The reaction of 1'-(diphenylphosphino)-1-ferrocenecarboxylic acid (Hdpf) with H₂NCH₂CO₂CR₃ mediated by peptide coupling agents (EDC/HOBt) afforded novel glycine phosphino-carboxamides $Ph_2PfcCONHCH_2CO_2CR_3$ (fc = ferrocene-1,1'-diyl; R = H (2) and Me (3^*)). Compound 2 was converted to its corresponding phosphine oxide (5^*) and sulfide (6*), to N-acyl glycine Ph₂PfcCONHCH₂CO₂H (7), and to bis-amide Ph₂PfcCONHCH₂CONH₂ (8*). Compounds 2 and 8 reacted with [PdCl₂(cod)] (cod = $\eta^2: \eta^2$ cycloocta-1,5-diene) and 7 reacted with Na₂[PdCl₄] to afford the respective, mostly solvated bis-phosphine complexes *trans*-[PdCl₂(L- κP)₂] (9: L = 2; 10: L = 7, 11: L = 8). Furthermore, bridge cleavage reaction of $[{Pd(\mu-Cl)(L^{NC})}_2]$ ($L^{NC} = 2$ -[(dimethylamino- κN)methyl]phenyl- κC^1 (12) with 2 gave [(L^{NC})Pd(Cl)(2- κP)] (13*), which was further reacted with AgClO₄ or KOt-Bu to afford bis-chelate complexes $[(L^{NC})Pd(2-\kappa^2 O, P)]ClO_4$ (14*) and $[(L^{NC})Pd(L-\kappa^2 O, P)]ClO_4$ (14*) $\kappa^2 N.P$)] (15*; L = 2 deprotonated at the NH group), respectively. All compounds were characterized by spectroscopic methods (multinuclear NMR, MS, and IR) and by elemental analyses; the asterisk indicates that the crystal structure has been determined. Phosphine 7 in combination with palladium(II) acetate were shown to be highly active catalysts for the Suzuki-Miyaura cross-coupling of aryl bromides with phenylboronic acid in polar solvents (ethanol and dioxane), in their aqueous mixtures, and in pure water.