0 for a given matrix A ∈ Rn×p using its singular values σi

σ1 ≥ . . . ≥ σr > σr+1 = . . . = σq = 0, q = min {n, p} .

Since the matrices U and V in (1.2) are orthonormal, it holds that rank(A) = r and we

may obtain a dyadic decomposition (expansion) of the matrix A:

A =
r∑

i=1

σiuiv
⊤
i . (1.3)

A suitable matrix norm is also required. For our purposes, an entrywise type of matrix

norm is preferable and suitable as well. Accordingly, the Frobenius norm—a common and

widely used representative from the family of entrywise matrix norms—will serve us to

investigate the properties of the EIV model. The Frobenius matrix norm for matrix A ≡
(aij)

n,p
i,j=1 is defined as follows

‖A‖F :=

√√√√
n∑

i=1

p∑

j=1

a2ij =
√
tr(A⊤A) =

√√√√
q∑

i=1

σ2
i =

√√√√
r∑

i=1

σ2
i , q = min {n, p} . (1.4)

The Frobenius norm can be viewed as a multivariate version of the Euclidean vector norm

for matrices.

Furthermore, the following approximation theorem plays the main role in the forthcoming

derivation, where a matrix is approximated with another one having lower rank.

Theorem 1.2 (Eckart-Young-Mirsky matrix approximation). Let the SVD of A ∈ Rn×p
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be given by A =
∑r

i=1 σiuiv
⊤
i with rank(A) = r. If k < r and Ak =

∑k
i=1 σiuiv

⊤
i ,

min
rank(B)=k

‖A−B‖F = ‖A−Ak‖F =

√√√√
r∑

i=k+1

σ2
i .

Proof. See Eckart and Young (1936) and Mirsky (1960).

Above all, one more technical property needs to be recalled.

Theorem 1.3 (Sturm interlacing property). Let n ≥ p and the singular values of A ∈ Rn×p

are σ1 ≥ . . . ≥ σp. If B results from A by deleting one column of A and B has singular

values σ′
1 ≥ . . . ≥ σ′

p−1, then

σ1 ≥ σ′
1 ≥ σ2 ≥ σ′

2 ≥ . . . ≥ σ′
p−1 ≥ σp ≥ 0. (1.5)

Proof. See Thompson (1972).

1.3.2 Total Least Squares Solution

Three basic approximation ways of the linear overdetermined system (1.1) are described

in Pešta (2008). The traditional approach penalizes only the misfit in the dependent variable

part

min
ǫ∈Rn,β∈Rp

‖ǫ‖2 s.t. Y − ǫ = Xβ (1.6)

and is called the ordinary least squares (OLS). Here, the data matrix X is thought as exactly

known and errors occur only in the vector Y. An opposite case to the OLS is represented

by the data least squares (DLS), which allow corrections only in the explanatory variables

(independent input data)

min
Ξ∈Rn×p,β∈Rp

‖Ξ‖F s.t. Y = (X−Ξ)β. (1.7)

Finally, we concentrate ourselves on the total least squares approach minimizing the squares

of errors in the values of both dependent and independent variables

min
[Θ,ε]∈Rn×(p+1),β∈Rp

‖[Θ, ε]‖F s.t. Y − ε = (X−Θ)β. (1.8)

A graphical illustration of three previous cases can be found in Figure 1.2. One may notice

that the TLS “search” for the orthogonal projection of the observed data onto the unknown

approximation corresponding to a TLS solution. The Frobenius norm is chosen as a suitable

(and also a standard) norm to penalize for the errors, because, geometrically speaking, it

tries to minimize the orthogonal distance between the observations and fitted hyperplane.



6 1.3 ALGEBRAIC OVERVIEW
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Figure 1.2: Various least squares fits (ordinary, data, and total LS) for the same three data

points in the two-dimensional plane that coincides with the regression setup of one response

and one explanatory variable.

Once a minimizing [Θ̂, ε̂] of the TLS problem (1.8) is found, then any β satisfying

Y − ε̂ = (X − Θ̂)β is called a TLS solution. The “basic” form of the TLS solution was

investigated for the first time by Golub and Van Loan (1980).

Theorem 1.4 (TLS solution of Y ≈ Xβ). Let the SVD of X ∈ Rn×p be given by X =
∑p

i=1 σ
′
iu

′
iv

′⊤
i and the SVD of [X,Y] =

∑p+1
i=1 σiuiv

⊤
i . If σ′

p > σp+1, then

[X̂, Ŷ] := [X− Θ̂,Y − ε̂] = UΣ̂V⊤ and Σ̂ = diag {σ1, . . . , σp, 0} (1.9)

with the corresponding TLS correction matrix

[Θ̂, ε̂] = σp+1up+1v
⊤
p+1 (1.10)
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solves the TLS problem and

β̂ = − 1

e⊤p+1vp+1
[v1,p+1, . . . , vp,p+1]

⊤
(1.11)

exists and is the unique solution to Ŷ = X̂β.

Proof. Proof by contradiction, we firstly show that e⊤p+1vp+1 6= 0. Suppose vp+1,p+1 = 0,

then there exist 0 6= w ∈ Rp such that

[
w⊤, 0

]
[X,Y]

⊤
[X,Y]


 w

0


 = σ2

p+1

which yields into w⊤X⊤Xw = σ2
p+1. But this is a contradiction with the assumption

σ′
p > σp+1, since σ

′2
p is the smallest eigenvalue of X⊤X.

Sturm interlacing property (1.5) and the assumption σ′
p > σp+1 yield σp > σp+1. There-

fore, σp+1 is not a repeated singular value of [X,Y] and σp > 0.

If σp+1 6= 0, then rank([X,Y]) = p + 1. We want to find [X̂, Ŷ] such that ‖[X,Y] −
[X̂, Ŷ]‖F is minimal and [X̂, Ŷ][β⊤,−1]⊤ = 0 for some β. Therefore, rank([X̂, Ŷ]) = p

and applying Eckart-Young-Mirsky Theorem 1.2, one may easily obtain the SVD of [X̂, Ŷ]

in (1.9) and the TLS correction matrix (1.10), which must have rank one. Now, it is clear

that the TLS solution is given by the last column ofV. Finally, since dim(Ker([X̂, Ŷ])) = 1,

then the TLS solution (1.11) must be unique.

If σp+1 = 0, then vp+1 ∈ Ker([X,Y]) and [X,Y][β⊤,−1]⊤ = 0. Hence, no ap-

proximation is needed, overdetermined system (1.1) is compatible, and the exact TLS

solution is given by (1.11). Uniqueness of this TLS solution follows from the fact that

[β⊤,−1]⊤ ⊥ Range([X,Y]⊤).

A closed-form expression of the TLS solution (1.11) can be derived. If σ′
p > σp+1, the

existence and uniqueness of the TLS solution has already been shown. Since singular vectors

vi from (1.9) are eigenvectors of [X,Y]
⊤
[X,Y], then β̂ also satisfies

[X,Y]
⊤
[X,Y]


 β̂

−1


 =


 X⊤Y X⊤Y

Y⊤X Y⊤Y




 β̂

−1


 = σ2

p+1


 β̂

−1


 (1.12)

and, hence,

β̂ = (X⊤X− σ2
p+1I)

−1X⊤Y. (1.13)

Previous equation reminds us a form of an estimate in the ridge regression setup. Therefore,

one may expect that the TLS estimate avoid multicollinearity problems, which are sometimes

present in the classical OLS regression (1.6). Expression (1.13) looks almost similar to the
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OLS estimator β̃ of (1.6), except the term containing σ2
p+1. This term is missing in the

well-known OLS estimator with full rank regression matrix provided by the Gauss-Markov

theorem as a solution of so-called normal equations X⊤Xβ̃ = X⊤Y.

From a statistical point of view, a situation when σ′
p = σp+1 occurs for real data is

unlikely and also quite irrelevant. In spite of this, Van Huffel and Vandewalle (1991, Chap-

ter 5) investigated this case and concluded the following summary. Suppose σq > σq+1 =

. . . = σp+1, q ≤ p and denote Q := [vq+1, . . . ,vp+1]. Then:

� σ′
p > σp+1 ⇒ the unique TLS solution (1.11) exists;

� σ′
p = σp+1 & e⊤p+1Q 6= 0 ⇒ infinitely many TLS solutions of (1.8) exist and

one can pick up one of them with the smallest norm;

� σ′
p = σp+1 & e⊤p+1Q = 0 ⇒ no solution of (1.8) exists and one needs to define

another (“more restrictive”) TLS problem.

A more restrictive TLS problem, than the original one mentioned previously, is called a non-

generic TLS problem. Simply, additional restriction

[ε,Ξ]Q = 0. (1.14)

is added to the former constraints (1.8). Restriction (1.14) tries to “project” out “unimpor-

tant” or “redundant” data from the original TLS problem (1.8). Moreover, restriction (1.14)

assures a uniqueness of the solution for such an updated TLS problem (TLS problem with

additional restriction). A detailed discussion can be found in Van Huffel and Vandewalle

(1991, Chapter 3).

1.4 Error Structure

Let us consider a probability space (Ω,F ,P), where all the further mentioned random ele-

ments exist in. Proper distributional assumptions of random errors in the EIV model need

to be proposed. Two levels of the error structure have to be distinguished. The first level of

error structure—within-individual level—is that each row [Θi,•, εi] has zero mean and non-

singular covariance matrix σ2I, where σ2 > 0 is unknown (for simplicity). This assumption

can be straightforwardly generalized as discussed below. Relationships between individual

observations are represented by the second level of error structure—between-individual level .

Here, the rows [Θi,•, εi] are iid. This assumption may seem quite restrictive and unrealizable

in some situations and, therefore, it will be generalized in Chapter 4.

A homoscedastic covariance structure of the within-individual errors [Θi,•, εi] can be

generalized by knowing the heteroscedastic covariance matrix Γ > 0 in advance. Mathemat-

ically speaking, the homoscedastic covariance matrix σ2I can be replaced by more general

one Γ ∈ R(p+1)×(p+1). Then, the observation data are just multiplied by its square root
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as already discussed in Van Huffel and Vandewalle (1991, Section 8.4) or Gleser (1981,

Section 5), i.e., new transformed data are

[X̃, Ỹ] = [X,Y]Γ−1/2. (1.15)

This transformation of the original data is purely linear, which is not restrictive at all in our

case. Since no specific distributional assumptions on the errors are assumed in the whole

thesis except the existence of some moments of errors, linear transformation [Θi,•, εi]Γ
−1/2

does not require any additional distributional assumption. Therefore, the whole asymptotic

inference remain also valid even for the heteroscedastic case. The only property that needs

to be satisfied is independence of the transformed errors.

Consequently, TLS estimate (1.13) can be rewritten and a generalized total least squares

(GTLS) estimate is obtained

β̂GTLS = (X̃⊤X̃− σ2
p+1,[X̃,Ỹ]

I)−1X̃⊤Ỹ, (1.16)

where σ
p+1,[X̃,Ỹ]

is the (p + 1)-st singular value of transformed data matrix [X̃, Ỹ]. If

the covariance matrix Γ is unknown, it can be estimated using repeated observations , but

afterwards, more complicated design of the experiment is necessary:

Yι
n×1

= Z
n×p

β
p×1

+ ει
n×1

and Xι
n×p

= Z
n×p

+ Θι
n×p

, ι = 1, . . . , r; (1.17)

where r ∈ N stands for the number of replications. Extra information—needed for an es-

timation of the covariance matrix—comes exactly from the replications. Then, a general

covariance matrix Σ for the within-individual errors can be estimated as in Healy (1975),

e.g., by

Γ̂ :=
1

n(r − 1)

r∑

i=1

r∑

j=1

[Xi,Yi]
⊤

[(
δij −

1

r

)
I

]
[Xj ,Yj ], (1.18)

where δij denotes Kronecker delta. Previous equation (1.18) can be rewritten using notation

purely from replication model (1.17) as

Γ̂ =
1

nr

r∑

i=1

[Θi, εi]
⊤[Θi, εi]−

1

nr(r − 1)

r∑

i=1

r∑

j=1
j 6=i

[Θi, εi]
⊤[Θj , εj],

which illustrates the meaning of the estimate.

A similar situation arises on the between-individual level of errors. If there exist equilibra-

tion matrices Υ ∈ Rn×n and Γ ∈ R(p+1)×(p+1), which provide iid errors Υ−1/2[Θ, ε]Γ−1/2

(on both levels of errors), the inference should be performed for the transformed data
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Υ−1/2[X,Y]Γ−1/2. Hence, TLS estimate (1.13) become an equilibrated total least squares

(ETLS) estimate

β̂ETLS = (X̃⊤Υ−1X̃− σ2
p+1,Υ−1/2[X,Y]Γ−1/2I)

−1X̃⊤Υ−1Ỹ, (1.19)

where σp+1,Υ−1/2[X,Y]Γ−1/2 is the (p + 1)-st singular value of transformed data matrix

Υ−1/2[X,Y]Γ−1/2.

1.5 Partial Errors-in-Variables Model

Partial errors-in-variables (PEIV) model is a regression model where some explanatory

variables are subject to error and some are measured exactly. It is an extension of EIV

model (E):

Y
n×1

= W
n×s

α
s×1

+ Z
n×p

β
p×1

+ ε
n×1

and X
n×p

= Z
n×p

+ Θ
n×p

, (1.20)

where W are observable true and Z are unobservable true constants, both having full rank.

Regression parameters α and β needs to be estimated. The rest of the notation is the same

as for the classical EIV model.

PEIV model (1.20) is quite important, because it can incorporate non-random (fixed)

intercept into the regression model. This can be directly proceeded by setting one column

of matrix W equal to [1, . . . , 1]⊤. On the other hand, if p = 0, then we just have a classical

linear regression model.

In order to obtain parameter estimates, we separate exact and approximate observations,

or better to say, we decompose “space of observations”—fixed and random predictors, and

response—into mutually orthogonal subspaces. Then, we project out exact observations

using projection matrix R := I −W(W⊤W)−1W⊤. Notice that R = R⊤ and R = RR.

We end up with

RY = RZβ +Rε (1.21)

and, consequently, minimizing the orthogonal distance

min
β,[Ỹ,X̃]

∥∥∥R[Y,X]− [Ỹ, X̃]
∥∥∥
F

s.t. Ỹ = X̃β

yields the estimate for parameter β, i.e.,

β̂LS−TLS = (X⊤RX− σ2
p+1,R[X,Y]I)

−1X⊤RY, (1.22)

where σp+1,R[X,Y] is the (p+ 1)-st singular value of the projected data matrix R[X,Y].
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Now, an ordinary least squares estimate is calculated for parameter α in the “trans-

formed” model

Y −Xβ̂LS−TLS = Wα+ ε̃

with some unspecified errors ε̃. Finally,

α̂ = (W⊤W)−1W⊤(Y −Xβ̂LS−TLS).

Henceforth, estimate β̂LS−TLS from (1.22) is called a least squares-total least squares (LS-

TLS) estimate.

Golub et al. (1987) showed that the above procedure for PEIV model (1.20) finds the

minimum of the following rank-deficiency optimization problem

min
[Θ,ε]∈Rn×(p+1)

‖[Θ, ε]‖F s.t. Range(Y−ε) ⊆ Range(X−Θ) ⊆ Range([W,X−Θ]).

(1.23)

The obtained solution of minimizing (1.23) is called a mixed least squares – total least squares

(mixed LS-TLS) estimate and is given by


 α̂

β̂



LS−TLS

=


[W,X]⊤[W,X]− σ2

p+1


 0 0

0 I






−1

[W,X]⊤Y,

see, e.g., Gleser (1981).

The previous results can be thought as a justification that it is sufficient to take into

account only EIV model (E). Hence, all properties for the classical EIV model, which are

going to be derived, can be straightforwardly generalized for PEIV model (1.20) as well,

since the inference for the classical linear regression is well known.

1.6 Summary of Large Sample Properties

One should not only pay attention to the existence or form of the TLS solution, but also to

its properties, e.g., statistical ones. An asymptotical behavior of an estimator is one of its

basic characteristics. The asymptotical properties can provide some information about the

quality (i.e., efficiency) of the estimator.

Sometimes, full-information approaches like maximum likelihood (ML) can provide pa-

rameter estimates for the previously mentioned model. Nevertheless, it is requisite to go

for distributional-free estimation method, e.g., total least squares, due to the impossibility

to satisfy the distributional assumptions in the model. Healy (1975) developed a maximum
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likelihood theory for the EIV model under some normality assumptions on the errors [Θ, ε].

Finally, let us remind that the ML estimate of β (Healy, 1975) coincides with the TLS

estimate if the rows of the error matrix are iid multivariate normal with zero mean and

non-singular covariance matrix.

First of all, Okamoto (1973) and Gleser (1981, Section 2) proved that with probability

tending to one, as n increases, vp+1,p+1 6= 0 (and, hence, β̂ exists). Furthermore, Gallo

(1982b) remarked that the ordinary least squares estimate in the EIV model is inconsistent

and TLS estimate (1.13) should be taken into account instead.

Additional design assumption is necessary for asymptotics:

∆ := lim
n→∞

n−1Z⊤Z exists and is positive definite. (D)

Importance of the previous design assumption has already been thoroughly discussed in,

e.g., Pešta (2009b). If the limit in (D) is infinite, then the variance of TLS estimate (1.13)

tends to zero, which is inadmissible.

1.6.1 Consistency

Firstly, we provide a theorem showing the strong consistency of the TLS estimator.

Theorem 1.5 (Strong consistency in EIV with independent errors). If limn→∞
1
nZ

⊤Z ex-

ists, then

lim
n→∞

σ2
p+1

n
= σ2 a.s. (1.24)

Moreover, if assumption (D) is satisfied, then

lim
n→∞

β̂ = β a.s. (1.25)

Proof. See Gleser (1981, Corollary 3.1 and Lemma 3.3).

Previous Theorem 1.5 also provides a strongly consistent estimate of the homoscedastic

variance parameter σ2, i.e.:

σ̂2 :=
σ2
p+1

n
. (1.26)

Assuming (D), Gleser (1981, Lemma 3.1) showed the following very important relation

∆n := n−1(X⊤X− σ2
p+1I)

a.s.−−→∆, n→∞. (1.27)

The assumptions in the previous theorem are somewhat restrictive and need not be

satisfied, e.g., univariate errors-in-variablesmodel with the values of the independent variable
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vary linearly with the sample size (Gallo, 1982b). Therefore, these assumptions need to be

weakened yielding the following theorem.

Theorem 1.6 (Weak consistency in EIV with independent errors). Suppose that the distri-

bution of the rows of [Θ, ε] possesses finite fourth moment. If

1√
n
λmin

(
Z⊤Z

)
→ ∞, n→∞,

λ2min

(
Z⊤Z

)

λmax (Z⊤Z)
→ ∞, n→∞;

then

β̂
P→ β, n→∞. (1.28)

Proof. Can be easily derived using Theorem 2 by Gallo (1982a).

Notation λmin (respectively, λmax) denotes the minimal (respectively, maximal) eigen-

value. It has to be remarked on the fourth moment finiteness of the rows of [Θ, ε], that this

mathematically means for all i ∈ {1, . . . , n}E ∏
∑

j rj=4

ω
rj
ij <∞, ωij ∈ {Θi,1, . . .Θi,p, εi} , rj ∈ N.

The assumptions in the previous theorems ensure that the values of the independent vari-

ables “spread out” fast enough. Gallo (1982a) proved that the previous “intermediate”

assumptions are implied by the assumptions in the theorem for strong consistency.

Results for strong and weak consistency were strengthen by Kukush et al. (2002, Theo-

rem 2) considering milder assumptions, but rather complicated to verify.

1.6.2 Asymptotic Normality

Finally, an asymptotic distribution for further statistical inference has to be shown.

Theorem 1.7 (Asymptotic normality in EIV with independent errors). Suppose that the

distribution of the rows of [Θ, ε] possesses finite fourth moment. If assumption (D) is

satisfied, then
√
n(β̂ − β) has an asymptotic zero-mean multivariate normal distribution as

n→∞.

Proof. See Gallo (1982b, Chapter 3).

The covariance matrix of the multivariate normal distribution from the previous theorem

is not shown here due to its very complicated form, which can be calculated from Theorem 4.1

by Gleser (1981) or derived from the proof of Theorem 3.3 by Gallo (1982b).
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Moreover, if the third and fourth moments of the distribution of the rows of [Θ, ε] are

the same as those of the normal distribution and assumption (D) holds, then

√
n(β̂ − β)
D−→ Np

(
0, σ2(1 + β⊤β)

{
∆−1 + σ2∆−1

(
[I,β][I,β]⊤

)−1
∆−1

})
, n→∞. (1.29)

1.7 Discussion and Conclusions

In this chapter, the TLS problem from algebraical point of view is summarized and a connec-

tion with the errors-in-variables—a statistical model—was shown. Unification of algebraical

and numerical results with statistical ones were demonstrated.

The TLS optimizing problem was defined here with the OLS and DLS alternatives. Its

solution was found using spectral information of the system; and the existence and unique-

ness of this solution were discussed. The errors-in-variables model as a correspondence to

the orthogonal regression was introduced. Moreover, a comparison of the classical regression

approach with the errors-in-variables setup was shown. Extensions of the EIV model were

proposed yielding GTLS, ETLS and mixed LS-TLS. Finally, large sample properties such as

the strong and weak consistency, and the asymptotical normality of the TLS estimate—an

estimate in the errors-in-variables model—were recapitulated.



Chapter 2
Estimation in Errors-in-Variables

In ancient times they had no statistics

so they had to fall back on lies.

Stephen B. Leacock

The estimation in errors-in-variables model (E) was performed via penalizing the or-

thogonal squared misfit. This attitude leads into the minimizing the Frobenius norm of the

error matrix. Immediate doubts arise whether this criterion is suitable and in which sense.

What happens if we do not consider squared distances? Moreover, a change of measurement

units should have no impact on the estimate and an interchange of variables should provide

estimate with its exchanged components.

2.1 Unitarily Invariant Matrix Norms

A broad class of matrix norms is introduced in order to penalize errors from the EIV model

in a general manner.

Definition 2.1 (Unitarily invariant matrix norm). A matrix norm ‖·‖ is unitarily invariant

if

‖UAV‖ = ‖A‖

for all A ∈ Rn×p and all unitary matrices (see Definition A.1) U ∈ Rn×n and V ∈ Rp×p.

A complete characterization of the unitarily invariant matrix norms was given by von

Neumann (1937) using the following definition and consequent theorem.

15
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Definition 2.2 (Symmetric gauge function). A real-valued function ς : Rp → R is sym-

metric gauge function if ς(·) is a vector norm satisfying

ς(PDx) = ς(x)

for all x ∈ Rp, all diagonal matrices D ∈ Rp×p having ±1 on the diagonal, and all permu-

tation matrices P ∈ Rp×p (see Definition A.2).

Theorem 2.1 (Characterization of unitarily invariant matrix norms). Any unitarily invari-

ant matrix norm ‖ · ‖ is of the form ς([σ1(·), . . . , σp(·)]⊤), where σ1(·) ≥ . . . ≥ σp(·) ≥ 0 are

singular values of the corresponding matrix.

Proof. See von Neumann (1937).

Theorem 2.1 states that a unitarily invariant matrix norm is a symmetric gauge function

of the singular values of its argument.

Eckart-Young-Mirsky matrix approximation Theorem 1.2 can be extended, which pro-

vides a broader class of estimates. This generalization uses a similar lower-rank matrix

approximation.

Theorem 2.2 (Generalized Schmidt matrix approximation). Let the SVD of A ∈ Rn×p be

given by A =
∑r

i=1 σiuiv
⊤
i with rank(A) = r. If k < r and Ak =

∑k
i=1 σiuiv

⊤
i , then for

any unitarily invariant matrix norm ‖ · ‖ holds

min
rank(B)=k

‖A−B‖ = ‖A−Ak‖ .

Proof. See Mirsky (1960).

2.2 EIV Estimate

Having general penalization criterion provided by unitarily invariant matrix norms, a solu-

tion of overdetermined system (1.1) is found. Henceforth, an estimate to EIV model (E)

can be constructed. It can be expected that this new estimate should be more general in

some sense than the TLS estimate, but we end up with a surprise.

Theorem 2.3 (Errors-in-variables estimate). Suppose that ‖ · ‖ is an arbitrary unitarily

invariant matrix norm. Let the SVD of X ∈ Rn×p be given by X =
∑p

i=1 σ
′
iu

′
iv

′⊤
i and the

SVD of [X,Y] =
∑p+1

i=1 σiuiv
⊤
i . If σ′

p > σp+1, then the optimizing problem

min
β∈Rp,[Θ,ε]∈Rn×(p+1)

‖[Θ, ε]‖ s.t. Y − ε = (X−Θ)β (2.1)
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has always a unique solution {β̂, [Θ̂, ε̂]} for {β, [Θ, ε]} consisting of an errors-in-variables

(EIV) estimate

β̂ = − 1

e⊤p+1vp+1
[v1,p+1, . . . , vp,p+1]

⊤
(2.2)

and a correction (residual) matrix

[Θ̂, ε̂] = σp+1up+1v
⊤
p+1. (2.3)

The norm of the correction matrix is ‖Θ̂, ε̂‖ = σp+1 and the corresponding fitted matrix is

[X̂, Ŷ] := [X− Θ̂,Y − ε̂] = UΣ̂V⊤, (2.4)

where Σ̂ = diag {σ1, . . . , σp, 0}. Moreover, EIV estimate (2.2) has an alternative (closed)

form

β̂ = (X⊤X− λI)−1X⊤Y, (2.5)

where λ is the smallest eigenvalue of matrix [X,Y]⊤[X,Y].

Proof. The proof of (2.2)–(2.4) is just a copy of Theorem 1.4 with only one modification—

generalized Schmidt matrix approximation, Theorem 2.2, is used instead of Eckart-Young-

Mirsky Theorem 1.2.

Furthermore, relation (1.9) is proved at this moment and, hence, ‖σp+1up+1v
⊤
p+1‖ = σp+1

for arbitrary unitarily invariant matrix norm ‖ · ‖. The previous equation is true due to

Definition 2.1, and the orthonormality of vectors up+1 and vp+1.

Finally, the smallest eigenvalue of positive semidefinite matrix [X,Y]⊤[X,Y] is the

squared smallest singular value of matrix [X,Y] due to the SVD (Theorem 1.1) of [X,Y]

and the eigen decomposition property (Theorem A.1) of [X,Y]⊤[X,Y]. Combining this fact

with (1.12) leads to (2.5).

Repeatedly, Okamoto (1973) and Gleser (1981) proved that σ′
p > σp+1 with probability

one if the elements of errors are absolutely continuous with respect to the Lebesgue measure

as stated in the description of the EIV model in Section 1.2. Hence, the estimate β̂ exists

with probability one and coincides with the TLS estimate. This property is very plausible

and, moreover, some even more plausible properties of our EIV estimate will be derived.
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2.2.1 Unification and Coincidence in the Estimation with Examples

Theorem 2.3 has much larger impact and consequences than it might be thought. Let us

consider q-Schatten matrix norms (also called Schatten q-norms)

‖A‖q =
{
tr
[(
A⊤A

)q/2]}1/q

, q ≥ 1. (2.6)

The Schatten matrix norms from (2.6) can be alternatively and equivalently defined (see,

e.g., Bhatia (1996, Chapter 4)) by the spectral properties of a matrix:

‖A‖q =




min{n,p}∑

i=1

σq
i




1/q

, q ≥ 1, (2.7)

where an arbitrary matrix A = (aij)
n,p
i,j=1 with its singular values σ1 ≥ . . . ≥ σmin{n,p} ≥ 0

is taken into account. Neumann’s characterization of the unitarily invariant matrix norms

(Theorem 2.1) implies that the q-Schatten matrix norms (2.7) are a huge subclass of the

unitarily invariant matrix norms when considering symmetric gauge functions ς(σ) = ‖σ‖Lq ,

where ‖ ·‖Lq is the Lq-vector norm and σ = [σ1, . . . , σmin{n,p}]
⊤. They can be seen as a way

of defining Lp-norms for matrices.

According to Theorem 2.3, all the estimates in the EIV model based upon arbitrary

q-Schatten matrix norm are simply identical (coincide). Special types of the q-Schatten

matrix norms are the nuclear matrix norm (q = 1)

‖A‖1 = tr
√
A⊤A =

min{n,p}∑

i=1

σi,

and the Frobenius norm (q = 2). In the context of this thesis, the nuclear matrix norm

cannot be confused with an operator norm defined latter in (2.8).

The class of the q-Schatten matrix norms can even be enlarged. Rao (1980) describes

a broader subclass of the unitarily invariant matrix norms—q-Ky Fan k-norms

‖A‖(k)q =

(
k∑

i=1

σq
i

)1/q

, q ≥ 1, 1 ≤ k ≤ min{n, p}.

They are generated by symmetric gauge functions

ς([σ1, . . . , σmin{n,p}]
⊤) =

(
k∑

i=1

σq
i

)1/q

,

which can be thought of a trimmed version of the q-Schatten matrix norm. Therefore, even

a “robust” version of an estimate for the EIV model in the sense of various “trimmed Lp-
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norms” still coincides with the only EIV estimate. After that, one would expect that the

EIV estimate should behave robustly against leverage observations , which is analyzed in Van

Huffel and Vandewalle (1991, Chapter 9).

The q-Schatten matrix norms are really special types of the q-Ky Fan k-norms when

k = min{n, p}. Moreover, operator (spectral) matrix norm

‖A‖∞ = max
x 6=0

‖Ax‖E
‖x‖E

= σ1, (2.8)

where ‖ · ‖E denotes the Euclidean vector norm, is a special type of the q-Ky Fan k-norm

(k = 1) as well. The operator norm sometimes stands as a definition of the ∞-Schatten

matrix norm.

Why are the unitarily invariant matrix norms so important and preferable? The answer

is given by the singular value decomposition (Theorem 1.1)—especially in the geometric

interpretation of the SVD. When considering the SVD A = UΣV⊤, then U ∈ Rn×n

and V ∈ Rp×p are unitary matrices whose columns consist of the orthonormal vectors

ui ∈ Rn, i = 1, . . . , n and vj ∈ Rp, j = 1, . . . , p with respect to the standard scalar

product, which yield orthogonal bases of the Euclidean spaces on Rn and Rp. Hence, for

every matrix A ∈ Rn×p with its SVD as above, there exists a linear mapping L : Rp → Rn

such that

L (vi) = σiui, i = 1, . . . ,min{n, p}

and

L (vi) = 0, i = min{n, p}+ 1, . . . ,max{n, p},

where σ1, . . . , σmin{n,p} are the diagonal elements of Σ ∈ Rn×p. Loosely speaking, the

geometric content of the SVD lies in a fact that information from the data (input matrix A)

is decomposed by the SVD into rotation of the data in the Euclidean spaces (represented

by the unitary matrices U and V) and magnitude of the data (represented by the singular

values). If the unitarily invariant matrix norms are chosen for the penalizing of the errors

in the EIV model, all the information are just hidden in the singular values, because the

rotation of the data has no effect on the value of the unitarily invariant matrix norm. This

“information extraction” will provide pleasant invariant and equivariant properties of the

EIV estimate.

2.3 Invariancy and Equivariancy

Up until now, our EIV estimate is a reasonable estimate of the unknown parameter β,

because it minimizes the errors, or in other words, it finds the best fit. Its asymptotic



20 2.3 INVARIANCY AND EQUIVARIANCY

properties, mentioned in Section 1.6, provide the second argument for being a good estimate.

In spite of this, we need to ensure ourselves that the EIV estimate incorporates some natural

and expectable properties, i.e.:

� multiplying the input data by a positive constant does not affect the estimate (e.g.,

changing the measurement units),

� interchange of the explanatory variables has the effect of an exchange of the estimate’s

components in the corresponding (permuted) order (each estimate’s component should

correspond to one covariate, which impact is estimated by that component),

� change of the regressor’s sign implies multiplication of the corresponding estimate’s

component by minus one (e.g., changing directions of the measurements yields “oppo-

site” estimate),

� rotation of the explanatory variables provides the correspondingly rotated estimate

(vector basis should not determine the estimate).

Previously described geometrical properties are going to be mathematically formulated and,

consequently, proved to hold for our EIV estimate.

Let us define T([X,Y]) as an estimate for an unknown parameter β constructed from

input data [X,Y].

Definition 2.3 (Scale invariant estimate). An estimate T is called scale invariant if it

satisfies

T(a[X,Y]) = T([X,Y])

for any constant a > 0.

Corollary 2.4. EIV estimate (2.5) is a scale invariant estimate.

Proof. Finding a new EIV estimate for the multiplied data a[X,Y] leads to solving the

following optimizing problem

min
β∈Rp,[Θ,ε]∈Rn×(p+1)

‖[aΘ, aε]‖ s.t. aY − aε = (aX− aΘ)β. (2.9)

However, minimizing problem (2.9) is clearly equivalent (provides the same solution) to the

original optimizing problem (2.1).

A handy lemma for the further simplification of proofs is going to be derived.

Lemma 2.5 (Equivariantness). Suppose J ∈ Rp×p is a unitary matrix and ‖ · ‖ is uni-

tarily invariant matrix norm. If {β̂, [Θ̂, ε̂]} is a solution to optimizing problem (2.1), then
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{J⊤β̂, [Θ̂, ε̂]} is a solution to the optimizing problem

min
β∈Rp,[Θ,ε]∈Rn×(p+1)

‖[Θ, ε]J̃‖ s.t. Y − ε = (X−Θ)Jβ, (2.10)

where

J̃ =


 J 0

0 1


 .

Proof. Since J is unitary, then J−1 = J⊤ and, moreover, J̃ is unitary as well. Due to the

basic property of the unitarily invariant matrix norms, optimizing problem (2.1) is equivalent

to

min
β∈Rp,[Θ,ε]∈Rn×(p+1)

‖[Θ, ε]J̃‖ s.t. Y − ε = (X−Θ)JJ⊤β. (2.11)

Once a solution {β̂, [Θ̂, ε̂]} to (2.11) is found, then {J⊤β̂, [Θ̂, ε̂]} has to be a solution

to (2.10).

Definition 2.4 (Interchange equivariant estimate). An estimate T is called interchange

equivariant if it satisfies

T([X,Y]P̃π) = Pπ−1T([X,Y]) (2.12)

for any permutation π : {1, . . . , p} → {1, . . . , p} with its inverse π−1 and the corresponding

permutation matrices Pπ and Pπ−1 , where

P̃π =


 Pπ 0

0 1


 .

Note that if Pπ is a permutation matrix, then P̃π is a permutation one as well. Moreover,

its inverse is exactly

P̃π−1 =


 Pπ−1 0

0 1


 .

Number one in the last P̃π entry—position (p+1, p+1)—stands for the fixed “location”

of the response, i.e., keeps the regressand untouched.

The definition from (2.12) can be alternatively rewritten

PπT([XPπ ,Y]) = T([X,Y])
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in order to get insight into the meaning of equivariancy for this case.

All permutation matrices of the same dimension together with a matrix multiplication

form a symmetric group under matrix multiplication with the identity matrix as the identity

element. Multiplying a matrix by permutation matrix Pπ will permute the columns of the

matrix by the inverse of π, i.e., π−1. Therefore, the components of T([X,Y]) are reordered

in the inverse manner, i.e., T is multiplied by Pπ−1 from left hand side.

Corollary 2.6. EIV estimate (2.5) is an interchange equivariant estimate.

Proof. Since each permutation matrix is a unitary one, Lemma 2.5 straightforwardly com-

pletes the proof.

Definition 2.5 (Direction equivariant estimate). An estimate T is called direction equiva-

riant if it satisfies

T([X,Y]D̃) = −DT([X,Y]) (2.13)

for any diagonal matrix D ∈ Rp×p having ±1 on the diagonal, where

D̃ =


 D 0

0 1


 .

Formula (2.13) can also be alternatively rewritten

DT([XD,Y]) = T([X,Y]).

Again, all diagonal matrices with ±1 on the diagonal of the same dimension together

with a matrix multiplication form again a symmetric group under matrix multiplication with

the identity matrix as the identity element. Multiplying a matrix times D will change the

direction (orientation) of the columns of matrix according to the sign of the corresponding

diagonal element. Therefore, the signs of the components of T([X,Y]) are changed in the

inverse manner, i.e., T is multiplied by −D from left hand side.

Corollary 2.7. EIV estimate (2.5) is a direction equivariant estimate.

Proof. Since each diagonal matrix having ±1 on the diagonal is a unitary one, Lemma 2.5

straightforwardly completes the proof.

Definition 2.6 (Rotation equivariant estimate). An estimate T is called rotation equivari-

ant if it satisfies

T([X,Y]R̃) = R⊤T([X,Y]) (2.14)
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for any rotation matrix R ∈ Rp×p (see Definition A.3), where

R̃ =


 R 0

0 1


 .

Similar situation occurs to the rotation matrices. Here, if R is a rotation matrix, then

R̃ is a rotation one as well. Moreover, its inverse is exactly

R̃⊤ =


 R⊤ 0

0 1


 .

Formula (2.14) can be alternatively rewritten in order to demonstrate the meaning of

equivariancy

RT([XR,Y]) = T([X,Y])

For the third time, all rotation matrices having the same dimension together with a ma-

trix multiplication form a symmetric group with the identity matrix as the identity ele-

ment. Multiplying a matrix times R will rotate the columns of the matrix in the “inverse”

manner—the same rotation, but with the opposite orientation. Therefore, an estimate

T([X,Y]) needs to be rotated reversely, i.e., T is multiplied by R from left hand side.

Corollary 2.8. EIV estimate (2.5) is a rotation equivariant estimate.

Proof. Since each rotation matrix is a unitary one, Lemma 2.5 straightforwardly completes

the proof.

Finally, Corollaries 2.4, 2.6, 2.7, and 2.8 can be generalized in one common way, which

captures, among other things, all the above mentioned transformations. This alternative gen-

eralization will be stated in the forthcoming theorem and, moreover, we prove this theorem

by a different approach than by solving the equivalent optimizing problems, i.e., using the

spectral properties of unitary matrices and the closed form of the EIV estimate from (2.5).

Theorem 2.9. Suppose a > 0 is a positive constant and J ∈ Rp×p is a unitary matrix. If

the EIV estimate β̂ from data [X,Y] exists in the closed form (2.5), then the EIV estimate

from transformed data

[X̃, Ỹ] ≡ a[X,Y]


 J 0

0 1




equals J⊤β̂.
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Proof. Let us define

J̃ :=


 J 0

0 1


 .

Since J is a unitary matrix, then J̃ is a unitary one as well. Suppose that the SVD (Theo-

rem 1.1) of data matrix [X,Y] is

[X,Y] = UΣV⊤,

whereU, V are unitary matrices and Σ is a diagonal one with singular values on its diagonal

ordered in the non-increasing order.

Moreover, let us denote Ṽ := J̃⊤V. This matrix is also unitary, because

Ṽ⊤Ṽ = V⊤J̃J̃⊤V = I = J̃⊤VV⊤J̃ = ṼṼ⊤.

The unitarity of Ṽ and the SVD of [X,Y] implies that aΣ is a diagonal matrix with the

singular values of the transformed data matrix [X̃, Ỹ] on its diagonal ordered in the non-

increasing order due to the uniqueness of the SVD

[X̃, Ỹ] = a[X,Y]J̃ = aUΣV⊤J̃ = U(aΣ)Ṽ⊤.

Since the smallest eigenvalue of square matrix [X,Y]⊤[X,Y] is σ2
p+1, or in a shortened

notation λ ≡ λmin([X,Y]⊤[X,Y]) = σ2
p+1, then the smallest eigenvalue of [X̃, Ỹ]⊤[X̃, Ỹ]

is λmin([X̃, Ỹ]⊤[X̃, Ỹ]) = a2σ2
p+1 ≡ a2λ, because the SVD and the eigen decomposition

(Theorem A.1) provides

[X̃, Ỹ]⊤[X̃, Ỹ] = Ṽ(aΣ)⊤U⊤U(aΣ)Ṽ⊤ = Ṽ(a2Σ⊤Σ)Ṽ−1.

Henceforth, the EIV estimate from transformed data [X̃, Ỹ] is calculated according

to (2.5). Indeed, the EIV estimate from [X,Y] exists in the closed form, so that

β̂([X̃, Ỹ]) =
(
X̃⊤X̃− λmin([X̃, Ỹ]⊤[X̃, Ỹ])I

)−1

X̃⊤Ỹ

=
(
(aXJ)⊤(aXJ)− a2λI

)−1
(aXJ)⊤(aY)

= a−2
(
J⊤(X⊤X− λI)J

)−1
a2J⊤X⊤Y

= J−1(X⊤X− λI)−1(J⊤)−1J⊤X⊤Y = J⊤β̂([X,Y]) ≡ J⊤β̂.
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2.4 Summary

A penalization method of the errors in our EIV model via unitarily invariant matrix norm

was postulated. It creates more general optimizing problem than the total least squares

minimizing. A solution was found, which provides a well-known estimate for the EIV model.

This new estimate—the EIV estimate—coincides with the “old-fashioned” TLS estimate. In

spite of this, the EIV estimate can be seen as a generalization of the TLS estimate, because

it is derived from much more general set-up.

Special cases of the EIV estimate were demonstrated as a correspondence to widely

used matrix norms (a distributional-free approach in estimation), which serve for the error

penalization. The EIV estimate unifies a broad class of regression estimates, e.g., Lp-
estimation or trimming. Therefore, it may be considered as a specific robust alternative in

the EIV modeling, despite the fact that it is the same estimate.

The EIV estimate has three groups of nice and reasonable properties: keeping the er-

rors as small as possible, desired asymptotic properties, and transformation invariancy-

equivariancy. This third argument for being a natural and reasonable estimate implies that

a numerical representation of data does not affect the properties neither the quality of the

estimate. Only the information hidden in the data has the impact on it. Formally speak-

ing, scale invariant, interchange equivariant, direction equivariant, and rotation equivariant

estimates in the EIV set-up are defined. Consequently, it was shown that our EIV estimate

disposes of the previous demanded properties.
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Chapter 3
Bootstrap Versus Asymptotics

Je n’ai pas besoin de cette hypothèse.

[I have no need of that hypothesis.]

Pierre-Simon Laplace

The solution to the errors-in-variables problem computed through penalizing an arbitrary

unitarily invariant matrix norm of the errors is highly nonlinear. Because of this, many

statistical procedures for constructing confidence intervals and testing hypotheses cannot be

applied. One possible solution to this dilemma is bootstrapping. A nonparametric bootstrap

technique could fail. The proper nonparametric bootstrap procedure is provided and its

correctness proved. On the other hand, a residual bootstrap is not valid and suitable in this

case. The results are illustrated through a simulation study. An application of this approach

to calibration data is presented.

3.1 Introduction

Classical normal asymptotics could bring some serious pitfalls in parameter’s inference in the

errors-in-variables model as it will be pointed further. Therefore, a competitive alternative

method needs to be invented and implemented for the characterization of large sample (lim-

iting) behavior of the estimates. Bootstrapping seems to be a plausible choice. According

to our knowledge, a bootstrap inference for the EIV was not explored, in spite of the fact,

that it remains the only possibility for data analysis in some realistic situations.

3.1.1 Motivation for Bootstrapping EIV Estimate

The previous asymptotical results summarized in Section 1.6 can be considered as “ancient”.

In spite of that, there remain three crucial issues concerning asymptotic normality in (1.29):

27
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the variance of the limiting multivariate normal distribution depends on the unknown pa-

rameter β and on the unknown matrix ∆, and without the assumption on the third and

fourth moments of the rows of [Θ, ε], the covariance matrix has a very complicated form.

A partial solution to the first two mentioned issues could be plugging consistent estimates

instead of the unknown entities. On the contrary, the third issue seems to be a big problem

whatsoever. Therefore, a bootstrap procedure may be helpful, e.g., for a construction of

confidence regions for the unknown parameter β.

The bootstrap approach was introduced by Efron (1979) and extensively investigated

by Bickel and Freedman (1981) for the case of linear regression models.

For the rest of this thesis, we link ‖ ·‖ together with the Frobenius matrix norm, because

it provides the same EIV estimate as any other unitarily invariant matrix norm.

3.2 Nonparametric Bootstrap

A nonparametric bootstrap inherits its name from the fact that neither distributional as-

sumptions nor a regression model are assumed while resampling is being performed. The

nonparametric resampling refers to the simplest scheme of resampling rows of the data and,

therefore, is also often called the case sampling.

The idea of the nonparametric bootstrap lies in the resampling of the row data [Xi,•, Yi]

with replacement in order to obtain new bootstrapped data [X∗,Y∗]. A detailed explanation

and procedure with the particular steps will be presented later on. From the “starred” data

[X∗,Y∗], a quantity of interest is computed, e.g., an estimate of the unknown parameter.

It is hoped and wished that the distribution of the new bootstrapped quantity mimics the

distribution of the original statistics, which we are concerned with.

Since we are interested in the EIV estimate β̂ and
√
n(β̂ − β) has multivariate normal

distribution, it will be necessary to construct the bootstrapped version of β̂, e.g.,

β̂∗ =
(
X∗⊤X∗ − λ∗I

)−1
X∗⊤Y∗,

where λ∗ is the smallest eigenvalue of [X∗,Y∗]⊤[X∗,Y∗]. Afterwards, it is mandatory

to asymptotically compare the distribution of
√
n(β̂ − β) and

√
n(β̂∗ − β̂) in a proper

mathematical way to be sure that the empirical distribution of the bootstrap estimate β̂∗

can be used instead of the unknown or computationally unreachable distribution of β̂.

Unfortunately, it will be demonstrated that there may exist a nondegenerative distribu-

tion between the asymptotic distribution of
√
n(β̂∗ − β̂)

∣∣[X,Y] and
√
n(β̂−β). Therefore,

considering β̂∗ would lead into a different limit approximation than the desired one and we



CHAPTER 3. BOOTSTRAP VERSUS ASYMPTOTICS 29

need to introduce the corrected version of bootstrap estimate:

β̃∗ := β̂ −
(
X∗⊤X∗ − λ∗I

)−1
(
[I, β̂]

[
I, β̂∗

]⊤)−1

[I, β̂]
(
[X∗,Y∗]⊤[X∗,Y∗]− [X,Y]⊤[X,Y]

)
[
β̂

−1

]
. (3.1)

The reason for such a complicated correction is that the linear EIV problem has a highly

nonlinear solution.

Later on, the asymptotical closeness of
√
n(β̂−β) and √n(β̃∗ − β̂) will be clarified and

proved. The bootstrap estimate β̃∗ can be viewed as a bias corrected version of the original

but improper bootstrap estimate β̂∗.

An algorithm for the nonparametric bootstrap is shown in Procedure 3.1 and its validity

will be proved in Theorem 3.12.

Procedure 3.1 Nonparametric bootstrap for the EIV estimate.

Input: Data consisting of n row vectors of observations [Xi,•, Yi].

Output: Empirical bootstrap distribution of β̂, i.e., the empirical distribution where prob-

ability mass 1/B concentrates at each of (1)β̃
∗, . . . , (B)β̃

∗.

1: calculate TLS estimate β̂ ← (X⊤X− λI)−1X⊤Y

2: for b = 1 to B do // repeat in order to obtain empirical distribution of β̂

3: [(b)X
∗, (b)Y

∗]n×(p+1) resampled with replacement from rows [X,Y]

4: (b)λ
∗ is the (p+ 1)-st eigenvalue of [(b)X

∗, (b)Y
∗]⊤[(b)X

∗, (b)Y
∗]

5: re-estimate (b)β̂
∗ ←

(
(b)X

∗⊤
(b)X

∗ − (b)λ
∗I
)−1

(b)X
∗⊤

(b)Y
∗

6: put

(b)β̃
∗ ←β̂ −

(
(b)X

∗⊤
(b)X

∗ − (b)λ
∗I
)−1

(
[I, β̂]

[
I, (b)β̂

∗
]⊤)−1

[I, β̂]

(
[(b)X

∗, (b)Y
∗]⊤[(b)X

∗, (b)Y
∗]− [X,Y]⊤[X,Y]

)
[
β̂

−1

]

7: end for

Remark 3.1. It is silently presupposed that the bootstrapped sample is of the same size as

the original one, i.e., [X,Y] ≡ [X(n),Y(n)] and [X∗,Y∗] ≡ [X∗(n),Y∗(n)]. In general, it

may be considered resampled bootstrapped data [X∗,Y∗] ≡ [X∗(m),Y∗(m)] of sample size

m with replacement from original data [X,Y] ≡ [X(n),Y(n)] of sample size n. Thereby,

an additional condition needs to be postulated on the rate of the sample sizes:

m = O(n), n→∞ & n = O(m), m→∞.
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For theoretical asymptotical results in this thesis, there is no need to distinguish between

the same sample size (of the original and the bootstrapped data) and two different, but

asymptotically equivalent (the same asymptotical order) sample sizes. On the other hand,

there could be a computational improvement considering different samples size of the boot-

strapped data, but we will not focus on this topic here.

3.2.1 Justification of the Nonparametric Bootstrap Asymptotics

We would like to show that
√
n(β̃∗− β̂) and √n(β̂−β) asymptotically coincide. This means

that using the bootstrap distribution is no worse than using the asymptotic normal approx-

imation. However, it does not mean that the bootstrap distribution better approximates

the finite sample distribution of
√
n(β̂ − β). To state this mathematically, Belyaev (1995)

introduced conditional weak convergence almost surely and in probability.

Suppose that {ξn, ξ∗n, ζn, ζ∗n,χn}∞n=1 are sequences of random vectors/matrices, which

elements exist on a probability space (Ω,F ,P). The components of these sequences do not

necessarily have to have the same dimension, e.g., ζn and ζn+1 can have different dimensions

for some n ∈ N. Let us define a conditional probability given ζnP∗
ζn
[·] := EP[I(·)|ζn].

Definition 3.1 (Conditional weak convergence almost surely and in probability). Let

{ξn, ξ∗n, ζn}∞n=1 be sequences of random vectors/matrices. If for every real-valued bounded

continuous function f holdsE [f(ξ∗n)]−E [f(ξn)] −−−−→
n→∞

0,

then ξ∗n and ξn are said to be approaching each other in distribution. In short we write

ξ∗n
D←−−→

n→∞
ξn.

If for every real-valued bounded continuous function f holdsE [f(ξ∗n)|ζn]−E [f(ξn)]
[P]-a.s.−−−−−→
n→∞

0,

then ξ∗n conditioned on ζn and ξn are said to be approaching each other in distribution

[P]-almost surely along ζn. In short we write

ξ∗n
∣∣ζn

D([P]-a.s.)←−−−−−−→
n→∞

ξn.
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If for every real-valued bounded continuous function f holdsE [f(ξ∗n)|ζn]−E [f(ξn)]
P−−−−→

n→∞
0,

then ξ∗n conditioned on ζn and ξn are said to be approaching each other in distribution in

probability P along ζn. In short we write

ξ∗n
∣∣ζn

D(P)←−−→
n→∞

ξn.

In the same manner as above, we may define the distributional convergence on the

“conditional” (resampled) level to a random variable ξ0 (“constant” law).

Definition 3.2 (Conditional weak convergence almost surely and in probability to a con-

stant law). Let {ξ∗n, ζn}∞n=1 be sequences of random vectors/matrices and ξ0 be a random

vector/matrix. If for every real-valued bounded continuous function f holdsE [f(ξ∗n)|ζn]
[P]-a.s.−−−−−→
n→∞

E [f(ξ0)] ,

then ξ∗n conditioned on ζn is said to converge to ξ0 in distribution [P]-almost surely along

ζn. In short we write

ξ∗n
∣∣ζn

D([P]-a.s.)−−−−−−−→
n→∞

ξ0.

If for every real-valued bounded continuous function f holdsE [f(ξ∗n)|ζn]
P−−−−→

n→∞
E [f(ξ0)] ,

then ξ∗n conditioned on ζn is said to converge to ξ0 in distribution in probability P along

ζn. In short we write

ξ∗n
∣∣ζn

D(P)−−−−→
n→∞

ξ0.

Approaching in distribution to each other is often called weakly approaching to each

other (almost surely or in probability along some sequence).

The appropriateness of Definition 3.1 is ensured by the portmanteau lemma (see, e.g.,

Billingsley (1999)), which provides equivalent characterizations of the convergence in distri-

bution.

In order to properly and clearly define and, consequently, describe convergence in prob-

ability P∗, i.e., convergences on the conditional (“starred”) level, we define two types of

convergence in probability P∗: [P]-almost surely and in probability P. For the details see,

e.g., Belyaev and Sjöstedt-de Luna (2000).



32 3.2 NONPARAMETRIC BOOTSTRAP

Definition 3.3 (Convergence in conditional probability). Let {ξn, ξ∗n, ζn}∞n=1 be sequences

of random vectors/matrices. To say that ξ∗n − ξn converges in probability P∗
ζn

to zero

[P]-almost surely as n tends to infinity, i.e.,

ξ∗n − ξn
P∗

ζn
([P]-a.s.)

−−−−−−−−−→
n→∞

0,

means

∀ǫ > 0 : P [ lim
n→∞

P∗
ζn
[‖ξ∗n − ξn‖ ≥ ǫ] = 0

]
= 1. (3.2)

To say that ξ∗n − ξn converges in probability P∗
ζn

to zero in probability P as n tends to

infinity, i.e.,

ξ∗n − ξn
P∗

ζn
(P)

−−−−−→
n→∞

0,

means

∀ǫ > 0, ∀τ > 0 : lim
n→∞

P [P∗
ζn
[‖ξ∗n − ξn‖ ≥ ǫ] ≥ τ

]
= 0. (3.3)

Alternatively, (3.2) and (3.3) from Definition 3.3 can be read as

∀ǫ > 0 :

{P∗
ζn
[‖ξ∗n − ξn‖ ≥ ǫ]

[P]-a.s.−−−−−→
n→∞

0

}

and

∀ǫ > 0 :
{P∗

ζn
[‖ξ∗n − ξn‖ ≥ ǫ]

P−−−−→
n→∞

0
}
,

respectively.

In the same manner as above, we may define the convergence in probability P∗ on the

resampled level to a random variable ξ0 (does not depend on n).

Definition 3.4 (Convergence in conditional probability to a “constant” variable). Let

{ξ∗n, ζn}∞n=1 be sequences of random vectors/matrices and ξ0 is a random vector/matrix.

To say that ξ∗n converges to ξ0 in probability P∗
ζn

[P]-almost surely as n tends to infinity,

i.e.,

ξ∗n
P∗

ζn
([P]-a.s.)

−−−−−−−−−→
n→∞

ξ0,

means that ξ∗n − ξ0 converges in probability P∗
ζn

to zero [P]-almost surely as n tends to

infinity. To say that ξ∗n converges to ξ0 in probability P∗
ζn

in probability P as n tends to
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infinity, i.e.,

ξ∗n
P∗

ζn
(P)−−−−−→

n→∞
ξ0,

means that ξ∗n − ξ0 converges in probability P∗
ζn

to zero in probability P as n tends to

infinity.

Our error assumption (see Section 1.4) was that the rows of errors are assumed to be

iid (the simplest case). Sometimes, it is assumed that the rows of data [X,Y] are iid. Con-

sidering independent and identically distributed observations seems to be more restrictive

than proposing this assumption only on errors. The reason is that we are in the parametric

regression setup and we do not want to restrict the covariates too much. Moreover, our main

interest lies in the mean structure of the parametric regression model and iid data somehow

contradict the existence of some mean structure. Indeed, identically distributed responses

imply constant moments of the responses for each observation, which totally suppresses

the existence of a mean structure in the regression model. Therefore, iid observations can

be considered as a hypothetical assumption without realistic applicability in the situation,

where the mean structure consisting of covariates Zi,• is assumed.

Since the iid assumption for input data is not admissible, then the classical machinery

of Mallows metric (see Bickel and Freedman (1981)) or Wasserstein metric (see Dobrushin

(1970)) for proving bootstrap’s validity cannot be straightforwardly applied. A different

statistical apparatus has to be derived and applied in order to justify the appropriateness

of the proper nonparametric bootstrap procedure.

Relations between weakly approaching to each other and weakly convergent sequences

of probability laws will become handy later on. The Prokhorov’s theorem can be extended

into our setup as shown below.

Lemma 3.1. Assume that {ξn}∞n=1 is tight. Then the following statements are equivalent:

(i)

ξ∗n
∣∣ζn

D(P)←−−→
n→∞

ξn.

(ii) For each subsequence {ni}∞i=1 such that

ξni

D−−−→
i→∞

ξ0

for some random vector/matrix ξ0,

ξ∗ni

∣∣ζni

D(P)−−−→
i→∞

ξ0

too.
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(iii) For each subsequence {ni}∞i=1 there exists a subsequence {nik}∞k=1 such that ξ∗nik
con-

ditional on ζnik
converges in distribution in probability P to the distributional limit of

ξnik
as k →∞.

Proof. A simple generalization of Belyaev and Sjöstedt-de Luna (2000, Lemma 1), where

conditional law of ξ∗n
∣∣ζn instead of ξ∗n is considered in the proof as proposed by Zagdaǹski

(2005, Proof of Theorem 4.1).

Important results concerning previously defined types of convergences summarized in the

forthcoming Theorem 3.2 will play a crucial role in the following proofs. We need to extend

the Slutsky’s theorem (see Appendix A.2, Theorem A.2) for our “bootstrap world”, i.e., to

have a stability property for conditional distributions.

Theorem 3.2 (Slutsky’s extended theorem). Suppose that {ξ∗n, ζ∗n,χn}∞n=1 are sequences

of random vectors/matrices. Then,

ξ∗n
∣∣χn

D([P]-a.s.)−−−−−−−→
n→∞

ξ0 (3.4)

and

ζ∗n
P∗

χn
([P]-a.s.)

−−−−−−−−−→
n→∞

ζ0, (3.5)

where ξ0 is a random matrix/vector and ζ0 is a non-random element, implies (for suitable

vector/matrix dimensions):

(i) [ξ∗n, ζ
∗
n]
∣∣χn

D([P]-a.s.)−−−−−−−→
n→∞

[ξ0, ζ0];

(ii) [ζ∗n, ξ
∗
n]
∣∣χn

D([P]-a.s.)−−−−−−−→
n→∞

[ζ0, ξ0];

(iii) ξ∗n + ζ∗n
∣∣χn

D([P]-a.s.)−−−−−−−→
n→∞

ξ0 + ζ0;

(iv) ξ∗nζ
∗
n

∣∣χn
D([P]-a.s.)−−−−−−−→

n→∞
ξ0ζ0;

(v) ζ∗nξ
∗
n

∣∣χn
D([P]-a.s.)−−−−−−−→

n→∞
ζ0ξ0;

(vi) (ζ∗n)
−1ξ∗n

∣∣χn
D([P]-a.s.)−−−−−−−→

n→∞
ζ−1
0 ξ0, provided that ζ∗n and ζ0 are invertible;

(vii) ξ∗n(ζ
∗
n)

−1
∣∣χn

D([P]-a.s.)−−−−−−−→
n→∞

ξ0ζ
−1
0 , provided that ζ∗n and ζ0 are invertible.

Moreover,

ξ∗n
∣∣χn

D(P)−−−−→
n→∞

ξ0 (3.6)
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and

ζ∗n
P∗

χn
(P)−−−−−→

n→∞
ζ0, (3.7)

where ξ0 is a random matrix/vector and ζ0 is a non-random element, implies (for suitable

vector/matrix dimensions):

(viii) [ξ∗n, ζ
∗
n]
∣∣χn

D(P)−−−−→
n→∞

[ξ0, ζ0];

(ix) [ζ∗n, ξ
∗
n]
∣∣χn

D(P)−−−−→
n→∞

[ζ0, ξ0];

(x) ξ∗n + ζ∗n
∣∣χn

D(P)−−−−→
n→∞

ξ0 + ζ0;

(xi) ξ∗nζ
∗
n

∣∣χn
D(P)−−−−→
n→∞

ξ0ζ0;

(xii) ζ∗nξ
∗
n

∣∣χn
D(P)−−−−→
n→∞

ζ0ξ0;

(xiii) (ζ∗n)
−1ξ∗n

∣∣χn
D(P)−−−−→
n→∞

ζ−1
0 ξ0, provided that ζ∗n and ζ0 are invertible;

(xiv) ξ∗n(ζ
∗
n)

−1
∣∣χn

D(P)−−−−→
n→∞

ξ0ζ
−1
0 , provided that ζ∗n and ζ0 are invertible.

Proof. First, we show that

[ξ∗n, ζ0]
∣∣χn

D([P]-a.s.)←−−−−−−→
n→∞

[ξ0, ζ0], (3.8)

i.e., for arbitrary bounded continuous function f holdsEP∗

χn
f([ξ∗n, ζ0])−EPf([ξ0, ζ0]) [P]-a.s.−−−−−→

n→∞
0. (3.9)

Let f([·, ·]) be such arbitrary bounded continuous function. Now consider the function of

a single argument g(·) := f([·, ζ0]). This will obviously be a bounded and continuous non-

random function as well. By assumption (3.4), we will have thatEP∗

χn
g(ξ∗n)−EPg(ξn) [P]-a.s.−−−−−→

n→∞
0.

However, the latter expression is equivalent to (3.9). Therefore, we now know that [ξ∗n, ζ0]

conditioned on χn and [ξ0, ζ0] approach each other in distribution [P]-almost surely along

χn.

Secondly, consider ‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ = ‖ζ∗n − ζ0‖. This expression converges in proba-

bility P∗
χn

to zero [P]-almost surely due to assumption (3.5). Thus we have demonstrated

two facts: (3.8) and

[ξ∗n, ζ
∗
n]− [ξ∗n, ζ0]

P∗

χn
([P]-a.s.)−−−−−−−−−→
n→∞

0. (3.10)
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Since each bounded continuous function is bounded Lipschitz and vice versa, consider

any bounded Lipschitz function h(·, ·):

∃K,M > 0, ∀x1,x2,y1,y2 :

h([x1,x2]) ≤ M & |h([x1,x2])− h([y1,y2])| ≤ K‖[x1,x2]− [y1,y2]‖.

Take some arbitrary ǫ > 0 and majorize

|EP∗

χn
h([ξ∗n, ζ

∗
n])−EP∗

χn
h([ξ∗n, ζ0])| ≤ EP∗

χn
|h([ξ∗n, ζ∗n])− h([ξ∗n, ζ0])|

= EP∗

χn
[|h([ξ∗n, ζ∗n])− h([ξ∗n, ζ0])|I{‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ < ǫ}]

+EP∗

χn
[|h([ξ∗n, ζ∗n])− h([ξ∗n, ζ0])|I{‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ǫ}]

≤ EP∗

χn
[K‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖I{‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ < ǫ}]

+EP∗

χn
[2MI{‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ǫ}]

≤ KǫP∗
χn

[‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ < ǫ] + 2MP∗
χn

[‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ǫ]
≤ Kǫ+ 2MP∗

χn
[‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ǫ] [P]-a.s.

Hence,

|EP∗

χn
h([ξ∗n, ζ

∗
n])−EPh([ξ0, ζ0])|

≤ |EP∗

χn
h([ξ∗n, ζ

∗
n])−EP∗

χn
h([ξ∗n, ζ0])|+ |EP∗

χn
h([ξ∗n, ζ0])−EPh([ξ0, ζ0])|

≤ Kǫ+ 2MP∗
χn

[‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ǫ]
+ |EP∗

χn
h([ξ∗n, ζ0])−EPh([ξ0, ζ0])| [P]-a.s. (3.11)

We take the limit in this expression as n → ∞. Since (3.11) holds for arbitrary ǫ > 0, the

second term will go to zero [P]-almost surely due to (3.10) and Definition 3.3. The third

term (does not depend on ǫ) will also converge to zero [P]-almost surely by (3.9). Thus,

lim
n→∞

|EP∗

χn
h([ξ∗n, ζ

∗
n])−EPh([ξ0, ζ0])| ≤ Kǫ [P]-a.s.

Since ǫ was arbitrary, we conclude that the limit must in fact be equal to zero [P]-almost

surely. Therefore, (i) is proved.

In order to prove result (viii), consider again ‖[ξ∗n, ζ∗n] − [ξ∗n, ζ0]‖ = ‖ζ∗n − ζ0‖. This

expression converges in probability P∗
χn

in probability P to zero due to assumption (3.7).

Thus

[ξ∗n, ζ
∗
n]− [ξ∗n, ζ0]

P∗

χn
(P)−−−−−→

n→∞
0, (3.12)



CHAPTER 3. BOOTSTRAP VERSUS ASYMPTOTICS 37

which can be rewritten according to Definition 3.3 as

∀ǫ > 0 :
{P∗

χn
[‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ǫ]

P−−−−→
n→∞

0
}

Let us fix ǫ > 0. Similarly as in the proof of part (i), it can be demonstrated thatEP∗

χn
f([ξ∗n, ζ0])−EPf([ξ0, ζ0]) P−−−−→

n→∞
0, (3.13)

when convergence [P]-almost surely is just replaced by convergence in probabilityP. Indeed,
using inequality (3.11), we get for arbitrary τ > 0 (and above chosen fixed and sufficiently

small ǫ > 0)P [|EP∗

χn
h([ξ∗n, ζ

∗
n])−EPh([ξ0, ζ0])| ≥ τ]

≤ P [Kǫ ≥ τ ] +P [2MP∗
χn

[‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ǫ] ≥ τ
]

+P [|EP∗

χn
h([ξ∗n, ζ0])−EPh([ξ0, ζ0])| ≥ τ] .

If we take the limit in previous inequality as n goes to infinity, the first term is zero and

the second term will go to zero due to (3.12) and Definition 3.3. The third term will also

converge to zero by (3.13). Thus

lim
n→∞

P [|EP∗

χn
h([ξ∗n, ζ

∗
n])−EPh([ξ0, ζ0])| ≥ τ] = 0.

Since τ was arbitrary, (viii) is proved.

Assertions (ii)–(vii) are just corollaries of (i), when continuous mapping theorem (see,

e.g., van der Vaart (1998, Theorem 2.3)) is applied. Similarly, assertions (ix)–(xiv) are

consequences of (viii).

From now on, we mean by a bootstrap version of ξ ≡ [ξ1, . . . , ξn]
⊤ its (randomly) re-

sampled sequence with replacement—denoted by ξ∗ ≡ [ξ∗1 , . . . , ξ
∗
n]

⊤—with the same length,

where for each i ∈ {1, . . . , n} holds P∗
ξ[ξ

∗
i = ξj ] = 1/n, j = 1, . . . , n. So, ξ∗i has a discrete

uniform distribution on {ξ1, . . . , ξn} for every i = 1, . . . , n.

A base stone for the consistency of the nonparametric bootstrap in the EIV model lies

in the bootstrap weak law of large numbers (BWLLN). It will be postulated for independent

variables for this time.

Theorem 3.3 (Bootstrap weak law of large numbers). Let {ξn}∞n=1 be a sequence of inde-

pendent random variables. If

sup
n∈NEPξ2n <∞, (3.14)
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then

n−1
n∑

i=1

ξ∗i − n−1
n∑

i=1

ξi
P∗

ξ(P)−−−−→
n→∞

0, (3.15)

where ξ∗ ≡ [ξ∗1 , . . . , ξ
∗
n]

⊤ is the bootstrapped version of ξ ≡ [ξ1, . . . , ξn]
⊤.

Proof. By the strong law of large numbers for independent random variables with assump-

tion (3.14), we know that

n−1
n∑

i=1

(ξi −EPξi) [P]-a.s.−−−−−→
n→∞

0.

The Markov’s inequality with (3.14) implies uniform equiboundedness in probability P
of ξ2n. The conditional variance of the bootstrapped sample mean goes to zero as n increases

to infinity, because

VarP∗

ξ

(
n−1

n∑

i=1

ξ∗i

)
= n−1VarP∗

ξ
ξ∗1 = n−1

[EP∗

ξ
ξ∗21 − (EP∗

ξ
ξ∗1)

2
]

= n−1




n∑

k=1

n−1ξ2k −
(

n∑

k=1

n−1ξk

)2

 = OP(n−1), n → ∞.

Hence, the weak law of large numbers in the “starred” world (for resampled variables)

provides

n−1
n∑

i=1

(
ξ∗i −EP∗

ξ
ξi

)
= n−1

n∑

i=1

ξ∗i − n−1
n∑

i=1

ξi
P∗

ξ(P)−−−−→
n→∞

0,

because ξ∗i are conditionally iid.

Convergence of matrices in Frobenius norm implies a type of spectral convergence, which

can be mathematically formalized in the consequent lemma.

Lemma 3.4. If A and B are square symmetric matrices, then

|λmin(A)− λmin(B)| ≤ ‖A−B‖.

Proof. See Gallo (1982b, Lemma 2.3).

Remember that still ‖ · ‖ ≡ ‖ · ‖F .
Another technical, but very useful lemma is going to be derived. This lemma is a corollary

of the Jensen’s inequality and will help us to set the upper bounds for the higher moments

of random variables’ sums.
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Lemma 3.5. For s ≥ 1, m ∈ N, and λi ≥ 0, i ∈ {1, . . . ,m} holds
(

m∑

i=1

λi

)s

≤ ms−1
m∑

i=1

λsi .

Proof. Since u 7→ us is a convex function in u ≥ 0 for every s ≥ 1, then Jensen’s inequality

implies

(
m∑

i=1

1

m
λi

)s

≤ 1

m

m∑

i=1

λsi .

Suppose that all the errors {Θn,1}∞n=1, . . . , {Θn,p}∞n=1, and {εn}∞n=1 exist on a probability

space (Ω,F ,P). Let the original rows of the error matrix [Θ, ε] be independent random

vectors with a common probability law in Rp+1 having the fourth power of Euclidean norm

integrable. Moreover, the bootstrap (empirical) probability is the conditional probabilityP∗[·] ≡ P∗
[X,Y][·] = EP [I{·}|[X,Y]] .

To avoid further ambiguity we make a convention: when a probability for convergence

almost surely is not specified, it is meant that convergence [P]-almost surely is considered.

Similarly, if convergence in probability is not specified, we assume convergence in probabilityP.
The resampled vectors [X∗

i,•, Y
∗
i ], i = 1, . . . , n are conditionally independent, given the

original data [X,Y], because of the random resampling. Moreover, bootstrapped errors

[Θ∗
i,•, ǫ

∗
i ], i = 1, . . . , n are also conditionally independent, given the original data [X,Y],

with common probability distribution. Recall that β̂ minimizes
∑n

i=1 ‖[Θ•,i, εi]‖22. Loosely
speaking, β̂ is to P∗ as β to the “true” unconditional probability P.

Justification of the nonparametric bootstrap procedure for the nuisance homoscedasticity

parameter σ2 will be provided at first. This theorem is pivotal, but not for the fact that

it characterizes distributional closeness of the bootstrapped variance estimate σ̂2∗ and the

original variance estimate σ̂2 asymptotically. The essential importance of the following

theorem lies in providing a distributional property of a spectral element of the resampled

data such as the squared smallest singular value of matrix [X∗,Y∗], which is also the smallest

eigenvalue of [X∗,Y∗]⊤[X∗,Y∗] due to the SVD of [X∗,Y∗].

Theorem 3.6. Let assume the EIV model and the assumption (D) be satisfied. Let

σ̂2∗ :=
λ∗

n
.
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If

sup
n∈NZ2

n,j <∞, (3.16)

sup
n∈NE|Θn,j|4 <∞, and sup

n∈NE|εn|4 <∞ (3.17)

for each j ∈ {1, . . . , p}, then

σ̂2∗ P∗(P)−−−−→
n→∞

σ2.

Proof. Let us consider

1

n
[X,Y]⊤[X,Y] =

1

n

n∑

i=1

[Xi,•, Yi]
⊤[Xi,•, Yi] =

1

n

n∑

i=1

[
Ξi ζ⊤i

ζi ηi

]
,

where

Ξi := Z⊤
i,•Zi,• + Z⊤

i,•Θi,• +Θ⊤
i,•Zi,• +Θ⊤

i,•Θi,•,

ζi := Z⊤
i,•Zi,•β + Z⊤

i,•εi +Θ⊤
i,•Zi,•β +Θ⊤

i,•εi,

and

ηi := (Zi,•β)
2 + 2εiZi,•β + ε2i .

Assumptions (3.16) and (3.17) ensure that all the elements of the matrix [X,Y]⊤[X,Y]

satisfy requirements of Theorem 3.3. That is indeed true, because Lemma 3.5 provides

sup
n∈NEP|Xn,j |4 = sup

n∈NEP|Zn,j +Θn,j |4 ≤ 23 sup
n∈NEP (|Zn,j|4 + |Θn,j|4

)

≤ 23
(
sup
n∈N |Zn,j|2

)2

+ 23 sup
n∈NEP|Θn,j|4 <∞, j ∈ {1, . . . , p}

and

sup
n∈NEP|Yn|2 = sup

n∈NEP|Zn,•β + εn|2 ≤ 23 sup
n∈NEP (|Zn,•β|4 + |εn|4

)

≤ 23p4 max
j∈{1,...,p}

{
β4
j

(
sup
n∈N |Zn,j |2

)2
}

+ 23 sup
n∈NEP|εn|4 < ∞.

Thereby, the elementwise convergence in probability P∗ along [X,Y] in probability P holds
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due to the bootstrap WLLN (Theorem 3.3):

1

n
[X∗,Y∗]⊤[X∗,Y∗]− 1

n
[X,Y]⊤[X,Y]

P∗(P)−−−−→
n→∞

0.

Convergence of the matrix elements implies convergence of the matrices in Frobenius norm,

i.e.,

1

n
‖[X∗,Y∗]⊤[X∗,Y∗]− [X,Y]⊤[X,Y]‖ P∗(P)−−−−→

n→∞
0.

By Lemma 3.4,

1

n
|λmin([X

∗,Y∗]⊤[X∗,Y∗])− λmin([X,Y]⊤[X,Y])| P∗(P)−−−−→
n→∞

0,

where λmin([X,Y]⊤[X,Y]) ≡ λ and λmin([X
∗,Y∗]⊤[X∗,Y∗]) ≡ λ∗. With respect to (1.24),

it holds that

λ

n

P−−−−→
n→∞

σ2,

which completes the proof.

Remark 3.2. Since convergence in probability implies convergence in distribution (even in

the conditional world), it is possible to say that

σ̂∗2
∣∣[X,Y]

D(P)←−−→
n→∞

σ̂2.

Theorem 3.6 also says that along all sample sequences in probability P, given [X,Y], the

conditional law of σ̂∗2 converges weakly to the point mass at σ2 as n tends to infinity.

Assumption (D) can be seen as a convergence of a specific sum in the Cauchy sense, i.e.,

a limit of the averaged partial sums (Cesaro limit). A forthcoming technical lemma allows

us to derive various implications of design assumption (D).

Lemma 3.7. If

lim
n→∞

n−2+δ
n∑

i=1

ai

exists and is finite for some δ > 0, then

∞∑

n=1

an
n2

<∞.
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Proof. Due to the Abel’s partial summation (Itō, 1993, p. 1412), we have

n∑

i=1

ai
i2

=

n−1∑

i=1




i−1∑

j=1

aj



(
1

i2
− 1

(i+ 1)2

)
+

1

n2

n∑

i=1

ai, ∀n > 1. (3.18)

If n tends to infinity, the last term of (3.18) tends to zero due to the lemma’s assumption.

Moreover, the infinite sum formed from the first summand on the right hand side of (3.18)

is convergent if and only if

∞∑

i=1

i−3
i−1∑

j=1

aj =
∞∑

i=1

i−1−δ


i−2+δ

i−1∑

j=1

aj




is convergent, but the right hand side of previous equation is convergent according to the

Abel’s convergence criterion (i−2+δ
∑i−1

j=1 aj −−−→j→∞
0). Hence,

∑∞
n=1

an

n2 converges as well.

Various averaged linear combinations of the errors from the EIV model converge [P]-
almost surely, which will become important later on.

Lemma 3.8. Let assume the EIV model and the assumption (D) be satisfied. Then

(i) n−1Θ⊤Θ→ σ2I [P]-a.s., n→∞;

(ii) n−1ε⊤ε→ σ2 [P]-a.s., n→∞;

(iii) n−1Θ⊤ε→ 0 [P]-a.s., n→∞;

(iv) n−1Z⊤ε→ 0 [P]-a.s., n→∞;

(v) n−1Z⊤Θ→ 0 [P]-a.s., n→∞.

Proof. According to the SLLN for identically distributed variables with keeping in mind

that the covariance matrix of the rows of [Θ, ε] is σ2I, we have

n−1Θ⊤Θ = n−1
n∑

i=1

Θ⊤
i,•Θi,•

[P]-a.s.−−−−−→
n→∞

EΘ⊤
1,•Θ1,• = σ2I (3.19)

and

n−1ε⊤ε = n−1
n∑

i=1

ε2i
[P]-a.s.−−−−−→
n→∞

σ2. (3.20)

Similarly,

n−1Θ⊤ε = n−1
n∑

i=1

Θ⊤
i,•εi

[P]-a.s.−−−−−→
n→∞

EΘ⊤
1,•ε1 = 0. (3.21)
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Secondly, applying the SLLN for non-identically distributed variables (but with the same

zero mean), one gets

n−1Z⊤ε = n−1
n∑

i=1

Z⊤
i,•εi

[P]-a.s.−−−−−→
n→∞

EZ⊤
1,•ε1 = 0, (3.22)

because the following sum is convergent by applying (D) and Lemma 3.7

∞∑

n=1

Var {Znjεn}
n2

= σ2
∞∑

n=1

Z2
nj

n2
<∞, j = 1, . . . , p.

Analogously, using the SLLN for non-identically distributed variables,

n−1Z⊤Θ = n−1
n∑

i=1

Z⊤
i,•Θi,•

[P]-a.s.−−−−−→
n→∞

EZ⊤
1,•Θ1,• = 0. (3.23)

A pylon for the proof of central limit theorem for the bootstrapped sample is created by

an extension of the well-known Berry-Esseen theorem.

Theorem 3.9 (Berry-Esseen-Katz theorem). Let g be a non-negative, even, non-decreasing

function on [0,∞) satisfying:

(i) limx→∞ g(x) =∞,

(ii) x/g(x) is defined for all x ∈ R and non-decreasing on [0,∞).

Assume that {ξn}∞n=1 are iid random variables such that Eξ1 = 0 and Var ξ1 = ς2 > 0. IfEξ21g(ξ1) <∞,
then there exists a constant C > 0, such that for all n ∈ N holds

sup
x∈R ∣∣∣∣∣P[ 1√

nς2

n∑

i=1

ξi ≤ x
]
−
∫ x

−∞

1√
2π

exp

{
− t

2

2

}
dt

∣∣∣∣∣ ≤
CEξ21g (ξ1/ς)
ς2g(
√
n)

.

Proof. See Katz (1963).

If it is known that a statistic has approximately normal distribution and we are able to

construct a bootstrap version of this statistic, one may be interested in the asymptotical

comparison of the bootstrap distribution with the original one. A handy tool for perform-

ing such a comparison—showing approximate closeness—can be a bootstrap central limit

theorem. Besides that, it can assure of the bootstrap appropriateness.
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Theorem 3.10 (Bootstrap central limit theorem for independent variables). Let {ξn}∞n=1

be a sequence of zero mean independent random variables satisfying

sup
n∈NEPξ4n <∞. (3.24)

Suppose that ξ∗ ≡ [ξ∗1 , . . . , ξ
∗
n]

⊤ is the bootstrapped version of ξ ≡ [ξ1, . . . , ξn]
⊤ and denote

ξ̄n := n−1
n∑

i=1

ξi, ξ̄∗n := n−1
n∑

i=1

ξ∗i , and ς2n :=

n∑

i=1

VarPξi.
If

lim inf
n→∞

ς2n
n

= ς2 > 0, (3.25)

then

sup
x∈R ∣∣∣∣∣P∗

ξ

[
n√
ς2n

(
ξ̄∗n − ξ̄n

)
≤ x

]
−P[ n√

ς2n
ξ̄n ≤ x

]∣∣∣∣∣
P−−−−→

n→∞
0. (3.26)

Proof. The Lyapunov condition for sequence of random variables {ξn}∞n=1 is satisfied due

to (3.24) and (3.25), i.e., for fixed ω > 0:

1

ς2+ω
n

n∑

i=1

E|ξi|2+ω ≤ 1

ς2+ω
n

n∑

i=1

sup
ι∈NE|ξι|2+ω =

n

ς2+ω
n

sup
ι∈NE|ξι|2+ω → 0, n→∞.

Thereupon, the CLT for {ξn}∞n=1 holds and

sup
x∈R ∣∣∣∣∣P[ n√

ς2n
ξ̄n ≤ x

]
−
∫ x

−∞

1√
2π

exp

{
− t

2

2

}
dt

∣∣∣∣∣ −−−−→n→∞
0.

Henceforth, to prove this theorem, it suffices to show the following three statements:

(i)

sup
x∈R ∣∣∣∣∣∣P∗

ξ




√
n√

VarP∗

ξ
ξ∗1

(
ξ̄∗n −EP∗

ξ
ξ̄∗n

)
≤ x


 −

∫ x

−∞

1√
2π

exp

{
− t

2

2

}
dt

∣∣∣∣∣∣
P−−−−→

n→∞
0;

(ii)

VarP∗

ξ
ξ∗1 − n−1ς2n

[P]-a.s.−−−−−→
n→∞

0;
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(iii) EP∗

ξ
ξ̄∗n = ξ̄n [P]-a.s.

Proving (iii) is trivial, because the bootstrapped variables {ξ∗n}∞n=1 are conditionally iid

and, therefore,EP∗

ξ
ξ̄∗n = EP∗

ξ
ξ∗1 = n−1

n∑

i=1

ξi = ξ̄n [P]-a.s.
Let us calculate the conditional variance of the bootstrapped ξ∗1 :

VarP∗

ξ
ξ∗1 = EP∗

ξ
ξ∗21 − (EP∗

ξ
ξ∗1)

2 = n−1
n∑

i=1

ξ2i −
(
n−1

n∑

i=1

ξi

)2

[P]-a.s.
The strong law of large numbers for independent non-identically distributed random vari-

ables with (3.24) provide

ξ̄n − n−1
n∑

i=i

EPξi = ξ̄n
[P]-a.s.−−−−−→
n→∞

0

and

0
[P]-a.s.←−−−−−
n→∞

n−1
n∑

i=1

ξ2i −
(
n−1

n∑

i=1

ξi

)2

− n−1
n∑

i=1

EPξ2i = VarP∗

ξ
ξ∗1 − n−1ς2n.

The last result of the SLLN is true, because (3.24) implies

∞∑

n=1

VarPξ2n
n2

≤
∞∑

n=1

EPξ4n
n2

≤
[
sup
ι∈NEPξ4ι ] ∞∑

n=1

n−2 <∞.

Thus (ii) is proved.

Berry-Esseen-Katz Theorem 3.9 with g(x) = |x|ǫ, ǫ > 0 for the bootstrapped sequence

of iid (with respect to P∗) random variables {ξ∗n}∞n=1 results into

sup
x∈R ∣∣∣∣∣∣P∗

ξ




√
n√

VarP∗

ξ
ξ∗1

(
ξ̄∗n −EP∗

ξ
ξ̄∗n

)
≤ x


−

∫ x

−∞

1√
2π

exp

{
− t

2

2

}
dt

∣∣∣∣∣∣

≤ Cn−ǫ/2EP∗

ξ

∣∣∣∣∣∣
ξ∗1 −EP∗

ξ
ξ∗1√

VarP∗

ξ
ξ∗1

∣∣∣∣∣∣

2+ǫ

[P]-a.s., (3.27)

where C > 0 is an absolute constant.
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The Minkowski inequality and Lemma 3.5 provide an upper bound for the nominator

from the right-hand side of (3.27):EP∗

ξ
|ξ∗1 −EP∗

ξ
ξ∗1 |2+ǫ = n−1

n∑

i=1

∣∣∣∣∣∣
ξi − n−1

n∑

j=1

ξj

∣∣∣∣∣∣

2+ǫ

≤ n−1





(
n∑

i=1

|ξi|2+ǫ

)1/(2+ǫ)

+ n−(1+ǫ)/(2+ǫ)

∣∣∣∣∣∣

n∑

j=1

ξj

∣∣∣∣∣∣





2+ǫ

≤ 21+ǫn−1
n∑

i=1

|ξi|2+ǫ + 21+ǫ

∣∣∣∣∣n
−1

n∑

i=1

ξi

∣∣∣∣∣

2+ǫ

[P]-a.s.
The right-hand side of the previously derived upper bound is uniformly bounded in proba-

bility P, because of the Markov’s inequality and (3.24). In very deed, for fixed τ > 0P[n−1
n∑

i=1

|ξi|2+ǫ ≥ τ
]
≤ τ−1n−1

n∑

i=1

EP|ξi|2+ǫ ≤ τ−1 sup
ι∈NEP|ξι|2+ǫ <∞, ∀n ∈ N

and P[∣∣∣∣∣n−1
n∑

i=1

ξi

∣∣∣∣∣ ≥ τ
]
≤ τ−1n−1EP ∣∣∣∣∣ n∑

i=1

ξi

∣∣∣∣∣ ≤ τ
−1 sup

ι∈NEP|ξι| <∞, ∀n ∈ N.
Since EP∗

ξ
|ξ∗1−EP∗ξ∗1 |2+ǫ is bounded in probability P uniformly over n and the denominator

of the right-hand side of (3.27) is uniformly bounded away from zero due to (3.25), then the

left-hand side of (3.27) converges in probability P to zero as n tends to infinity. So, (i) is

proved as well.

Assumption (3.24) may seem a little bit restrictive. It may be weakened to

∞∑

n=1

EPξ4n
n2

<∞ and sup
n∈NEP|ξn|2+ω <∞, for some ω > 0;

as found out while going through the proof. On the other hand, the previous weaker premises

are rather complicated to verify for transformed errors in the proof of bootstrap consistency,

which will be noticed later on. The EIV model will force us to suppose (3.24) anyway,

despite its limitation.

Belyaev (1995) strengthened assumption (3.24) and replaced by

sup
n∈NEP|√nξn|4+ω <∞, (3.28)
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for some ω > 0. Afterwards, bootstrap CLT 3.10 provides a stronger result:

sup
x∈R ∣∣∣∣∣P∗

ξ

[
n√
ς2n

(
ξ̄∗n − ξ̄n

)
≤ x

]
−P[ n√

ς2n
ξ̄n ≤ x

]∣∣∣∣∣
[P]-a.s.−−−−−→
n→∞

0, (3.29)

whereas the convergence in distribution in probability is replaced by the convergence in

distribution almost surely. In spite of this, assumption (3.28) can be considered as too much

restrictive.

Our situation would become much easier, when iid variables are assumed. Let us have

a look at the proof of Theorem 3.10. Additionally assume that EP|ξ1|2+ω < ∞ for some

ω > 0. Hence, the right-hand side of (3.27) converge [P]-almost surely to zero. Moreover,

the finiteness of (2 + ω)-th moment is enough to show (ii) as well. Therefore, (3.29) holds

in this case.

A utilization of the Cramér-Wold device helps us to derive a bootstrap version of the

CLT for random vectors.

Theorem 3.11 (Bootstrap multivariate central limit theorem for independent vectors). Let

{ξn}∞n=1 be a sequence of zero mean independent q-dimensional random vectors satisfying

sup
n∈NEP|ξj,n|4 <∞, j ∈ {1, . . . , q}, (3.30)

where ξn ≡ [ξ1,n, . . . , ξq,n]
⊤ ∈ Rq, n ∈ N. Assume that Ξ∗ ≡ [ξ∗1 , . . . , ξ

∗
n]

⊤ is the boot-

strapped version of Ξ ≡ [ξ1, . . . , ξn]
⊤. Denote

ξ̄n := n−1
n∑

i=1

ξi, ξ̄∗n := n−1
n∑

i=1

ξ∗i , and Γn :=

n∑

i=1

VarPξi.
If

lim
n→∞

1

n
Γn = Γ > 0, (3.31)

then

nΓ−1/2
n

(
ξ̄∗n − ξ̄n

) ∣∣∣Ξ D(P)←−−→
n→∞

nΓ−1/2
n ξ̄n (3.32)

and, moreover,

√
n
(
ξ̄∗n −EP∗ξ∗1

) ∣∣∣Ξ D(P)←−−→
n→∞

√
nξ̄n. (3.33)

Proof. According to Cramér-Wold theorem (see Appendix A.2, Theorem A.3) it is sufficient

to ensure that all the assumptions of one-dimensional bootstrap CLT 3.10 are valid for any

linear combination of the elements of random vector ξn, n ∈ N.
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For arbitrary fixed t ∈ Rq using Lemma 3.5, we get

sup
n∈NEP|t⊤ξn|4 ≤ q3 supn∈N q∑

j=1

t4jEP|ξj,n|4 ≤ q4 max
j=1,...,q

t4j sup
n∈NEP|ξj,n|4 <∞.

Hence, assumption (3.30) implies assumption (3.24) for random variables t⊤ξn, n ∈ N.

Similar situation arises, when assumption (3.31) implies assumption (3.25) for such an ar-

bitrary linear combination, i.e., positive definiteness of matrix Γ yields

lim
n→∞

1

n

n∑

i=1

VarPt⊤ξi = lim
n→∞

1

n

n∑

i=1

t⊤ (VarPξi) t = t⊤
(

lim
n→∞

1

n
Γn

)
t = t⊤Γt > 0.

Finally, we need to realize that (3.31) holds, (3.32) has already been proved above,

{ξ∗i }ni=1 are conditionally iid, andEP∗

Ξ
ξ∗1 = n−1

n∑

i=1

ξi = ξ̄n.

The main result for the asymptotical validity of the proper nonparametric bootstrap can

be stated.

Theorem 3.12 (Coincidence of the nonparametric bootstrap distribution in EIV). Let

assume the EIV model and assumption (D) be satisfied. Suppose that

sup
n∈NZ2

n,j <∞, j ∈ {1, . . . , p}, (3.34)

sup
n∈NE|Θn,j|8 <∞, j ∈ {1, . . . , p}, (3.35)

and

sup
n∈NE|εn|8 <∞. (3.36)

If there exists a positive definite matrix i such that

lim
n→∞

1

n
VarP[X,Y]⊤[X,Y]

[
β

−1

]
= i > 0, (3.37)

then

√
n(β̃∗ − β̂)

∣∣∣[X,Y]
D(P)←−−→
n→∞

√
n(β̂ − β).
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Proof. Partitioning (1.12) yields

X⊤Xβ̂ −X⊤Y = λβ̂ and Y⊤Xβ̂ −Y⊤Y = −λ.

The previous equations can be rewritten in the following manner

X⊤Y = (X⊤X− λI)β̂ and Y⊤Y = Y⊤Xβ̂ + λ.

Hence,

[X,Y]⊤[X,Y] =

[
X⊤X (X⊤X− λI)β̂

β̂⊤(X⊤X− λI) Y⊤Xβ̂ + λ

]

=
[
I, β̂
]⊤

(X⊤X− λI)
[
I, β̂
]
+ λI.

It can be easily noted that

[I,β]

[
β

−1

]
= 0.

Therefore, we obtain

[I,β] [X,Y]⊤[X,Y]

[
β

−1

]
= [I,β]

[
I, β̂
]⊤

(X⊤X− λI)(β − β̂) (3.38)

and, then,

√
n(β̂ − β) = −∆−1

n

(
[I,β]

[
I, β̂
]⊤)−1

[I,β]
(
n−1/2[X,Y]⊤[X,Y]

)[ β

−1

]
. (3.39)

SinceEP[X,Y]⊤[X,Y] = [I,β]⊤Z⊤Z[I,β] + nσ2I,

then

[I,β]EP[X,Y]⊤[X,Y]

[
β

−1

]
= 0. (3.40)

Relation (3.39) can be alternatively rewritten using identity (3.40) in a slightly more sophis-
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ticated way

√
n(β̂ − β) = −∆−1

n

(
[I,β]

[
I, β̂
]⊤)−1

[I,β]

(
n−1/2

{
[X,Y]⊤[X,Y]−EP[X,Y]⊤[X,Y]

})
[
β

−1

]
, (3.41)

which will be useful in the forthcoming steps of this proof.

The inverse of [I,β]
[
I, β̂
]⊤

from equation (3.41) exists with probability tending to one

as n increases, because the probability that matrix [I,β]
[
I, β̂
]⊤

= I+ββ̂⊤ is singular tends

to zero as n tends to infinity due to the strong consistency of β̂, i.e.,

I+ ββ̂⊤ [P]-a.s.−−−−−→ I+ ββ⊤ > 0, n→∞. (3.42)

Similarly, the inverse of ∆n exists with probability tending to one due to assumption (D)

and the strong consistency result (1.27).

It is desirable to asymptotically compare the distribution of
√
n(β̂−β) with the empirical

(bootstrap) distribution of
√
n(β̃∗−β̂) conditional on the original data [X,Y]. With respect

to (3.1), we get

√
n(β̃∗ − β̂) = −(∆∗

n)
−1

(
[I, β̂]

[
I, β̂∗

]⊤)−1

[I, β̂]

(
n−1/2

{
[X∗,Y∗]⊤[X∗,Y∗]− [X,Y]⊤[X,Y]

})
[
β̂

−1

]
, (3.43)

where

∆∗
n := n−1(X∗⊤X− λ∗I).

Gallo (1982b, Proof of Theorem 3.3) proved that

n−1/2
{
[X,Y]⊤[X,Y]−EP[X,Y]⊤[X,Y]

}
[
β

−1

]

has asymptotically multivariate normal distribution. Let us check the assumptions of The-
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orem 3.11 for a sequence of zero mean independent (p+ 1)-dimensional random vectors

ξn :=
{
[Xn,•, Yn]

⊤[Xn,•, Yn]−EP[Xn,•, Yn]
⊤[Xn,•, Yn]

}
[
β

−1

]

=
{
[Xn,•, Yn]

⊤[Xn,•, Yn]−
(
[I,β]⊤Z⊤

n,•Zn,•[I,β] + σ2I
)}
[
β

−1

]
. (3.44)

Since

[Xn,•, Yn]
⊤[Xn,•, Yn] =

[
Ξn ζ⊤n

ζn ηn

]

with

Ξn := Z⊤
n,•Zn,• + Z⊤

n,•Θn,• +Θ⊤
n,•Zn,• +Θ⊤

n,•Θn,•,

ζn := Z⊤
n,•Zn,•β + Z⊤

n,•εn +Θ⊤
n,•Zn,•β +Θ⊤

n,•εn,

ηn := (Zn,•β)
2 + 2εnZn,•β + ε2n;

and assumptions (3.34)–(3.36) hold, then each row of ξn has uniformly bounded the fourth

moments. Indeed by Lemma 3.5,

sup
n∈NEP|Xn,j|8 = sup

n∈NEP|Zn,j +Θn,j|8 ≤ 27 sup
n∈NEP (|Zn,j|8 + |Θn,j |8

)

≤ 27
(
sup
n∈N |Zn,j|2

)4

+ 27 sup
n∈NEP|Θn,j|8 <∞, j ∈ {1, . . . , p} (3.45)

and

sup
n∈NEP|Yn|8 = sup

n∈NEP|Zn,•β + εn|8 ≤ 27 sup
n∈NEP (|Zn,•β|8 + |εn|8

)

≤ 27p8 max
j∈{1,...,p}

{
β8
j

(
sup
n∈N |Zn,j |2

)4
}

+ 27 sup
n∈NEP|εn|8 <∞. (3.46)

Hence, assumption (3.30) is satisfied for ξn. Moreover, assumption (3.37) implies assump-

tion (3.31), because

0 < lim
n→∞

1

n
VarP{[X,Y]⊤[X,Y]

[
β

−1

]}

= lim
n→∞

1

n
VarP n∑

i=1

{
[Xi,•, Yi]

⊤[Xi,•, Yi]

[
β

−1

]}
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= lim
n→∞

1

n

n∑

i=1

VarP{[Xi,•, Yi]
⊤[Xi,•, Yi]

[
β

−1

]}
.

After a calculation of the conditional expectationEP∗ [X∗,Y∗]⊤[X∗,Y∗] = EP∗

n∑

i=1

[X∗
i,•, Y

∗
i ]

⊤[X∗
i,•, Y

∗
i ]

=

n∑

i=1

n∑

k=1

1

n
[Xk,•, Yk]

⊤[Xk,•, Yk] = [X,Y]⊤[X,Y],

we need to realize with respect to (3.44) that

ξ̄∗n −EP∗ξ∗1

= n−1
n∑

i=1

[X∗
i,•, Y

∗
i ]

⊤[X∗
i,•, Y

∗
i ]

[
β

−1

]

− n−1
n∑

i=1

{
[I,β]⊤Z∗⊤

i,•Z
∗
i,•[I,β] + σ2I

}
[
β

−1

]

−EP∗ [X∗
1,•, Y

∗
1 ]

⊤[X∗
1,•, Y

∗
1 ]

[
β

−1

]

+EP∗

{
[I,β]⊤Z∗⊤

1,•Z
∗
1,•[I,β] + σ2I

}
[
β

−1

]

= n−1[X∗,Y∗]⊤[X∗,Y∗]

[
β

−1

]
− n−1[X,Y]⊤[X,Y]

[
β

−1

]
.

By bootstrap multivariate CLT 3.11, we get

n−1/2
{
[X∗,Y∗]⊤[X∗,Y∗]−EP∗ [X∗,Y∗]⊤[X∗,Y∗]

}
[
β

−1

] ∣∣∣∣∣[X,Y]

D(P)←−−→
n→∞

n−1/2
{
[X,Y]⊤[X,Y]−EP[X,Y]⊤[X,Y]

}
[
β

−1

]
. (3.47)

We would like to prove that

n−1/2
{
[X∗,Y∗]⊤[X∗,Y∗]− [X,Y]⊤[X,Y]

}
[
β̂

−1

] ∣∣∣∣∣[X,Y]

D(P)←−−→
n→∞

n−1/2
{
[X,Y]⊤[X,Y]−EP[X,Y]⊤[X,Y]

}
[
β

−1

]
. (3.48)
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Equiboundedness (3.45) and (3.46) provide stronger results than the assumptions of Theo-

rem 3.3 for {Xn,jXn,k}∞n=1 and {Xn,jYn}∞n=1 are, where j, k ∈ {1, . . . , p}. Nevertheless, the
bootstrap WLLN for independent variables implies

n−1
n∑

i=1

X∗⊤
i,•X

∗
i,• − n−1

n∑

i=1

X⊤
i,•Xi,•

P∗(P)−−−−→
n→∞

0 (3.49)

and

n−1
n∑

i=1

X∗⊤
i,•Y

∗
i − n−1

n∑

i=1

X⊤
i,•Yi

P∗(P)−−−−→
n→∞

0. (3.50)

The asymptotic normality of
√
n(β̂ − β) provides

β̂ − β = OP(n−1/2), n→∞.

Due to Definition 3.3, (3.49), and (3.50), we get

n−1/2
{
[X∗,Y∗]⊤[X∗,Y∗]− [X,Y]⊤[X,Y]

}
[
β̂ − β

0

] P∗(P)−−−−→
n→∞

0.

Afterwards, (3.48) is shown.

According to Definition 3.3, we simply obtain that β̂
[P]-a.s.−−−−−→
n→∞

β implies

β̂
P∗(P)−−−−→
n→∞

β. (3.51)

Theorem 3.6 can be rewritten in this manner:

λ∗

n
− λ

n

P∗(P)−−−−→
n→∞

0.

Moreover by (1.24), we have

λ∗

n

P∗(P)−−−−→
n→∞

σ2.

With respect to (3.49), it also holds that

∆∗
n −∆n

P∗(P)−−−−→
n→∞

0

and, consequently by (1.27),

∆∗
n

P∗(P)−−−−→
n→∞

∆. (3.52)
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In other words, the conditional law of n−1(X∗⊤X∗−λ∗I) is close to the unconditional law of

∆n. The latter inverted concentrates near non-random element ∆−1 as mentioned in (1.27).

Therefore, the conditional law of n(X∗⊤X∗−λ∗I)−1 is degenerate and also concentrates near

∆−1.

Since

β̂∗ − β̂ = (∆∗
n)

−1n−1X∗⊤Y∗ −∆−1
n n−1X⊤Y

=
{
(∆∗

n)
−1 −∆−1

n

}
n−1X⊤Y + (∆∗

n)
−1
{
n−1X∗⊤Y∗ − n−1X⊤Y

}

and (3.50) holds, then

β̂∗ − β̂ P∗(P)−−−−→
n→∞

0,

which implies

β̂∗ P∗(P)−−−−→
n→∞

β. (3.53)

Finally, let us denote

Υn := −∆−1
n

(
[I,β]

[
I, β̂
]⊤)−1

[I,β] ,

Υ∗
n := −(∆∗

n)
−1

(
[I, β̂]

[
I, β̂∗

]⊤)−1

[I, β̂],

υn := n−1/2
{
[X,Y]⊤[X,Y] −EP[X,Y]⊤[X,Y]

}
[
β

−1

]
,

υ∗
n := n−1/2

{
[X∗,Y∗]⊤[X∗,Y∗]− [X,Y]⊤[X,Y]

}
[
β̂

−1

]
.

In order to finish this proof, it is sufficient to show that

Υ∗
nυ

∗
n

∣∣[X,Y]
D(P)←−−→
n→∞

Υnυn. (3.54)

We use the Prokhorov’s extended characterization of the convergence in distribution stated

in Lemma 3.1. Relation (3.54) is valid if and only if for each subsequence {ni}∞i=1 there is

a subsequence {nik}∞k=1 and a random variable ζ0 such that

Υ∗
nik
υ∗
nik

∣∣[X,Y]
D(P)−−−−→
k→∞

ζ0 and Υnik
υnik

D−−−−→
k→∞

ζ0. (3.55)

Gallo (1982b, Theorem 3.3) proved, that Υnυn
D−−−−→

n→∞
ζ0, where ζ0 has a multivariate

zero mean normal distribution. Therefore, sequence {Υnυn}∞n=1 is tight. Let {ni}∞i=1 be
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an arbitrary subsequence. According to (3.48) and Lemma 3.1, there exist a subsequence

{nik}∞k=1 of {ni}∞i=1 and random vector υ0 for which

υ∗
nik

∣∣[X,Y]
D(P)−−−−→
k→∞

υ0 and υnik

D−−−−→
k→∞

υ0.

Taking (3.51), (3.52), and (3.53) into account, we get

Υ∗
nik

P∗(P)−−−−→
k→∞

Υ0 and Υnik

P−−−−→
k→∞

Υ0,

for some Υ0.

Further, we conclude from the Slutsky’s theorem (see Appendix A.2, Theorem A.2) and

its modification (Theorem 3.2) that (3.55) holds, which by virtue of Lemmas 3.1 yields (3.54).

By recalling (3.39), (3.40), (3.41), and (3.43), it is concluded that

√
n(β̃∗ − β̂)

∣∣[X,Y]
D(P)←−−→
n→∞

√
n(β̂ − β).

The main reason for the occurrence of a nondegenerative distribution between the con-

ditional distribution of
√
n(β̂∗− β̂) and √n(β̂−β) is the fact that squared errors present in

the expression for β̂ do not converge in probability P to zero as the sample size increases.

Remark 3.3. Partial “consistency” result (3.53) can be wrongly considered as a satisfaction

for the validity of the nonparametric bootstrap procedure. It has to be realized that con-

sistency does not immediately imply
√
n-asymptotic normality. Hence, (3.53) cannot assure

about
√
n(β̂∗ − β̂)

∣∣[X,Y]
D(P)←−−→
n→∞

√
n(β̂ − β). Moreover, the above proof shows us a nice

contradiction to this hypothesis.

Analogously to (3.39), it can be derived that

√
n(β̂∗ − β̂) = −n

(
X∗⊤X∗ − λ∗I

)−1
(
[I, β̂]

[
I, β̂∗

]⊤)−1

[I, β̂]
(
n−1/2[X∗,Y∗]⊤[X∗,Y∗]

)[ β̂

−1

]
. (3.56)

Remark 3.4. The difference between the “incorrect” bootstrap estimate β̂∗ and the “proper”

one β̃∗ can be derived from (3.1) and (3.56):

β̃∗ − β̂∗ =
(
X∗⊤X∗ − λ∗I

)−1
(
[I, β̂]

[
I, β̂∗

]⊤)−1

[I, β̂][X,Y]⊤[X,Y]

[
β̂

−1

]
. (3.57)

Applying the results and the algebraic machinery from the proof of Theorem 3.12, it can

be shown that β̃∗ − β̂∗ P∗(P)−−−−→
n→∞

0 and, moreover, β̃∗ P∗(P)−−−−→
n→∞

β, which demonstrates another
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(weaker) characterization of the nonparametric bootstrap’s consistency. Although, one can-

not generally prove that the limiting conditional distribution of
√
n(β̃∗− β̂∗) is just a Dirac

distribution. In spite of that, the asymptotic distribution of
√
n(β̃∗ − β̂∗) could possibly

converge to zero (i.e., vanish) in probability P∗ in probability P as the sample size increases

under some additional assumptions, which might improve the speed of convergences of β̂ or

∆n as demonstrated by Kukush et al. (2005, Theorem 3).

3.3 Residual Bootstrap

Residuals for the EIV model are defined in this section. A residual bootstrap procedure

can be proposed, where the residuals are resampled with replacement in order to obtain

the empirical (bootstrap) distribution of the original parameters’ estimates. The residual

bootstrap procedure is more sophisticated than the nonparametric bootstrap one, because

a regression model is assumed and, consequently, specific residuals obtained from this model

are resampled.

3.3.1 Residuals and Their Disadvantageous Properties

In EIV setup, a natural way how to define a reasonable type of residuals is

[Θ̂, ε̂] := argmin ‖[Θ, ε]‖

such that

Y = (X− Θ̂)β̂ + ε̂

They are estimates of the disturbances in the EIV model in a particular sense. Finding the

smallest errors [Θ, ε] in the EIV model is tantamount to looking for the “closest” subspace

to data, i.e., to penalize for the errors in the orthogonal direction to the fitted hyperplane.

Recall that Golub and Van Loan (1980, Section 2) proved an interesting property of such

residuals: ‖[Θ̂, ε̂]‖2 = λ.

The residual bootstrap procedure generally relies on obtaining residuals from the regres-

sion model, which are consequently recentered by their average and, then, resampled with

replacement. In our case, one should bootstrap rows of centered residuals {[Θ̃i,•, ε̃i]}ni=1,

where

[Θ̃i,•, ε̃i] := [Θ̂i,•, ε̂i]− n−1
n∑

j=1

[Θ̂j,•, ε̂j], i = 1, . . . , n.

A crucial step for proving the correctness of the bootstrap is a convergence of the distance

between estimated residuals and residual errors divided by number of observations to zero.



CHAPTER 3. BOOTSTRAP VERSUS ASYMPTOTICS 57

Detailed discussion can be found in Bickel and Freedman (1981, Section 2). We are going

to show that the opposite is true.

Theorem 3.13. Let the EIV model hold and assumption (D) be satisfied. If β 6= 0, then

n−1‖[Θ̂, ε̂]− [Θ, ε]‖2 9 0 [P]-a.s., n→∞.

Proof. Let us calculate

n−1‖[Θ̂, ε̂]− [Θ, ε]‖2 ≥ n−1‖ε̂− ε‖22 = n−1ε̂⊤ε̂+ n−1ε⊤ε− 2n−1ε⊤ε̂. (3.58)

Denote the SVD of data [X,Y] = Udiag {ρ}V⊤. Then Theorem 2.6 by Van Huffel and

Vandewalle (1991) ensures ε̂ = ρp+1up+1vp+1,p+1, where up+1 is the last column of U,

vp+1,p+1 is the (p+ 1)-st element of the last column of V, and ρp+1 is the smallest singular

value of [X,Y].

Keeping in mind that Gleser (1981, Section 3) proved

v2p+1,p+1

[P]-a.s.−−−−−→
n→∞

(
1 + β⊤β

)−1
, (3.59)

realizing that ρp+1 =
√
λ and the columns of the matrixU are orthonormal, and using (1.26),

for the first term in (3.58) we have

n−1ε̂⊤ε̂ = n−1vp+1,p+1u
⊤
p+1

√
λ
√
λup+1vp+1,p+1

[P]-a.s.−−−−−→
n→∞

σ2
(
1 + β⊤β

)−1
. (3.60)

If the SLLN is applied for the second term in (3.58) (see Lemma 3.8), then

n−1ε⊤ε
[P]-a.s.−−−−−→
n→∞

σ2. (3.61)

Let us concentrate on the third term in (3.58). If the almost sure limit of n−1ε⊤ε̂

does not exist, the proof is finished, because then it is impossible for n−1‖[Θ̂, ε̂] − [Θ, ε]‖2
to converge almost surely to zero. On the other hand, let us suppose the existence of

limn→∞ n−1ε⊤ε̂ := ϕ [P]-a.s. Using the Cauchy-Schwarz inequality and orthogonality of

the matrix U, we get

∣∣n−1ε⊤ε̂
∣∣ =

∣∣∣n−1ε⊤
√
λup+1vp+1,p+1

∣∣∣ ≤
√
λ

n

∥∥∥n−1/2ε⊤
∥∥∥
2
|vp+1,p+1| . (3.62)

Passing to limit in (3.62) and taking into account (1.26), (3.59), and (3.61), we obtain

|ϕ| ≤ σ2
(
1 + β⊤β

)−1/2
. (3.63)
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Finally, if limn→∞ n−1‖ε̂− ε‖22 exists, then

lim
n→∞

n−1‖ε̂− ε‖22 ≥ σ2
{(

1 + β⊤β
)−1

+ 1− 2
(
1 + β⊤β

)−1/2
}
> 0,

unless β = 0. Hence, n−1‖[Θ̂, ε̂]− [Θ, ε]‖2 cannot converge [P]-almost surely to zero.

The EIV residuals’ inconsistency in the way introduced above does not allow us to

consider them distributionally close enough to the original errors. Although, it is not said

that a suitably modified algorithm for the residual bootstrap cannot be constructed and its

correctness proved.

3.4 Simulation Study

A simulation experiment was performed to study the finite sample properties of the boot-

strap procedures for EIV. In particular, the interest lies in the coverage level of confidence

intervals (CIs) based on the EIV nonparametric bootstrap for finite samples. Random sam-

ples (5000 each time) were generated from a one-dimensional EIV model with the design

points
{√

1− 1/i
}n

i=1
and, hence, ∆ = limn→∞ n−1

∑n
i=1(1 − 1/i) = 1. A design with

equidistant points cannot be used, because it does not satisfy assumption (D). The previous

design can be seen as a compromise between a “logarithmic scale” design and the equidistant

one. Therefore, it may be quite useful in engineering science.

First of all, normally distributed errors are taken into account. Bootstrap 95%-CIs based

upon percentile method (see, e.g., Efron (1982), Hall (1992), or (Davidson and Hinkley,

1997)) were considered for the incorrect nonparametric bootstrap procedure and the proper

one as well. B = 5000 bootstrap replications were conducted. Percentile confidence intervals

are of the form (v̂α/2; v̂1−α/2) where v̂γ is the γ100% quantile of the empirical bootstrap

distribution of β̂ (scalar). On the other hand, the confidence intervals based upon standard

deviation method (approximate normal asymptotics) of the form β̂±uα/2ŝ were produced as

well, where uγ is the γ100% quantile of a standard normal distribution and ŝ is the standard

deviation of the re-calculated estimate β̂.

Finally, the average lengths of CIs were computed and compared with the theoretical

ones based on asymptotic normality with known parameters σ2 and ∆ (without plugging

their estimates). Moreover, the empirical coverages of CIs were calculated and compared

with the theoretical exact value of 95%. The results for percentile-based (bootstrap) and

variance-based (approximate asymptotic normality) CIs from our simulation study with

normally distributed errors for various “unknown” β are shown in Table 3.1, Table 3.2, and

Table 3.3.

From these results it follows that the average length of bootstrap CIs reaches the the-

oretical value for n = 20 satisfactorily and almost coincides with it for n = 50. A similar

situation occurs, when the approximate asymptotics is compared to the theoretical lengths.
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Average CI length Empirical CI coverage

Approximate asymptotic normality

Nonparametric bootstrap (proper)

Size Standard deviation Theoretical asymptotic normality

n = 20 σ = 10−2 1.317× 10−2 93.08%

1.316× 10−2 92.78%

1.240× 10−2 −
σ = 10−3 1324× 10−3 93.70%

1.322× 10−3 93.64%

1.240× 10−3 −
n = 50 σ = 10−2 8.101× 10−3 94.86%

8.104× 10−3 94.90%

7.840× 10−3 −
σ = 10−3 8.104× 10−4 94.14%

8.108× 10−4 94.02%

7.840× 10−4 −

Table 3.1: Simulations of 95% confidence intervals for the nonparametric bootstrap when

β = 1 and the errors are zero mean normally distributed.

Average CI length Empirical CI coverage

Approximate asymptotic normality

Nonparametric bootstrap (proper)

Size Standard deviation Theoretical asymptotic normality

n = 20 σ = 10−2 9.360× 10−2 93.10%

9.347× 10−2 92.76%

8.809× 10−2 −
σ = 10−3 9.369× 10−3 93.08%

9.355× 10−3 93.18%

8.809× 10−3 −
n = 50 σ = 10−2 5.740× 10−2 94.46%

5.740× 10−2 94.46%

5.571× 10−2 −
σ = 10−3 5.777× 10−3 94.88%

5.778× 10−3 94.96%

5.571× 10−3 −

Table 3.2: Simulations of 95% confidence intervals for the nonparametric bootstrap when

β = 10 and the errors are zero mean normally distributed.
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Average CI length Empirical CI coverage

Approximate asymptotic normality

Nonparametric bootstrap (proper)

Size Standard deviation Theoretical asymptotic normality

n = 20 σ = 10−2 9.348× 10−3 92.38%

9.334× 10−3 92.18%

8.809× 10−3 −
σ = 10−3 9.370× 10−4 92.96%

9.360× 10−4 92.88%

8.809× 10−4 −
n = 50 σ = 10−2 5.758× 10−3 94.32%

5.764× 10−3 94.22%

5.572× 10−3 −
σ = 10−3 5.759× 10−4 93.86%

5.762× 10−4 93.92%

5.571× 10−4 −

Table 3.3: Simulations of 95% confidence intervals for the nonparametric bootstrap when

β = .1 and the errors are zero mean normally distributed.

The estimated variances of the EIV estimate based on proper bootstrap and asymptotic

normality are similar. Therefore, this simulation study ensures ourselves that the correct

bootstrap method for construction of the CIs in the EIV model is asymptotically equivalent

to the method based on approximate normal asymptotics.

Furthermore, the empirical coverage of the CIs based on approximate asymptotic nor-

mality is nearly 95%, which conforms to the fact that the CI should contain the unknown

parameter with a prescribed probability. Similarly, the proper bootstrap CIs maintain the

empirical coverage levels close to the nominal level of 95%. Note that in all the simula-

tions, the empirical coverages are slightly below 95% and become closer when the number

of observations increases or the variability of errors decreases.

There is no striking difference between the incorrect and proper nonparametric boot-

strap procedures in the average length of the CIs neither in the empirical coverage. Both

approaches seem to behave quite similarly. The lengths of the incorrect nonparametric boot-

strap CIs and proper nonparametric bootstrap CIs have to be exactly the same, because

the empirical conditional distributions are just shifted. I.e., for each simulated data set and

a particular fixed resampling, β̃∗ (generally a vector) is only a shifted version of β̂∗.

In all the simulations, the endpoints of confidence intervals from the incorrect non-

parametric bootstrap and the proper one are not exactly the same and slightly differ (for

a mathematical explanation see Remark 3.4). The difference varies from ≈ 10−3 to ≈ 10−8
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when passing from one particular simulated data set to another one and evidently depends

on the setup of the simulation. On the contrary, when calculating the empirical CI coverages

over all the simulated data sets, the difference in the empirical coverage for the incorrect

nonparametric bootstrap and the proper one vanishes and the unsuitability of the incor-

rect nonparametric bootstrap cannot be noticed through these simulations. In principle,
√
n(β̃∗ − β̂∗) might asymptotically have a zero mean nondegenerative distribution, because

the setup of simulations may satisfy some additional assumptions, which guarantee such

asymptotic closeness.

Changing the value of the “unknown” (true) parameter β does not effect the conclusions

already presented. Thus it may be concluded that the proper nonparametric bootstrap

computationally works for any value of β.

The results also indicate that the bootstrap provides reasonable CIs for the unknown

parameter and may be used instead of the approximate asymptotic normality.

Moreover, if the cross-moments of the errors are not identical, up to and including mo-

ments of order four, to the corresponding moments of the multivariate normal distribution,

the asymptotic normality is computationally useless in our situation (Gallo, 1982b, Sub-

section 3.4). Despite of this disadvantage, the proper nonparametric bootstrap approach

provides a satisfiable answer as proved before. To lightly demonstrate that, let us think

of two distributions for the errors: the Student t-distribution with 8.2 degrees of freedom

(in order to be able to consider the existence of the eight moment), which has relatively

heavy tails; and the centered Gumbel (extreme value) distribution, which is not symmetric

(skewed) and have excess kurtosis. Essentially, the empirical CI coverage becomes closer to

the theoretical value of 95% for the proper nonparametric bootstrap procedure when the

sample size increases and the standard deviation decreases as it can be seen in Table 3.4

and Table 3.5. The CIs based upon the incorrect nonparametric bootstrap behave similarly

as described in the case of normally distributed errors.

Average CI length Empirical CI coverage

Size Standard deviation Nonparametric bootstrap (proper)

n = 20 σ = 10−2 1.314× 10−2 93.08%

σ = 10−3 1.306× 10−3 92.42%

n = 50 σ = 10−2 8.085× 10−3 93.86%

σ = 10−3 8.092× 10−4 94.26%

Table 3.4: Simulations of 95% confidence intervals for the nonparametric bootstrap when

β = 1 and the errors have Student’s t-distribution with 8.2 degrees of freedom multiplied by

a constant such that its variance is equal to the squared standard deviation.

Finally, all the previous conclusions concerning percentile nonparametric bootstrap con-
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Average CI length Empirical CI coverage

Size Standard deviation Nonparametric bootstrap (proper)

n = 20 σ = 10−2 1.313× 10−2 92.84%

σ = 10−3 1.312× 10−3 93.12%

n = 50 σ = 10−2 8.104× 10−3 93.76%

σ = 10−3 8.047× 10−4 93.92%

Table 3.5: Simulations of 95% confidence intervals for the nonparametric bootstrap when

β = 1 and the errors have shifted (centered) Gumbel distribution (with density before

centering exp−{exp(−x− γ)}, x ∈ R and γ is Euler-Mascheroni constant (≈ 0.5772)) with

zero mean multiplied by a constant such that its variance is equal to the squared standard

deviation.

fidence intervals can be graphically illustrated in the following set of Figures 3.1–3.7, where

each one of them consists of four subfigures corresponding to a different simulation setup:

sample size n = 20 or n = 50 and standard deviation 10−2 or 10−3, respectively.

The empirical distributions of estimate β̂ based upon “asymptotic normality” (AN) and

proper nonparametric bootstrap (Boot) are compared in Figures 3.1–3.3 for various values

of the “unknown” (true) parameter β, i.e., β = 1 in Figure 3.1, β = 10 in Figure 3.2, and

β = .1 in Figure 3.3. The dark gray kernel density estimate (the left part of a subfigure)

belongs to the estimated distribution of β̂ (which is approximately
√
n-normal) based upon

estimates {β̂s}Ss=1, where S = 5000 is the number of simulations. The light one (the right

part of a subfigure) stands for the proper nonparametric bootstrap version, i.e., the smoothed

empirical distribution of means of the proper nonparametric bootstrap estimates

{
1

B

B∑

b=1

β̃b,s

}S

s=1

,

where β̃b,s is the b-th proper nonparametric bootstrap estimate of β from the s-th simulated

data set.

Every subfigure compares not only the whole empirical distributions by their smoothed

estimates, but also by the sample mean—dotted horizontal line—and by some specific sample

characteristics—solid horizontal lines corresponding to the minimum, first quartile, median,

third quartile, and the maximum from the bottom to the top. It can be seen that these

sample quantities almost coincide. Hence, the proper nonparametric bootstrap seems to

work at least as good as the appropriate asymptotic normality.

A similar situation arise, when comparing the estimated distributions of β̂ based upon the

theoretical asymptotic normality, i.e., β̂ is approximately β + n−1/2N (0, ·) (the limit distri-

bution of
√
n(β̂−β) is known, because the errors are generated from a normal distribution);
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Figure 3.1: Comparisons of the original empirical distribution of β̂ with the nonparametric

bootstrap version when β = 1.
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Figure 3.2: Comparisons of the original empirical distribution of β̂ with the nonparametric

bootstrap version when β = 10.
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Figure 3.3: Comparisons of the original empirical distribution of β̂ with the nonparametric

bootstrap version when β = .1.
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and upon the proper nonparametric bootstrap. Figure 3.4 corresponds to a simulation setup

when β = 1, Figure 3.5 to β = 10, and Figure 3.5 to β = .1.

It may be noticed, that in some cases, the sample variance of β̂ estimated by the proper

nonparametric bootstrap procedure is slightly larger than the theoretical one (see also av-

erage CI lengths in Tables 3.1–3.3). In spite of that, as the sample size increases and the

standard deviation of errors decreases, the empirical coverage becomes closer to the the-

oretical value of 95%. One of the possible reasons (and the most probable one) for such

an overestimation of the variance is hidden in the monotonicity of the design points (covari-

ates Z), that can lead into monotonic convergence of n−1Z⊤Z to ∆ as n→∞. We will see

in the simulation study of Chapter 5, that this negligible overestimation vanishes when the

design points are not monotonically ordered.

On the top of that, the proper and the incorrect nonparametric bootstrap procedure are

compared in Figure 3.7 (only the case of β = 1 is presented for simplicity).

There is no visible striking difference between the empirical distribution based on the

incorrect nonparametric bootstrap and the corrected version. On the contrary, it has to be

kept in mind that a possible asymptotic nondegenerative zero mean distribution can occur

between the proper nonparametric bootstrap distribution and the incorrect one.

R software (v2.10.0) is used for all the computations in the thesis with the default random

number generator and set.seed(1982), which was chosen according to the birth year of the

thesis’ author.

3.5 Data Analysis – Calibration

Let us consider the following calibration problem: a company has two industrial devices,

where the first one is calibrated according to some institute of standards and the second one

is just a casual device. We want to calibrate the second device according to the first one.

Consequently, other devices of the same type are needed to be calibrated as well. For some

reasons, e.g., economic, it is only possible to calibrate one device by the authorities.

Our data set contains 21 couples of speed values of two hammer rams, where the first

forging hammer is calibrated. We set the same power level on both hammers and measure

the speed of each hammer ram repeatedly changing only the power level. Our measurements

of the speed are encumbered with errors of the same variability in both cases, because we

use the same device for measuring the speed and both forging hammers are of the same

type. Since the power set for the forging hammer is directly proportional to the speed of the

hammer ram, our goal is to set a correction coefficient, which the second (ordinary) forging

hammer’s power needs to be corrected (multiplied) by. Therefore, our EIV model is very

suitable for this setup—a linear dependence and errors in both measured speeds (with the

same variance). Non-equal error variance in other type of experiments is not a big issue as

already discussed in Section 1.4.
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Figure 3.4: Comparisons of the empirical distributions of β̂ based on the theoretical asymp-

totic normality and the nonparametric bootstrap when β = 1.
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Figure 3.5: Comparisons of the empirical distributions of β̂ based on the theoretical asymp-

totic normality and the nonparametric bootstrap when β = 10.



CHAPTER 3. BOOTSTRAP VERSUS ASYMPTOTICS 69

0.
98

5
0.

99
0

0.
99

5
1.

00
0

1.
00

5
1.

01
0

Theoretical+Boot

β=.1, σ=.01, n=20

E
st

im
at

e 
of

 β

0.
99

90
1.

00
00

1.
00

10

Theoretical+Boot

β=.1, σ=.001, n=20
E

st
im

at
e 

of
 β

0.
99

0
0.

99
5

1.
00

0
1.

00
5

Theoretical+Boot

β=.1, σ=.01, n=50

E
st

im
at

e 
of

 β

0.
99

95
1.

00
00

1.
00

05

Theoretical+Boot

β=.1, σ=.001, n=50

E
st

im
at

e 
of

 β

Figure 3.6: Comparisons of the empirical distributions of β̂ based on the theoretical asymp-

totic normality and the nonparametric bootstrap when β = .1.
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Figure 3.7: Comparisons of the empirical distributions of β̂ based on the incorrect nonpara-

metric bootstrap and the proper nonparametric bootstrap when β = 1.
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The hammer rams data with the corresponding EIV estimate (correction) are shown in

Figure 3.8.
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Figure 3.8: Measured speeds of two forging hammers of hammer rams—calibrated and

ordinary (uncalibrated)—with an estimate of the corresponding correction coefficient.

One of our main interests lies in a construction of the CI for the calibration correction

parameter in order to know how precise we are. Moreover, a test whether a correction of the

second devise is necessary would be demanded, i.e., to test whether the correction parameter

is equal to one. The estimated correction parameter for our forging hammer is 1.0068

and various types of CIs (approximate normality and proper nonparametric bootstrap) are

summarized in Table 3.6.

Method Confidence interval CI length

Approximate asymptotic normality [1.0043;1.0092] 0.0049

Nonparametric bootstrap (proper) [1.0049;1.0093] 0.0045

Table 3.6: Hammer ram data set, β̂ = 1.0068.

If we wanted to test a hypothesis whether β = 1 (is correction needed?) against the

general alternative that β 6= 1, we should reject the null hypothesis according to the non-

parametric bootstrapping and, similarly, according to the asymptotic normality. In spite

of this, it is suggested that we should not rely on the asymptotic normality, because the

proper formula for the asymptotic variance requires the third and the fourth moments of er-

rors, which cannot simply be provided neither estimated. Hence, the second forging hammer

should be calibrated according to the test based on the proper nonparametric bootstrapping.
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It is difficult or sometimes even impossible to estimate the third and the fourth moments

of the errors and, consequently, to test whether they are the same as those of the multivariate

normal distribution. Therefore, one should use the bootstrap approach for real data as the

preferable option.

3.6 Conclusions

A linear EIV model with its EIV estimate is considered in this chapter. Its disadvantageous

asymptotic properties are picked out. Our problem is nicely linearly defined, but comes

with a highly nonlinear estimate and inference. Therefore, methods based on the asymp-

totic normality might be computationally useless and fail. One of the reasons is that the

assumption, where the third and the fourth moments of errors coincide with the third and

the fourth moments of the normal distribution, cannot be verified neither assured.

Furthermore, one should absolutely not rely on the normal asymptotics’ approximation

in EIV model regarding the EIV estimate due to the unwieldy limiting variance in the case

of the unknown third and fourth moments of errors.

Two nonparametric bootstrap approaches were proposed. Justification for use of the

proper nonparametric bootstrap is given. The incorrect version of nonparametric bootstrap

is shown to be invalid. We proved that the valid nonparametric bootstrap gives a proper

answer with large samples in the EIV setup and, moreover, we showed that in finite samples

the bootstrap performs at least as well as the conventional asymptotics.

Finally, a simulation study was conducted in order to demonstrate theoretical conclu-

sions. Moreover, an application of our approach was performed on the calibration data,

which the EIV provides an appealing approach to. Indeed, in the calibration problem the

attitude of orthogonal regression seems to be appropriate and very flexible due to the fact

that the predictive and the predicted variables switch their roles at a particular moment.

3.6.1 Discussion

Firstly, one needs to realize that the EIV estimate’s inference does not require any distri-

butional assumptions on the errors except the uniform boundedness of the fourth moments.

The crucial assumption in the whole thesis is the “∆” assumption (D), which can be re-

strictive in some situations. On the other hand, one can check whether it might be satisfied

by calculating the partial sums of i−1X⊤
1:i,•X1:i,•, i = 1, . . . , n. Moreover, a design of the

experiment can be set properly to fulfill this assumption or a transformation of variables can

be performed. On the top of that, it would be helpful to invent a test for the verification of

design assumption (D).

It was discussed that the identically distributed observations suppress an existence of the

mean structure in the regression model. Hence, they are quite hypothetical without realistic
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applicability. On the other hand, the identically distributed errors provide a reasonable and

workable background for the mean structure in the EIV model.

It should be remembered, if the third and the fourth moments of errors are unknown,

asymptotic normality does not provide a formula for the estimator’s variance.

A heteroscedasticity is not an issue for the nonparametric bootstrap, because it is based

on case sampling and the data can be transformed into the homoscedastic case as described

in Section 1.4. Probably the biggest problem concerning residual bootstrap would lie in

the fact that it cannot handle a nondiagonal covariance matrix. The reason for this is

that the residuals are estimates of the errors and the nondiagonal covariance matrix brings

dependence into the errors. Thus this would be another reason against the usage and

applicability of some king of the residual bootstrap.

However, the nonparametric bootstrap is sometimes open to criticism. Its biggest disad-

vantage against the residual one is the inefficiency if the homoscedasticity is satisfied (David-

son and Hinkley, 1997). Indeed, the residual bootstrap design retains the information about

regressors and response from the sample.

The equiboundedness of the fourth moments (3.24) in the bootstrap CLT is needed,

because the second conditional moment is necessary for the existence of VarP∗

ξ
ξ∗1 and, con-

sequently, the equiboundedness of the second moment of the second conditional moment is

used for the convergence [P]-almost surely of VarP∗

ξ
ξ∗1 . Since the proper (corrected) boot-

strapped estimate β̃∗ depends on the incorrect bootstrapped estimate β̂∗, where the squared

errors occur, and the bootstrap CLT assumes the equiboundedness of the fourth moments,

then we have to impose the equiboundedness of the eighth moments on the errors of the

EIV model.

The fourth moments’ equiboundedness in the bootstrap CLT can be weakened by as-

suming identically distributed variables. On the other hand, the assumption of iid errors

is quite restrictive and, moreover, it is a waste of too strong assumptions. Indeed, the

errors of the EIV model are multiplied by the changing (non-constant) unknown covari-

ates Zi,•, i = 1, . . . , n in the expression for estimate β̂. In order to apply the bootstrap

CLT on these transformed errors, one cannot assume that those transformed errors remain

identically distributed (if they originally were iid) nor they become identically distributed.

When is the nonparametric bootstrap procedure consistent (valid) in the way that the es-

timates are distributionally comparable in distribution [P]-almost surely? As it was pointed

out previously in this chapter, assumption (3.24) from the bootstrap CLT can be replaced

by a stronger assumption (also a quite restrictive one) formulated in (3.28) and, hence, the

bootstrap CLT would change into (3.29). From the point of view of the applicability, there

is no practical difference between the convergence in distribution in probability P and the

convergence in distribution [P]-almost surely, when the theoretical results are applied to the

data. Therefore, there is no practical need to consider another version of Theorem 3.10 for

the nonparametric bootstrap validity with more restrictive assumptions implying a stronger
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type of the distributional coincidence—convergence in distribution [P]-almost surely.

Finally, an interesting fact needs to be remarked concerning the conditional variance

of sum of the bootstrapped observations. As it may be noticed in (3.26), the normalizing

conditional variance VarP∗

ξ
ξ∗1 can be replaced by n−1ς2n as shown in the proof of the boot-

strap central limit Theorem 3.10. Hence, this makes the results of the bootstrap CLT even

stronger and more applicable.



Chapter 4
Asymptotics for Weakly

Dependent Errors

It is better to be roughly right than

precisely wrong.

John W. Tukey

Our EIV model concerns linear relations, where measurement errors in input and output

data occur simultaneously. Due to the fact that in some situations these disturbances

cannot be considered as independent by nature, a proper error structure is required and,

consequently, suitable statistical inference needs to be derived.

Errors-in-variables model with dependent errors is considered. A strong consistency of

the EIV estimate for weakly dependent (α- and ϕ-mixing) measurements—encumbered with

not necessarily stationary errors—is proved. Thereafter, an asymptotic normality of the

EIV estimate is derived for such cases.

4.1 Weak Dependence

We are not in the case of independent observations any more and, therefore, the dependence

between measurement errors needs to be specified. It is assumed that {ξn}∞n=1 is a sequence

of random elements on a probability space (Ω,F ,P). For sub-σ-fields A,B ⊆ F , we define

α(A,B) := sup
A∈A,B∈B

|P(A ∩B)−P(A)P(B)| ,

ϕ(A,B) := sup
A∈A,B∈B,P(A)>0

|P(B|A) −P(B)| .

75
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Intuitively, α and ϕ measure the dependence of the events in B on those in A. Henceforth,
let us define a filtration Fn

m := σ(ξi ∈ F ,m ≤ i ≤ n).
There are many ways how to describe weak dependence or, in other words, asymptotic

independence of random variables (Bradley, 2005). In this thesis we concentrate on two

approaches. A sequence {ξn}∞n=1 of random elements (e.g., variables) is said to be strong

mixing (α-mixing) if

α(n) := sup
k∈Nα(Fk

1 ,F∞
k+n)→ 0, n→∞; (4.1)

moreover, it is said to be uniformly strong mixing (ϕ-mixing) if

ϕ(n) := sup
k∈Nϕ(Fk

1 ,F∞
k+n)→ 0, n→∞. (4.2)

Uniformly strong mixing—introduced by Rosenblatt (1956)—implies strong mixing (Lin

and Lu, 1997), which was presented by Ibragimov (1959). Coefficients of dependence α(n)

and ϕ(n) measure how much dependence exists between events separated by at least n

observations or time periods.

Anderson (1958) comprehensively and intensively analyzed a class of m-dependent pro-

cesses. These types of time series are ϕ-mixing, since are finite order ARMA processes with

innovations satisfying Doeblin’s condition (Billingsley (1968, p. 168), Doob (1953, p. 192)).

Finite order processes, which do not satisfy Doeblin’s condition, can be shown to be α-mixing

(Ibragimov and Linnik, 1971, pp. 312–313). Rosenblatt (1971) provides general conditions

under which stationary Markov processes are α-mixing. Since functions of mixing processes

are themselves mixing (Bradley, 2005), time-varying functions of any of the processes just

mentioned are mixing as well.

The error structure for independent observations proposed in Section 1.4 has to be

suitably modified in order to cover the case of weakly dependent observations. On the

between-individual level , the elements of rows [Θi,•, εi] suppose to form weakly dependent

sequences with zero mean, e.g., zero mean α- or ϕ-mixing. The reason for this can come

from the fact that the measurements, which are “close to each other”, influence themselves

somehow. Moreover, the influence decreases as the distance between observations increases.

Concerning the within-individual level , the mixing sequences of errors are assumed to

be pairwise independent. the necessity and possible weakening of this assumptions will be

discussed in Discussion 4.2.1.

It has to be emphasized that any form of errors’ stationarity is not needed to assume.

Omitting this, sometimes restrictive, assumption strengthen our results.

It is obvious that α(A,B) = α(B,A) for arbitrary sub-σ-fields A,B ⊆ F . This type of

symmetry does not hold for ϕ-dependence. Indeed, Rosenblatt (1971, pp. 213–214) con-

structed some strictly stationary Markov chains that are ϕ-mixing but not “time-reversed”
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ϕ-mixing. Therefore, it is not possible to “interchange” the past with the future regarding

the definition of the ϕ-mixing coefficient.

Strong consistency of the TLS estimate for independent errors is proved by Gleser (1981)

and, moreover, weak consistency—again for independent errors, but with less restrictive

assumptions—is widely discussed in Gallo (1982a). When a premise of independence cannot

be assumed, a consistency of the TLS estimate under weak dependence of errors has to

be explored (Pešta, 2009a). Similar situation occurs to the TLS estimate’s asymptotic

normality, which was proved by Gallo (1982b) for the case of independent errors. We will

extend this result for the weakly dependent errors in this chapter.

4.2 Strong Consistency

First of all, a strong law of large numbers (SLLN) for α-dependent non-identically distributed

variables needs to be recalled.

Lemma 4.1 (Strong law of large numbers for α-mixing). Let {ξn}∞n=1 be a sequence of

α-mixing random variables satisfying

sup
n∈NE|ξn|q <∞ (4.3)

for some q > 1. Suppose that there exists δ > 0 such that as n→∞,

α(n) =




O
(
n− q

2q−2−δ
)

if 1 < q < 2,

O
(
n− 2

q−δ
)

if q ≥ 2.
(4.4)

Then

lim
n→∞

∑n
i=1(ξi −Eξi)

n
= 0 a.s.

Proof. See Chen and Wu (1989, Theorem 1).

Furthermore, a SLLN for ϕ-dependent non-identically distributed variables is desired as

well.

Lemma 4.2 (Strong law of large numbers for ϕ-mixing). Let {ξn}∞n=1 be a sequence of zero

mean ϕ-mixing random variables satisfying

∞∑

n=1

√
ϕ(n) <∞ (4.5)
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and let {bn}∞n=1 be a non-decreasing unbounded sequence of positive numbers. Assume that

∞∑

n=1

Eξ2n
b2n

<∞, (4.6)

then

lim
n→∞

∑n
i=1 ξi
bn

= 0 a.s.

Proof. See Xuejun et al. (2009, Theorem 4.1).

For a given random sequence ξ◦ ≡ {ξn}∞n=1 of random elements, the dependence coef-

ficients α(n) will be denoted α(ξ◦, n). Analogous notation is used for ϕ-mixing sequences.

Moreover, an auxiliary lemma for latter application of the SLLN for non-identically dis-

tributed random variables is stated.

The following lemma describes an asymptotic behavior of α- and ϕ-mixing coefficients

of the corresponding random sequences after a transformation. More precisely, the Borel

transformation preserves the property of α- and ϕ-mixing and, moreover, sustains the rate

of the mixing coefficients.

Lemma 4.3. Suppose that for each m = 1, 2, . . ., ξ(m) := {ξ(m)
k }k∈Z is a sequence of random

variables. Suppose the sequences ξ(m), m = 1, 2, . . . are independent of each other. Suppose

that for each k ∈ Z, hk : R × R × . . . → R is a Borel function. Define the sequence

ξ := {ξk}k∈Z of random variables by

ξk := hk

(
ξ
(1)
k , ξ

(2)
k , . . .

)
, k ∈ Z.

Then for each n ≥ 1, the following statements hold:

(i) α(ξ, n) ≤∑∞
m=1 α(ξ

(m), n),

(ii) ϕ(ξ, n) ≤∑∞
m=1 ϕ(ξ

(m), n).

Proof. See Bradley (2005, Theorem 5.2).

The preliminary statistical machinery is going to be used for a derivation of the main

results of this section—strong consistency of the EIV estimate. Besides the main consis-

tency results, an estimate of nuisance parameter σ2 is defined as σ̂2 := λ/n and its strong

consistency is proved as well.

Firstly, the EIV estimate is strongly consistent assuming α-mixing errors in the EIV

model.
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Theorem 4.4 (Strong consistency in EIV with α-mixing). Let the EIV model hold and

assumption (D) be satisfied. Suppose

{Θn,1}∞n=1, . . . , {Θn,p}∞n=1, and {εn}∞n=1 (4.7)

are pairwise independent sequences of α-mixing random variables having

α(Θ◦,j , n) = O(n−qj/(2qj−2)−δj ), j = 1, . . . , p (4.8)

and

α(ε◦, n) = O(n−qp+1/(2qp+1−2)−δp+1), (4.9)

as n→∞ for some δj > 0 and 1 < qj ≤ 2, j ∈ {1, . . . , p+ 1}. If

sup
n∈NZ2

n,j <∞, j ∈ {1, . . . , p}, (4.10)

sup
n∈NE|Θn,j |2qj <∞, j ∈ {1, . . . , p}, (4.11)

and

sup
n∈NE|εn|2qp+1 <∞, (4.12)

then

lim
n→∞

β̂ = β a.s., (4.13)

lim
n→∞

λ

n
= σ2 a.s. (4.14)

Proof. The estimate of β from (2.5) can be expressed as

β̂ =
{
I+ (Z⊤Z)−1(Z⊤Θ+Θ⊤Z+Θ⊤Θ− nσ2I+ (nσ2 − λ)I)

}−1

× (Z⊤Z)−1
(
Z⊤Zβ + Z⊤ε+Θ⊤Zβ +Θ⊤ε

)
. (4.15)

If we want to prove (4.13), it is sufficient to show that

(i) n−1Z⊤Θ→ 0 a.s., n→∞;

(ii) n−1Θ⊤Z→ 0 a.s., n→∞;

(iii) n−1(Θ⊤Θ− nσ2I)→ 0 a.s., n→∞;

(iv) n−1(nσ2 − λ)→ 0 a.s., n→∞;
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(v) n−1Z⊤ε→ 0 a.s., n→∞;

(vi) n−1Θ⊤ε→ 0 a.s., n→∞.

Note that

sup
n∈NE|Zn,jΘn,k|2 = σ2 sup

n∈NZ2
n,j <∞, ∀j, k ∈ {1, . . . , p}.

Moreover, Lemma 4.3(i) implies that α(Z◦,jΘ◦,k, n) = O(n−qk/(2qk−2)−δk), which implies

α(Z◦,jΘ◦,k, n) = O(n−1−δk) for all j, k ∈ {1, . . . , p}. Applying SLLN for α-mixing (Theo-

rem 4.1), we have

n−1
n∑

i=1

Zi,jΘi,k
a.s.−−→ 0, n→∞, ∀j, k ∈ {1, . . . , p}.

Therefore, (i) holds and the similar arguments demonstrate (ii) and (v).

Again, it follows from Lemma 4.3(i) that α(Θ◦,jΘ◦,k, n) = O(n−1−δj∧δk) for all j, k ∈
{1, . . . , p} such that j 6= k. The supremum assumption of Theorem 4.1 is straightforwardly

satisfied, because the pairwise independence from (4.7) provides

sup
n∈NE|Θn,jΘn,k|2 = sup

n∈NEΘ2
n,jEΘ2

n,k = (σ2)2 <∞

for all j, k ∈ {1, . . . , p}, j 6= k. Hence, the SLLN for α-mixing yields

n−1
n∑

i=1

Θi,jΘi,k
a.s.−−→ 0, n→∞, ∀j, k ∈ {1, . . . , p}, j 6= k.

Thus the off-diagonal part of (iii) is satisfied and, moreover, the analogous arguments demon-

strate (vi).

Consequently, α(Θ2
◦,j , n) = O(n−qj/(2qj−2)−δj ) for all j ∈ {1, . . . , p} by Lemma 4.3(i).

Since supn∈NE|Θ2
n,j|qj < ∞ for all j ∈ {1, . . . , p}, then the SLLN for α-mixing can be

applied

n−1
n∑

i=1

Θ2
i,j

a.s.−−→ σ2, n→∞, ∀j ∈ {1, . . . , p},

and the “diagonal” part of (iii) holds as well.

Now,

n−1(λ− nσ2) = λmin(n
−1[X,Y]⊤[X,Y]− σ2I)

due to the eigendecomposition property. Let B := n−1[I,β]⊤Z⊤Z[I,β]. For each n ∈ N,

B is a positive semidefinite matrix of rank p. Thus it has p positive eigenvalues and the
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smallest one being zero. Note that

n−1([X,Y]⊤[X,Y]− nσ2I)−B

= n−1
{
[I,β]⊤Z⊤[Θ, ε] + [Θ, ε]⊤Z[I,β]

}
+ n−1

{
[Θ, ε]⊤[Θ, ε]− nσ2I

}
(4.16)

The first summand on the right hand side of equation (4.16) converges almost surely to zero

due to (i), (ii), and (v). The second one converges almost surely to zero as well, using similar

arguments as in (iii) and (vi). Furthermore, it follows from Lemma 3.4 that

λmin(n
−1[X,Y]⊤[X,Y]− σ2I)

a.s.−−−−→
n→∞

λmin(B) = 0,

which demonstrates (iv).

Finally, (iv) directly implies (4.14) and completes the proof.

Similarly as above, ϕ-mixing errors yield the EIV estimate’s strong consistency as well,

but under slightly different assumptions.

Theorem 4.5 (Strong consistency in EIV with ϕ-mixing). Let the EIV model hold and

assumption (D) be satisfied. Suppose

{Θn,1}∞n=1, . . . , {Θn,p}∞n=1, and {εn}∞n=1 (4.17)

are pairwise independent sequences of ϕ-mixing random variables such that

∞∑

n=1

√
ϕ(Θ◦,j, n) <∞, j ∈ {1, . . . , p} (4.18)

and

∞∑

n=1

√
ϕ(ε◦, n) <∞. (4.19)

If

∞∑

n=1

EΘ4
n,j

n2
<∞, j ∈ {1, . . . , p} (4.20)

and

∞∑

n=1

Eε4n
n2

<∞, (4.21)
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then

lim
n→∞

β̂ = β a.s., (4.22)

lim
n→∞

λ

n
= σ2 a.s. (4.23)

Proof. A process of proving this theorem is analogous to the proof of Theorem 4.4. The

only difference is that the SLLN for ϕ-mixing is applied instead of the SLLN for α-mixing.

Therefore, one does not have to take care about the supremum condition (4.3) and the

dependence coefficient assumption (4.4) from Theorem 4.1. On the other hand, the conver-

gence condition (4.5) on sum of the square roots of dependence coefficients ϕ(n) and the

convergence assumption (4.6) from Theorem 4.2 need to be fulfilled.

Let us consider six terms of (4.15) from the proof of Theorem 4.4. It follows from

Lemma 4.3(ii) that {Zn,jΘn,k}∞n=1 is also a ϕ-mixing sequence for all j, k ∈ {1, . . . , p} and,
moreover,

∞∑

n=1

√
ϕ(Z◦,jΘ◦,k, n) ≤

∞∑

n=1

√
ϕ(Θ◦,k, n) <∞, ∀j, k ∈ {1, . . . , p}.

Assumption (D) implies

0 < n−1
n∑

i=1

Z2
i,j → ∆j,j <∞, n→∞, ∀j ∈ {1, . . . , p}. (4.24)

Due to Lemma 3.7,

∞∑

n=1

E{Zn,jΘn,k}2
n2

= σ2
∞∑

n=1

Z2
n,j

n2
<∞, ∀j, k ∈ {1, . . . , p},

which allows us to apply the SLLN for ϕ-mixing. Hence, (i) holds and the similar arguments

provide (ii) and (v).

The rest of the proof is now pretty straightforward. In order to show (iii), (iv), and (vi),

one has to realize that Lemma 4.3(ii) yields ϕ(ξ2◦ , n) ≤ ϕ(ξ◦, n), ϕ(ξ◦ζ◦, n) ≤ ϕ(ξ◦, n) +

ϕ(ζ◦, n), and, furthermore,

∞∑

n=1

√
ϕ(ξ◦ζ◦, n) ≤

∞∑

n=1

√
ϕ(ξ◦, n) +

∞∑

n=1

√
ϕ(ζ◦, n) <∞

for ξn, ζn ∈ {Θn,1, . . . ,Θn,p, εn}, ξn 6= ζn. Moreover, (4.20)–(4.21) hold and, due to the

pairwise independence from (4.17),

∞∑

n=1

E{ξnζn}2
n2

=

∞∑

n=1

Eξ2nEζ2n
n2

=
π2σ4

6
<∞,
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for ξn, ζn ∈ {Θn,1, . . . ,Θn,p, εn}, ξn 6= ζn, which completes the proof.

4.2.1 Discussion

The assumptions of pairwise independence (4.7) and (4.17) between mixing sequences of

errors on the within-individual level are crucial and cannot be omitted. The reason for

this is that the form of the EIV estimate depends on the product of errors ξnζn, where

ξn, ζn ∈ {Θn,1, . . . ,Θn,p, εn}. The assumption of pairwise independence preserves the prop-

erty of being α- or ϕ-mixing for such a product of weakly dependent disturbances due to

Lemma 4.3. It may be thought of incorporating an extra form of weak dependence on the

within-individual error level as well, but this could unfortunately require very complicated

additional assumptions.

Heteroscedastic covariance structure of the within-individual errors can even be esti-

mated without possessing repeated observations for each “individual”, but a structure of

the covariance matrix has to be predefined in advance according to some prior knowledge

about the data dependence. E.g., if there is no reason to suppose that the error structure is

changing over particular covariates and response, Toeplitz or AR(1) covariance models are

reasonable choices.

Moreover, if we compare the assumptions for α- and ϕ-mixing in our EIV model, α-

mixing has weaker assumptions on dependence of the errors (every ϕ-mixing is α-mixing,

see e.g., Bradley (2005)), but stronger on the design (α-mixing requires bounded moments

of the errors). For ϕ-mixing, it is the other way around. Indeed, assumptions (4.18)–(4.19)

imply

ϕ(Θ◦,j, n) = o(n−2), n→∞, j ∈ {1, . . . , p}

and

ϕ(ε◦, n) = o(n−2), n→∞.

Taking into account α(n) ≤ ϕ(n) and supposing

ϕ(Θ◦,j, n) = O(n−2−δj ), n→∞, j ∈ {1, . . . , p},

ϕ(ε◦, n) = O(n−2−δp+1), n→∞

(which imply assumptions (4.18)–(4.19)), assumptions (4.8) and (4.9) are satisfied for some

4/3 ≤ qj ≤ 2, j ∈ {1, . . . , p + 1}. On the other hand, assumptions (4.11)–(4.12) with

qj = 2, j ∈ {1, . . . , p + 1} clearly imply assumptions (4.20)–(4.21). The choice of qj is

essential as well. Smaller qjs make assumptions (4.11)–(4.12) less restrictive, but then,

assumptions (4.8) and (4.9) become less realizable.
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Additional design assumption (4.10), which is necessary for proving strong consistency

for α-mixing errors, may be viewed as a competitive one to the “basic” design assump-

tion (D). These assumptions are not equivalent and neither of them implies the other one.

On the other hand, assumption (4.10) can be considered as a supplementary assumption

to assumption (D) in the following sense: (D) implies (4.24). Hence, Lemma 3.7 yields

Z2
n,j = o(n2), n→∞ for all j ∈ {1, . . . , p}, which is a weaker condition than the equibound-

edness of Z2
n,j over all n ∈ N for all j ∈ {1, . . . , p} from (4.10).

Finally, if identically distributed rows of errors (between-individual level) with an exis-

tence of their suitable moments are taken into account, assumptions (4.11)–(4.12) and (4.20)–

(4.21) are trivially satisfied. Then, a strict stationarity of the between-individual errors with

an existence of the appropriate moments has to imply these assumptions as well. Hence,

moment assumptions (4.11)–(4.12) and (4.20)–(4.21) cannot be considered as unattainable.

Moreover, for strictly stationary errors even the supremum in definitions (4.1) and (4.2) can

simply be avoided.

4.3 Asymptotic Normality

A weak invariance principle (WIP) (also known as a functional central limit theorem) is

a functional convergence of the sum of variables to the standard Wiener process W . This

principle for α-mixing variables will be recalled.

Put Sn :=
∑n

i=1 ξi and ς2n := VarSn. Define random elements on Skorokhod space

D[0, 1] as follows:

Wn(t) :=
S[nt]

ςn
, 0 ≤ t ≤ 1, (4.25)

where [·] denotes the nearest integer function. The expression ς2n is usually called long-run

variance.

Lemma 4.6 (Weak invariance principle for α-mixing). Let {ξn}∞n=1 be a sequence of zero

mean α-mixing random variables with

sup
n∈NE|ξn|2+ω <∞ (4.26)

and

∞∑

n=1

α(n)ω/(2+ω) <∞ (4.27)

for some ω > 0. Suppose thatES2
n

n
→ ς2 > 0, n→∞ (4.28)
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is satisfied. Then

Wn
D[0,1]−−−−→W , n→∞. (4.29)

Proof. See Herrndorf (1985) or Lin and Lu (1997, Corollary 3.2.1).

Since the central limit theorem is just a special case of the weak invariance principle,

then a corollary of previous Lemma 4.6 can be stated.

Corollary 4.7 (Central limit theorem for α-mixing). Suppose that all the assumptions of

Lemma 4.6 on a sequence of zero mean α-mixing random variables {ξn}∞n=1 are satisfied.

Then

Sn

ςn

D−→ N (0, 1), n→∞. (4.30)

Proof. Since a functional distributional limit (a convergence in Skorokhod space) implies

the pointwise distributional limit, this corollary is just a special case of Lemma 4.6, when

Wn(1) is considered.

Lemma 4.8 (Lindeberg central limit theorem for ϕ-mixing). Let {ξn}∞n=1 be a sequence

of zero mean ϕ-mixing random variables having finite variance. Suppose that the Lindeberg

condition

∀δ > 0 : lim
n→∞

1

ς2n

n∑

i=1

Eξ2i I{|ξi| > δςn} = 0 (4.31)

is satisfied. Then

Sn

ςn

D−→ N (0, 1), n→∞.

Proof. See Utev (1990, Corollary 4).

Lindeberg condition (4.31) can be replaced by a stronger type of Lyapunov condition.

This fact leads into the following corollary, which is more comfortable for us from the point

of applicability.

Corollary 4.9 (Central limit theorem for ϕ-mixing). Let {ξn}∞n=1 be a sequence of zero

mean ϕ-mixing random variables such that

sup
n∈NE|ξn|2+ω <∞ (4.32)

for some ω > 0 andES2
n

n
→ ς2 > 0, n→∞. (4.33)
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Then

Sn

ςn

D−→ N (0, 1), n→∞. (4.34)

Proof. We show that assumptions (4.32) and (4.33) implies Lindeberg condition (4.31) from

Lemma 4.8.

The first step is to show that conditions (4.32) and (4.33) implies so-called Lyapunov

condition, i.e., having fixed ω > 0:

1

ς2+ω
n

n∑

i=1

E|ξi|2+ω ≤ 1

ς2+ω
n

n∑

i=1

sup
ι∈NE|ξι|2+ω =

n

ς2+ω
n

sup
ι∈NE|ξι|2+ω → 0, n→∞.

Now, Lyapunov condition limn→∞ ς−2−ω
n

∑n
i=1E|ξi|2+ω = 0 holds and we fix δ > 0.

Since |ξi| > δςn implies |ξi/δςn|ω > 1, we obtain

1

ς2n

n∑

i=1

Eξ2i I{|ξi| > δςn} ≤
1

δως2+ω
n

n∑

i=1

E|ξi|2+ωI{|ξi| > δςn}

≤ 1

δως2+ω
n

n∑

i=1

E|ξi|2+ω → 0, n → ∞.

Assumption (4.33) may even be replaced by a weaker one:

lim inf
n→∞

ES2
n

n
= ς2 > 0,

where the limit inferior is used instead of the original limit.

The first main result of this section is the asymptotic normality for the EIV estimate,

where the errors are α-mixing.

Theorem 4.10 (Asymptotic normality in EIV with α-mixing). Let the EIV model hold and

assumption (D) be satisfied. Suppose

{Θn,1}∞n=1, . . . , {Θn,p}∞n=1, and {εn}∞n=1 (4.35)

are pairwise independent sequences of α-mixing random variables having

α(Θ◦,j , n) = O(n−1−δj ), j = 1, . . . , p (4.36)

and

α(ε◦, n) = O(n−1−δp+1), (4.37)
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as n→∞ for some δj > 0, j ∈ {1, . . . , p+ 1}. Moreover, assume that

sup
n∈NZ2

n,j <∞, j ∈ {1, . . . , p}, (4.38)

sup
n∈NE|Θn,j |4+ωj <∞, j ∈ {1, . . . , p}, (4.39)

and

sup
n∈NE|εn|4+ωp+1 <∞ (4.40)

for some ωj > 0, j ∈ {1, . . . , p+ 1} such that

2

minj=1,...,p+1 ωj
< min

j=1,...,p+1
δj. (4.41)

If there exists a positive definite matrix i such that

n−1Var [X,Y]⊤[X,Y]


 β

−1


→ i > 0, n→∞; (4.42)

then

√
n
(
β̂ − β

)
D−→ N (0, ·), n→∞. (4.43)

Proof. Assumptions of Theorem 4.10 imply the assumptions of Theorem 4.4. Indeed, the

assumptions of pairwise independence (4.7) and (4.35) coincide. Similarly for assump-

tions (4.10) and (4.38). Assumptions on α-mixing rates (4.36) and (4.37) clearly imply

assumptions (4.8) and (4.9) for any δj > 0 and 1 < qj ≤ 2, j ∈ {1, . . . , p+1}. Supremum as-

sumptions (4.39)–(4.40) imply (4.11)–(4.12) for any ωj > 0 and 1 < qj ≤ 2, j ∈ {1, . . . , p+1}
as well, because of a corollary of the Jensen’s inequality

(E|ξ|r)1/r ≤ (E|ξ|s)1/s, 0 < r < s <∞. (4.44)

Let us recall (3.41):

√
n(β̂ − β) = −∆−1

n

(
[I,β]

[
I, β̂
]⊤)−1

[I,β]

(
n−1/2

{
[X,Y]⊤[X,Y]−E[X,Y]⊤[X,Y]

})

 β

−1


 .

Assumptions of this theorem imply the assumptions of Theorem 4.4 and, hence, its consis-
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tency results can be used. With respect to (1.27), we have

∆−1
n

(
[I,β]

[
I, β̂
]⊤)−1

[I,β]
a.s.−−→∆−1

(
[I,β] [I,β]

⊤
)−1

[I,β] , n→∞. (4.45)

The inverse ∆n exists with probability tending to one due to (D) and (1.27) and the inverse

of [I,β]
[
I, β̂
]⊤

due to (3.42). Moreover, matrix [I,β] [I,β]
⊤
= I + ββ⊤ is always positive

definite and, hence, regular.

Convergence almost surely from (4.45) and Slutsky’s theorem (see Appendix A.2, The-

orem A.2) reduce the problem of finding a limiting distribution for
√
n(β̂ − β) to that of

finding a limiting distribution for

n−1/2
(
[X,Y]⊤[X,Y]−E[X,Y]⊤[X,Y]

)

 β

−1




= n−1/2
(
[I,β]⊤Z⊤[Θ, ε] + [Θ, ε]⊤[Θ, ε]− nσ2I

)

 β

−1


 . (4.46)

Now, it is sufficient to prove the univariate asymptotic normality of

n−1/2
n∑

i=1

t⊤
(
[Z,Zβ]⊤i,•[Θ, ε]i,• + [Θ, ε]⊤i,•[Θ, ε]i,• − σ2I

)

 β

−1


 , ∀t ∈ Rp+1;

and apply the Cramér-Wold theorem (see Appendix A.2, Theorem A.3). If

t = c


 β

−1




for some real constant c 6= 0, then each t⊤[Z,Zβ]⊤i,• = 0. We have a sum of zero mean

α-mixing random variables

̟i := c[β⊤,−1]
(
[Θ, ε]⊤i,•[Θ, ε]i,• − σ2I

)

 β

−1


 = c

{
(Θi,•β − εi)2 − σ2(1 + β⊤β)

}
,

(4.47)

which satisfies all the assumptions of Corollary 4.7. In fact, assumption (4.26) holds, because
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Lemma 3.5 (used twice) and (4.39)–(4.40) provide

sup
n∈NE ∣∣c{(Θn,•β − εn)2 − σ2(1 + β⊤β)

}∣∣2+ω

≤ 21+ω
∣∣cσ2(1 + β⊤β)

∣∣2+ω
+ 21+ωc2+ω sup

n∈NE|εn|+ p∑

j=1

|βj ||Θn,j|




4+2ω

≤ 21+ω
∣∣cσ2(1 + β⊤β)

∣∣2+ω

+ 21+ωc2+ω(p+ 1)3+2ω



sup

n∈NE|εn|4+2ω +

p∑

j=1

|βj |4+2ω sup
n∈NE|Θn,j|4+2ω



 <∞,

where it is sufficient to consider ω = 1/2minj=1,...,p+1 ωj and realize (4.44).

Since Lemma 4.3(i) yields

α
(
c
{
(Θ◦,•β − ε◦)2 − σ2(1 + β⊤β)

}
, n
)
≤ α(ε◦, n) +

p∑

j=1

α(Θ◦,j , n),

assumption (4.27) holds due to the concavity of function u 7→ uω/(2+ω), ω > 0 in u ≥ 0:

∞∑

n=1

α (̟◦, n)
ω/(2+ω) =

∞∑

n=1

α
(
c
{
(Θ◦,•β − ε◦)2 − σ2(1 + β⊤β)

}
, n
)ω/(2+ω)

≤
∞∑

n=1

α(ε◦, n)
ω/(2+ω) +

p∑

j=1

∞∑

n=1

α(Θ◦,j , n)
ω/(2+ω) < ∞, ω > 0;

which is true because of (4.41) and the fact that

α(Θ◦,j , n)
ω/(2+ω) = O

(
n−1−

δjω−2

2+ω

)
, δj > 2/ω > 0, j ∈ {1, . . . , p} (4.48)

and

α(ε◦, n)
ω/(2+ω) = O

(
n−1−

δjω−2

2+ω

)
, δp+1 > 2/ω > 0. (4.49)

Using (4.42) and (4.46), let us elaborate

1

n
E( n∑

i=1

̟i

)2

=
1

n
Ec[β⊤,−1]

(
[Θ, ε]⊤[Θ, ε]− nσ2I

)

 β

−1







2



90 4.3 ASYMPTOTIC NORMALITY

=
1

n
E[β⊤,−1]

(
[X,Y]⊤[X,Y]−E[X,Y]⊤[X,Y]

)

 β

−1




[β⊤,−1]
(
[X,Y]⊤[X,Y]−E[X,Y]⊤[X,Y]

)

 β

−1




= [β⊤,−1]





1

n
Var [X,Y]⊤[X,Y]


 β

−1








 β

−1




→ [β⊤,−1]i


 β

−1


 > 0, n→∞; (4.50)

and, hence, (4.28) is satisfied. Therefore, Corollary 4.7 provides the asymptotic normality

of n−1/2
∑n

i=1̟i.

The case of t = 0 is trivial. On the other hand, if

0 6= t 6= c


 β

−1




for any real constant c 6= 0, then we have a sum of zero mean α-mixing random variables

ρi := t⊤
(
[Z,Zβ]⊤i,•[Θ, ε]i,• + [Θ, ε]⊤i,•[Θ, ε]i,• − σ2I

)

 β

−1


 (4.51)

= Zi,•t−(p+1)Θi,•β + Zi,•βtp+1Θi,•β − Zi,•t−(p+1)εi − Zi,•βtp+1εi

+Θi,•t−(p+1)Θi,•β + tp+1εiΘi,•β −Θi,•t−(p+1)εi − tp+1ε
2
i − σ2t⊤


 β

−1


 ,

which again satisfies all the assumptions of Corollary 4.7. In fact, assumption (4.26) holds

for ω = 1/2minj=1,...,p+1 ωj realizing Lemma 3.5, (4.39), (4.40), and (4.44) together with

the Cauchy-Schwarz inequality:

sup
n∈NE|ρn|2+ω ≤ 91+ω sup

n∈NE{|Zn,•t−(p+1)Θn,•β|2+ω + |Zn,•βtp+1Θn,•β|2+ω

+ |Zn,•t−(p+1)εn|2+ω + |Zn,•βtp+1εn|2+ω + |Θn,•t−(p+1)Θn,•β|2+ω

+ |tp+1εnΘn,•β|2+ω + |Θn,•t−(p+1)εn|2+ω + |tp+1ε
2
n|2+ω

+ |σ2(t⊤−(p+1)β − tp+1)|2+ω

}

≤ 91+ω

{
sup
n∈N |Zn,•t−(p+1)|2+ω sup

n∈NE|Θn,•β|2+ω
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+ sup
n∈N |Zn,•βtp+1|2+ω sup

n∈NE|Θn,•β|2+ω

+ sup
n∈N |Zn,•t−(p+1)|2+ω sup

n∈NE|εn|2+ω

+ sup
n∈N |Zn,•βtp+1|2+ω sup

n∈NE|εn|2+ω

+

[
sup
n∈NE|Θn,•t−(p+1)|4+2ω

]1/2 [
sup
n∈NE|Θn,•β|4+2ω

]1/2

+

[
sup
n∈NE|tp+1εn|4+2ω

]1/2 [
sup
n∈NE|Θn,•β|4+2ω

]1/2

+

[
sup
n∈NE|Θn,•t−(p+1)|4+2ω

]1/2 [
sup
n∈NE|εn|4+2ω

]1/2

+ |tp+1| sup
n∈NE|εn|4+2ω + |σ2(t⊤−(p+1)β − tp+1)|2+ω

}

≤ 91+ω

{
p2+2ω max

j=1,...,p
|tj |2+ω

p∑

j=1

sup
n∈N |Zn,j|2+ω max

j=1,...,p
|βj |2+ω

p∑

j=1

sup
n∈NE|Θn,j |2+ω

+ p2+2ω|tp+1| max
j=1,...,p

|βj |2+ω

p∑

j=1

sup
n∈N |Zn,j |2+ω max

j=1,...,p
|βj |2+ω

p∑

j=1

sup
n∈NE|Θn,j|2+ω

+ p1+ω max
j=1,...,p

|tj |2+ω

p∑

j=1

sup
n∈N |Zn,j|2+ω sup

n∈NE|εn|2+ω

+ p1+ω|tp+1| max
j=1,...,p

|βj |2+ω

p∑

j=1

sup
n∈N |Zn,j |2+ω sup

n∈NE|εn|2+ω

+ p3+2ω max
j=1,...,p

|tj |2+ω max
j=1,...,p

|βj |2+ω

p∑

j=1

sup
n∈NE|Θn,j |4+2ω

+ p3/2+ω|tp+1|2+ω max
j=1,...,p

|βj |2+ω




p∑

j=1

sup
n∈NE|Θn,j|4+2ω



1/2 [

sup
n∈NE|εn|4+2ω

]1/2

+ p3/2+ω max
j=1,...,p

|tj |2+ω




p∑

j=1

sup
n∈NE|Θn,j |4+2ω



1/2 [

sup
n∈NE|εn|4+2ω

]1/2

+ |tp+1| sup
n∈NE|εn|4+2ω + |σ2(t⊤−(p+1)β − tp+1)|2+ω

}
<∞,

because assumption (4.38) and supn∈N |Zn,j |2+ω <∞, ω > 0, j ∈ {1, . . . , p+1} are equiva-
lent.

Lemma 4.3(i) provides

α(ρ◦, n) ≤ α(ε◦, n) +
p∑

j=1

α(Θ◦,j , n).



92 4.3 ASYMPTOTIC NORMALITY

Consequently, assumption (4.27) holds due to the concavity of function u 7→ uω/(2+ω), ω > 0

in u ≥ 0:

∞∑

n=1

α(ρ◦, n)
ω/(2+ω) ≤

∞∑

n=1

α(ε◦, n)
ω/(2+ω) +

p∑

j=1

∞∑

n=1

α(Θ◦,j , n)
ω/(2+ω) <∞, ω > 0;

and due to (4.48) and (4.49).

Let us calculate

1

n
E( n∑

i=1

ρi

)2

=
1

n
Et⊤

(
[Z,Zβ]⊤[Θ, ε] + [Θ, ε]⊤[Θ, ε]− nσ2I

)

 β

−1







2

=
1

n
Et⊤ ([X,Y]⊤[X,Y] −E[X,Y]⊤[X,Y]

)

 β

−1




[β⊤,−1]
(
[X,Y]⊤[X,Y]−E[X,Y]⊤[X,Y]

)
t

= t⊤





1

n
Var [X,Y]⊤[X,Y]


 β

−1





 t

→ t⊤it > 0, n→∞; (4.52)

and assumption (4.28) is satisfied as well. Thus, Corollary 4.7 implies that n−1/2
∑n

i=1 ρi

has asymptotically zero mean normal distribution.

The second main result of this section is the asymptotic normality of the EIV estimate,

where the errors are ϕ-mixing.

Theorem 4.11 (Asymptotic normality in EIV with ϕ-mixing). Let the EIV model hold and

assumption (D) be satisfied. Suppose

{Θn,1}∞n=1, . . . , {Θn,p}∞n=1, and {εn}∞n=1 (4.53)

are pairwise independent sequences of ϕ-mixing random variables such that

∞∑

n=1

√
ϕ(Θ◦,j , n) <∞, j ∈ {1, . . . , p} (4.54)

and

∞∑

n=1

√
ϕ(ε◦, n) <∞. (4.55)
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Moreover, assume that

sup
n∈NZ2

n,j <∞, j ∈ {1, . . . , p}, (4.56)

sup
n∈NE|Θn,j |4+ωj <∞, j ∈ {1, . . . , p}, (4.57)

and

sup
n∈NE|εn|4+ωp+1 <∞ (4.58)

for some ωj > 0, j ∈ {1, . . . , p+ 1}. If there exists a positive definite matrix i such that

n−1Var [X,Y]⊤[X,Y]


 β

−1


→ i > 0, n→∞; (4.59)

then

√
n
(
β̂ − β

)
D−→ N (0, ·), n→∞. (4.60)

Proof. This proof contains very similar ideas as the proof of Theorem 4.10.

Assumptions of Theorem 4.11 imply the assumptions of Theorem 4.5. Indeed, assump-

tions of pairwise independence (4.17) and (4.53) coincide. Similarly for assumptions (4.18)–

(4.19) and (4.54)–(4.55). Assumptions (4.20)–(4.21) follow directly from (4.57)–(4.58), be-

cause (4.44), (4.57), and (4.58) yield

sup
n∈NEξ4n ≤ (sup

n∈NE|ξn|4+ω

)4/(4+ω)

<∞

for ξn ∈ {Θn,1, . . . ,Θn,p, εn} and ω = minj=1,...,p+1 ωj . Hence,

∞∑

n=1

Eξ4n
n2
≤

∞∑

n=1

supι∈NEξ4ι
n2

= sup
ι∈NEξ4ι ∞∑

n=1

1

n2
<∞.

Therefore, consistency results for ϕ-mixing errors can be used.

With respect to the Slutsky’s theorem, to the Cramér-Wold theorem, and to the proof of

Theorem 4.10, it is necessary to find the limiting distribution of {̟n}∞n=1 defined in (4.47)

and {ρn}∞n=1 from (4.51) for

0 6= t 6= c


 β

−1


 , c 6= 0.

In light of Corollary 4.9, we only need to check whether sequences {̟n}∞n=1 and {ρn}∞n=1 are
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ϕ-mixing sequences, i.e., ϕ(̟◦, n) → 0 and ϕ(ρ◦, n) → 0 as n → ∞. This follows directly

from Lemma 4.3(ii) and assumptions ϕ(Θ◦,j, n) → 0 for j = 1, . . . , p and ϕ(ε◦, n) → 0 as

n → ∞. The rest of the assumptions of Corollary 4.9 is included in the assumptions of

Corollary 4.7 and has been completely checked on sequences {̟n}∞n=1 and {ρn}∞n=1 in the

proof of Theorem 4.10.

4.3.1 Discussion

Assuming that a sequence of random variables is ϕ-mixing implies that this sequence is

α-mixing. On the other hand, the central limit theorem for ϕ-mixing (Corollary 4.9) has

weaker assumptions than the central limit theorem for α-mixing (Corollary 4.7). Indeed,

Corollary 4.9 does not require any assumption onmixing rate ϕ(n) such as assumption (4.27)

on α-mixing rates. Therefore in Theorem 4.11, we do not have to deal with mixing rate

assumptions like (4.36)–(4.37) nor a restriction on the moment order like (4.41) as in Theo-

rem 4.10. On the other hand, Theorem 4.9 requires mixing rate assumptions (4.54)–(4.55),

which are inherited from the assumptions for the strong consistency of the EIV estimate.

Both asymptotic normality results of the EIV estimate (Theorem 4.10 and Theorem 4.11)

require all the assumptions from the strong mixing results (Theorem 4.4 and Theorem 4.5),

because these convergences almost surely were used in the proofs of the asymptotic normal-

ity.

Assumptions (4.42) and (4.59) concerning the long-run variance of the EIV estimate

are requisite and cannot be omitted, because they assure that the variance of the EIV

estimate is bounded away from zero and, simultaneously, does not explode into infinity.

These assumptions straightforwardly allow to apply the appropriate CLT in order to prove

the asymptotic normality of
√
n(β̂ − β).

Assumptions and remarks regarding the error structure, the pairwise independence, or

the strict stationarity of errors have been already discussed in Subsection 4.2.1.

Zero mean errors are implicitly assumed through the whole chapter and are not explicitly

specified in every theorem, because this assumption is a part of the EIV model’s definition

valid for the whole thesis.

4.4 Conclusions

An error structure of the EIV model with weakly dependent errors is introduced in this

chapter. Strong laws of large numbers for strong mixing and uniformly strong mixing are

summarized. They allow us to derive and prove a strong consistency of the EIV estimate

under both forms of errors’ asymptotic independence. Furthermore, any form of stationarity

does not have to be imposed on the errors. In these settings, the strong consistency of the

nuisance variance parameter is proved as well.
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Secondly, suitable central limit theorems for strong mixing and uniformly strong mixing

are postulated. Consequently, an asymptotic normality of
√
n(β̂−β) under α- and ϕ-mixing

(generally non-stationary) errors of the EIV model is shown. Similar situation as in the in-

dependent errors’ case would occur with the calculation of variance of the EIV estimate.

Since the variance is already computationally useless when the errors are independent, an-

other approach, that provides the approximate (estimated) asymptotic variance of the EIV

estimate, needs to be proposed.
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Chapter 5
Block Bootstrap

If you want to inspire confidence, give

plenty of statistics. It does not matter

that they should be accurate, or even

intelligible, as long as there is enough

of them.

Lewis Carroll

The asymptotic variance of the EIV estimate is very complicated and, moreover, com-

putationally useless, when the errors in the EIV model are independent. This serious issue

was overcome by the nonparametric bootstrapping.

Intuitively, a similar problem will arise when considering weakly dependent errors of the

EIV model, because the independence is a special case of every type of the weak dependence.

Therefore, it would be a waste of effort to try calculating the asymptotic variance of the

EIV estimate, when the errors are weakly dependent.

A generalization of the nonparametric bootstrap (case sampling with replacement)—block

bootstrap—is used. Instead of sampling individual cases, the blocks of adjacent observations

are resampled with replacement. Stacking individual adjacent cases together into one solid

block partly preserves the dependence between consecutive observations. Since the weak

dependence can be seen as an asymptotic independence, the blocks can be resampled inde-

pendently. It is a way how to achieve that the dependence between faraway observations is

vanishing.

5.1 Moving Block Bootstrap

Various types of the block bootstrap procedures were proposed. Lahiri (2003) provided

a comprehensive summary. The main difference between the block bootstrap types is the way

97
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of drawing the blocks of observations. Non-overlapping block bootstrap refers to resampling

blocks, which do not overlap. This approach is less efficient for estimation, because some

observations are not allowed to be joined into the same block. We consider moving block

bootstrap (MBB), where a consecutive block is formed from the previous one via shifting the

“stacking window” by one observation ahead. The exact algorithm of the MBB for a sample

mean of univariate observations is precisely described in Procedure 5.1.

Procedure 5.1 Moving block bootstrap for the sample mean.

Input: Data consisting of n observations ξi and n = mb.

Output: Empirical bootstrap distribution of sample mean ξ̄ := n−1
∑n

i=1 ξi, i.e., the em-

pirical distribution where probability mass 1/D concentrates at each of (1)ξ̄
∗, . . . , (D)ξ̄

∗.

1: define Bj as the block of b consecutive ξi’s starting from ξj , that is Bj = [ξj , . . . , ξj+b−1]
⊤

for j = 1, . . . , q, where q := n− b+ 1

2: for d = 1 to D do // repeat in order to obtain empirical distribution of ξ̄

3: resample with replacement (d)C1, . . . , (d)Cm independently from {B1, . . . , Bq} with
equal probability 1/q, where each (d)Ci, i = 1, . . . ,m, is a block of size b with (d)Ci =

[(d)ci1, . . . , (d)cib]
⊤ // Let P∗ be the (bootstrap) distribution of (d)Ci conditional on

the sample {ξ1, . . . , ξn}. So, given ξ1, . . . , ξn, them random blocks, (d)C1, . . . , (d)Cm,

are iid distributed according to P∗.

4: the MBB resample of size n, denoted by (d)ξ
∗
1 , . . . , (d)ξ

∗
n, is formed by joining the

(d)C1, . . . , (d)Cm to one big block, i.e., (d)ξ
∗
i = (d)cτν for τ = [(i − 1)/b] + 1, ν =

i − bτ , and i = 1, . . . , n // (d)ξ
∗ ≡ [(d)ξ

∗
1 , . . . , (d)ξ

∗
n]

⊤ is called the MBB version of

ξ ≡ [ξ1, . . . , ξn]
⊤.

5: let the resample average be (d)ξ̄
∗ ← n−1

∑n
i=1 (d)ξ

∗
i

6: end for

The length of the blocks—blocksize—is denoted by b ∈ N. Without loss of generality to

the asymptotical properties of the EIV estimate, let us suppose that b | n, i.e., there exist

m ∈ N such that n = mb. In other words, we just neglect an integer division problem. For

practical and computational purposes, if b ∤ n, then we can truncate the quotient n/b to

an integer value.

An extension of the MBB is a circular block bootstrap, where the observations are not

ordered on a single line, but they are put into a circle. The order of the observations is

preserved with the only exception that the last observation on the circle is followed by

the first one. Hence, the stacking window can join the first and the last observations into

one block. The application of the circular block bootstrap as an extension of the MBB is

postponed for some further work and is not considered in this thesis.

Until this moment, we have considered the length of the blocks as a constant, but the

whole idea of block bootstrapping can be generalized for a varying size of blocks. This

extension is not taken into account in this thesis due to its huge complexity, which would
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bring us far beyond the borders of problems that are dealt here.

The MBB procedure was independently suggested by Künsch (1989) and Liu and Singh

(1992) for the case of sample mean. Lahiri (1992) and Politis and Romano (1992) extended

these results, but still considered only strictly stationary processes. Fitzenberger (1997)

generalized previous approaches for non-stationary processes and applied the MBB approach

for the linear regression setup.

5.2 Asymptotic Properties for Moving Block Bootstrap

Asymptotic properties for the MBB need to be postulated, which will be used for proving

a correctness of the MBB procedure for the EIV estimate.

5.2.1 Law of Large Numbers for Moving Block Bootstrap

First of all, the weak law of large numbers for the bootstrapped sampled mean from a gen-

erally non-stationary α-mixing is shown.

Lemma 5.1 (Bootstrap weak law of large numbers for α-mixing). Let {ξn}∞n=1 be a sequence

of zero mean α-mixing random variables satisfying

sup
n∈NEξ2n <∞. (5.1)

Assume that there exists δ > 0 such that

α(n) = O
(
n−1−δ

)
, n→∞. (5.2)

If b→∞ and b = o(n1/2), n→∞, then under MBB Procedure 5.1

n−1
n∑

i=1

ξ∗i − n−1
n∑

i=1

ξi
P∗

ξ(P)
−−−−→
n→∞

0,

where ξ∗ ≡ [ξ∗1 , . . . , ξ
∗
n]

⊤ is the MBB version of ξ ≡ [ξ1, . . . , ξn]
⊤.

Proof. The idea of this proof is borrowed from Fitzenberger (1997, Lemma A.3). Sequence

{ξn}∞n=1 is uniformly bounded in probability P, because (5.1) is assumed. By the assump-

tions for {ξn}∞n=1 and Lemma 4.1, it is known that a SLLN holds for the sample mean

n−1
∑n

i=1 ξi. By Corollary A.2 from Fitzenberger (1997), it follows that

VarP∗

ξ

(
n−1

n∑

i=1

ξ∗i

)
= OP(n−1), n→∞.
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Thus the claim holds due to Lemma A.1 by Fitzenberger (1997), whereEP∗

ξ
n−1

n∑

i=1

ξ∗i = n−1
n∑

i=1

ξi + oP(n−1/2), n→∞.

Similarly as above, the weak law of large numbers for the bootstrapped sample mean is

recalled, but a ϕ-mixing sequence is considered this time.

Lemma 5.2 (Bootstrap weak law of large numbers for ϕ-mixing). Let {ξn}∞n=1 be a sequence

of zero mean ϕ-mixing random variables satisfying

∞∑

n=1

Eξ2n
n2

<∞

and

∞∑

n=1

√
ϕ(n) <∞. (5.3)

If b→∞ and b = o(n1/2), n→∞, then under MBB Procedure 5.1

n−1
n∑

i=1

ξ∗i − n−1
n∑

i=1

ξi
P∗

ξ(P)
−−−−→
n→∞

0,

where ξ∗ ≡ [ξ∗1 , . . . , ξ
∗
n]

⊤ is the MBB version of ξ ≡ [ξ1, . . . , ξn]
⊤.

Proof. The proof is the same as the proof of previous Lemma 5.1 except one detail—the

SLLN for ϕ-mixing (Lemma 4.2) has to be applied instead of Lemma 4.1 for α-mixing.

5.2.2 Central Limit Theorem for Moving Block Bootstrap

Central limit theorems for the bootstrapped sample mean from non-stationary strong mixing

or uniformly strong mixing sequences are stated.

Theorem 5.3 (Bootstrap central limit theorem for α-mixing). Let {ξn}∞n=1 be a sequence

of zero mean α-mixing random variables with

sup
n∈NE|ξn|4+ω <∞ (5.4)

and

α(n) = O(n−1−δ), n→∞ (5.5)



CHAPTER 5. BLOCK BOOTSTRAP 101

for some ω > 0 and δ > 0 such that

4

ω
< δ. (5.6)

Denote

ξ̄n := n−1
n∑

i=1

ξi and ξ̄∗n := n−1
n∑

i=1

ξ∗i .

Suppose that

lim inf
n→∞

ES2
n

n
= ς2 > 0 (5.7)

is satisfied. If b→∞ and b = o(n1/2), n→∞, then under MBB Procedure 5.1

sup
x∈R ∣∣∣∣∣P∗

ξ

(
n√ES2

n

(
ξ̄∗n − ξ̄n

)
≤ x

)
−P( n√ES2

n

ξ̄n ≤ x
)∣∣∣∣∣

P−→ 0, n→∞, (5.8)

where ξ∗ ≡ [ξ∗1 , . . . , ξ
∗
n]

⊤ is the MBB version of ξ ≡ [ξ1, . . . , ξn]
⊤.

Proof. See Fitzenberger (1997, Theorem 3.1).

Similar theorem for independent and identically distributed random variables was proved

by Singh (1981). Consequently, Politis and Romano (1992) proved a version of this theorem

for strong stationary α-mixing sequences.

Theorem 5.4 (Bootstrap central limit theorem for ϕ-mixing). Let {ξn}∞n=1 be a sequence

of zero mean ϕ-mixing random variables with

sup
n∈NE|ξn|4 <∞ (5.9)

and

ϕ(n) = O(n−2−δ), n→∞ (5.10)

for some δ > 0. Denote

ξ̄n := n−1
n∑

i=1

ξi and ξ̄∗n := n−1
n∑

i=1

ξ∗i .

Suppose that

lim inf
n→∞

ES2
n

n
= ς2 > 0 (5.11)
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is satisfied. If b→∞ and b = o(n1/2), n→∞, then under MBB Procedure 5.1

sup
x∈R ∣∣∣∣∣P∗

ξ

(
n√ES2

n

(
ξ̄∗n − ξ̄n

)
≤ x

)
−P( n√ES2

n

ξ̄n ≤ x
)∣∣∣∣∣

P−→ 0, n→∞, (5.12)

where ξ∗ ≡ [ξ∗1 , . . . , ξ
∗
n]

⊤ is the MBB version of ξ ≡ [ξ1, . . . , ξn]
⊤.

Proof. The proof of Theorem 5.4 remains almost the same as the proof of Theorem 3.1

by Fitzenberger (1997) except three facts: we use the CLT for ϕ-mixing observations, i.e.,

Corollary 4.9, instead of Theorem 5.3 by Gallant and White (1988); another covariance

inequality, i.e., Lemma 1.2.8 by Lin and Lu (1997) instead of Theorem 3 by Doukhan (1994);

and a suitable bootstrap WLLN, i.e., Lemma 5.2 instead of Lemma A.3 by Fitzenberger

(1997). The proof of Theorem 3.1 provided by Fitzenberger (1997) is very long and nothing

has to be changed in it except the usage of the CLT and the covariance inequality for the

ϕ-mixing sequences. Therefore, we omit such a “copy-paste” exercise.

Alternatively, a variation of Theorem 5.4 can be proved as a corollary of Theorem 5.3

realizing that for the mixing coefficients holds α(n) ≤ ϕ(n), but in that case, additional

assumption (5.6) needs to be assumed and the equiboundedness of higher moments (com-

pare (5.4) against (5.9)) would be required. The property of being ϕ-mixing is more re-

strictive than being α-mixing. Moreover, the mixing rate assumption (5.10) for ϕ-mixing is

stronger than (5.5) for α-mixing. On the other hand, the CLT for ϕ-mixing (Corollary 4.9)

does not bind the mixing rate assumption and the moment order equiboundedness by (5.6)

as the CLT for α-mixing (Corollary 4.7 or Theorem 5.3 by Gallant and White (1988)). Like-

wise, the moments’ equiboundedness (5.9) for ϕ-mixing is not so restrictive than (5.4) for

α-mixing. The reason for this is that the covariance inequality for ϕ-mixing only requires

the uniformly bounded second moments. In the case of α-mixing, the covariance inequal-

ity needs uniformly bounded higher moments than the second ones, see Lin and Lu (1997,

Section 1.2).

5.3 Asymptotic Validity for MBB in the EIV model

We propose moving block bootstrap Procedure 5.2 for the EIV estimate when the errors

of the EIV model are α- or ϕ-mixing. Procedure 5.2 is an extension of the nonparametric

bootstrap Procedure 3.1. Due to the dependence in the data—or better to say, in the error

structure—residual type of bootstrap is not suitable for regression models (Fitzenberger,

1997).

A justification for the asymptotic validity of MBB Procedure 5.2 for the EIV estimate

with weakly dependent errors will be provided. We prove that
√
n(β̃∗ − β̂) conditionally

on the data converges to the asymptotic distribution of
√
n(β̂−β). The asymptotic results
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Procedure 5.2 Moving block bootstrap for the EIV estimate.

Input: Data consisting of n row vectors of observations [Xi,•, Yi] and n = mb.

Output: Empirical bootstrap distribution of β̂, i.e., the empirical distribution where prob-

ability mass 1/D concentrates at each of (1)β̃
∗, . . . , (D)β̃

∗.

1: calculate the EIV estimate β̂ ← (X⊤X− λI)−1X⊤Y

2: define blocks of observation vectors Bj = [Bx
j ,B

y
j ] with B

y
j = [Yj , . . . , Yj+b−1]

⊤, a b× 1

vector, and Bx
j , a b × p matrix with rows Xj,•, . . . ,Xj+b−1,• for j = 1, . . . , q, where

q := n− b+ 1

3: for d = 1 to D do // repeat in order to obtain empirical distribution of β̂

4: resample with replacement (b× [p+1]) blocks (d)C1, . . . , (d)Cm independently from

{(d)B1, . . . , (d)Bq} with equal probability 1/q, where each (d)Ci, i = 1, . . . ,m, is

a block of size b with (d)Ci = [(d)c
⊤
i1, . . . , (d)c

⊤
ib]

⊤ // Let P∗ be the (bootstrap)

distribution of (d)Ci conditional on the sample {[X1,•, Y1], . . . , [Xn,•, Yn]}. So, given
[X1,•, Y1], . . . , [Xn,•, Yn], them random blocks, (d)C1, . . . , (d)Cm, are iid distributed

according to P∗.

5: the MBB resample of size n, denoted by {[(d)X∗
1,•, (d)Y

∗
1 ], . . . , [(d)X

∗
n,•, (d)Y

∗
n ]}, is

formed by joining (stacking) the resampled blocks (d)C1, . . . , (d)Cm to one big block,

i.e., [(d)X
∗
i,•, (d)Y

∗
i ] = (d)cτν for τ = [(i− 1)/b] + 1, ν = i− bτ , and i = 1, . . . , n

6: (d)λ
∗ is the (p+ 1)-st eigenvalue of [(d)X

∗, (d)Y
∗]⊤[(d)X

∗, (d)Y
∗]

7: re-estimate (d)β̂
∗ ←

(
(d)X

∗⊤
(d)X

∗ − (d)λ
∗I
)−1

(d)X
∗⊤

(d)Y
∗

8: put

(d)β̃
∗ ←β̂ −

(
(d)X

∗⊤
(d)X

∗ − (d)λ
∗I
)−1

(
[I, β̂]

[
I, (d)β̂

∗
]⊤)−1

[I, β̂]

(
[(d)X

∗, (d)Y
∗]⊤[(d)X

∗, (d)Y
∗]− [X,Y]⊤[X,Y]

)
[
β̂

−1

]

9: end for

from Chapter 4 provide crucial and basic steps for proving such a validity. Moreover, the

main ideas of the forthcoming proofs will be inherited from the proof of Theorem 3.12.

Additionally, it will also be shown that the MBB procedure is robust to autocorrelation of

unknown type. Doukhan (1994, Section 2.4) pointed out that all the ARMA processes with

continuously distributed stationary innovations and bounded variance are strongly mixing

such that α(n) = O(n−δ) for any δ > 0, since the α-mixing coefficients of innovations are

geometrically decreasing. However, Andrews (1984) constructed a stationary AR(1) process

with Bernoulli innovations, which is not strongly mixing.

One has to realize that the theory regarding convergences’ characterizations in the boot-

strap world proved at the beginning of Chapter 3, e.g., Slutsky’s extended Theorem 3.2, still

holds, because they do not require the independence assumption whatsoever.
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Firstly, let us consider α-mixing errors in the EIV model.

Theorem 5.5 (Validity of moving block bootstrap in EIV with α-mixing). Let the EIV

model hold and assumption (D) be satisfied. Suppose

{Θn,1}∞n=1, . . . , {Θn,p}∞n=1, and {εn}∞n=1 (5.13)

are pairwise independent sequences of α-mixing random variables having

α(Θ◦,j , n) = O(n−1−δj ), j = 1, . . . , p (5.14)

and

α(ε◦, n) = O(n−1−δp+1), (5.15)

as n→∞ for some δj > 0, j ∈ {1, . . . , p+ 1}. Assume that

sup
n∈NZ2

n,j <∞, (5.16)

sup
n∈NE|Θn,j|8+2ωj <∞, (5.17)

and

sup
n∈NE|εn|8+2ωp+1 <∞ (5.18)

for some ωj > 0, j ∈ {1, . . . , p+ 1} such that

4

minj=1,...,p+1 ωj
< min

j=1,...,p+1
δj . (5.19)

Moreover, assume that there exists a positive definite matrix i such that

lim
n→∞

1

n
VarP[X,Y]⊤[X,Y]

[
β

−1

]
= i > 0. (5.20)

If b = o(n1/2), n→∞ and b→∞, then under MBB Procedure 5.2 holds

√
n(β̃∗ − β̂)

∣∣[X,Y]
D(P)←−−→
n→∞

√
n(β̂ − β).

Proof. The whole process of proving this Theorem 5.5 is totally the same as in Theorem 3.12

for independent variables. We only apply the newly developed asymptotic results for α-

mixing and realize the sustainability of the property being α-mixing (see Lemma 4.3). The

Cramér-Wold device helps us to derive a multivariate version of the bootstrap CLT from
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Theorem 5.3 as in the proof of Theorem 3.11. Moreover, the strong consistency of β̂ for α-

mixing (Theorem 4.4), the asymptotic normality of
√
n(β̂−β) for α-mixing (Theorem 4.10),

and the WLLN for the MBB in α-mixing case (Lemma 5.1) are used as well.

The only dissimilarity that needs to be showed is a calculation of the conditional expec-

tationEP∗ [X∗,Y∗]⊤[X∗,Y∗]

= EP∗

n/b∑

i=1

[X∗
((i−1)b+1):ib,•,Y

∗
((i−1)b+1):ib]

⊤[X∗
((i−1)b+1):ib,•,Y

∗
((i−1)b+1):ib]

=

n/b∑

i=1

n−b+1∑

j=1

1

n− b+ 1
[Xj:(j+b−1),•,Yj:(j+b−1)]

⊤[Xj:(j+b−1),•,Yj:(j+b−1)] (5.21)

=

n/b∑

i=1

n−b+1∑

j=1

1

n− b+ 1

j+b−1∑

k=j

[Xk,•, Yk]
⊤[Xk,•, Yk]

=
n

b(n− b + 1)

(
b

n∑

i=1

[Xi,•, Yi]
⊤[Xi,•, Yi]−

[
(b− 1)[X1,•, Y1]

⊤[X1,•, Y1]

+ (b− 2)[X2,•, Y2]
⊤[X2,•, Y2] + . . .+ [Xb−1,•, Yb−1]

⊤[Xb−1,•, Yb−1]

+ (b− 1)[Xn,•, Yn]
⊤[Xn,•, Yn] + (b− 2)[Xn−1,•, Yn−1]

⊤[Xn−1,•, Yn−1]

+ . . .+ [Xn−b+2,•, Yn−b+2]
⊤[Xn−b+2,•, Yn−b+2]

])

=
n

n− b+ 1
[X,Y]⊤[X,Y] +OP(b), n→∞.

During the previous calculation, the process of stacking the random blocks—see Step 5 in

Algorithm 5.2—needs to be considered. Adjustment (5.21) is the crucial step, where it is

necessary to realize that [X∗
((i−1)b+1):ib,•,Y

∗
((i−1)b+1):ib]

⊤[X∗
((i−1)b+1):ib,•,Y

∗
((i−1)b+1):ib] has

a discrete uniform distribution on support

{
[Xj:(j+b−1),•,Yj:(j+b−1)]

⊤[Xj:(j+b−1),•,Yj:(j+b−1)]
}n−b+1

j=1

for all i = 1, . . . , n/b, conditionally on [X,Y].

Under the circumstances (b = o(n1/2) as n → ∞), it has to be emphasized that the

distributional closeness is considered in probability P and, in that event, all the negligible

terms in probability P do not cause any harm.

In accordance with the assumptions of previously mentioned theorems and lemmas, we

postulate sufficient assumptions for Theorem 5.5 in the way that all the required asymptotic

results can be correctly applied.

In other words, Theorem 5.5 affirms that
√
n(β̃∗ − β̂) under P∗ and

√
n(β̂ − β) underP have the same limit distribution in the case of α-mixing errors.
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A similar theorem to the previous one can be restated, but this time for ϕ-mixing errors

of the EIV model.

Theorem 5.6 (Validity of moving block bootstrap in EIV with ϕ-mixing). Let the EIV

model hold and assumption (D) be satisfied. Suppose

{Θn,1}∞n=1, . . . , {Θn,p}∞n=1, and {εn}∞n=1 (5.22)

are pairwise independent sequences of ϕ-mixing random variables having

ϕ(Θ◦,j , n) = O(n−2−δj ), j = 1, . . . , p (5.23)

and

α(ε◦, n) = O(n−2−δp+1), (5.24)

as n→∞ for some δj > 0, j ∈ {1, . . . , p+ 1}. Assume that

sup
n∈NZ2

n,j <∞, j = 1, . . . , p, (5.25)

sup
n∈NEΘ8

n,j <∞, j = 1, . . . , p, (5.26)

and

sup
n∈NEε8n <∞. (5.27)

Moreover, assume that there exists a positive definite matrix i such that

lim
n→∞

1

n
VarP[X,Y]⊤[X,Y]

[
β

−1

]
= i > 0. (5.28)

If b = o(n1/2), n→∞ and b→∞, then under MBB Procedure 5.2 holds

√
n(β̃∗ − β̂)

∣∣[X,Y]
D(P)←−−→
n→∞

√
n(β̂ − β).

Proof. See the proof of Theorem 5.5, where the appropriate asymptotic results for ϕ-

mixing—the strong consistency of β̂ (Theorem 4.5), the asymptotic normality of
√
n(β̂−β)

(Theorem 4.11), the WLLN for the MBB (Lemma 5.2), and the CLT for the MBB (Theo-

rem 5.4)—are used instead of the asymptotic properties for α-mixing.

In other words again, Theorem 5.6 asserts that
√
n(β̃∗ − β̂) under P∗ and

√
n(β̂ − β)

under P have the same limit distribution in the case of ϕ-mixing errors.
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5.3.1 Choice of Blocksize

A choice of blocksize b in the moving block bootstrap procedure is an important decision.

Indeed, it will affect the bootstrapped EIV estimate and the consequent empirical inference.

Therefore, the blocksize value can be viewed as a tuning parameter in the MBB procedure.

From the previous theory, it is already known that b = o(n1/2) as n tends to infinity.

This result is slightly cumbersome, especially for practical computational purposes. It would

be preferable to have at least the Landau big O relation with respect to the sample size in

order to have a more “precise” choice of blocksize b for the MBB. One possibility, how

to proceed such an optimality choice, is to minimize the asymptotic mean square error

(MSE) of the MBB variance estimate. Taking the sample mean and its MBB procedure into

account, Fitzenberger (1997, Theorem 3.4) proved that b = O(n1/3) as n→∞ by imposing

quite strong and complicated assumptions. Since the elements of the EIV estimate are

asymptotically equal to a specific mean (β̂ = (X⊤X − λI)−1X⊤Y), it may be concluded

that the choice b = O(n1/3), n → ∞ could be asymptotically optimal with respect to the

variance’s MSE for the EIV estimate as well.

Despite of this approximate choice of blocksize, we still do not know how to precisely

choose b according to n. Therefore, a simulation study could enlighten us.

5.4 Simulation Study

A continuation of the simulation study from Section 3.4 was proceeded, but in this case

for the moving block bootstrap procedure of the EIV estimate. The interest still lies in

a construction of the confidence intervals and their coverage level.

The basic (design) setup from the simulations for the nonparametric bootstrap technique

was mostly preserved, i.e., 5000 random samples were generated from a one-dimensional EIV

model with the design points
{
(−1)i

√
1− 1/i

}n

i=1
. We changed the design points in order to

demonstrate the impact of non-monotonically ordered covariates as discussed in Section 3.4.

Actually, if we want to show a performance of the MBB technique for weak dependence,

longer sequences of observations are needed to be generated in order to capture and demon-

strate the effect, because any form of weak dependence generally features an overlap of

information brought by the adjacent observations.

Percentile bootstrap 95%-confidence intervals were considered and D = 5000 block boot-

strap replications were conducted.

The average lengths of confidence intervals based upon the MBB percentile method were

computed for various setups of the weakly dependent errors from the EIV model.
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Six errors’ models (processes) for {Θi}ni=1 and {εi}ni=1 were considered:

ξt − 0.2ξt−1 = ζt + 0.3ζt−1, ζt
iid∼ N (0, σ2), ∀t ∈ Z, (5.29)

ξt = 0.2ξt−1 + ζt, ζt
iid∼ N (0, σ2), ∀t ∈ Z, (5.30)

ξt = ζt + 0.3ζt−1, ζt
iid∼ N (0, σ2), ∀t ∈ Z, (5.31)

ξt − 0.2ξt−1 = ζt + 0.3ζt−1, ζt
iid∼ σ

√
6.2

8.2
× t8.2, ∀t ∈ Z, (5.32)

ξt = 0.2ξt−1 + ζt, ζt
iid∼ σ

√
6.2

8.2
× t8.2, ∀t ∈ Z, (5.33)

ξt = ζt + 0.3ζt−1, ζt
iid∼ σ

√
6.2

8.2
× t8.2, ∀t ∈ Z; (5.34)

where ξt ∈ {Θt, εt}, ∀t ∈ Z. Sequences of errors {Θi}ni=1 and {εi}ni=1 are generated inde-

pendently. The length of the “burn-in” period for the recursively generated sequences is set

to 300, i.e., we throw the first 300 generated elements of the recursively defined sequences

away. As it may be noticed from (5.29)–(5.34), we took two ARMA(1,1), two AR(1), and two

MA(1) errors’ models, where the innovations are iid having normal distribution or scaled

Student t-distribution, respectively. Four different types of sequences of the errors’ pairs

for each errors’ model were generated in the way that two different values of the standard

deviation parameter σ for innovations were taken into account (σ = 10−2 or σ = 10−3) and

combined with two different numbers of generated errors’ pairs n (n ≈ 60 or n ≈ 180). The

“unknown” (true) EIV parameter β is set to one.

It should be recalled that the number of degrees of freedom for the Student t-distribution

has to be greater than eight in order to have finite required moments.

The simulation results for our six setups are summarized in Tables 5.1–5.6 for various

blocksizes (b = 3, . . . , 11).

After comparing the empirical coverages of the CIs, there is no striking difference in the

CIs’ empirical coverages between various types of the models for weakly dependent errors

(ARMA, AR, and MA models with normally and t-distributed innovations) neither the

choice of the blocksize, when the blocksize is roughly equivalent to the third root of the

sample size. The most negligible differences in the empirical coverages are when changing

the value of the standard deviation parameter σ for innovations from 10−2 to 10−3, while

blocksize b and number of generated errors’ pairs n are kept fixed.

Let us go deeper into the details and compare the empirical coverages of the confidence

intervals for two ARMA(1,1) errors’ models (5.29) and (5.32) more precisely. In the case of

normally distributed innovations, the most appropriate choice of blocksize b is 7 for n ≈ 60

and 11 for n ≈ 180, respectively. Similarly, if the innovations of ARMA(1,1) have Student

t-distribution, the most appropriate choice of blocksize b is 7 for n ≈ 60 and 10 for n ≈ 180,

respectively. When considering AR(1) errors’ models (5.30) and (5.33), the optimal choice
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Empirical CI coverage

Block size Sample size Standard deviation Moving block bootstrap (proper)

b = 3 n = 60 σ = 10−2 98.46%

σ = 10−3 98.82%

n = 180 σ = 10−2 99.06%

σ = 10−3 98.84%

b = 4 n = 60 σ = 10−2 97.30%

σ = 10−3 97.28%

n = 180 σ = 10−2 98.42%

σ = 10−3 98.10%

b = 5 n = 60 σ = 10−2 96.26%

σ = 10−3 96.86%

n = 180 σ = 10−2 97.62%

σ = 10−3 97.72%

b = 6 n = 60 σ = 10−2 95.70%

σ = 10−3 95.98%

n = 180 σ = 10−2 97.10%

σ = 10−3 97.16%

b = 7 n = 56 σ = 10−2 95.30%

σ = 10−3 95.20%

n = 175 σ = 10−2 97.14%

σ = 10−3 96.88%

b = 8 n = 56 σ = 10−2 94.56%

σ = 10−3 94.14%

n = 176 σ = 10−2 96.26%

σ = 10−3 97.04%

b = 9 n = 54 σ = 10−2 94.38%

σ = 10−3 94.26%

n = 180 σ = 10−2 96.02%

σ = 10−3 96.28%

b = 10 n = 60 σ = 10−2 91.84%

σ = 10−3 91.48%

n = 180 σ = 10−2 95.70%

σ = 10−3 95.64%

b = 11 n = 55 σ = 10−2 92.48%

σ = 10−3 91.56%

n = 176 σ = 10−2 94.76%

σ = 10−3 95.08%

Table 5.1: Simulations of 95% confidence intervals for the moving block bootstrap when β =

1 and the errors are ARMA(1,1) with normally distributed innovations as stated in (5.29).
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Empirical CI coverage

Block size Sample size Standard deviation Moving block bootstrap (proper)

b = 3 n = 60 σ = 10−2 94.60%

σ = 10−3 95.16%

n = 180 σ = 10−2 95.84%

σ = 10−3 95.72%

b = 4 n = 60 σ = 10−2 93.52%

σ = 10−3 93.74%

n = 180 σ = 10−2 95.72%

σ = 10−3 95.08%

b = 5 n = 60 σ = 10−2 92.76%

σ = 10−3 93.04%

n = 180 σ = 10−2 95.00%

σ = 10−3 95.14%

b = 6 n = 60 σ = 10−2 91.98%

σ = 10−3 92.40%

n = 180 σ = 10−2 94.68%

σ = 10−3 94.42%

b = 7 n = 56 σ = 10−2 91.82%

σ = 10−3 91.94%

n = 175 σ = 10−2 94.92%

σ = 10−3 94.78%

b = 8 n = 56 σ = 10−2 90.72%

σ = 10−3 90.80%

n = 176 σ = 10−2 94.06%

σ = 10−3 94.64%

b = 9 n = 54 σ = 10−2 91.20%

σ = 10−3 90.56%

n = 180 σ = 10−2 93.26%

σ = 10−3 94.20%

b = 10 n = 60 σ = 10−2 87.78%

σ = 10−3 87.28%

n = 180 σ = 10−2 93.42%

σ = 10−3 93.62%

b = 11 n = 55 σ = 10−2 89.12%

σ = 10−3 88.06%

n = 176 σ = 10−2 92.98%

σ = 10−3 93.22%

Table 5.2: Simulations of 95% confidence intervals for the moving block bootstrap when

β = 1 and the errors are AR(1) with normally distributed innovations as stated in (5.30).
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Empirical CI coverage

Block size Sample size Standard deviation Moving block bootstrap (proper)

b = 3 n = 60 σ = 10−2 96.66%

σ = 10−3 97.44%

n = 180 σ = 10−2 97.64%

σ = 10−3 97.88%

b = 4 n = 60 σ = 10−2 95.64%

σ = 10−3 95.44%

n = 180 σ = 10−2 97.34%

σ = 10−3 96.90%

b = 5 n = 60 σ = 10−2 94.54%

σ = 10−3 95.00%

n = 180 σ = 10−2 96.48%

σ = 10−3 96.40%

b = 6 n = 60 σ = 10−2 93.68%

σ = 10−3 94.04%

n = 180 σ = 10−2 95.78%

σ = 10−3 95.96%

b = 7 n = 56 σ = 10−2 93.74%

σ = 10−3 93.68%

n = 175 σ = 10−2 96.04%

σ = 10−3 96.00%

b = 8 n = 56 σ = 10−2 92.60%

σ = 10−3 92.54%

n = 176 σ = 10−2 95.04%

σ = 10−3 95.76%

b = 9 n = 54 σ = 10−2 92.92%

σ = 10−3 92.34%

n = 180 σ = 10−2 94.72%

σ = 10−3 95.26%

b = 10 n = 60 σ = 10−2 89.76%

σ = 10−3 89.34%

n = 180 σ = 10−2 94.52%

σ = 10−3 94.64%

b = 11 n = 55 σ = 10−2 90.76%

σ = 10−3 89.78%

n = 176 σ = 10−2 93.66%

σ = 10−3 94.20%

Table 5.3: Simulations of 95% confidence intervals for the moving block bootstrap when

β = 1 and the errors are MA(1) with normally distributed innovations as stated in (5.31).
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Empirical CI coverage

Block size Sample size Standard deviation Moving block bootstrap (proper)

b = 3 n = 60 σ = 10−2 98.34%

σ = 10−3 98.64%

n = 180 σ = 10−2 98.70%

σ = 10−3 98.82%

b = 4 n = 60 σ = 10−2 97.84%

σ = 10−3 97.50%

n = 180 σ = 10−2 98.24%

σ = 10−3 98.42%

b = 5 n = 60 σ = 10−2 96.74%

σ = 10−3 96.90%

n = 180 σ = 10−2 97.50%

σ = 10−3 97.72%

b = 6 n = 60 σ = 10−2 95.58%

σ = 10−3 95.18%

n = 180 σ = 10−2 97.32%

σ = 10−3 97.38%

b = 7 n = 56 σ = 10−2 95.68%

σ = 10−3 95.20%

n = 175 σ = 10−2 97.32%

σ = 10−3 96.80%

b = 8 n = 56 σ = 10−2 94.24%

σ = 10−3 94.80%

n = 176 σ = 10−2 96.68%

σ = 10−3 96.20%

b = 9 n = 54 σ = 10−2 94.48%

σ = 10−3 94.00%

n = 180 σ = 10−2 96.04%

σ = 10−3 96.06%

b = 10 n = 60 σ = 10−2 91.80%

σ = 10−3 91.28%

n = 180 σ = 10−2 95.54%

σ = 10−3 95.28%

b = 11 n = 55 σ = 10−2 91.46%

σ = 10−3 91.46%

n = 176 σ = 10−2 95.58%

σ = 10−3 95.76%

Table 5.4: Simulations of 95% confidence intervals for the moving block bootstrap when

β = 1 and the errors are ARMA(1,1) with innovations that have Student’s t-distribution as

stated in (5.32).
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Empirical CI coverage

Block size Sample size Standard deviation Moving block bootstrap (proper)

b = 3 n = 60 σ = 10−2 94.70%

σ = 10−3 95.52%

n = 180 σ = 10−2 95.80%

σ = 10−3 95.80%

b = 4 n = 60 σ = 10−2 94.08%

σ = 10−3 93.92%

n = 180 σ = 10−2 94.72%

σ = 10−3 95.34%

b = 5 n = 60 σ = 10−2 93.00%

σ = 10−3 93.02%

n = 180 σ = 10−2 94.96%

σ = 10−3 95.00%

b = 6 n = 60 σ = 10−2 91.60%

σ = 10−3 91.08%

n = 180 σ = 10−2 94.52%

σ = 10−3 94.52%

b = 7 n = 56 σ = 10−2 91.72%

σ = 10−3 92.04%

n = 175 σ = 10−2 95.04%

σ = 10−3 94.38%

b = 8 n = 56 σ = 10−2 90.74%

σ = 10−3 91.50%

n = 176 σ = 10−2 94.12%

σ = 10−3 93.84%

b = 9 n = 54 σ = 10−2 91.04%

σ = 10−3 90.24%

n = 180 σ = 10−2 93.52%

σ = 10−3 93.46%

b = 10 n = 60 σ = 10−2 87.86%

σ = 10−3 87.24%

n = 180 σ = 10−2 93.24%

σ = 10−3 93.08%

b = 11 n = 55 σ = 10−2 88.40%

σ = 10−3 87.42%

n = 176 σ = 10−2 93.64%

σ = 10−3 93.86%

Table 5.5: Simulations of 95% confidence intervals for the moving block bootstrap when

β = 1 and the errors are AR(1) with innovations that have Student’s t-distribution as

stated in (5.33).
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Empirical CI coverage

Block size Sample size Standard deviation Moving block bootstrap (proper)

b = 3 n = 60 σ = 10−2 96.92%

σ = 10−3 97.40%

n = 180 σ = 10−2 97.54%

σ = 10−3 97.50%

b = 4 n = 60 σ = 10−2 96.14%

σ = 10−3 95.78%

n = 180 σ = 10−2 96.60%

σ = 10−3 96.92%

b = 5 n = 60 σ = 10−2 94.78%

σ = 10−3 94.96%

n = 180 σ = 10−2 96.32%

σ = 10−3 96.42%

b = 6 n = 60 σ = 10−2 93.66%

σ = 10−3 93.12%

n = 180 σ = 10−2 95.90%

σ = 10−3 95.88%

b = 7 n = 56 σ = 10−2 93.52%

σ = 10−3 93.92%

n = 175 σ = 10−2 96.18%

σ = 10−3 95.68%

b = 8 n = 56 σ = 10−2 92.44%

σ = 10−3 93.02%

n = 176 σ = 10−2 95.50%

σ = 10−3 94.82%

b = 9 n = 54 σ = 10−2 92.80%

σ = 10−3 92.08%

n = 180 σ = 10−2 94.62%

σ = 10−3 94.84%

b = 10 n = 60 σ = 10−2 89.94%

σ = 10−3 89.18%

n = 180 σ = 10−2 94.50%

σ = 10−3 94.18%

b = 11 n = 55 σ = 10−2 89.72%

σ = 10−3 89.52%

n = 176 σ = 10−2 94.52%

σ = 10−3 94.76%

Table 5.6: Simulations of 95% confidence intervals for the moving block bootstrap when

β = 1 and the errors are MA(1) with innovations that have Student’s t-distribution as

stated in (5.34).
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of b for n ≈ 60 is 3 and b = 5 seems to be a suitable one for n ≈ 180. MA(1) errors’

models (5.31) and (5.34) prefer blocksize b = 5 for n ≈ 60 and b equal to 8 or 9 for n ≈ 180,

respectively.

The fact that 3
√
180/60 ≈ 1.44 corresponds to the approximate choice of blocksize b =

O(n1/3), n→∞, because the most suitable choice of b in each of the errors’ models (5.29)–

(5.34) for the case of n ≈ 180 is roughly 1.5-times the most appropriate choice of b in the

case of n ≈ 60.

When comparing errors’ models (5.29)–(5.31) among each other with the same (fixed)

“simulation” size n and standard deviation of innovations σ, the empirical coverages slightly

differ for the same b. Or in other words, the optimal choice for various dependent errors’

models slightly varies. Indeed, the optimal value of blocksize b depends on the variability

of the errors and the random errors from errors’ models (5.29)–(5.31) do not have the same

variability, despite the fact that they have common innovations. A similar conclusion can

be made when we move from normally distributed innovations onto innovations that have

Student t-distributions, i.e., errors’ models (5.32)–(5.34).

In order to provide a final decision rule of thumb, it seems that there is no big harm, if

we simply take b ≈ n1/3.

However, the choice of the blocksize should not be too arbitrary. The blocksize, that is

too small, would suppress the dependence between errors, which would lead to an incorrectly

higher estimated variance of the EIV estimate. Contrariwise, immoderately high values of

the blocksize would not mimic the empirical distribution of the EIV estimate, because they

would underestimate the estimate’s variance.

The above precaution and suggestions can be illustrated by the simulations from the

ARMA (1,1) error model (5.29) with β = 1. We choose “bad” values of blocksize b. The

empirical coverages of the confidence intervals are shown in Table 5.7. When b = 1 (too

small), the moving block bootstrap becomes the nonparametric bootstrap, which ignores the

dependence between data. The estimated variance is too high, which results into completely

incorrect empirical CI’s coverages (over 99.9%). When b is set to 15 (too high value of

b for sample size of 60) or even 30, the empirical CI’s coverages rapidly decrease and the

theoretical (correct) level of the 95% cannot be reached.

We performed much more simulations than presented here, especially for higher values of

n. It generally turns out that the larger the sample size is, the better empirical coverage is

achieved, when the asymptotically optimal (appropriate) blocksize b is chosen according to

n. The precision may also be increased (or, in other words, the noise decreased) by setting

the variance smaller and, therefore, smaller deviations of the errors’ innovations provide

empirical coverages of the CIs closer to the theoretical 95% level, but the choice of b needs

to be “approximately correct” as well.
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Empirical CI coverage

Block size Sample size Standard deviation Moving block bootstrap (proper)

b = 1 n = 60 σ = 10−2 99.92%

σ = 10−3 99.96%

n = 180 σ = 10−2 99.98%

σ = 10−3 99.98%

b = 15 n = 60 σ = 10−2 87.16%

σ = 10−3 86.14%

n = 180 σ = 10−2 94.22%

σ = 10−3 94.02%

b = 30 n = 60 σ = 10−2 66.86%

σ = 10−3 68.62%

n = 180 σ = 10−2 89.04%

σ = 10−3 88.88%

Table 5.7: Inappropriate choices of blocksize b in the simulations of 95% confidence intervals

for the moving block bootstrap when β = 1 and the errors are ARMA(1,1) with normally

distributed innovations as stated in (5.29).

5.5 Data Analysis – Brown Trout

A group of ecologists from the Water Research Institute of T. G. Masaryk—a public research

institution in the Czech Republic—is interested in the relationship between the length and

the weight of brown trouts (Salmo trutta morpha fario) from a small mountain stream of

Šumava National Park located on the south border of the Czech Republic. The data set

contains 59 length-weight measurement pairs of the adult brown trouts. The ecologists were

catching the trouts from the spring of the stream to the junction with another slightly larger

river, i.e., from the highest altitude of the observed stream to its lowest part. Consequently,

the fish were released back to the stream.

The main ecologists’ question is whether there is a simple linear relationship between

the lengths and the weights of trouts. E.g., does an increase in the trout’s length by one

millimeter have an impact of the increase in the trout’s weight by 2.1 grams (or vice-versa)?

If we want to model the previous situation and provide a reliable answer to the above

postulated question, we need to realize some important aspects, which we are dealing with:

� Both brown trout’s characteristics—length and weight—are measured with errors and,

moreover, both of them are encumbered with the disturbances of nature.

� Measured characteristics of the trouts are not independent due to the several reasons

proposed by the ecologists. The depth of the stream is rapidly changing from the

spring to the junction, which limits the movement of bigger trouts. On the other hand,
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a higher water level provides a living environment for some predators and, therefore,

the small trouts keep away from the lower parts of the stream. The chemistry of the

water and the source of a nutriment vary a lot as the stream flows. So, the trouts

from the higher altitudes have different conditions for their growth than the trouts

from the lower altitudes. Fish, that live nearby and occupy a similar environment,

influence each other and, moreover, a trout has a stronger impact on the neighboring

trouts than on the faraway ones, i.e., a presence of pheromones.

� A linear relationship between measured characteristics is of the scientific interest due

to its parsimonious interpretation for the ecologists.

According to the above aspects and demands, our EIV model with weakly dependent

errors seems to be a plausible choice for modeling such a realistic situation.

As it can be easily noticed, the EIV model cannot be directly applied to the trout’s data,

because we need to take into account a “baseline” shift present between the lengths and

the weights. Mathematically speaking, an intercept should be incorporated in the linear

EIV model. Indeed, we have already theoretically discussed such a setup in Section 1.5 and

Partial Errors-in-Variables Model (1.20) is the appropriate extension of the classical EIV

model that should be used for the trouts data analysis.

The brown trouts data are displayed in Figure 5.1 (left) with the corresponding least

squares-total least squares (LS-TLS) estimate (a solution to the PEIV model) and the or-

dinary least squares (OLS) estimate. As it was already discussed in Section 1.5, the data

needs to be transformed as in (1.21) at first, see Figure 5.1 (right). Consequently, slope

estimate β̂LS−TLS can be obtained as in (1.22) from the transformed data.
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Figure 5.1: Brown trouts’ lengths and weights.
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The LS-TLS and the OLS slope estimates are shown in Table 5.8. Moreover, the corre-

sponding 95% confidence intervals are constructed. For the OLS slope estimate, the CI based

upon the asymptotic normality (blindly assuming independent errors only in the weighs

and their homoscedasticity) is calculated. For the LS-TLS slope estimate, three types of

the CIs are computed, i.e., the inappropriate CI based upon the approximate asymptotic

normality, the CI based upon the proper nonparametric bootstrap (blindly assuming inde-

pendent errors), and the proper CI based upon the correct MBB with the choice of blocksize

b = 4(≈ 3
√
59).

Method Estimate of slope Confidence interval CI length

OLS (independence) 1.8687 [1.7228;2.0145] 0.2917

Approximate AN (independence) 2.0020 [1.8484;2.1556] 0.3072

NB (independence) 2.0020 [1.8314;2.2189] 0.3874

MBB (proper) 2.0020 [1.8714;2.1693] 0.2979

Table 5.8: Brown trout data set, β̂ = 2.0020.

The OLS estimate dramatically differs from the LS-TLS one (see Table 5.8) as it can be

expected due to the fact that the OLS estimate does not “allow” for the error disturbances

in lengths.

If someone wants to test whether the slope between the lengths and the weights is equal

2.1 against the complementary alternative on the level of 5%, this hypothesis would be

incorrectly rejected according to the classical regression setup (the OLS approach).

If we compare the lengths of the CIs for β̂LS−TLS based upon the approximate asymptotic

normality (assuming the independence of errors) and upon the proper MBB procedure, we

figure out that the MBB confidence interval is slightly narrower. One of the main reasons

can be that the approximate asymptotic normality gives larger amount of variability due to

its inadequate independence assumption.

Applying the classical proper nonparametric bootstrap (NB) technique (without stacking

observations into blocks and, hence, ignoring data dependence) provides confidence interval

of length 0.3874, which differs a lot from the CI based on the proper MBB approach. This

CI’s length differs a lot from the length of the CI based on the asymptotic normality as

well, which hints that some of the assumptions (e.g., independence of the errors) is probably

violated.

Moreover, the lengths of the incorrect and the proper MBB confidence intervals coincide,

which should not be a surprise, because the empirical distribution of β̂∗ and β̃∗ differs only

by correction (3.57) and the CIs are constructed by a percentile method. This correction is

a constant for each fixed bootstrap sample, which is very small (≈ 10−5) and numerically

negligible. Therefore, the incorrect and the proper MBB CIs seem to coincide as well, but

there is still a small difference between them.
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The EIV estimate behaves robustly against leverage observations , which was already

mentioned in Chapter 2. Fierro and Bunch (1994) and Van Huffel and Vandewalle (1991,

Chapter 9) concentrate on the multicollinearity (nearly linear dependence) problem, which

often occurs in the OLS estimation. There is a (di)similarity between the form of the EIV

estimate and the ridge regression’s estimate, where both estimation methods change the

diagonal of matrix X⊤X in the estimator’s forms. Therefore, the EIV estimate can be

viewed as a regularization technique (which may become ill conditioned for some data).

In our brown trouts data set, we can find one possible leverage observation—top-right

corner of the left panel in Figure 5.1. As it can be seen, the OLS estimate is “persuaded” by

this leverage point to “go” nearby and, hence, it is easily influenced by just one measurement.

On the other hand, the LS-TLS estimate behaves more robust to that potential influential

observation. Omitting such an observation provides only a small change in the LS-TLS

estimate, but a larger one in the OLS estimate.

5.6 Conclusions

The EIV estimate for our EIV model with strong mixing and uniformly strong mixing errors

is of main interest in this chapter. Since its asymptotic normality was derived in Chapter 4

for the case of weakly dependent errors, it is wanted to use this nice theoretical property for

the practical (computational) inference. Nevertheless, all the pitfalls and problems about the

EIV estimate’s asymptotic variance still remain present as firstly pointed out in Chapter 3.

Indeed, the approximate asymptotic normality concerning the EIV estimate is computa-

tionally useless. Therefore, a proper moving block bootstrap procedure is proposed in order

to mimic the asymptotical distribution of the EIV estimate. Its validity was proved for the

case of α-mixing and ϕ-mixing errors.

A simulation study was conducted to demonstrate the theoretical results. It showed up

that the moving block bootstrap is a distributional-free method, which depends on the choice

of blocksize. A naive approximate choice of the blocksize was proposed. On the contrary,

we remarked that no big harm is made when the blocksize is chosen close enough to that

naive rule of thumb.

The real data set containing the lengths and the weights of brown trouts was described.

The appropriateness of the partial EIV model was discussed and, consequently, the 95% con-

fidence interval for the slope parameter using the proper MBB procedure was computed. On

the top of that, the robustness to multicollinearity and leverage observations was illustrated.

5.6.1 Discussion and Remarks

Two justifications for the MBB procedure were provided in this chapter—one for the case

of α-mixing errors and the other one for ϕ-mixing errors. These two theorems have slightly

different assumptions on the errors. The approximate coincidence of the conditional MBB
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distribution of
√
n(β̃∗− β̂) and the original distribution of

√
n(β̂−β) with α-mixing errors

requires weaker assumptions on the mixing coefficients’ rates than in the case of ϕ-mixing er-

rors, i.e., ϕ-mixing implies α-mixing and (5.23)–(5.24) is more restrictive than (5.14)–(5.15).

On the other hand, Theorem 5.6 contains less restrictive assumptions on the equibounded-

ness of the errors’ moments than Theorem 5.5 (compare (5.26)–(5.27) with (5.17)–(5.18)).

Moreover, the correctness of the MBB for the EIV estimate with α-mixing errors has the

additional restriction (5.19), which ties up two contending assumptions: the mixing errors’

rates and the order of errors’ moments.

Finally, all the issues, remarks, and (dis)advantages already mentioned in the discussions

of Chapter 3 and Chapter 4 retain relevant for weakly dependent errors and do not have

to be repeated. Additionally, different block bootstrap procedures (e.g., non-overlapping or

circular) can be shown to be valid for the EIV model in some future work.



Chapter 6
Nonparametric Estimation

Essentially, all models are wrong, but

some are useful.

George E. P. Box

A natural extension of the linear EIV model is to go for a nonlinear one. Amemiya

(1997) proposed a way of the first order linearization of the nonlinear relations. Fazekas

and Kukush (1997) investigated the asymptotic properties in the nonlinear EIV model. The

TLS estimate in nonlinear EIV model is generally inconsistent as it was thoroughly discussed

in, e.g., Fazekas et al. (2004). A correction to remove the bias was suggested by Kukush

and Zwanzig (2002). Due to the inconsistency issue, the nonlinear EIV model will be not

considered in this thesis anymore. We directly move on a nonparametric estimation in the

errors-in-variables.

Since there are many ways and approaches in the nonparametric regression techniques,

we concentrate on one specific, but very general way of nonparametric EIV setup.

We propose a class of nonparametric estimates for the EIV models over the sets of

sufficiently smooth functions. The estimation takes place over the balls of functions which are

elements of a suitable Sobolev space—special type of Hilbert spaces that facilitate calculation

of the (total) least squares projection. The Hilbertnesss allows us to take projections and

hence to decompose spaces into mutually orthogonal complements. Then we transform the

problem of searching for the best fitting function in an infinite dimensional space into a finite

dimensional optimization problem.

The regression setup proposed by Yatchew and Bos (1997) will be extended and combined

with the total least squares approach introduced by Golub and Van Loan (1980). Our

main interest lies only in the process of estimation. The inference part for our forthcoming

nonparametric estimate is postponed for further research and exploration, because it would

exceed the range of this thesis.

121
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6.1 Introduction

Let us consider the simplest one-dimensional situation when one observes input data

[x,y] ≡ [(x1, . . . , xn)
⊤, (y1, . . . , yn)

⊤].

Moreover, these observations are considered to be measured with additive random errors

[θ, ε]. Unobservable true values [x + θ,y + ε] satisfy an unknown functional relationship,

i.e., regression

yi + εi = f(xi + θi), i = 1, . . . , n.

Unknown function f is thought to be smooth. The smoothness needs to be properly defined

somehow. Suppose that our “smoothness” is the only assumption and, thereby, we want

a modeling technique to be applicable on various types (large number) of data. Finally, we

are searching for a suitable estimate f̂ , where the misfit needs to be “as small as possible”.

6.2 Sobolev Spaces and Total Least Squares

A wide applicability of the method for finding a suitable estimate in our setup yields a non-

parametric approach as an adequate technique. Smoothness of the estimator function f̂

needs to be ensured, but, e.g., kernels, splines, or wavelets can be too restrictive. Therefore,

we fit a function from a general class of smooth functions—Sobolev spaces equipped with

a corresponding Sobolev norm

(
Hm, ‖·‖Sob,m

)
:=



g ∈ L

2 : ‖g‖Sob,m :=

(
m∑

i=0

∫
|g(i)(t)|2dt

)1/2

< +∞



 .

Previous definition indicates that unknown function f ∈ Hm needs to have derivatives up to

the order m and, hence, one may speak about the order of corresponding Sobolev space. In

many physical or econometric relationships, the order m = 2 seems to be quite satisfactory,

see Yatchew and Härdle (2006).

6.2.1 Graphical Illustration

The observed data should be “as close as possible” to the true unobservable values, or

in other words, the errors [θ, ε] should be “as small as possible”. This can be reached

by measuring the misfit in the “shortest” way, i.e., taking the perpendicular distance into

account as demonstrated in Figure 6.1.

Since one assumes that m ≥ 1, a tangent can be constructed for function f in its

each point and, hence, the orthogonal distance from input values can be measured. This
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[xi + θi, f(xi + θi)]

[xi, yi]

y = f ′(xi + θi)x+ a

Figure 6.1: Orthogonal regression in the EIV setup with a smooth function.

orthogonal distance clearly corresponds to the Euclidean norm of the errors [θ, ε], i.e., total

least squares. The TLS method is just another name for orthogonal regression in statistics.

On the other hand, the smoothness (or “wildness”) of unknown function f is measured

by its Sobolev norm. Hence, one should realize that the better the fit the wilder the function

and vice versa. This can be written in an informal way

small

large

∥∥∥∥∥∥


 θ

ε



∥∥∥∥∥∥
2

⇋

large

small
‖f‖Sob,m .

6.2.2 Estimate

Searching for an estimate f̂ is simply nothing else than finding a reasonable compromise

between misfit (Euclidean norm of the error vector) and smoothness (Sobolev norm of the

estimated function). This compromise can be easily incorporated using so-called smoothing

parameter χ > 0:

min
f∈Hm,θ∈Rn,ε∈Rn





∥∥∥∥∥∥


 θ

ε



∥∥∥∥∥∥

2

2

+ χ ‖f‖2Sob,m




, s.t. y + ε = f(x+ θ). (6.1)

Although, the optimizing problem (6.1) is very complicated to solved directly.
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Let us consider for simplicity interval [0, 1] as a bounded domain, where our x-data lie.

Sobolev space on this interval Hm[0, 1] is a Banach space and one can define Sobolev inner

product for each g, h ∈ Hm[0, 1]:

〈g, h〉Sob,m :=

m∑

i=0

∫ 1

0

g(i)(t)h(i)(t)dt. (6.2)

Hence, Hm[0, 1] is also a Hilbert space. Using Riesz representation theorem and Arzelà-

Ascoli theorem, Yatchew and Bos (1997) proved the following: for all f ∈ Hm[0, 1] and for

any a ∈ [0, 1], there exists ψa ∈ Hm[0, 1] such that

f(a) = 〈ψa, f〉Sob,m =

m∑

i=0

∫ 1

0

ψ(i)
a (t)f (i)(t)dt, (6.3)

and ψa is called a representor at the point a. Hence, one may easily derive so-called rep-

resentor matrix Ψn×n(t) whose columns (and rows) equal the representors evaluated at

t1, . . . , tn

Ψij(t) =
〈
ψti , ψtj

〉
Sob,m

= ψti(tj) = ψtj (ti), ∀i, j. (6.4)

The representor matrix is symmetric and positive definite as proved in Pešta (2006b).

A form of the representors was derived by Pešta (2006a):

ψa(t) =
2m∑

k=1

exp
[
ℜ
(
eiδk

)
t
]{
I[t≤tj ]γk(tj) cos

[
ℑ
(
eiδk

)
t
]

+ I[t>tj ]γ2m+k(tj) sin
[
ℑ
(
eiδk

)
t
]}

.

Here, the coefficients γks and δks are determined as a solution of the ordinary differential

equation with some boundary conditions.

Let

M := span {ψxi+θi : i = 1, . . . , n}

and, afterwards, its orthogonal complement

M⊥ = {h ∈ Hm[0, 1] : 〈ψxi+θi , h〉Sob,m = 0, i = 1, . . . , n}.

The Sobolev space can be written as a direct sum of its orthogonal subspaces, i.e., Hm[0, 1] =

M⊕M⊥ since Hm[0, 1] is a Hilbert space. Function h ∈ M⊥ takes on the value zero at
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x1 + θ1, . . . , xn + θn due to the property (6.3). Each f ∈ Hm[0, 1] can be written in form

f =

n∑

i=1

ciψxi+θi + h, h ∈ M⊥. (6.5)

Then, one can rewrite the objective function from (6.1) incorporating the corresponding

restriction simply by its substitution, applying the relation (6.5) and the representation (6.3),

utilizing linearity of the Sobolev inner product (6.2), and using the definition of representor

matrix (6.4) with its property of being symmetric

∥∥∥∥∥∥


 θ

ε



∥∥∥∥∥∥

2

2

+ χ ‖f‖2Sob,m = ‖θ‖22 +

∥∥∥∥∥∥
y −

〈
ψx+θ,

n∑

i=1

ciψxi+θi + h

〉

Sob,m

∥∥∥∥∥∥

2

2

+ χ

〈
n∑

i=1

ciψxi+θi + h,
n∑

i=1

ciψxi+θi + h

〉2

Sob,m

= ‖θ‖22 + ‖y −Ψ(x+ θ)c‖22
+ χc⊤Ψ(x + θ)c+ χ ‖h‖2Sob,m

where for an arbitrary g ∈ Hm the following convention is used

〈ψt, g〉Sob,m = (〈ψt1 , g〉Sob,m , . . . , 〈ψtn , g〉Sob,m)⊤.

Note further that
∑n

i=1 ciψxi+θi minimizes (6.1) and, moreover, is the unique solution of

that optimizing problem, because ψxi+θi are the base elements ofM. Therefore, the infinite

dimensional minimizing (6.1) is transformed into the finite dimension

min
c∈Rn,θ∈Rn

{
‖θ‖22 + ‖y −Ψ(x+ θ)c‖22 + χc⊤Ψ(x+ θ)c

}
. (6.6)

A solution
{
ĉ, θ̂
}

of the finite optimizing problem (6.6) always exists and is unique,

which can be proved similarly as in Pešta (2006a). A derivative of representor matrix

Ψ
(1)
n×n(t) needs to be defined as a matrix whose columns are equal to the first derivatives of

the representors evaluated at t1, . . . , tn; i.e.

Ψ
(1)
i,j = ψ′

tj (ti), i, j = 1, . . . , n.

Now, by setting all the partial derivatives of the objective function in (6.6) with respect

to all elements of c and θ equal zero, and taking into account the existence of the inverse

of representor matrix (due to its positive definiteness), one can end up with a system of



126 6.3 EXAMPLES

equations

[
Ψ(x+ θ̂) + χI

]
ĉ = y,

[
y −Ψ(x + θ̂)ĉ− χ

2
ĉ
]
Ψ(1)(x+ θ̂) = θ̂,

which can be solved iteratively.

Once we find ĉ and θ̂, a unique estimate f̂ can be obtained by

f̂ =

n∑

i=1

ĉiψxi+θ̂i
.

6.3 Examples

Our technique will be demonstrated on two totally different real data sets. If we do not

have any idea about the nature of our data, one cannot simply use a special technique. Here

comes our method. Surely, our technique can behave worse on one concrete data set than

an “appropriate” method for that kind of data. On the other hand, we do not lose as much

as in a situation when an inappropriate method is chosen due to the lack of information

about the data, e.g., a Pareto type model for estimating a probability density, which appears

to be bimodal.

The first data set are the result of a National Institute of Standards and Technology

(NIST) study involving the thermal expansion of copper. The response variable is the co-

efficient of thermal expansion and the predictor variable is temperature in kelvin. The

data contain 236 observations and were firstly described by Hahn (1970). The precision of

the thermometer used is surely not zero and that is why some disturbances in measured

temperature should be taken into account in our model. Our fit can be seen in Figure 6.2.

The second data set are monthly averaged atmospheric pressure differences between

Easter Island (Pacific) and Darwin (Australia) and can be found in Kahaner et al. (1989).

This difference drives the trade winds in the southern hemisphere. Cycles in the pressure

differences correspond to the El Niño and the Southern Oscillation. These data contain 168

observations and errors should be taken in the account in the explanatory variable (time) as

well. The reason for this is very simple—one cannot know whether the data were collected

weekly on the same day or daily at the same hour, and also simultaneously on both locations.

The fitted curve for our technique is again shown in Figures 6.2 and 6.3.

6.4 Discussion and Conclusions

In this chapter, regression in Sobolev spaces using TLS is developed. Sobolev spaces provide

the only general restriction—smoothness—on the unknown estimated function. Total least

squares helps to incorporate (measurement) errors in the explanatory variable and in the
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Figure 6.2: Thermal expansion of copper.
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Figure 6.3: El Niño – southern oscillation.

predictor as well. Joining these two mathematical constructions together yields a method

which easily provides an estimate with demanded properties as shown in Section 6.2. Thus

one may conclude that it is a very general and widely applicable nonparametric smoothing

technique as it was demonstrated in Section 6.3.

Moreover, our method works without a prior knowledge of functional relation or error

distribution. This makes our technique widely applicable to various data relationships and

quite robust with respect to the nature of data.

6.4.1 Remarks

It has to be remarked that regression in Sobolev spaces using TLS can be easily extended

into a multivariate case, meaning more dimensions for covariates and response variables as

well, but partial derivatives have to be taken into account.
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A smoothing (tuning) parameter χ incorporated in (6.1), which controls the trade-off

between the infidelity to the data versus the roughness of the estimated solution, can be

chosen according, e.g., a cross-validation criterion

CV(χ) = 1

n

n∑

i=1

[
yi − f̂−i(xi + θi)

]2

where f̂−i is obtained by solving

min
f,θ−i,ε−i





∥∥∥∥∥∥


 θ

ε



−i

∥∥∥∥∥∥

2

2

+ χ ‖f‖2Sob,m





s.t. y−i + ε−i = f(x−i + θ−i)

where the subscript−i denotes omitted the i-th element of the corresponding vector. A start-

ing value of χ can be chosen “ad hoc” by trying on values from the logarithmic lattice. But

the cross-validation need not to be the only one which can provide a reasonable choice of

the previously mentioned parameter, i.e., generalized cross-validation or various information

criteria.

Regression in Sobolev spaces allows to add so-called isotonic restrictions (for more details

see Pešta (2006a)) to the estimated function, e.g., monotonicity or convexity. Therefore,

one can perform a cumulative density function or a probability density function estimation.

Another application of isotonicity can be found in testing unimodality of a general regression

curve.

Unfortunately, we have to admit that our method has a disadvantage. There is a problem

of the invariant estimate with respect to a change of the variable magnitudes (scale). Let

us consider the simplest one-dimensional setup discussed above. When the values of the

explanatory variable are divided by a factor of two and the values of the response variable

are kept unchanged, our technique provides a different estimated curve than the originally

fitted curve shrunk twice in the horizontal way. This problem can be solved incorporating

scaled total least squares (STLS) with a scaling parameter η > 0. Hence, optimizing problem

of finding an estimate f̂ is shown as follows

min
f∈Hm,θ∈Rn,ε∈Rn

{
‖θ‖22 + η ‖ε‖22 + χ ‖f‖2Sob,m

}
, s.t. y + ε = f(x + θ). (6.7)

On the other hand, an additional theoretical problem of the choice of scaling parameter

appears when compared with previous simpler optimizing problem (6.1). Altogether, STLS

approach (6.7) can be viewed as a skewed orthogonal regression, when one takes into account

not the perpendicular distance to the unknown function, but the skewed one with a certain

angle represented by parameter η. This scaling parameter can also serve as an emphasizing

parameter, because it distributes emphasis on the errors corresponding to independent and

dependent variables.
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6.4.2 Further Research

For a further research, one may be interested in functional data. Hence, our method might be

extended into this statistical branch. One of the theoretical reasons (except many practical

demands) for the applicability of our approach into functional data analysis is that Hilbert-

Schmidt operator nicely “shakes hands” with Sobolev spaces.

Our approach of regression in Sobolev spaces using TLS needs to be studied from the

statistical point of view as well. Consistency and asymptotic normality of the estimate should

be explored. Moreover, bootstrap techniques could be applied for confidence intervals and

hypothesis testing.
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Chapter 7
Conclusions

Je to hlavně celé o lidech ... někdy to

třeba rozebereme u borovičky.

[It’s mainly all about

people ... sometimes maybe we will

discuss it with gin.]

Jaroḿır Antoch

The linear errors-in-variablesmodel is introduced with a corresponding total least squares

estimate. A brief algebraic and statistical summary of the EIV problem and the TLS

estimate is provided. General error structures with possible extensions are proposed in order

to model some realistic situations. Several alternatives to the EIV model are suggested and

reasonable ways of the estimation are carried out.

A generalization of the TLS estimate—the EIV estimate—is derived. Surprisingly, the

form of the estimate remains the same, but it solves much broader class of optimizing

problems in the EIV setup. Several invariant and equivariant properties are shown. The

EIV estimate can be viewed as a unitarily invariant and error-distance minimizing estimate.

On the top of that, a robust behavior with respect to outliers and leverage observations of

the EIV estimate is demonstrated.

Serious problems concerning asymptotic normality of the EIV estimate are pointed out.

A solution to computational inefficiency of the normal approximation is brought by a boot-

strap approach. Asymptotical validity of the proper nonparametric bootstrap procedure is

shown and demonstrated in a simulation study and on real data as well.

In spite of the previous advantage of the bootstrap approach, the bootstrap inference

cannot outperform the asymptotic normality. On the other hand, it can provide solid results

even in the case when the normal approximation is computationally useless.

Independence of the errors does not have to be realistic every time. The error structure
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of the EIV model is extended by weakening the independence assumption. Weakly depen-

dent errors—strong and uniformly strong mixing—are considered. Consequently, a strong

consistency and an asymptotic normality of the EIV estimate are proved in such a setup.

The practical applicability of the previous asymptotic results remains a serious issue

analogously as in the case when the errors were independent. A suitable block bootstrap

method is proposed in order to overcome such a problem. A justification of the moving

block bootstrap procedure is proved. A choice of the blocksize for the MBB is elaborated,

which is illustrated via a simulation study. Real data, where the EIV model with weakly

dependent errors seems to be plausible, is analyzed.

Finally, a nonlinear extension of the EIV model is commented. On the top of that,

a nonparametric version of the EIV model is supposed. A way of estimation from a broad

class of sufficiently smooth functions is suggested and, afterwards, demonstrated on various

real data sets.

7.1 Overview

A skeleton of this thesis can be encapsulated in an ideological schema displayed in Fig-

ure (7.1).

Firstly, a linear EIV model is considered, which is generalized to a nonparametric one

later on. Properties of the TLS estimate are summarized and its generalization, called the

EIV estimate, is invented. Interesting and important properties of invariancy and equivari-

ancy for the EIV estimate are derived.

Various error structures—from independent homoscedastic errors to weakly dependent

heteroscedastic ones—are taken into account, while the design assumption (D) is still valid.

Afterwards, asymptotic properties like the strong consistency or the asymptotic normal-

ity is proved. Having troubles with normal approximations, proper and correct bootstrap

methods are suggested. Their appropriateness and validity are shown theoretically and by

simulations as well.

All important remarks and suggestions to the particular issues and problems are discussed

immediately at the end of each chapter.
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Appendix A
Useful Definitions and Theorems

Ja, maar niet te veel.

[Yes, but not too many.]

Gerrit Achterberg

A.1 Additional Definitions

Definition A.1 (Unitary matrix). A unitary matrix A is a square matrix satisfyingA⊤A =

AA⊤ = I.

Definition A.2 (Permutation matrix). For a permutation π : {1, . . . , p} → {1, . . . , p},
a permutation matrix is a square matrix [eπ(1), . . . , eπ(p)]

⊤, where its rows are permuted

canonical vectors.

Definition A.3 (Rotation matrix). A rotation matrix is a unitary matrix whose determi-

nant is equal to one.

Definition A.4 (Deterministic Landau symbols). Let {an}∞n=1 and {bn}∞n=1 be two se-

quences of real numbers. One writes

an = O(bn), n→∞;

if and only if there exists a positive real number M > 0 and an integer n0 ∈ N such that

|an| ≤M |bn|, ∀n ≥ n0.

One writes

an = o(bn), n→∞;
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if and only if, for every positive real number τ > 0, there exists an integer n0 ∈ N such that

|an| ≤ τ |bn|, ∀n ≥ n0.

Definition A.5 (Stochastic Landau symbols). Let {Xn}∞n=1 be a sequence of random vari-

ables and {an}∞n=1 be a sequence of constants. One writes

Xn = OP(an), n→∞;

if and only if, for every positive real number ǫ > 0, there exists a positive real numberM > 0

and an integer n0 ∈ N such thatP [∣∣∣∣Xn

an

∣∣∣∣ > M

]
< ǫ, ∀n ≥ n0.

One writes

Xn = oP(an), n→∞;

if and only if, for all positive real numbers ǫ > 0 and τ > 0, there exists an integer n0 ∈ N
such thatP [∣∣∣∣Xn

an

∣∣∣∣ > τ

]
< ǫ, ∀n ≥ n0.

A.2 Supplementary Theorems

Theorem A.1 (Eigen decomposition (spectral decomposition)). Let P ∈ Rn×n be a matrix

of eigenvectors of a given square matrix A ∈ Rn×n and W ∈ Rn×n be a diagonal matrix

with the corresponding eigenvalues on the diagonal. Then, as long as P is a square matrix

with full rank, A can be written as an eigen decomposition

A = PWP−1. (A.1)

Furthermore, if A is symmetric, then the columns of P are orthogonal vectors. If P is not

a square matrix with full rank, then P cannot have a matrix inverse and A does not have

an eigen decomposition.

Theorem A.2 (Slutsky’s). Let {ξn}∞n=1 and {ζn}∞n=1 be sequences of scalar or vector or

matrix random elements. If ξn converges in distribution to a random element ξ, and ζn

converges in probability to a constant c, then (for suitable dimensions)

(i) ξn + ζn
D−−−−→

n→∞
ξ + c;
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(ii) ζnξn
D−−−−→

n→∞
cξ;

(iii) ζ−1
n ξn

D−−−−→
n→∞

c−1ξ, provided that ζn and c are invertible.

Theorem A.3 (Cramér-Wold). Let

ξn = (ξn,1, . . . , ξn,k)
⊤ and ξ = (ξ1, . . . , ξk)

⊤

be k-dimensional random vectors. Then ξn converges to ξ in distribution if and only if

k∑

i=1

tiξn,i
D−→

k∑

i=1

tiξi, n→∞

for each (t1, . . . , tk)
⊤ ∈ Rk.
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