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ABSTRACT 
Gregarines (Apicomplexa: Gregarinasina) are monoxenous parasites of 

invertebrates. Those found in sand flies (Diptera: Psychodidae) and mosquitoes 

(Diptera: Culicidae) used to be considered a single eugregarine genus Ascogregarina. 

Our phylogenetic analyses of the gregarine SSU rDNA, including newly obtained 

sequences of three species from sand flies, showed that mosquito and sand fly 

gregarines are closely related to neogregarines, and most importantly, they form two 

disparate monophyletic groups. Based on these molecular features, accompanied by 

biological differences, we established a new genus Psychodiella for the gregarines from 

sand flies, reserving the genus Ascogregarina for the mosquito gregarines.  

In the new genus, two new species Psychodiella sergenti from 

Phlebotomus sergenti and Psychodiella tobbi from Phlebotomus tobbi were described. 

They differ in the life cycles (sexual development of Ps. sergenti is triggered by a blood 

meal intake) and morphology of their life stages, mainly oocysts. The susceptibility of 

five sand fly species to both gregarines showed their strict host specificity, as they were 

able to fully develop and complete the life cycle only in their natural hosts.  

The life cycle of Ps. sergenti was studied in detail using various microscopical 

methods. Oocysts are attached to the chorion of sand fly eggs. Sporozoites, with a three-

layered pellicle and mucron, attach to the 1st instar larval intestine but are never located 

intracellularly. In the 4th instar larvae, the gregarines occur in the ectoperitrophic space 

and later in the intestinal lumen. In adults, the parasites appear in the body cavity, and 

the sexual development of Ps. sergenti takes place only in blood-fed females; 

gametocysts attach to the accessory glands and oocysts are injected into their lumen.  

Psychodiella sergenti was proven to have a negative impact on its host; the 

infection significantly decreases the survival of various sand fly stages; however, it has 

no negative effect on the blood-fed female fecundity and mortality. A tenfold increase 

in the infection dose (5 vs. 50 gregarine oocysts per one sand fly egg) leads to roughly a 

tenfold, twofold and threefold increase in the number of gamonts in the 4th instar larvae, 

in females and males, respectively.  

Even though sand fly gregarines are pathogenic parasites with interesting 

biology, they are not given the attention they deserve. This work attempts to fill in the 

missing information by giving a comprehensive insight into the sand fly gregarine 

taxonomy, host specificity, life cycle and pathogenicity. 

  



ABSTRAKT 
Gregariny (Apicomplexa: Gregarinasina) jsou parazité bezobratlých živočichů. 

Druhy popsané z flebotomů (Diptera: Psychodidae) a komárů (Diptera: Culicidae) byly 

původně řazeny mezi eugregariny rodu Ascogregarina. Sekvenací SSU rDNA tří druhů 

gregarin z flebotomů a jejich srovnáním s dostupnými sekvencemi ostatních druhů 

gregarin jsme však prokázali, že komáří i flebotomí gregariny jsou mnohem bližší 

neogregarinám a tvoří dvě oddělené skupiny. Protože toto zjištění je podpořeno i 

odlišnými biologickými vlastnostmi, rozdělili jsme rod Ascogregarina na dva a 

gregariny z flebotomů byly zařazeny do nového rodu Psychodiella.  

V rámci tohoto nového rodu jsme popsali dva nové druhy: Psychodiella sergenti 

z Phlebotomus sergenti a Psychodiella tobbi z Phlebotomus tobbi. Tyto druhy se liší v 

životním cyklu (sexuální vývoj Ps. sergenti je v dospělcích podmíněn sáním krve) a 

velikostí i morfologií životních stádií, především oocyst. Dále jsme prokázali vysokou 

hostitelskou specifitu těchto gregarin; při pokusných infekcích pěti druhů flebotomů se 

Ps. sergenti a Ps. tobbi plně vyvíjely pouze ve svých přirozených hostitelích.  

Životní cyklus Ps. sergenti byl detailně prostudován za použití různých 

mikroskopických metod. Oocysty parazita jsou přichyceny na chorion vajíček 

flebotomů. V larvách 1. instaru se sporozoiti s třívrstevnou pelikulou a mukronem 

vyskytují v ektoperitrofickém prostoru, někdy přichycení k epiteliálním buňkám, avšak 

nikdy nebyli lokalizováni intracelulárně. V larvách 4. instaru se gregariny nacházejí v 

ektoperitrofickém prostoru střeva a u starších jedinců v jeho lumen. V dospělcích pak 

gregariny osidlují tělní dutinu a v samicích po sání krve dochází k sexuálnímu vývoji, 

kdy se gametocysty přichycují k přídatným žlázám a oocysty jsou injikovány do jejich 

lumen.  

Dále jsme prokázali, že Ps. sergenti má negativní vliv na svého hostitele; 

zvyšuje mortalitu nedospělých stádií a dospělých samců a samic flebotomů, nemá však 

vliv na fekunditu nebo mortalitu nasátých samic. Při použití desetkrát vyšší infekční 

dávky (5 vs. 50 oocysts na vejce) došlo k přibližně desetinásobnému zvýšení počtu 

gregarin v larvách 4. instaru, zatímco v samicích a samcích bylo dvoj či trojnásobné.  

I přesto, že gregariny flebotomů jsou patogenní pro své hostitele a mají velmi 

zajímavou biologii, nejsou častým předmětem studia. V této práci jsme se snažili 

doplnit chybějící informace o těchto parazitech a podáváme souhrnnou studii o jejich 

molekulární taxonomii, hostitelské specifitě, životním cyklu a patogenitě. 
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1 OBJECTIVES 

Gregarines (Apicomplexa: Gregarinasina) are monoxenous parasites usually 

present in the body cavity or digestive tract of a number of invertebrate hosts. Along 

with other pathogens and parasites, they can be also found in phlebotomine sand flies 

(Diptera: Psychodidae). The sand fly gregarines have been recorded from many 

phlebotomine species, their pathogenic effect was shown experimentally, and from 

direct experience, they can seriously harm laboratory-reared colonies. Nevertheless, 

information available about them is insufficient. Prior to the publication of the 

manuscripts presented in this thesis, there had been only three described species of sand 

fly gregarines. Furthermore, host specificity and pathogenicity of these parasites was 

evaluated experimentally in a single study, and closer descriptions of the life cycle and 

fine structure were available only about one species. On the other hand, gregarines from 

mosquitoes (Diptera: Culicidae) have been widely studied, and presently, there are nine 

described species and a great deal of information about their pathogenic effects and host 

specificity. Furthermore, the only two studies dealing with molecular phylogeny of 

ascogregarines is accomplished about them.  

In 1998 and 2005, a colony of Phlebotomus sergenti Parrot 1917 and 

Phlebotomus tobbi Adler, Theodor and Lourie 1930 were established in our laboratory. 

After several generations, adults began to suffer from a high mortality rate, and 

dissections revealed their hemocoels heavily infected by gregarine gamonts and 

gametocysts. To reduce the intensity of infection and increase fitness of the colonies, 

eggs had to be washed by a series of reagents. However, this procedure never cleaned 

them completely and had to be repeated every generation. Because gregarines had never 

been recorded in Ph. sergenti and Ph. tobbi, and results of other studies showed their 

strict host specificity, we considered these two gregarines new species. During our 

research, we had the opportunity to compare them to the most studied sand fly 

gregarine, formerly known as Ascogregarina chagasi (Adler and Mayrink 1961) from 

Lutzomyia longipalpis (Lutz and Neiva 1912).  
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The main objectives of this thesis are listed below. Special attention was given 

to a gregarine from Ph. sergenti, an important vector of Leishmania tropica 

(Euglenozoa: Kinetoplastea). 

   

• To reveal the taxonomic position of sand fly gregarines by means of sequencing 

and comparing their genes for SSU rRNA and their biological features. 

 

• To characterize two new species of gregarines from sand flies Ph. sergenti and 

Ph. tobbi by evaluating their host specificity and comparing their morphology and 

life cycles. 

 

• To describe the life cycle of the gregarine from Ph. sergenti in more detail using 

various microscopical methods. 

 

• To evaluate effects of the gregarine from Ph. sergenti on its hosts. 
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2 INTRODUCTION 

2.1 Phlebotomine sand flies and their pathogens 

Phlebotomine sand flies are blood-sucking insects and important vectors of 

human pathogens. Over 700 species have been described, and two genera feed on blood 

of mammals transmitting Leishmania (Euglenozoa: Kinetoplastea), Bartonella 

(Proteobacteria) and phleboviruses: Phlebotomus in the Old World and Lutzomyia in the 

New World (Lewis 1973; Lane 1993; reviewed by Sadlova 1999). While there are many 

studies on the biology of adult sand flies, information about their breeding sites and 

larval development is lacking (Feliciangeli 2004). The adults feed on plant sugars, and 

females need blood to acquire nutrients for egg production. Some species are capable of 

autogeny (production of the first batch of eggs without taking a blood meal) and some 

feed on blood more than once for each batch of eggs (reviewed by Killick-Kendrick 

1999). The eggs are usually laid six to ten days post blood meal (Volf and Volfova 

2011) to a moist soil, animal burrows, caves or leaf litter (Lane 1993). The 1st instar 

larvae hatch usually from six to ten-day old eggs, and larval development lasts around 

three weeks (Volf and Volfova 2011). Sand flies have four larval instars feeding on 

organic detritus (Lane 1993) and sometimes on dead bodies of adults (Adler and 

Mayrink 1961). The terrestrial development of the larvae in dark humid sites facilitates 

growth and persistence of various sand fly entomopathogens (Warburg et al. 1991). A 

short overview of these organisms follows. 

 

Mites (Arthropoda: Acariformes) have been recorded from a number of sand fly 

species, and a comprehensive overview of these pathogens was given by Lewis and 

Macfarlane (1981). The most abundant families are Trombidiidae and Stigmaeidae 

(McConnell and Correa 1964; Martinez-Ortega et al. 1983; Reeves et al. 2008), which 

are usually attached to the exoskeleton of adult flies and their presence can be 

determined from visible scars (Martinez-Ortega et al. 1983).  

 

Various nematodes have been described from sand flies. Some of them 

negatively affect their hosts and are considered useful for biological control. For 

example, members of the family Tylenchidae (Nematoda), found by McConnell and 

Correa (1964) or Warburg (1991), can sterilize female sand flies (Poinar et al. 1993). 
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Didilia ooglypta (Adenophorea: Tetradonematidae), described by Tang et al. (1997) 

from Phlebotomus papatasi and Ph. sergenti, negatively affects larval development, 

causes sterility of males (Pires et al. 1997) and increases the mortality of adult sand flies 

(Killick-Kendrick et al. 1989). Other nematode, probably from the family 

Steinernematidae, negatively affects survival and blood feeding of sand fly females 

(Secundio et al. 2002). Mastophorus muris (Secernetea: Spirocercidae) was recorded in 

sand flies according to Young and Lewis (1977) and by Killick-Kendrick et al. (1976), 

and other spirurid nematodes were found in Lutzomyia townsendi by Warburg (1991).  

 

Saprophytic non-pathogenic fungi are common in the sand fly environment, 

where they are ingested by larvae, and they have been recorded from their intestines and 

also the body surface of adults (Warburg 1991). Furthermore, pathogenic fungi were 

observed from a number of sand fly species, and it has been suggested that they could 

be used in biological control replacing chemical insecticides (Amora et al. 2009). 

McConnell and Correa (1964) recorded fungi (Zygomycota: Entomophthorales, 

according to Warburg et al. (1991)) from ten Lutzomyia species. They are associated 

with reproductive organs and the body cavity, and they are suspected to disrupt normal 

physiology of females. Entomophthoralean fungi were also found in the body cavity of 

Phlebotomus ariasi (Rioux et al. 1966), in the thoracic muscles of Lutzomyia pia 

(Warburg 1991), and according to Warburg (1991), the vast number of fungal reports 

from sand flies reviewed by Young and Lewis (1977) could be Entomophthorales as 

well. Furthermore, these fungi occur in laboratory-reared colonies causing periodical 

increase in the adult sand fly mortality (Volf, personal communication). The fungal 

infection seems to be more harmful to adult sand flies than to the larvae, as 

Beauveria bassiana (Ascomycota: Hypocreales) decreases hatching rate (Amora et al. 

2009) and adult survival and fecundity, while the larvae are not affected (Warburg 

1991). The usability of this fungus in biological control is questioned by Reithinger et 

al. (1997); these authors showed that sand flies are not susceptible to B. bassiana 

infection in nature.  

Microsporidia (Fungi) are obligatory intracellular parasites of eukaryotes. In 

sand flies, they have been recorded in a few species (reviewed by Young and Lewis 

1977; 1980), and only two have been described: Flabelliforma montana 

(Pansporoblastina) from Ph. ariasi (Canning et al. 1991) and Vavraia lutzomyiae 

(Pansporoblastina) from L. longipalpis (Matos et al. 2006). The latter parasites are 

 10



located in the larval abdomen and sometimes in the Malpighian tubules and midgut of 

adults. Warburg et al. (1991) suggest that Microsporidia are much more abundant in 

sand flies than previously recorded. 

 

The order Trypanosomatida (Euglenozoa: Kinetoplastea) includes one of the 

most important parasites transmitted by sand flies, Leishmania, a causative agent of 

human leishmaniasis. This disease has two basic clinical forms: cutaneous and visceral, 

and it occurs in tropical and subtropical areas of America, Africa, Europe and Asia 

(Rutledge and Gupta 2009). Apart from Leishmania, sand flies also transmit other 

trypanosomatids: Endotrypanum (reviewed by Shaw 1981), a parasite of sloths and 

Trypanosoma (reviewed by McConnell and Correa 1964; Williams 1976). Other 

kinetoplasteans found in sand flies are Herpetomonas phlebotomi, the genus Crithidia 

(Jenkins 1964) and a parasite resembling Leptomonas or Phytomonas (Warburg 1991).  

 

Other pathogens found in sand flies are members of the phylum Apicomplexa. 

Sand flies are vectors of Plasmodium (Apicomplexa: Haemosporida), a causative agent 

of reptilian malaria (reviewed by Telford 1994). A coccidian parasite Adelina riouxi 

(Apicomplexa: Coccidiasina) was recorded in Phlebotomus perniciosus and 

Sergentomyia minuta (Rioux et al. 1972), and Warburg (1991) suggests that it could 

serve as a natural control agent of phlebotomine sand flies. Gregarines of the former 

genus Ascogregarina Ward, Levine and Craig 1982 have been recorded from a vast 

number of sand fly species; however, before the publication of our study (Lantova et al. 

2010) presented in this thesis, only three gregarine species had been described. Chapter 

2.2 brings detailed information about these undervalued parasites. 

 

Bacteria are important pathogens occurring in sand flies. 

Bartonella bacilliformis, a causative agent of human disease called Oroya fever or 

verruga peruana in Peru, Ecuador and Colombia, is transmitted by Lutzomyia species 

(Rutledge and Gupta 2009). A number of bacteria have been recorded from sand flies in 

the field and from the laboratory: Spirochaeta (=Treponema) phlebotomi (Spirochaetae) 

(Young and Lewis 1977), Pseudomonas (Proteobacteria), Rickettsia (Proteobacteria) 

(Young and Lewis 1977; Warburg 1991; Reeves et al. 2008) and Gram-negative 

Enterobacteriacae (Proteobacteria) and non-Enterobacteriacae from wild-caught sand 

flies (Oliveira et al. 2000; Gouveia et al. 2008; Hillesland et al. 2008). The microbial 
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community in the gut of pre-imaginal stages and adults is different (Volf et al. 2002; 

Guernaoui et al. 2011); however, some bacteria can be transmitted transstadially from 

larvae to the adults (Volf et al. 2002). Furthermore, blood feeding causes a temporary 

increase in the bacterial counts in females (Volf et al. 2002).  

Serratia marcescens (Proteobacteria) commonly appears in sand fly colonies and 

in wild-caught sand flies (Gouveia et al. 2008). Generally, it is pathogenic to insects 

(Seitz et al. 1987; Lauzon et al. 2003); however, it was not shown to affect sand flies 

(Warburg 1991). On the other hand, Bacillus thuringiensis var. israelensis (Firmicutes) 

toxin (used in biological control of insects) causes higher mortality of sand flies (Yuval 

and Warburg 1989), and Bacillus sphaericus was shown to negatively affect the 

survival of sand fly larvae (Pener and Wilamowski 1996; Robert et al. 1997). 

Wolbachia (Proteobacteria) infections have been recoded from a number of Old and 

New World sand flies from nature and colonies (Ono et al. 2001). They are maternally 

transmitted, found in arthropods and nematodes, and they are known to affect their 

reproduction (reviewed by Soares and Turco 2003). 

 

Phlebotomine sand flies are also vectors of three human important genera of 

phleboviruses: Phlebovirus (Bunyaviridae), Vesiculovirus (Rhabdoviridae) and 

Orbivirus (Reoviridae) (reviewed by Depaquit et al. 2010). There are 38 distinct 

Phlebovirus serotypes, 66% of which are transmitted by sand flies, and they have been 

isolated in America, central Asia, Africa and southern Europe. Eight phleboviruses 

(including e.g. Naples, Punta Toro, Sicilian and Toscana) are the causative agents of 

sand fly fever of humans (Tesh 1988); however, effects of these viruses on their vectors 

are not known (Warburg et al. 1991).  

Entomopathogenic cytoplasmic polyhedrosis viruses CPVs (Reoviridae) have 

been isolated from naturally infected colonies of Ph. papatasi (Warburg and Ostrovska 

1987) and L. longipalpis (Warburg and Pimenta 1995). Despite the fact that CPVs do 

not affect adult sand flies (Warburg and Ostrovska 1987), they decrease the vectorial 

capacity and competence of L. longipalpis to Leishmania donovani chagasi (Warburg 

and Pimenta 1995) and Ph. papatasi to Leishmania major by disrupting the midgut 

epithelium and peritrophic matrix (Warburg and Ostrovska 1987). Therefore, CPVs 

were considered useful in biological control of leishmaniasis. However, differences in 

the susceptibility of sand flies to CPVs (Warburg 1991) and their relatively low 

pathogenicity to adults are making them less suitable (Warburg et al. 1991). 
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2.2 Gregarines 

2.2.1 Gregarine taxonomy 

Gregarines, class Conoidasida, subclass Gregarinasina are members of the 

phylum Apicomplexa, a large and diverse group of parasites belonging to Alveolata. 

They are thought to be the earliest lineage of apicomplexans, phylogenetically very 

close to members of the genus Cryptosporidium (Apicomplexa: Coccidiasina) (Carreno 

a et al. 1999; Leander et al. 2003a; Leander and Keeling 2004; Rueckert and Leander 

2009; Templeton et al. 2009). The “sister” relationship of gregarines and 

cryptosporidians is supported by some aspects of their morphology and life cycle; both 

are monoxenous parasites, and both have specialized organelles of attachment (a 

mucron or epimerite in the gregarines and a feeder organelle in the cryptosporidians), 

with resembling attachment sites (Valigurova et al. 2007). Furthermore, in both of these 

genera, the presence of an apicoplast is disputable; it was not proven either in the 

gregarines (Obornik et al. 2002; Toso and Omoto 2007) or in the cryptosporidians (Zhu 

et al. 2000). 

Gregarines used to be divided into two groups depending on the presence or 

absence of merogony, an asexual replication: Eugregarinida without merogony and 

Schizogregarinida with merogony in their life cycle. However, Grasse (1953) divided 

the latter into archigregarines (“primitive” life cycle with merogony) and neogregarines 

(septate eugregarines with secondarily reacquired merogony). Currently (according to 

Perkins et al. 2000), there are three orders: Archigregarinorida (parasites of annelids, 

sipunculids, hemichordates and ascidians, with merogony), Neogregarinorida (found in 

arthropods, mostly dipterans, with merogony) and Eugregarinorida (found mostly in 

annelids and arthropods, without merogony).  

Based on their morphology, trophozoites of gregarines can be divided into two 

major groups (Schrevel and Philippe 1993); aseptate (monocystid or acephaline) that are 

not divided into regions except the anterior part of the cell, mucron, serving as the 

attachment apparatus. These gregarines are members of archigregarines and the 

suborder Blastogregarinorina and Aseptatorina within eugregarines (Perkins et al. 

2000). The other group, cephaline (septate or polycystid) gregarines, with the cell 

divided into segments by septa, are members of the eugregarine suborder Septatorina 

(Perkins et al. 2000). The cephaline tricystid gregarines have epimerite for attachment 

to the host cell, protomerite and deuteromerite containing nucleus. The cells of 
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polysegmented gregarines are divided into several sections (Schrevel and Philippe 

1993). 

Leander et al. (2003b; 2006) points out that, considering the behaviour and the 

morphology, trophozoites are the most distinctive, abundant and sufficiently variable 

stages in the gregarine life cycle, and they should be used in the gregarine taxonomy. 

However, gregarine taxonomy based solely on the morphology and life cycle can be 

problematic, due to many species and genera not having sufficient descriptions or not 

being characterized by clear and unique features, as remarked by Clopton (2009). For 

example, members of the family Gigaductidae had been originally considered 

eugregarines, because they possess some eugregarine features such as protomerite and 

deuteromerite, characteristic epimerite and the type of gametocyst dehiscence. 

However, after Tuzet and Ormieres (1966), Ormieres (1971) and Massot and Ormieres 

(1979) showed that members of this group undergo merogony in their coleopteran and 

orthopteran hosts, the family Gigaductidae was transferred into Neogregarinorida. 

Another example of a challenging gregarine taxonomy is the order Archigregarinorida 

and the phylogenetic position of the family Selenidiidae. Levine (1971) emphasize that 

not all the selenidiid species have been described as having merogony in their life cycle, 

and therefore, he divided them into two families, one (with merogony) within 

archigregarines and one (without merogony) within eugregarines. This arrangement was 

accepted by Perkins et al. (2000). Contrastingly, Schrevel and Philippe (1993) find this 

proposal unacceptable, because the absence of merogony in some of the species is 

insufficient character for them to be included within eugregarines, and Schrevel (1971) 

characterizes archigregarines as intestinal parasites of polychaete worms, with 

ultrastructural organisation of the trophozoites similar to that of dissemination forms 

and with a well-defined pellicular fibrillar system.  

To clarify the relationships within gregarines, molecular phylogenetic methods 

have been used, particularly the sequencing and phylogeny of genes, mostly for SSU 

rRNA. Based on the sequences of SSU rDNA and β-tubulin, aseptate eugregarines and 

neogregarines are very closely related (Carreno et al. 1999; Leander et al. 2003a; 2003b; 

2006), and because neogregarines combine features of both coccidia and eugregarines, 

they could be the link between these two groups (Vavra and McLaughlin 1970). 
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2.2.2 Gregarine life cycles and characteristics  

Gregarines can be found usually in the body cavity or digestive tract of a number 

of invertebrate hosts, namely annelids, molluscs, nemerteans, echinoderms, 

urochordates and arthropods (reviewed by Schrevel and Philippe 1993). The gregarine 

life cycle can be summarized as follows: the infective stages are oocysts containing 

sporozoites. After dehiscence of the oocysts, sporozoites are released, and they develop 

either attached to the host epithelium or intracellularly into trophozoites. Detachment of 

the trophozoites from the host cell is followed by the sexual phase of the life cycle, 

beginning with association of two mature gamonts into syzygy. The two gamonts in the 

syzygy are then enclosed in a cyst wall, and gametocyst is formed. Within the 

gametocyst, during gamogony, each gamont undergoes multiple nuclear divisions 

without cytokinesis, leading to production of gametes. After fertilization, during 

sporogony, zygotes differentiate by mitoses into oocysts with sporozoites. These can be 

released from the gametocysts by various ways, mostly by a simple rupture of the 

gametocyst or through a sporoduct (reviewed by Schrevel and Philippe 1993).  

Order Eugregarinorida comprises gregarines with similar life cycle to that 

described above; the life cycle of Lecudina sp. (Eugregarinorida: Aseptatorina), a 

parasite of Nereis diversicolor (Annelida: Polychaeta) is shown in Fig. 1A. On the other 

hand, the life cycle of neogregarines (and some archigregarines) includes merogony, a 

multiple asexual fission, which causes destruction of host tissues and fast spread of the 

parasites within the host. The life cycle of Mattesia dispora (Neogregarinorida: 

Lipotrophidae), a parasite of flour moth Ephestia kuehniella (Lepidoptera: Pyralidae), 

consists of two merogonies (micronuclear and macronuclear) and is shown in Fig. 1B. 

All apicomplexans are characterized by the presence of a set of anterior 

structures for attachment, the apical complex (Adl et al. 2005), which consists of polar 

rings, rhoptries, micronemes, conoid and subpellicular microtubules and is important in 

the host-cell invasion (reviewed by Dubremetz et al. 1998). Other characteristic 

apicomplexan feature is a three-layered pellicle formed from flattened subpellicular 

vesicles (alveoli) and the plasma membrane (Adl et al. 2005). The surface of 

eugregarines is associated with 12 nm filaments, an internal lamina and apical rippled 

dense structures (Schrevel et al. 1983). The pellicle of trophozoites can be organized 

into folds; archigregarines have large longitudinal folds (e.g. Schrevel 1971), 

neogregarines do not possess any folds (e.g. Vavra and McLaughlin 1970), polycystid 

eugregarines have mostly narrow longitudinal folds (e.g. Schrevel et al. 1983), and 
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monocystid gregarines are more variable, with some having typical longitudinal folds 

and some more complex ones (reviewed by Schrevel and Philippe 1993). 

 

Fig. 1. The life cycle of Lecudina sp. (Eugregarinorida) (A) and Mattesia dispora 
(Neogregarinorida) (B). 
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Lecudina sp. (a) Gamont in the intestinal 
lumen; (b) syzygy; (c) gametocyst; (d, e) 
gamogony and formation of gametes; (f) 
female gamete; (g) male gamete; (h) 
fertilization; (i) young oocyst; (j) mature 
oocyst with sporozoites; (k) sporozoite; 
(l) young trophozoite in the intestinal 
epithelium of the host. Based on Perkins 
et al. (2000). 

 
Mattesia dispora (a) Sporozoite in the 
host intestinal lumen; (b – e) first 
(micronuclear) merogony in the fat body; 
(f, g) second (macronuclear) merogony in 
the fat body; (h – k) formation of 
gamonts; (l – n) syzygy; (o – q) 
sporogony of a dispore form; (r, s) 
sporogony of a monospore form; (t) 
mature oocyst containing sporozoites. 
Based on Perkins et al. (2000).  

 

Trophozoites of most gregarines are motile. Gliding, the most studied type of 

movement, is without any change of cell shape and is always accompanied by the 

formation of a mucus trail (Mackenzie and Walker 1983), which serves as a lubricant 

(Schrevel et al. 1983). Gliding is driven by actin-myozin interactions (reviewed by King 

1988; Heintzelman 2003). Another type of movement, pendular or rolling, was 
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described in selenidiid gregarines, and peristaltic movement was recorded in some 

species of eugregarines (reviewed by Schrevel and Philippe 1993).  

Apart from the common cytoplasmic organelles such as nucleus, mitochondria 

and Golgi apparatus, which can differ among gregarine species, there are also various 

inclusions including lipid droplets and spherical or ovoid bodies of storage 

polysaccharide, sometimes called paraglycogen. The paraglycogen granules are of the 

amylopectin type (Schrevel 1970; Mercier et al. 1973). They resemble the amylopectin 

found in Eimeria (Apicomplexa: Coccidiasina) species and consist of about 20 glucose 

residues. Structurally, they are intermediate between a plant amylopectin and an animal 

glycogen similar to sweet corn phytoglycogen (Mercier et al. 1973). Because of their 

similarity to glycogen, they are strongly PAS (periodic acid-Schiff)-positive, and 

therefore Jennings (1961) suggested using PAS reaction to demonstrate gregarines and 

coccidia in the host tissues. 

 

2.3 Gregarines parasitizing mosquitoes and sand flies 

The present thesis deals with the life history, pathogenic effects, host specificity 

and taxonomy of mosquito and sand fly gregarines bringing new data and also 

introducing changes in their systematics. However, the following overview of published 

information about sand fly gregarine host-parasite interactions and systematics 

represents the situation before studies of our team by Votypka et al. (2009), Lantova et 

al. (2010) and Lantova et al. (2011a; 2011b) were published, accepted for publication or 

submitted. The new data and systematic arrangement is presented in the result, 

summary and conclusion sections (see chapter 3, 4 and 5). 

 

2.3.1 Taxonomy of mosquito and sand fly gregarines 

Members of the genus Ascogregarina (syn. Monocystis von Stein 1848, 

Lankesteria Mingazzini 1891 and Ascocystis Grasse 1953) are aseptate eugregarines 

(Eugregarinorida: Aseptatorina) of the family Lecudinidae. Out of 16 named species of 

the genus (Perkins et al. 2000), three had been described from sand flies (before 2010) 

and nine from mosquitoes (Table 1). The terminology and history of the final 

designation of mosquito and sand fly gregarines is complex. The type species of the 

genus is Ascogregarina culicis (Ross 1898), the first mosquito gregarine originally 
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described as Gregarina culicis by Ross (1898) and renamed as Lankesteria culicis by 

Wenyon (1911). The first described sand fly gregarine was originally named 

Monocystis mackiei by Shortt and Swaminath (1927) or Lankesteria phlebotomi mackiei 

by Missiroli (1932) and later renamed as Ascogregarina mackiei (Shortt and Swaminath 

1927). Grasse (1953) proposed a new name Ascocystis for gregarines of the genus 

Lankesteria parasitizing insects, and he renamed Lankesteria culicis as 

Ascocystis culicis. Similarly, Ormieres (1965) and Tuzet and Rioux (1966) renamed 

L. phlebotomi mackiei as Ascocystis mackiei, and later, Scorza and Carnevali (1981) 

brought morphological evidence placing sand fly gregarines of the genus Monocystis 

into the genus Ascocystis. Ormieres (1965) and Levine (1977) accepted Ascocystis from 

Grasse (1953) for parasites of Diptera and restricted Lankesteria to parasites of 

ascidians. However, the name Ascocystis is a synonym for Ascocystis Bather 1889 used 

for fossil crinoid echinoderm, and therefore Ward et al. (1982) established a new name 

Ascogregarina for the gregarines from Diptera formerly known as Ascocystis. 

Even though there were numerous studies about ascogregarines, mostly those 

from mosquitoes, dealing with their effects on hosts, morphology, life cycle, prevalence 

and host specificity, information about their molecular taxonomy was lacking. Up until 

2009, genes for SSU rRNA had been sequenced for Ascogregarina armigerei (Lien and 

Levine 1980), Ascogregarina sp. from Ochlerotatus japonicus, As. culicis and 

Ascogregarina taiwanensis (Lien and Levine 1980) by Roychoudhury et al. (2007a). 

Partial sequences of SSU rDNA and 28S rDNA and sequences of ITS1, 5.8S rDNA and 

ITS2 of Ascogregarina barretti (Vavra 1969), As. culicis and As. taiwanensis were 

submitted by Morales et al. (2005). Furthermore, there were directly submitted 

sequences of actin gene, partial SSU rDNA and ITS1, 5.8S rDNA, ITS2, 26S rDNA and 

5S rDNA of As. taiwanensis. There was only one study dealing with the phylogenetic 

position of mosquito ascogregarines by Roychoudhury et al. (2007a), who sequenced 

SSU rDNA of four ascogregarine species showing their monophyletic position with 

other gregarines and close relationship with cryptosporidians. More recently, a whole-

genome-sequence survey for As. taiwanensis was accomplished by Templeton et al. 

(2010).  
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Table 1. A list of designated sand fly and mosquito gregarines of the genus 
Ascogregarina before 2009. 
 

name original name host species 
Ascogregarina culicis 
(Ross 1898) Gregarina culicis  Aedes aegypti 

(Lin. 1762) 
As. tripteroidesi  
(Bhatia 1938)  Lankesteria tripteroidesi Tripteroides dofleini 

(Guenther 1913) 
As. barretti 
(Vavra 1969) Lankesteria barretti  Ae. triseriatus 

(Say 1823) 
As. clarki 
(Sanders and Poinar 1973) Lankesteria clarki  Ae. sierrensis 

(Ludlow 1905) 
As. armigerei  
(Lien and Levine 1980) Ascocystis armigerei Armigeres subalbatus 

(Coquillett 1898) 
As. lanyuensis 
(Lien and Levine 1980) Ascocystis lanyuensis Ae. alcasidi 

Huang 1972 
As. taiwanensis 
(Lien and Levine 1980) Ascocystis taiwanensis Ae. albopictus 

(Skuse 1894) 
As. geniculati  
Munstermann and Levine 1983

Ascogregarina 
geniculati 

Ae. geniculatus 
(Olivier 1791) 

As. polynesiensis  
Levine 1985 

Ascogregarina 
polynesiensis 

Ae. polynesiensis 
Marks 1951 

As. mackiei 
(Shortt and Swaminath 1927) Monocystis mackiei Phlebotomus argentipes 

Ann. and Brun. 1908 
As. chagasi 
(Adler and Mayrink 1961) Monocystis chagasi Lutzomyia longipalpis 

(Lutz and Neiva 1912) 
As. saraviae 
Ostrovska, Warburg and 
Montoya-Lerma 1990 

Ascogregarina saraviae L. lichyi 
(Floch and Abonnenc 1950) 

 

2.3.2 Gregarines from mosquitoes and their life cycles 

The life cycle of As. culicis (Fig. 2), the type species of the genus Ascogregarina 

is very similar to other mosquito ascogregarines and is used as a typical example of a 

mosquito gregarine life cycle (minor interspecific differences and details are explained 

for each species separately).  

The mosquito larvae become infected by ingesting Ascogregarina oocysts. Each 

spindle-shaped oocyst contains eight sporozoites, which are released in the intestine and 

invade the epithelial cells. Inside the cells, they develop into trophozoites, and later, 

when the epithelial cell ruptures, these are released into the gut lumen. During pupation, 

the gregarines migrate to the Malpighian tubules, where the sexual development takes 
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place; gamonts pair in syzygies and develop into gametocysts with oocysts inside. The 

oocysts are released during defecation with faeces into the water and infect newly 

hatched larvae. (Wenyon 1911; Walsh and Callaway 1969; McCray et al. 1970).  

 

Fig. 2. The life cycle of Ascogregarina culicis. Life cycle stages: (a) intracellular 
trophozoite; (b) extracellular trophozoites; (c) gamont; (d) syzygy; (e – j) gamogony; 
(k) fertilization; (l) formation of oocysts; (m) oocysts with sporozoites. Location: (m, a, 
b) larval gut; (c – l) the Malpighian tubules of adults. Based on Lankester (1953).  
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Ascogregarina culicis (Ross 1898) was described in India by Ross (1895) as 

Gregarina culicidis and later as Gregarina culicis (Ross 1898). Oocysts of this parasite 

are infective to all larval stages of Aedes aegypti (Lin. 1762); when the early larval 

instars are infected with the gregarine oocysts, the development of both the parasite and 

the host are synchronized, while the gregarine development stops at the gamont stage, 

when the oocysts are ingested by the late 4th instar larvae. Similar results were observed 

also for As. taiwanensis in Aedes albopictus (Skuse 1894) (Roychoudhury and 

Kobayashi 2006). 

 McCray et al. (1970) recorded sporozoites and trophozoites of As. culicis 

mostly in the anterior part of the larval midgut, while Walsh and Callaway (1969) in the 

posterior part. The sporozoites are 9.5 – 10 µm long with a tapered posterior part. Their 



pellicle, according to the authors (Sheffield et al. 1971), consists of an outer and a 

thicker inner membrane. The anterior part of the sporozoite contains conoid, two apical 

rings and a polar ring. A “flask-shaped” organelle, observed in the anterior part of 

mostly extracellular sporozoites, was suggested to have a function in the host cell 

invasion (Sheffield et al. 1971). Trophozoites of As. culicis are 170 µm long, 

gametocysts are 71 – 125 µm in diameter and oocysts are 11 µm long and 5 µm wide 

(Lien and Levine 1980). 

Several studies dealing with the prevalence and seasonality of As. culicis in 

natural Ae. aegypti populations showed that e.g. in temperate Argentina, it is seasonally 

and spatially heterogeneous (Vezzani and Wisnivesky 2006; Albicocco and Vezzani 

2009), and the prevalence of the parasite was 21.1% and 16.7%, respectively. One of 

the first country-wide surveys of As. culicis prevalence was given in Trinidad (Beier et 

al. 1995).  

 

Ascogregarina tripteroidesi (Bhatia 1938) was found in Tripteroides dofleini 

(Guenther 1913) in Sri Lanka by Guenther (1914) and later denominated by Bhatia 

(1938). The whole life cycle was not described; the only known stages are trophozoites, 

which were recorded in the body cavity, trachea and anal gills of larvae.  

 

Ascogregarina barretti (Vavra 1969) was described from Aedes triseriatus (Say 1823) 

in Texas by Vavra (1969). Trophozoites develop in the epithelial cells of the larval 

intestine, after reaching the size of 150 – 200 µm, they are released from ruptured cells 

and appear in the ectoperitrophic space of the intestine as gamonts. These grow up to 

the length of 310 µm, and during pupation, they enter into the Malpighian tubules. 

Gametocysts are 60 – 100 µm in diameter, and oocysts with eight sporozoites measure 

11 × 5.4 – 5.7 µm. This gregarine differs from As. culicis in several features: the 

location of the trophozoites within the epithelial cells, position of their nucleus, 

character of longitudinal folds, the presence of a mucron and size of paraglycogen 

granules (Vavra 1969).  

 

Ascogregarina clarki (Sanders and Poinar 1973) was described from Aedes sierrensis 

(Ludlow 1905) in California by Sanders and Poinar (1973). Several features distinguish 

this gregarine from As. culicis and As. barretti: the character of gamonts and their 

nucleus, structure and position of residual bodies in the oocysts, and the fact that the 
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trophozoites are always intracellular in the anterior part of the larval midgut. 

Sporozoites measure 8 × 1 – 2 µm, mature trophozoites 129.1 × 26 µm, and they have 

unresolved number of membranes in the pellicle. According to the authors, the passage 

of the trophozoites to the Malpighian tubules is rather passive, as the release of the 

gregarines from the epithelial cells is a result of natural histolysis of the midgut cells 

during pupation. Gamonts measure 226 × 31 µm, and gametocysts are 78 µm in 

diameter on average (Sanders a Poinar 1973). 

 

Ascogregarina armigerei (Lien and Levine 1980) was described from 

Armigeres subalbatus (Coquillett 1898) in Taiwan. Trophozoites measure 135 × 23 µm 

and are contractile, gametocysts are 71.2 µm in diameter. The character and size of the 

oocysts (14.5 × 6 µm) clearly distinguishes between As. culicis, As. armigerei, 

Ascogregarina lanyuensis (Lien and Levine 1980) and As. taiwanensis (Lien and 

Levine 1980). 

 

Ascogregarina lanyuensis (Lien and Levine 1980) was described from Aedes alcasidi 

Huang 1972 in Taiwan along with two other ascogregarine species (Lien and Levine 

1980). Trophozoites measure 190 × 26 µm, gametocysts are 89.9 µm in diameter and 

oocysts are 9 µm  long and 5 µm wide.   

 

Ascogregarina taiwanensis (Lien and Levine 1980) was described from Ae. albopictus 

in Taiwan, and it is the most studied mosquito ascogregarine. The development of 

As. taiwanensis is influenced by the larval age at the time of infection in a similar 

pattern as in As. culicis (see above; Roychoudhury and Kobayashi 2006). Sporozoites 

invade the anterior third of the larval midgut epithelium; Chen et al. (1997a) usually 

found two of them in each cell. They are slender with a three-layered pellicle (recorded 

also in trophozoites) and possess typical apical complex with a conoid, polar rings, 

rhoptries, subpellicular microtubules and micronemes (Chen et al. 1997b). The 

amylopectin granules recorded in the oocysts disappear during the morphogenesis of the 

sporozoites (Chen et al. 1997b). The release of the sporozoites from the oocysts may be 

triggered by V-ATPase modulated alkalization in the anterior midgut of the mosquito, 

and V-ATPase may also play a role in the parasite invasion and formation of 

extracellular stages (Huang et al. 2006).  
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The development of the extracellular trophozoites is conditioned by their 

migration to the Malpighian tubules; the ones who fail to migrate undergo apoptosis 

(Fan-Chiang and Chen 2002). Actin and myosin are involved in this migration, and at 

the anterior end of the migrating parasite, a “protruding apparatus” with enhanced actin 

expression is formed (Chen and Fan-Chiang 2001). The sexual reproduction of 

As. taiwanensis in the Malpighian tubules is influenced and, to a certain level, 

synchronized with the host metamorphosis; increase of the level of the moulting 

hormone 20-hydroxyecdysone signals migration of the parasite and expedites the 

formation of gametocysts (Chen and Yang 1996; Chen 1999). Gamonts are 234 µm 

long, gametocysts are 87,5 µm in diameter (Lien and Levine 1980). Oocysts measure 10 

× 5 µm according to Lien and Levine (1980) and 8.72 × 4.97 µm according to Chen et 

al. (1997b).  

 

Ascogregarina geniculati Munstermann and Levine 1983 was found in 

Aedes geniculatus (Olivier 1791) by Ganapati and Tate (1949) in England and by 

Kramar (1952) in the former Czechoslovakia, and it was originally described as 

As. culicis. However, Munstermann a Levine (1983), who were studying this gregarine 

in Sardinia, determined it as As. geniculati (Fig. 3). The main characteristic that can 

differentiate this species from other mosquito ascogregarines is the dimension of 

oocysts that measure 13.5 × 5 µm. Gamonts measure on average 175 × 31 µm and 

gametocysts are 77 µm in diameter (Munstermann and Levine 1983). 

 

Fig. 3. Ascogregarina geniculati life stages. (a) Gamont; (b) young gametocyst 
containing macro- and microgametes; (c) gametocyst containing zygotes; (d) oocyst. 
Based on Munstermann and Levine (1983). 
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Ascogregarina polynesiensis Levine 1985 was found in Aedes polynesiensis Marks 

1951 in Samoa by Pillai et al. (1976) and was, similarly to As. geniculati, originally 

described as As. culicis. However, Levine (1985) pointed out that As. culicis differs 

from the gregarine from Ae. polynesiensis and that Pillai et al. (1976) examined 325 

Ae. aegypti (the natural host of As. culicis) and found only a single infected one, while 

the prevalence in Ae. polynesiensis was 39.5 %. Therefore, this gregarine was renamed 

to Ascogregarina polynesiensis (Levine 1985). Trophozoites have a mean dimension of 

65 × 35 µm, gametocysts measure approximately 40 µm and the oocysts measure 9.32 × 

4.24 µm (Pillai et al. 1976). 

 

Other mosquito gregarines. According to some authors, As. culicis was found also in 

other mosquito species than Ae. aegypti: Kramar (1953) and Ganapati and Tate (1949) 

found it in Ae. geniculatus, Ray (1933) in Ae. albopictus, Feng (1930) in Aedes koreicus 

and Pillai et al. (1976) in Ae. polynesiensis. Vavra (1969) pointed out that possibly not 

all the descriptions of gregarines from mosquitoes were dealing with As. culicis as 

originally presumed, and he suggested that only the ones from Ae. albopictus and 

Ae. koreicus could be As. culicis. Munstermann and Levine (1983) consider the two 

gregarines from Ae. geniculatus to be As. geniculati, and Levine (1985) designated the 

gregarine from Ae. polynesiensis as As. polynesiensis.  

A gregarine similar to As. barretti was found in Indiana in Aedes hendersoni 

(Rowton et al. 1987); however, the differences in the number of gregarine stages, 

location of the trophozoites within the larval gut and the presence of dead gamonts in 

cross-infections with As. barretti and Ae. triseriatus suggest that the gregarine from 

Ae. hendersoni is a new species, distinct from As. barretti. This was accepted by Chen 

(1999). Roychoudhury et al. (2007b) described ascogregarine from O. japonicus in 

Japan and consider it a new species Ascogregarina sp. 

Other ascogregarines have been recorded from different mosquito species in 

USA, Brazil, West Africa, China, Malaysia, Philippines, Italy or France, (reviewed by 

Christophers 1960; Clark 1980), and Tuzet and Rioux (1966) gave an overview of 

gregarines from culicid, ceratopogonid, simuliid and psychodid Diptera comprising not 

only several eugregarine species, but also some neogregarines including Caulleryella 

(Neogregarinorida: Caulleryellidae) sp. This neogregarine is an intestinal extracellular 

parasite that has been described from several mosquito species (reviewed by Weiser 

1966). 
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2.3.3 Gregarines from sand flies and their life cycles 

The life cycle of As. chagasi (Adler and Mayrink 1961) (see Adler and Mayrink 

1961; Coelho and Falcao 1964; Warburg and Ostrovska 1991) is used as a typical 

example (details and interspecific differences are explained for each species separately). 

As there is no drawing of the life cycle of this gregarine in the literature, I summarized 

it in Fig. 4. 

The first instar larvae are infected by swallowing spindle-shaped oocysts. Eight 

sporozoites released from these oocyst reside in the larval midgut, attach to the 

epithelial cells and develop into trophozoites. Later, gamonts can be found mostly in the 

larval gut lumen, where the gregarines undergo sexual development from the formation 

of syzygies to the production of oocysts. In adults, the gregarines are located in the body 

cavity forming syzygies and gametocysts with oocysts inside. The gametocysts attach to 

the accessory glands of females, and the oocysts are injected into their lumen. This was 

recorded by several authors (Adler and Mayrink 1961; Coelho and Falcao 1964; Lewis 

et al. 1970; Scorza and Carnevali 1981), and it is a unique mechanism of vertical 

transmission supporting the hypothesis about co-evolution of gregarines and sand flies 

(Ostrovska et al. 1990). During oviposition, contents of the glands including the oocysts 

are attached to the chorion of eggs and serve as a source of infection for newly hatched 

larvae. This general life cycle is modified in As. mackiei, where the development of the 

sporozoites and trophozoites in larvae is intracellular (Shortt and Swaminath 1927). 

 

Ascogregarina mackiei (Shortt and Swaminath 1927) was described by Shortt and 

Swaminath (1927) from Phlebotomus argentipes Ann. and Brun. 1908 in India and later 

by Missiroli (1929; 1932) from Ph. papatasi (Scopoli 1786) in Italy. It is the only sand 

fly gregarine with intracellular development. In larvae, four gregarine stages can be 

found: ingested oocysts, sporozoites released from these oocysts, intracellular stages (all 

in the intestine) and adult gregarines in the intestine (often in the ectoperitrophic space) 

or the body cavity. The sporozoites (leaf-shaped, 4.8 × 1.8 µm) are located mostly in the 

posterior part of the midgut; the authors postulate that most sporozoites do not survive 

defecation, and therefore only a certain number of them is able to invade the host 

epithelial cells. The intracellular gregarines (23.4 µm) are initially round and later 

become triangular with no special organ of attachment. They concentrate mostly in the 

posterior intestine, and they are released from the epithelial cells into either the 
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intestinal lumen or the body cavity. The gamonts (round, oval or pear-shaped, 101.4 × 

78 µm), with distinct nucleus (30 µm) and nucleolus (8 – 10 µm), are motile with well-

marked longitudinal striations (Shortt and Swaminath 1927). 

 
Fig. 4. The life cycle of Ascogregarina chagasi. Life cycle stages: (a) extracellular 
trophozoite attached to the larval gut epithelium; (b) gamonts; (c) syzygy; (d) young 
gametocyst; (e) gametocyst with oocysts; (f) oocysts. Location: (a) the 1st instar larval 
gut; (b) larval and pupal gut, pupal and adult body cavity; (c – e) larval gut, the body 
cavity of adults, gametocysts attached to the accessory glands of females; (f) larval gut 
and faeces, the body cavity of adults, lumen of the accessory glands of females, on the 
exochorion of eggs.  
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In pupae, only gamonts of As. mackiei occur, mostly in the posterior body cavity 

but never in the alimentary canal. The body reconstitution of the pupae probably causes 

passive relocation of the gregarines from the intestine into the body cavity; however, the 

authors point out that, in order to prove this, the processes during pupation need to be 

studied (Shortt and Swaminath 1927). 

In adults, all the parasite life stages including oocysts were found. The large 

fully-grown gamonts are located always in the body cavity, more often in the posterior 

part. However, they are never within the digestive tract, and they tend to cluster around 

the reproductive organs. Sexual development of the gregarines occurs irrespective of a 

blood meal intake. Gametocysts are 66.3 – 152.1 µm in diameter, spherical or oval, and 
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they are mostly located in the posterior two thirds of the body cavity attached to the 

common oviduct. Oocysts are broad spindle-shaped (9.6 × 5.8 µm), with knob-like 

projection at each pole. The pressure produced by the growth of oocytes and the 

gametocysts causes disruption of the gametocyst wall at the site where they are attached 

to the oviduct, and the oocysts are injected into its lumen (Shortt and Swaminath 1927). 

Wu remarks (as unpublished observation in Ostrovska et al. 1990) that As. mackiei was 

also found to have oocysts in the accessory glands.  

The prevalence of infected sand flies was roughly 25% or less in nature, while in 

the laboratory colonies, where the chance of infection is much higher, it was almost 

100% (Shortt and Swaminath 1927). 

 

Ascogregarina chagasi (Adler and Mayrink 1961), originally named 

Monocystis chagasi, was described from L. longipalpis females in Brazil by Adler and 

Mayrink (1961), who gave several morphological and life cycle features that 

differentiate this parasite from As. mackiei. Ascogregarina chagasi is the most studied 

sand fly gregarine. In the 1st instar larvae, sporozoites and young trophozoites are 

attached to the larval epithelium through an osmiophilic contact zone; they are never 

located intracellularly (Warburg and Ostrovska 1991). The sporozoites are surrounded 

by a two-layered pellicle with subpellicular microtubules and possess an apical complex 

with conoid. The oval gamonts (60 – 90 µm), on the other hand, have a three-layered 

pellicle forming longitudinal epicytic folds (Warburg and Ostrovska 1991). They were 

found in the ectoperitrophic space of the intestine of the 3rd and 4th instar larvae by 

Warburg and Ostrovska (1991) and in the ectoperitrophic space of the 1st, 2nd and 3rd 

and in the intestinal lumen of the 4th instar larvae by Coelho and Falcao (1964). The 

latter authors also recorded one gamont in the Malpighian tubules and some sexual 

developmental stages in the intestinal lumen of the 4th instar larvae. The gregarine is 

able to complete its life cycle in the larvae, and oocysts in their faeces are a source of 

horizontal transmission.  

In pupae, only gamonts occur (Coelho and Falcao 1964). Similarly to Shortt and 

Swaminath (1927), also Warburg and Ostrovska (1991) suggest that the relocation of 

the gregarines occurs during pupation. In males, Adler and Mayrink (1961) recorded 

only gamonts, while Coelho and Falcao (1964) found all the developmental stages of 

As. chagasi (gamonts, syzygies, gametocysts and oocysts) in the body cavity and a few 

gamonts also in the intestine.  
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In females, all the gregarine stages were recorded. Adler and Mayrink (1961) 

found syzygies, gametocysts and oocysts of As. chagasi 2 – 4 days post blood meal, 

while Warburg and Ostrovska (1991) found them already 72 hours post blood meal. The 

smallest gamonts are 30 µm in diameter (those over 60 µm have a proboscis-like 

projection), and adult round or oval gamonts ready to undergo syzygy measure 72 – 120 

µm in diameter. Their nucleus (28 µm) has a distinctive nucleolus (8 – 10 µm) (Adler 

and Mayrink 1961). Gametocysts measure 72 – 120 µm (Adler and Mayrink 1961) or 

95 – 120 µm (Warburg and Ostrovska 1991) in diameter. The size of the oocysts varies 

markedly in descriptions by different authors; Adler and Mayrink (1961) state their 

measurements as 11.4 × 5.8 µm, while Warburg and Ostrovska (1991) as 12.7 × 7.5 µm. 

The cytoplasm of the developing oocysts contains amylopectin granules, and all the life 

cycle stages apart from the gametocysts have a diffuse actin-like protein in the 

cytoplasm, suggesting the involvement of actin in movement (Warburg and Ostrovska 

1991). 

The gametocysts are attached to the accessory glands of females, but Adler and 

Mayrink (1961) found them also in the ovaries. Injection of the oocysts into the 

accessory glands is enhanced by plasmatocyte humoral encapsulation; encapsulated 

gametocysts and the internal pressure of the developing oocysts, as mentioned also by 

Adler and Mayrink (1961), results in rupture of the gametocysts at the site where they 

are attached to the accessory glands, releasing the oocysts into the gland lumen 

(Warburg and Ostrovska 1989). The majority of the oocysts in the accessory glands are 

uninucleate, and the nuclear divisions occur after 24 hours in a moist chamber (Adler 

and Mayrink 1961). The oocyst distribution among batches and individual eggs is 

irregular (Adler and Mayrink 1961). There are two modes of vertical transmission of 

this gregarine; the larvae ingest either oocysts released from the accessory glands on the 

exochorion of eggs or the ones in the body cavity of dead sand flies. 

 

Ascogregarina saraviae Ostrovska, Warburg and Montoya-Lerma 1990 was 

described from females of Lutzomyia lichyi (Floch and Abonnenc 1950) in Colombia. 

Two or three gametocysts were attached to the accessory glands of each infected 

female. Oocysts (12.4 × 5.8 µm) are located in the gametocysts, glands or on the egg 

surface. The differences in the size and shape of the oocysts (those of As. saraviae have 

thinner walls and narrower midsections than those of As. chagasi) give evidence that 

As. saraviae is a different, new species (Ostrovska et al. 1990). 
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Other gregarines from sand flies. A gregarine found in Lutzomyia vexatrix occidentis 

in California (Ayala 1971) differs from As. chagasi in several morphological and life 

cycle characteristics suggesting that it is a new species; the gamonts are pear-shaped (74 

– 180 × 58 – 95 µm) or spherical (68 – 180 µm), with a light nucleus (24 – 26 µm) and 

nucleolus (8.5 µm), the gametocysts are spherical (110 – 190 µm), and the oocysts are 

spindle-shaped (10.5 × 6 µm). This was the only gregarine with sexual development 

(formation of syzygies, gametocysts and oocysts) in adults triggered by a blood meal 

intake. 

In Brazil, gregarines identified as As. chagasi have been recorded from several 

sand fly species: L. townsendi (Scorza and Carnevali 1981), Lutzomyia evandroi (Brazil 

and Ryan 1984), Lutzomyia sallesi (Coelho a Falcao 1964), Lutzomyia sordelli (Oliveira 

et al. 1991 in Brazil et al. 2002) and Lutzomyia cruzi (Brazil et al. 2002). Oliveira et al. 

(1991) in Brazil et al. (2002) also found a gregarine in Lutzomyia schreiberi, which they 

consider As. saraviae.   

A number of studies recorded unidentified gregarine species from 

Lutzomyia shanonni in Belize (Garnham and Lewis 1959), ten species of Phlebotomus 

sp. in Panama (McConnell and Correa 1964), Lutzomyia cruciata in Belize (Lewis 

1965), Lutzomyia flaviscutellata in Brazil (Lewis et al. 1970), six species of Lutzomyia 

sp. in Brazil (Mayrink et al. 1979) and Lutzomyia apache in Wyoming (Reeves et al. 

2008). Furthermore, Young and Lewis (1977) found gregarines in more that 20 sand fly 

species and Killick-Kendrick et al. (1976) found a neogregarine from the fat body of 

Ph. ariasi. 

 

2.3.4 Host specificity of mosquito and sand fly gregarines  

The host specificity studies of mosquito ascogregarines give rather contradictory 

results; some authors find these parasites fairly host specific, while others do not. 

Ascogregarina lanyuensis is not a host specific ascogregarine; it completed its life cycle 

in ten experimentally infected mosquito species, and in five of them, the prevalence was 

100% (Jacques and Beier 1982). Also As. geniculati was able to develop in other 

mosquito species; after experimental infections, oocysts were found in Ae. sierrensis, 

Ae. aegypti and Ae. triseriatus (Munstermann and Levine 1983). Ascogregarina barretti 

developed in Ae. geniculatus (Rowton and Munstermann 1984) and Ae. hendersoni 
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(Copeland and Craig 1992), and Spencer and Olson (1982) were able to infect 

Aedes epactius with As. culicis. 

Several authors showed that As. taiwanensis is not a host specific ascogregarine 

either. It infected 100% of Ae. aegypti and Aedes taeniorhynchus larvae, and oocysts 

were recovered from Ae. taeniorhynchus adults. On the other hand, three Culex species 

and one Anopheles species were not susceptible (Garcia et al. 1994). Munstermann and 

Wesson (1990) found As. taiwanensis in Ae. epactius and Culex restuans in Illinois, and 

after experimental infections, oocysts were recovered from Ae. aegypti and 

Aedes atropalpus, with the latter being the most susceptible of all experimentally 

infected mosquitoes (Munstermann and Wesson 1990). Ascogregarina taiwanensis was 

even able to develop in a sabethine mosquito Wyeomyia smithii (Diptera: Culicidae). 

Although the infection rates were low, gamonts persisted in the larval midgut for more 

than 37 days, and gametocysts were recovered from one female (Reeves and 

McCullough 2002). 

Contrary to the above presented information, several authors showed that 

mosquito ascogregarines are host specific. During cross-infections of Ae. sierrensis with 

As. culicis and Ae. aegypti with As. clarki, neither of the two ascogregarine species 

developed fully (production of oocysts) in their non-natural hosts (Sanders and Poinar 

1973). Oocysts of As. armigerei, As. culicis, As. lanyuensis and As. taiwanensis were 

used to infect Ae. aegypti, Ae. albopictus, Ae. alcasidi and Ar. subalbatus. Even though 

the trophozoites of all ascogregarines were recorded in all but one mosquito species 

(with lower infection rates in non-natural hosts), the oocysts were, apart from their 

natural hosts, recovered only from Ae. alcasidi for As. taiwanensis and As. armigerei 

(Lien and Levine 1980). This shows that As. taiwanensis is not, unlike the other 

gregarines from this study, host specific and supports other data about its low host 

specificity (see above). On the other hand, these results contradict Jacques and Beier 

(1982), who showed no host specificity of As. lanyuensis. Other discrepancies can be 

found for As. geniculati; this ascogregarine is not host specific according to 

Munstermann and Levine (1983); however, it could not infect Aedes communis, 

Aedes cantans and Culex pipiens  (Kramar 1952). 

Susceptibility of Ae. aegypti to As. culicis varies among geographical strains 

(Sulaiman 1992; Reyes-Villanueva et al. 2003); furthermore, one strain of Ae. aegypti 

from Trinidad was not susceptible to a Florida strain of As. culicis as no oocysts 

developed, while other Trinidad strains were susceptible (Beier et al. 1995).  
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As the host specificity of mosquito ascogregarines is unclear, methods that 

would differentiate between individual species were studied. Several morphological 

features (particularly the character of pigmentation and shape) distinguishing between 

gamonts of As. culicis and As. taiwanensis were found (Reyes-Villanueva et al. 2001). 

Oocysts of As. armigerei, As. culicis, As. taiwanensis and Ascogregarina sp. from 

O. japonicus were compared under scanning electron microscope, showing that they 

differ mainly in the length and structure of their surface (Roychoudhury et al. 2007a). 

Ascogregarina barretti and As. geniculati were differentiated by isoenzyme 

electrophoresis (Rowton and Munstermann 1984); different migration rates were 

observed for isocitrate dehydrogenase, lactate dehydrogenase and malate 

dehydrogenase, and the authors find this method reliable for distinguishing between the 

two ascogregarines. A species-specific PCR method for As. culicis and As. taiwanensis, 

based on amplification of ribosomal ITS1 and ITS2 regions, was developed by Morales 

et al. (2005); the PCR products differed by at least 100bp. Furthermore, the authors 

found a diagnostic PCR method for the presence of ascogregarines in mosquitoes. 

Unlike for widely studied mosquito ascogregarines, there is only one study 

evaluating sand fly gregarines proving their strict host specificity. Seven phlebotomine 

species were infected with oocysts of As. chagasi – Ph. papatasi, Ph. argentipes, 

Ph. perniciosus, Lutzomyia serrana, Lutzomyia abonnenci, Lutzomyia columbiana and 

gregarine-free L. longipalpis. In the Old World sand flies, trophozoites and no other 

gregarine life stages occurred only in the newly emerged adults of Ph. papatasi. Out of 

the New World Lutzomyia species, L. columbiana was the most susceptible non-natural 

host, and trophozoites were found in adults, as well as in L. serrana and L. longipalpis. 

Ascogregarina chagasi did not develop in L. abonnenci, and oocysts were found only in 

its natural host L. longipalpis. Furthermore, different strains of L. longipalpis varied in 

the susceptibility to As. chagasi (Wu and Tesh 1989). The authors argue that the 

gregarines from a number of New World sand flies identified as As. chagasi (see 

chapter 2.3.3) are new species. 

 

2.3.5 Effects of gregarines on mosquitoes and sand flies 

Similarly to host specificity, also studies evaluating effects of ascogregarines on 

their dipteran hosts give contradictory conclusions. One of the first records about 

ascogregarines being pathogenic brought Barrett (1968); Ae. aegypti larvae and pupae 
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infected with As. culicis were stunted, and the author noticed increased mortality. 

Sulaiman (1992) also observed increased larval mortality (proportional to the infection 

intensity) and shortened larval development; however, As. culicis did not affect larval 

development, size, mortality, pupal weight or adult emergence of Ae. aegypti in a study 

by McCray et al. (1970). Ascogregarina barretti reduces female pupal weight, prolongs 

development of males (Beier 1983) and increases the likelihood of pupal mortality 

(Siegel et al. 1992). Contrastingly, emergence success (Walker et al. 1987; Copeland 

and Craig 1992) or larval developmental time (Walker et al. 1987) are not affected. In 

addition, Beier (1983) and Copeland and Craig (1992) did not record any increase in the 

larval mortality of As. barretti-infected Ae. triseriatus.  

In general, As. barretti is not very pathogenic to its adult host; it does not alter 

the size of males and females (Walker et al. 1987) or their survival (Beier 1983). 

However, the wing length of both sexes is reduced (Siegel et al. 1992). 

Ascogregarina taiwanensis has a little impact on adults of Ae. albopictus (Garcia et al. 

1994), and As. culicis-infected Ae. aegypti do not have decreased survival or fecundity 

(McCray et al. 1970). 

Parasitism by Ascogregarina sp. affects hosts to a larger degree when they are 

bred in nutrient-deficient conditions: the developmental time of mosquito females is 

prolonged, the mortality of larvae and blood-fed females is significantly increased, the 

size of females and males is significantly smaller, and the females produce fewer eggs 

(Walker et al. 1987; Comiskey et al. 1999a; 1999b). On the other hand, emergence rate, 

developmental time and the size of males are not affected (Walker et al. 1987). This 

sex-specific pattern of mosquito reaction to ascogregarine infection was supported by 

Tseng (2004). 

The level of pathogenicity of mosquito ascogregarines is not influenced only by 

the sex or nutrients, but can be significantly greater when the gregarine is introduced to 

a non-natural host. For example, As. taiwanensis significantly increases the mortality of 

its non-natural host Ae. taeniorhynchus, while the mortality of Ae. albopictus is not 

affected (Garcia et al. 1994). Ascogregarina barretti decreases the larval survival, 

emergence success and female weight of non-natural Ae. hendersoni, while 

Ae. triseriatus is not influenced (Copeland and Craig 1992). Furthermore, not the 

natural host Ae. aegypti, but a non-natural host Ae. epactius is negatively affected by 

simultaneous As. culicis infection and methoprene, and the mortality rates are 
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significantly increased with increased methoprene concentrations (Spencer and Olson 

1982). 

The cause of ascogregarine pathogenicity to their dipteran hosts is probably the 

negative impact on the tissues where the parasites develop. Intestinal epithelial cells of 

mosquito larvae, the site of infection of intracellular sporozoites and trophozoites, can 

have enlarged nuclei (Kramar 1952) and can be destroyed by the gregarine parasitism 

(Kramar 1952; Sanders and Poinar 1973). The Malpighian tubules of adults, the site of 

infection of extracellular trophozoites and subsequent developmental stages, are dilated 

(Wenyon 1911), and their cells are distorted and damaged (Barrett 1968; McCray et al. 

1970; Sanders and Poinar 1973). The extent of the damage is proportional to the 

infection rate, and already eight to 25 gametocysts may destroy one third of a single 

Malpighian tubule (Barrett 1968). 

Ascogregarines may a play role in the ability of mosquitoes to invade new areas. 

When Ae. aegypti and Ae. albopictus are coexisting in the same habitat, the replacement 

of the former by the latter occurs (Dos Passos and Tadei 2008). Two complimentary 

facts could explain this phenomenon. (1) According to Aliabadi and Juliano (2002), the 

survivorship of Ae. triseriatus larvae is reduced when they are being bred with invasive 

gregarine-non-infected Ae. albopictus larvae, and it is not affected when breeding with 

infected Ae. triseriatus. (2) Blackmore et al. (1995) showed that when Ae. albopictus is 

introduced to a new region, parasitism by As. taiwanensis is low at the beginning and 

becomes higher after three years. Therefore, this phase of lower infection rate may give 

competitive advantage to Ae. albopictus over Ae. aegypti enabling its expansion.  

The ability of ascogregarine-infected mosquitoes to transmit parasites and 

viruses has been studied. Mourya et al. (2003) showed that Chikungunya virus 

(Togaviridae) could be vertically transmitted to Ae. aegypti through As. culicis oocysts. 

Studies evaluating the effects of As. taiwanensis on the development of 

Dirofilaria immitis (Nematoda: Onchocercidae) have come to contradictory 

conclusions. Comiskey et al. (1999b) found that in high nutrient conditions, D. immitis 

infective rate in Ae. albopictus females co-infected with As. taiwanensis is significantly 

higher than in females infected only with D. immitis, suggesting that As. taiwanensis 

increases the vector competence of Ae. albopictus for filariae. Contrastingly, Beier 

(1983) did not observe any significant differences in the number of infective D. immitis 

larvae between gregarine-infected and non-infected mosquitoes.  
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Contrastingly to the good number of studies evaluating the effects of mosquito 

ascogregarines to their hosts, there is only a single work dealing with this topic in sand 

flies. Ascogregarina chagasi significantly decreased the survival of L. longipalpis 

females; the difference was evident from the day eight of the experiment. On the 25th 

day, the survivorship for the control females was 77.1% and for the gregarine-infected 

females only 49.5%. Ascogregarina chagasi did not significantly affect the fecundity of 

its host (Wu and Tesh 1989). 
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ABSTRACT. Sand fly and mosquito gregarines have been lumped for a long time in the single genus Ascogregarina and on the basis of
their morphological characters and the lack of merogony been placed into the eugregarine family Lecudinidae. Phylogenetic analyses
performed in this study clearly demonstrated paraphyly of the current genus Ascogregarina and revealed disparate phylogenetic positions
of gregarines parasitizing mosquitoes and gregarines retrieved from sand flies. Therefore, we reclassified the genus Ascogregarina and
created a new genus Psychodiella to accommodate gregarines from sand flies. The genus Psychodiella is distinguished from all other
related gregarine genera by the characteristic localization of oocysts in accessory glands of female hosts, distinctive nucleotide sequences
of the small subunit rDNA, and host specificity to flies belonging to the subfamily Phlebotominae. The genus comprises three described
species: the type species for the new genus—Psychodiella chagasi (Adler and Mayrink 1961) n. comb., Psychodiella mackiei (Shortt
and Swaminath 1927) n. comb., and Psychodiella saraviae (Ostrovska, Warburg, and Montoya-Lerma 1990) n. comb. Its creation is
additionally supported by sequencing data from other gregarine species originating from the sand fly Phlebotomus sergenti. In the evo-
lutionary context, both genera of gregarines from mosquitoes (Ascogregarina) and sand flies (Psychodiella) have a close relationship to
neogregarines; the genera represent clades distinct from the other previously sequenced gregarines.

Key Words. Accessory glands, Ascogregarina, Lutzomyia, neogregarines, parasite, Phlebotomus, SSU rDNA phylogeny.

GREGARINES represent an extremely large, diverse, and
highly abundant group of early branching apicomplexans

that are widely distributed in marine as well as in terrestrial in-
vertebrates. They parasitize annelids, mollusks, nemerteans, pho-
ronids, echinoderms, siphunculids, crustaceans, hemichordates,
appendicularians, and insects. Traditionally, three gregarine
groups are recognized according to differences in habitat, host
range, and morphological features of the trophozoites: archi-
gregarines, eugregarines, and neogregarines (Vivier and Des-
portes 1990).

The genus Ascogregarina Ward, Levine, and Craig 1982 (syn.
Monocystis von Stein 1848; Lankesteria Mingazzini 1891, and
Ascocystis Grassé 1953) belongs to the order Eugregarinida
Léger, 1899 (class Gregarinida Duffour 1828; phylum Apicom-
plexa Levine 1970). Out of 16 named species of the genus (Clop-
ton 2000), three species parasitize sand flies and nine species
parasitize mosquitoes (Levine 1977, 1985, 1988; Ostrovska et al.
1990). The total number of species is, however, questionable, be-
cause Clopton (2000) did not respect the definition of Ormières
(1965) who restricted the genus only to parasites of Diptera. The
terminology of mosquito and sand fly gregarines is complicated
and the history of final designations is quite long. The mosquito
gregarine and type species of the genus is Ascogregarina culicis
(Ross 1898), originally named as Gregarina culicis. Ross (1895)
described this species from the yellow fever mosquito Aedes
aegypti (Linnaeus) as Gregarina culicidis, but this is considered
as a lapsus calami. Wenyon (1911) reclassified the species as
Lankesteria culicis and Grassé (1953) proposed the name As-
cocystis for gregarines of insects that had formerly been assigned
to the genus Lankesteria, and reclassified the species as Ascocystis
culicis. The genus Ascocystis was later reviewed by Ormières
(1965), who accepted Ascocystis Grassé, 1953 for parasites of
Diptera and restricted Lankesteria to parasites of ascidians. How-
ever, Ward et al. (1982) established the name Ascogregarina in-
stead of Ascocystis because the name was pre-occupied by a fossil
crinoid echinoderm.

Phlebotomine sand flies (Diptera: Psychodidae) of the genera
Phlebotomus Rondani and Berté and Lutzomyia França are impor-
tant vectors of human diseases, namely leishmaniasis, bartonellosis,
and sand fly fever virus infections (Adler and Theodor 1957). Their
larvae develop in soil rich in humus and microorganisms. Greg-
arines have been reported from more than 20 sand fly species (Ayala
1971; Levine 1977; Lisova 1962; Ostrovska et al. 1990; Tuzet and
Rioux 1966; Warburg and Ostrovska 1991; Wu and Tesh 1989;
Young and Lewis 1977), but only a few of them were denominated.
The first sand fly gregarine was described as Monocystis mackiei
Shortt and Swaminath 1927 from Phlebotomus argentipes (Annan-
dale and Brunetti) in India. A few years later, presumably the same
gregarine species was found in Phlebotomus papatasi (Scopoli) in
Italy and renamed by Missiroli (1929, 1932) as Lankesteria phlebo-
tomi mackiei. Ormières (1965) and 1 year later, Tuzet and Rioux
(1966) reclassified the species as Ascocystis mackiei. However, the
current name should be Ascogregarina mackiei, according to Ward
et al. (1982).

The well-known sand fly gregarine described as Monocystis
chagasi Adler & Mayrink, 1961 was found first in the hemocoel
and accessory gland of Lutzomyia longipalpis (Lutz and Neiva) in
Brazil and later in four other Neotropical sand fly species (Brazil
and Ryan 1984; Coelho and Falcao 1964; Lewis, Lainson, and
Shaw 1970; Scorza and Carnevali 1981). Tuzet and Rioux (1966)
reclassified the species as Ascocystis chagasi and according to
Ward et al. (1982) the current name should be Ascogregarina
chagasi. The third ascogregarine species from sand flies was de-
scribed by Ostrovska et al. (1990) as Ascogregarina saraviae
Ostrovska, Warburg, & Montoya-Lerma, 1990 from Lutzomyia
lichyi (Floch and Abbonenct).

Ascogregarina chagasi and other members of the genus were
placed among the eugregarines (Apicomplexa: Conoidasida:
Gregarinida: Eugregarinida: Aseptatorina: Lecudinidae) exclu-
sively on the basis of morphological features and part of their de-
velopmental biology in the host. Their phylogenetic position has
not been analyzed yet, despite Roychoudhury et al. (2007) having
published sequences of four mosquito ascogregarines, including
the type species A. culicis. DNA sequences generated by the pres-
ent work enable phylogenetic analysis of the sand fly gregarines
and provide more depth to our understanding of relatedness
among gregarine groups.
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MATERIALS AND METHODS

Sand flies. Sand fly colonies were maintained independently in
the Czech Republic and in the United States. The colonies of
L. longipalpis originated from Jacobina village, Bahia, Brazil
(111110S, 401320W). The colonies of Phlebotomus sergenti orig-
inated from SanliUrfa city, Turkey (371110N, 381480E). Standard
maintenance of colonies was described by Benkova and Volf
(2007) for the Czech colonies and by Modi and Tesh (1983) for
the colonies that were maintained at the Walter Reed Army In-
stitute of Research, Silver Spring, MD.

Gregarine isolation and identification. All the molecular
work was performed independently and in parallel in the Czech
Republic and the United States. Two to 5-day-old adult flies of
both sexes from colonies of L. longipalpis and P. sergenti were
washed by 1.5% (v/v) Triton X-100 to remove any microorgan-
isms and body hairs from the surface and by distilled water and
phosphate-buffered saline (PBS). Approximately 50 gametocysts
of each gregarine species were dissected under the stereo micro-
scope (SZH-ILLD, Olympus Optical Co. Ltd., Tokyo, Japan) in
NET-50 buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5%
Nonidet P-40, and 5 mM EDTA) and stored in � 70 1C for DNA
extraction. To confirm that gregarines found in both our colonies
of L. longipalpis are of the species Psychodiella (formerly As-
cogregarina) chagasi, adult sand flies of both sexes were dis-
sected in PBS under the stereo microscope connected to a digital
camera (DP-70, Olympus) for photo documentation of native
preparations. Morphological characters of gregarine gamonts, ga-
metocysts, and oocysts were evaluated using light microscope
(BX-50, Olympus Optical Co. Ltd.).

DNA extraction, polymerase chain reaction (PCR) amplifi-
cation, and cloning. Extraction of the total DNA from the pool of
gregarine parasites was performed using a High Pure PCR Tem-
plate Preparation Kit (Roche, Mannheim, Germany) according to
the manufacturer’s instruction. The small subunit (SSU) rRNA
genes were amplified as a single fragment using universal
eukaryotic primers (Medlin et al. 1988). The PCR reactions were
performed in 25 ml total volumes of reaction mix (Combi PPP
Master Mix, Top-Bio, Prague, Czech Republic; Promega, Fitch-
burg, WI) using the following conditions: initial denaturation at
95 1C for 5 min followed by 30 amplification cycles (95 1C for
60 s, 55 1C for 90 s, and 72 1C for 90 s) and 72 1C for 7 min.

The PCR products corresponding to the expected size were gel
isolated (Gel extraction kit, Qiagen, Valencia) and cloned into the
pCR 2.1 vector using the TOPO TA cloning kit (Invitrogen, Fred-
erick, MD) using the manufacturer’s protocol. Three clones from
each gregarine species were sequenced with Terminator Ready
Reaction Mix (Promega, Fitchburg, WI) using the vector primers
and four internal primers oriented in both directions. The se-
quencing reaction was carried out on an automated DNA se-
quencer (310 Genetic Analyzer; ABI Prism, Foster City, CA)
using the BigDye 3.1 kit (Applied Biosystems, Foster City, CA).
Gregarine sequences were deposited in GenBank under the fol-
lowing accession numbers: FJ865354 (P. chagasi n. comb.) and
FJ865355 (Psychodiella sp. from P. sergenti).

Phylogenetic analysis. The data set containing 38 nominal
SSU rRNA gene sequences was used to establish the phylogenetic
position of both newly sequenced sand fly gregarines (Table 1).
The DNA sequences were compared with those in the GenBank
database using the BLAST algorithm. All sequences of the SSU
rRNA genes of gregarines available in public databases except
incomplete sequences were used in our analysis. Appropriate se-
quences were aligned using the program CLUSTAL X 1.81.
Alignment was manually edited using the program BioEdit
5.0.9.; gaps, as well as ambiguously aligned regions, were omit-
ted from further analysis. The alignment is available from the

corresponding author upon request. Phylogenetic analysis was
performed using maximum parsimony (MP; PAUP �4.0b10;
Swofford 2002) by 10 replicates of heuristic search, maximum
likelihood (ML; PhyML; Guindon and Gascuel 2003), and Bayes-
ian method (MrBayes; Huelsenbeck and Ronquist 2001). The MP
bootstrap analyses were performed with 1,000 replicates. The ML
trees were constructed using the GTR model for nucleotide sub-
stitutions with g-distribution in 811 categories. The models of

Table 1. Origin of SSU rRNA gene sequences analyzed.

Species Ordera Accession
number

Host species

Selenidium serpulae A DQ683562 Serpula vermicularis
Selenidium terebellae A AY196709 Thelepus sp.
Selenidium vivax A AY196708 Phascolosoma

agassizii
Ascogregarina armigerei E DQ462459 Armigeres subalbatus
Ascogregarina culicis
(Thailand)

E DQ462456 Aedes aegypti

Ascogregarina culicis
(Viet Nam)

E DQ462457 Aedes aegypti

Ascogregarina taiwanensis
(Japan)

E DQ462454 Aedes albopictus

Ascogregarina taiwanensis
(India)

E DQ462455 Aedes albopictus

Ascogregarina sp. E DQ462458 Ochlerotatus
japonicus

Gregarina calediab E L31799
Gregarina chortiocetesb E L31841
Gregarina niphandrodes E AF129882 Tenebrio molitor
Gregarina polymorpha E AF457129 Tenebrio molitor
Lankesteria abbotti E DQ093796 Cnemidocarpa sp.
Lankesteria chelyosomae E EU670240 Chelyosoma

columbianum
Lankesteria cystodytae E EU670241 Cystodytes lobatus
Lecudina tuzetae E AF457128 Nereis vexillosa
Lecudina polymorpha
type 1

E AY196706 Lumbrineris sp.

Lecudina polymorpha
type 2

E AY196707 Lumbrineris sp.

Leidyana migrator E AF457130 Gromphadorhina
portentosa

Lithocystis sp. E DQ093795 Brisaster latifrons
Monocystis agilis E AF457127 Lumbricus terrestris
Pseudomonocystis
lepidiotab

E L31843

Psychodiella chagasi E FJ865354 Lutzomyia
longipalpis

Psychodiella sp. E FJ865355 Phlebotomus
sergenti

Pterospora floridiensis E DQ093794 Axiothella mucosa
Pterospora schizosoma E DQ093793 Axiothella

rubrocincta
Mattesia geminata N AY334568 Solenopsis geminata
Mattesia sp. N AY334569 Solenopsis invicta
Ophriocystis elektroscirrha N AF129883 Danaus plexippus
Syncystis mirabilis N DQ176427 Nepa cinerea
Cryptosporidium baileyi L19068 birds
Cryptosporidium muris L19069 rodents
Cryptosporidium parvum AF112569 primates
Apicomplexan pathogen AY490099 Acarus siro
Environmental sample AY179988 water and sediments
Environmental sample AY821921 water and sediments
Environmental sample EF100358 water and sediments

aA, Archigregarinida; E, Eugregarinida; N, Neogregarinida.
bThese three taxa have been included as names of environmental sam-

ples, they do not represent named species. The authors of those sequences
did not provide any hosts.

New sequences reported in this work are in bold.
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nucleotide substitution for maximum likelihood was chosen by
hierarchical nested likelihood ratio tests implemented in Model-
test 3.06 and bootstrap analysis was computed in 1,000 replicates
using the same model with G-distribution in four categories and
all parameters (the proportion of invariant sites, g shape param-
eter, TS/TV ratio for purines and pyrimidines) estimated from the
data set. The Bayesian analysis was performed using MrBayes
3.1.2. Base frequencies, rates for six different types of substitu-
tion, proportion of invariant sites, and shape parameter of the g
correction for the rate heterogeneity with four discrete categories
were allowed to vary. The covarion model was used to allow rate
heterogeneity along the tree. The number of generations of Mark-
ov chain Monte Carlo was 5 � 106 and the trees were sampled
every 100th generation. The first 12,500 trees were discarded as
burn-in.

RESULTS

Features of SSU rDNA gene sequences. The identical
SSU rRNA gene sequences of P. chagasi n. comb. from the
colony of L. longipalpis (Jacobina village, Brazil) and the iden-
tical sequences of Psychodiella sp. from the colony of P. sergenti
(SanliUrfa City, Turkey), were independently obtained from the
USA and from the Czech Republic, respectively. The full length
of the SSU rRNA gene sequences deposited in GenBank is 1,749
base pairs for P. chagasi (under the accession number FJ865354)
and 1,752 base pairs for Psychodiella sp. from P. sergenti,
respectively.

Phylogenetic analysis. Comparison of available gregarine
sequences in GenBank revealed that the sequences of P. chagasi
n. comb. and the most closely related Psychodiella sp. from
P. sergenti form well supported clade (Fig. 1). Sequence diver-
gence between the New World P. chagasi from L. longipalpis and
the Old World Psychodiella sp. from P. sergenti is about 2% (35
changes). In our analysis, all tree topologies inferred using MP,
ML, and Bayesian method were basically congruent. Cryptospo-
rids were used as an outgroup. Within gregarine lineage, Psycho-
diella spp. and Ascogregarina spp. formed monophyletic clades
supported by high bootstrap values (MP, 100%; ML, 100%; BA,
1.00). Phylogenetic analyses clearly demonstrate disparate posi-
tion of gregarines parasitizing mosquitoes (genus Ascogregarina)
and gregarines from sand flies (genus Psychodiella).

Morphological features of Psychodiella chagasi parasitizing
Lutzomyia longipalpis. All life cycle stages of the gregarine from
L. longipalpis were clearly identified as or conformed to the spe-
cies P. (formerly Ascogregarina) chagasi originally described by
Adler and Mayrink (1961). The life cycle of the gregarine in adult
sand flies is identical to this of P. chagasi (Adler and Mayrink
1961; Warburg and Ostrovska 1991); syzigies, gametocysts, and
oocysts were found in the body cavity of both female and male
adults while in females gametocysts were attached to accessory
glands (Fig. 2). Ocysts are released from gametocysts into the lu-
men of the glands and when laying eggs, the content of accessory
glands including oocysts are excreted on the eggshells providing
transovarial transmission.

DISCUSSION

Molecular phylogeny of Ascogregarina and Psychodiella n.
g. as inferred from SSU rDNA. Sand fly and mosquito greg-
arines have been considered for a long time as a single genus As-
cogregarina. Up to now, nine species were described from
mosquitoes and three from sand flies. It should be mentioned that
all available gregarine sequences of the fly-infecting species are
from nematoceran flies, a relatively small group within the Dipt-
era. Even though sand fly and mosquito gregarines have been

considered as eugregarines for a long time, phylogenetic analyses
revealed that the SSU sequences of both genera (Ascogregarina
and Psychodiella) do not show similarity to the Eugregarinida but
to the Neogregarinida. Monophyly of both genera in our trees is
supported by 100% bootstrap by all methods used, and the genera
seem to represent two separate and dissimilar clusters within the
gregarines.

The phylogenetic analyses of all available sequences of greg-
arines correspond with the findings of other authors (Leander
2007, 2008; Leander, Clopton, and Keeling 2003a; Leander,
Harper, and Keeling 2003b; Leander et al. 2006; Rueckert and
Leander 2008, 2009). The genera Selenidium and Lecudina form
paraphyletic groups and monocystids (e.g. Monocystis that infect
terrestrial annelids), traditionally considered to be aseptate eu-
gregarines, tend to be included in the group of neogregarines (e.g.
Syncystis and Mattesia). The monophyly and composition of the
order Eugregarinida are uncertain, and this is especially because
the SSU rDNA sequences of eugregarines tend to be highly di-
vergent, forming long branches in our molecular phylogenetic
analyses.

Gregarines are important from an evolutionary perspective be-
cause of their suspected early diverging position within the Api-
complexa. Their molecular phylogenetic data have added
additional complexity (and uncertainty) to the deepest relation-
ships among apicomplexans. An internal topology of the apicom-
plexans is just beginning to emerge from comparisons of
morphological characteristics and gene sequences (e.g. Beck
et al. 2008; Ellis, Morrison, and Jeffries 1998; Kuo, Wares, and
Kissinger 2008; Šlapeta et al. 2003). However, most of this work
has focused on representatives from three of the four major
groups: coccidians, haemosporidians, and piroplasms. Most stud-
ies of the phylogenetic relationships of gregarines are based on a
relatively restricted data set of SSU rDNA sequences (Carreno,
Martin, and Barta 1999; Leander 2007, 2008; Leander et al.
2003a,b, 2006; Roychoudhury et al. 2007; Rueckert and Leander
2008; Valles and Pereira 2003). With the advancement of DNA
technology as more genes or whole genomes are sequenced and
more data become available, there will be a need in the future for
revisiting the systematics of gregarines, a neglected but extremely
numerous branch of apicomplexan parasites.

As determined from the SSU rRNA gene sequence-based an-
alyses, the genus Psychodiella n. g. is a member of the class
Gregarinida Dufour, 1828. However, it cannot be associated with
any valid genus. The morphological appearance, overall shape
and cell size of species belonging to this genus resembles that of
the genus Ascogregarina, although in adult sand flies gregarines
are not localized in Malpighian tubules like gregarines from mos-
quitoes. Moreover, the genus Psychodiella is distinguished from
all other related gregarine genera in having characteristic local-
ization of oocysts in the accessory glands of the female host, its
distinctive nucleotide sequences of SSU rDNA (FJ865354 and
FJ865355), and its host specificity to phlebotomine sand flies. The
phylogenetic analyses indicate that Psychodiella and As-
cogregarina evolved independently of each other.

In conclusion, sequence data do not justify the inclusion of
sand fly gregarines in the genus Ascogregarina and therefore we
propose in accordance with the rules of the zoological nomencla-
ture ICZN to separate sand fly gregarines into a newly erected
genus Psychodiella n. g. In an evolutionary framework, both gen-
era of gregarines from mosquitoes (Ascogregarina) and sand flies
(Psychodiella) have close relationship to neogregarines, but rep-
resent a distinct clade from other previously sequenced greg-
arines. Studies on gregarines isolated from other sand fly
species are underway (Lantová et al., unpubl. data) in order
to examine if they are morphologically and genetically related
to P. chagasi.
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Fig. 1. Maximum likelihood phylogenetic tree as inferred from small subunit rRNA gene sequences. The figure shows the topology for 38 taxa obtained by
maximum likelihood using the GTR model for nucleotide substitutions with G-distribution in 811 categories as implemented in PhyML. Bootstrap values from
maximum likelihood (100 replicates), maximum parsimony (1,000 replicates), and Bayesian posterior probabilities (number of generations was 5 � 106) are
shown above branches, respectively. Asterisks (�) at the nodes denote Bayesian posterior probabilities and bootstrap percentages of 95% or higher. Dashes (-)
indicate bootstrap support below 50 or posterior probability below 0.5 or different topology. The sequences of the species derived from this study are marked in
bold. Gregarine species of the order Neogregarinida are underlined. Bars represent 0.1 substitutions per site. Cryptosporidium spp. served as an outgroup.
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TAXONOMIC SUMMARY

Phylum Apicomplexa
Order Eugregarinida
Suborder Aseptatorina
Psychodiella n. g. Votýpka, Lantová, and Volf
Description. Monoxenous parasitic gregarine in Diptera.

Gamonts oval, circular, or pear-shaped, aseptate, mucron not
always apparent; gametocysts spherical or broad oval, in adults
in the body cavity, in females usually attached to accessory
glands; oocysts ellipsoidal or spindle shaped, often with a plug
at each end, injected into accessory glands of female host.

Type species. Monocystis chagasi Adler & Mayrink 1961
Etymology. Psychodiella. The genus name has been derived

from the name of the host family Psychodidae, the name is of
feminine gender.

Remarks. The genus Psychodiella encompasses the following
three species: Psychodiella mackiei (Shortt and Swaminath 1927)
n. comb., P. chagasi (Adler and Mayrink 1961) n. comb., and
Psychodiella saraviae (Ostrovska, Warburg, & Montoya-Lerma,
1990) n. comb.
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Two new gregarines in the recently erected genus Psychodiella (formerly Ascogregarina), Psychodiella ser-
genti n. sp. and Psychodiella tobbi n. sp., are described based on morphology and life cycle observations
conducted on larvae and adults of their natural hosts, the sand flies Phlebotomus sergenti and Phlebotomus
tobbi, respectively. The phylogenetic analyses inferred from small subunit ribosomal DNA (SSU rDNA)
sequences indicate the monophyly of newly described species with Psychodiella chagasi. Ps. sergenti n.
sp. and Ps. tobbi n. sp. significantly differ from each other in the life cycle and in the size of life stages.
The sexual development of Ps. sergenti n. sp. (syzygy, formation of gametocysts and oocysts) takes place
exclusively in blood-fed Ph. sergenti females, while the sexual development of Ps. tobbi n. sp. takes place
also in males and unfed females of Ph. tobbi. The susceptibility of Phlebotomus perniciosus, Phlebotomus
papatasi, Ph. sergenti, Ph. tobbi, and Phlebotomus arabicus to both gregarines was examined by exposing
1st instar larvae to parasite oocysts. High host specificity was observed, as both gregarines were able
to fully develop and complete regularly the life cycle only in their natural hosts. Both gregarines are con-
sidered as serious pathogens in laboratory-reared colonies of Old World sand flies.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The gregarine parasites have monoxenous life cycles and inha-
bit the intestines and other organs of invertebrates, particularly in-
sects (Perkins et al., 2000). They are widespread in numerous hosts,
but are currently not given the attention they deserve. Therefore,
most gregarine species remain unknown and undescribed. The sys-
tematic status of gregarines has not been resolved and would
greatly benefit from the addition of DNA sequences as molecular
characters (Leander, 2008). Molecular phylogenetic data demon-
strate that gregarines are more divergent than previously assumed
and new lineages have emerged from older taxa (Leander, 2008;
Votýpka et al., 2009).

Nematoceran Diptera are usually considered as rare hosts of
gregarines and only 12 named species of two relatively morpho-
logically uniform genera inhabit mosquitoes (Ascogregarina) and
sand flies (Psychodiella) (Warburg and Ostrovska, 1991; Chen,
ll rights reserved.

, Charles University in Prague,
224 919 704.
1999; Perkins et al., 2000; Votýpka et al., 2009). The genus Psych-
odiella encompasses three named species of the aseptate grega-
rines (order Eugregarinorida according to Perkins et al. (2000))
that parasitize sand flies. Its type species, Ps. chagasi, was described
by Adler and Mayrink (1961) as Monocystis chagasi in the hemocoel
and accessory glands of the New World sand fly Lutzomyia longipal-
pis in Brazil. All life stages, including gametocysts and oocysts, oc-
cur in larvae and both adult sexes. Larvae become infected by
feeding on oocysts either attached to the chorion of eggs or re-
leased into larval habitats following the death and decay of in-
fected adults. Sporozoites are released from the oocysts after
ingestion by sand fly larvae, attach to the gut epithelial cells, and
develop into trophozoites (Adler and Mayrink, 1961; Coelho and
Falcao, 1964; Wu and Tesh, 1989). Natural infections by this greg-
arine species have also been recorded in four other Neotropical
sand fly species: Lutzomyia sallesi, Lutzomyia flaviscutellata, Lutzo-
myia townsendi, and Lutzomyia evandroi (see Wu and Tesh, 1989;
Ostrovska et al., 1990). The second Neotropical species, Psychodiella
saraviae, was described by Ostrovska et al. (1990) as Ascogregarina
saraviae from blood-fed females of Lutzomyia lichyi with gamet-
ocysts attached to accessory glands and oocysts in the lumen.

http://dx.doi.org/10.1016/j.jip.2010.07.001
mailto:vapid@natur.cuni.cz
http://dx.doi.org/10.1016/j.jip.2010.07.001
http://www.sciencedirect.com/science/journal/00222011
http://www.elsevier.com/locate/jip
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The only Old World species, Psychodiella mackiei, was described as
Monocystis mackiei by Shortt and Swaminath (1927) from Phleboto-
mus argentipes in India and 2 years later was isolated from Ph.
papatasi in Italy (Missiroli, 1929, 1932).

Contradictory results have come from studies focused on host
specificity of gregarines in nematoceran hosts. Levine (1977) sug-
gested a broad host range of Ps. chagasi among the New World sand
fly species, while Wu and Tesh (1989) demonstrated strict host
specificity of this species. Low host specificity was suspected for
the sand fly gregarine Ps. mackiei, as it was described from Indian
Ph. argentipes (Shortt and Swaminath, 1927) and Italian Ph. papat-
asi (Missiroli, 1929). Garcia et al. (1994) have shown that Ascogreg-
arina species are not host-specific parasites in mosquitoes, as
oocysts from Aedes albopictus were infectious to both Aedes aegypti
and Ochlerotatus taeniorhynchus larvae. Similar results were ob-
tained by Jacques and Beier (1982) infecting various Aedes species
with Ascogregarina lanyuensis (Lien and Levine, 1980). On the other
hand, a high degree of host specificity of these mosquito gregarines
was demonstrated in cross-infection studies by Lien and Levine
(1980) and Reyes-Villanueva et al. (2003).

Although most gregarines are often considered as non-patho-
genic to their natural hosts (Henry, 1981), their impact on in-
fected insects is not always clear (Clopton, 1995), notably when
infection levels within a population are high as sometimes hap-
pens in reared colonies (e.g., Klingenberg et al., 1997). In these
situations, the overall number of sand flies produced drops (per-
sonal observations, Rowton and Lawyer). In mosquitoes, however,
some gregarine species are clearly pathogenic (Sulaiman, 1992;
Comiskey et al., 1999) and could potentially serve as disease
agents for biological control (Perkins et al., 2000). In sand flies,
negative impact on adult longevity was described for Ps. chagasi
(Wu and Tesh, 1989). This species is known as common pathogen
in laboratory-reared colonies of L. longipalpis (Dougherty and
Ward, 1991).

It is notable that descriptions of sand fly or mosquito gregarines
lack a molecular phylogenetic approach and all descriptions of
Psychodiella species from sand flies lack cross-infection studies.
The present work describes not only the life cycle and morphology
of the two newly described gregarine species from Ph. sergenti and
Ph. tobbi, but also reveals their phylogenetic position and their abil-
ity to infect other sand fly species in cross-infections.

2. Materials and methods

2.1. Parasites

Gregarines were obtained from laboratory-reared sand fly colo-
nies maintained using the methods of Benkova and Volf (2007).
However, these colonies were established from naturally infected
sand fly females originated from different places. Gregarines of
the species Ps. chagasi were obtained from L. longipalpis collected
Table 1
Design of experimental infections of larvae of five sand fly species by two

Gregarine species Natural sand fly host

Ps. sergenti n. sp. Ph. sergentia (Paraphlebotom

Ps. tobbi n. sp. Ph. tobbia (Larroussius)

a Infected colony.
b Non-infected colony.
in Jacobina, Bahia, Brazil, Ps. sergenti n. sp. from Ph. sergenti col-
lected in Sanli Urfa, South-East Anatolia, Turkey, and Ps. tobbi n.
sp. from Ph. tobbi collected in Tepecikoren, near Adana city, South
Anatolia, Turkey. Prevalence of gregarines in wild-caught females
was determined based on dissection of sand flies in the frame of
leishmania-detection studies.

2.2. Light microscopy

Up to 30 specimens each of: 4th instar larvae, 1–10 day-old
males, 1–7 day-old unfed females (no previous blood meal), and fe-
males 3–7 days after a blood meal were dissected in phosphate-
buffered saline (PBS) under a stereomicroscope (SZH-ILLD, Olym-
pus). The shape and the size of gamonts, gametocysts, and oocysts
of gregarines from adult sand flies were measured under an optical
microscope (SBX-50, Olympus). Light micrographs were produced
with a DP-70 digital camera (Olympus) and measurements were
processed with QuickPHOTO MICRO 2.2 software (Olympus). The
statistical evaluation and difference of measurements among greg-
arine stages from the three sand fly species studied was deter-
mined using Statistica 6.0 (StatSoft).

2.3. Experimental infections

Development of both newly described gregarine species was
studied in five laboratory-reared sand fly species (see Table 1). Oo-
cysts were obtained by homogenization of 25–30 adults in 500 ll
of PBS. In the case of Ps. sergenti, blood-fed Ph. sergenti females after
oviposition were used, whereas in the case of Ps. tobbi, oocysts
were acquired from 4 to 7 day-old Ph. tobbi males. The homogenate
was filtered through gauze and centrifuged (1700g) for 5 min, the
supernatant was discarded, and the pellet was re-dissolved in
200 ll of water. The oocysts were counted using a Bürker counting
chamber. For each species tested, 10–15 non-infected gravid sand
fly females were placed into a rearing pot and allowed to oviposit;
the number of eggs was counted under a stereomicroscope and the
amount of gregarine oocysts corresponding to an infectious dose of
50 oocysts per egg were added to the food given to 1st instar lar-
vae. Fourth-instar larvae, emerged adults, and gravid females after
a blood meal were examined for evidence of gregarine infection as
described above. Two different forms of 4th instar larvae were dis-
tinguished: actively feeding with gut filled with larval diet (further
referred as ‘‘before defecation”) and those ready to pupate with a
‘‘milky” gut, because of defecated midgut content (further referred
as ‘‘after defecation”).

2.4. DNA extraction, PCR amplification, sequencing, and phylogenetic
analysis of SSU rDNA

DNA was isolated from Ps. tobbi n. sp. mature gametocysts dis-
sected from Ph. tobbi adults. The procedures of DNA extraction, PCR
newly described gregarines.

Experimentally infected sand fly host

us) Ph. sergenti (Paraphlebotomus)b

Ph. papatasi (Phlebotomus)
Ph. tobbi (Larroussius)b

Ph. arabicus (Adlerius)

Ph. sergenti (Paraphlebotomus)b

Ph. perniciosus (Larroussius)
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amplification, and sequencing of SSU rDNA were described by Vo-
týpka et al. (2009). The primers used for sequencing were: the vec-
tor primers M13 (F) 50-GTAAAACCACGGCCAG-30 and M13 (R) 50-
CAGGAAACAGCTATGAC-30 and internal primers oriented in both
directions 50-AAGACGATCAGATACCG-30, 50-TCGATTCCGGAGAGG-
GA-30, 50-CGTCAATTCCTTTAAG-30, 50-GCTGGCACCAGACTTGC-30.
The obtained SSU sequence of Ps. tobbi was deposited in GenBank
under accessional number GQ329865. SSU rDNA sequences of Ps.
chagasi and Ps. sergenti (marked as Psychodiella sp. from Ph. sergen-
ti) originated from our previous study (Votýpka et al., 2009) and
are deposited in GenBank under accessional numbers FJ865354
and FJ865355, respectively. Data set containing all gregarine se-
quences of small subunit ribosomal DNAs accessible at the time
of the study was used to establish the phylogenetic position of both
newly described species of sand fly gregarines. Phylogenetic anal-
ysis was performed following the same procedure as described
previously by Votýpka et al. (2009).
Fig. 1. Native preparations of different life cycle stages of Psychodiella sergenti n. sp., Ps. to
scale bars = 50 lm; gametocysts of Ps. sergenti (D), Ps. tobbi (E), and Ps. chagasi (F), scale b
body cavity of appropriate sand fly species, scale bars = 10 lm. Gamonts of Ps. sergenti
Gamonts of Ps. tobbi outside the intestine of Ph. tobbi 4th instar larva after defecation (K
3. Results

3.1. Description of morphology and life cycles

Different life stages of Psychodiella sergenti n. sp., Ps. tobbi n. sp.,
and Ps. chagasi are shown in Fig. 1. Their size characteristics and
comparison are given in Tables 2 and 3.
3.1.1. Psychodiella sergenti n. sp.
Gamonts (Fig. 1A and J) are round or oval, aseptate, with distinct

nucleus and nucleolus. Cytoplasm contains brown granules.
In young adults or when the infection intensity was high (over

30 gamonts per adult), some of the gamonts were smaller or pro-
longed. Gamonts were found in all examined stages of their host
(4th instar larvae, adult males, and both, unfed and blood-fed
females). Gamonts were mostly located in the intestine of 4th
bbi n. sp., and Ps. chagasi. Gamonts of Ps. sergenti (A), Ps. tobbi (B), and Ps. chagasi (C),
ars = 50 lm; oocysts of Ps. sergenti (G), Ps. tobbi (H), and Ps. chagasi (I) from the adult
in the lumen of Ph. sergenti 4th instar larva after defecation (J), scale bar = 150 lm.

), scale bar = 150 lm.



Table 2
Mean length of gamonts (T) and gametocysts (G) and length (O-L), width (O-W), and
length/width ratio (O-LW) of oocysts (all in lm) with basic statistical characteristics
of the three different gregarines from adults of Phlebotomus sergenti, Ph. tobbi, and
Lutzomyia longipalpis.

Stage/species N Mean Median SD Min. Max.

T
Ps. sergenti 408 114.6 112.8 21.5 59.0 188.0
Ps. tobbi 188 123.6 123.0 27.2 54.5 204.1
Ps. chagasi 133 80.6 84.0 21.9 25.5 168.0

G
Ps. sergenti 86 128.2 131.5 17.3 84.6 169.2
Ps. tobbi 77 137.2 132.6 22.0 102.6 189.0
Ps. chagasi 58 105.0 103.4 14.7 84.0 150.0

O-L
Ps. sergenti 231 9.6 9.6 0.3 8.7 10.3
Ps. tobbi 194 9.6 9.6 0.3 8.8 10.7
Ps. chagasi 113 12.7 12.7 0.3 12.0 13.3

O-W
Ps. sergenti 231 6.7 6.7 0.2 6.2 7.1
Ps. tobbi 194 7.5 7.5 0.3 6.8 8.5
Ps. chagasi 113 8.3 8.3 0.3 7.3 8.9

O-LW
Ps. sergenti 231 1.44 1.44 0.05 1.30 1.56
Ps. tobbi 194 1.28 1.28 0.04 1.19 1.40
Ps. chagasi 113 1.52 1.52 0.06 1.41 1.68

Table 3
Size comparison among different stages of Psychodiella sergenti n. sp., Ps. tobbi n. sp.,
and Ps. chagasi. Stages: T = gamont; G = gametocyst; O = oocyst. Measurements:
L = length; W = width; LW = length/width ratio. Gregarines: PS = Ps. sergenti n. sp.;
PT = Ps. tobbi n. sp.; PC = Ps. chagasi.

Stage/species t-Value D.f. P Comparison

T
PS–PC 15.75 539 <0.01 PS > PC
PT–PC 15.12 319 <0.01 PT > PC
PT–PS 4.37 594 <0.01 PT > PS

G
PS–PC 8.36 142 <0.01 PS > PC
PT–PC 9.63 133 <0.01 PT > PC
PT–PS 2.93 161 <0.01 PT > PS

O-L
PS–PC 99.67 342 <0.01 PS < PC
PT–PC 84.25 305 <0.01 PT < PC
PT–PS �0.39 423 >0.05 PT � PS

O-W
PS–PC 70.70 342 <0.01 PS < PC
PT–PC 27.81 305 <0.01 PT < PC
PT–PS �38.42 423 <0.01 PT > PS

O-LW
PS–PC 15.09 342 <0.01 PS < PC
PT–PC 44.40 305 <0.01 PT < PC
PT–PS 37.21 423 <0.01 PT < PS
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instar larvae and in the body cavity of adults. In one larva, gamonts
were found in the body cavity and in two adults in the fat body. In
larvae before defecation, gamonts (as well as gametocysts) were
situated more often in the posterior part of the midgut, usually
in the ectoperitrophic space. However, in larvae after defecation,
gamonts were located within the full length of the midgut lumen
(Fig. 1J).

Gametocysts (Fig. 1D) have a distinct wall and are usually round
or oval. Young gametocysts are formed by two gamonts with visi-
ble nuclei. Older gametocysts are filled with granules that suggest
sporogony.

Gametocysts were only found in the midgut of 4th instar larvae
and in blood-fed females, where they were attached to the acces-
sory glands or lying freely in the body cavity. No sexual develop-
ment occurred in males or unfed females.

Oocysts (Fig. 1G) are broad spindle-shaped (hesperidiform) with
flattened, rather indistinctive ends, containing eight sporozoites.
The length/width ratio is 1.44 ± 0.05 (range: 1.30–1.56).

They were observed exclusively in blood-fed females. During
dissection, some gametocysts ruptured, adopting a characteristic
horseshoe-like shape and releasing oocysts into the body cavity.
In several blood-fed females, oocysts were observed in the lumen
of accessory glands.
3.1.2. Psychodiella tobbi n. sp
Gamonts (Fig. 1B and K) similar to Ps. sergenti gamonts.
Gamonts were found in the body cavity of all examined adult

sand fly stages. In 4th instar larvae before defecation, gamonts
were usually located in the ectoperitrophic space of the hindgut
of younger individuals and/or the body cavity of older individuals.
In larvae after defecation, they were usually found in the body cav-
ity and occasionally in the intestine (Fig. 1K).

Gametocysts (Fig. 1E) are round or oval, brownish, with a dis-
tinct wall.

Gametocysts were located in the intestine, the ectoperitrophic
space of the hindgut, or the body cavity of 4th instar larvae. In
adults, they were found in the body cavity. Sexual development
of gregarines appeared 1 day after emergence in females and
4 days after emergence in males and it was not induced by a blood
meal in the females.

Oocysts (Fig. 1H) are broad spindle-shaped (hesperidiform) with
distinctive ‘‘button-like” ends, containing eight sporozoites. The
length/width ratio is 1.28 ± 0.04 (range: 1.19–1.40).

Oocysts with eight sporozoites were only found in the body cav-
ity of adults and in the lumen of accessory glands of females. Both
gametocysts and oocysts appeared earlier in females than in males.
3.2. Size differences among stages of Psychodiella species

The size and differences between stages of the three studied
gregarine species (Ps. sergenti, Ps. tobbi, and Ps. chagasi) are pre-
sented in Tables 2 and 3, and Fig. 2.

Both Old World species, Ps. sergenti and Ps. tobbi, had signifi-
cantly bigger gamonts (114.6/123.6 lm > 80.6 lm; P < 0.01) and
gametocysts (128.2/137.2 lm > 105.0 lm; P < 0.01) and signifi-
cantly shorter oocysts (9.6/9.6 lm < 12.7 lm; P < 0.01) than the
New World species Ps. chagasi. Ps. tobbi had significantly bigger ga-
monts (123.6 > 114.6 lm; P < 0.01) and gametocysts
(137.2 > 128.2 lm; P < 0.01) than Ps. sergenti. The difference in
the length of oocysts between Ps. tobbi and Ps. sergenti was not sig-
nificant (9.6 lm and 9.6 lm; P > 0.05).

All three gregarine species significantly (P < 0.01) varied in the
width of oocysts from each other with Ps. chagasi having the widest
ones (8.3 lm), Ps. tobbi with 7.5 lm wide oocysts and Ps. sergenti
possessing the narrowest oocysts of 6.7 lm. In order to sufficiently
distinguish between Ps. sergenti and Ps. tobbi oocysts, a length/
width ratio was evaluated. Ps. sergenti length/width ratio was sig-
nificantly bigger than the one of Ps. tobbi (1.44 > 1.28; P < 0.01).
Graphical representation of individual oocyst measurements is
shown in Fig. 2.
3.3. Prevalence in wild caught sand flies

The prevalence in wild caught Ph. sergenti was 15 gregarine in-
fected females out of 96 and in wild caught Ph. tobbi was 21 out of
125 females.



Fig. 2. Characteristics of Psychodiella sergenti n. sp., Ps. tobbi n. sp., and Ps. chagasi oocysts: length (A); width (B); length/width ratio (C); frequency scatterplot of oocyst
measurements (D).

Table 4
Presence of Psychodiella sergenti n. sp. stages in four experimentally infected sand fly species. L4 = 4th instar larvae; M = males; F = females; FB = blood-fed females; T = gamonts;
G = gametocysts; O = oocysts; + = gregarine found; (+) = gregarine found in low number and in less than 10% of individuals; � = gregarine not found.

Ph. sergenti Ph. papatasi Ph. arabicus Ph. tobbi

L4 M F FB L4 M F FB L4 M F FB L4 M F FB

T + + + + + + (+) (+) � � � � + + + +
G + � � + + � � (+) � � � � � � � �
O � � � + � � � � � � � � � � � (+)
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3.4. Experimental infection of various sand fly species

Testing four sand fly species belonging to different subgenera,
the gregarine Ps. sergenti was able to complete the life cycle and
fully develop only in its natural host, Ph. sergenti (Table 4 and
Fig. 3). No infection occurred in any of the stages of Ph. arabicus.
In Ph. papatasi, gamonts were found in all life cycle stages, gamet-
ocysts were found in 4th instar larvae and blood-fed females, but
oocysts were not found in any of the stages. Ph. tobbi was also
fairly refractory to Ps. sergenti infection. No gametocysts were
found in any of the studied Ph. tobbi stages and few oocysts were
found only in the body cavity of one blood-fed female out of 76
dissected. The number of gamonts per individual of Ph. tobbi
was usually one or two, unlike in its natural host Ph. sergenti,
where the intensity of infection was about three to 20 gamonts
per individual.
Testing two sand fly species, Ps. tobbi was not able to mature
and produce oocysts in Ph. sergenti (Table 5 and Fig. 4). No grega-
rine infection occurred in 4th instar larvae or unfed and blood-
fed females. Out of 120 dissected Ph. sergenti males, only two
carried a single gamont of Ps. tobbi. The life cycle of Ps. tobbi in
Ph. perniciosus was similar to the one seen in Ph. tobbi; sexual
development was not induced by blood meal of females and oc-
curred also in males and unfed females. In Ph. perniciosus, oocysts
were found in the lumen of accessory glands of only two females
out of 176; gamonts and gametocysts were found in low numbers
(1–4) in adults and 4th instar larvae.

3.5. Phylogenetic analysis

We sequenced 1752 base pairs of the SSU rRNA gene of the new
Psychodiella species from Ph. tobbi. The final data set contained all



Fig. 3. Proportion of infected sand flies (Phlebotomus sergenti, Ph. papatasi, Ph. tobbi,
and Ph. arabicus) with Psychodiella sergenti n. sp. Numbers above the columns
represent the number of examined individuals.

Table 5
Presence of Psychodiella tobbi n. sp. stages in two experimentally infected sand fly
species. L4 = 4th instar larvae; M = males; F = females; FB = blood-fed females;
T = gamonts; G = gametocysts; O = oocysts; + = gregarine found; (+) = gregarine found
in low number and in less than 10% of individuals; � = gregarine not found.

Ph. sergenti Ph. perniciosus

L4 M F FB L4 M F FB

T � (+) � � + + + +
G � � � � (+) � (+) �
O � � � � � � (+) (+)

Fig. 4. Proportion of infected sand flies (Phlebotomus sergenti and Ph. perniciosus)
with Psychodiella tobbi n. sp. Numbers above the columns represent the number of
examined individuals.
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sequenced species of named gregarines including the Ps. sergenti
sequence from the previous work of Votýpka et al. (2009). The tree
was rooted using cryptosporids as an outgroup and all major
branches were well supported (data not shown) and correspond
with the phylogenetic tree recently published by Votýpka et al.
(2009). The tree revealed the relationship of both newly described
gregarines (Ps. sergenti and Ps. tobbi) and Ps. chagasi and the mono-
phyly of a separate genus Psychodiella is supported by high boot-
strap values for all methods used (MP, 100%; ML, 100%; BA, 1.00;
Fig. 5). The Old World sand fly gregarines, Ps. sergenti and Ps. tobbi,
are closer to each other (genetic uncorrected p-distance was 1%, 17
nucleotide changes) than to the New World Ps. chagasi (2%, 35 and
30 changes, respectively).
4. Discussion

The life cycle of Ps. sergenti n. sp. differs markedly from Ps.
chagasi. In adult Ph. sergenti, mature oocysts occur only in blood-
fed females, unlike Ps. chagasi, whose sexual development occurs
also in males and unfed females. Morphological differences as well
as molecular phylogenetic analysis bring further evidence that Ps.
sergenti n. sp. and Ps. tobbi n. sp. are different from Ps. chagasi.
Broad-spindle oocysts with wider midsections of both newly
described species differ from longer oocysts of Ps. saraviae that
have narrower midsections and thicker walls (Ostrovska et al.,
1990).

The only Old World sand fly gregarine species described previ-
ously, Ps. mackiei, was found in larvae, pupae, and adults of Ph.
argentipes and Ph. papatasi, respectively (Shortt and Swaminath,
1927; Missiroli, 1929, 1932). It is the only sand fly gregarine where
intracellular stages in the larval gut epithelium were observed. Pre-
viously reported observations that the sexual cycle of Ps. mackiei
occurs in males and unfed females, that gametocysts attach to ovi-
ducts when oocysts are injected into the lumen, and the differ-
ences in the size of the gregarine stages provide strong evidence
that Ps. sergenti and Ps. tobbi are well differentiated from Ps.
mackiei.

Ps. sergenti varies from Ps. tobbi in the size of gamonts and
gametocysts, but not in the length of oocysts. However, oocysts
of these two gregarines clearly differ in the width and length/
width ratio, which is bigger for Ps. sergenti (1.44) compared to
Ps. tobbi (1.28). The length/width ratio intersection of the two
species is only 0.1 and using this feature, Ps. sergenti can be
clearly distinguished from Ps. tobbi. The length/width ratio can
then serve as an unambiguous species characteristic. Besides
morphological and phylogenetic differences and strict host speci-
ficity, both newly described species Ps. sergenti and Ps. tobbi differ
from each other in their life cycles. In adults, sexual development
of Ps. sergenti occurs exclusively in females after a blood meal un-
like Ps. tobbi, where development also takes place in males and
unfed females. For Ps. sergenti, gamonts were found mostly in
the intestinal lumen of larvae, while for Ps. tobbi, they were also
found in the body cavity.

How gregarines get from the larval intestine to the body cavity
of sand fly adults was discussed by Shortt and Swaminath (1927).
The authors propose the hypothesis that gregarines passively enter
into the body cavity of pupae during tissue reconstitution in the
early stage of pupation. However, our results may suggest that gre-
garines actively leave the larval intestine since they are found in
the hemocoel of older Ph. tobbi larvae before body reconstitution
occurred. In Ps. tobbi, the ‘‘transfer” to the host body cavity occurs
earlier in the larval development, while gregarines of Ps. sergenti
are in the intestine of all larval stages and emerge later in the body
cavity of pupae.

Not only the morphological and the life cycle differences, and
the phylogenetic position of Ps. tobbi and Ps. sergenti, but also the
inability of Ps. tobbi to produce gametocysts or oocysts in Ph. ser-
genti and very low susceptibility of Ph. tobbi to Ps. sergenti confirm
that the two newly described gregarines are distinct species. The
full development of Ps. sergenti and Ps. tobbi takes place only in
their natural hosts. In preliminary studies on Phlebotomus (Phlebo-
tomus) duboscqi, sand flies can become accidentally infected with
Ps. sergenti, however in all cases the number of gregarines found
in foreign hosts was substantially smaller than in their natural
hosts. Figs. 3 and 4, showing the proportions of infected sand fly



Fig. 5. Part of a maximum likelihood (ML) phylogenetic tree inferred from SSU rRNA gene sequences. The figure shows the topology obtained by maximum likelihood using
the GTR model for nucleotide substitutions with C-distribution in 8 + 1 categories as implemented in PhyML. Bootstrap values from ML, MP (1000 replicates), and Bayesian
posterior probabilities (number of generations was 5 � 106) are shown above branches. Asterisks (�) at the nodes denote Bayesian posterior probabilities and bootstrap
percentages of 95% or higher. Bar represents 0.1 substitutions per site.
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stages, suggest that the bottleneck for gregarines in an artificial
host is larval development and pupation, because the percentage
of infected sand flies decreases rapidly in adults. The results of
cross-infections are in agreement with findings of Wu and Tesh
(1989), but contradict studies demonstrating broad host range of
gregarines from nematoceran Diptera (Shortt and Swaminath,
1927; Missiroli, 1929; Levine, 1977; Garcia et al., 1994). The
conspecificity of the gregarine Ps. mackiei found in Phlebotomus
(Euphlebotomus) argentipes (Shortt and Swaminath, 1927) and Ph.
(Phlebotomus) papatasi (Missiroli, 1929) is also questioned, since
the two phlebotomine genera do not form a monophyletic clade
(Aransay et al., 2000).

Due to the differences in the life cycle, morphology, and dimen-
sions of gamonts, gametocysts and particularly oocysts, and the re-
sults of cross-infection studies and molecular phylogenetic
analysis, we clearly demonstrated that gregarines from Ph. tobbi
and Ph. sergenti are two new species of the genus Psychodiella.

5. Taxonomic summary

Phylum: Apicomplexa Levine, 1970.
Order: Eugregarinorida Léger, 1900.
Suborder: Aseptatorina Chakravarty, 1960.
Genus: Psychodiella Votýpka, Lantová and Volf, 2009.
5.1. Psychodiella sergenti n. sp. Lantová, Volf and Votýpka

Type specimens: Ps. sergenti n. sp.
Type host: Ph. sergenti (Diptera: Psychodidae)
Type locality (origin of the sand fly colony): Turkey, South-East
Anatolia, SanliUrfa (37�110N, 38�480E)
Site of infection: Midgut of 4th instar larvae and body cavity of
adults. Oocysts in the lumen of accessory glands and in the body
cavity, exclusively in blood-fed females.
Type material: Slides (No. PsSerF2d.1B1.2007/01) stained with
PAS reaction followed by Ehrlich’s Hematoxylin have been
deposited in the collection of the Department of Parasitology,
Faculty of Science, Charles University in Prague, Czech Republic.
Etymology: The species name has been adopted from the species
name of the host sand fly, Ph. sergenti named in honour of the
doctors Edmond and Etienne Sergent.
Diagnosis in the native: Gamonts (114.6 ± 21.5 lm) round or
oval, aseptate, with distinct nucleus and nucleolus. Gamet-
ocysts (128.2 ± 17.3 lm) round or oval, sometimes with original
two gamonts, older gametocysts with ‘‘granules” suggesting
sporogony. Oocysts (length: 9.6 ± 0.3 lm, 8.7–10.3 lm; width:
6.7 ± 0.2, 6.2–7.1 lm) broad spindle-shaped (hesperidiform)
with flattened, rather indistinctive ends, containing eight spor-
ozoites. The length/width ratio is 1.44 ± 0.05 (1.30–1.56).
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5.2. Psychodiella tobbi n. sp. Lantová, Volf and Votýpka

Type specimens: Ps. tobbi n. sp.
Type host: Ph. tobbi (Diptera: Psychodidae)
Type locality (origin of the sand fly colony): Turkey, South Anato-
lia, Tepecikoren (37�360N, 35�620E)
Site of infection: Body cavity and intestine of 4th instar larvae,
body cavity of adult sand flies. Oocysts in the body cavity and
lumen of accessory glands of adult sand flies of both sexes.
Type material: Gregarine-infected Ph. tobbi males and females
placed in a tube with AFA fixative (alcohol–formalin–acetic
acid) (No. PsTobFM2d.2008/01) deposited in the collection of
the Department of Parasitology, Faculty of Science, Charles Uni-
versity in Prague, Czech Republic.
Etymology: The species name has been adopted from the species
name of the host sand fly, Ph. tobbi dedicated to Dr. Agha Khan
Tobb.
Diagnosis in the native: Gamonts (123.6 ± 27.2 lm) round or
oval, aseptate, with distinct nucleus and nucleolus. Gamet-
ocysts (137.2 ± 22 lm) round or oval, sometimes with original
two gamonts, older gametocysts with granules suggesting spo-
rogony. Oocysts (length: 9.6 ± 0.3 lm, 8.8–10.7 lm; width:
7.5 ± 0.3, 6.8–8.5 lm) broad spindle-shaped (hesperidiform)
with distinctive ‘‘button-like” ends, containing eight sporozo-
ites. The length/width ratio is 1.28 ± 0.04 (1.19–1.40).
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SUMMARY  
Introduction. Psychodiella sergenti is a recently described specific pathogen of 

the sand fly Phlebotomus sergenti, a major vector of Leishmania tropica. The 

aim of this study was to examine the life cycle of Ps. sergenti in various 

developmental stages of the sand fly host. Methods. The microscopical 

methods used include scanning electron microscopy, transmission electron 

microscopy and light microscopy of native preparations and histological 

sections stained with periodic acid-Schiff reaction. Results. Psychodiella 

sergenti oocysts were observed on the chorion of sand fly eggs. In 1st instar 

larvae, sporozoites were located in the ectoperitrophic space of the intestine. 

No intracellular stages were found. In 4th instar larvae, Ps. sergenti was mostly 

located in the ectoperitrophic space of the intestine of the larvae before 

defecation and in the intestinal lumen of the larvae after defecation. In adults, 

the parasite was recorded in the body cavity, where the sexual development 

was triggered by a blood meal intake. Conclusion. Psychodiella sergenti has 

several unique features. It develops sexually exclusively in sand fly females that 

took a blood meal, and its sporozoites bear a distinctive conoid, which is longer 

than conoids of the mosquito gregarines. 

  

Key words: Psychodiella, Psychodiella sergenti, Gregarine, Phlebotomus 

sergenti, Sand fly, Life cycle, PAS, Egg, Larva, Adult 
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INTRODUCTION  
Gregarines parasitizing sand flies (Apicomplexa: Eugregarinorida) are 

aseptate eugregarines recently separated from the mosquito genus 

Ascogregarina Ward, Levine and Craig, 1982 to form a new genus Psychodiella 

Votypka, Lantova and Volf, 2009 (Votypka et al. 2009). Despite their high host 

specificity, only five Psychodiella species have been described so far. 

Numerous studies on the mosquito Ascogregarina species (e.g. Walsh and 

Callaway, 1969; Vavra, 1969; Sanders and Poinar, 1973; Munstermann and 

Levine, 1983; Chen et al. 1997a) showed that mosquito gregarines differ from 

sand fly gregarines at two critical points of the life cycle: in mosquito larvae, the 

gregarines develop intracellularly in the intestinal epithelial cells and in adults, 

they are located in the Malpighian tubules. 

Psychodiella life cycle has been studied in detail in Psychodiella chagasi 

(Adler and Mayrink, 1961) by Adler and Mayrink (1961), Coelho and Falcao 

(1964) or Warburg and Ostrovska (1991). Briefly: the first instar larvae are 

infected by swallowing the gregarine oocysts. Sporozoites released from 

oocysts reside in the larval midgut and develop into trophozoites. Later, 

gamonts can be found mostly in the gut lumen of larvae, where the gregarines 

undergo sexual development from the formation of syzygies to the production of 

oocysts. In adults, the gregarines are located in the body cavity forming 

syzygies and gametocysts with oocysts inside. In females, gametocysts attach 

to accessory glands, and oocysts are injected into their lumen. During 

oviposition, contents of the glands including the oocysts are attached to the 

chorion of eggs and serve as the source of infection for newly hatched larvae. 

This general life cycle is modified in other Psychodiella species, and differences 

were described in Psychodiella mackiei (Shortt and Swaminath, 1927) and 

Psychodiella tobbi Lantova, Volf and Votypka, 2010. 

Psychodiella sergenti Lantova, Volf and Votypka, 2010 is a recently 

described specific pathogen of the sand fly Phlebotomus sergenti Parrot, 1917 

(Diptera: Psychodidae), an important vector of Leishmania tropica (Wright, 

1903) (e.g. Killick-Kendrick et al. 1995), which is a causative agent of human 

cutaneous leishmaniasis. Native preparations of sand fly adults revealed that 

sexual development of Ps. sergenti (formation of syzygies, gametocysts and 

oocysts) occurs only in female sand flies and is conditioned by a blood meal 
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intake (Lantova et al. 2010). The aim of the present study was to document Ps. 

sergenti life cycle in various life stages of its host including the eggs and 1st 

instar larvae. Several microscopical methods were used: scanning electron 

microscopy, transmission electron microscopy and light microscopy of native 

preparations and histological sections stained with PAS reaction (periodic acid-

Schiff). Using such a wide variety of microscopical techniques gives a clear 

overview of the whole parasite’s life cycle. 

 

MATERIALS AND METHODS 
Sand flies 

Phlebotomus sergenti colony infected with Ps. sergenti originated from 

females collected in Sanli Urfa, Turkey. The colony maintenance was described 

by Volf and Volfova (2011) and included an egg-washing procedure using a 

series of solutions (Poinar and Thomas, 1984) to reduce the infection intensity 

of this pathogenic gregarine (Lantova, unpublished observations). The washing 

was omitted in a batch of eggs used for this study. 

 

Native preparations 

Adults of both sexes and different ages were used, as well as two groups 

of 4th instar larvae: those with gut filled with larval diet, further referred to as 

larvae before defecation (BD) and those ready to pupate with an empty gut, 

further referred to as larvae after defecation (AD). The specimens were 

immobilized on ice and dissected in phosphate-buffered saline (PBS) under a 

stereomicroscope SZX-12 (Olympus Corporation, Tokyo, Japan). Micrographs 

were produced with DP-70 digital camera (Olympus) connected to an optical 

microscope BX-51 (Olympus). 

 

Scanning microscopy 
Gravid sand fly females were left to oviposit into a plastic cup filled with 

plaster (commonly used for the colony, see Volf and Volfova, 2011), and one to 

two days later, the eggs were transferred using a fine brush onto double-sided 

tape. Oocysts were documented on the surface of Ph. sergenti eggs using a 

scanning microscope TM-1000 (Hitachi High-Technologies Corporation, Tokyo, 
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Japan). This scanning microscope does not require any sample preparation and 

allows direct observation of unfixed and non-desiccated samples.  

 
Electron microscopy 

Three-day old larvae of 1st instar were fixed in modified Karnovsky 

fixative (Karnovsky, 1965) or in 2.5% glutaraldehyde in cacodylate buffer (4°C), 

post-fixed in 2% osmium tetroxide in cacodylate buffer (4°C), dehydrated 

through an ascending ethanol and acetone series and embedded in Araldite 

502/PolyBed 812 (Polysciences Inc., Warrington, PA, USA). Thin sections (70 

nm) were prepared on a Reichert-Jung Ultracut E ultramicrotome (Leica 

Microsystems GmbH, Wetzlar, Germany) and stained using uranyl acetate and 

lead citrate (Reynolds, 1963). The sections were examined and photographed 

using an electron microscope JEM-1011 (JEOL Ltd., Tokyo, Japan). 

 

Histology 
Larvae of 4th instar (BD and AD) and adults at different days post 

eclosion were dissected and fixed at 4°C in AFA fixative (96% ethanol: 38% 

formaldehyde: acetic acid: distilled water; 12.5: 1.5: 1: 10). The head and the 

last posterior segments were removed for better penetration of fixatives. 

Specimens were then washed three times in PBS and 70% ethanol and 

embedded in 2-hydroxyethyl methacrylate (JB-4 Plus Embedding Kit, 

Polysciences) following the manufacturer’s instructions. Histological sections (2 

– 4 µm) were prepared using a Shandon Finesse ME+ microtome (Thermo 

Fisher Scientific, Inc., Waltham, MA, USA) and stained using PAS (periodic 

acid-Schiff) reaction with Ehrlich’s acid hematoxylin: oxidization in 1% periodic 

acid for 5 min, Schiff’s reagent (Sigma-Aldrich Corporation, St. Louis, MO, USA) 

for 28 min, Ehrlich’s acid hematoxylin for 4 min (with extensive washing in 

running water between steps). Stained sections were mounted on glass slides 

with Plastic UV Mount Mounting Media (Polysciences) and observed and 

photographed under an optical microscope BX-51 (Olympus) connected to a 

DP-70 digital camera (Olympus). 
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RESULTS 
Ps. sergenti oocysts on sand fly eggs 

The exochorion of Ph. sergenti eggs was contaminated with Ps. sergenti 

oocysts (Fig. 1). The number of oocysts per egg varied; some eggs appeared 

without any contamination, others contained dozens of oocysts. The distribution 

of oocysts on the chorion was not even, they usually concentrated around the 

tip of the egg (Fig. 1B, C) or along the longitudinal axis of the egg in contact 

with the exochorion sculpturing ridges (Fig. 1A, B). Manipulation with eggs by a 

brush occasionally caused detachment of the oocysts from the egg surface. In 

some cases, distinct imprints of the detached oocysts were visible (Fig. 1D) 
 
Ps. sergenti sporozoites in 1st instar sand fly larvae 

In 1st instar larvae, Ps. sergenti sporozoites were found in the intestine 

(Fig. 2). They were located mostly in the posterior midgut, exclusively in the 

ectoperitrophic space between the peritrophic matrix and the epithelium (Fig. 

2A). The sporozoites were either crawling on microvilli or attached to the 

epithelial cells with a distinct mucron (Fig. 2B, E). They had a three-layered 

pellicle (Fig. 2C) and posteriorly located nucleus (Fig. 2E). A very distinct conoid 

as well as polar ring and numerous micronemes were observed (Fig. 2D, E). No 

intracellular stages were observed. 

 

Ps. sergenti development in 4th instar sand fly larvae 
The documentation of Ps. sergenti in 4th instar larvae was accomplished 

in the native preparations (Fig. 3A, B) and in the histological sections stained 

with PAS reaction with Ehrlich’s acid hematoxylin (Fig. 3C, D). 

 Gregarine stages found in 4th instar larvae were mostly gamonts, 

occasionally also syzygies and gametocysts but never oocysts. In BD larvae, 

gamonts were documented in the ectoperitrophic space of the intestine, mainly 

in the posterior midgut (Fig. 3A, C), while in AD larvae, the gregarines were 

located in the midgut lumen along its whole length (Fig. 3B, D). In a few cases, 

gamonts were found also in the larval body cavity, but no intracellular 

development or cell damage was detected. 

The PAS reaction proved to be very useful in highlighting gregarines in 

the host tissues. Their PAS-positive amylopectin granulation was typical and 
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easily recognizable from other PAS-positive objects, e.g. from the midgut 

contents (Fig. 3C). 

 

Ps. sergenti development in sand fly males 
Even though males up to 13 days post eclosion were examined, neither 

native observations nor histological sections recorded other gregarine life 

stages than gamonts (Fig. 4A – C). The gamonts were usually round or oval, 

but in high-intensity infections, some had a shape of an hourglass or a tear-

drop. They were found mostly in the body cavity, in several cases also in the fat 

body but never in the intestine or elsewhere. A characteristic appearance of the 

gregarines with a distinctive nucleus (Fig. 4B) allowed distinguishing them 

easily from a rectal papilla, the PAS-positive tissue of adult sand flies (Fig. 4A). 

 
Ps. sergenti development in sand fly females 

In females that did not take a blood meal, no other gregarine stages but 

gamonts were found, even thought the females were dissected up to the age of 

13 days. On the other hand, in blood-fed females, the whole sexual 

development including syzygies, gametocysts and oocysts was demonstrated 

(Figs. 4D – F and 5). Gamonts and gametocysts were located in the body cavity 

and a few gamonts, particularly when the infection intensity was high, in the fat 

body.  

In females two days post blood meal, the young gametocysts were found 

still consisting of the two original gamonts with their nuclei (Fig. 5A). From three 

to five days after a blood meal, gametocysts at different stages of maturation 

were documented (Fig. 5D, E), some of them being attached to the accessory 

glands (Figs. 4D and 5B – E). Around day five, the gametocysts were fully 

matured, and accessory glands of blood-fed females became filled with oocysts 

(Figs. 4 E, F and 5 F – H). 

In females, other strongly PAS-positive tissues are the rectal papilla (Fig. 

5A) and oocytes (Fig. 5D – F); however, gregarines stained with PAS reaction 

were distinct, particularly in sections not post-stained with Ehrlich’s acid 

hematoxylin (Fig. 5B, C).  
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DISCUSSION  
 The main distinctive feature of Ps. sergenti life cycle is the fact that the 

gregarines develop sexually exclusively in adult females that had a blood meal. 

This is a striking contrast to Ps. chagasi and Ps. tobbi where gametocysts are 

formed in adults of both sexes, including females that did not take a blood meal 

(Coelho and Falcao, 1964; Lantova et al. 2010). In Ps. chagasi, Coelho and 

Falcao (1964) and Warburg and Ostrovska (1991) found gregarine oocysts in 

4th instar larvae, the former authors even described the formation of oocysts 

that were being defecated and served as a source of horizontal infection to 

other larvae. Contrastingly, no oocysts were found in the 4th instar larvae of Ps. 

tobbi (Lantova et al. 2010) or Ps. sergenti in this study. 

The only other sand fly gregarine with the life cycle in adult hosts similar 

to Ps. sergenti is an undescribed parasite reported by Ayala (1971) in 

Lutzomyia vexatrix occidentis Fairchild and Hertig, 1957. Similarly to Ayala 

(1973) we hypothesize that the hormonal changes influenced by a blood meal 

intake trigger the gregarine’s sexual cycle. Such behaviour is advantageous for 

the gregarines as they only invest energy to sexual development where the 

vertical transmission is expected – in blood-fed females.  

 Psychodiella sergenti sporozoites were found in 1st instar larvae either 

crawling on microvilli or attached to the epithelial cells with a mucron. No 

intracellular development of Ps. sergenti was recorded in the sand fly larvae. 

This is in agreement with findings of various authors on Ps. chagasi but in 

contrast to findings of Shortt and Swaminath (1927) on Psychodiella mackiei 

where intracellular stages were reported in the gut of 1st larvae.  

Sporozoites of Ps. sergenti possess a long conoid similar to that of Ps. 

chagasi (Warburg and Ostrovska, 1991) but longer than those described in 

Ascogregarina species (e.g. Sheffield et al. 1971; Chen et al. 1997b). This 

suggests that long conoids are typical for Psychodiella gregarines. The surface 

of Ps. sergenti sporozoites consists of a three-layered pellicle. Previously, a 

two-layered pellicle was reported by Warburg and Ostrovska (1991) in Ps. 

chagasi and by Sheffield et al. (1971) and Sanders and Poinar (1973) in 

mosquito gregarine species. As pointed out by Vavra (1969), such a difference 

might be due to the fact that the two inner membranes could sometimes be very 

close giving the impression of a single membrane.   
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In 4th instar BD larvae, Ps. sergenti gamonts were located in the 

ectoperitrophic space. Similar results were reported for other Psychodiella 

species by Shortt and Swaminath (1927), Coelho and Falcao (1964), Warburg 

and Ostrovska (1991) or Lantova et al. (2010). The ectoperitrophic location 

protects the gregarines from being discharged when larvae before pupation 

defecate the whole gut content together with the peritrophic matrix.   

 In adults, the main location of the gregarines was the body cavity as also 

recorded for other species by Shortt and Swaminath (1927), Adler and Mayrink 

(1961) and Ostrovska et al. (1990). In high-intensity infections, we found Ps. 

sergenti also in the fat body. The attachment of the gametocysts to the 

accessory glands was recorded in all sand fly gregarine species (reviewed by 

Ostrovska et al. 1990) and provides an effective way of vertical transmission to 

the offspring.  

Scanning electron microscopy showed Ps. sergenti oocysts frequently 

attached to the longitudinal exochorion sculpturing ridges of the sand fly eggs. 

In contrast, Adler and Mayrink (1961) recorded Ps. chagasi oocysts adhered to 

the Lutzomyia longipalpis (Lutz and Neiva, 1912) egg surface at a right angle to 

the longitudinal axis. This suggests that, similarly to the species-specific chorion 

ornamentation (e.g. Nogueira et al. 2004), also the character of oocyst-

contamination might be species specific. The location of oocysts seems to be 

connected to the process of the exochorion formation during oviposition, when it 

is secreted by the accessory glands. The viscous consistency of the secretion 

enables the oocysts to adhere to the egg surface at the site where drying 

exochorion produces characteristic sculpturing ridges. 

In general, Psychodiella life cycle has been studied in detail by a limited 

number of authors, and only a single work has been published documenting this 

parasite (Ps. chagasi) using electron microscopy (Warburg and Ostrovska, 

1991). In the present study, we used various microscopical methods in major 

sand fly developmental stages giving a self-contained overview of Ps. sergenti 

life cycle. 
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CAPTIONS TO FIGURES 
Fig. 1. Scanning electron micrographs of Phlebotomus sergenti eggs infected 

with Psychodiella sergenti. (A – C) Psychodiella sergenti oocysts (arrows) 

attached to the chorion of eggs. (D) Imprints of the detached oocysts. Scale 

bars (A, B) = 50 µm, (C) = 25 µm, (D) = 10 µm. 

 

Fig. 2. Transmission electron micrographs of the intestine of 1st instar 

Phlebotomus sergenti larvae infected with Psychodiella sergenti. (A) 

Unattached sporozoite (arrow) in the ectoperitrophic space of the intestine. (B, 

D, E) Sporozoites attached to the epithelial cells of the intestine. (C) Detail of a 

three-layered pellicle of the sporozoite. CO – conoid, IT – lumen of the larval 

intestine with organic debris and yeasts, MN – micronemes, MU – mucron, NU 

– nucleus, PM – peritrophic matrix, PR – polar ring. Scale bars (A) = 2 µm, (B, 

D, E) = 1 µm, (C) = 100 nm. 

 

Fig. 3. Native preparations (A, B) and histological sections stained with PAS 

reaction and Ehrlich’s acid hematoxylin (C, D) of Phlebotomus sergenti larvae of 

4th instar infected with Psychodiella sergenti. (A, C) Intestine of 4th instar larva 

before defecation. The gregarines (arrows) are located in the ectoperitrophic 

space of the intestine. (B, D) Intestine of 4th instar larva after defecation. The 

gregarines (arrows) are located in the lumen of the intestine. FB – fat body, IT – 

intestine, MT – Malpighian tubules. Scale bars = 100 µm.  

 

Fig. 4. Histological sections stained with PAS reaction and Ehrlich’s acid 

hematoxylin of Phlebotomus sergenti males infected with Psychodiella sergenti 

(A, B)  and native preparations of Ph. sergenti adults infected with Ps. sergenti 

(C – F). (A) Male body cavity filled with gamonts (arrows). (B) Gamonts with 

distinctive nuclei in the male body cavity (arrows). (C) Gamonts from the body 

cavity of a male sand fly. (D) Gametocyst (arrow) attached to the accessory 

gland of a female five days post blood meal. (E) Accessory gland of a female 

eight days post blood meal filled with oocysts. (F) Detail of oocysts. AG – 

accessory glands. IT – intestine, NG – neural ganglion, VS – vesicular 

seminalis, RP – rectal papilla. Scale bars (A, C – E) = 100 µm, (B) = 50 µm, (F) 

= 10 µm. 
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 Fig. 5. Histological sections of Phlebotomus sergenti females two (A – C), 

three (D, E) and seven (F – H) days post blood meal infected with Psychodiella 

sergenti stained with PAS reaction and Ehrlich’s acid hematoxylin. (A) Young 

gametocyst in the body cavity of a female two days post blood meal. (B) 

Gametocysts (arrows) attached to the accessory glands of a female two days 

post blood meal, stained only with PAS reaction. (C) Section E post-stained with 

Ehrlich’s acid hematoxylin. (D) Gamonts and gametocysts (arrow) in the body 

cavity of a female three days post blood meal. (E) Gametocysts (arrows) at 

different stages of maturation attached to the accessory glands of a female 

three days post blood meal. (F) Female seven days post blood meal with 

gamonts (arrow) in the body cavity and oocysts in the accessory glands. (G) 

Accessory gland filled with gregarine oocysts. (H) Detail of oocysts. AG – 

accessory glands, IT – intestine, OC – oocytes, RP – rectal papilla. Scale bars 

(A, G) = 50 µm, (B - F) = 100 µm, (H) = 10 µm. 
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Fig. 1. Scanning electron micrographs of Phlebotomus sergenti eggs infected 

with Psychodiella sergenti. 
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Fig. 2. Transmission electron micrographs of the intestine of 1st instar 

Phlebotomus sergenti larvae infected with Psychodiella sergenti. 
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Fig. 3. Native preparations (A, B) and histological sections stained with PAS 

reaction and Ehrlich’s acid hematoxylin (C, D) of Phlebotomus sergenti larvae of 

4th instar infected with Psychodiella sergenti. 
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Fig. 4. Histological sections stained with PAS reaction and Ehrlich’s acid 

hematoxylin of Phlebotomus sergenti males infected with Psychodiella sergenti 

(A, B)  and native preparations of Ph. sergenti adults infected with Ps. sergenti 

(C – F). 
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Fig. 5. Histological sections of Phlebotomus sergenti females two (A – C), three 

(D, E) and seven (F – H) days post blood meal infected with Psychodiella 

sergenti stained with PAS reaction and Ehrlich’s acid hematoxylin. 

Fig. 5. Histological sections of Phlebotomus sergenti females two (A – C), three 

(D, E) and seven (F – H) days post blood meal infected with Psychodiella 

sergenti stained with PAS reaction and Ehrlich’s acid hematoxylin. 
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 Phlebotomine sand flies (Diptera, Psychodidae) are important vectors of human 

pathogens. Moreover, they possess monoxenous parasites including gregarines of the 

genus Psychodiella Votypka, Lantova and Volf, which can negatively affect laboratory-

reared colonies and have been considered as potential candidates in biological control. 

In this study, effects of the gregarine Psychodiella sergenti Lantova, Volf and Votypka 

on its natural host Phlebotomus sergenti Parrot were evaluated. The gregarines 

increased the mortality of immature sand fly stages, and this effect was even more 

apparent when the infected larvae were reared in more dense conditions. Similarly, the 

gregarines negatively affected the survival of adult males and females. However, no 

impact was observed on the mortality of blood-fed females, the proportion of females 

that laid eggs, and the number of eggs oviposited. The ten-time higher infection dose 

(50 versus 5 gregarine oocysts per one sand fly egg) led to roughly 10 times more 

gamonts in 4th instar larvae and two or three times more gamonts in females and males, 

respectively. Our study clearly shows that Psychodiella sergenti is harmful to its natural 

host under laboratory conditions. However, its potential for use in biological control is 

questionable due to several factors including this parasite’s strict host specificity. 

  

Key words 

Gregarine, sand fly, mortality, fecundity, infection dose  
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Phlebotomine sand flies are vectors of important human pathogens such as 

Leishmania Ross, Bartonella Strong, O'Connor, Winkler and Steigerwalt, and 

phleboviruses. They are, however, parasitized by various organisms such as viruses, 

bacteria, fungi, nematodes, mites, and protists including gregarines (reviewed by 

Warburg et al. 1991). Adult sand flies feed on plant sugars; females need blood to 

acquire nutrients for egg production. Very little is known about the sand fly breeding 

sites, in general, eggs are laid to the moist soil, animal burrows, caves, or leaf litter, and 

four larval instars feed on organic detritus (Lane 1993), sometimes also on dead bodies 

of adults (Adler and Mayrink 1961). The terrestrial development in dark humid sites 

facilitates growth and persistence of various sand fly entomopathogens and, at the same 

time, complicates their collection and examination (Warburg 1991).  

Gregarines are parasites of invertebrates, particularly insects. Their effects to 

hosts vary, and gregarines possessing merogony in their life cycle have even been 

considered a potential tool for biological control (Perkins et al. 2000). Within the 

nematoceran Diptera, two gregarine genera have been recently distinguished: the genus 

Ascogregarina Ward, Levine and Craig parasitizing mosquitoes and the genus 

Psychodiella Votypka, Lantova and Volf parasitizing sand flies (Votypka et al. 2009). 

Neither genera undergoes merogony, and various authors have come to different 

conclusions concerning their effects to the hosts (Barrett 1968, Walker et al. 1987, Wu 

and Tesh 1989, Siegel et al. 1992, Sulaiman 1992, Comiskey et al. 1999). 

Psychodiella sergenti Lantova, Volf and Votypka is a recently described specific 

pathogen of Phlebotomus sergenti Parrot (Lantova et al. 2010). This sand fly is an 

important vector of human cutaneous leishmaniasis caused by Leishmania tropica 

(Wright) (reviewed by Jacobson 2003). Newly hatched sand fly larvae become infected 

by ingesting gregarine oocysts, each of which contains eight sporozoites. The 

sporozoites then develop in the larval intestine. In adults, the gamonts are found in the 

hemocoel, and the sexual development of Ps. sergenti, i.e. the formation of syzygy 

followed by creation of gametocysts with oocysts inside, occurs exclusively in blood-

fed females. In gravid females (females that took a blood meal and developed oocytes), 

gametocysts attach to accessory glands, oocysts are injected into the gland lumen, and 

during oviposition they adhere to the chorion of eggs (Lantova et al. 2010). 

Psychodiella gregarines occurred naturally in a colony we had established from 

Ph. sergenti collected in Turkey. After several generations, the colony began to suffer 
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from high adult mortality, and dissections revealed hemocoels heavily infected by 

gamonts and gametocysts. To reduce the intensity of infection and increase the fitness 

of the colony, Ph. sergenti eggs were washed by a series of reagents. However, this 

procedure never completely cleaned the eggs and had to be repeated every generation. 

The present study, focusing on the effects of Ps. sergenti on its natural sand fly host, 

was made possible only when a new, gregarine-free Ph. sergenti colony was 

established. 

 

Materials and Methods 

Sand flies and gregarines. A colony of Ph. sergenti free of gregarines was 

established in 2001 from females originating from Israel (further referred to as IS 

colony). The infected colony of Ph. sergenti used as a source of oocysts was established 

in 1998 from females originating from Turkey (further referred to as TU colony). The 

two colonies were kept separately in two insectaries, and maximum care was taken to 

prevent cross-contamination.  

Sand flies were reared at 26°C, in standard conditions used in our laboratory 

(Volf and Volfova 2011). To sustain the TU colony, it was necessary to reduce 

gregarine infections by a series of disinfecting solutions described by Poinar and 

Thomas (1984). Two to five-day-old eggs were washed from the rearing pot with 

distilled water to filter paper in a Büchner funnel connected to a water pump. First, 70% 

ethanol was used with the water pump on for 10 to 30 s until all excess liquid was 

removed. Then, eggs were washed with 5.24% sodium hypochlorite (NaClO) with the 

pump off for 3.5 min followed by removing all remaining liquid by turning the pump on 

for 1 min. Subsequently, 10% sodium thiosulfate (Na2S2O3) was used for 3.5 min with 

the pump off. Finally, the eggs were thoroughly washed with distilled water with the 

pump on and washed down into a new clean pot (Poinar and Thomas 1984). 

The process of the collection of gregarine oocysts and experimental infection 

was described by Lantova et al. (2010). In brief, 30 Ph. sergenti females (TU colony) 

were collected after oviposition and homogenized in 500 µl of phosphate-buffered 

saline (PBS). This solution was filtered through gauze and centrifuged (1,700 g) for 5 

min (MiniSpin, Eppendorf AG, Hamburg, Germany), the supernatant was discarded, the 

pellet was re-suspended in 200 µl of water, and the number of oocysts was determined 

using a Bürker counting chamber and an optical microscope (CX31, Olympus 

Corporation, Tokyo, Japan). The appropriate volume of the oocyst suspension, 
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corresponding to the required number of oocysts, was then re-suspended in water to a 

total volume of 1 ml and sprinkled over and mixed with four small heaps of larval food 

placed in each rearing pot. 

Effects of gregarine infection on sand fly mortality and fecundity. To 

evaluate the effect on immature and adult sand fly stages, two groups of sand flies were 

established; gravid Ph. sergenti females from gregarine-free IS colony were allowed to 

oviposit, and eggs counted by a stereomicroscope (SZH-ILLD, Olympus Optical Co. 

Ltd., Tokyo, Japan) were placed into rearing pots using a fine brush. In half of the pots, 

gregarine oocysts corresponding to an infection dose of 50 oocysts per egg were added 

to the food of 1st instar larvae. The remaining pots served as control. All rearing pots 

had the same size and shape, and therefore the total rearing area was the same for the 

experimental and the control group.  

To evaluate the effect on the sand fly immature stages, three experiments were 

carried out. In the first experiment, we used eight pots with 350 eggs each, four of them 

were infected with gregarines, and four served as a control. The second experiment 

evaluated the effect of higher larval density during their development (possible 

competition for nutrients or space), and five pots had 400 eggs each and the remaining 

five had 200 eggs each, none of them was experimentally infected. The third experiment 

evaluated the effect of the gregarine infection together with higher larval density. Five 

experimental pots had on average 444 eggs that were infected, while each of the five 

control non-infected pots had on average 257 eggs. In each experiment, all pots were 

placed into the same rearing box to ensure uniform conditions, and emerging adults 

from both groups were counted every day. The infection status in the case of the first 

and the third experiment was determined using an optical microscope after dissection in 

PBS under a stereomicroscope. The number of emerged adults was compared to the 

number of eggs. 

  To evaluate the mortality of adults, two groups of sand flies were established as 

described above, one non-infected and one infected with a dose of 50 gregarine oocysts 

per egg. In each group, adults that emerged on the same day were placed in a separate 

cage. The number of dead males and females and their infection status (determined by 

dissection under a stereo microscope followed by observation in an optical microscope) 

were recorded daily. The number of dead adults of both sexes was compared between 

the infected and the control group. 

 5



148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

To assess the gregarine effect on blood-fed females, two groups of control and 

infected sand flies were established as mentioned above. The mortality of blood-fed 

females was evaluated after females of the same age from both the control and the 

experimental group were fed on mice, and the number of dead sand flies and the 

gregarine infection status were recorded daily. The mortality of the experimental and 

control group was compared. To assess the gregarine effect on the fecundity, other 

batches of females (from the control and infected group) that emerged at the same day 

were fed using an anesthetized mouse, and six days after the blood meal (i.e. one or two 

days after the defecation of blood meal remains) females were separated into glass 

tubes. The technique originally used for the establishment of sand fly colonies (Killick-

Kendrick and Killick-Kendrick 1991) was adopted. In brief: glass tubes (5 x 1.5 cm) 

with wet filter paper (4 x 5 cm) inside were closed with gauze and a plastic ring. A 

small piece of cotton wool with a 50% sucrose solution was provided to females, and all 

tubes were put into the same rearing box to ensure uniform conditions. The time of 

laying eggs, the number of eggs, and the gregarine infection of dead females in both 

groups were recorded daily and compared. 

Effects of infection dose on the intensity of infection. Six groups of about 15 

gravid females (IS colony) were placed into six pots to oviposit, and the number of eggs 

was counted under a stereomicroscope. Gregarine oocysts corresponding to infection 

doses of either 5 or 50 oocysts per egg were added to the food of 1st instar larvae. Each 

infection dose was used in three rearing pots. All pots were placed in the same rearing 

box. Larvae and adults of both sexes were dissected at different time intervals. In 

addition, seven-day-old females were fed on mice and dissected at various days after the 

blood meal. In males and females without the blood meal, the number of gamonts was 

compared between the two different infection doses. To evaluate the effect in blood-fed 

females, the total number of gamonts plus gametocysts was compared between the two 

different infection doses. 

All statistical analyses were performed using STATISTICA 6.0 (StatSoft 2004). 

 

Results 

Effects of gregarine infection on sand fly mortality. Gregarine infection 

reduced the survival of immature sand fly stages as out of 1,400 non-infected eggs 

emerged 969 adults (69.2%), and out of 1,400 gregarine-exposed eggs emerged 840 

adults (60%), this difference was significant (χ2 = 5.59; df = 1; P < 0.05). Moreover, 
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when the mortality of larvae exposed together to the gregarine infection and more dense 

rearing conditions was compared to the mortality of non-infected larvae in less dense 

rearing conditions, the difference was highly significant (χ2 = 31.41; df = 1; P < 0.01); in 

the infected group, 672 adults emerged from 2,220 eggs (30.3%), while in the control 

group, 566 adults emerged from 1,286 non-infected eggs (44%). The adult eclosion was 

recorded daily; in both above mentioned experiments, the gregarine-infected sand flies 

started to emerge two to four days later than the non-infected sand flies (data not 

shown). To separately assess the larval survival depending on rearing density, an 

experiment comparing two groups of non-infected Ph. sergenti was carried out. Out of 

2,000 eggs, 1,278 (63.9%) adults emerged, and 710 (71%) adults emerged from 1,000 

eggs. This difference was not statistically significant (χ2 = 3.01; df = 1; P = 0.0828).  

Infected males had significantly higher mortality than the control males (Cox’s 

F-test; F = 2.2126; P < 0.01) (Fig. 1A). Similarly, infected females without a blood meal 

had higher mortality than the females in the control group (Cox’s F-test; F = 1.7472; P < 

0.05) (Fig. 1B). Conversely, no statistically significant difference was found in the 

mortality of females after a blood meal (Cox’s F-test; F = 1.2019; P = 0.1822) (Fig. 1C).  

Effects of gregarine infection on sand fly fecundity. Two out of 22 infected 

females did not lay eggs (9.1%), and 14 out of 52 non-infected females did not lay eggs 

(26.9%), but this difference was not significant (Fisher exact test; P = 0.1335). T-tests 

did not reveal any significant differences in the number of oviposited eggs between 

infected and control females (Table 1). The average numbers were 50 ± 6 eggs and 42 ± 

5 eggs (± SEM) per infected and control female, respectively. When only ovipositing 

females were included, infected ones laid 55 ± 6 eggs (± SEM), and 57 ± 5 eggs (± 

SEM) were laid by non-infected females. 

Effects of infection dose on the intensity of infection. The infection dose of 50 

oocysts per egg resulted in more intense infections than the infection dose of 5 oocysts 

per egg. In the 4th instar larvae (20 dissected specimens in each group), a ten-time 

higher infection dose led to roughly 10 times more gamonts (45:458), and the difference 

between groups was highly significant. In males and females without a blood meal (15 

dissected specimens in each group), different infection doses resulted in less 

pronounced but still highly significant differences in parasite numbers. Adding together 

the numbers of gamonts in all adult sand flies of the same sex, the difference between 

the higher and lower infection dose groups was about 1:3 in males (309:994) and less 

than 1:2 in females (403:757) (Table 2; Fig. 2A). 
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 In blood-fed females (15 dissected specimens in each group), the dose of 50 

oocysts per egg led to a significant increase in the total number of gamonts plus 

gametocysts in comparison to the dose of 5 oocysts per egg. Altogether, this increase 

was about 1:2.5 (134:314) (Table 2; Fig. 2B). 

 

Discussion 

Our results showed that Ps. sergenti infection negatively affects the survival of 

immature sand fly stages. In mosquitoes, higher larval mortality due to infection with 

Ascogregarina species has been recorded e.g. by Barrett (1968) in Aedes aegypti (L.) 

and Garcia et al. (1994) in Aedes taeniorhynchus (Wiedemann). Mosquito gregarines 

develop intracellularly in the larval intestine and have deleterious effect on the midgut 

cells (Sanders and Poinar 1973). On the other hand, Ps. sergenti intracellular stages are 

not known. Therefore, the main cause of higher mortality of immature sand fly stages 

could be competition for nutrients and energy between gregarines and a sand fly. This 

competition may become more important in stressful environmental conditions as was 

shown in our experiments: the effect on the mortality was more pronounced when the 

infected larvae were reared in higher density. The higher larval density, when studied 

separately, did not have significant negative impact on the survival. Similar conclusions 

were presented in mosquitoes by Comiskey et al. (1999) showing that Aedes albopictus 

(Skuse) larvae and pupae infected with Ascogregarina taiwanensis (Lien and Levine) 

had higher mortality under nutrient-deficient conditions. The joined negative effect of 

starvation and the gregarine infection was proved also in the black carpet beetle 

Attagenus megatoma (F.): starving eugregarine-infected larvae were losing weight 

almost twice as rapidly as the non-infected ones (Dunkel and Boush 1969). Similarly, in 

starving mealworm Tenebrio molitor L., the weight loss of eugregarine-infected pupae 

was larger than in the non-infected ones (Harry 1967).  

In adult sand flies, the infection with Ps. sergenti significantly decreased the 

survival of infected males and females without a blood meal (Fig. 1A, B), while the 

mortality of blood-fed females was not affected (Fig. 1C). This may indicate that more 

nutritious diet (blood meal) enables infected females to overcome the negative effect of 

the parasite. Interestingly, sex dependent differences were observed in adult mortality: 

in males, higher mortality was detected from the second day, whereas all females, 

regardless of their infection status, survived until the 11th day after emergence from 

pupa and only started to die thereafter (Fig. 1). This could be advantageous for the 
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gregarine: the longer the female lives, the higher the chance of a blood meal followed 

by egg production and transmission. There are several studies on the effect of gregarines 

on the life span of adults. In sand flies, Wu and Tesh (1989) observed increased 

mortality in adult Lutzomyia longipalpis (Lutz and Neiva) infected with Psychodiella 

chagasi (Adler and Mayrink). The infected females started to die on the seventh day 

after emergence and had a higher mortality rate than the control group. In mosquitoes, 

significant negative effect on the mortality was observed by Garcia et al. (1994) and 

statistically unsupported higher mortality by McCray et al. (1970) or Beier (1983). The 

negative effect of the gregarines on the adult mosquito survival could be caused by the 

gregarine’s development in the Malpighian tubules, which severely damages them 

(Barrett 1968). On the other hand, sand fly gregarines of the genus Psychodiella 

develop in the body cavity of their hosts attached to the oviducts or accessory glands. 

250 
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Histology, however, did not reveal any specific damage to sand fly organs (Lantova, 262 

unpublished data).  263 
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Psychodiella gregarines seem to have no effect on sand fly fecundity as in our 

experiments the infection affected neither the number of ovipositing females nor the 

number of oviposited eggs. In L. longipalpis sand flies infected with Ps. chagasi, Wu 

and Tesh (1989) obtained similar results. In mosquitoes, studies of the effect of 

Ascogregarina on fecundity gave contradictory results; McCray et al. (1970) did not 

find any significant effect on Ae. aegypti infected by Ascogregarina culicis (Ross), 

while Comiskey et al. (1999) reported that parasitized females produced 23% fewer 

eggs than non-parasitized ones.  

While the gregarine does not affect blood-fed females, Leishmania parasites do, 

with the effect being significant under stressful conditions (Rogers and Bates 2007). 

This may raise a question about a possible synergistic effect of both parasites on the 

sand fly. In nature, however, such co-infections are very rare, mainly because even in 

leishmaniasis foci the percentage of Ph. sergenti carrying L. tropica is very low (e.g. 

Volf et al. 2002, Gebre-Michael et al. 2004). 

In 4th instar larvae, the ten-time higher infection dose led to roughly 10 times 

more gamonts, while in adults, the intensity of infection achieved by higher infection 

dose was only two or three times higher in females and males, respectively (Fig. 2A). 

We suppose that the number of gregarines that can develop in the host is limited, and 

the pupal stage is clearly the most critical period for gregarine survival. The effect of the 

infection dose has not yet been studied in sand fly gregarines, and comparative data are 
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available only from one mosquito experiment: Reyes-Villanueva et al. (2003) exposed 

larvae of Ae. aegypti and Ae. albopictus to various oocyst concentrations of As. culicis 

and As. taiwanensis and found linear dependence of infection intensity on the infection 

dose.  

Dissections confirmed our previous observations on the life cycle of Ps. sergenti 

(Lantova et al. 2010), i.e. the gregarines were able to complete the life cycle exclusively 

in females after a blood meal. Only gamonts were present in males and females without 

a blood meal. Importantly, it was shown that even the lower dose of 5 oocysts per egg 

was sufficient for successful infection and completing the life cycle.  

 In order to determine the number of oocysts commonly produced in one 

laboratory-reared Ph. sergenti female from Turkey, the number of oocysts in females 

seven days after a blood meal was counted using a Bürker counting chamber. Average 

number of oocysts per Ph. sergenti female was 15,158 ± 1,807 (± SEM). As this sand 

fly colony produces 32 eggs per female on average (Dvorak et al. 2006), we could 

estimate the theoretical infection dose in laboratory conditions as 474 ± 56 gregarine 

oocysts per sand fly egg. However, not all the oocysts are discharged during 

oviposition; some of them remain in the body carcasses of dead females, which are 

collected from the breeding pots after oviposition. The experimental dose used in our 

study (5 or 50 oocysts per egg) is much lower than the one estimated above, but it 

probably better reflects natural infections in sand fly breeding sites. 

Several authors have discussed the possibility of mosquito and sand fly 

gregarines being useful in biological control with contradictory conclusions; Barrett 

(1968) and Sulaiman (1992) consider these gregarines useful, while others, e.g. Walker 

et al. (1987), Wu and Tesh (1989), Siegel et al. (1992), and Tseng (2007) do not. Our 

experiments showed that Ps. sergenti is harmful to its host Ph. sergenti under laboratory 

conditions, and the effects can be influenced by environmental factors. The gregarine’s 

potential for use in biological control is, however, limited by its high host specificity 

(Lantova et al. 2010) and the lack of knowledge about sand fly breeding sites. 
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Table 1. The effect of Psychodiella sergenti infection on the number of oviposited 

eggs by Phlebotomus sergenti blood-fed females. 

405 

406 

407 

408 

409 

410 

411 

412 

413 

414 

415 

416 

417 

418 

419 

n refers to the number of females  

mean, med., SD, min., max. refer to the number of oviposited eggs 

CTR non-infected females 

INF infected females 

 

Table 2. Statistical comparison of the effects of Psychodiella sergenti infection dose 

(5 and 50 oocysts per egg) on the number of gregarines in Phlebotomus sergenti. 

In males and unfed females (15 specimens of each stage) only gamonts were found and 

counted, in blood-fed females (15 specimens of each stage) gamonts and gametocysts 

were counted and added together. 

L4 4th instar larvae (20 specimens) 
a Numbers represent age of adult sand flies (days after emergence) 
b Numbers represent days after a blood meal  
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Table 1. The effect of Psychodiella sergenti infection on the number of oviposited 

eggs by Phlebotomus sergenti blood-fed females.  

420 

421 

      all  females     ovipositing females only 

infection      n mean med. SD min. max.    n mean med. SD min. max.

CTR 52 41.7 41.0 37.2 0 119 38 57.1 60.0 31.8 1 119 

INF 22 50.0 49.5 29.8 0 96 20 55.0 55.5 26.3 4 96 

t-val. –0.9278 0.2476 

df          72        56 

P       0.36      0.81 

422  

 16



Table 2. Statistical comparison of the effects of Psychodiella sergenti infection dose 

(5 and 50 oocysts per egg) on the number of gregarines in Phlebotomus sergenti. 

423 

424 

       stage  t-value df     P 

         L4 –4.5510 38 < 0.01 

1 –2.8860 28 < 0.01 

4 –2.8426 28 < 0.01 

7 –1.9848 28 0.0570 

9 –2.9449 28 < 0.01 

10 –3.2516 28 < 0.01 

malesa 

13 –2.8811 28 < 0.01 

1 –3.3093 28 < 0.01 

4 –0.4474 28 0.6580 

7 –2.9166 28 < 0.01 

9 –2.0672 28 < 0.05 

10 –2.3518 28 < 0.05 

femalesa 

13 –0.2361 28 0.8150 

3 –2.1621 28 < 0.05 

4 –4.1880 28 < 0.01 
blood-fed 

femalesb 

7 –1.9899 28 0.0564 

425  
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Fig. 1. Mortality of Phlebotomus sergenti infected with Psychodiella sergenti (50 

oocysts per egg). (A) males, (B) females without a blood meal, (C) blood-fed females. 

Numbers in parentheses indicate the number of sand flies.  
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Fig. 2. Effects of gregarine infection dose on the number of Psychodiella sergenti 

individuals in various developmental stages of Phlebotomus sergenti. Bars represent: 

(A) the total number of gamonts in 20 individuals of 4th instar larvae (L4), 15 males, 15 

females without a blood meal; (B) the total number of gregarine developmental stages 

in 15 females blood-fed on mouse. (AG) age of sand flies in days, (ID) infection dose in 

oocysts per egg, (BM) days after a blood meal. (**) highly significant difference (P < 

0.01), (*) significant difference (P < 0.05) (see Table 2). 
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Fig. 1. Mortality of Phlebotomus sergenti infected with Psychodiella sergenti (50 

oocysts per egg). 
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Fig. 2. Effects of gregarine infection dose on the number of Psychodiella sergenti 

individuals in various developmental stages of Phlebotomus sergenti. 
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4 SUMMARY OF RESULTS 

• Phylogenetic analyses including SSU rDNA sequences of gregarines from 

L. longipalpis, Ph. sergenti and Ph. tobbi showed that mosquito and sand fly 

gregarines are closely related to neogregarines; however, they form two disparate 

monophyletic groups. Within the sand fly gregarine group, As. chagasi is 

divergent from the gregarines from Ph. sergenti and Ph. tobbi. Based on these 

molecular features accompanied by biological differences, we divided the former 

genus Ascogregarina, originally comprising of both mosquito and sand fly 

gregarines, into two: Ascogregarina for the mosquito gregarines and a new genus 

Psychodiella Votypka, Lantova and Volf 2009 accommodating the sand fly 

gregarines. 

 

• We described two new Psychodiella species: Psychodiella sergenti Lantova, Volf 

and Votypka 2010 from Ph. sergenti and Psychodiella tobbi Lantova, Volf and 

Votypka 2010 from Ph. tobbi. These two gregarines differ in the morphology and 

dimensions of their life cycle stages, particularly in the width and length/width 

ratio of oocysts. Furthermore, they differ in their life cycle; Ps. sergenti, in 

contrast to other sand fly gregarines, develops sexually only in blood-fed females. 

Psychodiella sergenti and Ps. tobbi are strictly host specific; both species were 

able to fully develop only in their natural sand fly hosts. 

 

• We gave a detailed description of Ps. sergenti life cycle using various 

microscopical methods. Oocysts of Ps. sergenti are present on the chorion of eggs, 

in contact with exochorion sculpturing ridges. Sporozoites, located in the 

ectoperitrophic space of the 1st instar larval midgut, are never intracellular and 

have a three-layered pellicle, distinctive mucron and a long conoid. In the 4th 

instar larvae, the gregarines are located either in the ectoperitrophic space 

(younger larvae) or in the lumen of the intestine (older larvae). In adult sand flies, 

the sexual development of the gregarines occurs only in blood-fed females, where 

the gametocysts attach to the accessory glands and oocysts are injected into their 

lumen. In males and females fed exclusively on sugar, only gamonts were found. 
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• During experimental infections, we showed that Ps. sergenti has negative impact 

on its host. It decreases the survival of immature sand fly stages, as fewer adults 

emerged from gregarine-infected eggs. The mortality of adults was increased by 

the gregarine infection in males and females without a blood meal; however, 

blood-fed females were not affected in their mortality, the number of ovipositing 

females or the number of oviposited eggs. The pupation is clearly a critical point 

for the gregarine survival, as the number of gregarines in adults is lower than in 

larvae. 
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5 CONCLUSIONS  

Up until 2009, no gene sequences of any phlebotomine gregarines had been 

published. For the first time, we successfully sequenced SSU rDNA of three gregarines: 

Psychodiella chagasi from L. longipalpis and two new gregarine species from 

Ph. sergenti and Ph. tobbi. We showed that both mosquito and sand fly gregarines are 

closely related to neogregarines. The close relationship of aseptate eugregarines and 

neogregarines was demonstrated also in other studies (Carreno et al. 1999; Leander et 

al. 2003a; 2003b; 2006). This may raise the question whether the absence of merogony 

in some aseptate eugregarines (e.g. the sand fly and mosquito species) is not only the 

case of the merogony not being detected, as happened e.g. with family Gigaductidae 

(see chapter 2.2.1). However, merogony has never been reported from sand fly and 

mosquito gregarines, even thought there is a considerable number of life cycle studies 

about mostly the mosquito species. Thus, our results show that the usage of solely the 

life cycle and morphological characteristics in the gregarine taxonomy is not suitable 

and would benefit from combining both the biological and molecular features, as was 

shown by Leander et al. (2003b) and Rueckert and Leander (2009). 

Because mosquito and sand fly gregarines used to be included in a single genus, 

it was a great surprise, when they formed distinct groups in our analyses. However, 

considering their biological features (of the species where the information is available), 

their paraphyly is supported by several facts. Representatives of these two groups have 

different hosts: Culicidae for mosquito and Psychodidae for sand fly gregarines. Their 

life cycles differ considerably; mosquito ascogregarines develop intracellularly in the 

larval intestine, while this has been reported only for one sand fly species, 

Psychodiella mackiei. In adults, the mosquito ascogregarines develop in the Malpighian 

tubules and oocysts are defecated, while in sand flies, the gregarines are located in the 

body cavity, their oocysts are injected into the accessory glands and released during 

oviposition. Both gregarine groups differ in the morphology of gamonts.  

The monophyly of mosquito ascogregarines was recorded in our study as well as 

by Roychoudhury et al. (2007a). These authors also showed that As. taiwanensis and 

As. culicis are closer to each other than to As. armigerei, suggesting that this might be 

connected to the different taxonomic positions of their natural hosts. We observed that 

gregarines from Ph. sergenti and Ph. tobbi are closer to each other than to Ps. chagasi, 

which supports this hypothesis, because Ps. chagasi parasitize the New World sand 
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flies, while the other two gregarines are found in geographically and taxonomically 

different Old World sand flies. 

Considering all the biological differences mentioned above, which are well 

supported by our phylogenetical analyses of SSU rDNA, we divided genus 

Ascogregarina into two, and we established a new genus accommodating sand fly 

gregarines – Psychodiella. The current status of the taxonomy of mosquito and sand fly 

gregarines is presented in Table 2. 

 

Table 2. Current taxonomical status of mosquito and sand fly gregarines of the 
former genus Ascogregarina. 
 
Ascogregarina 
Ward, Levine and Craig 1982 
mosquito gregarines 

Psychodiella 
Votypka, Lantova and Volf  2009 
sand fly gregarines 

Ascogregarina culicis 
(Ross 1898), type species 

Psychodiella mackiei 
(Shortt and Swaminath 1927) 

As. tripteroidesi  
(Bhatia 1938)  

Ps. chagasi 
(Adler and Mayrink 1961), type species 

As. barretti 
(Vavra 1969) 

Ps. saraviae 
(Ostrovska, Warburg and Montoya-Lerma 1990)

As. clarki 
(Sanders and Poinar 1973) 

Ps. sergenti 
Lantova, Volf and Votypka 2010 

As. armigerei  
(Lien and Levine 1980) 

Ps. tobbi 
Lantova, Volf and Votypka 2010 

As. lanyuensis 
(Lien and Levine 1980)  

As. taiwanensis 
(Lien and Levine 1980)  

As. geniculati  
Munstermann and Levine 1983  

As. polynesiensis  
Levine 1985  

 
 

The description of Ps. sergenti and Ps. tobbi was accomplished, apart from the 

molecular phylogenetical approach (see above), by evaluating their host specificity and 

studying and comparing the morphology and size of their life stages and life cycles. 

Comparisons were accomplished also with Ps. chagasi. 
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Psychodiella sergenti was able to fully develop and complete its life cycle 

(produce oocysts) only in its natural host Ph. sergenti. Oocysts in other than natural host 

were found only in one blood-fed Ph. tobbi female. Psychodiella tobbi was rarely able 

to produce oocysts in Ph. perniciosus females, and it almost did not develop in 

Ph. sergenti. Our results are in agreement with Wu and Tesh (1989) suggesting strict 

host specificity of Ps. chagasi. We believe, similarly to these authors, that the 

gregarines described from a number of sand flies (see chapter 2.3.3) could be new 

distinct species, although more data is needed to prove this.  

Psychodiella sergenti, Ps. tobbi and Ps. chagasi significantly differ in the size of 

their life stages, only Ps. sergenti and Ps. tobbi possess oocysts of equivalent length. 

However, they significantly differ in the width and length/width ratio, and using these 

two features, which can be considered unambiguous species characteristics, we can 

clearly distinguish between Ps. sergenti and Ps. tobbi, and also differentiate them from 

Psychodiella saraviae and Ps. mackiei.  

The life cycle of Ps. sergenti differs markedly from Ps. tobbi and Ps. chagasi; in 

adult Ph. sergenti, the sexual development (formation of syzygies, gametocysts and 

oocysts) occurs exclusively in blood-fed females. In males and unfed females, only 

gamonts were recorded. Contrastingly, the other two gregarines develop into syzygies, 

gametocysts and oocysts also in males and unfed females.  

Considering all the life cycle and morphological characteristics, accompanied by 

strict host specificity of these gregarines, we were able to deliver strong evidence that 

Ps. sergenti and Ps. tobbi are new species.  

 

In order to characterize in detail the life cycle of Ps. sergenti and compare it to 

other Psychodiella species, various microscopical methods were used. 

Psychodiella sergenti oocysts were recorded on the chorion of Ph. sergenti eggs for the 

first time by scanning electron microscopy. The oocysts were often attached to the 

longitudinal sculpturing ridges, suggesting that the process of the attachment of the 

oocysts is connected to the formation of exochorion; a viscous fluid is secreted along 

with the oocysts from the accessory glands, and the consistency of the secretion enables 

the oocysts to adhere to the egg surface at the site, where drying exochorion produces 

characteristic sculpturing ridges. Contrastingly to our results, Adler and Mayrink (1961) 

recorded Ps. chagasi oocysts firmly adhered to L. longipalpis egg surface at a right 

angle to the longitudinal axis. These findings suggest that, similarly to the chorion 
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ornamentation (Nogueira et al. 2004), also the pattern of oocyst attachment might be, to 

a certain level, species-specific. 

Psychodiella sergenti sporozoites were found in the 1st instar larvae always in 

the ectoperitrophic space of the intestine, sometimes attached to the epithelial cells but 

never intracellularly. This is in accordance with the life cycle of Ps. chagasi (Warburg 

and Ostrovska 1991) but in contrast to Ps. mackiei (Shortt and Swaminath 1927). 

Sporozoites of Ps. sergenti possess a distinctive mucron and a long conoid similar to 

that of Ps. chagasi (Warburg and Ostrovska 1991) but longer than those described in 

ascogregarines (Sheffield et al. 1971; Chen et al. 1997b); long conoids might be 

characteristic for Psychodiella species. The sporozoites possess a three-layered pellicle. 

Contrastingly, Vavra (1969), Sheffield et al. (1971) and Sanders and Poinar (1973) in 

ascogregarines and Warburg and Ostrovska (1991) in Ps. chagasi recorded two-layered 

pellicle. Vavra (1969) points out that such a difference might be due to the fact that the 

two inner membranes could sometimes be very close giving the impression of a single 

membrane, or their chemical and structural differences cause them to react differently to 

the electron microscopy preparation. In the 4th instar larvae, native preparations and 

histological sections showed gamonts (sometimes syzygies and gametocysts) in the 

ectoperitrophic space of young individuals. This location protects gregarines from being 

defecated shortly before pupation, when the larval midgut contents, including the 

peritrophic matrix, are discharged. After defecation, the gregarines appear in the 

intestinal lumen. 

In adults, the main location of the gregarines is in the body cavity as observed 

also by Shortt and Swaminath (1927), Adler and Mayrink (1961) and Ostrovska et al. 

(1990). The gametocysts are attached to the accessory glands as recorded in all sand fly 

gregarine species (reviewed by Ostrovska et al. 1990). The main distinctive feature of 

Ps. sergenti life cycle is the fact that it develops sexually exclusively in adult females 

that had a blood meal. The only other sand fly gregarine with similar pattern in its life 

cycle in adult hosts is an undescribed parasite reported by Ayala (1971) in 

L. v. occidentis. Similarly to Ayala (1973), we hypothesize that the hormonal changes 

influenced by a blood meal intake trigger the sexual cycle of the gregarine. 

There are several features suggesting close relationship between Ps. sergenti and 

its sand fly host and supporting the hypothesis about co-evolution of gregarines and 

sand flies as mentioned by Ostrovska et al. (1990). (1) The attachment of the oocysts to 

the exochorion is possibly closely related to the exochorion formation, facilitating the 
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vertical transmission of the parasite. (2) The gregarine is protected from the expulsion 

from the larval intestine during pre-pupal defecation by being located in the 

ectoperitrophic space. This helps the parasite to sustain a certain level of infection 

during pupation, which was shown to be the most critical for the survivorship of the 

gregarines (see below). (3) The injection of the oocysts into the accessory gland lumen, 

facilitated by the host immune response (Warburg and Ostrovska 1989), is a unique 

mode of vertical transmission. (4) The most remarkable feature is the fact that 

Ps. sergenti does not develop sexually in males or unfed females, which is 

advantageous for the gregarines, as they only invest energy into the sexual development 

where the vertical transmission is expected – in blood-fed females.  

 

The close relationship of Ps. sergenti and Ph. sergenti raises the question, 

whether or not this parasite has negative impact on its host. In our studies, Ps. sergenti 

infection negatively affects the survival of immature sand fly stages, as fewer adults 

emerged from the infected eggs than from the control ones. This effect was even more 

pronounced under stressful conditions provided by rearing the infected larvae in higher 

density. In mosquitoes, the higher larval mortality due to the infection with 

Ascogregarina species has been recorded by Barrett (1968), Sulaiman (1992) or 

Comiskey et al. (1999a), and is probably caused by the intracellular development of 

ascogregarines in the larval intestine, which damages the midgut cells (Kramar 1952; 

Sanders and Poinar 1973). On the other hand, Ps. sergenti intracellular stages have not 

been recorded. Therefore, the main cause of the higher mortality of pre-imaginal sand 

flies could be competition for nutrients and energy between the parasite and its host.  

Psychodiella sergenti significantly decreases the survival of infected males and 

females without a blood meal, while the mortality of blood-fed females is not affected. 

This may indicate that more nutritious diet (blood meal) enables the infected females to 

overcome the negative effect of the parasite. It is also advantageous for the gregarine, 

because blood-fed females are the only stages where Ps. sergenti develops sexually. 

Interestingly, unfed females started to die later than males, which gives the gregarine 

another advantage: the longer the female lives, the higher chance of a blood meal 

followed by egg production and transmission. The zero effect on blood-fed females is 

not only on the mortality, but also on their fecundity; the infection did not affect the 

number of ovipositing females or the number of oviposited eggs. Our results are in 
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accordance with Wu and Tesh (1989), who showed that Ps. chagasi negatively affects 

adult sand fly mortality, but not fecundity of L. longipalpis females. 

In the 4th instar larvae, a ten-time higher infection dose led to roughly 10 times 

more gamonts, while in adults, the intensity of infection achieved by higher infection 

dose was only two or three times higher. This decrease in the number of gregarines in 

adult sand flies suggests that the pupal stage is the most critical period for the survival 

of Ps. sergenti. This is also supported by our host specificity infections of Ps. sergenti 

and Ps. tobbi, where the number of gregarines was much higher in the larvae than in the 

adults.  

Several authors have discussed the possibility of mosquito and sand fly 

gregarines being useful in biological control with contradictory conclusions; Barrett 

(1968) and Sulaiman (1992) consider these gregarines potentially useful, while Walker 

et al. (1987), Wu and Tesh (1989), Siegel et al. (1992) and Tseng (2007) do not. Our 

experiments showed that Ps. sergenti is harmful to its host Ph. sergenti, and the effects 

can be influenced by environmental factors. This is very important in laboratory 

colonies, where the infection intensity is usually much higher than in natural conditions, 

and it has been shown that laboratory-reared colonies can be seriously damaged by the 

gregarines. However, the potential of Psychodiella gregarines for use in biological 

control is limited by their strict host specificity and the lack of knowledge about sand 

fly breeding sites (Feliciangeli 2004). 

 

Infection with gregarines activates hemocyte-mediated immune response of sand 

flies (Warburg and Ostrovska 1989). An interesting subject for further research could be 

the humoral response of sand flies to Psychodiella infection. Insect defensins, members 

of a large group of antimicrobial peptides (AMP), are mainly active against Gram-

positive bacteria (reviewed by Hetru et al. 1998); however, Boulanger et al. (2004) 

identified a new defensin expressed by L. major-challenged Phlebotomus duboscqi, 

whose recombinant form has antiparasitic activity against this parasite. It would be 

interesting to study the effect of Psychodiella infection on the defensin expression in 

sand flies, and because co-infections of sand flies with Psychodiella and Leishmania are 

possible, it would also be interesting to evaluate the effect of Psychodiella on the vector 

competence of sand flies for Leishmania.  

Furthermore, the lack of molecular phylogenetic studies calls for sequencing 

various genes of more Ascogregarina and Psychodiella species. There is clearly a 
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hidden biodiversity among sand fly gregarines and more species are expected to be 

described from different sand flies in the future. For example, we recently sequenced 

gene for SSU rRNA of a gregarine found in Sergentomyia christophersoni, and 

according to the sequence, it is different from Ps. chagasi, Ps. sergenti or Ps. tobbi. 
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