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Abstrakt: Pedkldan disertan prce studuje binrn operaci, kter byla zskna abstrakc vlast-
nost mnoinov symetrick diference. Pidnm tto operace k teorii ortokomplementrnch svaz
byla zskna nov tda algeber, takzvan ortokomplementrn diferenn svazy (znaen ODL). Ne-
jdve je ukzno, e tda ODL obsahuje Booleovy algebry a je obsaena v td ortomodulrnch
svaz. Dle byly studovny rozlin algebraick vlastnosti tdy ODL (identity platn v nkterch
podtdch tdy ODL, zvltnosti volnch ODL, atd.) a byla nalezena charakterizace mnoinov-
reprezentovatelnch ODL. V dalm textu je poloena pirozen otzka, kdy lze dan ortomodulrn
svaz vnoit nebo rozit do ODLu. Je ukzna metoda konstrukce specifickch typ ODL, kter
prohlubuje chpn vnitnch vlastnost tchto algeber (nap. monost jejich zskn ze systmu po-
dalgeber Booleovy algebry). Dle je ukzna ponkud pekvapiv souvislost mezi tdou ODL
a Z2-hodnotovmi mrami. V zvru prce je uinno zobecnn - msto svaz se uvauj ortokom-
plementrn diferenn posety. V tto sti jsou formulovny a rozebrny nkter otzky souvisejc s
nesvazovmi kvantovmi logikami.
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measures. In the end we relax the lattice condition imposed on ODLs. We obtain ortho-
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The summary of the PhD thesis

Important questions related to the study of multivalued logics are problems that come
into existence in connection with the “logic” of quantum mechanical experiments. In
1936, G. Birkhoff and J. von Neumann postulated that a suitable semantics for such a
logic are modular lattices. Later on K. Husimi, 1937, suggested that a more appropriate
semantics is the class of orthomodular lattices. On these lattices one can contemplate
an analogy of classical logical connectives. For instance, J. Abbott, 1967, studied a
type of implication connective. An important connective, with a broader mathematical
bearing, is the “either..or” connective (also known as “alternative” or “exclusive or”).
The treatment of this connective could be done either by considering an appropriate term
in orthomodular lattices or by adding a new operation symbol as well as new axioms to
the theory of orthomodular lattices. The latter approach together with initially obtained
results is the contents of this thesis.

The connective “either..or” considered on Boolean algebras is expressed by means of
the symmetric difference. Thus, extracting properties of the Boolean symmetric difference,
we obtain a class of orthocomplemented lattices endowed with a “symmetric difference”.
This class has, as we believe, rather interesting properties in its own right. Besides, this
class seems to be worth investigating in view of its relation to orthomodular lattices and
Boolean algebras. Considered purely algebraicly, a variety of algebras has therefore been
introduced that enriches the realm of orthomodular structures.

Let us come to the review of technical results. The thesis is based on the papers [1]
- [5] enclosed to which we shall refer in the sequel (they are also listed at the end of this
summary).

Let L be a 7-tuple, L = (X,∧,∨,⊥ , 0, 1,△), where (X,∧,∨,⊥ , 0, 1) is an orthocom-
plemented lattice and △ : X2 → X is a binary operation. Then L is said to be an
orthocomplemented difference lattice (an ODL, [1], Def. 3.1), if L is subject to the follow-
ing requirements:
(ODL1) x △ (y △ z) = (x △ y) △ z,
(ODL2) x △ 1 = x⊥, 1 △ x = x⊥,
(ODL3) x △ y ≤ x ∨ y.

Obviously, the notion of ODL generalizes the notion of Boolen algebra, when △ gen-
eralizes the notion of symmetric difference. The initial questions we first have to ask (and
answer) are the characterization of Boolean algebras among ODLs and the description of
the compatibility. This is done in [1], Prop. 3.6. Then we prove an important result that
an ODL is always orthomodular, i.e. if L is an ODL and if we forget the operation △,
we obtain an orthomodular lattice (an OML). It is worth noting already now that not all
OMLs are induced by ODLs in this way - a question that deserves attention and will be
discussed later in the thesis.

Analysing further intrinsic properties of ODLs, a natural question occurs of whether
(when) an ODL allows for a set representation. Main results of [1] provide the answer:
Not all ODLs are set-representable. In fact, it can be proved that every Boolean algebra
can be embedded in an ODL that is not set-representable ([1] Thm. 1.18). In the study
of the set-representable ODLs, however, it is proved that they constitute a rather huge
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class - they form a variety ([1], Thm. 6.12). A characterization of this vatiety in terms
of two-valued ODL-states is provided ([1], Thm. 6.7). To obtain this characterization, a
thorough analysis of ODL-ideals is presented ([1], Thm. 6.10).

As indicated above, the other papers further pursue the relationship of OMLs and
ODLs. One asks the following question: Given an OML, can it always be made an
ODL ? Though sometimes it is the case (e.g. for L(R2) or for MOk with k = 2n−1, [1],
Thm. 8.7), it is not so in general (e.g. for MOk with k 6= 2n−1, [1], Thm. 8.7). A
more combinatorially involved question then reads: Which OML is ODL-embeddable ?
It would be instrumental for the study of OMLs if such was every OML. However, it is
not the case - in the paper [2] a construction is exhibited which produces OMLs that
are not ODL-embeddable. When analysed more in depth, a rather surprising necessary
condition for the embedding to exist can be derived: If an OML is ODL-embeddable then
it has to have an abundance of Z2-valued measures ([2], Thm. 3.2). This result allows
us to see that some OMLs familiar within the theory of orthomodular lattices cannot be
ODL-embeddable. A finite example of this kind is exhibited bellow (a prerequisity here
is the Greechie paste job; out of the other important examples of non ODL-embeddable
OMLs, such are L(Rn) for n ≥ 4 as the result of [2], Thm. 3.8 establishes).
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The paper [3] and [4] iniciate the investigation of ODLs along the universal algebraic
line. The first result of [3] characterizes the free ODL with 2 generators - it is the (set-
representable) ODL MO3 × 24 ([3], Thm. 2.3). The characterization of the free ODL
with 3 generators remains open - so far it can only be proved that this ODL is not set-
representable. In fact, a rather involved construction is presented in ([3], Thm. 3.11) that
manufactures a non set-representable ODL with 3 generators. Here we may deal with
a formidable problem as the comparison with OMLs suggests. As regards the note [4],
it concerns identities in ODLs. It is shown that relatively simple identities distinguish
Boolean algebras among ODLs ([4], Thm. 2.2). In addition, an identity in ODLs is found
that is valid only in the set-representable ODLs ([4], Thm. 2.6). This identity could be
potentially utilized in constructing ODLs with preassigned properties (e.g. there is a non
set-representable ODL that induces a set-representable non-modular OML ([4], Obs. 2.9).

In the last paper included, [5], the condition (ODL3) of L being a lattice is relaxed -
instead we require
(ODP3) x ≤ z & y ≤ z ⇒ x △ y ≤ z,
the other two axioms we leave unchanged. We obtain orthocomplemented posets with a
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symmetric difference (ODPs). Out of the results obtained, let us mention only a few. The
class of set-representable ODPs forms a quasivariety ([5], Thm. 5.4). It should be observed
that this quasivariety is rather big and contains several (non-lattice) examples familiar
within the quantum logic theory - notably it contains the standard examples built up on
the ODPs of all even-cardinality subsets of an even-cardinality set. Furthermore, different
construction techniques of ODPs are obtained ([5], Prop. 4.13). Finally, a modification
of Frink ideals is then adopted that allows one to show that a pseudocomplemented ODP
must be set-representable ([5], Thm. 6.8).

The results of the thesis appeared very recently (see the references bellow). They
therefore present a topical line in lattice theory and constitute a research area lying
between the theory of orthomodular lattices and Boolean algebras. The solutions of open
questions related to this research area (see again [1] - [5] for some of these open questions)
are supposed to indicate further prospects and applications of the affort iniciated in the
thesis.
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Orthocomplemented lattices with a symmetric difference

Milan Matoušek

Abstract. Modelling an abstract version of the set-theoretic operation of symmetric dif-

ference, we first introduce the class of orthocomplemented difference lattices (ODL). We

then exhibit examples of ODLs and investigate their basic properties finding, for instance,

that any ODL induces an orthomodular lattice (OML) but not all OMLs can be converted

to ODLs. We then analyse an appropriate version of ideals and valuations in ODLs and

show that the set-representable ODLs form a variety. We finally investigate the question of

constructing ODLs from Boolean algebras and obtain, as a by-product, examples of ODLs

that are not set-representable but that “live” on set-representable OMLs.

1. Introduction and basic notions

The class of orthocomplemented lattices (OCLs) was intensely studied in recent

years. The investigation was often motivated by the theory of quantum logic (see,

e.g., [8, 15, 22, 24, 25]). The algebraic theory of OCLs was carried out in several

papers and monographs (see, e.g., [1, 2, 3, 4, 5, 16]). In this paper we shall study

orthocomplemented lattices endowed with an abstract symmetric difference, ob-

taining thus a natural class of algebras that properly contains the class of Boolean

algebras. It should be noted that certain attempts to model the symmetric differ-

ence have been made (see [10, 9, 23]). However, in contrast to the previously used

attitude based on term operations within OMLs, our approach presents an alge-

braic abstraction of the symmetric difference of sets and gives rise to a completely

new variety of algebras. This variety (denoted by ODL) has rather interesting

properties in its own right as well as in relation to the formerly studied variety of

OMLs.

In the present paper we first study algebraic properties of ODLs. Then we focus

on the question of when an ODL is set-representable. We find that such are many

ODLs—a large subvariety of ODL—but not all. In fact, an ODL may induce a

set-representable OML without being itself set-representable. Related questions

are also investigated.
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Let us introduce some notation and notions as we shall use them in the sequel.

The logical connectives will be denoted by standard symbols: & (conjunction),

∨ (disjunction), ⇒ (implication) and ⇔ (equivalence). Identities will be denoted

by s ≈ t, where s, t are terms. If X,Y are classes, the expression X ⊂ Y will

mean X ⊆ Y & X 6= Y . If f : X → Y is a mapping, S ⊆ X, then we write

f [S] = {f(x); x ∈ S}. The cardinality of a set X will be denoted by |X|.

Let A be a structure of the type L (see [6, p. 192]). Then its underlying set will

be denoted by Ȧ. If there is no danger of confusion, we simply write x ∈ A, resp.

X ⊆ A instead of the more correct x ∈ Ȧ, resp. X ⊆ Ȧ. Analogously, we shall write

|A| instead of |Ȧ|. A structure A will be called trivial provided |A| = 1, and A will

be called nontrivial if |A| ≥ 2. If F ∈ L is an operation symbol, we shall denote

the corresponding n-ary operation by FA if there is a need for specification. By

Sub(A) we shall denote the set of all substructures of A. If A, B are two isomorphic

structures of the same type, we shall write A ∼= B. The notation f : A ∼= B will

mean that f is an isomorphism of the structure A onto B.

Let us recall some standard notions of the theory of orthocomplemented lattices.

The reader may consult the monographs [1] and [16] for more details.

Definition 1.1. Let L = (X,∧,∨,⊥,0,1) be an algebra of the type (2, 2, 1, 0, 0).

Then L is said to be an orthocomplemented lattice (abbr., an OCL) if (X,∧,∨) is a

lattice and if the following formulas hold in L:

x ∧ x⊥ ≈ 0, x ∨ x⊥ ≈ 1, (x⊥)⊥ ≈ x, x ≤ y ⇒ y⊥ ≤ x⊥.

If, moreover, L satisfies the orthomodular law,

x ≤ y ⇒ y ≈ x ∨ (y ∧ x⊥),

then L is called an orthomodular lattice (abbr., an OML).

Let us denote by OCL, resp. OML, resp. BA, the variety of orthocomplemented

lattices, resp. orthomodular lattices, resp. Boolean algebras. Of course, BA ⊂

OML ⊂ OCL.

It should be noted that instead of “orthocomplemented lattice” one often uses

the term ortholattice.

Proposition 1.2. Let L be an OCL. Then L is an OML if and only if the following

formula holds in L: x ≤ y & y ∧ x⊥ ≈ 0 ⇒ x ≈ y.

Proof. It reduces to a routine verification (see, e.g., [16, p. 22]). ¤

Definition 1.3. Let L be an OML. For x, y ∈ L, let com(x, y) denote the commu-

tator of x, y, i.e., let us write com(x, y) = (x∨ y)∧ (x∨ y⊥)∧ (x⊥ ∨ y)∧ (x⊥ ∨ y⊥).

The elements x, y of L are called commutative (abbr., x C y, or more specifically
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x CL y) if com(x, y) = 0. If x C y is false, we say that the elements x, y are not

commutative and we shall write x | y (or, more specifically, x |L y).

For any x ∈ L, let us write C(x) = {a ∈ L; x C a}.

Proposition 1.4. Let L be an OML and let x, y ∈ L. Then the following conditions

are equivalent:

(a) x C y,

(b) x = (x ∧ y) ∨ (x ∧ y⊥),

(c) x = (x ∨ y) ∧ (x ∨ y⊥),

(d) x, y are contained in a Boolean subalgebra of L.

Proof. See, e.g., [16, p. 26]. ¤

Proposition 1.5. Let L be an OML and let x ∈ L. Then the set C(x) is a

subalgebra in L. Moreover, if y ∈ L and the elements x, y are comparable (i.e.,

x ≤ y or y ≤ x), then y ∈ C(x).

Proof. See, e.g., [16, p. 24]. ¤

Definition 1.6. Let L be an OML. A maximal Boolean subalgebra of L is called

a block of L. The collection of all blocks of L will be denoted by Bl(L). The set

C(L) =
⋂

B∈Bl(L) B is called the centre of L and the elements of C(L) are called

central.

Proposition 1.7. Let L be an OML. Let M be such a subset of L that x C y for

any x, y ∈ M . Then there exists a block, B, in Bl(L) such that M ⊆ B.

Proof. See, e.g., [16, p. 38]. ¤

Convention 1.8. Let κ ≥ 0 be a cardinal. Let us denote by B(κ) the Boolean

algebra of all finite and co-finite subsets of κ. Thus, if κ is finite, then |B(κ)| = 2κ,

and if κ is infinite, then |B(κ)| = κ.

2. Difference algebras

In this section we introduce auxiliary algebras and list their basic properties.

They will be used later.

Definition 2.1. Let D = (X, ⋄,0,1) be an algebra of the type (2, 0, 0). Then D is

said to be a difference algebra (abbr., a DA) if the following formulas hold in D:

(d1) x ⋄ (y ⋄ z) ≈ (x ⋄ y) ⋄ z,

(d2) x ⋄ 0 ≈ x,

(d3) x ⋄ x ≈ 0,

(d4) (∃x : x 6≈ 0) ⇒ 1 6≈ 0.
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Let us observe that the difference algebra D = (X, ⋄,0,1) is nontrivial if and

only if 1 6= 0. This follows immediately from (d4).

Proposition 2.2. Let D = (X, ⋄,0,1) be a DA. Then the operation ⋄ is commu-

tative.

Proof. Let us first prove that 0 ⋄ x = x for any x ∈ X . We see that

0 ⋄ x = (x ⋄ x) ⋄ x = x ⋄ (x ⋄ x) = x ⋄ 0 = x.

Now, we have

x ⋄ y = (x ⋄ y) ⋄ 0 = (x ⋄ y) ⋄ [(y ⋄ x) ⋄ (y ⋄ x)] = x ⋄ y ⋄ y ⋄ x ⋄ (y ⋄ x)

= x ⋄ 0 ⋄ x ⋄ (y ⋄ x) = x ⋄ x ⋄ (y ⋄ x) = 0 ⋄ (y ⋄ x) = y ⋄ x. ¤

Proposition 2.3. Let D be a finite DA. Then |D| = 2n, where n ≥ 0 is a natural

number.

Proof. Let us introduce the operation − : X → X by putting −x = x. Then we

infer that the algebra G = (X, ⋄,−,0) is a group such that each element of G has

order 2. Thus G is a 2-group and the number of elements of G must be a natural

power of 2 (see, e.g., [17]). ¤

It should be noted that the notion of a difference algebra is synonymous with

the notion of a 2-group, together with a distinguished element 1 (not the identity,

in the nontrivial case). If DAs are viewed as 2-groups, many of the proofs in this

section can be viewed as exercises in groups. If D = (X, ⋄,0,1) is a DA, then, for

each x ∈ D with x 6= 0,1, the algebra Dx = (X, ⋄,0, x) is also a DA. Moreover, it

is isomorphic to D (Proposition 7.7).

Example 2.4. Let B be a Boolean algebra and let x, y ∈ B. Let x ∆B y be the

standard symmetric difference of x and y. Thus, x ∆B y = (x ∧ y⊥) ∨ (y ∧ x⊥) =

(x ∨ y) ∧ (x ∧ y)⊥. Then DB = (Ḃ,∆B ,0B ,1B) is a DA.

As we shall see later, all difference algebras can be obtained in this way (see

Proposition 7.8).

Prior to the next proposition, let us make the following convention: If D is a

difference algebra, x ∈ D, then write x⊥ = x ⋄ 1.

Proposition 2.5. Let D be a DA. Then for any x, y, z ∈ D the following statements

hold true:

(a) 0⊥ = 1, 1⊥ = 0,

(b) x⊥⊥ = x,

(c) x⊥ = y⊥ ⇒ x = y,

(d) x ⋄ y⊥ = x⊥ ⋄ y = (x ⋄ y)⊥,
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(e) x⊥ ⋄ y⊥ = x ⋄ y,

(f) x ⋄ x⊥ = 1,

(g) x ⋄ y = z ⇔ x ⋄ z = y ⇔ x ⋄ y⊥ = z⊥,

(h) x ⋄ y = x ⋄ z ⇒ y = z,

(i) x ⋄ y = 0 ⇔ x = y,

(j) x ⋄ y = 1 ⇔ x = y⊥.

Proof. (a): 0⊥ = 0 ⋄ 1 = 1, 1⊥ = 1 ⋄ 1 = 0.

(b): x⊥⊥ = (x ⋄ 1) ⋄ 1 = x ⋄ (1 ⋄ 1) = x ⋄ 0 = x.

(c): It follows from (b).

(d): x ⋄ y⊥ = x ⋄ (y ⋄ 1) = (x ⋄ y) ⋄ 1 = (x ⋄ y)⊥.

(e): Using (d) we obtain x⊥ ⋄ y⊥ = (x⊥ ⋄ y)⊥ = (x ⋄ y)⊥⊥ = x ⋄ y.

(f): x ⋄ x⊥ = (x ⋄ x)⊥ = 0⊥ = 1.

(g): Let x ⋄ y = z. Then x ⋄ z = x ⋄ (x ⋄ y) = (x ⋄ x) ⋄ y = 0 ⋄ y = y. The reverse

implication can be proved analogously. The second equivalence follows from (d)

and (b).

(h): Suppose x ⋄ y = x ⋄ z. Then x ⋄ (x ⋄ y) = x ⋄ (x ⋄ z), and hence (x ⋄ x) ⋄ y =

(x ⋄ x) ⋄ z. It follows that 0 ⋄ y = 0 ⋄ z and therefore y = z.

(i): If x = y, then x ⋄ y = 0 by condition (d3). Conversely, suppose x ⋄ y = 0.

Then (x ⋄ y) ⋄ y = 0 ⋄ y. This means that x ⋄ (y ⋄ y) = y and therefore x = y.

(j): x ⋄ y = 1 ⇔ x ⋄ y⊥ = 0 ⇔ x = y⊥. ¤

Proposition 2.6. Let D be a nontrivial DA and let x ∈ D. Then x 6= x⊥.

Proof. Let x = x⊥. Then x⋄x = x⋄x⊥ and therefore 0 = 1, which we excluded. ¤

3. Orthocomplemented difference lattices

In this section we define the basic notion of this article—the notion of an ortho-

complemented difference lattice (ODL). We investigate basic properties of ODLs

and find their relationships to other orthocomplemented structures.

Definition 3.1. Let L = (X,∧,∨,⊥,0,1,△), where (X,∧,∨,⊥,0,1) is an OCL

and △ : X2 → X is a binary operation. Then L is said to be an orthocomplemented

difference lattice (abbr., an ODL) if the following formulas hold in L:

(D1) x △ (y △ z) ≈ (x △ y) △ z,

(D2) x △ 1 ≈ x⊥, 1 △ x ≈ x⊥,

(D3) x △ y ≤ x ∨ y.

Obviously, the class of all ODLs forms a variety. We will denote it by ODL.

Let L = (X,∧,∨,⊥,0,1,△) be an ODL. Then the OCL (X,∧,∨,⊥,0,1) will be

denoted by Lsupp and called the support of L. Occasionally, the ODL L will be

identified with the pair (Lsupp,△).
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Let us adopt the convention that in writing a formula with △, ∧, ∨ we will give

preference to the operation △ over the operations ∧ and ∨. Thus, for instance,

x ∧ y △ z means x ∧ (y △ z).

Proposition 3.2. Let L = (X,∧,∨,⊥,0,1,△) be an ODL. Then the algebra DL =

(X,△,0,1) is a difference algebra. Moreover, for any x ∈ L we have x⊥DL = x⊥L .

Proof. Let us first observe that the property (D2) yields 1 △ 1 = 1⊥ = 0. Let us

verify the properties (d2), (d3) and (d4) of Definition 2.1. Suppose that x ∈ L.

(d2): x △ 0 = x △ (1 △ 1) = (x △ 1) △ 1 = x⊥ △ 1 = (x⊥)⊥ = x.

(d3): Let us first show that x⊥△x⊥ = x△x. We consecutively obtain x⊥△x⊥ =

(x △ 1) △ (1△ x) = (x △ (1△ 1)) △ x = (x △ 0) △ x = x △ x. Moreover, we have

x △ x ≤ x ∨ x = x as well as x △ x = x⊥ △ x⊥ ≤ x⊥ ∨ x⊥ = x⊥. This implies that

x △ x ≤ x ∧ x⊥ = 0.

(d4): If there exists an element x ∈ L such that x 6= 0, then L is a nontrivial

OCL and therefore 1 6= 0.

As for the rest of the proof of Proposition 3.2, we have x⊥DL = x △DL
1 =

x △L 1 = x⊥L . ¤

Corollary 3.3. Let L be a finite ODL. Then |L| = 2n, where n is a natural number.

Proof. It follows from Propositions 3.2 and 2.3. ¤

Proposition 3.4. Let L be an ODL and let x, y ∈ L. Then

(x ∧ y⊥) ∨ (y ∧ x⊥) ≤ x △ y ≤ (x ∨ y) ∧ (x ∧ y)⊥.

Proof. The property (D3) together with the properties (d), (e) of Proposition 2.5

imply that x △ y ≤ x ∨ y, x △ y ≤ x⊥ ∨ y⊥ = (x ∧ y)⊥, x ∧ y⊥ ≤ x △ y and

x⊥ ∧ y ≤ x △ y. ¤

The following result shows that we do not leave the realm of orthomodular

lattices when we deal with ODLs.

Theorem 3.5. Let L be an ODL. Then its support Lsupp is an OML.

Proof. Suppose that x, y ∈ L, x ≤ y, y ∧ x⊥ = 0. Let us prove that x = y (see

Proposition 1.2). Since x ≤ y, we conclude that (x ∧ y⊥) ∨ (y ∧ x⊥) = y ∧ x⊥ = 0

and (x ∨ y) ∧ (x ∧ y)⊥ = y ∧ x⊥ = 0. By Proposition 3.4, we see that x △ y = 0.

By Proposition 2.5(i), we infer that x = y. ¤

Following our convention, all notions defined for OMLs or difference algebras

can be transferred to any ODL L by considering the support Lsupp or the difference
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algebra DL. Thus, for instance, if L is an ODL and x, y ∈ L then we say that the

elements x, y commute (in L) if they commute in the OML Lsupp.

Proposition 3.6. Let L be an ODL and let x, y ∈ L. Then the following conditions

are equivalent:

(a) x C y,

(b) x △ y = (x ∧ y⊥) ∨ (y ∧ x⊥),

(c) x △ y = (x ∨ y) ∧ (x ∧ y)⊥,

(d) x C (x △ y).

Proof. Let us first prove that (a) ⇒ (b) and (a) ⇒ (c). Suppose therefore that

x C y. Then (x ∧ y⊥) ∨ (y ∧ x⊥) = (x ∨ y) ∧ (x ∧ y)⊥, and the equalities x △ y =

(x ∧ y⊥) ∨ (y ∧ x⊥) = (x ∨ y) ∧ (x ∧ y)⊥ follow from Proposition 3.4.

Further, let us prove that (b) ⇒ (d) and (c) ⇒ (d). For example, let x △ y =

(x ∧ y⊥) ∨ (y ∧ x⊥). As x C x ∧ y⊥, x C y ∧ x⊥, we have x C ((x ∧ y⊥) ∨ (y ∧ x⊥))

and therefore x C (x △ y).

Finally, let us prove that (d) ⇒ (a). Let x C (x △ y). From the implication

(a) ⇒ (d) we have x C (x △ (x △ y)) but x △ (x △ y) = y. ¤

Let us exhibit some simple examples of ODLs. Firstly, each Boolean algebra can

be made into an ODL as the following proposition shows.

Proposition 3.7. Let B be a BA. There is exactly one mapping △ : Ḃ × Ḃ → Ḃ

which fulfils all the conditions (D1), (D2) and (D3) of Definition 3.1.

Proof. To prove the existence, take for △ the standard symmetric difference in

Boolean algebras. In other words, let us set x △ y = (x ∧ y⊥) ∨ (y ∧ x⊥). The

properties (D1), (D2) and (D3) of Definition 3.1 are then obviously fulfilled.

Let us prove the uniqueness of △. Let △1 : Ḃ× Ḃ → Ḃ be a mapping that fulfils

conditions (D1), (D2) and (D3). Thus, the pair (B,△1) is an ODL. If x, y ∈ B,

then x C y, and so x △1 y = (x ∧ y⊥) ∨ (y ∧ x⊥) = x △ y (Proposition 3.6). ¤

In view of Proposition 3.7 we can (and shall) view any Boolean algebra as an

ODL with uniquely defined operation △.

Example 3.8. Let L be the OML MO3 (see, e.g., [16]) with the elements {0, 1, x,

x⊥, y, y⊥, z, z⊥}. Then one can easily show that there is exactly one mapping

△ : L̇ × L̇ → L̇ such that x △ y = z and (L,△) is an ODL. The ODL obtained in

this way will again be denoted by MO3.
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There are much more involved examples of ODLs than those depicted in Propo-

sition 3.7 and Example 3.8, of course. We will meet them later. For the reader’s

intuition, Construction 8.5 dealt with at the end of the paper—a kind of horizontal

sum—provides a large class of ODLs and gives some more idea about their intrinsic

properties (see also Proposition 8.7). The construction is independent of the other

text and can be read now, but Section 8 also brings certain applications.

Let us shortly consider the independence of the conditions required for the op-

eration △ to define an ODL (Definition 3.1). First, let us recall some notions from

model theory. If ϕ is a (first-order) formula, let us denote by Lng(ϕ) (language of

ϕ) the set of all relational and operational symbols which occur in the formula ϕ.

If S is a set of (first-order) formulas, let us put Lng(S) =
⋃

ϕ∈S Lng(ϕ).

Let T be a (first-order) theory and let S be a set of formulas. Let us write

L = Lng(T ∪ S). Then the set S is called independent relative to the theory T

(abbr., T -independent) if, for any formula ϕ ∈ S, there is a structure A of L such

that A |= T ∪ (S \ {ϕ}) but A 6|= ϕ. Obviously, if T1 ⊆ T2 and S is T2-independent,

then S is T1-independent as well.

Let BA be the theory of Boolean algebras (BA is a theory of the language

{∧,∨,⊥,0, 1}, thus the symbol △ does not occur in the language of BA). As usual,

the formula s ≤ t is an abbreviation of the formula s ∧ t ≈ s.

Proposition 3.9. Suppose that

S = {x △ (y △ z) ≈ (x △ y) △ z, x △ 1 ≈ x⊥, 1 △ x ≈ x⊥, x △ y ≤ x ∨ y}.

Then S is BA-independent.

Proof. Let us first deal with the formula 1 △ x ≈ x⊥. Let B = {0,1, a, a⊥} be a

four-element Boolean algebra. Let △ : B2 → B be the mapping defined as follows:

0 a a⊥ 1

0 0 a a⊥ 1

a a a a⊥ a⊥

a⊥ a⊥ a a⊥ a

1 1 a a⊥ 0

In particular, a △ 1 = a⊥ and 1 △ a = a. Let us denote by A the algebra (B,△).

Then A is of type {∧,∨,⊥,0,1,△} and, moreover, A |= BA. Further, because

1 △ a = a 6= a⊥, we see that A 6|= 1 △ x ≈ x⊥. It remains to prove that all

the formulas x △ (y △ z) ≈ (x △ y) △ z, x △ 1 ≈ x⊥, x △ y ≤ x ∨ y hold in A.

Let x, y, z ∈ A be arbitrary elements. The validity of the conditions x △ 1 = x⊥,

x△ y ≤ x∨ y is immediately seen from the table that defines the operation △. We

have to check the associativity of △. Let us distinguish three possibilities.

• If z = 0, then the equality follows from the neutrality of 0 with respect to △.



Vol. 60, 2009 Orthocomplemented difference lattices 193

• If z = a or z = a⊥, then the equality follows from the “right aggressiveness”

of the elements a, a⊥.

• Finally, let z = 1. Then x△ (y△ z) = x△ (y△1) = x△ y⊥ and (x△ y)△ z =

(x△ y)△1 = (x△ y)⊥. It remains to be checked that x△ y⊥ = (x△ y)⊥, but

it can be easily seen from the table.

As a result, the formula 1 △ x ≈ x⊥ is “independent” of the other formulas.

The “independence” of the formula x△1 ≈ x⊥ can be derived by considering the

dually defined operation △. Finally, the “independence” of formulas x△ (y △ z) ≈

(x △ y) △ z and x △ y ≤ x ∨ y is obvious. ¤

4. Symmetric difference and OML-term operations

Let us show that, for an ODL L and for a, b ∈ L, the element a△b is generally not

expressible by means of elements a, b and the operations ∧,∨,⊥,0,1. This implies

that the present approach essentially differs from the attempts made in [10, 9, 23].

Recall that the term t is called an OML-term if t contains only operation symbols

from the set {∧,∨,⊥,0,1}.

Proposition 4.1. Let L be an ODL and let a, b ∈ L. Then there is an OML-term

t(x, y) such that a △ b = tL(a, b) if and only if a CL b.

Proof. If a CL b, then by Proposition 3.6 we can take t(x, y) = (x∧ y⊥)∨ (y ∧ x⊥).

Conversely, assume that a△ b = tL(a, b) for some OML-term t(x, y). Let F2 be the

free OML over the set {x, y}. We can assume that t(x, y) ∈ F2. Let f : F2 → Lsupp

be the uniquely determined homomorphism such that f(x) = a, f(y) = b. Then

f(t(x, y)) = tLsupp
(f(x), f(y)) = tL(a, b) = a △ b. Since F2

∼= B(4) × MO2 (see

[1, p. 80]), F2 possesses exactly two blocks, say B1 and B2. Since x |F2
y, we

can assume that x ∈ B1, y ∈ B2. Now, if, e.g., t(x, y) ∈ B1, then x CF2
t(x, y).

But then f(x) CL f(t(x, y)), i.e., a CL (a △ b). By Proposition 3.6 we see that

a CL b. ¤

Making use of Proposition 4.1 we are in a position to prove the following char-

acterization of Boolean algebras in the classes ODL and OML.

Proposition 4.2. Let L be an ODL. Then there is an OML-term t such that

a △ b = tL(a, b) for any a, b ∈ L exactly when L is a Boolean algebra.

Proof. If L is a Boolean algebra, then x △ y = (x ∧ y⊥) ∨ (y ∧ x⊥). Conversely,

suppose that there is an OML-term t such that a △ b = tL(a, b) for any a, b ∈ L.

Then, according to Proposition 4.1, a CL b holds for any a, b ∈ L. Hence L is a

Boolean algebra. ¤
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Proposition 4.3. Let L be an OML. For x, y ∈ L, set x∆1 y = (x∧y⊥)∨ (y∧x⊥)

and x ∆2 y = (x ∨ y) ∧ (x ∧ y)⊥. Then, for each i ∈ {1, 2}, the operation ∆i is

associative exactly when L is a Boolean algebra.

Proof. If L is a Boolean algebra, then both ∆1, ∆2 are obviously associative. Con-

versely, suppose that ∆1 is associative. This means that ∆1 fulfils the condition

(D1). The conditions (D2) and (D3) are fulfilled automatically. Hence the pair

(L,∆1) is an ODL. As a consequence, x C y for any x, y ∈ L (Proposition 4.1).

This shows that L is a BA. The associativity of ∆2 is argued similarly. ¤

It should be noted that Proposition 4.3 can be proved directly without using the

notion of ODL, see, e.g., [1, p. 272], [9] or [23].

5. Intrinsic properties of ODLs

Let us go on with the analysis of the algebraic properties of the operation △.

We shall be mainly interested in the commutativity relation in ODLs.

Proposition 5.1. Let L be an ODL and let x, y ∈ L. Then the following two

statements hold true:

x ≤ y ⇔ x △ y = y ∧ x⊥, x ⊥ y ⇔ x △ y = x ∨ y

(where x ⊥ y stands for x ≤ y⊥).

Proof. Suppose first that x ≤ y. Then x C y and x ∧ y⊥ = 0. As a consequence

(Proposition 3.6), x △ y = (x ∧ y⊥) ∨ (y ∧ x⊥) = y ∧ x⊥. Conversely, suppose that

x △ y = y ∧ x⊥. Then

x = x △ 0 = x △ (y △ y) = (x △ y) △ y ≤ (x △ y) ∨ y = (y ∧ x⊥) ∨ y = y.

Let us take up the second equivalence. Using the equalities (x△y⊥)⊥ = x△y⊥⊥ =

x △ y, we have

x ⊥ y ⇔ x ≤ y⊥ ⇔ x △ y⊥ = y⊥ ∧ x⊥ ⇔ (x △ y⊥)⊥ = (y⊥ ∧ x⊥)⊥

⇔ x △ y = y ∨ x. ¤

Lemma 5.2. Let L be an OML. Let x, y, x1, x2 ∈ L and let y = x1 ∨ x2, x1 ≤ x,

x2 ≤ x⊥. Then x C y and x1 = y ∧ x, x2 = y ∧ x⊥.

Proof. Since x1 ≤ x and x2 ≤ x⊥, we see that x1 ≤ x ≤ x⊥
2 . Thus, the elements

x1, x2, x are mutually commutative. By Proposition 1.7 we infer that x C (x1 ∨x2)

and therefore x C y. Moreover,

y ∧ x = (x1 ∨ x2) ∧ x = (x1 ∧ x) ∨ (x2 ∧ x) = x1 ∨ 0 = x1, and

y ∧ x⊥ = (x1 ∨ x2) ∧ x⊥ = (x1 ∧ x⊥) ∨ (x2 ∧ x⊥) = 0 ∨ x2 = x2. ¤
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Proposition 5.3. Let L be an ODL. Let x, y, z ∈ L with x C y and x C z. Then

x C (y △ z) and x ∧ (y △ z) = (x ∧ y) △ (x ∧ z).

Proof. The commutativity of the pair x C y and x C z yields the equations

y = (y ∧ x) ∨ (y ∧ x⊥) and z = (z ∧ x) ∨ (z ∧ x⊥).

Since (y ∧ x) ⊥ (y ∧ x⊥) and (z ∧ x) ⊥ (z ∧ x⊥), we see by Proposition 5.1 that

y = (y ∧ x) △ (y ∧ x⊥) and z = (z ∧ x) △ (z ∧ x⊥). But we also have

y △ z = [(y ∧ x) △ (y ∧ x⊥)] △ [(z ∧ x) △ (z ∧ x⊥)]

= [(y ∧ x) △ (z ∧ x)] △ [(y ∧ x⊥) △ (z ∧ x⊥)].

Let us write x1 = (y ∧ x) △ (z ∧ x) and x2 = (y ∧ x⊥) △ (z ∧ x⊥). Then we have

x1 ≤ (y ∧ x) ∨ (z ∧ x) ≤ x. Analogously, x2 ≤ x⊥. This implies that x1 ⊥ x2.

By Proposition 5.1, y △ z = x1 ∨ x2. Finally, the proof is completed by using

Lemma 5.2. ¤

Proposition 5.4. Let L be an ODL and let x ∈ L. Then the set C(x) (see

Definition 1.3) is a subalgebra of L.

Proof. According to Proposition 1.5, the set C(x) is a subalgebra of Lsupp. The

closedness of the operation △ on C(x) follows from Proposition 5.3. ¤

Proposition 5.5. Let L be an ODL and let x, y ∈ L. Then

(a) x ∨ (x △ y) = x ∨ y,

(b) x ∧ (x △ y) = x ∧ y⊥.

Proof. Recall the convention of the preference of △ over the operations ∧ and ∨

(thus, for instance, x ∨ y △ z means x ∨ (y △ z)).

(a): The inequality x ∨ x △ y ≤ x ∨ y is obvious. We have to show that x ∨ y ≤

x∨x△y. But x ≤ x∨x△y and therefore we need to show y ≤ x∨x△y. According

to (D3), we have x ∨ x △ y ≥ x △ (x △ y) = y.

(b): The equality follows from (a) via the following calculation:

x ∧ x △ y = (x ∧ x △ y)⊥⊥ = (x⊥ ∨ x⊥ △ y)⊥ = (x⊥ ∨ y)⊥ = x ∧ y⊥. ¤

It is worthwhile observing that the equality (a) of Proposition 5.5 can be viewed

as a strengthening of the condition (D3) from the definition of ODLs.

Proposition 5.6. Let L be an ODL and let x ∈ L. Then either x lies in exactly

one block or x lies in at least three blocks.

Proof. Seeking a contradiction, let x lie in exactly two blocks B1 and B2. Then there

exist elements y ∈ B1, z ∈ B2 such that y, z do not commute. Since x C y, x C z,

we see that x C (y △ z) (Proposition 5.3). As a consequence, either y △ z ∈ B1

or y △ z ∈ B2. In view of the symmetry in the role of y, z, let us assume that
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y △ z ∈ B1. Since y ∈ B1, we infer that y C (y △ z). By Proposition 3.6, we see

that y C z, which is absurd. ¤

Let us take up the intervals in ODLs. Consider first the situation in OMLs.

Let K be an OML and let a ∈ K. Let us write [0, a]K = {x ∈ K; x ≤ a}. As

known, the interval [0, a] constitutes an OML. We will denote it by Ka. Let us

shortly recall the construction of Ka (see, for example, [16, p. 20]): If x, y ∈ [0, a],

then x ∧ y ∈ [0, a] and x ∨ y ∈ [0, a]. The element 0, resp. a, is the least, resp.

the greatest, element of Ka. The orthocomplement of x in Ka, x⊥a , is defined by

setting x⊥a = x⊥K ∧ a. It can be easily seen that Ka = ([0, a],∧,∨,⊥a ,0, a) is an

OML.

Now let L be an ODL and let a ∈ L. If x, y ∈ [0, a], then x △ y ∈ [0, a]. Let us

consider the algebra La = ([0, a],∧,∨,⊥a ,0, a,△) = ((Lsupp)a,△).

Proposition 5.7. Let L be an ODL and let a ∈ L. Then the algebra La is again

an ODL. Moreover, (La)supp = (Lsupp)a.

Proof. It is sufficient to show that the conditions (D1), (D2) and (D3) of Defini-

tion 3.1 hold in La. The conditions (D1) and (D3) can be verified easily. It remains

to check the condition (D2). For that, suppose x ∈ [0, a]. Then x△La 1La = x△a.

From Proposition 5.1 we obtain x△a = a∧x⊥ = x⊥a . The equality 1La△Lax = x⊥a

follows from the commutativity of △. The equality (La)supp = (Lsupp)a is then ob-

vious. ¤

In the following proposition we show that an ODL can be decomposed with the

help of a central element by the way analogous to the situation known in OMLs.

Proposition 5.8. Suppose that L is an ODL and a ∈ C(L). Then L ∼= La ×La⊥

.

More explicitly, the mapping h : L → La ×La⊥

defined by h(x) = (x∧ a, x∧ a⊥) is

an isomorphism of L onto La × La⊥

.

Proof. The mapping h is an isomorphism between the OMLs Lsupp and (La)supp ×

(La⊥

)supp, see [16, p. 20]. It remains to show that the mapping h preserves the

operation △. Suppose that x, y ∈ L. Then by Proposition 5.3 we consecutively

obtain

h(x △L y) = ((x △L y) ∧ a, (x △L y) ∧ a⊥)

= ((x ∧ a) △L (y ∧ a), (x ∧ a⊥) △L (y ∧ a⊥))

= ((x ∧ a) △La (y ∧ a), (x ∧ a⊥) △
La⊥ (y ∧ a⊥))

= (x ∧ a, x ∧ a⊥) △
La×La⊥ (y ∧ a, y ∧ a⊥) = h(x) △

La×La⊥ h(y). ¤
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6. Set-representable ODLs

A natural question occurs if (when) an ODL allows for a set representation. We

will see later that there are some ODLs which are not set-representable and we will

present a method how to construct them (Section 7). In this section, however, we

concentrate on those ODLs which are set-representable. We will show that these

ODLs form a variety and we will characterize this variety. Prior to that, let us

introduce a few notions of the theory of orthomodular lattices. As usual, if A,B

are sets, we write A \ B = {x ∈ A; x 6∈ B} and A ∆ B = (A \ B) ∪ (B \ A).

Definition 6.1. Let X be a set and let Ω ⊆ P(X), where P(X) stands for the set

of all subsets of X. Then the pair (X,Ω) is said to be a D-ring if

(1) X ∈ Ω,

(2) for any A,B ∈ Ω we have A ∆ B ∈ Ω.

Proposition 6.2. Let (X, Ω) be a D-ring. Then

(a) ∅ ∈ Ω,

(b) for any A ∈ Ω we have Ac ∈ Ω (where Ac is the complement of A in X,

Ac = X \ A),

(c) for any A,B ∈ Ω the following implication holds: if A∩B = ∅, then A∪B ∈ Ω.

Proof. A routine verification. ¤

Definition 6.3. Let L be an ODL. Let us say that L is a set-representable ODL

(abbr., SRODL) if there is a D-ring (X,Ω) such that (L̇,≤,0,1,△) is isomorphic

to (Ω,⊆, ∅, X,∆).

Let us denote by SRODL the class of all set-representable ODLs.

Proposition 6.4. Let L be an ODL. Then L is an SRODL if and only if there is

a set M and a mapping f : L̇ → P(M) such that the following two conditions hold

true for any x, y ∈ L:

x ≤ y ⇔ f(x) ⊆ f(y), f(x △L y) = f(x) ∆ f(y).

Proof. Let us prove that the conditions are sufficient; the rest is obvious. Set

X = f(1) ⊆ M , Ω = f [L̇] = {f(x); x ∈ L}. Then the second condition implies

that the pair (X,Ω) is a D-ring. Further, the first condition implies that f is an

isomorphism of the poset (L,≤) onto the poset (Ω,⊆). Finally, f(0) = f(0△L0) =

f(0) ∆ f(0) = ∅. ¤
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The class of SRODLs is considerably large and contains some rather complex as

well as some rather simple ODLs. The simplest ones are presented in the following

example.

Example 6.5. (a) Every Boolean algebra is an SRODL.

(b) The ODL MO3 (see Example 3.8) is an SRODL.

Proof. (a) This follows from the Stone representation of Boolean algebras.

(b) Let S = {0,1, x, x⊥, y, y⊥, z, z⊥} be the underlying set of MO3. Set M =

{1, 2, 3, 4}. Then the mapping f : S → P(M) defined by putting f(0) = ∅, f(1) =

M , f(x) = {1, 2}, f(x⊥) = {3, 4}, f(y) = {1, 3}, f(y⊥) = {2, 4}, f(z) = {2, 3},

f(z⊥) = {1, 4} has both properties of Proposition 6.4. (Let us note that f [S] =

{A ⊆ M ; |A| is an even number}.) ¤

In the rest of this section we shall be proving that the class SRODL is a vari-

ety. It should be noted that the central strategic line of the investigation of set-

representable OMLs as used in [11, 19, 20, 21] was instrumental in places. However,

the presence of the operation △ required to invent some new techniques. These

techniques—in particular those concerning the ODL evaluations—seem to be of

interest in their own right.

Let ⊕ stand for addition modulo 2 on the set {0, 1} (i.e., 0 ⊕ 0 = 1 ⊕ 1 = 0,

0 ⊕ 1 = 1 ⊕ 0 = 1). The following notion is crucial in characterizing SRODLs:

Definition 6.6. Let L be an ODL and let e : L → {0, 1}. Then e is said to be an

ODL-evaluation (abbr., evaluation) on L if the following properties are fulfilled for

any x, y ∈ L:

(E1) e(1L) = 1,

(E2) x ≤ y ⇒ e(x) ≤ e(y),

(E3) e(x △ y) = e(x) ⊕ e(y).

Let E(L) be the set of all evaluations on L.

The following result provides a characterization of SRODLs in terms of E(L).

Theorem 6.7. Let L be an ODL. Then L is an SRODL if and only if

∀a, b ∈ L, a 6≤ b ∃e ∈ E(L) : e(a) = 1, e(b) = 0.

Proof. (⇒): Suppose that (L̇,≤,0,1,△) = (Ω,⊆, ∅, X,∆), where (X,Ω) is a D-

ring.



Vol. 60, 2009 Orthocomplemented difference lattices 199

Choosing an x ∈ X, define a mapping ex : Ω → {0, 1} by

ex(A) =

{
1 if x ∈ A,

0 otherwise.

Let us check that the mapping ex is an evaluation on L. Obviously, ex(1L) =

ex(X) = 1. If A,B ∈ Ω and A ≤L B, then A ⊆ B, and therefore ex(A) ≤ ex(B).

That ex(A △ B) = ex(A) ⊕ ex(B) follows from a straightforward case analysis.

Finally, if A,B ∈ Ω and A 6⊆ B, then there exists an x ∈ A such that x 6∈ B.

Then ex(A) = 1 and ex(B) = 0.

(⇐): Let us assume that the condition on evaluations is fulfilled. For x ∈ L,

let us write f(x) = {e ∈ E(L); e(x) = 1}. We will check that this mapping

f : L → P(E(L)) fulfills both conditions of Proposition 6.4. First suppose that

x ≤ y. Let e ∈ f(x). Thus, e(x) = 1. According to (E2) we have e(x) ≤ e(y). As a

result, e(y) = 1 and hence e ∈ f(y). We have shown that f(x) ⊆ f(y). Conversely,

suppose that x 6≤ y. Then there is e ∈ E(L) such that e(x) = 1, e(y) = 0. We see

that f(x) 6⊆ f(y). To complete the proof, we use the equalities

f(x △L y) = {e ∈ E(L); e(x △L y) = 1} = {e ∈ E(L); e(x) ⊕ e(y) = 1}

=
{
e ∈ E(L); (e(x) = 1 & e(y) = 0) ∨ (e(x) = 0 & e(y) = 1)

}

= f(x) ∆ f(y). ¤

Let L be an ODL. Consider the discrete topology on the set {0, 1} and form

the topological product {0, 1}L. Then (Tichonov’s Theorem) {0, 1}L is a compact

topological space.

Lemma 6.8. E(L) is a closed subset in {0, 1}L.

Proof. For any x ∈ L, let us denote by πx the x-th projection of {0, 1}L onto {0, 1},

i.e., for e ∈ {0, 1}L let us have πx(e) = e(x). Then for x ∈ L both the sets π−1
x (0)

and π−1
x (1) are closed subsets in {0, 1}L.

Let us write L2
≤ = {(x, y) ∈ L2; x ≤ y}. For (x, y) ∈ L2

≤, let us further write

R(x,y) = {e ∈ {0, 1}L; e(x) ≤ e(y)} and, for (x, y) ∈ L2, let us write S(x,y) =

{e ∈ {0, 1}L; e(x △ y) = e(x) ⊕ e(y)}. It is easy to see that

E(L) = π−1
1L

(1) ∩
( ⋂

(x,y)∈L2
≤

R(x,y)

)
∩

( ⋂

(x,y)∈L2

S(x,y)

)
.

It remains to show that the sets R(x,y) and S(x,y) are closed subsets in {0, 1}L. For

(x, y) ∈ L2
≤ we have

R(x,y) = {e ∈ {0, 1}L; e(x) ≤ e(y)}

=
{
e ∈ {0, 1}L; e(x) = 0 ∨ e(y) = 1

}
= π−1

x (0) ∪ π−1
y (1).
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For (x, y) ∈ L2 we have

S(x,y) = {e ∈ {0, 1}L; e(x △ y) = e(x) ⊕ e(y)}

=
{
e ∈ {0, 1}L; (e(x) = 0 & e(y) = 0 & e(x △ y) = 0)

∨ (e(x) = 0 & e(y) = 1 & e(x △ y) = 1)

∨ (e(x) = 1 & e(y) = 0 & e(x △ y) = 1)

∨ (e(x) = 1 & e(y) = 1 & e(x △ y) = 0)
}

=
[
π−1

x (0) ∩ π−1
y (0) ∩ π−1

x△y(0)
]
∪

[
π−1

x (0) ∩ π−1
y (1) ∩ π−1

x△y(1)
]

∪
[
π−1

x (1) ∩ π−1
y (0) ∩ π−1

x△y(1)
]
∪

[
π−1

x (1) ∩ π−1
y (1) ∩ π−1

x△y(0)
]
. ¤

Let us recall the definition of an ideal (resp. filter) in an OML [1, 16]:

Definition 6.9. Let L be an OML and let I ⊆ L, F ⊆ L.

(A) Let us call I an ideal in L if the following are satisfied for any x, y ∈ L:

(a) 0L ∈ I,

(b) x ∈ I, y ≤ x ⇒ y ∈ I,

(c) x, y ∈ I ⇒ x ∨ y ∈ I.

The ideal I is called proper if 1L 6∈ I (or, equivalently, I 6= L̇).

(B) Let us call F a filter in L if the following are satisfied for any x, y ∈ L:

(a) 1L ∈ F ,

(b) x ∈ F, x ≤ y ⇒ y ∈ F ,

(c) x, y ∈ F ⇒ x ∧ y ∈ F .

The filter F is called proper if 0L 6∈ F (or, equivalently, F 6= L̇).

In accord with our convention, if L is an ODL and I, resp. F , is an ideal, resp.

filter, in Lsupp we shall refer to it as an ideal, resp. filter, in the ODL L.

Proposition 6.10. Let L be an SRODL. Let I be an ideal in L and let F be a filter

in L with I ∩ F = ∅. Then there is e ∈ E(L) such that e[I] = {0} and e[F ] = {1}.

Proof. Let (x, y) ∈ I × F . Set E(x,y) = {e ∈ E(L); e(x) = 0, e(y) = 1}. Since

E(x,y) = E(L) ∩ π−1
x (0) ∩ π−1

y (1), E(x,y) is a closed subset in {0, 1}L.

Let us now go over all choices of (x, y) ∈ I×F . We claim that {E(x,y)}(x,y)∈I×F is

a centered system of sets, i.e., each finite subsystem has a non-empty intersection.

Indeed, let (x1, y1), . . . , (xn, yn) ∈ I × F . Put x = x1 ∨ · · · ∨ xn ∈ I and y =

y1 ∧ · · · ∧ yn ∈ F . Since y 6≤ x, so by Theorem 6.7 we see that E(x,y) 6= ∅. Take

some e ∈ E(x,y). Then the property (E2) implies that e(x1) = · · · = e(xn) = 0 and

e(y1) = · · · = e(yn) = 1. It follows that e ∈ E(x1,y1) ∩ · · · ∩ E(xn,yn).

We have verified that {E(x,y)}(x,y)∈I×F is a centered system of closed subsets in

the compact topological space {0, 1}L. As a result,
⋂

(x,y)∈I×F E(x,y) 6= ∅. Take an

arbitrary e ∈
⋂

(x,y)∈I×F E(x,y). Then e is the evaluation we looked for. ¤
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Proposition 6.11. Let K,L be ODLs. Let f : K → L be a surjective homomor-

phism. Let e ∈ E(K) be such that e(x) = 0 for any x ∈ f−1(0L). Then there exists

ẽ ∈ E(L) such that e = f ◦ ẽ.

Proof. If y ∈ L with y = f(x), then we set ẽ(y) = e(x). Let us show that the

definition of ẽ is correct. To this end, suppose that y = f(x1) = f(x2). Then

f(x1) △L f(x2) = 0L and therefore f(x1 △K x2) = 0L. Hence e(x1 △K x2) = 0.

This implies that e(x1) ⊕ e(x2) = 0 and therefore e(x1) = e(x2). Let us prove in

the next step that ẽ ∈ E(L). We have to verify the conditions of Definition 6.6.

(E1) ẽ(1L) = ẽ(f(1K)) = e(1K) = 1.

(E2) Suppose that y1, y2 ∈ L, y1 ≤ y2. Let y1 = f(x1) and y2 = f(x2). Then

f(x1 ∧ x2) = f(x1) ∧ f(x2) = y1 ∧ y2 = y1. Moreover, x1 ∧ x2 ≤ x2. This yields

that e(x1 ∧ x2) ≤ e(x2). As a consequence, ẽ(y1) = e(x1 ∧ x2) ≤ e(x2) = ẽ(y2).

(E3) Suppose that y1, y2 ∈ L and y1 = f(x1), y2 = f(x2). Then we see that

ẽ(y1 △L y2) = ẽ(f(x1) △L f(x2)) = ẽ(f(x1 △K x2)) = e(x1 △K x2)

= e(x1) ⊕ e(x2) = ẽ(y1) ⊕ ẽ(y2). ¤

Theorem 6.12. The class SRODL of all set-representable ODLs forms a variety.

Proof. We shall show that the class SRODL is closed under the formation of sub-

algebras, products and homomorphic images.

(a) Closedness under subalgebras:

Suppose that L ∈ SRODL and K is a subalgebra of L. Suppose a, b ∈ K, a 6≤ b.

Then there exists e ∈ E(L) such that e(a) = 1 and e(b) = 0. It suffices to observe

that the restriction of e to K is an evaluation on K.

(b) Closedness under products:

Suppose Li ∈ SRODL, i ∈ I. For any j ∈ I, let us denote by πj the j-th

projection
∏

i∈I Li → Lj . Suppose that a,b ∈
∏

i∈I Li and a 6≤ b. Then there

exists an index i0 ∈ I such that ai0 6≤ bi0 , where ai0 = πi0(a), bi0 = πi0(b).

Take an evaluation e ∈ E(Li0) such that e(ai0) = 1 and e(bi0) = 0. Consider the

evaluation πi0 ◦ e on
∏

i∈I Li. Then (πi0 ◦ e)(a) = e(πi0(a)) = e(ai0) = 1 and

(πi0 ◦ e)(b) = e(πi0(b)) = e(bi0) = 0.

(c) Closedness under homomorphic images:

Suppose that f : K → L is a surjective homomorphism and K ∈ SRODL. Suppose

that x, y ∈ L and x 6≤ y. Then there are x1, y1 ∈ K such that x = f(x1), y = f(y1).

Write I = {a ∈ K; a ≤ b ∨ y1 for some b ∈ f−1(0L)} and write F = [x1,1L] =

{a ∈ K; x1 ≤ a}. Then I is an ideal in K and F is a filter in K. Let us prove

that I ∩ F = ∅. Looking for a contradiction, let a ∈ I ∩ F . Then a ≤ b ∨ y1

for some b ∈ f−1(0L) and x1 ≤ a. This implies that x1 ≤ b ∨ y1 and therefore

f(x1) ≤ f(b ∨ y1) = f(b) ∨ f(y1) = 0L ∨ f(y1) = f(y1). This is a contradiction.
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By Proposition 6.10 we can find an e ∈ E(K) such that e[I] = {0} and e[F ] =

{1}. Since f−1(0L) ⊆ I, we infer by Proposition 6.11 that there is an ẽ ∈ E(L)

such that e = f ◦ ẽ. In particular, we obtain ẽ(x) = ẽ(f(x1)) = e(x1) = 1 and

ẽ(y) = e(y1) = 0. This concludes the proof. ¤

7. Quasiideals and d-ideals

We have shown in the previous section that the possibility to find a set repre-

sentation of an ODL is closely related to the existence of evaluations with certain

properties. We have also seen that, if e is an evaluation on an ODL L, then the

set e−1(0) shares certain properties with the prime ideals in Boolean algebras. It is

these properties which serve as another characterization of set representation (see

Theorem 7.17). This characterization will be then applied in the constructions of

Section 8.

Through this section, let D denote a difference algebra (see Definition 2.1).

Definition 7.1. Let I ⊆ D. Let us say that I is a quasiideal in D provided the

following two conditions are satisfied:

(a) 0 ∈ I,

(b) ∀x, y ∈ I : x ⋄ y ∈ I.

If, moreover, 1 6∈ I, let us say that I is a proper quasiideal.

Proposition 7.2. Let I ⊆ D be a quasiideal. Then I is proper exactly when, for

any x ∈ D, at most one of the elements x, x⊥ belongs to I.

Proof. Let I be proper. Suppose that both x and x⊥ belong to I. Then x ⋄ x⊥

belongs to I and therefore 1 ∈ I. This is a contradiction.

Conversely, suppose that at most one of the elements x, x⊥ belongs to I. Since

0 ∈ I, then 0⊥ 6∈ I, and therefore 1 6∈ I. ¤

Proposition 7.3. Let I ⊆ D be a proper quasiideal. Let x ∈ D be such an element

that x⊥ 6∈ I. Set J = I ∪ {i ⋄ x; i ∈ I}. Then J is also a proper quasiideal in D

and, moreover, x ∈ J and x⊥ 6∈ J .

Proof. Obviously, J is a quasiideal. Let us show that 1 6∈ J . Suppose that 1 ∈ J .

Then 1 = i ⋄ x for some i ∈ I. Since the equality 1 = i ⋄ x implies x⊥ = i, we see

that x⊥ ∈ I, which is a contradiction. Further, x = 0 ⋄ x ∈ J . If x⊥ ∈ J , then

1 = x ⋄ x⊥ ∈ J , which is also a contradiction. ¤

Proposition 7.4. Let I ⊆ D be a quasiideal. Then I is a maximal proper quasiideal

in D exactly when, for any x ∈ D, either x ∈ I or x⊥ ∈ I.
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Proof. (⇒): Suppose I is a maximal proper quasiideal. Let x ∈ D. Seeking a

contradiction, suppose that x 6∈ I, x⊥ 6∈ I. According to Proposition 7.3, there is a

proper quasiideal, J , I ⊂ J , which contradicts the maximality of I. It follows that

at least one of the elements x, x⊥ belongs to I. Since I is proper, both of x, x⊥

cannot belong to I.

(⇐): Suppose that the right-hand side condition is fulfilled. Since 0 ∈ I, we see

that 0⊥ 6∈ I, and therefore 1 6∈ I. As a result, I is a proper quasiideal. Suppose

further that I ⊂ J and J is a quasiideal in D. Let us show that 1 ∈ J . Since

I ⊂ J , there is an x such that x ∈ J , x 6∈ I. Since x 6∈ I, we have x⊥ ∈ I in

view of our condition. Summarizing, we see that x ∈ J and x⊥ ∈ J , and therefore

1 = x ⋄ x⊥ ∈ J . ¤

The property “for any x ∈ D, either x ∈ I or x⊥ ∈ I” shall be referred to as

“the selectivity property”.

Proposition 7.5. Let I0 ⊆ D be a proper quasiideal, b ∈ D and b⊥ 6∈ I0. Then

there exists a maximal proper quasiideal J in D such that I0 ⊆ J and b ∈ J .

Proof. Let J0 = I0 ∪ {i ⋄ b; i ∈ I0}. By Proposition 7.3, J0 is a proper quasiideal

in D and b ∈ J0. Write I = {I ⊆ Ḋ; I is a proper quasiideal in D,J0 ⊆ I}. Since

J0 ∈ I, we see that I 6= ∅. Further, the system I is closed under the formation of

the union of its chains. By Zorn’s Lemma the set I contains a maximal element,

say some quasiideal J . Since b ∈ J0 and J0 ⊆ J , we have b ∈ J . Thus, J is the

maximal proper quasiideal we looked for. ¤

Proposition 7.6. Let I be a maximal proper quasiideal in D. Then |D| = 2 · |I|.

Proof. It is easily seen (Propositions 2.6 and 7.4) that ⊥ is a bijection between I

and Ḋ \ I. ¤

Proposition 7.7. Let D1 and D2 be DAs with |D1| = |D2|. Then D1
∼= D2 (i.e.,

the algebras D1, D2 are isomorphic).

Proof. Choose two maximal proper quasiideals I, resp. J in D1, resp. D2. Then

|I| = |J | (Proposition 7.6). Further, (I, ⋄D1
,0D1

) and (J, ⋄D2
,0D2

) are commuta-

tive groups the elements of which have order 2. But the theory of commutative

groups in which each element has the order of a given prime number is categori-

cal in each cardinality (see, for instance, [7, p. 40]). Hence there exists a (group)

isomorphism f of (I, ⋄D1
,0D1

) onto (J, ⋄D2
,0D2

). Let us define g : Ḋ1 → Ḋ2 by

g(x) =

{
f(x) if x ∈ I,

(f(x⊥D1 ))⊥D2 if x ∈ Ḋ1 \ I.

Then one can easily check that g is an isomorphism of the algebras D1, D2. ¤
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Proposition 7.8. Let D be a DA. Then there is a Boolean algebra, B, such that

D ∼= DB.

Proof. By Proposition 7.7 it is sufficient to show that there is a Boolean algebra B

such that |D| = |B|. If D is finite, then |D| = 2n (Proposition 2.3). In this case

one takes the Boolean algebra B(n) for B. If D is infinite and |D| = κ, one takes

B(κ) for B (compare with Convention 1.8). ¤

The following notion seems quite useful in the study of DAs and ODLs.

Definition 7.9. Let X ⊆ D. We shall say that X is an independent set in D if

x1 ⋄ · · · ⋄ xn 6= 1 for any choice x1, . . . , xn ∈ X.

Proposition 7.10. Let X ⊆ D. Write

I(X) = {0} ∪ {x1 ⋄ · · · ⋄ xn; n ≥ 1, x1, . . . , xn ∈ X}.

Then I(X) is the smallest quasiideal in D which includes X. Moreover, if D is

nontrivial then the following result holds true:

I(X) is a proper quasiideal in D if and only if X is an independent set in D.

Proof. One can easily show that I(X) is the smallest quasiideal in D including X.

Suppose that D is nontrivial. If I(X) is a proper quasiideal in D, then 1 6∈

I(X), and therefore 1 6= x1 ⋄ · · · ⋄ xn for any x1, . . . , xn ∈ X. This implies

that X is independent. Conversely, suppose that X is independent. Then 1 6∈

{x1 ⋄ · · · ⋄ xn; n ≥ 1, x1, . . . , xn ∈ X}. Since D is nontrivial, we have 1 6= 0. This

implies that 1 6∈ I(X). ¤

Remark 7.11. Let X ⊆ D. If X = ∅, then I(X) = {0}. If X 6= ∅, then I(X) =

{x1 ⋄ · · · ⋄xn; n ≥ 1, x1, . . . , xn ∈ X}. Moreover, if X is infinite, then |I(X)| = |X|.

Corollary 7.12. Let D be nontrivial and let X ⊆ D. Then X is an independent

set in D if and only if there exists a proper quasiideal I in D such that X ⊆ I.

Proof. It follows from Proposition 7.10. ¤

Definition 7.13. Let L be an ODL and let I ⊆ L. Let us call I a difference-ideal

(abbr., a d-ideal) in L if the following conditions are satisfied for any x, y ∈ L:

(a) 0 ∈ I,

(b) x ∈ I, y ≤ x ⇒ y ∈ I,

(c) x, y ∈ I ⇒ x △ y ∈ I.

If, moreover, I has the selectivity property (i.e., for any x ∈ L either x ∈ I or

x⊥ ∈ I), then we call I a prime d-ideal in L.

In the following propositions we find an explicit relation between ideals and

d-ideals.
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Proposition 7.14. Let L be an ODL. Then every ideal in L is also a d-ideal in L.

Proof. Let I be an ideal in L. Let us check condition (c) of Definition 7.13. Let

x, y ∈ I. Then x ∨ y ∈ I. Since x △ y ≤ x ∨ y, we also have x △ y ∈ I. ¤

Proposition 7.15. Let B be a Boolean algebra and let I ⊆ B. Then I is a d-

ideal in B if and only if I is an ideal in B.

Proof. If I is an ideal in B, then I is a d-ideal as the previous proposition states.

Conversely, suppose that I is a d-ideal in B. Let x, y ∈ B. Since B is Boolean,

we have x ∨ y = x △ (y ∧ x⊥). As y ∧ x⊥ ≤ y and y ∈ I, we see that y ∧ x⊥ ∈ I.

Condition (c) of Definition 7.13 then implies that x △ (y ∧ x⊥) ∈ I. It means that

x ∨ y ∈ I. ¤

Let us note that in general the d-ideals do not have to be ideals. For instance,

take the ODL MO3 of Example 3.8. In this ODL the set I = {0, x, y, z} constitutes

a d-ideal (indeed, it constitutes a prime d-ideal) but I is not an ideal.

Proposition 7.16. Let L be an ODL.

(1) If e is an evaluation on L, then the set Ie = {x ∈ L; e(x) = 0} is a prime

d-ideal in L.

(2) Conversely, if I is a prime d-ideal in L, then the mapping eI defined by the

requirement

eI(x) = 0 for x ∈ I, eI(x) = 1 for x ∈ L \ I

is an evaluation on L.

Proof. The only fact that needs to be checked is that the set Ie has the selectivity

property, the rest is a simple direct verification. Let x ∈ L with x 6∈ Ie. Then

e(x) = 1. Further, e(x⊥) = e(x △ 1) = e(x) ⊕ e(1) = 1 ⊕ 1 = 0. Thus x⊥ ∈ Ie. ¤

In conclusion of this section, let us formulate a result that characterizes the set-

representable ODLs in terms of prime d-ideals. The proof of this theorem follows

immediately from the previous proposition and from Theorem 6.7.

Theorem 7.17. Let L be an ODL. Then L is an SRODL (i.e., L is set-represent-

able) if and only if the following condition holds true:

Whenever x, y ∈ L and x⊥ 6≤ y, then there exists a prime d-ideal I in L such

that x, y ∈ I.

8. Horizontal sums of Boolean algebras as ODLs

In this section we will exhibit a construction of ODLs with the help of which

we can produce examples of ODLs with specific or rather peculiar properties. In
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particular, we exhibit a construction of ODLs which are not set-representable. The

construction is based on the horizontal sum of Boolean algebras borrowed from the

theory of OMLs.

Definition 8.1. Let L be a nontrivial OML. We say that L is the horizontal sum

of its blocks if B1 ∩ B2 = {0L,1L} for all blocks B1, B2 ∈ Bl(L) with B1 6= B2.

Let us denote by HOR the class of ODLs L such that Lsupp is the horizontal

sum of its blocks.

Lemma 8.2. Let L be the horizontal sum of its blocks.

(a) Suppose that x, y ∈ L, x 6= 1, y ≤ x and x ∈ B ∈ Bl(L). Then y ∈ B.

(b) If x ∈ L, x 6∈ {0,1}, then the element x lies in exactly one block of L.

(c) Let x, y ∈ L and let x |L y. Then there exists a unique block B1 ∈ Bl(L) and

a unique block B2 ∈ Bl(L) such that x ∈ B1 and y ∈ B2.

Proof. The statements (a), (b) are trivial. To show the statement (c), observe that

the assumption x |L y implies that neither of the elements x, y can be equal to 0

or 1. The rest follows from the statement (b). ¤

Let B be a nonempty set of Boolean algebras such that B1 ∩ B2 = {0,1} for all

B1, B2 ∈ B with B1 6= B2. Then L =
⋃
B carries in a natural way the structure of

an orthomodular lattice which is the horizontal sum of its blocks (see [16, p. 59]).

Let us call the OML L the horizontal sum of the system B.

Let κ ≥ 1 be a cardinal number. Recall that MOκ denotes the horizontal sum

of κ copies of the four-element Boolean algebra B(2). Obviously, MOκ is an OML

and |MOκ| = 2κ + 2.

Definition 8.3. Let B be a nontrivial Boolean algebra and let B ⊆ Sub(B). Let

us say that B is a disjoint system of subalgebras of B if for all B1, B2 ∈ B with

B1 6= B2 we have B1 ∩ B2 = {0,1} and the algebras B1, B2 are not comparable

(i.e., B1 6⊆ B2 and B2 6⊆ B1). Moreover, if
⋃
B = B, then the system B is said to

be a partition of the algebra B. Let us denote by Part(B) the set of all partitions

of B.

Proposition 8.4. Let ⊑ be the following relation on Part(B): B1 ⊑ B2 if for any

B1 ∈ B1 there exists B2 ∈ B2 such that B1 ⊆ B2. Then the relation ⊑ is a partial

ordering on Part(B).

Proof. Reflexivity and transitivity of ⊑ is obvious. Let B1,B2 ∈ Part(B) with

B1 ⊑ B2 and B2 ⊑ B1. We are going to show that B1 = B2. Let B1 ∈ B1. Since

B1 ⊑ B2, there is B2 ∈ B2 such that B1 ⊆ B2. Since B2 ⊑ B1, there is B3 ∈ B1 such

that B2 ⊆ B3. From the inclusions B1 ⊆ B2 and B2 ⊆ B3 we infer that B1 ⊆ B3.

Hence the algebras B1 and B3 are comparable. According to the definition of a
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disjoint system of subalgebras, B1 = B3 holds. Since B1 ⊆ B2 ⊆ B3 and B1 = B3,

we have B1 = B2 ∈ B2. It gives us that B1 ⊆ B2. The opposite inclusion B2 ⊆ B1

follows analogously. ¤

Construction 8.5. Let B be a Boolean algebra and let B be a disjoint system of

subalgebras of B. Let us construct an OML, K, and the mapping △K : K2 → K

as follows:

In the first step we construct a system B′ ⊆ Sub(B) determined by the following

requirement: If
⋃

B = B (i.e., if B is a partition of B), then we set B′ = B. If⋃
B ⊂ B, then we add to B all necessary four-element subalgebras of B such that

the resulting system B′ is a partition of B. In the second step we take for K

the horizontal sum of the system B′. And finally, if x, y ∈ K̇ (= Ḃ), let us set

x △K y = x △B y. The pair (K,△K) so obtained will be denoted by LB,B (abbr.,

LB).

Proposition 8.6. The algebra LB is an ODL. Thus, LB ∈ HOR.

Proof. Conditions (D1) and (D2) are obvious. Let us verify condition (D3). Let

x, y ∈ Ḃ. If there is B1 ∈ B such that x, y ∈ B1, then x∨K y = x∨B y. As a result,

x △ y = x △B y ≤ x ∨B y = x ∨K y. If there is no block B1 such that x, y ∈ B1,

then x ∨K y = 1. The inequality x △ y ≤ x ∨K y is then valid automatically and

the proof is complete. ¤

Let B be a Boolean algebra, |B| ≥ 4. Let us take the least element of Part(B)

in the ordering ⊑. Obviously, this element consists of all four-element subalgebras

of B. Let us consider the algebra LB. Obviously, the OML LB
supp is isomorphic to

MOκ. We want to take up the question of the existence and uniqueness of an ODL

L with Lsupp
∼= MOκ.

Proposition 8.7. Let κ ≥ 1 be a cardinal number. Then the necessary and suffi-

cient condition for the existence of an ODL L such that Lsupp
∼= MOκ is that κ is

either finite with κ = 2n − 1 for some natural number n ≥ 1 or κ is infinite.

Proof. Let there be an ODL L such that Lsupp
∼= MOκ and let κ be finite. Then

|L| = |MOκ| = 2κ + 2. On the contrary, the result of Corollary 3.3 implies that

|L| = 2m (m ≥ 2). This gives us that κ = 2m−1 − 1.

Conversely, let κ be finite and κ = 2n − 1 for some natural n ≥ 1 or let κ

be infinite. Choose a Boolean algebra, B, such that |B| = 2κ + 2. In other

words, let us choose B with |B| = 2n+1 if κ = 2n − 1, and let us choose B with

|B| = κ if κ is infinite. Further, take a prime ideal, I, in B. Consider the partition

B =
{
{0B ,1B , x, x⊥}; x ∈ I \{0B}

}
of B. Then |B| = |I \{0B}| = κ and therefore

LB
supp

∼= MOκ. ¤

Proposition 8.8. Let K,L be ODLs with Ksupp
∼= Lsupp

∼= MOκ. Then K ∼= L.
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Proof. By Proposition 7.7 there is an isomorphism, f , of the difference algebra DK

onto the difference algebra DL. Let us show that f is also an isomorphism of K

onto L. Observe first that f(0K) = 0L, f(1K) = 1L. Further, for any x ∈ K we

have f(x⊥K ) = f(x △K 1K) = f(x) △L f(1K) = f(x) △L 1L = (f(x))⊥L . Let

us finally show that f(x ∧K y) = f(x) ∧L f(y) for any x, y ∈ K. Suppose that

x, y ∈ K. If x = y or if at least one of the elements x, y belongs to {0K ,1K}, then

the equality we are proving is trivial. Suppose therefore that x 6= y, 0K < x < 1K

and 0K < y < 1K . Then x ∧K y = 0K and therefore f(x ∧K y) = f(0K) = 0L.

On the other hand, since f is injective we have f(x) 6= f(y), 0L < f(x) < 1L and

0L < f(y) < 1L. Hence f(x) ∧L f(y) = 0L, which we wanted to show. ¤

In the rest of this section let us demonstrate some applications of the construction

of horizontal sums. The first application concerns a potential converse to Corol-

lary 3.3: Is every OML of 2n elements a support for some ODL? The answer is no.

Indeed, let us take for L the horizontal sum of two copies of four-element Boolean

algebras with the OML given by the following Greechie diagram (see [14, 16]):

a
r

r

r

r r

Then the element a lies in exactly two blocks of L. By Proposition 5.6, L cannot

be the support of any ODL.

In the second application we will see that the class HOR contains a proper class

of ODLs which are set-representable and a proper class of ODLs which are not.

Before formulating the main results, we need to derive some more properties of

d-ideals in the ODLs that belong to HOR.

Proposition 8.9. Let L ∈ HOR and let I ⊆ L. Then the following statements

hold true:

(A) I is a d-ideal in L if and only if

(1) I is a quasiideal in the difference algebra DL, and

(2) ∀B ∈ Bl(L) ∀x, y ∈ B : (x ∈ I & y ≤ x) ⇒ y ∈ I.

(B) I is prime d-ideal in L if and only if

(1) I is a maximal proper quasiideal in DL, and

(2) ∀B ∈ Bl(L) ∀x, y ∈ B : (x ∈ I & y ≤ x) ⇒ y ∈ I.

Proof. (A): If I is a d-ideal in L, then conditions (1) and (2) are obviously satisfied.

Conversely, let conditions (1) and (2) be satisfied. Let x, y ∈ L, x ∈ I and y ≤ x.

Let B ∈ Bl(L) be such a block that x, y ∈ B. From condition (2) we have y ∈ I.
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(B): If I is a prime d-ideal in L, then conditions (1) and (2) are again satisfied.

Conversely, if (1) and (2) are satisfied, then it follows from part (A) that I is

a d-ideal in L. According to Proposition 7.4, I has the selectivity property and

therefore I is a prime d-ideal in L. ¤

Theorem 8.10. Let L ∈ HOR. Then L is an SRODL if and only if the following

condition holds true:

∀x, y ∈ L: if x |L y, then there exists a prime d-ideal I in L such that x, y ∈ I.

Proof. (⇒): Let L be an SRODL of HOR and let x, y ∈ L be such elements that

x |L y. Then x⊥ ≤ y cannot hold (if x⊥ ≤ y, then y C x, which is not the case).

According to Theorem 7.17, there is a prime d-ideal I in L such that x, y ∈ I.

(⇐): If L is Boolean, then L is obviously an SRODL. Suppose that L is not

Boolean. Let x, y ∈ L be such elements that x⊥ 6≤ y. According to Theorem 7.17

we want to show that there exists a prime d-ideal I in L such that x, y ∈ I. If

x |L y, then the existence of I follows directly from our assumption. Let us assume

that x C y. Let B be a block in L such that x, y ∈ B. Since x⊥ 6≤ y, we have

x ∨ y < 1. Let us write a = x ∨ y ∈ B. We will show that there exists a prime

d-ideal I in L such that a ∈ I. The case a = 0 is trivial. Otherwise let b ∈ L such

that a and b do not lie in the same block (such an element b ∈ L exists because L is

not Boolean). Then a |L b and, according to our assumption, there exists a prime

d-ideal I in L such that a, b ∈ I. ¤

Theorem 8.11. Let L ∈ HOR. Assume there exists a block B0 ∈ Bl(L) such that

|B| = 4 for any block B ∈ Bl(L), B 6= B0. Then L is an SRODL.

Before giving the proof of Theorem 8.11, let us prove the following lemma:

Lemma 8.12. Let L be an ODL that satisfies all the assumptions of Theorem 8.11.

Let I0 be a prime ideal in the Boolean algebra B0 and let J be an independent set

in L such that I0 ⊆ J . Then there exists a prime d-ideal I in L such that J ⊆ I.

Proof. Let us choose such a maximal proper quasiideal I in the difference algebra

DL that J ⊆ I. (Such a quasiideal exists as can be seen from Corollary 7.12 by

applying Zorn’s Lemma.) We will show that I is a prime d-ideal we are looking for.

It is sufficient to prove that I fulfils condition (B2) of Proposition 8.9. Consider

a block B ∈ Bl(L). We will prove that the set B ∩ I is an ideal in the Boolean

algebra B. There are two cases to be argued.

(1): B = B0. In this case we will show that B∩I = I0. The inclusion I0 ⊆ B0∩I

is obvious. Let us assume that x ∈ B0 ∩ I but x 6∈ I0. Since I0 is a prime ideal

in B0 and x ∈ B0, x 6∈ I0, it must hold x⊥ ∈ I0. Now, x ∈ I, x⊥ ∈ I0 ⊆ I, and

therefore both of the elements x, x⊥ belong to I. This is a contradiction because I

is a proper quasiideal.
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(2): B 6= B0. Then |B| = 4. Let B = {0, a, a⊥,1}. Since I has the selectivity

property, we have either I ∩ B = {0, a} or I ∩ B = {0, a⊥}. In both cases the set

B ∩ I is an ideal in B. ¤

Proof of Theorem 8.11. Let x, y ∈ L with x |L y. Then x 6∈ {0,1} and y 6∈ {0,1}.

We will prove that there is a prime d-ideal I in L such that x, y ∈ I. To this end,

let us distinguish the following two cases.

(I): {x, y} ∩ B0 6= ∅. We may assume that x ∈ B0 and y 6∈ B0.

Let I0 be a prime ideal in the algebra B0 such that x ∈ I0 (such a prime ideal

exists because x 6= 1). Then the set J = I0 ∪ {y} is an independent set in DL

(otherwise we would have y ∈ B0). The existence of I follows directly from the

previous lemma.

(II): {x, y} ∩ B0 = ∅, i.e., x 6∈ B0, y 6∈ B0.

Let us distinguish another two cases.

(II a): Suppose x △ y ∈ B0. Let us write z = x △ y. From case (I) specified to

the elements z and x it follows that there exists a prime d-ideal I in L such that

x, z ∈ I. Then y = x △ z ∈ I.

(II b): Suppose x △ y 6∈ B0. Let us choose a prime ideal I0 in the Boolean

algebra B0. The set J = I0 ∪{x, y} is now an independent set in DL. According to

Lemma 8.12, there exists a prime d-ideal I in L such that J ⊆ I. As a consequence,

x, y ∈ I. ¤

Corollary 8.13. Let L be an ODL such that Lsupp = MOκ. Then L is a modular

SRODL.

Proof. According to Theorem 8.11, L is an SRODL. Moreover, L is modular since

L does not contain the pentagon as a sublattice (see [16, p. 16]). ¤

Corollary 8.14. Let L ∈ HOR such that L is not a Boolean algebra. Let us

suppose that there exists a block B0 ∈ Bl(L) such that |B0| ≥ 8 and |B| = 4 for any

block B ∈ Bl(L), B 6= B0. Then L is a non-modular SRODL.

Proof. According to Theorem 8.11, L is an SRODL. It remains to prove that L is not

modular. Let us choose the elements x, y in the algebra B0 such that 0 < x < y < 1

(this choice is possible because |B0| ≥ 8). Since L is not Boolean, there is an element

z ∈ L such that z 6∈ B0. But the set {0, x, y, z,1} is a pentagon in L. ¤

Example 8.15. We will construct an ODL L, L ∈ HOR, such that L is not an

SRODL. Let B be the Boolean algebra of all subsets of the set {1, . . . , 5}. Then
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0B = ∅ and 1B = {1, . . . , 5}. Let us consider the following elements of B:

x = {1, 2, 4, 5}, a1 = {1, 2}, a2 = {4, 5}, a3 = {3},

y = {2, 3, 4}, b1 = {3, 4}, b2 = {2}, b3 = {1, 5},

c1 = {1, 3}, c2 = {2, 4}, c3 = {5}.

Let us consider the following subalgebras of B:

B1 = {0B ,1B , a1, a2, a3, a
⊥
1 , a⊥

2 , a⊥
3 }, B2 = {0B ,1B , b1, b2, b3, b

⊥
1 , b⊥2 , b⊥3 },

B3 = {0B ,1B , c1, c2, c3, c
⊥
1 , c⊥2 , c⊥3 }.

It is easy to show that Bi ∩ Bj = {0B ,1B} for any i 6= j. Moreover, x = a⊥
3 ∈

B1, y = b⊥3 ∈ B2. If we write B = {B1, B2, B3}, then B is a disjoint system of

subalgebras of the algebra B. Let us set L = LB (see Construction 8.5). Then

x |L y. In order to show that L is not an SRODL, it is sufficient to show that there

is no prime d-ideal I in L such that x, y ∈ I. Indeed, let I be a d-ideal in L such that

x, y ∈ I. Since a1 ≤ x, a2 ≤ x and b1 ≤ y, b2 ≤ y, we have a1, a2, b1, b2 ∈ I. Since

the set I is closed with respect to the operation △, we also have a1△b1, a2△b2 ∈ I.

But a1 △ b1 = {1, 2, 3, 4} = c⊥3 and a2 △ b2 = {2, 4, 5} = c⊥1 . Because c1 ≤ c⊥3 ∈ I,

we have c1 ∈ I. Now, c1, c
⊥
1 ∈ I and therefore I is not a prime d-ideal.

By examining the foregoing example we see that the possibility to have Lsupp

set-representable (as an OML) does not imply that L is set-representable as an

ODL. Indeed, for the ODL L of Example 8.15, Lsupp is obviously a set-representable

OML since it is a horizontal sum of Boolean algebras (see [24]). As a matter of fact,

Example 8.15 is the smallest ODL for this circumstance to occur as Proposition 8.17

shows.

Lemma 8.16. Let L be an OML with |L| = 16. Suppose that there exist an atom

a ∈ L and mutually distinct blocks B1, B2, B3 ∈ Bl(L) such that a ∈ B1 ∩ B2 ∩ B3,

|B1| = |B2| = |B3| = 8. Then L is the OML with the following Greechie diagram:

r

r

ra

r

r

¡
¡

¡

@
@

@

r

r
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Proof. Since B1, B2, B3 are 8-element blocks, they can have at most one atom in

common. It means that B1 ∩ B2 = B1 ∩ B3 = B2 ∩ B3 = {0,1, a, a⊥}. The set

Ḃ1∪ Ḃ2∪ Ḃ3 contains exactly 16 elements, i.e., L̇ = Ḃ1∪ Ḃ2∪ Ḃ3. Let us prove that

B1, B2, B3 are precisely all blocks in L. Let B ∈ Bl(L). We will prove that B = Bk

for some k ∈ {1, 2, 3}. First, let us exclude the case |B| = 4. Let us suppose that

B = {0,1, b, b⊥}. Then there is an i ∈ {1, 2, 3} such that b ∈ Bi. This means

B ⊂ Bi, which is a contradiction with the definition of a block. Therefore |B| = 8.

Let b1, b2, b3 be all atoms in B. Since {b1, b2, b3} is a three-element set, at least

two of its elements are distinct from a. Let, e.g., b1 6= a, b2 6= a. Let us suppose

that b1 ∈ Bk, b2 ∈ Bl, k, l ∈ {1, 2, 3}. Then b1, a are distinct atoms in the algebra

Bk and therefore b1 ≤ a⊥. Analogously, b2 ≤ a⊥. It follows that b1 ∨ b2 ≤ a⊥.

Let us suppose that b1 ∨ b2 < a⊥. Then the chain 0 < b1 < b1 ∨ b2 < a⊥ < 1 is

contained in some block, B′, such that the cardinality of B′ is at least 16. But this

is a contradiction. Hence, b1 ∨ b2 = a⊥. Because b1, b2 ∈ B, we see that a⊥ ∈ B.

Thus a ∈ B. The blocks Bk, B have the atoms b1, a in common, and because both

the blocks are eight-element, we have B = Bk. Thus, B ∈ {B1, B2, B3}. Hence,

Bl(L) = {B1, B2, B3}. ¤

Proposition 8.17. Let L be an ODL such that |L| ≤ 16. Then L is an SRODL.

Proof. We may suppose that L is not Boolean. Then either |L| = 8 or |L| = 16. If

|L| = 8, then L = MO3 and L is an SRODL. Suppose that |L| = 16. Let us write

Bl8(L) = {B ∈ Bl(L); |B| = 8}. Then there are only three cases possible.

(1): Bl8(L) = ∅. Then L = MO7 and L is an SRODL.

(2): |Bl8(L)| = 1. Let Bl8(L) = {B}. Because the other blocks of L are four-

element blocks, L is a horizontal sum of its blocks. According to Theorem 8.11, L

is an SRODL.

(3): |Bl8(L)| ≥ 2. Let us choose B1, B2 ∈ Bl8(L) with B1 6= B2. We will prove

that B1∩B2 6= {0,1}. Seeking a contradiction, let us assume that B1∩B2 = {0,1}.

Then |B1 ∪B2| = 14. Let {a1, a2, a3} be the set of all atoms in the algebra B1. Let

us choose an atom b ∈ B2. Then the elements a1 △ b, a2 △ b, a3 △ b are pairwise

distinct because if, for instance, a1△ b = a2△ b then (a1△ b)△ b = (a2△ b)△ b and

therefore a1 = a2 which is a contradiction. Moreover, the elements a1 △ b, a2 △ b,

a3 △ b belong to the set L \ (B1 ∪B2). Indeed, let e.g. a1 △ b ∈ B1. Since a1 ∈ B1,

we see that a1 △ (a1 △ b) ∈ B1. But a1 △ (a1 △ b) = b, and therefore b ∈ B1

which we excluded. Obviously, |L \ (B1 ∪ B2)| = 16 − 14 = 2. We have obtained a

contradiction. Therefore B1 ∩B2 = {0,1, a, a⊥}, where a is an atom. According to

Proposition 5.6, the element a lies in at least three blocks. Therefore there exists

another block B3 ∈ Bl8(L) such that a ∈ B3. Then Lemma 8.16 implies that

Bl(L) = {B1, B2, B3}. This means that a ∈ C(L). According to Proposition 5.8,

L ∼= La ×La⊥

. Moreover, |La| = |[0, a]L| = 2 and |La⊥

| = |[0, a⊥]L| = 8. Therefore
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both ODLs La and La⊥

are SRODLs. Because the class SRODL is closed under

the formation of products, we infer that L is an SRODL. ¤

In the final result, let us revisit Example 8.15 to demonstrate that there are

non-set-representable ODLs that contain preassigned Boolean algebras. As a con-

sequence, there are “as many” non-set-representable ODLs as Boolean algebras.

Theorem 8.18. Let B be a nontrivial BA. Then there is an ODL, M , such that

B is a subalgebra of M and M is not set-representable.

Proof. Let L be the ODL of Example 8.15. Let M = B × L and let us denote

by πL the projection of M onto L. Because L is not set-representable and L is a

homomorphic image of M (L = πL(M)), M cannot be set-representable. It remains

to show that there is an embedding of B into M . For this purpose, let us fix some

prime ideal, I, in B. (The existence of I follows from the nontriviality of B.) Let

us set F = Ḃ \I. Obviously, F is an ultrafilter in B. Now, we can define a mapping

f : B → M as follows:

f(x) =

{
(x,0L) if x ∈ I,

(x,1L) if x ∈ F.

We are going to show that f is the embedding we are looking for. Obviously, f is

an injective mapping. Further, f(0B) = (0B ,0L) = 0M , f(1B) = (1B ,1L) = 1M .

Suppose x, y ∈ B. We will prove that f(x ∨B y) = f(x) ∨M f(y) and f(x △B y) =

f(x) △M f(y).

We have to distinguish three possibilities.

• Firstly, x, y ∈ I. Then x ∨B y ∈ I, x △B y ∈ I and therefore

f(x ∨B y) = (x ∨B y,0L) = (x,0L) ∨M (y,0L) = f(x) ∨M f(y),

f(x △B y) = (x △B y,0L) = (x,0L) △M (y,0L) = f(x) △M f(y).

• Secondly, exactly one of the elements x, y lies in I. Let, e.g., x ∈ I, y ∈ F . In

this case x ∨B y ∈ F , x △B y ∈ F and therefore

f(x ∨B y) = (x ∨B y,1L) = (x,0L) ∨M (y,1L) = f(x) ∨M f(y),

f(x △B y) = (x △B y,1L) = (x,0L) △M (y,1L) = f(x) △M f(y).

• Thirdly, x, y ∈ F . Then x ∨B y ∈ F , x △B y ∈ I and therefore

f(x ∨B y) = (x ∨B y,1L) = (x,1L) ∨M (y,1L) = f(x) ∨M f(y),

f(x △B y) = (x △B y,0L) = (x,1L) △M (y,1L) = f(x) △M f(y).

Finally, because the equalities x⊥ = x △ 1 and x ∧ y = (x⊥ ∨ y⊥)⊥ hold in any

ODL, the mapping f preserves both operations ⊥ and ∧. Hence, f is an injective

homomorphism of the algebra B into M . (Let us note that Msupp = Bsupp ×Lsupp

and therefore Msupp is a set-representable OML.) ¤
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Concluding the article, let us finally formulate some open questions related to

the investigation presented.

(1) Which OMLs are embeddable into Lsupp for some ODL L? This interesting

question also deserves attention because of a potential application of ODLs within

quantum theories. In particular, it seems desirable to clarify the question for set-

representable OMLs and for OMLs L(H) of projections in a Hilbert space H. It

should be noted in connection with the latter class that for L(R1) and L(R2) the

answer is obviously yes—these OMLs can be even converted to ODLs (Proposi-

tion 8.7). Further, each L(Rn), 3 ≤ n < ∞, cannot be converted to an ODL as

one finds out easily upon testing the axioms of ODLs, but it seems conceivable that

L(Rn) allows for an ODL extension.

(2) Is the variety SRODL finitely based? We conjecture it is not.
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Symmetric difference on orthomodular

lattices and Z2-valued states

Milan Matoušek, Pavel Pták

Abstract. The investigation of orthocomplemented lattices with a symmetric dif-

ference initiated the following question: Which orthomodular lattice can be em-

bedded in an orthomodular lattice that allows for a symmetric difference ? In

this paper we present a necessary condition for such an embedding to exist. The

condition is expressed in terms of Z2-valued states and enables one, as a conse-

quence, to clarify the situation in the important case of the lattice of projections

in a Hilbert space.

Keywords: orthomodular lattice, quantum logic, symmetric difference, Boolean

algebra, group-valued state

Classification: 06A15, 03G12, 28E99, 81P10

1. Introduction and preliminaries

In the paper [11] the author introduces algebras that can be viewed as “ortho-
modular lattices with a symmetric difference”. Their definition is as follows (the
standard definition of an orthocomplemented lattice can be found in [9], [10], [16],
etc.).

Definition 1.1. Let L = (X,∧,∨,⊥ , 0, 1,△), where (X,∧,∨,⊥ , 0, 1) is an or-
thocomplemented lattice and △ : X2 → X is a binary operation. Then L is said
to be an orthocomplemented difference lattice (abbr., an ODL) if the following
formulas hold in L:

(D1) x △ (y △ z) = (x △ y) △ z,
(D2) x △ 1 = x⊥, 1 △ x = x⊥,
(D3) x △ y ≤ x ∨ y.

Let us first formulate basic properties of ODLs as we shall use them in the
sequel (see also [11]). We shall adopt the convention that in writing a formula
with △ and ⊥, we give the preference to the operation ⊥ over the operation △.
Thus, for instance, x △ y⊥ means x △ (y⊥), etc.

Proposition 1.2. Let L = (X,∧,∨,⊥ , 0, 1,△) be an ODL. Then the following

statements hold true:

The authors acknowledge the support of the research plans MSM 0021620839 and MSM

6840770038 that are financed by the Ministry of Education of the Czech Republic.
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(1) x △ 0 = x, 0 △ x = x,

(2) x △ x = 0,

(3) x △ y = y △ x,

(4) x △ y⊥ = x⊥ △ y = (x △ y)⊥,

(5) x⊥ △ y⊥ = x △ y,

(6) x △ y = 0 ⇔ x = y,

(7) (x ∧ y⊥) ∨ (y ∧ x⊥) ≤ x △ y ≤ (x ∨ y) ∧ (x ∧ y)⊥.

Proof: Suppose that x, y ∈ L and verify the properties (1)–(7).

(1) Let us first see that the property (D2) yields 1 △ 1 = 1⊥ = 0. Using this,
we have x △ 0 = x △ (1 △ 1) = (x △ 1)△ 1 = x⊥ △ 1 = (x⊥)⊥ = x. Analogously,
0 △ x = (1 △ 1) △ x = 1 △ (1 △ x) = 1 △ x⊥ = (x⊥)⊥ = x.

(2) Let us first show that x⊥△x⊥ = x△x. We consecutively obtain x⊥△x⊥ =
(x△ 1)△ (1△ x) = (x△ (1△ 1))△ x = (x△ 0)△ x = x△ x. Moreover, we have
x△x ≤ x as well as x△x = x⊥△x⊥ ≤ x⊥. This implies that x△x ≤ x∧x⊥ = 0.

(3) x△y = (x△y)△0 = (x△y)△[(y△x)△(y△x)] = x△(y△y)△x△(y△x) =
x △ 0 △ x △ (y △ x) = x △ x △ (y △ x) = 0 △ (y △ x) = y △ x.

(4) x△y⊥ = x△(y△1) = (x△y)△1 = (x△y)⊥. The equality x⊥△y = (x△y)⊥

follows from x △ y⊥ = (x △ y)⊥ by using the equality (3).

(5) Applying (4), we obtain x⊥ △ y⊥ = (x⊥ △ y)⊥ = (x △ y)⊥⊥ = x △ y.

(6) If x = y, then x △ y = 0 by the condition (2). Conversely, suppose that
x △ y = 0. Then x = x △ 0 = x △ (y △ y) = (x △ y) △ y = 0 △ y = y.

(7) The property (D3) together with the properties (4), (5) imply that x△y ≤

x ∨ y, x △ y ≤ x⊥ ∨ y⊥ = (x ∧ y)⊥, x ∧ y⊥ ≤ x △ y, x⊥ ∧ y ≤ x △ y. �

Our interest in this paper is the relationship of ODLs to orthomodular lattices
(OMLs). Let us recall the definition of OML (the acquaintance with basic facts
about OMLs will be helpful in the sequel — see [1], [9], [10], etc.).

Definition 1.3. Let L be an orthocomplemented lattice. If L satisfies the
orthomodular law,

x ≤ y ⇒ y = x ∨ (y ∧ x⊥),

then L is said to be an orthomodular lattice (abbr., an OML).

Though the orthomodular law is not explicitly stated among the axioms of
ODL, it can be easily shown ([11]) that an ODL is automatically orthomodular.
More precisely, if K is an ODL and Ksupp is the orthocomplemented lattice ob-
tained from K by forgetting △, then Ksupp is an OML. A question arises: Given
an OML, L, can L be made an ODL? Or, in case the above question answers in
the negative too often, can L be at least enlarged to an ODL? If L allows for
such an enlargement, the algebraic “calculus” of L would be enriched and these
ODL-enlargeable OMLs might find an application in quantum logic theory, or
elsewhere (see [3], [6], [18], etc.).
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Let us comment on “the state of art” in this line of problems and agree on some
terminology. In [11] the author shows that several OMLs are ODL-convertible,
i.e. they are such OMLs that can be endowed with △ to become ODLs. Such are,
for instance, the lattices MOκ for κ = 2n − 1, the lattice MOκ for any infinite
cardinal κ, certain pastings of Boolean algebras (this will also be commented on
later), several “non-concrete” OMLs, etc. On the other hand, there are OMLs
that are far from being ODL-convertible (such as, for instance, each finite OML
the cardinality of which differs from 2n). In fact, there are even OMLs that are
not ODL-embeddable (an OML, L, is said to be ODL-embeddable if there is an
ODL, K, such that L is a sub-OML of Ksupp) — a rather elaborate construction
presented in [12] provides such an example. In considering the ODL-embeddable
OMLs a rather interesting connection came into existence. It turned out that if L

is ODL-embeddable then it has to possess an abundance of Z2-states. This allows
us to show, in an interplay with [15], that if n ≥ 4 then the projection lattice L(Rn)
is not ODL-embeddable. The same question about L(R3) remains open (see also
[8], [15]). However, a purely ODL consideration (Theorem 3.10) clarifies the ODL-
convertibility of L(R3): The lattice L(R3) is not ODL-convertible (Theorem 3.11).
The lattice L(R2) is ODL-convertible and, of course, so is L(R1).

Let L be an OML. Let us recall that two elements a, b ∈ L are called compatible
in L (a C b) if they lie in a Boolean subalgebra of L (see [1] and [9] for the
properties of compatible pairs). If a, b ∈ L are not compatible, we write a¬ C b.
Further, let us recall that by a block in L we mean a maximal Boolean subalgebra
of L. Finally, let us call the set C(L) = {c ∈ L; c C a for any a ∈ L} the centre
of L (i.e., C(L) is the set of all “absolutely compatible” elements of L). Obviously,
C(L) is the intersection of all blocks of L.

It is convenient to adopt the following convention.

Convention 1.4. Let L be an ODL. Then any OML notion can be referred to
L as well by applying this notion to the corresponding OML Lsupp.

Proposition 1.5. Let L be an ODL and let a, b ∈ L with a C b. Then a △ b =
(a ∧ b⊥) ∨ (b ∧ a⊥) = (a ∨ b) ∧ (a ∧ b)⊥. A corollary: If a C b, then a C a △ b.

Proof: It follows from Proposition 1.2(7). �

In concluding this paragraph let us observe the following consequence of Propo-
sition 1.5: For each block B of L, the operation △ on L acts on B as the standard
symmetric difference.

2. OMLs with 8-element blocks

In this section we shall be interested in some intrinsic properties of the OMLs
whose blocks are of cardinality 8 and whose pairs of atoms, a and b, satisfy the
inequality a∨ b < 1. We will then apply the results obtained in the constructions
enabling us to prove our main result formulated in Theorem 3.10. (It should be
noted that the class of OMLs considered in this section contains, as an important
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example, the lattice L(R3) of projections of R3. The paper [17] studies, with the
motivation coming from theoretical physics, the existence of sub-orthoposets of
L(R3). Incidentally, our result of Theorem 2.5 adds to Proposition 6.5 of [17].)

Proposition 2.1. Let L be an OML such that the cardinality of each block of L

is 8. Then

(i) for any pair a and b of atoms in L, the following statement holds true:

a ∨ b < 1 if and only if there is an atom c such that a C c and b C c;

(ii) for any pair of distinct atoms a and b in L there is at most one atom c

such that a C c and b C c.

Proof: The statement (i) is trivial. For the statement (ii) suppose that a, b are
atoms and a 6= b. Suppose that c, d are such atoms that c C a, c C b, d C a and
d C b. Then we have 0 < a < a ∨ b ≤ c⊥ ∧ d⊥ ≤ c⊥ < 1. Since each block of L

has 8 elements, we infer that c⊥ ∧ d⊥ = c⊥. Thus, c⊥ ≤ d⊥ and therefore d ≤ c.
As c, d are atoms, it follows that c = d. �

Definition 2.2. An OML L is said to be a 3-star if L is isomorphic with the
product {0, 1} × MOκ for κ ≥ 1.

The figure below indicates the Greechie diagram of the 3-star {0, 1} × MOκ.
Note that the number of blocks of this 3-star is κ.
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Proposition 2.3. Let L be an OML. Then L is a 3-star if and only if the

cardinality of each block of L is 8 and C(L) 6= {0, 1}.

Proof: The proof is evident. �

Prior to the main result of this section, let us recall some notions of orthomo-
dular combinatorics (see also [4] and [16]).

Definition 2.4. Let L be an OML such that the cardinality of each block of
L is 8. For three mutually distinct and compatible atoms a1, a2, a3 of L, let us
denote by [a1, a2, a3]L the block of L generated by these atoms.

An n-path in L (n ≥ 1) is a sequence B1, . . . , Bn of blocks of L such that there
are pairwise distinct atoms b1, a1, b2, . . . , an, bn+1 ∈ L with Bi = [bi, ai, bi+1]L,
i = 1, . . . , n.

An n-loop in L (n ≥ 3) is a sequence B1, . . . , Bn of blocks of L such that
there are pairwise distinct atoms b1, a1, b2, . . . , an ∈ L with Bi = [bi, ai, bi+1]L,
i = 1, . . . , n − 1, Bn = [bn, an, b1]L.



Symmetric difference on orthomodular lattices and Z2-valued states 539

We shall also need the following corollary of Greechie’s lemma ([4]): An OML
satisfying the assumptions of Def. 2.4 cannot contain any n-loop for n ≤ 4.

Theorem 2.5. Let L be an OML. Let the cardinality of each block of L be 8
and let C(L) = {0, 1}. Let for any pair a, b of atoms in L the inequality a∨ b < 1
hold true. Then any block of L is contained in a 5-loop.

Proof: We shall need three lemmas (the OML L dealt with in the lemmas
satisfies the assumptions of Theorem 2.5).

Lemma 1. Each block in L is contained in a 2-path.

Proof: Consider a block B = [a1, a2, a3]L. Since L is not a Boolean algebra, we
see that L 6= B. Hence there is an atom b ∈ L with b /∈ B. The assumptions
required for L obviously guarantee the existence of an atom c ∈ L such that a1 C c

and b C c. Let us complete the lemma arguing by cases. If c ∈ {a1, a2, a3}, then
the couple [a1, a2, a3]L, [c, b, c⊥ ∧ b⊥]L is a 2-path. If c /∈ {a1, a2, a3}, then the
couple [a1, a2, a3]L, [c, a1, c

⊥ ∧ a⊥
1 ]L is a 2-path. The proof is done. �

Lemma 2. Each 2-path in L is contained in a 3-path.

Proof: Consider a 2-path, some B1 = [b1, a1, b2]L, B2 = [b2, a2, b3]L. Since b2 /∈

C(L), there is an atom d ∈ L such that b2¬ C d. It follows that d /∈ {b1, a1, a2, b3}.
We have two possibilities to argue.

(I) First, d is compatible with some of the atoms b1, a1, a2, b3. Without any loss of
generality, suppose that d C b1. Then a1¬ C d, a2¬ C d and b3¬ C d. Indeed, if
a1 C d then d = b. If a2 C d or b3 C d then L contains a 4-loop which is excluded
by the Greechie lemma. Thus, we obtain the following Greechie diagram:

s s s

b2 a2 b3

s

s

a1

b1
s s

d

(II) Second, d is not compatible with any of the elements b1, a1, a2, b3. By our
assumption, there is an atom c ∈ L such that b1 C c and d C c. Since d is not
compatible with any of the elements b1, a1, b2, a2, b3 and since d C c, we see that
c /∈ {b1, a1, b2, a2, b3}. Mimicking the reasoning of the part (I) we obtain a 3-path
portrayed below:
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s s s

b2 a2 b3

s

s

a1

b1
s s

c

This completes the proof of Lemma 2. �

Lemma 3. Each 3-path in L is contained in a 5-loop.

Proof: Consider a 3-path, some B1 = [b1, a1, b2]L, B2 = [b2, a2, b3]L, B3 =
[b3, a3, b4]L. By our assumption on L, there is an atom d ∈ L such that d C b1

and d C b4. Obviously, d /∈ {a1, b2, a2, b3, a3}. In other words, we have completed
the proof of Lemma 3 by constructing a 5-loop in L with the following Greechie
diagram:

s s s

b3 a3 b4

s

s

a2

b2
s

s

b1a1

Q
Q

Q
QQ

s

s

d

�
�

�
��

s

�

Let us return to the proof of Theorem 2.5. Let us choose a block B of L. Then a
consecutive application of Lemma 1, Lemma 2 and Lemma 3 allows us to obtain
the desired 5-loop. �

3. Results

Let Z2 stand for the group {0, 1} understood with the modulo 2 addition ⊕

(thus, 1⊕ 1 = 0⊕ 0 = 0, 1⊕ 0 = 0⊕ 1 = 1). Let L be an OML and let s : L → Z2

be a mapping. Then s is said to be a Z2-valued state (abbr., a Z2-state) provided
s(1) = 1 and s(x ∨ y) = s(x) ⊕ s(y) whenever x, y ∈ L, x ≤ y⊥. The following
definition is a variant of “fullness” dealt with in the quantum logic theory ([7])
and it is crucial in our consideration.

Definition 3.1. Let L be an OML. Then L is called Z2-full if for any x, y ∈ L,
x 6= y, x 6= 0, y 6= 1 there exists a Z2-state, s, on L such that s(x) = 1 and
s(y) = 0.

Our first result reads as follows.
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Theorem 3.2. Let L be an OML. If L is ODL-embeddable then L is Z2-full.

The proof of Theorem 3.2 will be obtained in a series of propositions. Let us
first examine a certain type of ideals in ODLs. They will correspond to Z2-states.

Definition 3.3. Let K be an ODL and let I be a subset of K. Then I is said
to be a △-ideal if 0 ∈ I and whenever a, b ∈ I, then a △ b ∈ I. Further, if 1 /∈ I,
then I is called a proper △-ideal . Finally, I is called maximal if I is proper and
for any proper △-ideal J with I ⊆ J we have I = J .

Proposition 3.4. Suppose that K is an ODL and I is a proper △-ideal in K.

Suppose that x ∈ K and neither x nor x⊥ belongs to I. Let us write J =
I ∪ {a △ x; a ∈ I}. Then J is also a proper △-ideal in K and, moreover, x ∈ J

and x⊥ /∈ J .

Proof: The set J is obviously a △-ideal. Let us see that 1 /∈ J . Suppose
on the contrary that 1 ∈ J . Then 1 = a △ x for some element a ∈ I. The
equality 1 = a △ x implies that a = x⊥ (indeed, by Proposition 1.2 we have
0 = (a △ x)⊥ = a △ x⊥ and therefore a = x⊥). But x⊥ does not belong to I

which is a contradiction. Thus, 1 /∈ J . Further x = 0 △ x ∈ J . If x⊥ ∈ J , then
1 = x △ x⊥ ∈ J — a contradiction again. �

Proposition 3.5. Let K be an ODL and let I be a maximal △-ideal in K. Then

card({x, x⊥} ∩ I) = 1 for any x ∈ K.

Proof: Suppose that I is maximal and x ∈ K. Suppose further that x /∈ I and,
also x⊥ /∈ I. Then (Proposition 3.4) there is a △-ideal, J , such that I ⊆ J and
I 6= J . As a result, at least one element of the set {x, x⊥} belongs to I. Looking
for a contradiction, suppose that {x, x⊥} ⊆ I. Then x △ x⊥ = 1 which means
that 1 ∈ I — a contradiction (I is supposed to be proper). �

Proposition 3.6. Let K be an ODL and let a, b ∈ K, a 6= b, a < 1 and 0 < b.

Then there is a maximal △-ideal, J , such that a ∈ J and b /∈ J .

Proof: Write I = {I ⊆ K; I is a proper △-ideal, a ∈ I and b /∈ I}. Then
{0, a} ∈ I and therefore I 6= ∅. By a standard application of Zorn’s lemma,
the set I ordered by inclusion contains a maximal element, J . Of course, J is a
proper △-ideal. Moreover, b⊥ ∈ J (otherwise the △-ideal J ′ = J∪{c△b⊥; c ∈ J}

extends J , Proposition 3.4, and J ′ belongs to the system I). Let us show that J is
maximal. Suppose therefore that J ⊆ I for a proper △-ideal I, J 6= I. Thus, I is
strictly larger than J and therefore I /∈ I. Therefore b ∈ I and since b⊥ ∈ J ⊆ I,
we see that 1 = b △ b⊥ ∈ I. This means that I is not proper and the proof is
complete. �

Proposition 3.7. Let K be an ODL and I be a maximal △-ideal in K. Let

us define a mapping s : K → Z2 as follows: s(a) = 0 (resp., s(a) = 1) if a ∈ I

(resp., a /∈ I). Then s(x△ y) = s(x)⊕ s(y) for any x, y ∈ L. A consequence: The

mapping s is a Z2-state on Ksupp.
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Proof: Let us consider two elements x, y ∈ K. We are to prove the equality
s(x△ y) = s(x)⊕ s(y). We will argue by cases. If both x and y belong to I, then
x △ y ∈ I and therefore s(x △ y) = 0 = 0 ⊕ 0 = s(x) ⊕ s(y). If x ∈ I and y /∈ I,
then x△y /∈ I (indeed, should x△y be an element of I, then y = x△ (x△y) ∈ I

which is a contradiction). Hence s(x△ y) = 1 = 0⊕ 1 = s(x) ⊕ s(y). The case of
x /∈ I and y ∈ I argues analogously. Let us suppose that x /∈ I and y /∈ I. Since
I is a maximal △-ideal, we infer that x⊥ ∈ I and y⊥ ∈ I. Then x⊥ △ y⊥ ∈ I.
But x⊥ △ y⊥ = x △ y (Proposition 1.2(5)) and therefore x △ y ∈ I. Hence
s(x △ y) = 0 = 1 ⊕ 1 = s(x) ⊕ s(y).

It remains to show that the mapping s defined above is a Z2-state on Ksupp.
Of course, s(1) = 1. Let us take x, y ∈ K with x ≤ y⊥. Then x C y and therefore
(Proposition 1.5) we see that x △ y = (x ∨ y) ∧ (x ∧ y)⊥ = (x ∨ y) ∧ 0⊥ = x ∨ y.
Then s(x ∨ y) = s(x △ y) = s(x) ⊕ s(y) by the analysis above. The proof of
Proposition 3.7 is complete. �

Proof of Theorem 3.2: Let L be an ODL-embeddable OML. Then there is
an ODL, K, such that L is a sub-OML of Ksupp. Let x, y be elements of L with
x 6= y, x 6= 0 and y 6= 1. According to Proposition 3.6 there is a maximal △-ideal
J in K such that y ∈ J and x /∈ J . Let us set s(a) = 0 for a ∈ J and s(a) = 1 for
a ∈ K, a /∈ J . Then, according to Proposition 3.7, the mapping s is a Z2-state on
Ksupp. If we denote by s1 the restriction of s to the OML L, then s1 is a Z2-state
on L. Moreover, s1(x) = s(x) = 1 and s1(y) = s(y) = 0. �

The link of ODL-embeddable OMLs with Z2-states revealed in Theorem 3.2
allows us to shed light on the ODL embeddability of the lattice L(H) of projections
in a (real) Hilbert space H .

Theorem 3.8. Let H be a Hilbert space. If dimH ≥ 4, then L(H) is not

ODL-embeddable.

Proof: In [15] it is shown that for dimH ≥ 4 the OML L(H) does not allow for
any Z2-state. The rest follows from Theorem 3.2. �

The case of L(R3) remains open — it seems still open whether or not L(R3)
possesses a Z2-state (see [8] and [15]). However, it is not difficult to show that
L(R3) cannot be made an ODL (i.e., it can be proved that L(R3) is not ODL-
convertible). In fact, even relatively mild lattice-theoretic conditions shared by
L(R3) prevent us from introducing △ on L(R3). We are going to prove this by
deriving a characterization of 3-stars — a result which may be of separate interest
in the theory of ODLs.

Recall first a result already referred to in the introduction (for a detailed proof,
see [11]; let us provide a sketch for the convenience of the reader).

Proposition 3.9. Let κ be a cardinal number. Let κ = 2n − 1 for a natural

number n ∈ N or let κ be infinite. Then the horizontal sum MOκ is, up to an

ODL-isomorphism, uniquely ODL-convertible.



Symmetric difference on orthomodular lattices and Z2-valued states 543

Proof: Let κ = 2n − 1 (resp. κ be infinite). Then there is a Boolean algebra,
B, with card(B) = 2n+1 (resp. card(B) = κ). Take a prime-ideal on B, some
I and set, for any a ∈ I \ {0}, Ba = {0, a, a⊥, 1}. Since card(I \ {0}) = κ, we
see that MOκ is OML-isomorphic with the horizontal sum of Ba, a ∈ I \ {0}.
Moreover, MOκ and B have the same underlying set. Thus, elements c, d ∈ MOκ

can be viewed as elements of B and hence we can define c△d as the corresponding
symmetric difference in B (understood in MOκ this time). It can be shown that
MOκ endowed with this symmetric difference is an ODL and that △ is (up to an
ODL-isomorphism) the only one which converts MOκ to an ODL. �

Before we formulate the main result of this section let us again make use of
Convention 1.4 allowing ourselves to call an ODL K a 3-star provided so is Ksupp.

Theorem 3.10. Let K be an ODL. Then the following two statements are equi-

valent:

(i) K is a 3-star,

(ii) the cardinality of each maximal Boolean subalgebra of K is 8, and for

any pair a, b ∈ K of atoms in K the inequality a ∨ b < 1 holds true.

Proof: The implication (i)⇒(ii) is obvious. Let us launch on (ii)⇒(i). Let us
first formulate and prove a few auxiliary propositions.

Lemma 1. Suppose that K is as in Theorem 3.10(ii). Let a, b be atoms of K.

Then

(i) a △ b is a co-atom of K if and only if a 6= b and a C b,

(ii) if a is not compatible with b, then a △ b is an atom of K.

Proof: (i) If a 6= b and a C b, then a ≤ b⊥ and therefore a △ b = a ∨ b. Since
both a, b belong to an 8-element Boolean subalgebra of K, the element a△b must
be a co-atom.

Suppose for the reverse implication that a△b = d⊥ for an atom d ∈ K. Choose
an atom, c, such that a C c and b C c. Then a ≤ c⊥ and b ≤ c⊥. It follows that
a △ b ≤ a ∨ b ≤ c⊥. Thus, d⊥ ≤ c⊥ and therefore c ≤ d. Since c, d are atoms,
we see that c = d. The equality a △ b = c⊥ gives us a △ a △ b = a △ c⊥.
According to Proposition 1.2 we have b = a △ c⊥. Since a C c⊥, we see in view
of Proposition 1.5 that a C a △ c⊥. Hence a C b.

(ii) Suppose that a¬ C b. As known ([1] and [9]), a C b precisely when a C b⊥.
It follows that a 6= b⊥ and a 6= b. Then a △ b 6= 1 and a △ b 6= 0. If a △ b were a
co-atom, the part (i) gives us a C b. This implies that a△ b is an atom in K. �

Lemma 2. Suppose that K is as in Theorem 3.10(ii). Let a, b, c be atoms in K.

Then a△b△c = 1 if and only if the atoms a, b, c are pairwise distinct and pairwise

compatible.

Proof: If a, b, c are pairwise distinct and pairwise compatible, they must be the
atoms of a block of K. In this case a △ b △ c = 1.
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Suppose that a △ b △ c = 1. Then a, b, c are pairwise distinct. Indeed, if e.g.
a = b, then a △ b △ c = a △ a △ c = 0 △ c = c 6= 1. Further, a △ b = c⊥ and
therefore a△ b is a co-atom. It follows that a C b (Lemma 1). Analogously, a C c

and b C c and this completes the proof. �

Lemma 3. Suppose that K is as in Theorem 3.10(ii). Then K does not contain

a 5-loop.

Proof: Suppose that it is not the case. Then there must be a configuration of
blocks indicated by the following figure.
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s
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s

s
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b3









s

s

a4

b4

J
J

J
JJ
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We see that we obtain the following collection of identities:
b1 △ a1 △ b2 = 1, b2 △ a2 △ b3 = 1, b3 △ a3 △ b4 = 1, b4 △ a4 △ b5 = 1, and
b5 △ a5 △ b1 = 1.
As a result, we have the equality
(b1 △ a1△ b2)△ (b2△ a2△ b3)△ (b3△ a3△ b4)△ (b4△ a4△ b5)△ (b5△ a5△ b1) =
1 △ 1 △ 1 △ 1 △ 1. Since x △ x = 0 for any x in K, the right-hand side of the
equality above equals to 1 and the left-hand side equals to a1△a2△a3△a4△a5.
Thus, a1 △ a2 △ a3 △ a4 △ a5 = 1. Let us rewrite the last equality as follows:
(a1 △ a2)△ (a3 △ a4)△ a5 = 1. Lemma 1 gives us that a1 △ a2 as well as a3 △ a4

are atoms in K. Further, Lemma 2 implies that a1 △ a2 and a5 are compatible
atoms. Moreover, a1 ≤ b⊥2 and a2 ≤ b⊥2 . This means that a1 △ a2 ≤ a1 ∨a2 ≤ b⊥2 .
We therefore see that b2 C (a1 △ a2). But then b1 and a1 △ a2 are distinct atoms
that are compatible with a5 and b2. This contradicts Proposition 2.1(ii). The
proof of Lemma 3 is complete. �

Proof of Theorem 3.10: It is easily seen that the proof of Theorem 3.10 can
be obtained as an interplay of the Lemma 3 and Theorem 2.5. Indeed, suppose K

satisfies the conditions of Theorem 3.10(ii). Then as K does not contain a 5-loop,
to avoid a contradiction with Theorem 2.5 we must have C(K) 6= {0, 1}. But this
means that K is a 3-star (Proposition 2.3). �

Theorem 3.11. The OML L(R3) is not ODL-convertible.
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Proof: Suppose that L(R3) is ODL-convertible. Then L(R3) must be a 3-star
(Theorem 3.10). But C(L(R3)) = {0, 1} and we have reached a contradiction.
The proof is complete. �

Theorem 3.12. The OMLs L(R2) and L(R1) are ODL-convertible.

Proof: Of course, L(R1) = {0, 1} and there is nothing to prove. Let us consider
L(R2). Obviously, L(R2) is nothing but MOκ, where κ = 2ω0 (= the cardinality
of continuum). This OML is ODL-convertible (Proposition 3.9). �

We have seen that a lack of Z2-states on L prevents L from being ODL-
embeddable (and, in turn, from being ODL-convertible). It should be noted
that in [14] and [19] the authors construct finite OMLs without any group-valued
state at all. Their technique therefore provides another type of OMLs that are not
ODL-embeddable. However, the technique is very involved and even computer-
proved in places. A relatively simple OML without any Z2-states can be con-
structed on the ground of the following proposition. This proposition allows us to
extend the class of non-embeddable OMLs, and it also slightly adds to the area of
orthomodular peculiarities (see [4], [13], etc.). It should be noted that the result
generalizes Proposition 7.2 of the paper [12].

Proposition 3.13. Suppose that L is an OML. Suppose that there are blocks

B1, B2, . . . , Bn of L such that the following two conditions are satisfied:

(1) each Bi, 1 ≤ i ≤ n is finite and n is an odd number,

(2) if a ∈ L is an atom in L, then a lies in an even number of blocks

B1, B2, . . . , Bn (i.e. the cardinality of the set {i; a ∈ Bi} is even).

Then there is no Z2-state on L.

Proof: Seeking a contradiction, let s : L → Z2 be a Z2-state. Let {ai,1, . . . , ai,ki
}

be the set of all atoms of the algebra Bi, i = 1, . . . , n. Then the elements
ai,1, . . . , ai,ki

are mutually orthogonal and, moreover, ai,1 ∨ . . .∨ai,ki
= 1L. Since

s is a Z2-state, we have s(ai,1 ∨ . . . ∨ ai,ki
) = s(ai,1) ⊕ . . . ⊕ s(ai,ki

). Since
ai,1 ∨ . . . ∨ ai,ki

= 1L, we obtain s(ai,1 ∨ . . . ∨ ai,ki
) = s(1L) = 1. Summarizing,

s(ai,1) ⊕ . . . ⊕ s(ai,ki
) = 1 for any i ∈ {1, . . . , n}. As a consequence,

(s(a1,1) ⊕ . . . ⊕ s(a1,k1
)) ⊕ . . . ⊕ (s(an,1) ⊕ . . . ⊕ s(an,kn

)) = 1 ⊕ . . . ⊕ 1.

The right-hand side of the latter identity contains the element 1 exactly n-many
times. Since n is odd, the right-hand side equals to 1. Moreover, if a is an arbitrary
atom of L, then the assumption of Proposition 3.13 gives us that the left-hand
side of the identity contains the expression s(a) an even number of times. By
the property of the operation ⊕, the left-hand side must be equal to 0. We have
derived a contradiction and the proof is complete. �

This result enables us to construct OMLs that do not possess a Z2-state (and,
as a consequence, the OMLs that are not ODL-embeddable). Let us conclude
our paper by exhibiting a simple example of an OML in this class (the OML
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portrayed below by its Greechie diagram obviously satisfies the assumptions of
Proposition 3.13; a proper class of such OMLs can be constructed in an analogous
manner).
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[12] Matoušek M., Pták P., Orthocomplemented posets with a symmetric difference, Order 26

(2009), 1–21.

[13] Navara M., Pták P., Rogalewicz V., Enlargements of quantum logics, Pacific J. Math. 135

(1988), 361–369.

[14] Navara M., An orthomodular lattice admitting no group-valued measure, Proc. Amer. Math.

Soc. 122 (1994), 7–12.

[15] Navara M., Pták P., For n ≥ 5 there is no nontrivial Z2-measure on L(R
n
), Internat. J.

Theoret. Phys. 43 (2004), 1595–1598.



Symmetric difference on orthomodular lattices and Z2-valued states 547
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Orthocomplemented difference lattices with few
generators

Milan Matoušek and Pavel Pták 1

Abstract. The algebraic theory of quantum logics overlaps in places with certain areas of

cybernetics, notably with the field of artificial intelligence (see, e.g., [19, 20]). Recently an af-

fort has been exercised to advance with logics that possess a symmetric difference ([13, 14])

- with so called orthocomplemented difference lattices (ODLs). This paper further con-

tributes to this affort. In [13] the author constructs an ODL that is not set-representable.

This example is quite elaborate. A main result of this paper somewhat economizes on this

construction: There is an ODL with 3 generators that is not set-representable (and so the

free ODL with 3 generators cannot be set-representable). The result is based on a specific

technique of embedding orthomodular lattices into ODLs. The ODLs with 2 generators are

always set-representable as we show by characterizing the free ODL with 2 generators - this

ODL is MO3 × 24.

AMS Class: 06C15, 03G12, 81B10.

Key words: orthomodular poset, quantum logic, symmetric difference, Gödel’s coding,

Boolean algebra, free algebra.

1 Introduction. Basic notions.

The notion of ODL has been introduced in [13] and further studied in [14] and [15]. The
axiomatic setup of ODLs came into existence by taking an abstract form of set theoretic
symmetric difference as a primitive operation (see Def. 1.1). As it turns out, an ODL is
automatically orthomodular and therefore it forms an orthomodular lattice (an OML).
This situates the variety of ODLs between OMLs and Boolean algebras. In a potential
application, the ODLs add to the instances considered previously as quantum logics (see
[4, 7, 10, 19] etc.). In this paper we find a minimal number of generators of an ODL that
is not set-representable. This number is 3. We shall make use of the Greechie’s paste
job for OMLs together with certain techniques of embeddings of OMLs into ODLs. An
acquitance with the theory of OMLs is assumed in places (see, e.g., [1, 12, 19] for basics
on OMLs). For some specific properties of ODLs, let us refer the reader to [13].

Let us first recall the definition of an ODL.

Definition 1.1 Let L = (X,∧,∨,⊥ , 0, 1,△), where (X,∧,∨,⊥ , 0, 1) is an OCL and △ :
X2 → X is a binary operation. Then L is said to be an orthocomplemented difference
lattice (abbr., an ODL) if the following identities hold in L:

(D1) x △ (y △ z) = (x △ y) △ z,

(D2) x △ 1 = x⊥, 1 △ x = x⊥,

(D3) x △ y ≤ x ∨ y.

1The authors acknowledge the support of the research plans MSM 0021620839 and MSM 6840770038
that are financed by the Ministry of Education of the Czech Republic.
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Obviously, the class of all ODLs forms a variety. We will denote it by ODL.
Let L = (X,∧,∨,⊥ , 0, 1,△) be an ODL. Then the OCL (X,∧,∨,⊥ , 0, 1) will be de-

noted by Lsupp and called the support of L. Occasionally, the ODL L will be identified
with the couple (Lsupp,△).

Let us list basic properties of ODLs as we shall use them in the sequel.

Proposition 1.2 Let L be an ODL. Then the following statements hold true:

(1) x △ 0 = x, 0 △ x = x,

(2) x △ x = 0,
(3) x △ y = y △ x,

(4) x △ y⊥ = x⊥ △ y = (x △ y)⊥ ,

(5) x⊥ △ y⊥ = x △ y ,

(6) x △ y = 0 ⇔ x = y,

(7) (x ∧ y⊥) ∨ (y ∧ x⊥) ≤ x △ y ≤ (x ∨ y) ∧ (x ∧ y)⊥.

Proof. Let us first observe that the property (D2) yields 1 △ 1 = 1⊥ = 0. Let us verify
the properties (1)-(7). Suppose that x, y ∈ L.
(1) x △ 0 = x △ (1 △ 1) = (x △ 1) △ 1 = x⊥ △ 1 = (x⊥)⊥ = x. Further, 0 △ x =
(1 △ 1) △ x = 1 △ (1 △ x) = 1 △ x⊥ = (x⊥)⊥ = x .
(2) Let us first show that x⊥ △ x⊥ = x △ x. We consecutively obtain x⊥ △ x⊥ =
(x△1)△ (1△x) = (x△ (1△1))△x = (x△0)△x = x△x. Moreover, we have x△x ≤ x

as well as x △ x = x⊥ △ x⊥ ≤ x⊥. This implies that x △ x ≤ x ∧ x⊥ = 0.
(3) x △ y = (x △ y) △ 0 = (x △ y) △ [(y △ x) △ (y △ x)] = x △ (y △ y) △ x △ (y △ x) =
x △ 0 △ x △ (y △ x) = x △ x △ (y △ x) = 0 △ (y △ x) = y △ x.
(4) x △ y⊥ = x △ (y △ 1) = (x △ y) △ 1 = (x △ y)⊥. The equality x⊥ △ y = (x △ y)⊥

follows from x △ y⊥ = (x △ y)⊥ by applying the equality (3).
(5) Using (4) we obtain x⊥ △ y⊥ = (x⊥ △ y)⊥ = (x △ y)⊥⊥ = x △ y.
(6) If x = y, then x △ y = 0 by the condition (2). Conversely, suppose that x △ y = 0.
Then x = x △ 0 = x △ (y △ y) = (x △ y) △ y = 0 △ y = y.
(7) The property (D3) together with the properties (4), (5) imply that x △ y ≤ x ∨ y,
x △ y ≤ x⊥ ∨ y⊥ = (x ∧ y)⊥, x ∧ y⊥ ≤ x △ y, x⊥ ∧ y ≤ x △ y.

Theorem 1.3 Let L be an ODL. Then its support Lsupp is an OML.

Proof. Suppose that x, y ∈ L, x ≤ y, y ∧ x⊥ = 0. Let us prove that x = y. Since x ≤ y,
we conclude that (x ∧ y⊥) ∨ (y ∧ x⊥) = y ∧ x⊥ = 0 and (x ∨ y) ∧ (x ∧ y)⊥ = y ∧ x⊥ = 0.
By Prop. 1.2, (6), (7) we see that x △ y = 0 and therefore x = y.

In view of the above proposition, all notions of OMLs can be referred to in ODLs, too. In
particular, we shall say that two elements x, y in an ODL L commute (in symbols, x C y)
if they commute in Lsupp. Similarly, we shall denote by C(L) the set of all elements of L

that commute with all elements of L. Let us call C(L) the centre of L. It can be easily
shown that C(L) is a subalgebra of L ([13]).

Let us suppose that B is a Boolean algebra. Let us denote by ∆B the standard symmetric
diffrence on B. Thus, if x, y ∈ B then x ∆B y = (x∧ y⊥)∨ (y ∧ x⊥) = (x∨ y)∧ (x∧ y)⊥.

Proposition 1.4 Let L be an ODL. Let x, y ∈ L with x C y. Then x △ y = (x ∧ y⊥) ∨
(y ∧ x⊥) = (x ∨ y) ∧ (x ∧ y)⊥.
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A consequence: If B is a Boolean sub-algebra of L and x1, . . . , xn ∈ B, then x1△...△xn =
x1∆B...∆Bxn.

Proof. According to Prop. 1.2, (7), we have the inequalities (x∧y⊥)∨ (y∧x⊥) ≤ x△y ≤

(x ∨ y) ∧ (x ∧ y)⊥. Since the elements x, y commute, the left-hand side of the previous
inequality coincides with the right-hand side and therefore x△ y = (x∧ y⊥)∨ (y ∧ x⊥) =
(x ∨ y) ∧ (x ∧ y)⊥.

Let us exhibit some simple examples of ODLs. Firstly, each Boolean algebra can be
understood as an ODL which the following proposition shows.

Proposition 1.5 Let B be a BA. Then there exists exactly one mapping △ : B×B → B

which fulfils the conditions (D1), (D2) and (D3) of Def. 1.1.

Proof. To prove the existence, take for the operation △ the standard symmetric difference
∆B in B. The properties (D1), (D2) and (D3) of Def. 1.1 are then obviously fulfilled.

Let us prove the uniqueness of △. Let △1 : B × B → B be a mapping that fulfils
the conditions (D1), (D2) and (D3). So the couple (B,△1) is an ODL. If x, y ∈ B, then
x C y, and therefore x △1 y = x ∆B y = x △ y (Prop. 1.4).

Example 1.6 Let MO3 be the OML obtained as the horizontal sum of three 4-element
BA’s (see, e.g., [12]). Write MO3 = {0, 1, x, x⊥, y, y⊥, z, z⊥}. Then one can easily show
that there is exactly one mapping △ : MO3 × MO3 → MO3 such that x △ y = z and
(MO3,△) is an ODL. The ODL obtained in this way will again be denoted by MO3.
Obviously, the ODL MO3 is generated by the elements x, y. (It might be noted that MOk

can be viewed as an ODL exactly when k = 2n + 1, [13]. We shall only use MO3 in this
paper.)

Proposition 1.7 Let L be an ODL and let x, y ∈ L. Then

(a) x ∨ (x △ y) = x ∨ y ,

(b) x ∧ (x △ y) = x ∧ y⊥.

Proof. Before verifying the equalities, recall the convention of the preference of △ over
the operations ∧ and ∨ (thus, for instance, x ∨ y △ z means x ∨ (y △ z) etc.).
(a) The inequality x∨ x△ y ≤ x∨ y is obvious. We have to show that x∨ y ≤ x∨ x△ y.
But x ≤ x ∨ x △ y and therefore we need to check y ≤ x ∨ x △ y. According to (D3), we
have x ∨ x △ y ≥ x △ (x △ y) = y. (It is worthwhile observing that this equality can be
viewed as a strenghtening of the condition (D3) from the definition of ODL’s.)
(b) The equality follows from (a) via the following calculation: x∧x△y = (x∧x△y)⊥⊥ =
(x⊥ ∨ x⊥ △ y)⊥ = (x⊥ ∨ y)⊥ = x ∧ y⊥.

Proposition 1.8 Let L be an ODL and let x, y ∈ L. Then x ≤ y ⇔ x △ y ≤ y.

Proof. Let us suppose that x ≤ y. As y ≤ y, the condition (D3) implies that x △ y ≤ y.
Conversely, suppose x △ y ≤ y. Making again use of y ≤ y, the condition (D3) implies
that (x △ y) △ y ≤ y. But (x △ y) △ y = x △ (y △ y) = x △ 0 = x.

We shall need the following simple fact on OMLs.

Lemma 1.9 Let L be an OML. Let x, y, x1, x2 ∈ L and let y = x1 ∨x2, x1 ≤ x, x2 ≤ x⊥.

Then x C y and x1 = y ∧ x, x2 = y ∧ x⊥.

3



Proof. Since x1 ≤ x and x2 ≤ x⊥, we see that x1 ≤ x ≤ x⊥

2
. Thus, the elements x1, x2, x

are mutually commutative. As known, x C (x1 ∨ x2) and therefore x C y. Moreover,
y ∧ x = (x1 ∨ x2) ∧ x = (x1 ∧ x) ∨ (x2 ∧ x) = x1 ∨ 0 = x1, and
y ∧ x⊥ = (x1 ∨ x2) ∧ x⊥ = (x1 ∧ x⊥) ∨ (x2 ∧ x⊥) = 0 ∨ x2 = x2.

Proposition 1.10 Let L be an ODL. Let x, y, z ∈ L with x C y and x C z. Then

x C (y △ z) and x ∧ (y △ z) = (x ∧ y) △ (x ∧ z).

Proof. The commutativity of the pair x C y and x C z yields the equations y = (y∧x)∨
(y ∧ x⊥), z = (z ∧ x) ∨ (z ∧ x⊥). Since (y ∧ x) ⊥ (y ∧ x⊥) and (z ∧ x) ⊥ (z ∧ x⊥), we see
by Prop. 1.8 that y = (y ∧ x) △ (y ∧ x⊥) and z = (z ∧ x) △ (z ∧ x⊥). But we also have
y△z = [(y∧x)△(y∧x⊥)]△ [(z∧x)△(z∧x⊥)] = [(y∧x)△(z∧x)]△ [(y∧x⊥)△(z∧x⊥)].
Let us write x1 = (y∧x)△(z∧x), x2 = (y∧x⊥)△(z∧x⊥). Then x1 ≤ (y∧x)∨(z∧x) ≤ x.
Analogously, x2 ≤ x⊥. This implies that x1 ⊥ x2. By Prop. 1.8, y △ z = x1 ∨ x2. The
proof is completed by using Lemma 1.9.

Let us take up the intervals in ODLs. We will need them for the decomposition property
with respect to a central element. Consider first the situation in OMLs. Let K be
an OML and let a ∈ K. Let us write [0, a]K = {x ∈ K; x ≤ a}. As known, the
interval [0, a] constitutes an OML. We will denote it by Ka. Let us shortly recall the
construction of Ka (see, for example, [12], p. 20): If x, y ∈ [0, a], then x ∧ y ∈ [0, a] and
x ∨ y ∈ [0, a]. The element 0, resp. a, is a least, resp. a greatest, element of Ka. The
orthocomplement of x in Ka, x⊥a , is defined by setting x⊥a = x⊥K ∧ a. It can be easily
seen that Ka = ([0, a],∧,∨,⊥a , 0, a) is an OML.

Let L be an ODL and let a ∈ L. If x, y ∈ [0, a] then x △ y ∈ [0, a]. Let us consider
the algebra La = ([0, a],∧,∨,⊥a , 0, a,△) = ((Lsupp)

a,△).

Proposition 1.11 Let L be an ODL and let a ∈ L. Then the algebra La is again an ODL.

Moreover, if a ∈ C(L), then the mapping πa : L → [0, a] defined by putting πa(x) = x ∧ a

is a surjective homomorphism of L onto La.

Proof. In order for La to be an ODL, it is sufficient to check that the conditions (D1), (D2)
and (D3) of Def. 1.1 hold in La. The conditions (D1) and (D3) can be easily verified . It
remains to check the condition (D2). For that, suppose x ∈ [0, a]. Then x△La 1La = x△a.
From Prop. 1.8 we obtain the equalities x△a = a∧x⊥ = x⊥a . The equality 1La△Lax = x⊥a

follows from the commutativity of △.
Suppose further that a ∈ C(L). Then the mapping πa is an OML-homomorphism

Lsupp → (La)supp (see [12], p. 20). It remains to show that the mapping πa preserves the
operation △. Suppose that x, y ∈ L. Then by Prop. 1.10 we consecutively obtain
πa(x △L y) = (x △L y) ∧ a = (x ∧ a) △L (y ∧ a) = πa(x) △La πa(y). This completes the
proof.

In the final auxiliary result, let us show that an ODL can be decomposed with the help
of a central element in the way analogous to the situation known in OMLs.

Proposition 1.12 Suppose that L is an ODL and a ∈ C(L). Then the mapping i :
L → [0, a]× [0, a⊥] defined by putting i(x) = (πa(x), πa⊥(x)) is an isomorphism of L onto

La × La
⊥

.
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Proof. The mapping i is an isomorphism between the OMLs Lsupp and (La)supp×(La
⊥

)supp

(see again [12], p. 20). Since both the mappings πa, πa⊥ preserve the operation △, so
does the mapping i and the proof is done.

In the conclusion of preliminaries, let us recall an important class of ODLs - the ODLs
that are set-representable. They form a variety ([13]) and represent some ‘nearly Boolean’
ODLs. Though the name itself suggests their definition, let us recall it in more formal
terms. Let X be a set and let D a family of subsets of X such that
(1) X ∈ D,
(2) the family D forms a lattice with respect to the inclusion relation, and
(3) D is closed under the formation of the set symmetric difference.
Obviously, D constitutes an ODL. Let us call it concrete. If L is an ODL that is isomorphic
with a concrete one, then L is said to be set-representable.

2 Each ODL with two generators is set-representable

(a characterization of the free ODL with two gene-

rators).

Let us show in this section that the free ODL on 2 generators coincides with 24 × MO3

(where, as usual, 24 stands for the Boolean algebra with 4 atoms). Since the ODL 24×MO3

is set-representable, and since a homomorphic image of a set-representable ODL is again
set-representable ([13]), we see that any ODL with two generators is set-representable.

In order to characterize the free ODL with 2 generators, we shall need two auxiliary
results. For the sake of a transparent formulation of these results, let us assume that
the generators of the Boolean algebra 24 are elements x1, y1 and the generators of the
ODL MO3 are elements x2, y2 (compare with Example 1.6 - we have renamed x, y of
Example 1.6 with x2, y2).

Proposition 2.1 Let L be an ODL and let a, b ∈ L. Let us suppose that a∧ b = a∧ b⊥ =
a⊥ ∧ b = a⊥ ∧ b⊥ = 0. Then there exists a homomorphism h : MO3 → L with h(x2) = a,

h(y2) = b.

Proof. Let us denote z2 = x2 △ y2. Let us set h(0MO3
) = 0L, h(1MO3

) = 1L, h(x2) = a,
h(x⊥

2
) = a⊥, h(y2) = b, h(y⊥

2
) = b⊥, h(z2) = a△ b, h(z⊥

2
) = a△ b⊥, where z2 = x2 △ y2 in

MO3.
The definition of h implies that h preserves the least and greatest element. Also, the
operations ⊥ and △ are obviously preserved. Let us check that h preserves the operation
∧, too. Suppose therefore that x, y ∈ MO3 and let us ask whether or not we have
h(x ∧ y) = h(x) ∧ h(y). If x, y commute in MO3, this equality is obvious. Suppose
that x, y do not commute. Without any loss of generality, it is sufficient to consider the
images of the elements x2 ∧ y2 and x2 ∧ z2. We firstly see that h(x2 ∧ y2) = h(x2 ∧ z2) =
h(0MO3

) = 0L, and further we have h(x2) ∧ h(y2) = a ∧ b = 0L as well as, by Prop. 1.7,
h(x2)∧h(z2) = a∧ (a△ b) = a∧ b⊥ = 0L. The preservation of the operation ∨ is a simple
consequence of de Morgan’s law. The proof is complete.
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Proposition 2.2 Let L be an ODL with two generators s, t. Let us set a = (s∧ t)∨ (s∧
t⊥) ∨ (s⊥ ∧ t) ∨ (s⊥ ∧ t⊥). Then a ∈ C(L) and there exist homomorphisms g : 24 → La,

h : MO3 → La
⊥

such that

g(x1) = πa(s), g(y1) = πa(t),
h(x2) = πa⊥(s), h(y2) = πa⊥(t).

Proof. It is obvious that the element s∧t commutes with both s and t. Since s, t generate
the ODL L, we see that s ∧ t ∈ C(L). Analogously, all the elements s ∧ t⊥, s⊥ ∧ t and
s⊥∧t⊥ belong to C(L). As a consequence, (s∧t)∨(s∧t⊥)∨(s⊥∧t)∨(s⊥∧t⊥) = a ∈ C(L).

Let us go on with the proof. Since the elements s, t generate L and since πa is a
surjective homomorphism onto La, it follows that the elements πa(s), πa(t) generate the
ODL La. Making use of the Foulis-Holland theorem ([12]) we infer that

πa(s) = s ∧ a = (s ∧ t) ∨ (s ∧ t⊥),
πa(t) = t ∧ a = (s ∧ t) ∨ (s⊥ ∧ t).

As a consequence of the above identities we see that the elements πa(s), πa(t) commute
and therefore La is a Boolean algebra. Since 24 is a free Boolean algebra on the set
{x1, y1}, the existence of the homorphism g is evident.

Let us take up the construction of the morphism h. It is sufficient to check (Prop. 2.1)
that

πa⊥(s)∧πa⊥(t) = πa⊥(s)∧ (πa⊥(t))⊥ = (πa⊥(s))⊥∧πa⊥(t) = (πa⊥(s))⊥∧ (πa⊥(t))⊥ = 0.
Let us prove that πa⊥(s)∧ (πa⊥(t))⊥ = 0, the other equalities can be derived analogously.

Since πa⊥ : L → La
⊥

preserves the operation ⊥, we see that (πa⊥(t))⊥ = (πa⊥(t))
⊥

L
a
⊥ =

πa⊥(t⊥L). As a consequence we obtain
πa⊥(s) ∧ (πa⊥(t))⊥ = πa⊥(s) ∧ πa⊥(t⊥L) = πa⊥(s ∧ t⊥L) = (s ∧ t⊥) ∧ a⊥ = (s ∧ t⊥) ∧

(s⊥ ∨ t⊥) ∧ (s⊥ ∨ t) ∧ (s ∨ t⊥) ∧ (s ∨ t) = (s ∧ t⊥) ∧ (s⊥ ∨ t) = (s ∧ t⊥) ∧ (s ∧ t⊥)⊥ = 0.

Theorem 2.3 Suppose that the elements x1, y1 are generators of the free Boolean algebra

24 and suppose that the elements x2, y2 are generators of the ODL MO3. Then the product

24 × MO3 is a free ODL on the set {x, y}, where x = (x1, x2) and y = (y1, y2).

Proof. Write F = 24 × MO3. Let us first show that the set {x, y} generates F . Let
us denote by S the subalgebra of F generated by {x, y}. Suppose that a ∈ F . Then
a = (a1, a2) = (a1, 0) ∨ (0, a2), where a1 ∈ 24 and a2 ∈ MO3. We therefore have to
show that all elements of the form (a1, 0), (0, a2) lie in S. Since x, x⊥, y, y⊥ are elements
of S, so are the elements x ∧ y, x ∧ y⊥, x⊥ ∧ y, x⊥ ∧ y⊥. Taking into account that
x2 ∧ y2 = x2 ∧ y⊥

2
= x⊥

2
∧ y2 = x⊥

2
∧ y⊥

2
= 0, we infer that all elements (x1 ∧ y1, 0), (x1 ∧

y⊥

1
, 0), (x⊥

1
∧ y1, 0), (x⊥

1
∧ y⊥

1
, 0) belong to S. But x1 ∧ y1, x1 ∧ y⊥

1
, x⊥

1
∧ y1, x⊥

1
∧ y⊥

1

are precisely all atoms of the Boolean algebra 24. This implies that (a1, 0) ∈ S. As
a consequence, (a1, 1) ∈ S. Further, observing (0, x2) = (x⊥

1
, 1) ∧ (x1, x2), we see that

(0, x2) ∈ S. Analogously, (0, y2) ∈ S and, also, (0, z2) = (0, x2) △ (0, y2) ∈ S. We have
shown that S = F .

In order to show that F is free, let K be an ODL and let f0 : {x, y} → K be a
mapping. We have to show that f0 can be extended as a homomorphism f : F → K.
Write s = f0(x), t = f0(y) and suppose that L is the subalgebra of K generated by the
set {s, t}. Set a = (s ∧ t) ∨ (s ∧ t⊥) ∨ (s⊥ ∧ t) ∨ (s⊥ ∧ t⊥). By Prop. 2.2 we have that
a ∈ C(L) and, moreover, there exist homomorphisms g : 24 → La, h : MO3 → La

⊥

such
that

g(x1) = πa(s), g(y1) = πa(t),
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h(x2) = πa⊥(s), h(y2) = πa⊥(t).
Let i : L → La × La

⊥

be the isomorphism of Prop. 1.12. Let us consider the mapping
g × h defined by setting (g × h)(p, q) = (g(p), h(q)), where (p, q) ∈ 24 × MO3. Obviously,
g × h : 24 × MO3 → La × La

⊥

is a homomorphism. Let us set f = (g × h) ◦ i−1, i.e.
for any (p, q) ∈ 24 × MO3 let us set f(p, q) = i−1(g(p), h(q)). Then f : 24 × MO3 → L

is a homomorphism and since L is a subalgebra of K, we see that f : 24 × MO3 → K

is a homomorphism, too. Moreover, f(x) = i−1(g(x1), h(x2)) = i−1(πa(s), πa⊥(s)) =
i−1(i(s)) = s = f0(x). Analogously, f(y) = f0(y). We have verified that f extends f0 and
the proof is complete.

It should be noted in the conclusion of this paragraph that the result of Thm. 2.3 has
already been obtained in [11] (a student thesis under the supervision of the authors of
this paper). However, the methods used here differ considerably from those of [11] and
allow us to prove the result in a simpler way.

3 There is an ODL with three generators that is not

set-representable (so the free ODL with three gene-

rators is not set-representable).

In this section we develop an embedding technique of OMLs into ODLs. This will allow
us to prove the assertion stated in the heading of this paragraph. Let us start with a few
conventions.
Let N stand for the set of all natural numbers, N = {0, 1, 2, . . .}. Let B be the Boolean
algebra of all finite and cofinite subsets of N . Let us denote by ∆ the standard set-
theoretic difference on B. In considering countable ODLs we can visualise, with the help
of B, the operation △ set-theoretically . The following proposition formalizes it.

Proposition 3.1 If L = (X,∧,∨,⊥ , 0, 1,△) is at most countable ODL, then the algebra

(X,△, 0, 1) can be embedded into the algebra (B, ∆, 0B, 1B), where 0B = ∅, 1B = N .

Proof. Let us choose a Boolean algebra B′ such that B′ is a sub-algebra of B and
card(B′) = card(X). Obviously, the algebra (B′, ∆, 0B, 1B) is a sub-algebra of the algebra
(B, ∆, 0B, 1B). Moreover, the study of ultrafilters in (X,△, 0, 1) made in [13], Prop. 7.7
implies that the algebras (B′, ∆, 0B, 1B) and (X,△, 0, 1) are isomorphic.

The above result will be frequently used in the sequel. Before, let us agree on a con-
vention. In order to avoid rather inconvenient referring to finite and cofinite subsets
of N , let us make use of the standard coding of finite subsets of N by natural num-
bers. If A is finite, A ⊂ N , let us assign to A the number k(A) as follows: k(∅) = 0,
k({a1, . . . , an}) = 2a1 + . . . + 2an . Thus, so defined k is nothing but the famous Gödel’s

coding. As known, the assignment k is injective. Take copies of 0, 1, 2, . . ., some 0̄, 1̄, 2̄, . . ..
For any cofinite B, B = N \A with A finite, let us set k(B) = k(A). Denoting by D∞ the
set {0, 0̄, 1, 1̄, 2, 2̄, . . .}, we see that k is a bijection of B onto D∞. Further, let us introduce
an operation, ⊕, on the set D∞ by setting x ⊕ y = k(k−1(x) ∆ k−1(y)). The following
two assertions bring the properties of the operation ⊕. The proofs are not difficult and
we omit them.
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Lemma 3.2 The mapping k is an isomorphism of the algebra (B, ∆, 0B, 1B) onto the

algebra (D∞,⊕, 0, 0̄).

Lemma 3.3 If n ∈ N , then the set {0, 0̄, 1, 1̄, . . . , 2n − 1, 2n − 1} is a subalgebra of the

algebra (D∞,⊕, 0, 0̄).

We shall utilize the following mapping ⋆ : D∞ → D∞. If n ∈ N , we set n⋆ = n̄ and
(n̄)⋆ = n.

Lemma 3.4 If x ∈ D∞, then x⋆ = x ⊕ 0̄ = 0̄ ⊕ x.

Proof. We have x⊕ 0̄ = k(k−1(x) ∆ k−1(0̄)) = k(k−1(x) ∆ N) = k(N \k−1(x)). If x = n,
then k(N \ k−1(x)) = k(k−1(x)) = x̄ = x⋆. Alternatively, suppose that x = n̄. Take a set
A such that k(A) = n. We then see that x = n̄ = k(A) = k(N \ A), i.e. k−1(x) = N \ A.
Consequently, k(N \ k−1(x)) = k(N \ (N \ A)) = k(A) = n = x⋆.

Since ⊕ is commutative, we infer that 0̄ ⊕ x = x⋆ and this completes the proof.

The objective of the following consideration is to show that mappings into D∞ allow us
to embed certain OMLs into ODLs. Let us first introduce a few new notions.

Definition 3.5 Let K be an OML and let L be an ODL. Let us agree to write K ≪ L if

K is a sub-OML of Lsupp and a △ b ∈ K for any a, b ∈ K with a ∨ b < 1.

Lemma 3.6 (1) Let K be an OML and let L be an ODL. Let us suppose that there is an

OML M such that Lsupp is a horizontal sum of OMLs K and M . Then K ≪ L.

(2) Let L be an ODL and let K be a sub-ODL of L. Then Ksupp ≪ L.

Proof. It is routinne and we will omit it.

Let K be an OML and let Bl(K) be the set of all blocks (= the set of all maximal Boolean
subalgebras) of K. Let At(K) stand for the set of all atoms of K. Let us denote by OML8

the class of all OMLs K such that card(B) = 8 for any B ∈ Bl(K). So, for instance,
each horizontal sum of 8-element Boolean algebras belongs to OML8 and so does the
projection lattice L(R3). More involved examples will be encountered in the sequel.

Let K ∈ OML8 and let p, q ∈ At(K). Let us write p ≈ q provided p 6= q and p C q.
Further, let us write p ∼ q if there exists an r ∈ At(K) such that p C r and r C q and,
moreover, p does not commute with q.

Lemma 3.7 Let K ∈ OML8 and let p, q ∈ At(K) with p ∼ q. Let r ∈ At(K) such that

r C p and r C q. Then r = p⊥ ∧ q⊥.

Proof. Since p does not commute with q, we have p 6= q. Further, the element r ∈ At(K)
with r C p and r C q must be different from both p and q. Since p C r and p 6= r we see
that r ≤ p⊥. For an analogous reason, r ≤ q⊥. As a result, r ≤ p⊥ ∧ q⊥ < p⊥. We infer
that r = p⊥ ∧ q⊥ and this completes the proof.

Definition 3.8 Let K ∈ OML8 be finite and let l : At(K) → D∞ be a mapping. We

say that l is a labelling of the atoms in K if

(1) for any pair a, b ∈ At(K) with a 6= b we have l(a) 6= l(b), l(a) 6= l(b)⋆,

(2) for any B ∈ Bl(K) such that At(B) = {a, b, c} we have l(a) ⊕ l(b) ⊕ l(c) = 0̄,
(3) for any pair a, b ∈ At(K) with a ∼ b there is an s, s ∈ At(K) such that s ≈ a⊥ ∧ b⊥

and l(s) = l(a) ⊕ l(b).
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Before justifying this definition in the next theorem, let us explicitely formulate the fol-
lowing simple fact.

Lemma 3.9 Suppose that l is a labelling of the atoms of K and suppose that a ∈ At(K).
Then l(a) 6∈ {0, 0̄}.

Proof. Let B be a block in K with a ∈ B. Let At(B) = {a, b, c}. Then l(a)⊕l(b)⊕l(c) = 0̄.
If l(a) = 0, then l(b)⊕ l(c) = 0̄. This means that l(b) = l(c)⋆ which is absurd. If l(a) = 0̄,
then l(b) ⊕ l(c) = 0. This means that l(b) = l(c) which is again absurd.

Theorem 3.10 Let K ∈ OML8 be finite. Then the following two statements are equiv-

alent:

(1) There is a finite ODL, L, such that K ≪ L,

(2) there is a labelling of the atoms of K.

Proof. Suppose first that there is a finite ODL, L, such that K ≪ L. Then there is an
embedding, f , of the algebra (L,△, 0, 1) into the algebra (D∞,⊕, 0, 0̄) (see Prop. 3.1 and
Lemma 3.2). Let l be the restriction of f to the set At(K). In order to show that l is a
labelling, we are to verify three conditions.
(1) Suppose that a, b ∈ At(K) with a 6= b. Then a 6= b⊥ and the rest follows from the
injectivity of f .
(2) Let B ∈ Bl(K). Write At(B) = {a, b, c}. Then a ∆B b ∆B c = 1. Since B is a
Boolean sub-algebra of L we have a△ b△ c = a ∆B b ∆B c (see Prop. 1.4). It means that
a △ b △ c = 1, and therefore f(a) ⊕ f(b) ⊕ f(c) = 0̄.
(3) Suppose that a, b ∈ At(K) with a ∼ b. Obviously, a ∨ b < 1. Set s = a △ b ∈ L.
Then s ∈ K (compare the Def. 3.5). If s = a ∨ b, then a ⊥ b in view of a ∨ b = a △ b.
This is a contradiction. If s = 0, then a = b - a contradiction again. Summarizing the
previous considerations, we conclude that 0 < s < a∨b. And this implies that s ∈ At(K).
Since s ≤ a ∨ b, we have s C (a ∨ b) and therefore s C (a⊥ ∧ b⊥). If s = a⊥ ∧ b⊥, then
(a ∨ b)⊥ ≤ a ∨ b which cannot be the case since this would imply a ∨ b = 1. We conclude
that s ≈ a⊥ ∧ b⊥ and therefore l(s) = f(s) = f(a△ b) = f(a)⊕ f(b) = l(a)⊕ l(b). So the
implication (1) ⇒ (2) has been verified.

Conversaly, assume that there is a labelling l : At(K) → D∞. We can suppose that K∩

D∞ = ∅. Choose an n, n ∈ N , such that l[At(K)] ⊆ {1, 1̄, 2, 2̄, . . . , 2n−1, 2n − 1}. Rewrite
the set {1, 1̄, 2, 2̄, . . . , 2n − 1, 2n − 1} \ {l(a), l(a)⋆; a ∈ At(K)} as {i1, i1, i2, i2, . . . , im, im}.
Let M be the copy of MOm, where M = {0, 1, i1, i1, i2, i2, . . . , im, im} under the under-
standing of ik = i⊥

k
, 1 ≤ k ≤ m. Consider the horizontal sum K with M and denote it

by L′. It remains to show that there is an ODL L such that Lsupp = L′.
Let e : L′ → {0, 0̄, 1, 1̄, . . . , 2n − 1, 2n − 1} be the mapping that is defined as follows:
e(0L′) = 0, e(1L′) = 0̄,
e(a) = l(a), e(a⊥) = l(a)⋆ for a ∈ At(K),
and e acts as identity on {i1, i1, i2, i2, . . . , im, im}.

Obviously, e is a bijection of L′ onto {0, 0̄, 1, 1̄, . . . , 2n−1, 2n − 1}. Let us set, for x, y ∈ L′,
x △ y = e−1(e(x) ⊕ e(y)) and verify that L = (L′,△) is an ODL.

The associativity as well as commutativity follows immediately from the algebra iso-
morphism of (L′,△) on ({0, 0̄, 1, 1̄, . . . , 2n − 1, 2n − 1},⊕). Further, x△ 1L′ = e−1(e(x)⊕
e(1L′)) = e−1(e(x) ⊕ 0̄) = e−1(e(x)⋆). Consider now the possibilities for x in order. If
x ∈ K, then e−1(e(x)⋆) = e−1(l(x)⋆) = e−1(l(x⊥)) = e−1(e(x⊥)) = x⊥. If x = ik,
then x △ 1L′ = e−1(e(ik)

⋆) = e−1(i⋆
k
) = e−1(ik)) = ik = i⊥

k
. Finally, if x = ik, then

x△ 1L′ = e−1(e(ik)
⋆) = e−1(ik

⋆
) = e−1(ik) = ik = ik

⊥
. Thus, x△ 1L′ = x⊥ for any x ∈ L′.
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It remains to check the last axiom of ODL’s, x△y ≤ x∨y. Let x, y ∈ L′. If x∨y = 1,
there is nothing to check. If x = y, then x △ y = 0L′ and the inequality in question is
clear. Let us finally suppose that x ∨ y < 1 with x 6= y. Then x, y ∈ K. Let us discuss
the possibilities for x, y ∈ K which may occur.

First, suppose that x C y. Let us choose a block B, B ∈ Bl(K) such that x, y ∈ B.
Then either both x, y are atoms or not. In the former case, when At(B) = {x, y, z}, we
have l(x)⊕ l(y)⊕ l(z) = 0̄. It means that x△ y = ϕ−1(ϕ(x)⊕ϕ(y)) = ϕ−1(l(x)⊕ l(y)) =
ϕ−1(l(z)⋆) = ϕ−1(ϕ(z⊥) = z⊥ = x ∨ y. In the latter case, when at least one of x and y

is not an atom, we have x 6= y and x ∨ y < 1. Thus, exactly one of x and y is a coatom.
Suppose, for instance, that x is an atom and y a coatom. Then x ≤ y. Suppose that
At(B) = {x, y⊥, z}. Then l(x)⊕ l(y⊥)⊕ l(z) = 0̄ and we obtain x△y = e−1(e(x)⊕e(y)) =
e−1(e(x)⊕ e(y⊥⊥)) = e−1(l(x)⊕ l(y⊥)⋆)) = e−1(l(z)) = e−1(e(z)) = z ≤ y = x∨ y. Again,
x △ y ≤ x ∨ y.

Secondly, x¬ C y. Then neither of x and y coincides with 0 or 1. We are going to show
that both x and y are atoms. Looking for a contradiction, suppose that x is a coatom.
Then x ≤ x ∨ y < 1 and therefore x = x ∨ y and this means that y ≤ x - a contradiction
with x¬ C y. We see that both x and y are atoms. So x < x ∨ y < 1 and therefore x ∨ y

is a coatom. If we set z = (x∨ y)⊥, we obtain that x ∼ y. According to the condition (3)
in the definition of labelling, an element s ∈ At(K) is guarranteed such that s ≈ z and
l(s) = l(x) ⊕ l(y). Consequently, one derives the equalities x △ y = e−1(e(x) ⊕ e(y)) =
e−1(l(x) ⊕ l(y)) = e−1(l(s)) = e−1(e(s)) = s ≤ z⊥ = x ∨ y. This completes the proof.

The previous result will be applied in our final construction to provide a proof of a main
result of this paper.

Theorem 3.11 There is an ODL L with 3 generators that is not set-representable. A

consequence: The free ODL on 3 generators is not set-representable.

Proof. Consider the ODL K portrayed by the following figure. Let us make use in the
figure the conventions of the Greechie paste job ([9, 12]) and the labelling notation agreed
on in Thm. 3.10.
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As shown in [8], in each set-representable OML (and, in turn, in each set-representable
ODL) the following inequality holds true: x ∧ (y ∨ z) ≤ ϕx(y) ∨ ϕy⊥(z), where ϕa(b) =
(b ∨ a⊥) ∧ a is the well-known Sasaki projection ([1, 12]).

Let us see that this inequality fails in the OML K depicted by the figure. Indeed, let
us take x = 16⋆, y = 4 and z = 6⋆. Then x ∧ (y ∨ z) = 16⋆ ∧ (4 ∨ 6⋆) = 16⋆ ∧ 2⋆ = 1
whereas ϕx(y) = (4∨ 16)∧ 16⋆ = 8⋆ ∧ 16⋆ = 24⋆ and ϕy⊥(z) = (6⋆ ∨ 4)∧ 4⋆ = 2⋆ ∧ 4⋆ = 6⋆

which gives us ϕx(y) ∨ ϕy⊥(z) = 24⋆ ∨ 6⋆ = 32⋆ < 1. By Thm. 3.10, there is an ODL,
L, such that K ≪ L. Let L1 be the sub-ODL of L generated by x, y and z. Then the
inequality x ∧ (y ∨ z) ≤ ϕx(y) ∨ ϕy⊥(z) does not hold true in L1 and therefore L1 is not
set-representable. Obviously, L1 has 3 generators and we have completed the proof.

In the series of papers [13] - [16] together with this note we have iniciated a systematic
study of axiomatic symmetric difference. The algebras which came into existence, the
ODLs, lie between orthomodular lattices and Boolean algebras and might therefore find
application in quantum logic theory or elsewhere in algebra. In the former area of appli-
cation it would be desirable to investigate ’states’ on ODLs. In the latter area, a natural
step in the effort to understand the intristic structure of ODLs is the investigation of
free objects in the variety ODL (the complexity of this problem indicates the analogous
study in OMLs, see [2]). A problem linked with the last question is whether this variety
is locally finite. Though we conjecture it is not, the problem is still open to us.
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To Sylvia Pulmannová with compliments and admiration

On identities in orthocomplemented difference
lattices

Milan Matoušek and Pavel Pták 1

Abstract. In this note we continue the investigation of algebraic properties of orthocom-

plemented (symmetric) difference lattices (ODLs) as initiated in [10] and further studied in

[11, 12]. We take up a few identities that we came across in the previous considerations.

We first see that some of them characterize, in a somewhat non-trivial manner, the ODLs

that are Boolean. In the second part we select an identity peculiar for set-representable

ODLs. This identity allows us to present another construction of an ODL that is not set-

representable. We then give the construction a more general form and consider algebraic

properties of the ‘orthomodular support’.

AMS Class: 06C15, 03G12, 81B10.

Key words: orthomodular poset, quantum logic, symmetric difference, Boolean algebra.

1 Basic notions and preliminaries

Let us first recall the definition of ODL.

Definition 1.1 Let L = (X,∧,∨,⊥ , 0, 1,△), where (X,∧,∨,⊥ , 0, 1) is an orthocomple-

mented lattice and △ : X2 → X is a binary operation. Then L is said to be an orthocom-
plemented difference lattice (abbr., an ODL) if the following identities hold in L:

(D1) x △ (y △ z) = (x △ y) △ z,

(D2) x △ 1 = x⊥, 1 △ x = x⊥,

(D3) x △ y ≤ x ∨ y.

Obviously, the class of all ODLs forms a variety. We will denote it by ODL. (It should
be noted that a certain version of symmetric difference has been dealt with in the area
of orthomodular lattices - see [4, 5, 13]. Our approach essentially differs from the above
quoted papers since we take the operation △ as primitive.)

Let L = (X,∧,∨,⊥ , 0, 1,△) be an ODL. Then the orthocomplemented lattice (X,∧,∨,
⊥, 0, 1) will be denoted by Lsupp and called the support of L. Occasionally, we allow
ourselves to harmlessly abuse the notation by identifying an ODL L with the couple
(Lsupp,△).

1The authors acknowledge the support of the research plan MSM 0021620839 that is financed by the
Ministry of Education of the Czech Republic and the grant GAČR 201/07/1051 of the Czech Grant
Agency.
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Let us list basic properties of ODLs as we shall use them in the sequel. Let us note that
in this list (and in other results of preliminary nature like Thm. 1.3 and Thm. 2.5) this
paper overlaps with [10]. Main novelties lie in Thm. 2.2 and in the proof technique of
Thm. 2.8.

Proposition 1.2 Let L be an ODL. Then the following statements hold true (x, y ∈ L):

(1) x △ 0 = x, 0 △ x = x,

(2) x △ x = 0,
(3) x △ y = y △ x,

(4) x △ y⊥ = x⊥ △ y = (x △ y)⊥ ,

(5) x⊥ △ y⊥ = x △ y ,

(6) x △ y = 0 ⇔ x = y,

(7) (x ∧ y⊥) ∨ (y ∧ x⊥) ≤ x △ y ≤ (x ∨ y) ∧ (x ∧ y)⊥.

Proof. Let us first observe that the property (D2) yields 1 △ 1 = 1⊥ = 0. Let us verify
the properties (1)-(7). Suppose that x ∈ L.
(1) x △ 0 = x △ (1 △ 1) = (x △ 1) △ 1 = x⊥ △ 1 = (x⊥)⊥ = x. Further, 0 △ x =
(1 △ 1) △ x = 1 △ (1 △ x) = 1 △ x⊥ = (x⊥)⊥ = x .
(2) Let us first show that x⊥ △ x⊥ = x △ x. We consecutively obtain x⊥ △ x⊥ =
(x△1)△ (1△x) = (x△ (1△1))△x = (x△0)△x = x△x. Moreover, we have x△x ≤ x

as well as x △ x = x⊥ △ x⊥ ≤ x⊥. This implies that x △ x ≤ x ∧ x⊥ = 0.
(3) If y ∈ L, then x △ y = (x △ y) △ 0 = (x △ y) △ [(y △ x) △ (y △ x)] = x △ (y △ y) △
x △ (y △ x) = x △ 0 △ x △ (y △ x) = x △ x △ (y △ x) = 0 △ (y △ x) = y △ x.
(4) x △ y⊥ = x △ (y △ 1) = (x △ y) △ 1 = (x △ y)⊥. The equality x⊥ △ y = (x △ y)⊥

follows from x △ y⊥ = (x △ y)⊥ by applying the equality (3).
(5) Using (4) we obtain x⊥ △ y⊥ = (x⊥ △ y)⊥ = (x △ y)⊥⊥ = x △ y.
(6) If x = y, then x △ y = 0 by the condition (2). Conversely, suppose that x △ y = 0.
Then x = x △ 0 = x △ (y △ y) = (x △ y) △ y = 0 △ y = 0.
(7) The property (D3) together with the properties (4), (5) imply that x △ y ≤ x ∨ y,
x △ y ≤ x⊥ ∨ y⊥ = (x ∧ y)⊥, x ∧ y⊥ ≤ x △ y, x⊥ ∧ y ≤ x △ y.

The following observation links ODLs with orthomodular lattices (OMLs) and, in turn,
with quantum logics (for a link of quantum logics with theoretical physics, see [3, 6, 8]).

Theorem 1.3 Let L be an ODL. Then its support Lsupp is an OML.

Proof. Assume that x, y ∈ L and x ≤ y, y ∧ x⊥ = 0. Let us prove that x = y. Since
x ≤ y, we conclude that (x∧y⊥)∨(y∧x⊥) = y∧x⊥ = 0 and (x∨y)∧(x∧y)⊥ = y∧x⊥ = 0.
By Prop. 1.2, (6), (7), we infer that x △ y = 0 and therefore x = y.

In view of the above proposition, all notions of OMLs can be referred to in ODLs, too. In
particular, we may say that two elements x, y in an ODL commute (in symbols, x C y) if
they commute in Lsupp (for the notion of commutativity in OMLs, see [1, 9, 14]).

The following proposition shows that for the commutative pairs the operation △ in L can
be recovered from Lsupp.

Proposition 1.4 Let L be an ODL. Let x, y ∈ L with x C y. Then x △ y = (x ∧ y⊥) ∨
(y ∧ x⊥) = (x ∨ y) ∧ (x ∧ y)⊥.
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Proof. According to Prop. 1.2, (7), we have the inequalities (x∧y⊥)∨ (y∧x⊥) ≤ x△y ≤

(x ∨ y) ∧ (x ∧ y)⊥. Since the elements x, y commute, the left-hand side of the previous
inequality coincides with the right-hand side and therefore x△ y = (x∧ y⊥)∨ (y ∧ x⊥) =
(x ∨ y) ∧ (x ∧ y)⊥.

Let us note that each Boolean algebra can be viewed as an ODL (more general ODLs will
be met later, see also [10, 12]).

Proposition 1.5 Let B be a BA. Then there exists exactly one mapping △ : Ḃ× Ḃ → Ḃ

which fulfils all the conditions (D1), (D2) and (D3) of Def. 1.1.

Proof. To prove the existence, take for △ the standard symmetric difference in Boolean
algebras. In other words, let us set x△ y = (x∧ y⊥)∨ (y∧x⊥). The properties (D1), (D2)
and (D3) of Def. 1.1 are then obviously fulfilled.

Let us prove the uniqueness of △. Let △1 : Ḃ × Ḃ → Ḃ be a mapping that fulfils
conditions (D1), (D2) and (D3). Thus, the couple (B,△1) is an ODL. If x, y ∈ B, then
x C y, and therefore x △1 y = (x ∧ y⊥) ∨ (y ∧ x⊥) = x △ y (Prop. 1.4).

2 Results

In view of Prop. 1.5 we can (and shall) understand any Boolean algebra as an ODL with
the uniquely defined operation △. A natural question arises how to characterize Boolean
algebras (= Boolean ODLs) among ODLs in terms of the operation △. The departure
point is the following result (observe that what we claim is that a strenghtening of the
condition (D3) makes the ODL in question Boolean).

Proposition 2.1 Let L be an ODL. Then L is a Boolean algebra exactly when the formula

x △ y ≤ x ∨ (y ∧ x⊥) is valid in L.

Proof. If L is a Boolean algebra, then for any pair of elements x, y ∈ L we have x ∨ (y ∧

x⊥) = x ∨ y ≥ x△ y. Conversely, let L fulfil the above formula. In order to prove that L

is Boolean, let us use [9], p. 31. Consider elements x, y ∈ L with x∧ y = 0. According to
our assumption, x⊥ △ y ≤ x⊥ ∨ (y ∧ (x⊥)⊥) = x⊥ ∨ (y ∧ x) = x⊥. Since x⊥ ≤ x⊥, we see
in view of the condition (D3) that we have x⊥ △ (x⊥ △ y) ≤ x⊥. But x⊥ △ (x⊥ △ y) = y.
Therefore y ≤ x⊥ and we find that L is Boolean.

The identity of Prop. 2.1 inspires one to consider other natural identities with the potential
to be ”Boolean”. The following result summarizes this effort. In a certain sense it provides
a definition of Boolean algebra in terms of ‘abstract symmetric difference’.

Theorem 2.2 Let L be an ODL. Then L is a Boolean algebra exactly when L fulfils any

of the following four identities:

(a) (x ∨ z) △ (y ∨ z) ≤ x △ y,

(b) x △ (x ∨ y) ≤ x △ y,

(c) x ∨ y = x △ y △ (x ∧ y),
(d) x △ y △ (x ∨ y) ≤ x △ y △ (x ∧ y),

Proof. Evidently, if L is Boolean, then all identities (a)-(d) hold true. In proving the
vice versa part, we first prove that (a) ⇒ (b) and (b) ⇒ L is Boolean. Let us suppose
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the condition (a). By setting z = x, we obtain x △ (y ∨ x) ≤ x △ y, which is the
condition (b). Assuming the condition (b) and taking into account x C x∨ y, we see that
x △ y ≥ x △ (x ∨ y) = (x ∨ y) ∧ x⊥. Then (x △ y)⊥ ≤ ((x ∨ y) ∧ x⊥)⊥. It follows that
(x△y)⊥ = x△y⊥ ≤ x∨(y⊥∧x⊥). Writing y instead of y⊥, we obtain x△y ≤ x∨(y∧x⊥)
which is the identity of Prop. 2.1.

To complete the the proof, let us verify (c) ⇒ (d) and (d) ⇒ L is Boolean. Let us
suppose the condition (c). Then x△ y△ (x∨ y) = x△ y△ (x△ y△ (x∧ y)) and therefore
x△y△(x∨y) = x∧y. It follows that x△y△(x∨y) = x∧y ≤ x∨y = x△y△(x∧y) and so
we have derived the condition (d). Finally, having the condition (d), it is sufficient to show
that any pair x, y ∈ L with x∧ y = 0 satisfies x ≤ y⊥. But then x△ y △ (x∨ y) ≤ x△ y.
Since x △ y ≤ x △ y, we utilize (D3) to obtain x △ y △ (x △ y △ (x ∨ y)) ≤ x △ y. As
x△y△(x△y△(x∨y)) = x∨y, we infer that x∨y ≤ x△y. But x△y ≤ x∨y and therefore
x △ y = x ∨ y. This implies that y ≤ x △ y and therefore x △ y⊥ ≤ y⊥. Since y⊥ ≤ y⊥,
we utilize (D3) to obtain (x △ y⊥) △ y⊥ ≤ y⊥. But (x △ y⊥) △ y⊥ = x △ (y⊥ △ y⊥) = x

and the proof is complete.

In the next considerations we take up ‘nearly Boolean ODLs’ - the ODLs that are set-
representable. We will find out that there is a formula which allows us to see that not
all ODLs are nearly Boolean. With the help of Boolean algebras we will first introduce a
class of ODLs. We will utilize it in the crucial example of the next section. Prior to that,
let us fix some notation. Let B be a non-trivial Boolean algebra and let B be a system
of subalgebras of B. Let us say that B is a disjoint system of subalgebras of B if for all
B1, B2 ∈ B with B1 6= B2 we have B1∩B2 = {0, 1}, and neither of the inclusions B1 ⊆ B2

and B2 ⊆ B1 is valid. Moreover, if
⋃
B = B, then the system B is said to be a partition

of the algebra B.

Let B be a Boolean algebra and let B be a disjoint system of subalgebras of B. Let us
construct an OML, K, and the mapping △K : K2 → K as follows:

In the first step we construct a partition B′ of B determined by the following require-
ment: If B is a partition of B, then we set B′ = B. Otherwise, we add to B all necessary
four-element subalgebras of B such that the resulting system B′ is a partition of B. In
the second step we take for K the horizontal sum of the system B′ (the horizontal sum
alias the {0, 1}-pasting is a standard construction in OMLs, see [9, 14]). And finally, if
x, y ∈ K, let us set x △K y = x △B y (note that K and B live on the same set).

The couple (K,△K) so obtained will be denoted by LB.

Proposition 2.3 The algebra LB is an ODL.

Proof. Conditions (D1) and (D2) are obvious. Let us verify condition (D3). Let x, y ∈ B.
If there is B1 ∈ B such that x, y ∈ B1, then x ∨K y = x ∨B y. As a result, x △ y =
x △B y ≤ x ∨B y = x ∨K y. If there is no B1 such that x, y ∈ B1, then x ∨K y = 1. The
inequality x △ y ≤ x ∨K y is obvious and the proof is done.

Let B be a Boolean algebra, |B| ≥ 4. Let us take the finest partition of B, B. Thus, the
elements of B consist of all four-element subalgebras of B. Let us consider the algebra LB.
Obviously, the OML LB

supp
coincides with the familiar MOκ for an aproppriate cardinal

number κ (in fact, if B is finite, it is easily seen that κ = 2n − 1 for some n ∈ N). We
will allow ourselves to denote the ODL LB by MOκ, too.
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Let us return to the ODLs that are set-representable. They form a variety ([10]) and in
view of the Stone set representation for Boolean algebras they could be seen as nearly
Boolean. Though the name itself suggests their definition, let us recall it in more formal
terms.

Let X be a set and let D a family of subsets of X such that
(1) X ∈ D,
(2) the family D forms a lattice with respect to the inclusion relation, and
(3) D is closed under the formation of the set symmetric difference.
Obviously, D constitutes an ODL. Let us call it concrete. If L is an ODL that is isomorphic
with a concrete one, then L is said to be set-representable (abbr., a SRODL). Let us denote
by SRODL the class of all such ODLs.

The set-representable ODLs can be characterized in terms of certain evaluations. Let ⊕

stand for the addition modulo 2 on the set {0, 1} (i.e., 0⊕0 = 1⊕1 = 0, 0⊕1 = 1⊕0 = 1).

Definition 2.4 Let L be an ODL and let e : L → {0, 1}. Then e is said to be an ODL-
evaluation (abbr., evaluation) on L if the following properties are fulfilled for any x, y ∈ L:

(E1) e(1L) = 1,
(E2) x ≤ y ⇒ e(x) ≤ e(y),
(E3) e(x △ y) = e(x) ⊕ e(y).

Let E(L) be the set of all ODL-evaluations on L. The following result provides a charac-
terization of SRODL in terms of E(L). The proof is straightforward ([10]) and we will
omit it.

Theorem 2.5 Let L be an ODL. Then L is a SRODL if and only if

∀a, b ∈ L, a 6≤ b ∃e ∈ E(L) : e(a) = 1, e(b) = 0.

The variety of SRODLs is rather large. For instance, the ODLs MOκ are SRODLs. We
will see that in general LB does not have to be a SRODL (though LB

supp
is always a set-

representable OML !). It is the objective of this section to show this - it will be established
as a consequence of a certain identity valid in SRODLs.

Let us start off with the following result that concerns the intrinsic property of SRODLs.
It could be viewed, in a sense, as a contribution to a general research plan indicated in
[7].

Theorem 2.6 Every SRODL L satisfies the following formula (x, y, z1, z2 ∈ L):

x ⊥ y ⇒ (x △ z1) ∧ (y △ z2) ≤ z1 ∨ z2 .

Proof. Let us suppose that there are elements x, y, z1, z2 ∈ L with x ⊥ y but (x △

z1)∧ (y△ z2) 6≤ z1 ∨ z2. As L is set-representable, there is an ODL-evaluation e such that
e((x△z1)∧(y△z2)) = 1, e(z1∨z2) = 0. Since z1, z2 ≤ z1∨z2 it has to be e(z1) = e(z2) = 0.
By the same reasoning, e(x △ z1) = e(y △ z2) = 1. Because 1 = e(x △ z1) = e(x) ⊕ e(z1)
and e(z1) = 0, we have e(x) = 1. Analogously, e(y) = 1. But this is absurd in view of the
orthogonality of elements x and y.

Let us note that the previous result allows us to formulate the following identity valid in
SRODL.

5



Proposition 2.7 Let L be an ODL. Then the formula of Thm. 2.6 holds in L exactly

when the following identity holds in L:

(x △ z1) ∧ ((x⊥ ∧ y) △ z2) ≤ z1 ∨ z2 .

Proof. It is sufficient to take into account that x ⊥ y is equivalent with y = x⊥ ∧ y.

The identity of Thm. 2.6 allows us to prove the following result.

Theorem 2.8 There is a Boolean algebra B and a disjoint system B of subalgebras of B

such that LB is not set-representable ODL.

Proof. Take B = exp{1, 2, 3, 4, 5}. Let us make use of the following notation. Set 0B = ∅

and 1B = {1, 2, 3, 4, 5}. Let us denote by n1 . . . nk, where n1 < . . . < nk and k ≤ 5, the
element a ⊆ {1, 2, 3, 4, 5} such that a = {n1, . . . , nk}. For any a ⊆ {1, 2, 3, 4, 5}, let us
write a⊥ = {1, 2, 3, 4, 5} \ a. Thus, for instance, 12⊥ = {3, 4, 5}.

Let us go on with the construction. Consider the following subalgebras of B:
B1 = {0B, 12, 3, 45, 12⊥, 3⊥, 45⊥, 1B},
B2 = {0B, 15, 2, 34, 15⊥, 2⊥, 34⊥, 1B},
B3 = {0B, 13, 24, 5, 13⊥, 24⊥, 5⊥, 1B}.

Let us set B = {B1, B2, B3}. It is easily seen that B is a disjoint system of subalgebras
of B. Consider LB and test this ODL for the formula of Thm. 2.6. Set x = 12, y =
3, z1 = 34, z2 = 234 (= 15⊥). Then x ⊥ y, x △ z1 = 1234 (= 5⊥) and y △ z2 = 24.
We see that both elements x △ z1 and y △ z2 lie in B3, and (x △ z1) ∧ (y △ z2) = 24.
But z1 ∨ z2 = 34 6≥ 24. It follows that LB does not satisfy the formula of Thm. 2.6 and
therefore LB is not a set-representable ODL.

The following fact given by the previous construction (one takes the ODL LB exhibited
above) could be of a mild separate interest.

Observation 2.9 There is a non set-representable ODL, L, such that Lsupp is a non-

modular set-representable OML.

The above construction of LB allows one not only to find an ODL with rather surprising
properties but also to show that a certain class of OMLs (the horizontal sums of Boolean
algebras) are embeddable into ODLs. The following proposition clarifies this situation in
general.

Proposition 2.10 Let L be an OML obtained as a horizontal sum of Boolen algebras.

Then L is OML-embeddable into an ODL.

Proof. Let L be a horizontal sum of Boolean algebras Bα, α ∈ I. As known (see e.g.
[15]), there exists a Boolean algebra, B, such that each Bα (α ∈ I) is a subalgebra of B

and, moreover, if α1 6= α2 then Bα1
∩ Bα2

= {0, 1}. As a result, the system Bα, α ∈ I

constitutes a disjoint system of subalgebras of B. It is clear that L is embeddable into
LB and this completes the proof.

The horizontal sums of Boolean algebras constitute an important class of OMLs, [2]. It
would be therefore desirable, in connection with the interplay between OMLs and ODLs,
to answer the following questions. We will formulate them in the conclusion of this paper.

6



1. Could any horizontal sum of Boolean algebras be OML-embedded in a set-representable
ODL ?

2. If Lsupp is a set-representable and modular OML, does the ODL L have to be set-
representable ?
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[10] Matoušek M., Orthocomplemented lattices with a symmetric difference, Algebra Uni-
versalis 60 (2009), 185-215.
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Ruská 22
101 00 Prague 10
Czech Republic
e-mail: matmilan@email.cz

Pavel Pták

Department of Mathematics
Czech Technical University, Faculty of Electrical Eng.
166 27 Prague 6
Czech Republic
e-mail: ptak@math.feld.cvut.cz

8



Order (2009) 26:1–21
DOI 10.1007/s11083-008-9102-8

Orthocomplemented Posets with a Symmetric
Difference

Milan Matoušek · Pavel Pták

Received: 7 April 2008 / Accepted: 17 November 2008 / Published online: 13 February 2009
© Springer Science + Business Media B.V. 2009

Abstract We endow orthocomplemented posets with a binary operation–an abstract
symmetric difference of sets–and we study algebraic properties of this class, ODP .
Denoting its elements by ODP, we first investigate on the features related to
compatibility in ODPs. We find, among others, that any ODP is orthomodular. This
explicitly links ODP with the theory of quantum logics. By analogy with Boolean
algebras, we then ask if (when) an ODP is set representable. Though we find that
general ODPs do not have to be set representable, many natural ODPs are shown to
be. We characterize the set-representable ODPs in terms of two valued morphisms
and prove that they form a quasivariety. This quasivariety contains the class of
pseudocomplemented ODPs as we show afterwards. At the end we ask whether any
orthomodular poset can be converted or, more generally, enlarged to an ODP. By
countre-examples we answer these questions to the negative.

Keywords Orthomodular poset · Quantum logic · Symmetric difference ·
Boolean algebra · Quasivariety · Frink ideal

Mathematics Subject Classifications (2000) 06C15 · 03G12 · 81B10

The authors acknowledge the support of the research plan MSM 0021620839 that is financed by
the Ministry of Education of the Czech Republic and the grant GAČR 201/07/1051 of the Czech
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1 Introduction

In this paper we introduce certain “quantum logics with a symmetric difference”. So
we enrich the area of quantum logics (see e.g. [1, 9, 13, 14, 22, 24], etc.) with some
“enriched” quantum logics (called ODPs). We analyze intrinsic properties of ODPs,
proving results highlighted in the abstract.

Two remarks are in place. First, there have been attempts to model the operation
of symmetric difference within orthomodular structures (see [7, 8] and [21]). Our
approach differs essentially from the previous ones–we start with the abstract
symmetric difference as an extra operation and obtain orthomodularity as a con-
sequence. Second, this paper complements the paper [17] in a sense–the paper [17]
studies lattice ODPs in the universal algebra vein whereas this paper mostly pursues
natural (non-lattice) questions of quantum logics. The present paper and [17] overlap
a little, typically when one generalizes results obtained in the lattice ODPs to general
ODPs (Sections 2 and 3). The Sections 4–7 are essentially non-lattice though an
application of the method used in Proposition 7.2 allows one to give a partial answer
to an open question on lattice ODPs formulated in [17].

2 Orthocomplemented Difference Posets

In this section we shall define the notion of orthocomplemented difference poset
(ODP). We shall collect basic properties of ODPs and find their relationships to other
orthocomplemented structures. Before formulating the basic definition, let us recall
that by an orthocomplemented poset (OCP, [22]) we mean a 5-tuple (X,≤,⊥ , 0, 1)

such that ≤ is a partial ordering on the set X with a smallest element, 0, and a greatest
element, 1, and ⊥ is a unary operation on X with x ∧ x⊥ = 0, x ∨ x⊥ = 1, (x⊥)⊥ = x
and x ≤ y ⇒ y⊥ ≤ x⊥ (x, y ∈ X).

Definition 2.1 Let P = (X,≤,⊥ , 0, 1,�), where (X,≤,⊥ , 0, 1) is an OCP and � :
X2 → X is a binary operation. Then P is said to be an orthocomplemented difference
poset (abbr., an ODP) if P is subject to the following axioms:

(D1) x � (y � z) = (x � y) � z,
(D2) x � 1 = x⊥, 1 � x = x⊥,
(D3) x ≤ z & y ≤ z ⇒ x � y ≤ z.

Obviously, the class of all ODPs is defined by a set of quasiidentities and therefore
it forms a quasivariety ([4]). Let us denote this quasivariety by ODP .

Let P = (X,≤,⊥ , 0, 1,�) be an ODP. Then the orthocomplemented poset (X, ≤,
⊥, 0, 1) will be denoted by Psupp and called the support of P. Occasionally, the ODP P
will be identified with the couple (Psupp,�) when a misunderstanding cannot occur.

Example 2.2 Let � = {1, 2, . . . , 2k − 1, 2k} be a set, k ∈ N. Let �even be the col-
lection of all subsets of � consisting of an even number of elements. Then �even

endowed with the inclusion ordering and with the standard symmetric difference is
an ODP. (Note that �even is a lattice exactly when k ≤ 2.)
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Example 2.3 Let P be the well known “chinese lantern” lattice MO3 (see, e.g., [14]),
P = {0, 1, x, x⊥, y, y⊥, z, z⊥}. Then there is exactly one mapping � : P × P → P
such that x � y = z and (P,�) is an ODP. The ODP obtained in this way will be again
denoted by MO3. (More generally, it can be proved with a slightly more involved
combinatorial argument that any MO2n−1 allows for converting into an ODP, see
[17] for more on this type of lattice ODPs.)

Before we formulate our first result, let us adopt the convention that in writing the
formula with �, ⊥ we will give the preference to the operation ⊥ over the operation
�. Thus, for instance, x � y⊥ means x � (y⊥), etc.

Proposition 2.4 Let P = (X, ≤,⊥ , 0, 1,�) be an ODP. Then the following statements
hold true:

(1) x � 0 = x,
(2) x � x = 0,
(3) 0 � x = x,
(4) x � y = y � x,
(5) x � y⊥ = x⊥ � y = (x � y)⊥ ,
(6) x⊥ � y⊥ = x � y ,
(7) x � y = 0 ⇔ x = y.

Proof Let us first observe that the property (D2) yields 1 � 1 = 1⊥ = 0. Let us verify
the properties (1)–(7). Suppose that x, y ∈ L.

(1) x � 0 = x � (1 � 1) = (x � 1) � 1 = x⊥ � 1 = (x⊥)⊥ = x.
(2) Let us first show that x⊥ � x⊥ = x � x. We consecutively obtain x⊥ � x⊥ =

(x � 1) � (1 � x) = (x � (1 � 1)) � x = (x � 0) � x = x � x. Moreover, we have
x � x ≤ x as well as x � x = x⊥ � x⊥ ≤ x⊥. This implies that x � x ≤
infP{x, x⊥} = 0.

(3) 0 � x = (x � x) � x = x � (x � x) = x � 0 = x according to (2).
(4) x � y = (x � y) � 0 = (x � y) � [(y � x) � (y � x)] = x � (y � y) � x � (y � x) =

x � 0 � x � (y � x) = x � x � (y � x) = 0 � (y � x) = y � x.
(5) x � y⊥ = x � (y � 1) = (x � y) � 1 = (x � y)⊥. The equality x⊥ � y = (x � y)⊥

follows from x � y⊥ = (x � y)⊥ by applying the equality (4).
(6) Using (5) we obtain x⊥ � y⊥ = (x⊥ � y)⊥ = (x � y)⊥⊥ = x � y.
(7) If x = y, then x � y = 0 by the condition (2). Conversely, suppose that x �

y = 0. Then x = x � 0 = x � (y � y) = (x � y) � y = 0 � y = y. ��

Corollary 2.5 Let P be a finite ODP. Then card(P) = 2n, where n is a natural number.

Proof Let us introduce the operation − : P → P by putting −x = x. Then we see
that the algebra G = (P,�,−, 0) is a group such that each element of G has the
order 2. Thus G is a 2-group and the number of elements of G must be a natural
power of 2 (see [16]). ��

Proposition 2.6 Let P be an ODP and let x, y ∈ P. Then x ≤ y ⇔ x � y ≤ y.
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Proof Let us suppose that x ≤ y. As y ≤ y, the condition (D3) implies that x �
y ≤ y. Conversely, suppose x � y ≤ y. Making again use of y ≤ y, the condition (D3)

implies that (x � y) � y ≤ y. But (x � y) � y = x � (y � y) = x � 0 = x. ��

Proposition 2.7 Let P be an ODP and let x, y, z ∈ P. Then z is an upper bound of the
set {x, y} if and only if z is an upper bound of the set {x, x � y}. A consequence: The
supremum x ∨ y exists in P if and only if the supremum x ∨ (x � y) exists in P and if
either of the suprema exist, we have the equality x ∨ (x � y) = x ∨ y.

Proof Suppose first that x ≤ z and y ≤ z. According to (D3), we see that x � y ≤ z.
Conversely, let x ≤ z and x � y ≤ z. According to (D3) again, we obtain x �
(x � y) ≤ z. But x � (x � y) = (x � x) � y = y. ��

In what follows, instead of writing x ≤ y⊥ we shall often use an equivalent
expression x ⊥ y (and say that x is orthogonal to y) as customary in quantum logic
theories.

Proposition 2.8 Let P be an ODP and let x, y ∈ P. Then

(a) x ⊥ y if and only if the supremum x ∨ y exists in P and x ∨ y = x � y,
(b) x ≤ y if and only if the infimum y ∧ x⊥ exists in P and y ∧ x⊥ = x � y.

Proof

(a) Let us suppose that x ⊥ y. We shall show that x � y is the least upper bound
of {x, y}.
(i) First, let us show that x � y is an upper bound of {x, y}. Because of

the symmetric role of the elements x and y, it is sufficient to verify
the inequality x ≤ x � y. Since x ⊥ y, we have y ≤ x⊥. The condition
(D3) then implies that y � x⊥ ≤ x⊥. This means that (x⊥)⊥ ≤ (y � x⊥)⊥.
Moreover, (x⊥)⊥ = x, (y � x⊥)⊥ = y � (x⊥)⊥ = y � x = x � y.

(ii) Second, the element x � y is the least upper bound of {x, y}. Suppose that
some z ∈ P is an upper bound of {x, y}. Thus, x ≤ z and y ≤ z. But then
the condition (D3) gives us x � y ≤ z which we were to show.

Let us verify the reverse implication. Let us suppose that x � y = x ∨ y. Then
y ≤ x � y. Hence, x � y⊥ ≤ y⊥. By Proposition 2.6 this yields that x ≤ y⊥ and
therefore x ⊥ y.

(b) Suppose that x ≤ y. Then x ≤ (y⊥)⊥ which means that x ⊥ y⊥. By the previous
statement (a) we see that x � y⊥ = x ∨ y⊥. This implies that (x � y⊥)⊥ =
(x ∨ y⊥)⊥. As a result, (x � y⊥)⊥ = x � y and (x ∨ y⊥)⊥ = x⊥ ∧ y.

Conversely, let x � y = y ∧ x⊥. Then x � y ≤ y. By Proposition 2.6 we obtain that
x ≤ y. ��

We are going to show (Theorem 2.10) that the supports of ODPs are orthomod-
ular posets (hence the abbreviation ODP could be read “orthomodular difference
poset”). Recall that an OCP is said to be orthomodular ([22]) if the following
implication holds true:

If x ≤ y, then y = x ∨ (y ∧ x⊥).
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In proving Theorem 2.10, we will find it convenient to use the following character-
ization of orthomodularity.

Proposition 2.9 Let P be an OCP such that the supremum x ∨ y exists in P whenever
x ⊥ y. Then P is orthomodular if and only if the following implication holds true: If
x ≤ y and y ∧ x⊥ = 0, then x = y.

Proof If P is orthomodular then the condition obviously holds true. Conversely,
suppose x ≤ y. Then x ⊥ y⊥ and therefore the element x ∨ y⊥ exists in P. Moreover,
x ≤ x ∨ y⊥. This implies that x ⊥ (x ∨ y⊥)⊥. Therefore the element x ∨ (x ∨ y⊥)⊥
exists in P. But (x ∨ y⊥)⊥ = y ∧ x⊥. It remains to show that y = x ∨ (y ∧ x⊥). Obvi-
ously, x ∨ (y ∧ x⊥) ≤ y. Further, y ∧ (x ∨ (y ∧ x⊥))⊥ = y ∧ x⊥ ∧ (y ∧ x⊥)⊥ = 0. This
means that y = x ∨ (y ∧ x⊥) and therefore P is orthomodular. ��

Theorem 2.10 Let P be an ODP. Then its support Psupp is an orthomodular poset.

Proof Since P is an ODP, its support Psupp is an OCP. Moreover, the supremum
x ∨ y exists in P whenever x ⊥ y (Proposition 2.8). So the characterization of
orthomodularity in Proposition 2.9 can be used. Suppose that x, y ∈ P with x ≤ y
and y ∧ x⊥ = 0. Let us show that x = y. According to Proposition 2.8, we see that
x � y = y ∧ x⊥ = 0. By the condition (7) of Proposition 2.4 we infer that x = y. ��

Obviously, all notions defined for OMPs can be transferred to ODPs by consider-
ing the supports. Thus, for instance, if P is an ODP and x, y ∈ P then we say that the
elements x, y are compatible (in P) if they are compatible in the OMP Psupp. Recall
that two elements x, y of an OMP P are said to be compatible, in symbols x C y, if
they lie in a Boolean subalgebra of P. As known ([22]), B is a Boolean subalgebra
of an OMP P if and only if (1) 0 ∈ B, (2) if x ∈ B, then x⊥ ∈ B, (3) if x, y ∈ B and
x ⊥ y, then x ∨ y ∈ B and (4) B is a distributive lattice.

In the rest of this paragraph we will situate Boolean algebras within ODPs. Let us
first formulate an auxiliary proposition.

Proposition 2.11 Let P be an OMP. Let x, y ∈ P with x C y. Let B be a Boolean sub-
algebra of P such that x, y ∈ B. Then both x ∨ y and x ∧ y exist in P and, moreover,
x ∨ y = x ∨B y and x ∧ y = x ∧B y.

Proof Let us only argue the case of x ∨ y, the case of x ∧ y follows then by de
Morgan’s laws. Since B is a Boolean algebra, we have x ∨B y = x ∨B (y ∧B x⊥). The
elements x and y ∧B x⊥ are orthogonal and they lie in B. But then the element
x ∨ (y ∧B x⊥) exists in P and since B is a Boolean subalgebra of P, we have x ∨
(y ∧B x⊥) ∈ B. Then one easily sees that x ∨B (y ∧B x⊥) = x ∨ (y ∧B x⊥). It remains
to show that the element x ∨B y is the supremum of x, y in P. To this aim, let us
consider an upper bound z ∈ P of x and y. Then x ≤ z, y ∧B x⊥ ≤ z and hence
x ∨ (y ∧B x⊥) ≤ z. But x ∨ (y ∧B x⊥) = x ∨B (y ∧B x⊥) = x ∨B y. ��

The following proposition recalls the well-known characterization of compatibility
in OMPs (see e.g. [22] for a detailed proof) which we shall frequently use. Leaving
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aside the routine completion of the argument, let us only indicate the basic line of
the reasoning.

Proposition 2.12 Let P be an OMP and let x, y ∈ P. Then the following conditions
are equivalent:

(1) x C y,
(2) there exists an element c ∈ P such that c ≤ x, c ≤ y and x ∧ c⊥ ≤ y⊥ ,
(3) there exist pairwise orthogonal elements a, b , c ∈ P such that x = a ∨ c and

y = b ∨ c.

Moreover, in cases (2) and (3), the element c is determined uniquely and c = x ∧ y.

Proof (1) ⇒ (2) One takes c = x ∧ y. (2) ⇒ (3) One takes a = x ∧ c⊥, b = y ∧ c⊥.
(3) ⇒ (1) It is easy to see that the elements a, b , c generate in P a Boolean subalgebra
in view of the orthogonality of a, b , c. ��

Proposition 2.13 Let P be an ODP. Let x, y ∈ P with x C y. Then x � y = (x ∧ y⊥) ∨
(y ∧ x⊥) = (x ∨ y) ∧ (x ∧ y)⊥.

Proof Let B be a Boolean subalgebra in P such that x, y ∈ B. The property (D3)

together with the properties (5), (6) of Proposition 2.4 imply that x � y ≤ x ∨B y, x �
y ≤ x⊥ ∨B y⊥ = (x ∧B y)⊥, x ∧B y⊥ ≤ x � y, x⊥ ∧B y ≤ x � y. Then (x ∧B y⊥) ∨B

(y ∧B x⊥) ≤ x � y ≤ (x ∨B y) ∧B (x ∧B y)⊥. Since B is a Boolean algebra, the left-
hand side of the previous inequality coincides with the right-hand side and therefore
x � y = (x ∧B y⊥) ∨B (y ∧B x⊥) = (x ∨B y) ∧B (x ∧B y)⊥. To complete the proof, it
is sufficient to observe that the infimum and the supremum of two elements in B
equals to the infimum, resp. supremum in the entire P (Proposition 2.11). ��

Proposition 2.14 Let B be a Boolean algebra. Then there exists exactly one mapping
� : B × B → B which fulfils all the conditions (D1), (D2) and (D3) of Definition 2.1.

Proof To prove the existence, take for � the standard symmetric difference in
Boolean algebras. In other words, set x � y = (x ∧ y⊥) ∨ (y ∧ x⊥). The properties
(D1), (D2) and (D3) of Definition 2.1 are then obviously fulfilled. ��

Let us prove the uniqueness of �. Let �1 : B × B → B be a mapping that fulfils
the conditions (D1), (D2) a (D3). Then the couple (B,�1) is an ODP. If x, y ∈ B,
then x C y and therefore x �1 y = (x ∧ y⊥) ∨ (y ∧ x⊥) = x � y (Proposition 2.13).

In view of Proposition 2.14 we can (and shall) understand any Boolean algebra as
an ODP with a uniquely defined operation �. This ODP is a lattice, of course. The
following result strengthens Proposition 2.13 and allows us to characterize Boolean
algebras among ODPs.

Proposition 2.15 Let P be an ODP and let x, y ∈ P. Then the following conditions
are equivalent:

(a) x C y,
(b) the elements x ∧ y⊥ and y ∧ x⊥ exist in P and x � y = (x ∧ y⊥) ∨ (y ∧ x⊥),
(c) the elements x ∨ y and x ∧ y exist in P and x � y = (x ∨ y) ∧ (x ∧ y)⊥,
(d) x C (x � y).
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Proof The implications (a) ⇒ (b) and (a) ⇒ (c) have been verified in Proposition
2.13. Let us show (b) ⇒ (d). Since x ∧ y⊥ ≤ x, we obtain x = (x ∧ y⊥) ∨ [x ∧ (x ∧
y⊥)⊥]. We have assumed x � y = (x ∧ y⊥) ∨ (y ∧ x⊥). It suffices to show that the
elements x ∧ (x ∧ y⊥)⊥ and y ∧ x⊥ are orthogonal, i.e., x ∧ (x ∧ y⊥)⊥ ≤ (y ∧ x⊥)⊥.
But x ∧ (x ∧ y⊥)⊥ ≤ x ≤ y⊥ ∨ x = (y ∧ x⊥)⊥.

Further, let us prove that (c) ⇒ (d). Assuming (c), the infima x⊥ ∧ y⊥ and x ∧
y exist and, moreover, (x � y)⊥ = (x⊥ ∧ y⊥) ∨ (x ∧ y). This implies that x � y⊥ =
(x ∧ (y⊥)⊥) ∨ (y⊥ ∧ x⊥). Since (b) ⇒ (d), we see that x C (x � y⊥), and therefore
x C (x � y).

Finally, let us show that (d) ⇒ (a). Let x C (x � y). From the implication (a) ⇒ (d)

we have x C (x � (x � y)) but x � (x � y) = y. ��

Proposition 2.16 Let P be an ODP. Then P is Boolean algebra if and only if P is a
lattice and any of the following three condition is satisfied:

(1) x C y for any x, y ∈ P,
(2) x � y = (x ∧ y⊥) ∨ (y ∧ x⊥) for any x, y ∈ P,
(3) x � y = (x ∨ y) ∧ (x ∧ y)⊥ for any x, y ∈ P.

Proof It follows from Proposition 2.15. ��

3 Further Algebraic Properties of ODPs

Let us go on with the analysis of properties of the operation �. Let us first recall a
result in OMPs.

Proposition 3.1 Let P be an OMP. Let x, x1, x2 ∈ P with x C x1, x C x2, x1 ⊥ x2.
Then x C (x1 ∨ x2) and x ∧ (x1 ∨ x2) = (x ∧ x1) ∨ (x ∧ x2).

Proof Since the elements x1, x2 are orthogonal, so are the elements x ∧ x1, x ∧ x2.
As a consequence, the element c = (x ∧ x1) ∨ (x ∧ x2) exists in P. Obviously, c ≤ x
and c ≤ x1 ∨ x2. It is easy to see that x ∧ c⊥ = x ∧ (x ∧ x1)

⊥ ∧ (x ∧ x2)
⊥ = x ∧ (x⊥ ∨

x⊥
1 ) ∧ (x⊥ ∨ x⊥

2 ). Since x C x1, we have x ∧ (x⊥ ∨ x⊥
1 ) = x ∧ x⊥

1 . Analogously, x ∧
(x⊥ ∨ x⊥

2 ) = x ∧ x⊥
2 . The previous two equalities imply that x ∧ c⊥ = x ∧ x⊥

1 ∧ x⊥
2 ≤

x⊥
1 ∧ x⊥

2 = (x1 ∨ x2)
⊥. By Proposition 2.12, (2), where one sets y = x1 ∨ x2, we see

that x C (x1 ∨ x2) and c = x ∧ (x1 ∨ x2). ��
The previous result allows us to derive a certain form of distributivity in ODPs.

Theorem 3.2 Let P be an ODP. Let x, y, z ∈ P and x C y, x C z. Then x C (y � z)

and x ∧ (y � z) = (x ∧ y) � (x ∧ z).

Proof The compatibility of the pairs x C y and x C z gives us the equations y = (y ∧
x) ∨ (y ∧ x⊥), z = (z ∧ x) ∨ (z ∧ x⊥). Since (y ∧ x) ⊥ (y ∧ x⊥) and (z ∧ x) ⊥ (z ∧
x⊥), we see by Proposition 2.8 that y = (y ∧ x) � (y ∧ x⊥) and z = (z ∧ x) � (z ∧ x⊥).



8 Order (2009) 26:1–21

But we also have

y � z = [
(y ∧ x) � (y ∧ x⊥)

] � [
(z ∧ x) � (z ∧ x⊥)

]

= [
(y ∧ x) � (z ∧ x)

] � [
(y ∧ x⊥) � (z ∧ x⊥)

]
.

Moreover, (y ∧ x) � (z ∧ x) ≤ x. Analogously, (y ∧ x⊥) � (z ∧ x⊥) ≤ x⊥. This im-
plies that [(y ∧ x) � (z ∧ x)] ⊥ [(y ∧ x⊥) � (z ∧ x⊥)]. By Proposition 2.8,

y � z = [(y ∧ x) � (z ∧ x)] ∨ [(
y ∧ x⊥) � (

z ∧ x⊥)]
.

Finally, since we have (y ∧ x) � (z ∧ x) ≤ x and (y ∧ x⊥) � (z ∧ x⊥) ≤ x⊥, the proof
can be completed by using Proposition 3.1 (one sets x1 = (y ∧ x) � (z ∧ x), x2 = (y ∧
x⊥) � (z ∧ x⊥)). ��

There are a few consequences of Theorem 3.2. The first consequence asserts that
those orthomodular posets which came into existence as supports of ODPs have a
rather curious block property (in accord with the terminology of OMPs, let us call a
maximal Boolean subalgebra of an ODP a block).

Proposition 3.3 Let P be an ODP and let x ∈ P. Then either x lies in exactly one block
or x lies in at least three blocks.

Proof Looking for a contradiction, let x lie in exactly two blocks B1 and B2. Then
there exist elements y ∈ B1, z ∈ B2 such that y, z are not compatible. Since x C y,
x C z, we have x C (y � z) (Theorem 3.2). As a consequence, either y � z ∈ B1 or
y � z ∈ B2. In view of the symmetry in the role of y, z, let us assume that y � z ∈ B1.
Since y ∈ B1, we infer that y C (y � z). By Proposition 2.15, we see that y C z, which
is a contradiction. ��

In the sequel we shall need to specify the subsets of ODPs which are ODPs in their
own right.

Definition 3.4 Let P be a ODP and let Q ⊆ P. Then Q is said to be a sub-ODP of
P if

(1) 1 ∈ Q,
(2) for any x, y ∈ Q we have x � y ∈ Q.

Proposition 3.5 Let Q be a sub-ODP of P. Then

(a) 0 ∈ Q,
(b) if x ∈ Q, then x⊥ ∈ Q,
(c) if x, y ∈ Q, x ⊥ y, then x ∨ y ∈ Q.

A consequence: A sub-ODP of P is an ODP when endowed with the ordering and
operations inherited from P.

Proof The property (a) is trivial. The property (b) follows from the equality x⊥ =
x � 1. According to Proposition 2.8 and the property (c), we easily see that if x ⊥ y,
then x ∨ y = x � y. ��
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For the last consequence, let us introduce two notions related to compatibility in
OMPs. If x ∈ P, write C(x) = {y ∈ P; x C y}. Further, write C(P) = ⋂

x∈P
C(x) and call

C(P) the centre of P. Obviously, C(P) is a Boolean subalgebra of P.

Proposition 3.6 Let P be an ODP and let x ∈ P. Then the set C(x) is a sub-ODP of P.

Proof Obviously, 1 ∈ C(x). The rest of the proof follows from Theorem 3.2. ��
Let us take up the intervals in ODPs. Consider first the situation in OMPs. Let

P be an OMP and let a ∈ P. Let us write [0, a] = {x ∈ P; x ≤ a}. As known, the
interval [0, a] can be viewed as an OMP. We will denote it by Pa. Let us shortly recall
the construction of Pa (see, for example, [22]): If x, y ∈ [0, a], then we put x ≤a y
exactly when x ≤ y. The element 0, resp. a, is the least, resp. the greatest, element of
Pa. The complement of x in Pa, x⊥a , is defined by setting x⊥a = x⊥ ∧ a (since x ≤ a,
the elements x, a are compatible in P and therefore x⊥ ∧ a exists). It can be easily
seen that Pa = ([0, a], ≤a,

⊥a , 0, a) is an OMP.
Let P be an ODP and let a ∈ P. If x, y ∈ [0, a] then x � y ∈ [0, a]. Let us consider

the structure Pa = ([0, a],≤a,
⊥a , 0, a,�) = ((

Psupp
)a

, �)
.

Proposition 3.7 Let P be an ODP and let a ∈ P. Then the structure Pa is again an
ODP. Moreover, (Pa)supp = (

Psupp
)a

.

Proof It is sufficient to show that the conditions (D1), (D2) and (D3) of Definition 2.1
hold in Pa. The conditions (D1) and (D3) can be verified easily. It remains to check
the condition (D2). For that, suppose x ∈ [0, a]. Then x � 1Pa = x � a = a ∧ x⊥ =
x⊥a . The equality 1Pa � x = x⊥a follows from the commutativity of �. The equality
(Pa)supp = (Psupp)

a is then obvious. ��

In the following proposition we show that an ODP can be decomposed with the
help of the central element by the way analogous to the situation in OMPs.

Proposition 3.8 Suppose that P is an ODP and a ∈ C(P). Then P ∼= Pa × Pa⊥
. More

explicitly, the mapping h : P → Pa × Pa⊥
defined by putting h(x) = (x ∧ a, x ∧ a⊥) is

an isomorphism of P onto Pa × Pa⊥
.

Proof The mapping h is an isomorphism between the OMPs Psupp and (Pa)supp ×
(Pa⊥

)supp, see [22]. It remains to show that the mapping h preserves the operation �.
Suppose that x, y ∈ P. Then by Theorem 3.2 we consecutively obtain

h(x �P y) = (
(x �P y) ∧ a, (x �P y) ∧ a⊥)

= (
(x ∧ a) �P (y ∧ a),

(
x ∧ a⊥) �P

(
y ∧ a⊥))

= (
(x ∧ a) �Pa (y ∧ a),

(
x ∧ a⊥) �Pa⊥

(
y ∧ a⊥))

= (
x ∧ a, x ∧ a⊥) �Pa×Pa⊥

(
y ∧ a, y ∧ a⊥)

= h(x) �Pa×Pa⊥ h(y).

��
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4 Set-representable ODPs

In this section we characterize those ODPs that are set-representable. We formulate
this characterization in terms of two-valued morphisms and use the characterization
in constructing the ODPs that are not set-representable.

Definition 4.1 Let B be a Boolean algebra and � be a subset of B. Then the set � is
said to be a d-subring of B if � is a sub-ODP of B, i.e.

(1) 1 ∈ �,
(2) for any x, y ∈ � we have x � y ∈ �.

Let us denote by Subring(B) the collection of all d-subrings of B.

Proposition 4.2 Let B be a Boolean algebra and let � ⊆ B be a d-subring. Then 0 ∈ �

and �B = (�,≤, 0, 1, ⊥,�) is an ODP.

Proof Since for all orthogonal elements a, b ∈ � we have a ∨ b = a � b , we see that
�B is obviously an ODP. ��

Let us recall two standard set-theoretic operations. If A, B are sets, let us write
A \ B for the set {x ∈ A; x �∈ B} and A�B for the set (A \ B) ∪ (B \ A).

Definition 4.3 Let P be an ODP. Let us say that P is a set-representable ODP (abbr.
SRODP) if there is a set X and a d-subring � of the power Boolean algebra exp(X)

such that P ∼= �exp(X), i.e. the structures P and �exp(X) are isomorphic.
Let us denote by SRODP the class of all set-representable ODPs.

Proposition 4.4 Let P be an ODP. Then P is a SRODP if and only if there is a set M
and a mapping f of P to exp(M) such that the following two conditions hold for any
x, y ∈ P:

x ≤ y ⇔ f (x) ⊆ f (y),

f (x �P y) = f (x) � f (y).

Proof Let us prove that the conditions are sufficient, the rest is obvious. Set X =
f (1) ⊆ M, � = f [P] = { f (x); x ∈ P}. Then the second condition implies that � is a
d-subring of the Boolean algebra exp(X). Further, the first condition implies that f is
an isomorphism of the poset (P,≤) onto the poset (�,⊆). Finally, f (0) = f (0 � 0) =
f (0) � f (0) = ∅. ��

Proposition 4.5 The SRODPs are exactly the d-subrings of Boolean algebras. More
precisely: Let B be a Boolean algebra and let � be a d-subring of B. Then �B is a
SRODP. Vice versa, let P be a SRODP. Then there exists a Boolean algebra, B, and a
d-subring � of B such that P is isomorphic with �B.

Proof It follows from the Stone representation theorem for Boolean algebras. ��
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Let ⊕ stand for the addition modulo 2 on the set {0, 1} (i.e., 0 ⊕ 0 = 1 ⊕ 1 = 0,
0 ⊕ 1 = 1 ⊕ 0 = 1).

Definition 4.6 Let P be an ODP and let e : P → {0, 1} be a mapping. Then e is
said to be an ODP-evaluation (abbr. evaluation) on P if the following properties
are fulfilled (x, y ∈ P):

(E1) e(1) = 1,
(E2) x ≤ y ⇒ e(x) ≤ e(y),
(E3) e(x � y) = e(x) ⊕ e(y).

Let E(P) be the set of all evaluations on P. The following result characterizes
SRODPs in terms of E(P).

Theorem 4.7 Let P be an ODP. Then P is a SRODP if and only if for any a, b ∈ P
with a �≤ b there exists an e ∈ E(P) such that e(a) = 1 and e(b) = 0.

Proof

(⇒) Write P = �exp(X), where � is a d-subring of the Boolean algebra exp(X).
Choosing an x ∈ X, let us define a mapping ex : � → {0, 1} as follows:
If A ∈ �, then ex(A) = 1 if x ∈ A, otherwise ex(A) = 0.
Let us check that the mapping ex is an evaluation on P. Obviously, ex(1P) =
ex(X) = 1. If A, B ∈ � and A ≤P B, then A ⊆ B, and therefore ex(A) ≤
ex(B). In order to show that ex(A � B) = ex(A) ⊕ ex(B), we have four cases
to argue: x ∈ A, x �∈ A and x ∈ B, x �∈ B. But in any of these cases the latter
equality obviously holds.
Finally, if A, B ∈ � and A �⊆ B, then there exists an x ∈ A such that x �∈ B.
Then ex(A) = 1 and ex(B) = 0.

(⇐) Let us assume that the condition on evaluations is fulfilled. Choosing x ∈ P, let
us write f (x) = {e ∈ E(P); e(x) = 1}. We will check that this mapping f : P →
P(E(P)) fulfils both conditions of Proposition 4.4. First, suppose that x ≤ y.
Let e ∈ f (x). This means that e(x) = 1. According to (E2) we have e(x) ≤ e(y).
As a result, e(y) = 1 and hence e ∈ f (y). We have shown that f (x) ⊆ f (y).
Conversely, suppose that x �≤ y. Then there is e ∈ E(P) such that e(a) = 1,
e(b) = 0. We see that f (x) �⊆ f (y). To complete the proof, we use the equali-
ties f (x �P y) = {e ∈ E(L); e(x �P y) = 1} = {e ∈ E(P); e(x) ⊕ e(y) = 1} =
= {e ∈ E(P); (e(x) = 1 & e(y) = 0)

∨
(e(x) = 0 & e(y) = 1)} = f (x) � f (y).

��
The following simple consequence of the previous theorem will be repeatedly
used in the sequel.

Proposition 4.8 The class SRODP is closed under the formation of substructures.

Proof Suppose that P ∈ SRODP and Q is a sub-ODP of P. Suppose a, b ∈ Q,
a �≤ b . Then there exists e ∈ E(P) such that e(a) = 1 and e(b) = 0. It suffices to
observe that the restriction of e on Q is an evaluation on Q. ��
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The SRODPs will be revisited in the next section in order to study their structure
properties. It will be seen that the SRODPs form quite a large class (they are closed
under the formation of products, etc.). However, not all ODPs are set-representable.
To show that, let us shortly examine a construction with ODPs analogous to the
horizontal sum of orthomodular posets. Let B be a nonempty set of OMPs such that
P1 ∩ P2 = {0, 1} for all P1, P2 ∈ B with P1 �= P2. Then P = ⋃B carries in a natural
way the structure of an orthomodular poset (see [22]). Let us call this OMP P the
horizontal sum of the system B.

Definition 4.9 Let B be a nontrivial Boolean algebra and let B ⊆ Subring(B). Let us
say that B is a disjoint system of d-subrings of B if for all �1, �2 ∈ B with �1 �= �2 we
have �1 ∩ �2 = {0, 1} and, moreover, if card(B) ≥ 4 then card(�) ≥ 4 for any � ∈ B.
In addition, if

⋃B = B, then the system B is said to be a partition of the algebra B.

Construction 4.10 Let B a Boolean algebra and let B be a disjoint system of d-
subrings of B. Let us construct an OMP, P, and the mapping �P : P2 → P as follows:

In the first step, let us construct a system B′ ⊆ Subring(B) determined by the
following requirement: If

⋃B = B (i.e., if B is a partition of B), then we set B′ = B.
If it is not the case, meaning that

⋃B is a proper subset of B, we add to B all
necessary four-element subalgebras of B such that the resulting system B′, B′ ⊇ B,
be a partition of B. In the second step, let us take for P the horizontal sum of the
system B′. And finally, if x, y ∈ P, let us set x �P y = x �B y. The couple (P,�P) so
obtained will be denoted by PB,B or simply by PB if there is no need to refer to B.

Proposition 4.11 The structure PB is an ODP.

Proof The conditions (D1) and (D2) are obvious. Let us verify the condition (D3).
Let x, y ∈ B. If there is B1 ∈ B such that x, y ∈ B1, then x ∨P y = x ∨B y. As a result,
x � y = x �B y ≤ x ∨B y = x ∨P y. If there is no block B1 such that x, y ∈ B1, then
x ∨P y = 1. The inequality x � y ≤ x ∨P y is then valid automatically and the proof
is complete. ��

Proposition 4.12 Let B1 be a subalgebra of B2. Let B be a disjoint system of d-
subrings of B1. Then PB1,B is a sub-ODP of PB2,B.

Proof The proof is straightforward. ��

In the rest of this section we will apply the above construction to obtain ODPs
that are not set-representable. In fact, we will show that any ODP is contained in a
non-set-representable ODP. To this aim, we need to prove a few propositions.

Proposition 4.13 Let P and Q be ODPs and let P possess an evaluation. Then P can
be embedded into P × Q.

Proof Let e : P → {0, 1} be an evaluation. Then e could be viewed as a homomor-
phism of P into Q (we only identify 0 and 1 with 0Q and 1Q). Then the mapping
f : P → P × Q such that f (p) = (p, e(p)) will do the job. ��
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Proposition 4.14 Let B be a Boolean algebra and B be a disjoint system of d-subrings
of B. Let P = PB and a ∈ P with a >P 0P. Then there is an evaluation e on P such
that e(a) = 1.

Proof Let us choose an ultrafilter, F, on B such that a ∈ F. Then we set e(x) = 1
provided x ∈ F and e(x) = 0 otherwise. ��

The following proposition shows that in general we cannot hope for having
“distinguishable” set of evaluations on PB. This will show that PB are generally not
set-representable (Proposition 4.7).

Proposition 4.15 Let B be a Boolean algebra with card(B) ≥ 32. Then there is such a
disjoint system B of d-subrings of B that PB is not set-representable.

Proof Let B32 be the 32-element Boolean algebra. Since card(B) ≥ 32, the algebra
B32 can be viewed as a subalgebra of B. By Proposition 4.8 and Proposition 4.12, it
is sufficient to find a disjoint system of d-subrings on the algebra B32 such that PB32,B

is not set-representable.

Let us identify the Boolean algebra B32 with the algebra of all subsets of the set
{1, . . . , 5}. Then 0B = ∅ and 1B = {1, . . . , 5}. Let us consider the following elements of
B: a1 = {1, 2}, a2 = {4, 5}, a3 = {3}, b 1 = {3, 4}, b 2 = {2}, b 3 = {1, 5}, c1 = {1, 3}, c2 =
{2, 4}, c3 = {5}. Further, take the following d-subrings �1, �2, �3 of B:

�1 = {
0B, 1B, a1, a2, a3, a⊥

1 , a⊥
2 , a⊥

3

}
, �2 = {

0B, 1B, b 1, b 2, b 3, b⊥
1 , b⊥

2 , b⊥
3

}
,

�3 = {
0B, 1B, c1, c2, c3, c⊥

1 , c⊥
2 , c⊥

3

}
.

It is easy to show that �i ∩ � j = {0B, 1B} for any i �= j. Writing B = {�1, �2, �3},
we see that B is a disjoint system. Let us set P = PB. Further put a = {3} = a3

and b = {2, 3, 4} = b⊥
3 . Then a �≤ b in the poset P. In order to show that P is not

set-representable, it is sufficient to prove that there is no evaluation e on P such
that e(a) = 1 and e(b) = 0. Seeking a contradiction, let e be an evaluation on P with
e(a) = 1 and e(b) = 0. Then e(a⊥) = 0. Observing that a1 ≤ a⊥, a2 ≤ a⊥, b 1 ≤ b , b 2 ≤
b in P, we infer that e(a1) = e(a2) = e(b 1) = e(b 2) = 0. Since c⊥

3 = {1, 2, 3, 4} = a1 �
b 1 and c⊥

1 = {2, 4, 5} = a2 � b 2, we see that e(c⊥
3 ) = e(a1 � b 1) = e(a1) ⊕ e(b 1) = 0.

Analogously, e(c⊥
1 ) = 0. As c1 ≤ c⊥

3 , we obtain that e(c1) = 0. It means that e(c1) =
e(c⊥

1 ) = 0, which is absurd. ��

Theorem 4.16 Let P be an ODP. Then there is an ODP, Q, such that Q is not set-
representable and P is embeddable into Q.

Proof If P is not set-representable then there is nothing to prove. Let P be set-
representable. By Proposition 4.14 and 4.15 there is a non-set-representable ODP R
such that there exists an evaluation e on R. Set Q = P × R. Since R is embeddable
into Q (Proposition 4.13), Q is not set-representable (Proposition 4.8). Since there
is an evaluation on P, we see that P is embeddable into Q (Proposition 4.13). This
completes the proof. ��
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5 Set-representable ODPs form a Quasivariety

In this section we shall show that the class SRODP is a quasivariety (i.e. the class
SRODP is defined by a set of quasiidentities). Hence the class SRODP is rather
large and algebraically “stylish”. It should be noted that in showing that SRODP
is a quasivariety the investigation of the set-representation of orthomodular posets
was instrumental (see [18] and [19]). However, the presence of the extra operation �
required here a somewhat different reasoning in places.

We shall deal with the ultraproduct of ODPs. Let us first recall the notions and
results we shall need.

Proposition 5.1 Let I be a non-empty set and let F be an ultrafilter on I. Let f : I →
{0, 1} be a mapping. Then there exists exactly one value v ∈ {0, 1} such that f −1(v) ∈ F
(where f −1(v) = {i ∈ I; f (i) = v}).

Proof Obviously, f −1(1) = I \ f −1(0). Since F is an ultrafilter on I, it is clear that
exactly one of the sets f −1(0), f −1(1) belongs to F . ��

The value v uniquely determined by the previous proposition will be denoted by
v(F , f ). If f1, f2 : I → {0, 1}, let us agree to write f1 ∼F f2, provided Eq( f1, f2) ∈
F , where Eq( f1, f2) = {i ∈ I; f1(i) = f2(i)}.

Proposition 5.2 Let I be a nonempty set and let F be an ultrafilter on I. Suppose that
f1, f2 : I → {0, 1} are mappings with f1 ∼F f2. Then v(F , f1) = v(F , f2).

Proof Suppose that a = v(F , f1). Then f −1
1 (a) ∩ Eq( f1, f2) ⊆ f −1

2 (a). Since
f −1
1 (a) ∈ F and Eq( f1, f2) ∈ F , we see that f −1

2 (a) ∈ F . It follows that a = v(F , f2).
��

Let Xi be nonempty sets, where i ∈ I for a nonempty set I. Let X = ∏

i∈I
Xi be

the Cartesian product of the sets Xi, i ∈ I. Let F be an ultrafilter on I and let
Y = ∏

i∈I

F Xi be the corresponding ultraproduct (i.e., let Y be the set of all classes of

the equivalence x ∼ y ⇔ {i ∈ I; x(i) = y(i)} ∈ F). Let us suppose that we are given
mappings ei : Xi → {0, 1}, i ∈ I. Then we can construct a mapping e : Y → {0, 1} as
follows:

If a ∈ X, let us denote by ga : I → {0, 1} the mapping defined by setting ga(i) =
ei(a(i)). Put h(a) = v(F , ga). We have therefore obtained a mapping h : X → {0, 1}.
Let α ∈ Y and α = [a]F . It means that a is such an element of X that a ∈ α. Let us
set e(α) = h(a). We have to verify the correctness of this definition. Suppose that α =
[a]F = [b]F . Then {i ∈ I; a(i) = b(i)} ∈ F . It follows that {i ∈ I; ga(i) = gb(i)} ∈ F .
This implies that ga ∼F gb. By Proposition 5.2, v(F , ga) = v(F , gb). This means that
h(a) = h(b) and we have found that the definition is correct.

Let us denote by
∏

i∈I

Fei the mapping e : Y → {0, 1} constructed above.

Proposition 5.3 Let Pi be ODPs, i ∈ I, I �= ∅. Let F be an ultrafilter on I. Let
P = ∏

i∈I

F Pi be the ultraproduct of Pi, i ∈ I. For any i ∈ I, let ei : Pi → {0, 1} be such
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mappings that {i ∈ I; ei is an evaluation on Pi} ∈ F . Then the mapping e = ∏

i∈I

Fei is

an evaluation on P.

Proof The proof reduces to a straightforward verification. ��

Theorem 5.4 The class SRODP of all set-representable ODPs forms a quasivariety.

Proof We shall show that the class SRODL is closed under the formation of
substructures, products and ultraproducts.

(a) The closedness under the formation of substructures has been proved in
Proposition 4.8.

(b) The closedness under the formation of products:
Suppose Pi ∈ SRODP , i ∈ I. Write P = ∏

i∈I
Pi. For any j ∈ I, let us denote by

π j the j-th projection P → Pj. Suppose that a, b ∈ P and a �≤ b. Then there
exists an index i0 ∈ I such that ai0 �≤ bi0 , where ai0 = πi0(a), bi0 = πi0(b). Take
an evaluation e ∈ E(Pi0) such that e(ai0) = 1 and e(bi0) = 0. Consider the eval-
uation πi0 ◦ e on P. Then (πi0 ◦ e)(a) = e(πi0(a)) = e(ai0) = 1 and (πi0 ◦ e)(b) =
e(πi0(b)) = e(bi0) = 0.

(c) The closedness under the formation of ultraproducts:
Suppose Pi ∈ SRODP , i ∈ I and suppose that F is an ultrafilter on I. Write
Q = ∏

i∈I

F Pi. Suppose that α, β ∈ Q, α �≤Q β, and, moreover, suppose that

α = [a]F , β = [b]F , a, b ∈ ∏

i∈I
Pi. Then {i ∈ I; a(i) ≤ b(i)} �∈ F . Since F is an

ultrafilter, we infer that {i ∈ I; a(i) �≤ b(i)} ∈ F . Write J = {i ∈ I; a(i) �≤ b(i)}.
Suppose that, for any i ∈ J, ei : Pi → {0, 1} be such evaluations that ei(a(i)) =
1 and ei(b(i)) = 0. If i ∈ I \ J let ei : Pi → {0, 1} be arbitrary mappings. Let
us set e = ∏

i∈I

Fei. Then e is an evaluation on P. Furthermore, e(α) = h(a) =
v(F , ga). If i ∈ J, then ga(i) = ei(a(i)) = 1. It follows that J ⊆ {i ∈ I; ga(i) = 1}
and therefore {i ∈ I; ga(i) = 1} ∈ F . Then v(F , ga) = 1. The equalities e(β) =
h(b) = v(F , gb) = 0 can be shown analogously. This concludes the proof of
Theorem 5.4. ��

In view of the last result we see that the class SRODP is defined by a set of
quasiidentities. It would be desirable to know if one can do here with a finite number
of these quasiidentities but this seems to be a rather difficult problem.

6 Pseudocomplemented ODPs

The main result we want to prove in this section says that the pseudocomplemented
ODPs are set-representable, generalizing thus the situation in OMPs (see [15],
[20] and [23]). Let us start with the following standard definition of the theory of
complemented structures.

Definition 6.1 Let P be an OMP. Let us say that P is pseudocomplemented if for any
x, y ∈ P the following implication is true: If 0 = x ∧ y, then x ≤ y⊥.
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It should be remarked that the pseudocomplemented OMPs play a noteworthy
role in the study of compatibility – they are exactly those “quantum logics” in which
the compatibility relation allows for the following lattice characterization. Let us
present a simple proof of this fact. It does not seem to be contained in monographs
though it is related to the question of whether the compatibility can be described
lattice-theoretically – a question relevant to quantum axiomatics.

Proposition 6.2 Let P be an OMP. Then the following conditions are equivalent:

(1) P is pseudocomplemented,
(2) for any a, b ∈ P, the infimum a ∧ b exists in P exactly when a C b.

Proof Suppose first that P is pseudocomplemented. Let us consider two elements
a, b ∈ P such that a ∧ b exists in P. Write d = a ∧ b . Then a = d ∨ (a ∧ d⊥), b =
d ∨ (b ∧ d⊥). It is sufficient to show that a ∧ d⊥ and b ∧ d⊥ are orthogonal. Since P
is pseudocomplemented, it is enough to show that (a ∧ d⊥) ∧ (b ∧ d⊥) = 0. Suppose
that c is such an element that c ≤ a ∧ d⊥ and c ≤ b ∧ d⊥. Then c ≤ a and c ≤ b . It
follows that c ≤ d. On the other hand, the inequality c ≤ a ∧ d⊥ implies c ≤ d⊥. Since
c ≤ d and c ≤ d⊥, we see that c = 0 and the implication (1) ⇒ (2) is proved.

Let us take up the reverse implication (2) ⇒ (1). Suppose that a ∧ b = 0. By
the assumption, a C b . Then a = (a ∧ b) ∨ (a ∧ b⊥). Since a ∧ b = 0, we have a =
a ∧ b⊥, and therefore a ≤ b⊥. ��

Let P be an ODP. In accord with our convention that all notions of Psupp can be
attributed to the original P, let us say that P is pseudocomplemented if so is Psupp.
We want to prove that the pseudocomplemented ODPs are set-representable. Before
doing so, let us introduce a few notions of ordered sets.

Let P be a poset with the least and the greatest element, 0 and 1. Let us agree to
write, for A ⊆ P, A∧ = {x ∈ P; ∀y ∈ A : y ≤ x}, A∨ = {x ∈ P; ∀y ∈ A : x ≤ y}.

Definition 6.3 Suppose that I ⊆ P. We say that I is a Frink ideal in P if for any finite
subset J ⊆ I we have J∧∨ ⊆ I (as usual, J∧∨ stands for (J∧)∨). We say that I is proper
if I �= P (equivalently, 1 �∈ I).

It should be noted that a Frink ideal, I, in P has the standard properties of an ideal
in a poset: 0 ∈ I, and for any x, y ∈ P such that x ∈ I, y ≤ x we have y ∈ I. Moreover,
a Frink ideal in an ODP respects the operation � as follows.

Proposition 6.4 Let P be an ODP and let I be a Frink ideal in P. Then for any pair
of elements x, y ∈ I we have x � y ∈ I.

Proof By the condition (D3) of the Definition 2.1, x � y ∈ {x, y}∧∨ ⊆ I, which proves
the result. ��

The following simple proposition gives us an information on how a set generates
a Frink ideal.
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Proposition 6.5 Let P be an OMP. Let A ⊆ P. Then the smallest Frink ideal that
contains A is the following union IA:

IA =
⋃

X⊆A, X finite

X∧∨ .

Further, let I be a Frink ideal in P and let a ∈ P. Then the smallest Frink ideal that
contains I and the element a is the set I[a], where

I[a] =
⋃

X⊆I, X finite

(X ∪ {a})∧∨ .

Proposition 6.6 Let P be a pseudocomplemented OMP, let I be a Frink ideal in P
and let a ∈ P. Then the following statements are equivalent:

(1) there is a proper Frink ideal J in P such that I ⊆ J and a ∈ J,
(2) a⊥ �∈ I.

Proof

(1) ⇒ (2) Suppose that I ∪ {a} ⊆ J. Further, suppose that a⊥ ∈ I. Then a, a⊥ ∈ J.
By the definition of Frink ideal, we see that {a, a⊥}∧∨ ⊆ J. But
{a, a⊥}∧∨ = ({a, a⊥}∧)∨ = {1P}∨ = P. This means that J = P and there-
fore J is not proper.

(2) ⇒ (1) Suppose that a⊥ �∈ I. Let us set J = I[a]. We want to show that 1 �∈ J. By
Proposition 6.5, it suffices to show that 1 �∈ (X ∪ {a})∧∨ for any finite X ⊆
I. Take an arbitrary finite X ⊆ I. Since X∧∨ ⊆ I, a⊥ �∈ I, we infer that
a⊥ �∈ X∧∨. It follows that there is an element b ∈ X∧ with a⊥ �≤ b .
The definition of pseudocomplementarity gives us that 0 �= infP{a⊥, b⊥}.
Hence, there is an element c ∈ P such that c ≤ a⊥ and c ≤ b⊥ and,
moreover, c > 0. This implies that a ≤ c⊥, b ≤ c⊥ and c⊥ < 1. We con-
clude that c⊥ is an upper bound of X ∪ {a}. But c⊥ < 1, which implies
1 �∈ (X ∪ {a})∧∨ and the proof is complete. ��

Theorem 6.7 Let P be a pseudocomplemented OMP. Let I ⊆ P be a maximal proper
Frink ideal in P. Then I has the selectivity property: For any x ∈ P either x ∈ I or
x⊥ ∈ I.

Proof Let a ∈ P. Suppose that a⊥ �∈ I. We want to show that a ∈ I. By
Proposition 6.6, the set I[a] is a proper Frink ideal. Since I ⊆ I[a] and since I is a
maximal, we obtain I = I[a]. Thus, a ∈ I, which was to show. ��

Theorem 6.8 Each pseudocomplemented ODP is set-representable.

Proof Let P be a pseudocomplemented ODP. Let a, b ∈ P with a �≤ b . Since a �≤ b ,
it follows that a �= 0. Thus, a⊥ �= 1. This implies that the set I = {x ∈ P; x ≤ a⊥} is
a proper Frink ideal in P. Moreover, b⊥ �∈ I. By Proposition 6.6 and an obvious
application of Zorn’s lemma, we obtain that there is a maximal proper Frink ideal J
in P such that I ∪ {b} ⊆ J. Let us define a mapping e : P → {0, 1} as follows: If x ∈ J
then e(x) = 0, e(x) = 1 otherwise. Let us show that this mapping e is an evaluation



18 Order (2009) 26:1–21

on P. The property (E1) is implied by the fact that 1 �∈ J. Further, suppose that
x, y ∈ P with x ≤ y. If y ∈ J, then x ∈ J, and therefore e(x) = e(y) = 0. If y �∈ J, then
e(y) = 1 and the inequality e(x) ≤ e(y) is automatically valid. Finally, suppose that
x, y ∈ P. Let us try to show that e(x � y) = e(x) ⊕ e(y). We have to distinguish three
possibilities.

• Firstly, suppose that x, y ∈ J. Then x � y ∈ J (Proposition 6.4) and the inequality
holds true.

• Secondly, suppose that exactly one of the elements x, y lies in J. Without a loss
of generality, let x ∈ J and y �∈ J. If x � y ∈ J, then x � (x � y) ∈ J and therefore
y ∈ J. But this is absurd. It follows that x � y �∈ J. As a result, e(x) = 0, e(y) = 1
and e(x � y) = 1.

• Thirdly, x �∈ J and y �∈ J. By Theorem 6.7, we see that x⊥ ∈ J and y⊥ ∈ J. This
implies that x⊥ � y⊥ ∈ J. But x⊥ � y⊥ = x � y. We therefore see that e(x) = 1,
e(y) = 1 and e(x � y) = 0.

This shows that e is an evaluation. To complete the proof, we observe that a⊥,

b ∈ J, and therefore e(a⊥) = 0, e(b) = 0. In other words, e(a) = 1 and the proof
is done. ��

In concluding this paragraph, let us see that there are non-Boolean pseudo-
complemented ODPs and that there are set-representable ODPs which are not
pseudocomplemented. Putting it in interplay with the results obtained above, let us
formulate the result in the following manner.

Proposition 6.9 The following inclusions are proper: BA ⊂ pseudocomplemented
ODPs ⊂ SRODP .

Proof The first inclusion is obvious, the second follows from Theorem 6.8. Obvi-
ously, MO3 is a SRODP which is not pseudocomplemented. It remains to construct a
pseudocomplemented ODP which is not Boolean. Let N denote the set of all natural
numbers. For i ∈ {0, 1, 2, 3, 4, 5}, put Ni = {n ∈ N; n = 6k + i for some natural k}.
Further, let us put A1 = N0 ∪ N2 ∪ N4 (i.e., A1 is the set of all even numbers),
A2 = N0 ∪ N3, A3 = A1 � A2 = N2 ∪ N3 ∪ N4. For m ∈ {1, 2, 3} put Bm = N \ Am.
Consider A = {∅, A1, B1, A2, B2, A3, B3, N}. Then the set A is a d-subring in
exp(N). Going on with the construction put � = {X ⊆ N; X � D is finite for some
D ∈ A}. Then � is again a d-subring. We will show that P = (�,⊆, ∅, N, c, �), where
Xc = N \ X, is a pseudocomplemented ODP that is not Boolean.

Suppose that X, Y ∈ � such that inf{X, Y} = 0 = ∅. Suppose that X ∩ Y �= ∅ and
look for a contradiction. Pick an element a ∈ X ∩ Y and put A = {a}. Then A ∈ �.
Moreover, A ⊆ X and A ⊆ Y. But this contradicts the condition that inf{X, Y} = ∅.
As a result, X ∩ Y = ∅, and therefore X ⊆ Yc.

In order to show that P is not Boolean, it suffices to prove that the elements
A1, A2 do not possess an infimum in P. Take a set X ∈ � such that X ⊆ A1, X ⊆ A2.
If X were infinite, then X � D is also infinite for any D ∈ D. But this would imply
that X �∈ �. We therefore see that X is finite. Choose a finite set Y such that
X ⊂ Y ⊂ N0. Then Y ∈ � and Y ⊆ A1, Y ⊆ A2. Since Y is strictly larger then X,
the set X cannot be the infimum of A1, A2 in P and this completes the proof. ��
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7 The OMPs not Embeddable into ODPs

In this paragraph we ask if (when) an OMP is induced by an ODP. The very
first question one would pose is whether each OMP is a Psupp for some ODP P.
Obviously, this question answers to the negative if only because of Proposition 3.3.
A more natural and more challenging question is whether each OMP is a sub-OMP
of some Psupp for an ODP P. This question answers to the negative, too, but with
a slightly less trivial argument. This argument is contained in Proposition 7.1 that
follows. To formulate it, we need a definition.

Definition 7.1 Let P1, P2 be orthomodular posets and let f : P1 → P2 be a mapping.
Then f is said to be an orthomorphism if

(1) f (1P1) = 1P2 ,
(2) f (x⊥) = ( f (x))⊥ for any x ∈ P1,
(3) f (x ∨ y) = f (x) ∨ f (y) for any pair of orthogonal elements x, y ∈ P1.

Note that if f is an orthomorphism, then the equation in the above condition (3)
can be generalized to any finite number of mutually orthogonal elements. Note also
that (a) if K, L are lattice OMPs and f : K → L is a lattice homomorphism then f
is an orthomorphism, and (b) if P, Q are ODPs and f : P → Q is a homomorphism
then f is an orthomorphism as mapping between Psupp and Qsupp.

Proposition 7.2 Let P be a finite OMP. Let P possess an odd number of blocks and
let each atom of P lie precisely in two blocks. If Q is an ODP which consists of at least
two elements, then there is no orthomorphism P → Qsupp. A corollary: Any OMP with
the assumptions of this proposition is not embeddable into an ODP.

Proof Seeking a contradiction, let f : P → Qsupp be an orthomorphism. Suppose
that B1, . . . , Bn are all blocks of P. By our assumption the number n is odd. Let
{ai,1, . . . , ai,ki} be the set of all atoms of the algebra Bi, i = 1, . . . , n. Then the elements
ai,1, . . . , ai,ki are mutually orthogonal and, moreover, ai,1 ∨ . . . ∨ ai,ki = 1P. Since
f is an orthomorphism, we have f (ai,1) ∨ . . . ∨ f (ai,ki) = 1Q. Again, the elements
f (ai,1), . . . , f (ai,ki) are mutually orthogonal, and therefore f (ai,1) ∨ . . . ∨ f (ai,ki) =
f (ai,1) � . . . � f (ai,ki) (see Proposition 2.8). This shows that f (ai,1) � . . . � f (ai,ki) =
1Q for any i ∈ {1, . . . , n}. As a consequence,

( f (a1,1) � . . . � f (a1,k1)) � . . . � ( f (an,1) � . . . � f (an,kn)) = 1Q � . . . � 1Q.

The right-hand side of the latter identity contains the element 1Q exactly n-many
times. Since n is odd, the right-hand side equals to 1Q. Moreover, if a is an arbitrary
atom of P, then our assumption gives us that the left-hand side of the identity
contains the expression f (a) exactly two times. By the property of the operation
�, the left-hand side must be equal to 0Q. Since Q is non-trivial, 0Q is distinct from
1Q, and we have derived a contradiction. ��

With the help of the Greechie paste job ([11, 22]) it is not difficult to construct
OMPs with the assumptions of Proposition 7.2. Thus, in figure (a) below we present
the simplest OMP non-embeddable in an ODP. In figure (b) we present a lattice
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OMP non-embeddable in a ODP (this provides a partial answer to a problem
formulated in [17]).

The characterisation of the OMPs embeddable in ODPs–a problem of some im-
portance within quantum logic theory–seems open. A step forward in understanding
this problem and some further link with quantum theories would be the answer to
the question of whether or not the projection OMP L(R3) is embeddable in an ODP.
Even this remains open to us for the time being though we would rather conjecture
that such an embedding of L(R3) into an ODP exists.
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7. Dorfer, G., Dvurečenskij, A., Länger, H.M.: Symmetric difference in orthomodular lattices.

Math. Slovaca 46, 435–444 (1996)
8. Dorfer, G.: Non-commutative symmetric differences in orthomodular lattices. Int. J. Theor. Phys.

44, 885–896 (2005)
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