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Množinově-teoretické metody v teorii

modul̊u

Katedra algebry
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a matematická logika (4M1)
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E-mail vedoućıho: trlifaj@karlin.mff.cuni.cz
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Title: Set-theoretic methods in the theory of modules
Author: Mgr. Jan Šaroch
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Introduction

The thesis consists of this Introduction and three papers I am a coauthor of. Two of
them are already published, the last one was submitted to Forum Mathematicum in
January 2010:

(1) L. Angeleri Hügel, J. Šaroch and J. Trlifaj, On the telescope conjecture for module
categories, J. Pure Appl. Algebra 212 (2008), 297–310.

(2) J. Šaroch and J. Šťov́ıček, The countable telescope conjecture for module categories,
Adv. Math. 219 (2008), 1002–1036.

(3) J. Šaroch and J. Trlifaj, Kaplansky classes, finite character, and ℵ1–projectivity,
preprint (2010).

In more detail, the contribution of myself in the papers above is as follows. In (1),
the vast majority of material of the fourth section including the main results—Theorem
4.6 and Theorem 4.10. In (2), all sections except the fourth and the sixth. In (3),
concerning the first section, slight generalization of Proposition 1.7 and (consequently)
Theorem 1.8; in the second section, everything up until Theorem 2.9.

0.1 Set-theoretic methods

Until the beginning of seventies, the tools of set theory appearing in papers dealing
with ring and module theory reduced more or less to using Zorn’s lemma or one of its
equivalents. Although the classical results obtained (e.g. the existence and uniqueness
of the algebraic closure of a field; the existence of maximal ideals in commutative unital
rings; the existence of a basis in a vector space) have been of essential importance in
modern algebra, it had not convinced a majority of algebraic community to turn their
attention more closely to other basic concepts of set theory (stationary sets, almost
disjoint systems, properties of singular cardinals etc.).

However, when Saharon Shelah published ([22]) his solution to the Whitehead prob-
lem, i.e. a description of the class of all abelian groups A with Ext1

Z
(A, Z) = 0 (these

are called Whitehead groups), it became obvious that, in algebra, one would need to
count much more with the set theory. Not only in the sense that its tools and methods
proved themselves to be strong and fruitful, but even in the awkward sense that the
answers to natural questions arising in, say, homological algebra might depend on the
set theory one is working in. Recall that accepting the Axiom of Constructibility, every
Whitehead group is free, however there are (relatively consistent) extensions of ZFC
allowing non-free Whitehead groups.

It was in this work by Shelah, where, for the first time, the full-bodied singular
compactness argument appeared (only particular cases of which had been known, due
to Hill, see [18] and [19]). It has turned out to be a powerful tool for proving generalized
freeness conditions for classes of modules. Vaguely said, if you are proving certain type
of statement by transfinite induction on the cardinality or the number of generators of a
module, you get the singular step for free if you did slightly harder on the regular rungs
below. A simplified version of the Shelah’s result together with a typical application
is presented in (2). For a more detailed description of applications of the argument in
module theory, see [6].

Apart from Shelah’s singular compactness and some fine using of stationary sets and
infinitary combinatorial principles in his Whitehead-related papers, another important
set-theoretic argument appeared in algebra during 70s. It was in the work by Hunter
([20]), where he used for the first time completely non-algebraic, cardinal argument to
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prove that some Ext group vanishes. His technique was later successfully adopted to
prove various other results involving vanishing of Ext, notably it played the crucial
role in the proof that all n-cotilting modules are pure-injective ([2] and [26]). We will
illustrate its strength at the end of this introduction.

In the 1980s, set-theoretic methods firmly settled in the theory of modules, most no-
tably in works of Eklof, Mekler, Shelah and Göbel (e.g. [23], [8], [13] and the monograph
[7]). The fundamental paper by Ziegler from 1984 ([31]) draw the attention to the possi-
bility of studying modules over a fixed ring by means of the first-order logic. Thereafter,
not only set-theoretic tools but also the ones from the model theory slowly emerged
in the theory of modules. However, the model theory of modules with its first-order
language is far from being able to answer all algebraically relevant questions. The point
is that there are many interesting classes of modules which are worth studying but not
first-order axiomatisable (in the language of modules over a ring), for example: the class
of all injective modules over a non-noetherian ring, or the class of all pure-injective mod-
ules over a ring which is not pure-semisimple. In some cases, another Shelah’s invention,
from 1987 ([24]), called abstract elementary classes might be a useful generalization of
the classical model theory, but even this logical concept does not have enough strength
for algebraic purposes. The way it emerges in the approximation theory of modules (see
[1] and (3)) is pretty interesting though, from both, logical and algebraic, points of view.

This short historical introduction is not meant at all to be exhaustive. It is just
a draft which should justify the object of this thesis—to study set-theoretic methods
and their applications to the theory of modules. To conclude, let us mention that these
methods allowed to prove, at the break of the century, the existence of a flat cover of any
module over any ring ([5]). This result has boosted the study of approximation properties
of classes of modules by means of cotorsion pairs, a concept which had appeared a
long time ago in [21]. The recent knowledge concerning the approximation theory of
modules together with various results from another fruitful field of algebra for set-
theoretic methods—realization theorems—is collected in the monograph [16].

It should be noted, that the relation between set theory, or mathematical logic in
general, and algebra is not a one-way one. There are several examples of non-trivial
algebraic tools being successfully used to solve problems in logic. Recently, for instance,
deep results from algebraic number theory (class field theory) were applied by Poonen
and Koenigsmann to prove that Z is definable by a universal formula (in the language
of rings) in Q, thus improving the classic result by Julia Robinson. However, it is not
an object of this thesis to deal with this, reciprocal, application of algebra in logic.

0.2 Cotorsion pairs — preliminaries

Now, let us recall in more detail some basic definitions and properties concerning cotor-
sion pairs. They are almost omnipresent in the three papers presented in this thesis, and
it is in the context of cotorsion pairs and their deconstruction where several applications
of set-theoretic methods are shown.

Let R be a (unital) ring and denote by Mod-R the category of all (right R-)modules.
Further by mod-R, we denote the class of all modules possessing a projective resolution
consisting of finitely generated projective modules. Assuming R is right coherent, it is
just the class of all finitely presented modules.

For a class C of R-modules, let C⊥ = {M ∈ Mod-R | Ext1R(C, M) = 0 for all C ∈ C}.
Similarly, ⊥C = {M ∈ Mod-R | Ext1R(M, C) = 0 for all C ∈ C}. Recall that for A,B ∈
Mod-R, Ext1R(A,B) = 0 iff any short exact sequence of the form 0→ B → C → A → 0
splits. For example, if R = Z, then ⊥{Z} is the class of all Whitehead groups, already
mentioned in the historical overview.

5



We say, that a pair (A,B) of classes of modules is a cotorsion pair provided that
A = ⊥B and B = A⊥. Otherwise said, (A,B) is a ⊆-maximal pairwise Ext1-orthogonal
pair of classes of modules.

Indeed, for any class C of modules, one has C ⊆ ⊥(C⊥) and C ⊆ (⊥C)⊥. Moreover,
every class of modules C determines two distinguished cotorsion pairs—the cotorsion
pair generated by C, that is (⊥(C⊥), C⊥), and the cotorsion pair cogenerated by C—the
one equal to (⊥C, (⊥C)⊥). So any cotorsion pair is generated by its left-hand class and
cogenerated by its right-hand class. In applications, one usually tries to find the minimal
possible subclass (or even a subset) which (co)generates the respective cotorsion pair.

The close relation between cotorsion pairs and approximation theory of modules has
been established by the result of Eklof and Trlifaj from [11] saying that any cotorsion
pair (A,B) generated by a set is complete which means that A is a special precovering
class, or equivalently B is a special preenveloping class, that is: for every M ∈ Mod-R,
there is a short exact sequence 0 → B → A → M → 0 with A ∈ A and B ∈ B, and a
short exact sequence 0 → M → B′ → A′ → 0 with A′ ∈ A and B′ ∈ B, respectively. The
map A → M is then called a special A-precover of M , because any homomorphism from
a module in A to M can be factorized through this map. Dually, the map M → B′ is
called a special B-preenvelope. It could happen that there exist special precovers, called
covers, which are minimal in the following sense: if f : A → M is a special A-precover
of M , then it is an A-cover provided that any endomorphism g of A with f = fg is
actually an automorphism. Dually, B-envelopes are defined.

Finally, we say that a cotorsion pair (A,B) is hereditary if A is closed under taking
kernels of epimorphisms, or equivalently B is closed under taking cokernels of monomor-
phisms.

Now, we sum up several properties of cotorsion pairs; from the basic ones to the
more recent results.

Proposition 1. Let R be a ring and C = (A,B) be a cotorsion pair of right R-modules.
Then the following holds:

(i) A and B are closed under extensions.

(ii) A is closed under arbitrary direct sums, and B is closed under arbitrary products.

(iii) If C is cogenerated by a class of pure-injective modules, then it is generated by a
set ([11]).

(iv) If C is generated by a set of modules, then C is complete ([12]).

(v) If A is closed under direct limits and C is complete, then every module has an
A-cover and a B-envelope ([30]).

(vi) If A and B are both closed under direct limits and C is complete, then C is cogen-
erated by a set of indecomposable pure-injective modules (in (2)).

Let C be hereditary. Then we have also:

(vii) If B is closed under unions of well-ordered chains, then C is complete, generated by
a set of countably presented modules, and B is first-order axiomatizable (in (2)).

(viii) If A consists of modules of finite projective dimension and B is closed under direct
sums, then C is generated by a set of modules from mod-R ([28], [4]).

(ix) If B consists of modules of finite injective dimension and A is closed under direct
products, then C is cogenerated by a set of pure-injective modules ([3], [26], [25]).
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The reader could ask in what places the set-theoretic methods mentioned play their
important role. For example, the proof of (ix) relies on Hunter’s argument and a model-
theoretic description of pure-injective modules. Stationary sets and Shelah’s compact-
ness are used in the proofs of (vii) and (viii). The proof of (vi) involves a tree construction
on finite sequences of ordinal numbers, and also tools and results from the model theory
of modules are heavily used. In most cases, set-theoretic methods help when one wants
to show that some module belongs to A, or even that it can be build up (i.e. filtered,
see (1) or (2) for the definition) from sufficiently small modules belonging to A—this
process is called the deconstruction of a cotorsion pair.

We conclude this subsection with some basic examples of cotorsion pairs. We denote
by P0, I0 and F0 the classes of all projective, injective and flat (i.e. direct limits of
projective) modules, respectively. Further the class F⊥

0 of all Enochs cotorsion modules
will be denoted by EC.

Examples.

(i) The trivial cotorsion pairs (P0,Mod-R) and (Mod-R, I0).

The first of them is generated by {R}, and by classic results of Chase and Bass,
we have that P0 is closed under arbitrary products iff R is a left coherent ring, and
P0 is closed under direct limits iff P0 = F0 iff R is right perfect iff every module
has a projective cover.

In the latter pair, we have that I0 is closed under direct limits iff I0 is first-order
axiomatizable iff R is right noetherian (cf. [9]).

(ii) The cotorsion pair (F0, EC).

It is cogenerated by the class of all pure-injective modules, so complete by (iii)
and (iv) from Proposition 1. From (v), it follows the existence of flat covers and
cotorsion envelopes.

(iii) Over a semisimple artinian ring R, there is, indeed, only one cotorsion pair—the
trivial one. However, if R is a non-right perfect ring, then there is a proper class
of cotorsion pairs over R. The consistence of this fact follows from [29] where
it is shown that there is an extension of ZFC such that no module (over a non-
right perfect ring) tests projectivity, i.e. for any N there exists a non-projective
module M such that Ext1(M,N) = 0. The proof in ZFC follows, for example,
from the non-deconstructibility of the class of all ℵ1-projective modules (see [17])
over non-right perfect rings. (For abelian groups, it followed already from [15].)

(iv) There is no known example of a cotorsion pair which would not be generated by
a set, in ZFC. From the Shelah’s papers on Whitehead groups, only consistence
results follow: there is an extension of ZFC such that the cotorsion pair (over a
ring Z) cogenerated by {Z} is not even complete ([10], it is shown that Q has no
Whitehead precover); and so it is not generated by a set, by (iv) from Proposition 1.
It has to be noted however that the direct proof of the consistency of the latter
conclusion is much more easier than showing that there may not be any Whitehead
precover of Q.

0.3 Some remarks to the papers

The three papers which form the main part of this thesis are presented with unchanged
content, as they were published (the first two of them) or submitted for publishing (the
case of (3)). Only the amount of pages may differ because of slightly different formatting
and font type used in the journals and in this work.
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As for the material contained, the papers (1) and (2) share the same subject—the
Telescope Conjecture for Module Categories, (1) being sort of a prologue for (2). Also
being the oldest one, a segment from (1) appeared already in the author’s diploma thesis;
and unlike in the two subsequent papers and this introduction, the meaning of the terms
generated and cogenerated (talking about cotorsion pairs) is swapped there.

The Telescope Conjecture for Module Categories remains unsolved. The only recent
progress in this field is a partial positive solution [27] for Artin algebras with zero
transfinite radical due to Šťov́ıček.

The content of (3) differs from the first two papers. Abstract elementary classes and
ℵ1-projective modules are studied. It is a continuation of the work begun in [1] and [17].

In (3), arguably one of the first applications of the singular cardinal hypothesis (SCH)
in algebra appears. However, it turned out shortly after submission of the paper that
this additional set-theoretic assumption is actually redundant. This follows from the
recent manuscript by Bazzoni and Šťov́ıček. We state the result and sketch the proof
here. It will serve as the promised application of Hunter’s argument.

In what follows, D denotes the class of all ℵ1-projective modules, that is the modules
M with the property that each countable subset of M is contained in a countably
generated projective submodule of M which is pure in M . Whenever P0 6= F0, i.e. R is
not a right perfect ring, we have the strict inclusions P0 ( D ( F0. It means that D is
not closed under direct limits. Nevertheless Bazzoni and Šťov́ıček managed to prove, in
ZFC, that countable direct limits of modules in D belong to ⊥(D⊥); by the way, from
this, it already follows that D 6= ⊥(D⊥), and so D does not form a left-hand class of a
cotorsion pair (over a non-right perfect ring). To be able to profit from the Hunter’s
argument, they needed the following simple combinatorial fact from set theory.

Lemma 2. For every cardinal µ, there exists an infinite cardinal λ ≥ µ and J ⊆ λω

of cardinality 2λ such that the values of any pair of distinct maps f, g : ω → λ from J
coincide on a finite segment of ω.

The promised result with a sketch of the proof follows.

Theorem 3. Let R be a ring and D be the class of all ℵ1-projective right R-modules.
Given any countable chain

F0 −→ F1 −→ F2 −→ F3 −→ · · ·

of homomorphisms such that Fn ∈ D for all n < ω, we have lim
−→

Fn ∈ ⊥(D⊥).

Sketch of the proof. Put F = lim
−→

Fn and fix a module C ∈ D⊥. We must show that

Ext1R(F, C) = 0.
Lemma 2 provides us with an infinite λ such that λ ≥ |HomR(Fn, C)|, for each

n < ω, and with J ⊆ λω with the appropriate properties. We denote, for each ordinal
α < λ, by Fn,α a copy of Fn, and by P the direct sum

⊕

n<ω,f∈J Fn,f(n).
Cleverly using the almost disjoint property of the set J of maps, and some pushout

construction, Bazzoni and Šťov́ıček obtained a short exact sequence

0 −→ P −→ E −→ F (2λ) −→ 0 (†)

such that E ∈ D. We skip this rather technical step here.
At this point, Hunter’s argument is applied. Using the functor HomR(−, C) on the

sequence (†), we get the long exact sequence

· · · −→ HomR(P, C) −→ Ext1R(F
(2λ), C) −→ Ext1R(E, C) −→ · · · ,
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where Ext1R(E, C) = 0. This means that the map HomR(P, C) −→ Ext1R(F
(2λ), C) is an

epimorphism. Notice that P is a summand in
⊕

n<ω F
(λ)
n , so we have

|HomR(P, C)| ≤
∣

∣HomR

(

⊕

n<ω

F (λ)
n , C

)
∣

∣ ≤
∏

n<ω

|HomR(Fn, C)|λ ≤
(

λλ
)ω

= 2λ.

Since Ext1R
(

F (2λ), C
)

∼=
(

Ext1R(F, C)
)2λ

, we obtain

Ext1R(F,C) 6= 0 =⇒
∣

∣

∣
Ext1R

(

F (2λ), C
)

∣

∣

∣
≥ 22λ

,

which would contradict the existence of the epimorphism. So Ext1R(F, C) = 0 and our
proof is complete.

As illustrated above, the point of Hunter’s argument is to prove that some Ext
group is zero by showing that the opposite would lead to a contradiction on the level of
cardinality; no algebraic structure of the group HomR(P,C) played role, it was sufficient
to know that it is small enough.

When comparing this proof with the one used in (3) under the additional hypothesis
of SCH, one can find certain similarities. For instance, in both cases, the argument is
carried out on a singular (typically strong limit singular) cardinal. This should come as
no surprise since, unlike at the beginning of the Twentieth Century, singular cardinals
are recognized today as the important ones telling much more about the behaviour of the
universe of all sets than the regular ones do. Going on with comparing the proofs, we can
observe another typical phenomenon: while the construction of Bazzoni and Šťov́ıček is
made-to-measure, the proof from (3) uses only selected properties of a construction from
[17] designed originally for another purpose; the additional set-theoretic hypothesis (to
be precise, the combinatorial power it implies) then stands in for the missing algebraic
information on a fine structure of the module hereby constructed. Another example of
this feature, additional set-theoretic tool standing in for a missing algebraic quality, is
provided by Lemma 10.1.1 and Theorem 4.3.2 from [16].

We conclude our Introduction by stating several open problems as the possible di-
rections for further research.

Open problems.

(i) Telescope Conjecture for Module Categories. In its full generality, or at least for
the original setting of self-injective Artin algebras.

(ii) Does there exist a hereditary cotorsion pair (A,B) with A closed under direct
limits but not closed under taking pure-epimorphic images?

This is mentioned in Remark at the end of the fifth section of (2). The positive
solution to this problem would have an interesting implications. If such a (A,B)
was not generated by a set, it would be the first example (in ZFC) of such a pair,
even with the additional nice property of A being closed under direct limits. This
might seem really unlike to happen but the other alternative is no less interesting.
If (A,B) was generated by a set, it would provide us with a negative solution to
the following open problem.

(iii) Is any hereditary cotorsion pair (A,B) which is generated by a set and such that
A is closed under direct limits cogenerated by a class of pure-injective modules?

This is the setting when A forms an abstract elementary class in the sense ex-
plained in the first section of (3). The positive solution to this problem would
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immediately imply that all elementary classes emerging in this way have finite
character (see (3) for the definition).

(iv) Does the class ⊥(D⊥) always coincide with F0?

We have a positive answer for all countable rings by the result proved above (and
trivially, for all right perfect rings).
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ON THE TELESCOPE CONJECTURE FOR MODULE CATEGORIES

LIDIA ANGELERI HÜGEL, JAN ŠAROCH AND JAN TRLIFAJ

Abstract. In [22], the Telescope Conjecture was formulated for the module category ModR
of an artin algebra R as follows: “If C = (A,B) is a complete hereditary cotorsion pair in
ModR with A and B closed under direct limits, then A = lim

−→
(A ∩ modR)”. We extend this

conjecture to arbitrary rings R, and show that it holds true if and only if the cotorsion pair C
is of finite type. Then we prove the conjecture in the case when R is right noetherian and B
has bounded injective dimension (thus, in particular, when C is any cotilting cotorsion pair).
We also focus on the assumptions that A and B are closed under direct limits and on related
closure properties, and detect several asymmetries in the properties of A and B.

In the late 1970’s, Bousfield and Ravenel formulated a telescope conjecture for the
stable homotopy category. Later on, Neeman extended it to compactly generated trian-
gulated categories T . In this generality, the conjecture said that any smashing localizing
subcategory L of T is of finite type, cf. [10], [22], [26]. Keller [19] gave an example dis-
proving the conjecture in the case when T is the (unbounded) derived category of the
module category over a particular (non-noetherian) commutative ring.
However, it appears open whether the conjecture holds true when T is the stable

module category of a self-injective artin algebra R. In that case, the conjecture was
shown to be equivalent to a certain property of cotorsion pairs of R-modules, cf. [22,
§7]. This lead Krause and Solberg to the following version of the telescope conjecture
for module categories of arbitrary artin algebras:

[22, 7.9] “Let R be an artin algebra, and C = (A,B) a complete hereditary cotorsion
pair in ModR with A and B closed under direct limits. Then A = lim

−→
(A ∩modR).”

The latter conjecture is known to hold when C is a tilting cotorsion pair by [9] (see
also [18, §5]), when C is a 1-cotilting cotorsion pair by [11], and when A ∩ modR is a
contravariantly finite subcategory of modR by [22].

In the present paper, we deal with the following general version of the Krause-Solberg
conjecture, formulated for arbitrary rings:

0.1. Telescope Conjecture for Module Categories. “Let R be ring, and C =
(A,B) a complete hereditary cotorsion pair in ModR with A and B closed under direct
limits. Then A = lim

−→
A<ω.”

Here A<ω = A ∩ modR where modR denotes the class of all modules possessing a
projective resolution consisting of finitely generated modules.
Recall that a cotorsion pair C = (A,B) is of finite type provided there is a set C ⊆

modR such that B = Ker Ext1R(C,−). It is known that 0.1 holds for all cotorsion pairs
C of finite type (with A closed under direct limits). In Corollary 4.7, we prove the
converse: any cotorsion pair C for which the conclusion of 0.1 holds is necessarily of
finite type.
Moreover, in Theorem 4.10, we prove that 0.1 holds for any right noetherian ring

under the additional assumption that all modules in B have bounded injective dimension.

First author partially supported by Project CDPA048343 of the University of Padova, and by the Spanish
Project MTM2005-00934 of DGI MEC-FEDER. Second and third authors supported by the research projects
MSM 0021620839 and by the Eduard Čech Center for Algebra and Geometry (LC505). Third author also
acknowledges the hospitality of Università dell’Insubria, Facolta‘ di Scienze di Varese where he did this research
in June 2005.
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This yields 0.1 in the particular case when C is a cotilting cotorsion pair over a right
noetherian ring.
The proofs of these theorems rely on a number of results on deconstruction and com-

pleteness of cotorsion pairs from [31], [8], [9] and [28] which were essential for the recent
rapid progress in infinite dimensional tilting and cotilting theory. Unfortunatelly, most
of these preprints are not published yet, so we supplement the original references below
with quotations of the corresponding results in the recent monograph [18]. The latter
was submitted for publication only in Spring 2006, but thanks to the rapid publication
policy of Walter de Gruyter, it is paradoxically available in printed form much earlier
then the papers submitted in 2005.
The assumptions made in 0.1 that A and B are closed under direct limits also lead

us to an investigation of closure properties of cotorsion pairs, with special emphasis
on tilting and cotilting cotorsion pairs (Sections 2 and 3). Finally, the last section is
devoted to some asymmetries that can occur in the properties of A and B. In 5.2(3)
we exhibit an example of a cotorsion pair C = (A,B) of infinite type with B not being
closed under coproducts and A = lim

−→
A<ω. We also show that in general the validity of

0.1 does not imply B = lim
−→

B<ω, see 5.2(1) and Theorem 5.3.

1. Preliminaries

Notation. Let R be a ring. Denote by ModR the category of all (right R-) modules,
and by modR the subcategory of all modules possessing a projective resolution consisting
of finitely generated modules. (If R is right coherent then modR is just the category of
all finitely presented modules).
Given an infinite cardinal κ and a class of modules A, the symbol A<κ (A≤κ) denotes

the subclass of A consisting of all modules possessing a projective resolution consisting
of < κ-generated (≤ κ-generated) modules. For example, modR = (ModR)<ω.

We denote by P and I the class of all modules of finite projective and injective
dimension, respectively. For n < ω, Pn (In, Fn) is the class of all modules of projective
(injective, flat) dimension ≤ n.

Let M be a subcategory of ModR. We always assume that M is full and that it is

closed under direct summands and isomorphic images.
We denote by AddM (respectively addM) the subcategory of all modules isomorphic

to a direct summand of a (finite) direct sum of modules of M, and by ProdM the
subcategory of all modules isomorphic to a direct summand of a product of modules of
M. If M = {M}, we write AddM , addM , ProdM .
Furthermore, lim

−→
M denotes the class of all modules D such that D = lim

−→i∈I
Mi

where {Mi | i ∈ I} is a direct system of modules from M. We will use repeatedly the
following characterization of lim

−→
M due to Lenzing.

Lemma 1.1. [25, 2.1] (see also [18, 1.2.9]) Assume that M is an additive subcategory
of modR. Then the following statements are equivalent for a module AR.
(1) A ∈ lim

−→
M.

(2) There is a pure epimorphism
∐

k∈K Xk → A for some modules Xk in M.
(3) Every homomorphism h : F → A where F is finitely presented factors through a
module in addM.

Resolving subcategories. A class S ⊆ ModR (or S ⊆ modR) is said to be a resolving

subcategory of ModR (respectively, of modR) if it satisfies the following conditions:

(R1) S contains all (finitely generated) projective modules,
(R2) S is closed under extensions,
(R3) S is closed under kernels of epimorphisms.
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Coresolving subcategories are defined by the dual conditions (CR1), (CR2), (CR3).

Orthogonal classes. For a class C ⊆ModR and for i > 0, we define

C⊥i = Ker ExtiR(C,−) ⊥iC = Ker ExtiR(−, C)

C⊥ =
⋂

i>0

C⊥i ⊥C =
⋂

i>0

⊥iC

Similarly, we define the classes C⊺i , ⊺iC, C⊺, and ⊺C, replacing Ext by Tor.

We collect here some well-known facts often used in the sequel.

Remark 1.2. (1) If S is resolving, then S⊥1 = S⊥ and S⊺1 = S⊺. Coresolving classes
have the dual properties.
(2) For any M ⊆ ModR, the classes ⊥M, M⊺ are resolving, and M⊥ is coresolving.
(3) (cf. [17, 10.2.4, and 3.2.26]) If C ⊆ modR and i > 0, then C⊥i and C⊺i are closed
under direct products and direct limits.

Approximations. Let M be a subcategory of ModR, and let A be a right R-
module. A morphism f ∈ HomR(A,X) with X ∈ M is an M-preenvelope (or a left
M-approximation) of A provided that the abelian group homomorphism HomR(f,M) :
HomR(X,M) −→ HomR(A,M) is surjective for each M ∈ M.
AnM-preenvelope f ∈ HomR(A,X) of A is said to be special if f is a monomorphism

and Ext1R(Coker f, M) = 0 for all M ∈ M.
An M-envelope of A is an M-preenvelope f ∈ HomR(A,X) which is left minimal,

that is, h is an automorphism of X whenever h ∈ EndR(X) satisfies hf = f . Note that
M-envelopes may not exist in general, but they are always unique up to isomorphism.
The notions of an M-cover and a (special) M-precover are defined dually.

A subcategory S of modR is said to be covariantly (respectively, contravariantly) finite

in modR if every module in modR has an S-preenvelope (respectively, an S-precover).
A class of modulesM is definable if it is closed under direct products, direct limits, and
pure submodules. We will frequently use the following relationship between covariantly
finite subcategories of modR and definable classes.

Theorem 1.3. [13, 4.2], [20, 3.11] Let S be a full additive subcategory of modR. The
following statements are equivalent.
(1) S is covariantly finite in modR.
(2) lim

−→
S is closed under products.

(3) lim
−→

S is definable.

Cotorsion pairs. Let A,B ⊆ ModR (or A,B ⊆ modR) be classes of modules. Then
C = (A,B) is a cotorsion pair inModR (respectively, a cotorsion pair inmodR) provided
A = ⊥1B and B = A⊥1 (respectively, provided A = (⊥1B)<ω and B = (A⊥1)<ω).
A cotorsion pair C = (A,B) in ModR (or in modR) is complete if every module (re-

spectively, every module in modR) has a special A-precover and a special B-preenvelope.
Moreover, C is perfect if every module (respectively, every module in modR) has an A-
cover and a B-envelope. Note that a complete cotorsion pair (A,B) in ModR is perfect
provided A is closed under direct limits [17, 7.2.6]. It is an open problem whether the
converse holds true. For artin algebras, the following result was established by Auslander
and Reiten.
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Lemma 1.4. [6] Let Λ be an artin algebra, and let A,B be subcategories of modΛ.
The following statements are equivalent.
(1) A is a contravariantly finite subcategory of modΛ satisfying conditions (R1) and
(R2), and B = (A⊥1)<ω.
(2) B is a covariantly finite subcategory of modΛ satisfying conditions (CR1) and (CR2),
and A = (⊥1B)<ω.
(3) (A,B) is a perfect cotorsion pair in modΛ.

The existence of approximations cannot be omitted in the result above, as shown by
the following example.

Example 1.5. Let Λ be an artin algebra such that the big (left) finitistic dimension of
Λ equals n > 1, but its little (left) finitistic dimension is < n, see [32]. Consider the

class A′ of all n-th syzygies of cyclic right Λ-modules, and set A = (⊥1(A′⊥1))<ω. Then

A is a resolving subcategory of modΛ, and by Baer’s Lemma A⊥1 = A′⊥1 = In. On the
other hand, B = (A⊥1)<ω ⊆ In−1.
We deduce that A is properly contained in (⊥1B)<ω. In fact, if we choose M ∈ ΛMod
with pdimM = n, and N ∈ modΛ such that ExtnR(N, D(M)) 6= 0, then it is easy to see
that the module X = Ωn−1(N) is contained in (⊥1B)<ω. On the other hand, X is not
contained in A, because D(M) ∈ In = A⊥1 , and Ext1R(X,D(M)) 6= 0.
This shows that (A,B) is not a cotorsion pair in modΛ. 2

We will need further terminology on cotorsion pairs.

Lemma 1.6. Let (A,B) be a cotorsion pair in ModR (or in modR). Then A is resolving
if and only if B is coresolving, and this is further equivalent to ExtiR(A,B) = 0 for all
A ∈ A, B ∈ B, i ≥ 2. In this case (A,B) is called hereditary.

Let C be a class of modules. A module M is called C-filtered provided there exist
an ordinal σ and an increasing chain, (Mα | α < σ), consisting of submodules of M
such that M0 = 0, Mα =

⋃

β<α Mβ for each limit ordinal α < σ, M =
⋃

α<σ Mα, and

Mα+1/Mα is isomorphic to an element of C for each α+ 1 < σ.

Theorem 1.7. [14] Let C be a class of modules and let B = C⊥1 and A = ⊥1(C⊥1). Then
(A,B) is a cotorsion pair, called the cotorsion pair cogenerated by C. If the isomorphism
classes of C form a set, then (A,B) is complete. Moreover, in this case A = ⊥1(C⊥1)
consists of all direct summands of C ∪ {R}-filtered modules.

Theorem 1.8. [15] Let C be a class of modules and let A = ⊥1C and B = (⊥1C)⊥1 .
Then (A,B) is a cotorsion pair, called the cotorsion pair generated by C. If C consists of
pure injective modules, then (A,B) is perfect.

The theorems above together with Remark 1.2 apply to the following situations.

Cotorsion pairs of (co)finite type. A cotorsion pair C = (A,B) in ModR is of
finite type provided it is cogenerated by a class S ⊆ modR. Then C is complete and B
is definable.
Dually, a cotorsion pair C = (A,B) in RMod is of cofinite type provided there is a class
S ⊆ modR such that A = S⊺1 . Then C is perfect. Moreover, A is definable provided C

is hereditary. In fact, by the well-known Ext-Tor relation [17, 3.2.1], (A,B) is of cofinite
type iff it is generated by the class S∗ = {S∗ | S ∈ S} where S∗ denotes the dual module,
e. g. S∗ = HomZ(S, Q/Z), or over artin algebras S∗ = D(S) for the usual duality D.
If C is hereditary, then in both cases, we can assume w.l.o.g. that S is resolving.
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(Co)smashing cotorsion pairs. Let C = (A,B) be a cotorsion pair in ModR.
Observe that the class A is always closed under coproducts, and B is always closed
under products. We will say that C is smashing if B is also closed under coproducts,
and cosmashing if A is also closed under products.

For further properties of the notions defined above we refer to [18] (note however,
that the terminology in [18] occasionally differs from the one used here).

2. Closure under direct limits

We start by recalling a result from [4]:

Theorem 2.1. [4, 2.3 and 2.4] Let S be a subcategory of modR with properties (R1)
and (R2), and let (A,B) be the cotorsion pair cogenerated by S. Then the following
hold true:
(1) A ⊆ lim

−→
S = ⊺(S⊺), and S = A<ω = (lim

−→
S)<ω.

(2) There is a perfect cotorsion pair (lim
−→

S,Y) which is generated by the class of all
pure-injective modules from B.

Theorem 2.1 has a number of consequences concerning Conjecture 0.1.

Corollary 2.2. (1) The (perfect) hereditary cotorsion pairs (X ,Y) in ModR satisfying
X = lim

−→
X<ω correspond bijectively to the resolving subcategories of modR.

The correspondence is given by the mutually inverse assignments

α : (X ,Y) 7→ X<ω

β : S 7→ (lim
−→

S,Y)

(2) The hereditary cotorsion pairs of finite type in ModR correspond bijectively to the
resolving subcategories of modR.
The correspondence is given by the mutually inverse assignments

α : (A,B) 7→ A<ω

β′ : S 7→ (⊥(S⊥), S⊥)

Proof : This follows by Lemma 1.6 and Theorem 2.1. 2

Corollary 2.3. Let C = (A,B) be a hereditary cotorsion pair of finite type in ModR.
Let moreover B′ be the class of all pure-injective modules from B. Then the following
statements are equivalent.
(1) A is closed under direct limits.
(2) A = lim

−→
A<ω.

(3) The cotorsion pair (lim
−→

A<ω,Y) is of finite type.

(4) The class Y = (⊥1B′)⊥1 is definable.
(5) Every pure embedding into a module M ∈ A ∩ B splits.

Proof : First, notice that any cotorsion pair of finite type is complete by Theorem
1.7.
The equivalence of (1), (2), (3) follows from Theorem 2.1. Of course, (3) implies (4).
(4) ⇒ (3): Since B′ ⊆ Y ⊆ B, the two definable classes B and Y contain the same
pure-injective modules, and so they coincide.
To prove the equivalence of (2) and (5), we generalize an argument from [4, 4.2]:
First, if A = lim

−→
A<ω then A is closed under pure-epimorphic images by Lemma 1.1.

Since C is of finite type, B is closed under pure submodules. So, if 0 −→ N −→ M −→
P −→ 0 is a pure-exact sequence with M ∈ A ∩ B, then P ∈ A and N ∈ B, and the
sequence splits.
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For the converse, note first that C being of finite type implies A ⊆ lim
−→

A<ω by Theorem

2.1. Next, we claim A ∩ B = lim
−→

A<ω ∩ B. Let N ∈ lim
−→

A<ω ∩ B. Since C is complete,
there is a special A-precover E : 0 −→ B −→ A −→ N −→ 0 with A ∈ A and B ∈ B.
Then A ∈ A∩B. Moreover, since N ∈ lim

−→
A<ω is a pure-epimorphic image of an element

of A, E is pure-exact. So by (5), E splits, proving our claim.
Let us now take an arbitrary module N ∈ lim

−→
A<ω and a special B-preenvelope

0 −→ N −→ B′ −→ A′ −→ 0 with A′ ∈ A and B′ ∈ B. Then A′ and therefore also B′

belong to lim
−→

A<ω. So, by the claim above, B′ ∈ A ∩ B, which yields N ∈ A as A is

resolving. This shows that A = lim
−→

A<ω, so (2) holds. 2

In particular, we infer that all cotorsion pairs of finite type with A closed under direct
limits satisfy Conjecture 0.1. In Section 4, we will prove that also the converse is true
in the sense that any cotorsion pair satisfying 0.1 is necessarily of finite type.

Corollary 2.4. Let (A,B) be a hereditary cotorsion pair of finite type in ModR. Then
the following statements are equivalent.
(1) A is definable.
(2) A is closed under direct limits, and A<ω is covariantly finite in modR.

Proof : By Theorem 1.3 and Corollary 2.3.2

3. Closure properties of tilting and cotilting cotorsion pairs

Before we continue our discussion of Conjecture 0.1, let us apply the considerations
above to tilting theory, which will be a source of interesting examples in Section 5.

Let n < ω. A module T is n-tilting provided
(T1) T ∈ Pn,

(T2) ExtiR(T, T (I)) = 0 for each i ≥ 1 and all sets I, and
(T3) there exist r ≥ 0 and a long exact sequence 0 −→ R −→ T0 −→ · · · −→ Tr −→ 0
such that Ti ∈ AddT for each 0 ≤ i ≤ r.

Every n-tilting module T induces a complete hereditary smashing cotorsion pair
(A,B) with B = T⊥ and A ⊆ Pn, see [1]. Such cotorsion pairs are called n-tilting

cotorsion pairs. By [9] (see also [18, §5]), tilting cotorsion pairs are always of finite type.

Dually, a module C is n-cotilting provided that
(C1) C ∈ In,
(C2) ExtiR(C

I , C) = 0 for each i ≥ 1 and all sets I, and
(C3) there exists r ≥ 0 and an exact sequence 0 −→ Cr −→ · · · −→ C0 −→ W −→ 0
where W is an injective cogenerator for ModR and Ci ∈ ProdC for each 0 ≤ i ≤ r.

Every n-cotilting module C is pure-injective by [30], and so it induces a perfect
hereditary cosmashing cotorsion pair (A,B) with A = ⊥C and B ⊆ In, see [1]. Such
cotorsion pairs are called n-cotilting cotorsion pairs. Cotilting cotorsion pairs are not
always of cofinite type [7], however, the class A is always definable.

Finally, we recall from [21] that a module M with AddM being closed under products
is said to be product-complete. Note that M is product-complete iff AddM = ProdM .
Moreover, every product-complete module is Σ-pure-injective.

Proposition 3.1. Let T be a tilting module with corresponding tilting cotorsion pair
(A,B). Then the following statements are equivalent.
(1) A is definable.
(2) (A,B) is cosmashing.
(3) T is product-complete.
If R has finite global dimension, then (1)–(3) are further equivalent to
(4) T is a cotilting module such that A = ⊥T .
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Proof : For the equivalence of (1)–(3), we generalize an argument from [4, 4.3], which
we include for the reader’s convenience. Clearly, (1) ⇒ (2). Moreover, we know from
[1, 2.4] that AddT = A ∩ B, and that A consists of the modules A having a long exact
sequence 0 → A → T0 → . . . → Tn → 0 with T0, . . . , Tn ∈ AddT . We then deduce
that A is closed under direct products iff so is AddT , which means that (2) and (3)
are equivalent. Moreover, under the assumption (3), the module T is Σ-pure-injective.
Then every pure submodule of a module M ∈ A ∩ B is a direct summand of M , and
thus A = lim

−→
A<ω by Corollary 2.3. So (3) ⇒ (1) holds by Theorem 1.3.

Assume now (4). Then we have from [1, 2.4] that AddT = A∩B = ProdT , so (3) holds
true.
Conversely, if (3) holds true and gldimR < ∞, then T satisfies conditions (C1) and
(C2) in the definition of a cotilting module. Moreover, if W is an injective cogenerator
for ModR, then W ∈ B, and since W has finite projective dimension, we deduce from
[1, 2.4] that there is a long exact sequence 0 → Tm → . . . → T0 → W → 0 with
T0, . . . , Tm ∈ AddT = ProdT . So, also (C3) is satisfied, and T is a cotilting module.
Furthermore, T ∈ B implies that A ⊆ ⊥T .
It remains to prove that every module X ∈ ⊥T belongs to A. To this end, we consider
a special B-preenvelope 0 −→ X −→ B −→ A −→ 0. Then since A ∈ A belongs to ⊥T ,

we have B ∈ B∩⊥T . As above, we consider a long exact sequence 0→ Tm
f

−→ Tm−1 →
. . . → T0 → B → 0 with T0, . . . , Tm ∈ AddT = ProdT , and we choose it of minimal
length m. Assume m > 0. Since B, T0, . . . , Tm all belong to the resolving subcategory
⊥T , it follows that Cokerf also belongs to ⊥T . But then Ext1R(Cokerf, Tm) = 0, so
Cokerf even belongs to AddT , contradicting the minimality of m. We conclude that
m = 0, that is, that B belongs to AddT ⊆ A. Since A is resolving, this completes the
proof. 2

Dually, one obtains the following result for cotilting cotorsion pairs, see also [12, 3.4].

Proposition 3.2. Let C be a cotilting module with corresponding cotilting cotorsion
pair (A,B). Then the following statements are equivalent.
(1) (A,B) is smashing.
(2) C is Σ-pure-injective.
(3) There is a product-complete cotilting module C ′ such that A = ⊥C ′.
If R has finite global dimension, then (1)–(3) are further equivalent to

(4) There is a tilting (and cotilting) module C ′ such that B = C ′⊥.

Proof :With arguments dual to those used in 3.1, we see that B is closed under direct
sums iff so is ProdC. Since C is pure-injective, the latter implies that the module C is
Σ-pure-injective. So, we have (1)⇒(2) and (3)⇒(1). Moreover, (4)⇒(1) because tilting
cotorsion pairs are smashing, and if gldimR < ∞, then the module C ′ in (3) satisfies
(4) dually to Proposition 3.1.
It remains to prove (2)⇒(3): Assume that C is Σ-pure-injective. By [24, 8.1], there is a
cardinal κ such that every product of copies of C is a direct sum of modules of cardinality
at most κ. Of course, the isomorphism classes of all κ-generated modules lying in ProdC
form a set K. Let C ′ be the direct sum of all modules in K, and P the direct product
of all modules in K. We then have ProdC ⊆ AddC ′. Moreover, P ∈ ProdC is Σ-
pure-injective. Hence the pure submodule C ′ of P is a direct summand of P . This
proves ProdC ′ ⊆ ProdC, and further, by Σ-pure-injectivity, AddC ′ ⊆ ProdC ′. We
then conclude that AddC ′ = ProdC ′ = ProdC, so C ′ is a product-complete cotilting
module such that A = ⊥C ′.2
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Corollary 3.3. Let R be right noetherian and hereditary, and let (A,B) be a cotorsion
pair. The following statements are equivalent.
(1) A and B are definable.
(2) A and B are closed under direct limits.
(3) (A,B) is smashing and cosmashing.
(4) There is a product-complete tilting module M such that B = GenM .
(4’) There is a product-complete cotilting module M such that A = CogenM .
(5) There is a tilting and cotilting module M such that A = CogenM and B = GenM .

Proof : Clearly, (1) implies (2). Moreover, by [1, 4.1 and 4.2] we know that (A,B) is
(co)smashing iff it is a (co)tilting cotorsion pair. So, (2) implies that (A,B) is smashing,
and therefore tilting, thus a hereditary cotorsion pair of finite type. Further, A<ω is
a resolving subcategory of P<ω

1 . As R is right noetherian, it follows from [2, 2.5] that
A<ω is covariantly finite in modR. Since A closed under direct limits, we then conclude
from 2.4 that A is definable. In particular, (A,B) is cosmashing, so we have shown
(2)⇒(3). The implication (5)⇒(1) follows from the fact that (co)tilting classes are
always definable. The remaining implications hold by Propositions 3.1 and 3.2.2

Example 3.4. Let Λ be a tame hereditary artin algebra (w.l.o.g. basic indecomposable).
Reiten and Ringel have shown in [27] that there is a cotorsion pair (C,D) in ModΛ
which is generated by the class q of all indecomposable preinjective modules and is
cogenerated by the class t of all indecomposable regular modules. In other words,
(C,D) is a hereditary cotorsion pair of finite and cofinite type. In particular, C and
D are definable. Now let Sλ, λ ∈ P, be a complete irredundant set of quasi-simple
modules and let Sλ[∞], λ ∈ P, be the corresponding Prüfer modules. Let further G be
the generic module. Then W =

⊕

λ∈P Sλ[∞]⊕ G is a tilting and cotilting module such
that C = CogenW and D = GenW ; for details see [27]. 2

Remark 3.5. The additional hypothesis in Propositions 3.1 and 3.2 is necessary. In
fact, if there is an n-tilting-cotilting cotorsion pair (A,B), then every module M has

a long exact sequence 0 → Am
f

−→ . . . → A0 → M → 0 where A0, . . . , Am ∈ A and
m ≤ n, and moreover, A ⊆ Pn, see [1]. But then gldimR ≤ 2n.

4. The telescope conjecture for module categories

In this section, we deal in detail with Conjecture 0.1. We have seen in Corollary 2.3
that 0.1 holds for any cotorsion pair C = (A,B) of finite type such that A is closed
under direct limits. Our first main result shows that the converse is also true, that is,
the cotorsion pairs satisfying 0.1 must be of finite type. We start with some preliminary
results.

Proposition 4.1. Let R be a ring, and C = (A,B) be a cotorsion pair cogenerated by a
class C of countably presented modules. Assume that B(ω) ∈ B whenever B ∈ B. Then
(1) C is smashing, and B is closed under pure submodules.
(2) If C is hereditary then B is definable.
(3) If C ⊆ lim

−→
A<ω then C is of finite type.

Proof : (1) First, our assumption on the class B implies that B is closed under pure
submodules by [8, Theorem 2.5] (see also [18, 5.2.16]). Since B is closed under arbitrary
direct products, and direct sums are pure submodules in direct products, we infer that
C is smashing.
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(2) Since B is coresolving, (1) also implies that B is closed under pure-epimorphic images,
thus in particular under direct limits. This shows that B is definable.
(3) It suffices to verify that B = (A<ω)⊥1 . Clearly B ⊆ (A<ω)⊥1 . For the reverse
inclusion, we first show that the classes B and (A<ω)⊥1 contain the same pure-injective
modules. Indeed, for any pure-injective module I, the functor Ext1R (−, I) takes direct
limits into inverse limits by [5]. So, the assumption C ⊆ lim

−→
A<ω implies that any pure-

injective module I ∈ (A<ω)⊥1 belongs to B. Now, let M ∈ (A<ω)⊥1 , and let P be the
pure-injective envelope of M . Since the class (A<ω)⊥1 is definable, P ∈ (A<ω)⊥1 . But
then P ∈ B, and thus M ∈ B since M is a pure submodule of P . This proves that
B = (A<ω)⊥1 . 2

Remark 4.2. Let R be a right ℵ0-noetherian ring. Then for each n < ω, the cotorsion
pair (Pn,P⊥

n ) is cogenerated by a class of countably presented modules (see e.g. [17,
§7.4]).
Denote by (A,B) the cotorsion pair (of finite type) cogenerated by P<ω. Let fdim(R)

and Fdim(R) denote the little and the big finitistic dimensions of R, respectively.
Clearly, CF = (P,P⊥) is a cotorsion pair iff Fdim(R) < ∞. Like in [3], we infer from

Proposition 4.1 and [9, Theorem 4.2] (see also [18, 5.2.20]) that A = P iff CF is a tilting

cotorsion pair iff CF is a cotorsion pair of finite type iff Fdim(R) < ∞ and B(ω) ∈ P⊥

whenever B ∈ P⊥.
By Theorem 1.7, the condition A = P is also equivalent to (i) Fdim(R) < ∞ and

(ii) each module of finite projective dimension is a direct summand in a P<ω-filtered
module, see [3, 3.2].
Of course, (ii) implies fdim(R) = Fdim(R) (but the converse fails, even when fdim(R)

= Fdim(R) = 1, for the IST-algebra R from [23], see [4]).
Note that this is the way the equality fdim(R) = Fdim(R) was proved for artin

algebras with P<ω contravariantly finite in [3], and for all Iwanaga-Gorenstein rings in
[2].

In view of Proposition 4.1, our strategy will consists in proving that every cotorsion
pair (A,B) satisfying 0.1 is cogenerated by the class of countably presented modules
from A. To this end, we need results which enable us to filter modules from A by
“smaller” modules which still belong to A. The following two lemmas are the first step
in this direction.

Lemma 4.3. Let C be an injective cogenerator in ModR. Define F (X) = CHomR(X,C)

and F (ϕ)(f) = f(− ◦ ϕ), for all X, Y ∈ ModR, every ϕ ∈ HomR(X, Y ) and f ∈ F (X).
Then F is an endofunctor of ModR preserving monomorphisms. Moreover, the family
ι = (ιX | X ∈ ModR) consisting of canonical embeddings ιX : X → F (X) is a natural
transformation from the identity functor to F .

Proof : It is straightforward to check that F is a functor and ι is a natural transfor-
mation. ιX is an embedding since C is a cogenerator, and the injectivity of C implies
that F preserves monomorphisms. 2

Lemma 4.4. Let R be an arbitrary ring, and (A,B) be a cotorsion pair such that B
is closed under direct limits. Let λ be a regular uncountable cardinal, κ ≥ λ, A ∈ A
a κ-presented module, and X a subset of A with cardX < λ. Then there exists a
< λ-presented module X̄ such that X ⊆ X̄ ⊆ A. Moreover, X̄ can be taken of the form
π(R(I)) where π : R(κ) → A is an epimorphism and I is a subset of κ of cardinality < λ.
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Proof : By assumption, A has a presentation

0 −→ K
⊆

−→ R(κ) π
−→ A −→ 0

with gen(K) ≤ κ, and there is I0 ⊆ κ of cardinality < λ such that X ⊆ π(R(I0)). Let L
be the set consisting of all< λ-generated submodules ofK. We claim thatK∩R(I0) ⊆ L0

for some L0 ∈ L.
Let D = {〈L′, L〉 ∈ L × L | L * L′}. Using the notation from Lemma 4.3, for

each 〈L′, L〉 ∈ D, we define τ〈L′,L〉 : L → F ((L + L′)/L′) as the composition of the
canonical projection L → (L + L′)/L′ with the embedding ι(L+L′)/L′ . For L ∈ L, put

LL = {L′ ∈ L | 〈L′, L〉 ∈ D}. Note that for every L, L̃ ∈ L, L ⊆ L̃ implies LL ⊆ LL̃.
Now for each L ∈ L, we put

G(L) =
∏

L′∈LL

F ((L+ L′)/L′),

notice that G(L) ∈ I0, and for every ε : L ⊆ L̃ (∈ L), we define

G(ε) =
∏

L′∈LL

F
(

εL′

)

where εL′ is the inclusion (L+L′)/L′ ⊆ (L̃+L′)/L′. Then G is a functor from the small
category L, morphisms of which are just inclusions, to ModR. Moreover, G preserves
monomorphisms (since F does), and there is the natural transformation τ = (τL | L ∈
L) from the canonical emdedding L →֒ ModR to G where τL is a fibred product of
(τ〈L′,L〉 | L′ ∈ LL): it is routine to check that the square

L̃
τ
L̃−−−−→ G(L̃)

ε

x





G(ε)

x





L
τL−−−−→ G(L)

commutes for each L, L̃ ∈ L and ε : L ⊆ L̃ (one needs the fact that ι is a natural
transformation).
Let E be a direct limit of the directed system G(L). For every L ∈ L, denote by

νL the colimit injection G(L) →֒ E. Since K is a directed union of its < λ-generated
submodules, it follows from the preceding paragraph that there exists the unique homo-
morphism f : K → E such that f ↾ L = νLτL for all L ∈ L. Note that L is λ-directed
since λ is a regular cardinal, so G(L) has the same property.
Using the assumption put on B, we have E ∈ B, which allows us to extend f to some

g : R(κ) → E. Since card I0 < λ and G(L) is λ-directed, there exists L0 ∈ L such that

g ↾ R(I0) factorizes through νL0
. We deduce then that K ∩R(I0) ⊆ L0; if not, there exist

x ∈ K ∩ R(I0) and L ∈ L such that x ∈ L \ L0, whence τ〈L0,L+L0〉(x) 6= 0 6= τL+L0
(x)

contradicting f ↾ (K ∩ R(I0)) being factorized through νL0
. Our claim is proved.

Since L0 is a < λ-generated module, L0 ⊆ R(I1) for some I0 ⊆ I1 ⊆ κ with card I1 < λ.
Iterating this construction, we obtain a set I =

⋃

n<ω In such that K ∩ R(I) = L for

some L ∈ L, and X̄ = π(R(I)) ∼= R(I)/L has the desired properties. 2

Lemma 4.5. Let (A,B) be a cotorsion pair such that A = lim
−→

A<ω. Let λ be a regular
uncountable cardinal, κ ≥ λ, A ∈ A a κ-presented module, and X be a subset of A
of cardinality < λ. Assume that either (i) R is a right ℵ0-noetherian ring, or (ii) B is
closed under direct limits. Then there is a < λ-presented module A′ ∈ A such that
X ⊆ A′ ⊆ A.
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Proof : Step 1: For any < λ-presented submodule B of A, we construct a < λ-
generated submodule B′ of A containing B with the property that any homomorphism

of the form D
h
→ B ⊆ B′ with D finitely presented factors through a module in A<ω.

To this end, we fix a pure-exact sequence 0 −→ Ker π −→
⊕

i∈I Di
π

−→ B −→ 0 with
Di finitely presented for all i ∈ I. Since B is < λ-presented, we will w.l.o.g. assume that
I has cardinality < λ. For F a non-empty finite subset of I, let DF =

⊕

i∈F Di, and
πF = π ↾ DF . By induction on card(F ), we define finitely generated modules AF ∈ A<ω

and CF ⊆ A such that there is a commutative diagram

DF
πF−−−−→ B

fF





y

⊆





y

AF
gF−−−−→ A

and π(DF ) ⊆ CF = Im gF . Hereby we proceed as follows:
If card(F ) = 1, then the existence of AF and CF follows immediately from Lemma

1.1 since A ∈ lim
−→

A<ω. If card(F ) > 1, we take M = DF ⊕
⊕

∅6=G(F AG and let

g = πF ⊕
⊕

∅6=G(F gG. By Lemma 1.1, there exist AF ∈ A<ω, hF : M → AF and
gF : AF → A such that g = gF hF , and we put CF = Im gF and fF = hF ↾ DF . Note
that CF contains CG for each ∅ 6= G ( F .
Now let B′ be the union of all CF where F runs through all non-empty finite subsets

of I. This is a directed union of < λ-many finitely generated submodules of A, so
B′ is a < λ-generated submodule of A containing B. Moreover, if h : D → B is a
homomorphism with D finitely presented, then there is a factorization f of h through
the pure epimorphism π. But then Im f ⊆ DF for a non-empty finite subset F ⊆ I,

and D
h
→ B ⊆ B′, which equals gF fF f , factors through AF ∈ A<ω as required.

Step 2: Consider now the presentation of A from Lemma 4.4. We will define A′ as
the union of an increasing chain (Bn | n < ω) of < λ-presented submodules in A of the

form π(R(Jn)) for some Jn of cardinality < λ (where J0 ⊆ J1 ⊆ . . . ). The chain will be
defined by induction on n:
Take B0 = π(R(J0)) < λ-presented and such that X ⊆ B0 (this is clearly possible

in case (i), and it is possible by Lemma 4.4 in case (ii)). If Bn is defined, there is
a < λ-generated submodule B′

n of A containing Bn constructed as in Step 1. Let
Bn+1 = π(R(Jn+1)) be a < λ-presented submodule of A containing B′

n (again, obtained
using the ℵ0-noetherian property of R in case (i), and Lemma 4.4 in case (ii)).
It remains to prove that A′ ∈ A. By Lemma 1.1, it suffices to show that every R-

homomorphism h : D → A′ with D finitely presented has a factorization through a
module in A<ω. However, Im h ⊆ Bn for some n < ω, and the claim then follows by
construction of B′

n in Step 1. 2

Theorem 4.6. Let R be a ring, and C = (A,B) be a smashing cotorsion pair such that
A = lim

−→
A<ω. Assume that either (i) R is a right ℵ0-noetherian ring, or (ii) B is closed

under direct limits. Then C is of finite type.

Proof : We denote by A0 the class of all countably presented modules in A. Let
A ∈ A, and let κ ≥ ℵ0 be such that A is a κ-presented module. By induction on κ, we
will prove that A is A0-filtered. There is nothing to prove for κ = ℵ0.
If κ is a regular uncountable cardinal then Lemma 4.5 yields a κ-filtration, F = (Aα |

α < κ), of A such that Aα ∈ A is < κ-presented for each α < κ. By [31, Theorem 8]
(see also [18, 4.3.2]), there is a subfiltration, G, of F such that all successive factors in G
are < κ-presented modules from A, so they are A0-filtered by inductive premise. Hence
A is A0-filtered.
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If κ is singular, we use Shelah’s Singular Compactness Theorem [16, IV.3.7] as follows:
first, call a module M “free” if M is A0-filtered. For each regular uncountable cardinal
λ < κ, we let Sλ denote the set of all < λ-presented submodules A′ ⊆ A with A′ ∈ A.
Clearly, 0 ∈ Sλ, and Sλ is closed under unions of well-ordered chains of length < λ
since A is closed under arbitrary direct limits. By Lemma 4.5, each subset of A of
cardinality < λ is contained in an element of Sλ. By inductive premise, Sλ consists of
“free” modules for all regular ω < λ < κ, so A is “free” by [16, IV.3.7]. This proves that
each A ∈ A is A0-filtered.
So, we infer from the Eklof Lemma [16, XII.1.5] (see also [18, 3.1.2]) that B = (A0)

⊥1 .
Finally, Proposition 4.1 shows that C is of finite type. 2

Corollary 4.7. Let R be an arbitrary ring, and C = (A,B) be a complete hereditary
cotorsion pair such that A and B are closed under direct limits. Then A = lim

−→
A<ω if

and only if C is of finite type.

Now, we are going to prove a particular case of Conjecture 0.1 for arbitrary right
noetherian rings. This will imply validity of 0.1 in the particular case C is a cotilting
cotorsion pair over a right noetherian ring.
By Theorem 4.6, the proof of Conjecture 0.1 amounts to showing that C is of finite

type. First, we need a lemma which is implicit already in [7], and the dual version of
which appears in [28]:

Lemma 4.8. Let R be a ring, and C = (A,B) be a smashing cotorsion pair cogenerated
by a class C such that C⊥ contains all direct sums of injective modules. Then C⊥n is
closed under arbitrary direct sums for each n ≥ 1.

Proof : By induction on n. The case of n = 1 is clear since C is smashing. Let
(Mα | α < κ) be a family of modules in C⊥n+1 . Consider short exact sequences

0 −→ Mα −→ Iα −→ Cα −→ 0

with Iα injective for each α < κ. Since 0 = Extn+1
R (A,Mα) ∼= ExtnR (A,Cα) for all

A ∈ C, the inductive premise gives
⊕

α<κ Cα ∈ C⊥n , so our assumption on C⊥ yields
⊕

α<κ Mα ∈ C⊥n+1 . 2

Proposition 4.9. Let R be a right coherent ring. Let C = (A,B) be a smashing
hereditary cotorsion pair cogenerated by a class C ⊆ (ModR)≤ω and such that B ⊆ In

for some n ≥ 0. Then C is of finite type.

Proof : We will construct cotorsion pairs Ci = (Ai,Bi), 1 ≤ i ≤ n+ 1, such that

B = B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆ Bn+1

and by reverse induction on i, we will show that Ci is of finite type for each 1 ≤ i ≤ n+1.
Let us start with the cotorsion pair Cn+1 = (An+1,Bn+1) cogenerated by the class

Sn+1 of all modules that are k-th syzygies of modules from modR for some k ≥ n.
Then Bn+1 =

⋂

k≥n+1(modR)⊥k , and we claim that Bn+1 ⊆
⋂

k≥n+1 A
⊥k . In fact,

(modR)⊥1 coincides with the class of all pure submodules of injective modules since R
is right coherent. Moreover, modR is resolving, so (modR)⊥1 = (modR)⊥ by Remark
1.2. Since B is definable by Proposition 4.1(2), we deduce that (modR)⊥ ⊆ B, and our
claim follows by dimension shifting.
We now set Bi = Bn+1 ∩

⋂

k≥i A
⊥k for 1 ≤ i ≤ n. Then, as B ⊆ In ⊆ Bn+1, we have

B = B1. Moreover, all Bi are obviously coresolving. Further, applying Lemma 4.8 to C

(which is possible because C is cogenerated by A and A⊥ = B contains all direct sums
of injective modules), we infer that all Bi are closed under direct sums.
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For each 1 ≤ i ≤ n, we thus obtain a hereditary smashing cotorsion pair Ci = (Ai,Bi)
which is cogenerated by a class of countably presented modules, namely by Si = Sn+1∪Ci,
where Ci denotes the class of all modules that are k-th syzygies of modules from C for
some k ≥ i − 1.
Of course, Cn+1 is of finite type. Let 1 ≤ i ≤ n, and let M ∈ Si. We have a short

exact sequence

0 −→ K −→ R(ω) −→ M −→ 0.

We claim that K ∈ Ai+1. Indeed, if N ∈ Bi+1 = Bn+1 ∩
⋂

k≥i+1 A
⊥k then its first

cosyzygy C belongs to Bi, so Ext
2
R (Ai, N) = 0, and in particular, Ext2R (M, N) = 0,

hence Ext1R (K, N) = 0. This proves the claim.
By inductive premise, Ci+1 is of finite type, hence cogenerated by A<ω

i+1. By Theorem

1.7, it follows that K is a direct summand in a A<ω
i+1-filtered module. Using [9, Lemma

3.3] (see also [18, 5.2.20, p.215]), we obtain the exact sequence

0 −→ H −→ G −→ M −→ 0

with H and G countably generated A<ω
i+1-filtered modules. W.l.o.g. we can assume that

H is a submodule of G. As in the proof of [9, Lemma 3.6], we show that M ∈ lim
−→

A<ω
i .

We state here the argument for the reader’s convenience.
By [9, Corollary 3.2] (see also [18, 4.2.6]), we can write H =

⋃

k<ω Hk and G =
⋃

k<ω Gk where, for every k < ω, Hk and Gk are finitely presented A<ω
i+1-filtered modules,

and H/Hk, G/Gk are A<ω
i+1-filtered. Given k < ω, there is jk such that Hk ⊆ Gjk

.
Moreover, we can choose the sequence (jk | k < ω) to be strictly increasing.
We claim that Gjk

/Hk ∈ A<ω
i . Clearly, Gjk

/Hk finitely presented and R right coher-

ent implies Gjk
/Hk ∈ modR, thus we have to show that Ext1R (Gjk

/Hk, B) = 0 for each
B ∈ Bi. Since Gjk

∈ Ai+1 ⊆ Ai, we need only to check that every f ∈ HomR(Hk, B)
can be extended to a homomorphism from Gjk

to B. We have Ext1R (H/Hk, B) = 0
because H/Hk ∈ Ai+1, thus we may extend f to a homomorphism f ′ from H to B, and
then, since G/H ∼= M ∈ Ai, to a homomorphism g from G to B. The restriction of g
to Gjk

obviously induces an extension of f to Gjk
. Our claim is proved.

Set Ck = Gjk
/Hk. Since (jk | k < ω) is increasing and unbounded in ω, the inclusions

Gjk
⊆ Gjk+1

induce maps fk : Ck → Ck+1, and M is a direct limit of the direct system
((Ck, fk) | k < ω).
But then, since M ∈ Si was arbitrary, it follows that Si ⊆ lim

−→
A<ω

i , and so Ci is of

finite type by Proposition 4.1(3). 2

Theorem 4.10. Let R be a right noetherian ring and C = (A,B) be a hereditary
smashing cotorsion pair. If either
(i) A consists of modules of bounded projective dimension, or
(ii) B consists of modules of bounded injective dimension,
then C is of finite type. 1

Proof : By [31], (i) implies that C is a tilting cotorsion pair, hence C is of finite type
by [9] (Indeed, this holds for an arbitrary ring R, cf. [18, 5.1.16 and 5.2.20].)
Assume (ii). Then it follows from [28, Corollary 1.10] that C is cogenerated by a class

of countably presented modules, so it is of finite type by Proposition 4.9. 2

Corollary 4.11. Let R be a right noetherian ring, and (A,B) an n-cotilting cotorsion
pair. Then the following statements are equivalent.

1Added in proof. The bounds on the homological dimension can be removed in the sense that if R is any ring
and C satisfies the assumptions of 0.1, then C is of countable type, A is closed under pure-epimorphic images,
and B is definable. This is proved in a recent manuscript by the second author and J. Šťov́ıček, entitled “The
countable telescope conjecture for module categories.”
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(1) (A,B) is of finite type.
(2) B is definable.
(3) There is a Σ-pure-injective cotilting module C such that A = ⊥C.

Proof : By Proposition 3.2, condition (3) means that (A,B) is smashing. So, we have
(1)⇒(2)⇒(3). (3)⇒(1) is an immediate consequence of Theorem 4.10. 2

5. Extensions of small cotorsion pairs.

We close the paper by pointing out some asymmetries that can occur in the behaviour
of the classes involved in a cotorsion pair. Throughout this section Λ denotes an artin
algebra.

Definition. [29] Let (S, T ) be a cotorsion pair in modΛ. A cotorsion pair (X ,Y) in
ModΛ is said to be an extension of (S, T ) if X<ω = S and Y<ω = T .

We have seen above three different ways of extending (S, T ).

Proposition 5.1. Let (S, T ) be a cotorsion pair in modΛ. The following cotorsion
pairs are extensions of (S, T ):
(1) the complete cotorsion pair (A,B) cogenerated by S,
(2) the perfect cotorsion pair (lim

−→
S,Y),

(3) the perfect cotorsion pair (C,D) generated by T .
They are related by the inclusions A ⊆ lim

−→
S ⊆ C and D ⊆ Y ⊆ B.

Proof : We already know that the first cotorsion pair is complete, and the third is
perfect since it is of cofinite type. Observe further that S has properties (R1) and (R2).
By Theorem 2.1 we then have that the second cotorsion pair is perfect, generated by
the pure-injective modules from B, and moreover, S = A<ω = (lim

−→
S)<ω. Furthermore,

B<ω = (S⊥1)<ω = T since (S, T ) is a cotorsion pair in modΛ, and similarly C<ω =
(⊥1T )<ω = S. In particular, T consists of pure-injective modules from B. We then infer
that A ⊆ lim

−→
S ⊆ C, and thus T ⊆ D ⊆ Y ⊆ B. But this implies that D<ω = Y<ω =

B<ω = T , and the proof is complete. 2

Let us look at some examples.

Examples 5.2. (1) Let Λ be a tame hereditary artin algebra (w.l.o.g. basic indecom-
posable), and let the notation be as in Example 3.4. We set S = add (p ∪ t) where p
denotes the class of all indecomposable preprojective modules, and T = add (q). Then
(S, T ) is a cotorsion pair in modΛ, and the three extensions in Proposition 5.1 coincide.
Note however that (S, T ) is not complete in modΛ, and that the generic module G be-
longs to D\ lim

−→
T , so D 6= lim

−→
D<ω. In particular, we see that the validity of Conjecture

0.1 for (A,B) does not imply B = lim
−→

B<ω.

(2) If (S, T ) is a cotorsion pair in modΛ with S ⊆ (P1)
<ω, then the second and

the third cotorsion pair in Proposition 5.1 coincide. In fact, in this case B is closed
under epimorphic images. Since moreover every module over an artin algebra is a pure
submodule of a direct product of its finitely generated factor modules, it follows that the
modules from B are pure submodules of a product of modules from T . Now remember
that (lim

−→
S,Y) is generated by the class B′ of all pure-injective modules from B. But B′

consists of direct summands of products of modules from T , and so lim
−→

S = C.

(3) The following example shows that the assumption “smashing” in Theorem 4.6
is essential. Let Λ be the algebra from [23]. We set S = (P1)

<ω, and T = (S⊥1)<ω.
As above we have ⊥1T = lim

−→
S = P1, so (

⊥1T )<ω = S, and (S, T ) is a cotorsion pair
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in modΛ. Here again, (S, T ) is not complete. Moreover, although C = lim
−→

C<ω, the

cotorsion pair (C,D) = (lim
−→

S,Y) is not of finite type. This follows from 2.3, since we

know from [4] that the first two cotorsion pairs in Proposition 5.1 do not coincide. In
particular, (C,D) is not smashing (because it cannot be a tilting cotorsion pair, see [1]
and [8], see also [18, §5.2]). However, it is of cofinite type, hence cosmashing. 2

As a consequence of a result of Krause and Solberg in [22], we can now describe when
a cotorsion pair has the shape (lim

−→
S, lim

−→
T ) for some cotorsion pair (S, T ) in modΛ.

Theorem 5.3. The following statements are equivalent for a cotorsion pair (X ,Y) in
ModΛ.
(1) (X ,Y) = (lim

−→
X<ω, lim

−→
Y<ω).

(2) (X ,Y) is the unique extension of some complete cotorsion pair (S, T ) in modΛ.
(3) (X ,Y) is of finite type and X<ω is contravariantly finite in modΛ.
If (X ,Y) is hereditary and X ⊆ P, then (1)–(3) are further equivalent to
(4) Y = T⊥ for a tilting module T ∈ modΛ.

Proof : (1)⇒(2): Set T = Y<ω. First of all, since Y = lim
−→

T is closed under products,

it follows from 1.3 and 1.4 that there is a complete cotorsion pair (S, T ) in modΛ. We
then know from [22, 2.4] that the three extensions of (S, T ) in Proposition 5.1 coincide
with (X ,Y). Suppose now that (E ,F) is a further extension of (S, T ). Then S ⊆ E ,
thus F ⊆ Y = lim

−→
T , hence lim

−→
S ⊆ E . Further T ⊆ F , thus E ⊆ X = lim

−→
S. This shows

(E ,F) = (X ,Y), so there is a unique extension.
(2)⇒(3): Consider the complete cotorsion pair (A,B) cogenerated by S. Then B<ω =
(S⊥1)<ω = T , and by Theorem 2.1(1) we have A<ω = S. So (A,B) is an extension of
(S, T ) and therefore coincides with (X ,Y).
(3)⇒(1): (X ,Y) is cogenerated by S = X<ω, and there is a complete cotorsion pair
(S, T ) in modΛ. By [22, 2.4] it follows that (X ,Y) = (lim

−→
S, lim

−→
T ) and T = Y<ω.

The equivalence with (4) follows from a well-known result of Auslander and Reiten [6],
see [3, 4.1]. 2
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[18] R. Göbel; J. Trlifaj, Approximations and Endomorphism Algebras of Modules, Walter de Gruyter,

Berlin 2006.
[19] B. Keller, A remark on the generalized smashing conjecture, Manuscripta Math. 84 (1994), 193-198.
[20] H. Krause, The spectrum of a module category, Mem. Amer. Math. Soc. 707, vol. 149 (2001).
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[30] J. Šťov́ıček, All n-cotilting modules are pure-injective, Proc. Amer. Math. Soc. 134(2006), 1891-1897.
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THE COUNTABLE TELESCOPE CONJECTURE FOR MODULE

CATEGORIES

JAN ŠAROCH AND JAN ŠŤOVÍČEK

Abstract. By the Telescope Conjecture for Module Categories, we mean the following claim:
“Let R be any ring and (A,B) be a hereditary cotorsion pair in Mod-R with A and B closed
under direct limits. Then (A,B) is of finite type.”

We prove a modification of this conjecture with the word ‘finite’ replaced by ‘countable’.
We show that a hereditary cotorsion pair (A,B) of modules over an arbitrary ring R is gener-
ated by a set of strongly countably presented modules provided that B is closed under unions
of well-ordered chains. We also characterize the modules in B and the countably presented
modules in A in terms of morphisms between finitely presented modules, and show that (A,B)
is cogenerated by a single pure-injective module provided that A is closed under direct limits.
Then we move our attention to strong analogies between cotorsion pairs in module categories
and localizing pairs in compactly generated triangulated categories.

Motivated by the paper [30] of Krause and Solberg, the first author with Lidia Angeleri Hügel
and Jan Trlifaj started in [4] an investigation of the Telescope Conjecture for Module Categories
(TCMC) stated as follows (see Section 1 for unexplained terminology):

Telescope Conjecture for Module Categories. Let R be a ring and (A,B) be a hereditary
cotorsion pair in Mod-R with A and B closed under direct limits. Then A = lim

−→
(A ∩mod-R).

The term ‘Telescope Conjecture’ is used here because the particular case of TCMC when R
is a self-injective artin algebra and (A,B) is a projective cotorsion pair was shown in [30] to be
equivalent to the following telescope conjecture for compactly generated triangulated categories
(in this case—for the stable module category over R) which originates in works of Bousfield [12]
and Ravenel [38] and has been extensively studied by Krause in [29, 27]:

Telescope Conjecture for Triangulated Categories. Every smashing localizing subcat-
egory of a compactly generated triangulated category is generated by compact objects.

Under some restrictions on homological dimensions of modules in the cotorsion pair (A,B),
TCMC is known to hold. The first author and co-authors showed in [4] that the conclusion of
TCMC amounts to saying that the given cotorsion pair is of finite type. If all modules in A
have finite projective dimension, then the cotorsion pair is tilting [42], hence of finite type [9]. If
R is a right noetherian ring and B consists of modules of finite injective dimension, then (A,B)
is of finite type, too [4]. Therefore, TCMC holds true for example for any cotorsion pair over
a ring with finite global dimension. Unfortunately, the interesting connection with triangulated
categories introduced in [30] works for self-injective artin algebras, where the only cotorsion pairs
satisfying the former conditions are the trivial ones.

The aim of this paper is twofold. First, we prove the Countable Telescope Conjecture in
Theorem 3.5: any cotorsion pair satisfying the hypotheses of TCMC is of countable type—that
is, the class B is the Ext1-orthogonal class to the class of all (strongly) countably presented
modules from A. This is a weaker version of TCMC. We will also show that this result easily
implies a more direct argument for a large part of the proof that all tilting classes are of finite
type [7, 8, 42, 9].
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The second goal is to systematically analyze analogies between approximation theory for
cotorsion pairs and results about localizations in compactly generated triangulated categories.
Considerable efforts have been made on both sides. Cotorsion pairs were introduced by Salce
in [40] where he noticed a homological connection between special preenvelopes and precovers—
or left and right approximation in the terminology of [6]. In [16], Eklof and Trlifaj proved
that any cotorsion pair generated by a set of modules provides for these approximations. This
turns out to be quite a usual case and the related theory with many applications is explained
in the recently issued monograph [19]. Localizations of triangulated categories have, on the
other hand, motivation in algebraic topology. The telescope conjecture above was introduced by
Bousfield [12, 3.4] and Ravenel [38, 1.33]. Compactly generated triangulated categories and their
localizations were studied by Neeman [34, 35] and Krause [29, 27]. Even though the telescope
conjecture is known to be false for general triangulated categories [26], it is still open for the
important and topologically motivated stable homotopy category as well as for stable module
categories over self-injective artin algebras.

Although it should not be completely unexpected that there are some analogies between
the two settings, as the derived unbounded category is triangulated compactly generated and
provides a suitable language for homological algebra, the extent to which the analogies work is
rather surprising. Roughly speaking, it is sufficient to replace an Ext1-group in a module category
by a Hom-group in a triangulated category, and we obtain a valid result. However, there are
also substantial differences here—for instance special precovers and preenvelopes provided by
cotorsion pairs are, unlike adjoint functors coming from localizations, not functorial.

In Section 4, we prove in Theorem 4.9 that if (A,B) is a cotorsion pair meeting the assump-
tions of TCMC, then B is defined by finite data in the sense that it is the Ext1-orthogonal
class to a certain ideal of maps between finitely presented modules. Moreover, we character-
ize the countably generated modules in A as direct limits of systems of maps from this ideal
(Theorem 4.8). In Section 5, we prove in Theorem 5.13 that A = KerExt1(−, E) for a single
pure-injective module E.

Finally, in Section 6, we give the triangulated category analogues of all of the main results
for module categories. Some of them come from our analysis, while the others were originally
proved by Krause in [29] and served as a source of inspiration for this paper.

Acknowledgements. The authors would like to thank Jan Trlifaj for reading parts of this text
and giving several valuable comments, and also to Øyvind Solberg for stimulating discussions
and helpful suggestions.

1. Preliminaries

Throughout this paper, R will always stand for an associative ring with unit, and all modules
will be (unital) right R-modules. We call a module strongly countably presented if it has a projec-
tive resolution consisting of countably generated projective modules. Strongly finitely presented
modules are defined in the same manner with the word ‘countably’ replaced by ‘finitely’. We
denote the class of all modules by Mod-R and the class of all strongly finitely presented modules
by mod-R.

We note that the notation mod-R is often used in the literature for the class of finitely
presented modules; that is, the modules M possessing a presentation P1 → P0 → M → 0 where
P0 and P1 are finitely generated and projective. We have digressed a little from this de-facto
standard for the sake of keeping our notation simple, and we believe that this should not cause
much confusion. We remind that if R is a right coherent ring, then the class of strongly finitely
presented modules coincides with the class of finitely presented ones. Moreover, one typically
restricts oneself to coherent rings in various applications.

1.1. Continuous directed sets and associated filters. Let (I,≤) be a partially ordered set
and λ be an infinite regular cardinal. We say that I is λ-complete if every well-ordered ascending
chain (iα | α < τ) of elements from I of length < λ has a supremum in I. If this is the case, we
call a subset J ⊆ I λ-closed if, whenever such a chain is contained in J , its supremum is in J
as well. For instance for any set X, the power set P(X) ordered by inclusion is λ-complete and
the set P<λ(X) of all subsets of X of cardinality < λ is λ-closed in P(X).
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Recall that a subset J ⊆ I is called cofinal if for every i ∈ I there is j ∈ J such that i ≤ j.
Note that if I is a totally ordered set, then the cofinal subsets of I are precisely the unbounded
ones.

From now on, we assume that (I,≤) is a directed set. If (Mi, fji : Mi → Mj | i, j ∈ I & i ≤ j)
is a direct system of modules, we call it λ-continuous if the index set I is λ-complete and for
each well-ordered ascending chain (iα | α < τ) in I of length < λ we have

Msup iα
= lim

−→
α<τ

Miα
.

It is well-known that every module is the direct limit of a direct system of finitely presented
modules. But if we want the direct system to be λ-continuous, we have to pass to < λ-presented
modules in general. The following lemma is a slight modification of [24, Proposition 7.15].

Lemma 1.1. Let M be any module and λ an infinite regular cardinal. Then M is the direct
limit of a λ-continuous direct system of < λ-presented modules.

Proof. Fix a free presentation

R(X)
f
→ R(Y ) → M → 0

of M and let I be the following set:
{

(X ′, Y ′) ∈ P(X)× P(Y ) | |X ′|+ |Y ′| < λ & f
[

R(X
′)
]

⊆ R(Y
′)
}

.

It is straightforward to check that I with the partial ordering by inclusion in both components
is directed and λ-complete. If we now define Mi as the cokernel of the map

f ↾ R(X
′) : R(X

′) → R(Y
′)

for every i = (X ′, Y ′) ∈ I, it is easy to check that (Mi | i ∈ I) together with the natural maps
forms a λ-continuous direct system with M as its direct limit. ¤

For every directed set I, there is an associated filter FI on (P(I),⊆); namely the one with a
basis consisting of the upper sets ↑ i = {j ∈ I | j ≥ i} for all i ∈ I. That is

FI = {X ⊆ I | (∃i ∈ I)(↑ i ⊆ X)}.

Recall that a filter F on a power set is called λ-complete if any intersection of less than λ elements
from F is again in F.

Lemma 1.2. Let (I,≤) be a λ-complete directed set. Then any subset J ⊆ I such that |J | < λ
has an upper bound in I. In particular, the associated filter FI is λ-complete, and it is a principal
filter if and only if (I,≤) has a (unique) maximal element.

Proof. We can well-order J ; that is J = {jα | α < τ} for some τ < λ. Then we construct by
induction a chain (kα | α < τ) in I such that k0 = j0 and kα is a common upper bound for jα

and supβ<α kβ . Then supβ<τ kβ is clearly an upper bound for J . The rest is also easy. ¤

1.2. Filtrations and cotorsion pairs. Given a module M and an ordinal number σ, an as-
cending chain F = (Mα | α ≤ σ) of submodules of M is called a filtration of M if M0 = 0,
Mσ = M and F is continuous—that is,

⋃

α<β Mα = Mβ for each limit ordinal β ≤ σ.
Furthermore, let a class C ⊆ Mod-R be given. Then F is said to be a C-filtration if it has

the extra property that each its consecutive factor Mα+1/Mα, α < σ, is isomorphic to a module
from C. A module M is called C-filtered if it admits (at least one) C-filtration.

Let us turn our attention to cotorsion pairs now. By a cotorsion pair in Mod-R, we mean a pair
(A,B) of classes of right R-modules such that A = KerExt1R(−,B) and B = KerExt1R(A,−).
We say that a cotorsion pair (A,B) is hereditary provided that A is closed under kernels of
epimorphisms or, equivalently, B is closed under cokernels of monomorphisms.

If (A,B) is a cotorsion pair, then the class A is always closed under arbitrary direct sums
and contains all projective modules. Dually, the class B is closed under direct products and
it contains all injective modules. Also, every class of modules C determines two distinguished
cotorsion pairs—the cotorsion pair generated by C, that is the one with the right-hand class
B equal to KerExt1R(C,−), and dually the cotorsion pair cogenerated1 by C—the one with the

1It may cause some confusion that the meaning of the terms generated and cogenerated is sometimes swapped
in the literature. Our terminology follows the monograph [19].
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left-hand class A equal to KerExt1R(−, C). We say that (A,B) is of finite or countable type if it
is generated by a set of strongly finitely or strongly countably presented modules, respectively.

We say that a cotorsion pair (A,B) is complete if for every module M ∈ Mod-R, there is a
short exact sequence 0 → B → A → M → 0 such that A ∈ A and B ∈ B. The map A → M is
then called a special A-precover of M . It is well-known that this condition is equivalent to the
dual one saying that B provides for special B-preenvelopes; thus, for every M ∈ Mod-R there is
in this case also a short exact sequence 0 → M → B′ → A′ → 0 with A′ ∈ A and B′ ∈ B.

Finally, a cotorsion pair is said to be projective in the sense of [10] if it is hereditary, complete,
and A ∩ B is precisely the class of all projective modules. It is an easy exercise to prove that
(A,B) is projective if and only if it is complete and B contains all projective modules and has
the “two out of three” property—that is: all three modules in a short exact sequence are in
B provided that two of them are in B. To conclude the discussion of terminology concerning
cotorsion pairs, we recall that projective cotorsion pairs over self-injective artin algebras are
(with a slightly different but equivalent definition) called thick in [30].

1.3. Definable classes and coherent functors. We will also need the notion of a definable
class of modules. First recall that a covariant additive functor from Mod-R to the category of
abelian groups is called coherent if it commutes with arbitrary products and direct limits. The
following important characterization was obtained by Crawley-Boevey:

Lemma 1.3. [13, §2.1, Lemma 1] A functor F : Mod-R → Ab is coherent if and only if it is
isomorphic to CokerHomR(f,−) for some homomorphism f : X → Y between finitely presented
modules X and Y .

A class C ⊆ Mod-R is called definable if it satisfies one of the following three equivalent
conditions:

(1) C is closed under taking arbitrary products, direct limits, and pure submodules;
(2) C is defined by vanishing of some set of coherent functors;
(3) C is defined in the first order language of R-modules by satisfying some implications

ϕ(x̄) → ψ(x̄) where ϕ(x̄) and ψ(x̄) are primitive positive formulas.

Primitive positive formulas (pp-formulas for short) are first-order language formulas of the form
(∃ȳ)(x̄A = ȳB) for some matrices A,B over R. For this paper, the most important consequence
of (3) is that definable classes are closed under taking elementarily equivalent modules since
they are definable in the first-order language. This in particular implies the well-known fact
that a definable class is determined by the pure-injective modules it contains since any module
is elementarily equivalent to its pure-injective hull. For equivalence between the three definitions
and more details, we refer to [37], [13, §2.3], and [45, Section 1].

1.4. Inverse limits and the Mittag-Leffler condition. The computation of Ext groups can
sometimes be reduced to the computation of the derived functors of inverse limit. We will recall
this here only for countable inverse systems. For more details on the topic see [44, §3.5]. Let

· · · → Hn+1
hn→ Hn → · · · → H2

h1→ H1
h0→ H0

be a countable inverse system of abelian groups—a tower in the terminology of [44]. Then its
inverse limit lim

←−
Hn and the first derived functor of the inverse limit, lim

←−
1Hn, can be computed

using the exact sequence

0 → lim
←−

Hn →
∏

Hn
∆
→

∏

Hn → lim
←−

1Hn → 0

where ∆((xn)n<ω) = (xn −hn(xn+1))n<ω. The first derived functor is closely related to the fact
that inverse limit is not exact—it is only left exact. Using the exact sequence above and the
snake lemma, one easily observes that, given a countable inverse system of short exact sequences
0 → Hn → Kn → Ln → 0, there is a canonical long exact sequence

0 → lim
←−

Hn → lim
←−

Kn → lim
←−

Ln → lim
←−

1Hn → lim
←−

1Kn → lim
←−

1Ln → 0

In particular, lim
←−

1 is right exact on countable inverse systems.

In practice, one is often interested whether or not lim
←−

1Hn = 0. To decide this can sometimes
be tedious, but there is a useful tool—the notion of Mittag-Leffler inverse systems. Given a
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countable inverse system of abelian groups (Hn, hn | n < ω) as above, we say that it is Mittag-
Leffler if for each n the descending chain

Hn ⊇ hn(Hn+1) ⊇ · · · ⊇ hnhn+1 · · ·hk−1(Hk) ⊇ · · ·

is stationary. This occurs, for example, if all the maps hn are onto. The following important
result gives a connection to lim

←−
1:

Proposition 1.4. Let (Hn, hn | n < ω) be a countable inverse system of abelian groups. Then
the following hold:

(1) [44, Proposition 3.5.7] If (Hn, hn) is Mittag-Leffler, then lim←−
1Hn = 0.

(2) [2, Theorem 1.3] (Hn, hn) is Mittag-Leffler if and only if lim←−
1H

(ω)
n = 0.

We will also use a related notion of T-nilpotency. We say that (Hn, hn)n<ω is T-nilpotent if
for each n there exists k > n such that the composition Hk → Hn is zero.

2. Filter-closed classes and factorization systems

We start with analyzing properties of modules lying in KerExt1R(−,G) for a class G closed
under arbitrary direct products and unions of well-ordered chains. We will always assume in this
case that G is closed under isomorphic images and that 0 ∈ G, since the trivial module could be
viewed as a product of an empty system. As an application to keep in mind, such classes occur
as right-hand classes of cotorsion pairs satisfying the hypotheses of TCMC.

Definition 2.1. Let F be a filter on the power set P(X) for some set X, and let {Mx | x ∈ X}
be a set of modules. Set M =

∏

x∈X Mx. Then the F-product ΣFM is the submodule of M such
that

ΣFM = {m ∈ M | z(m) ∈ F}

where for an element m = (mx | x ∈ X) ∈ M , we denote by z(m) its zero set {x ∈ X | mx = 0}.
The module M/ΣFM is then called an F-reduced product. Note that for a, b ∈ M , we have

an equality ā = b̄ in the F-reduced product if and only if a and b agree on a set of indices that
is in the filter F.

In the case that Mx = My for every pair of elements x, y ∈ X, we speak of an F-power and
an F-reduced power (of the module Mx) instead of an F-product and an F-reduced product,
respectively.

Finally, a nonempty class of modules G is called filter-closed, if it is closed under arbitrary
F-products (for any set X and an arbitrary filter F on P(X)).

Lemma 2.2. Let G be a class of modules closed under arbitrary direct products and unions of
well-ordered chains. Then G is filter-closed.

Proof. It is just a matter of straightforward induction to prove that the closure under unions of
well-ordered chains implies closure under arbitrary directed unions—see for instance [1, Corollary
1.7] which is easily adapted for unions. Moreover, any F-product is just the directed union of
products of the modules with indices from the complementary sets to those belonging to F. ¤

In the next few paragraphs, we will show that filter-closedness of G forces existence of certain
factoring systems inside modules from KerExt1R(−,G). Let us note that the following lemma
presents the crucial technical step in proving the Countable Telescope Conjecture.

Lemma 2.3. Let G be a filter-closed class of modules. Let λ be an uncountable regular cardinal
and (M, fi | i ∈ I) be a direct limit of a λ-continuous direct system (Mi, fji | i ≤ j) indexed by
a set I and consisting of < λ-generated modules.
Assume that Ext1R(M,G) = 0. Then there is a λ-closed cofinal subset J ⊆ I such that every

homomorphism from Mj to B factors through fj whenever j ∈ J and B ∈ G.

Proof. Suppose that the claim of the lemma is not true. Then the set

S = {i ∈ I | (∃Bi ∈ G)(∃gi ∈ HomR(Mi, Bi))(gi does not factor through fi)} (∗)

must intersect every λ-closed cofinal subset of I (so S is a generalized stationary set, in an
obvious sense). For each i ∈ S, choose some Bi ∈ G and gi : Mi → Bi whose existence is claimed
in (∗). For the indices i ∈ I \ S, let Bi be an arbitrary module from G and gi : Mi → Bi be the
zero map. Put B =

∏

i∈I Bi.
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Now, define a homomorphism hji : Mi → Bj for each pair i, j ∈ I in the following way:
hji = gj ◦ fji if i ≤ j and hji = 0 otherwise. This family of maps gives rise to a canonical
homomorphism h :

⊕

k∈I Mk → B. More precisely, if we denote by πj : B → Bj the projection
to the j-th component and by νi : Mi →

⊕

k∈I Mk the canonical inclusion of the i-th component,
h is (unique) such that πj ◦ h ◦ νi = hji. Note that for every i, j ∈ I such that i ≤ j, the set
{k ∈ I | hki = hkj ◦ fji} is in the associated filter FI since it contains ↑j. Hence, if we denote by
ϕ the canonical pure epimorphism

⊕

i∈I Mi → M = lim
−→i∈I

Mi (that is such that ϕ ◦ νi = fi for

all i ∈ I), there is a well-defined homomorphism u from M to the FI -reduced product B/ΣFI
B

making the following diagram commutative (ρ denotes the canonical projection):

B
ρ

−−−−→ B/ΣFI
B −−−−→ 0

h

x





u

x





⊕

i∈I Mi
ϕ

−−−−→ M −−−−→ 0.

We have ΣFI
B ∈ G since G is filter-closed. Hence, using the assumption that Ext1R(M,ΣFI

B) =
0, we can factorize u through ρ to get some g ∈ HomR(M, B) such that u = ρ ◦ g. Since the
Mi are all < λ-generated and FI is λ-complete by Lemma 1.2, we obtain (for every i ∈ I) that
“h ◦ νi coincides with g ◦ ϕ ◦ νi = g ◦ fi on a set from the filter”, that is:

{k ∈ I | πk ◦ g ◦ fi = πk ◦ h ◦ νi} ∈ FI . (∗∗)

Let us define J as follows:

J = {i ∈ I | (∀k ≥ i)(πk ◦ g ◦ fi = gk ◦ fki)}.

Then clearly, gi factors through fi for every i ∈ J (just by applying the definition of J for k = i).
Hence certainly J ∩ S = ∅.

To obtain a contradiction and finish the proof of the lemma, it is now enough to show that J
is λ-closed cofinal. The fact that J is λ-closed follows easily by λ-continuity of the direct system
(Mi, fji | i ≤ j). So we are left to prove that J is cofinal in I. But by (∗∗) and the definition of
FI , we can find for every i ∈ I an element s(i) ∈ I such that s(i) ≥ i and

(∀k ≥ s(i))(πk ◦ g ◦ fi = πk ◦ h ◦ νi). (∆)

Recall that πk ◦ h ◦ νi = hki = gk ◦ fki. Now, if we fix any i′ ∈ I, we can define j0 = i′,
jn+1 = s(jn) for all n ≥ 0, and j = supn<ω jn. Then clearly j ≥ i′, and it is easy to check that
j ∈ J using the ℵ1-continuity of the direct system (Mi, fji | i ≤ j). ¤

An important consequence follows by applying Lemma 2.3 to the case when the class G
cogenerates every module. This is for instance always the case when G is a right-hand class of a
cotorsion pair, since then all injective modules are inside G.

Proposition 2.4. Let G be a cogenerating filter-closed class of modules. Then for any uncount-
able regular cardinal λ and any module M such that Ext1R(M,G) = 0, there is a family Cλ of
< λ-presented submodules of M such that

(1) Cλ is closed under unions of well-ordered ascending chains of length < λ,
(2) every subset X ⊆ M such that |X| < λ is contained in some N ∈ Cλ, and
(3) Ext1R(M/N,G) = 0 for every N ∈ Cλ.

Proof. By Lemma 1.1, there is a λ-continuous direct system (Mi, fji | i ≤ j) of < λ-presented
modules indexed by a set I such that M together with some maps fi : Mi → M forms its direct
limit. Now, the data G, λ, (M,fi | i ∈ I), (Mi, fji | i ≤ j) and I fits exactly to Lemma 2.3.
Hence, there is a λ-closed cofinal subset J ⊆ I such that for every j ∈ J , every homomorphism
from Mj to a module in G factors through fj . But the fact that G is a cogenerating class implies
that fj is injective. Thus, we can view the modules Mj for j ∈ J as submodules of M , and the
maps fj and fji as inclusions. Let us define

D = {Mj | j ∈ J}

and let D be the closure of D under unions of well-ordered chains of length < λ. Observe, that
(D,⊆) is a directed poset since J is a cofinal subset of the directed set I. Using Lemma 1.2,
we easily deduce that D is directed, too. Now, we can view the modules in D together with
inclusions between them as a λ-continuous direct system indexed by D itself. Hence, we can
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apply Lemma 2.3 for the second time to get a λ-closed cofinal subset Cλ of D such that every
homomorphism from a module N ∈ Cλ to a module in G extends to M .

The latter property together with the fact that Ext1R(M,G) = 0 immediately implies (3).
The property (1) is just another way to say that Cλ is λ-closed in D. For (2), first notice that
⋃

Cλ = M since Cλ is cofinal in D. Hence, if X ⊆ M is a subset of cardinality < λ, there is a
subset M ⊆ Cλ of cardinality < λ such that every x ∈ X is contained in some N ′ ∈ M. Finally,
Lemma 1.2 provides us with an upper bound N ∈ Cλ for M, and clearly X ⊆ N . ¤

In Lemma 2.3, the assumption of λ being uncountable is essential. We can, nevertheless,
obtain a weaker but important result using the same technique for the choice λ = ω and (I,≤) =
(ω,≤). Lemma 2.5 actually says that, for B ∈ G, the inverse system of groups (HomR(Mi, B),
HomR(fji, B) | i ≤ j < ω) is Mittag-Leffler, and the stationary indices determined by s are
common over all B ∈ G. In this terminology, a proof of the lemma is mostly contained in the
proof of [8, Theorems 2.5 and 3.7].

We give a different proof here and we do this for two main reasons: First, the statement about
common stationary indices has an important interpretation in the first-order theory of modules
and is missing in [8]. Second, we show that the Mittag-Leffler property is a part of a common
framework which works for both countable and uncountable systems.

Lemma 2.5. Let G be a class of modules closed under countable direct sums. Let (M,fi | i < ω)
be a direct limit of a countable direct system (Mi, fji | i ≤ j < ω) consisting of finitely generated
modules.
Assume that Ext1R(M,G) = 0. Then there is a strictly increasing function s : ω → ω such

that for each B ∈ G, i < ω and c : Mi → B the following holds: If c factors through fs(i)i, then
it factors through fni for all n ≥ s(i).

Proof. We will show that it is possible to construct the values s(i) by induction on i. Suppose
by way of contradiction that there is some i < ω for which we cannot define s(i). This can
only happen if for each j ≥ i, there is a homomorphism gj : Mj → Bj such that Bj ∈ G, and
gj ◦ fji does not factor through fni for some n > j. For j < i let gj be zero maps and Bj ∈ G
be arbitrary. Put B =

∏

j<ω Bj .

Now, we follow the proof of Lemma 2.3 (with ω in place of I and λ) starting with the second
paragraph and ending just after the definition of (∗∗). Note that the corresponding notion of
ℵ0-completeness is void, Fω is the Fréchet filter on ω, and the Fω-product ΣFω

B is just the direct
sum

⊕

j<ω Bj .

By the same argument as for (∆) in the proof of Lemma 2.3 and with the same notation as
there, there is some s′ ≥ i such that

(∀k ≥ s′)(πk ◦ g ◦ fi = πk ◦ h ◦ νi)

holds and πk ◦ h ◦ νi = hki = gk ◦ fki for each k ≥ s′. But this contradicts the fact implied by
the choice of gk that gk ◦ fki does not factor through fi. ¤

Let us remark that we have actually proved a little more than we stated in Lemma 2.5—we
have constructed s : ω → ω such that if c : Mi → B factors through fs(i)i, then it factors
through fi : Mi → M . The motivation for the seemingly more complicated statement of the
lemma should become clear in the following paragraphs.

If the modules Mi in the direct system from the lemma above are finitely presented instead
of finitely generated, we have a statement about factorization through maps between finitely
presented modules. Which in other words means that some coherent functors vanish and the
Mittag-Leffler property is preserved within the smallest definable class containing G. This is
made precise by the following lemma.

Lemma 2.6. Let G be a class of modules closed under countable direct sums and D be the
smallest definable class containing G. Let (M, fi | i < ω) be a direct limit of a direct system
(Mi, fji | i ≤ j < ω) consisting of finitely presented modules.

Assume that Ext1R(M,G) = 0. Then there is a strictly increasing function s : ω → ω such
that for each D ∈ D, i < ω and c : Mi → D the following holds: If c factors through fs(i)i, then
it factors through fni for all n ≥ s(i).
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Proof. By restating the conclusion of Lemma 2.5, we obtain that ImHomR(fs(i)i, D) = Im
HomR(fni, D) for each D ∈ G and i ≤ s(i) ≤ n < ω. It is also straightforward to check that F =
ImHomR(fs(i)i,−)/ ImHomR(fni,−) is a coherent functor. Hence we have ImHomR(fs(i)i, D) =
ImHomR(fni, D) also for each D ∈ D and the claim follows. ¤

Note also that instead of vanishing of the coherent functors in the proof above, we can
equivalently consider that certain implications between pp-formulas are satisfied [13, §2.1], thus
reformulating the proof in a more model theoretic way.

Now, we can prove a crucial statement similar to [8, Theorem 2.5]:

Proposition 2.7. Let G be a class of modules closed under countable direct sums, and let M
be a countably presented module such that Ext1R(M,G) = 0. Then Ext1R(M, D) = 0 for every D
isomorphic to a pure submodule of a product of modules from G.

Proof. Let D be a pure submodule of
∏

k Bk for some Bk ∈ G. Since M is countably presented, it
can be considered as a direct limit of a countable chain of finitely presented modules Mi, i < ω,
as in the assumptions of Lemma 2.6. Hence (HomR(Mi, D),HomR(fji, D) | i ≤ j < ω) is
Mittag-Leffler since any definable class is closed under taking products and pure submodules.

Then we continue as in the proof of [8, Theorem 2.5]. Since Ext1R
(

M,
∏

k Bk

)

= 0 by assump-
tion, we have the exact sequence

HomR

(

M,
∏

k

Bk

) h
→ HomR

(

M,
(

∏

k

Bk

)

/D
)

→ Ext1R(M, D) → 0,

and so it suffices to show that h is an epimorphism. This easily follows from Proposition 1.4
applied on the inverse system (HomR(Mi, D),HomR(fji, D) | i ≤ j < ω). Indeed, we see that

lim
←−

1

i
HomR(Mi, D) = 0 and obtain the exact sequence

lim
←−

i

HomR

(

Mi,
∏

k

Bk

)

→ lim
←−

i

HomR

(

Mi,
(

∏

k

Bk

)

/D
)

→ 0.

It remains to use the basic fact that contravariant Hom-functors take colimits to limits. ¤

3. Countable type

In this section, we prove the main result of our paper—the Countable Telescope Conjecture
for Module Categories. But before doing this, we introduce a fairly simplified version of Shelah’s
Singular Compactness Theorem. It is based on [15, Theorem IV.3.7]. In the terminology there,
systems witnessing strong λ-“freeness” correspond to the λ-dense systems defined below.

A reader acquainted with the full-fledged compactness theorem for filtrations of modules
proved in [15, XII.1.14 and IV.3.7] or [14] may well skip Lemma 3.2. We state and prove the
lemma for the sake of completeness, and also because we are using only a fragment of the
full compactness theorem, and it makes the proof of the Countable Telescope Conjecture more
transparent.

Definition 3.1. Let M be a module and λ be a regular uncountable cardinal. Then a set Cλ of
< λ-generated submodules of M is called a λ-dense system in M if

(1) 0 ∈ Cλ,
(2) Cλ is closed under unions of well-ordered ascending chains of length < λ, and
(3) every subset X ⊆ M such that |X| < λ is contained in some N ∈ Cλ.

Lemma 3.2 (Simplified Shelah’s Singular Compactness Theorem). Let κ be a singular cardinal,
M a κ-generated module, and let µ be a cardinal such that cf κ ≤ µ < κ. Suppose we are given
a λ-dense system, Cλ, in M for each regular λ such that µ < λ < κ. Then there is a filtration
(Mα | α ≤ cf κ) of M and a continuous strictly increasing chain of cardinals (κα | α < cf κ)
cofinal in κ such that Mα ∈ Cκ+

α
for each α < cf κ.

Proof. We will start with choosing the chain (κα | α < cf κ). In fact, we can choose any such
chain provided that µ ≤ κ0, just to make sure that Cκ+

α
is always available. Let us fix one such

chain (κα | α < cf κ).
Next, let (Xα | α < cf κ) be an ascending chain of subsets of M such that

⋃

α<cf κ Xα

generates M and |Xα| = κα for each α < cf κ. Then, we can by induction construct a (not
necessarily continuous) chain (N0

α | α < cf κ) of submodules of M such that N0
α ∈ Cκ+

α
and

36



Xα ∪
⋃

β<α N0
β ⊆ N0

α for every α < cf κ. Since Nα is κα-generated, we can fix for each α a

generating set Y 0α of N0
α together with some enumeration Y 0α = {y0α,γ | γ < κα}. Next, we

proceed by induction on n < ω and construct for each n > 0 chain of modules (Nn
α | α < cf κ)

and sets Y n
α = {yn

α,γ | γ < κα} such that

(1) (Nn
α | α < cf κ) is a (not necessarily continuous) chain of submodules of M ,

(2) Nn
α ∈ Cκ+

α
and Nn

α ⊇ {yn−1
ζ,γ | α ≤ ζ < cf κ & γ < κα} ∪

⋃

β<α Nn
β , and

(3) Y n
α = {yn

α,γ | γ < κα} is a fixed enumeration of some set of generators of Nn
α , for each

α < cf κ.

For each n < ω, we clearly can construct such a chain and sets by induction on α. Note in
particular that we have always Nn−1

α ⊆ Nn
α since Y n−1

α = {yn−1
α,γ | γ < κα} ⊆ Nn

α by (2). Hence,
if we define Mα =

⋃

n<ω Nn
α , we clearly have Mα ∈ Cκ+

α
for each α < cf κ. Also,

⋃

α<cf κ Mα = M

since Xα ⊆ N0
α ⊆ Mα for each α. We claim that the chain (Mα | α < cf κ) is continuous. To

see this, fix for this moment a limit ordinal α < cf κ. Then clearly Mα ⊇
⋃

β<α Mβ . On the

other hand, for a given n > 0 and β < α, we have {yn−1
α,γ | γ < κβ} ⊆ Nn

β by (2). Therefore,

Y n−1
α ⊆

⋃

β<α Nn
β and also Nn−1

α ⊆
⋃

β<α Nn
β by (3). Hence Mα ⊆

⋃

β<α Mβ and the claim is

proved. Now, if we change M0 for the zero module and put Mcf κ = M , (Mα | α ≤ cf κ) becomes
a filtration with the desired properties. ¤

While Lemma 3.2 or Shelah’s Singular Compactness Theorem give us some information about
the structure of a module with enough dense systems for a singular number of generators, we
can prove a rather straightforward lemma which takes care of regular cardinals.

Lemma 3.3. Let κ be a regular uncountable cardinal, M be a κ-generated module and Cκ be a
κ-dense system in M . Then there is a filtration (Mα | α ≤ κ) of M such that Mα ∈ Cκ for each
α < κ.

Proof. Let us fix an enumeration {mγ | γ < κ} of generators of M . We will construct the
filtration by induction. Put M0 = 0 and Mα =

⋃

β<α Mβ for all limit ordinals α ≤ κ. For

α = β + 1, we can find Mα ∈ Cκ such that Mβ ∪ {mβ} ⊆ Mα, using (3) from Definition 3.1. ¤

Before stating and proving the main result, we need a technical lemma about filtrations which
has been studied in [17, 41, 43], and whose origins can be traced back to an ingenious idea of P.
Hill [22].

Lemma 3.4. [43, Theorem 6]. Let S be a set of countably presented modules and M be a module
possessing an S-filtration (Mα | α ≤ σ). Then there is a family F of submodules of M such that:

(1) Mα ∈ F for all α ≤ σ.
(2) F is closed under arbitrary sums and intersections.
(3) For each N,P ∈ F such that N ⊆ P , the module P/N is S-filtered.
(4) For each N ∈ F and a countable subset X ⊆ M , there is P ∈ F such that N ∪ X ⊆ P
and P/N is countably presented.

Now, we are in a position to prove the Countable Telescope Conjecture.

Theorem 3.5 (Countable Telescope Conjecture). Let R be a ring and C = (A,B) be a hereditary
cotorsion pair of R-modules such that B is closed under unions of well-ordered chains. Then

(1) C is generated by a set of strongly countably presented modules,
(2) C is complete, and
(3) B is a definable class.

Proof. (1). First, we claim that C is generated by a representative set S of the class of all
countably presented modules from A. To do this, in view of Eklof’s Lemma ([19, Lemma
3.1.2] or [16, Lemma 1]), it is enough to prove that every module M ∈ A has an S-filtration
(Mα | α ≤ σ).

We will prove this by induction on the minimal cardinal κ such that M is κ-presented. If
κ is finite or countable, then we are done since M itself is isomorphic to a module from S.
Assume that κ is uncountable. By our assumption and Lemma 2.2, the class B is filter-closed
and cogenerating. Hence, we can fix for each regular uncountable λ ≤ κ a family Cλ of < λ-
presented modules given by Proposition 2.4 used with G = B. Note that we can without loss of
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generality assume that Cλ is a λ-dense system, since we always can add the zero module to Cλ

without changing its properties. Then, we can use Lemma 3.3 if κ is regular, and Lemma 3.2 if
κ is singular to obtain a filtration (Lβ | β ≤ τ) of M such that for each β < τ

(i) Lβ is < κ-presented, and
(ii) M/Lβ ∈ A.

We also have Lβ+1/Lβ ∈ A since it is a kernel of the projection M/Lβ → M/Lβ+1 and C is
hereditary. Thus, each of the modules Lβ+1/Lβ has an S-filtration by the inductive hypothesis,
so we can refine the filtration (Lβ | β ≤ τ) to an S-filtration (Mα | α ≤ σ) of M and the claim
is proved.

Let us note that for the induction step at singular cardinals κ, we can alternatively use the
full version of Shelah’s Singular Compactness Theorem, considering S-filtered modules as “free”
(cf. [15, XII.1.14 and IV.3.7] or [14]).

It is still left to show that all modules in S are actually strongly countably presented. Note
that it is enough to prove that every countably generated module M ∈ A is countably presented.
If we prove this, we can take for every module N ∈ S a presentation 0 → K → R(ω) → N → 0
with K a countably generated module. Since C is hereditary, we have K ∈ A. Now, if K is
countably presented, it must be isomorphic to a module from S again, and we can proceed by
induction to construct a free resolution of N consisting of countably generated free modules.

So fix M ∈ A countably generated. Then M is S-filtered by the arguments above. Hence, we
can consider the family F given by Lemma 3.4 for M . To finish our proof, we use (4) from this
lemma with N = 0 and X a countable set of generators of M as parameters.

(2). This follows from (1) by [19, Theorem 3.2.1].

(3). Note that B is always closed under arbitrary direct products. It is closed under infinite
direct sums too since these are precisely F-products corresponding to Fréchet filters F. Then B
is closed under pure submodules by (1) and Proposition 2.7. Further, B is closed under pure
epimorphic images and, therefore, also under arbitrary direct limits since C is hereditary. Hence
B is definable. ¤

Remark. We can actually prove a little more than we state in Theorem 3.5. Notice that the
proof of (1) and (2) works also for any hereditary cotorsion pair cogenerated (as a cotorsion pair)
by some cogenerating (in the module category) filter-closed class G.

To conclude this section, we will discuss the relation of Theorem 3.5 to tilting theory. In fact,
it turns out that the countable type and definability of tilting classes is a rather easy consequence
of Theorem 3.5. This allows us to give a more direct argumentation for most of the proof of the
fact that all tilting classes are of finite type [8, 9].

Recall that T = (A,B) is called a tilting cotorsion pair if T is hereditary, A consists of modules
of finite projective dimension, and B is closed under direct sums. In this case, B is said to be a
tilting class.

Theorem 3.6. Let R be a ring and T = (A,B) be a tilting cotorsion pair. Then T is generated
by a set of strongly countably presented modules and B is definable.

Proof. Notice that since A is closed under direct sums, there is n < ω such that projective
dimension of any module from A is at most n. We will prove the theorem by induction on this
n.

If the n = 0, then B = Mod-R and the statement follows trivially. Let n > 0. Then it
is easy to see that the class D = KerExt2R(A,−) is tilting and in the corresponding tilting
cotorsion pair (C,D), all modules in C have projective dimension < n (cf. [4, Lemma 4.8]). Thus
D is definable by the inductive hypothesis. In particular, it is closed under pure submodules.
By a simple dimension shifting argument, one observes that B is closed under pure-epimorphic
images. Since, by our assumption, B is closed under direct sums, it follows that B is closed under
arbitrary direct limits. Thus we may apply Theorem 3.5 to T to finish the proof. ¤

4. Definability

In this section, we will give a description of which coherent functors define the class B of a
cotorsion pair (A,B) satisfying the hypotheses of TCMC. Our aim is twofold: First, vanishing
of a coherent functor on a module M translates to the fact that a certain implication between
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pp-formulas is satisfied in M , [13, §2.1]. So there is a clear model-theoretic motivation. Second,
proving that the cotorsion pair is of finite type amounts to showing that B is defined by a
family of coherent functors of the form CokerHomR(f,−) where f : X → Y is an inclusion of
X ∈ mod-R into a finitely generated projective module Y . The projectivity of Y is essential
here: it implies that Y ∈ A which in turn means that the functor CokerHomR(f,−) vanishes
on all modules from B if and only if Y/X ∈ A. Compare this with Remark (ii) at the end of
the section.

Even though the finite type question still remains open, we will describe a family of coherent
functors defining B in Theorem 4.9—this can be viewed as a counterpart of [29, Theorem A (3)]
for module categories. We will also characterize the countably presented modules from the class
A in Theorem 4.8. In both tasks, the key role is played by the ideal I of the category mod-R
consisting of the morphisms which, when considered in Mod-R, factor through some module
from A.

For the whole section, let R be a right coherent ring; that is, finitely (and also countably)
presented modules are precisely the strongly finitely (countably) presented ones, respectively.
We will deal with countable direct systems of finitely generated modules of the form:

C0
f0
→ C1

f1
→ C2 → · · · → Cn

fn
→ Cn+1 → · · · .

Here, we write for simplicity fn instead of fn+1,n. We start with recalling some important
preliminary results whose proofs are essentially in [8] and [2]:

Lemma 4.1. Let (Cn, fn)n<ω be a countable direct system of R-modules. Let M be a module
such that Ext1R(lim−→

Cn,M) = 0. Then lim
←−

1HomR(Cn,M) = 0.

Proof. The proof here is in fact a part of the proof of [8, Theorem 5.1]. If we apply the functor
HomR(−,M) to the canonical presentation

0 →
⊕

Cn
φ
→

⊕

Cn → lim
−→

Cn → 0

of the countable direct limit lim
−→

Cn, we get exactly the first three terms of the exact sequence

defining the first derived functor of inverse limit of the system (Hn | n < ω), where Hn =
HomR(Cn,M):

0 → lim
←−

Hn →
∏

Hn
∆
→

∏

Hn → lim
←−

1Hn → 0

Since Ext1R(lim−→
Cn,M) = 0, the map ∆ = HomR(φ,M) is surjective. Hence lim

←−
1Hn = 0. ¤

Corollary 4.2. Let (Cn, fn)n<ω be a countable direct system of finitely generated R-modules.
Let M be a module such that Ext1R(lim−→

Cn,M (ω)) = 0. Then the inverse system (HomR(Cn,M),

HomR(fn,M))n<ω is Mittag-Leffler.

Proof. This follows either immediately from Lemma 2.5 for G = {N | N ∼= M (ω)}, or from
Proposition 1.4. Note that in both cases we use the fact that all modules Cn are finitely generated.

¤

The following lemma gives us information about a syzygy of a countable direct limit of finitely
presented modules and it will be useful for computation.

Lemma 4.3. Let (Cn, fn)n<ω be a countable direct system of finitely presented modules. Then
there exists a countable direct system

...
...

...
x





x





x





0 −−−−→ D2
i2−−−−→ P2

p2
−−−−→ C2 −−−−→ 0

g1

x





s1

x





f1

x





0 −−−−→ D1
i1−−−−→ P1

p1
−−−−→ C1 −−−−→ 0

g0

x





s0

x





f0

x





0 −−−−→ D0
i0−−−−→ P0

p0
−−−−→ C0 −−−−→ 0
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of short exact sequences of finitely presented modules such that Pn is projective and sn is split
mono for each n < ω. In particular, lim

−→
Pn is projective.

Proof. We will construct the short exact sequences by induction on n. For n = 0, let 0 →

D0
i0→ P0

p0
→ C0 → 0 be a short exact sequence with P0 projective finitely generated. Then

D0 is finitely generated, hence finitely presented since we are working over a right coherent

ring. If 0 → Dn
in→ Pn

pn
→ Cn → 0 has already been constructed, let q : Q → Cn+1 be an

epimorphism such that Q is a finitely generated projective module. Now define Pn+1 = Pn ⊕Q,
sn : Pn → Pn+1 as the canonical inclusion, and pn+1 = (fnpn, q). Then Dn+1 = Ker pn+1 is
finitely presented and gn is determined by the commutative diagram above. The last assertion
is clear. ¤

Next, we will need a generalized version of Auslander’s well-known lemma. It says that
Ext1R(lim−→

Ci,M) ∼= lim
←−

Ext1R(Ci,M) whenever M is a pure-injective module. Note that for a

countable direct system (Cn, fn)n<ω, the pure-injectivity ofM implies that lim
←−

1HomR(Cn,M) =

0. To see this, we will again use the fact that after applying HomR(−,M) on the canonical pure-
exact sequence

0 →
⊕

Ci
φ
→

⊕

Ci → lim
−→

Ci → 0, (†)

we get first three terms of the exact sequence

0 → lim
←−

Hn →
∏

Hn
∆
→

∏

Hn → lim
←−

1Hn → 0

where Hn = HomR(Cn,M). But if M is pure-injective, then applying HomR(−,M) on (†)
yields an exact sequence and consequently lim

←−
1HomR(Ci,M) = 0. It turns out that the latter

condition is sufficient for Ext1R(−,M) to turn a direct limit into an inverse limit over a right
coherent ring:

Lemma 4.4. Let (Cn, fn)n<ω be a countable direct system and let M be a module such that
lim
←−

1HomR(Ci,M) = 0. Then Ext1R(lim−→
Ci,M) ∼= lim

←−
Ext1R(Ci,M).

Proof. Consider the direct system of short exact sequences 0 → Dn
in→ Pn

pn
→ Cn → 0 given by

Lemma 4.3. After applying HomR(−,M), we get an inverse system of exact sequences

0 → HomR(Cn,M)
p∗

n→ HomR(Pn,M)
i∗n→ HomR(Dn,M)

δn→ Ext1R(Cn, M) → 0.

By assumption, the following short sequence is exact:

0 → lim
←−

HomR(Cn,M) → lim
←−

HomR(Pn,M) → lim
←−

Im i∗n → 0.

On the other hand, it follows from Proposition 1.4 that lim
←−

1HomR(Pn, M) = 0 since the

countable inverse system (HomR(Pn,M),HomR(sn,M))n<ω has all the maps (split) epic. More-
over, lim

←−
1 Im i∗n = 0 since lim

←−
1 is right exact on countable inverse systems. Hence, the following

sequence is also exact:

0 → lim
←−

Im i∗n → lim
←−

HomR(Dn,M) → lim
←−

Ext1R(Cn,M) → 0.

Putting everything together, we have obtained the following diagram with canonical maps
and exact rows:

lim
←−

HomR(Pn,M) −−−−→ lim
←−

HomR(Dn,M) −−−−→ lim
←−

Ext1R(Cn, M) −−−−→ 0

∼=

x





∼=

x





Hom(lim
−→

Pn,M) −−−−→ Hom(lim
−→

Dn,M) −−−−→ Ext1R(lim−→
Cn, M) −−−−→ 0

It follows that Ext1R(lim−→
Cn,M) ∼= lim

←−
Ext1R(Cn, M). ¤

Now, we will focus on T-nilpotent inverse systems. It is clear that every T-nilpotent countable
inverse system is Mittag-Leffler. It turns out that the converse is true precisely when the inverse
limit of the system vanishes. This is made precise by the following lemma:

Lemma 4.5. Let (Hn, hn)n<ω be a countable inverse system of abelian groups. Then the fol-
lowing are equivalent:

(1) (Hn, hn)n<ω is T-nilpotent,
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(2) (Hn, hn)n<ω is Mittag-Leffler and lim←−
Hn = 0.

Proof. (1) =⇒ (2) follows easily from the definitions. Let us prove (2) =⇒ (1). For each
m < ω, let s(m) > m be minimal such that the chain

Hm ⊇ hm(Hm+1) ⊇ · · · ⊇ hmhm+1 · · ·hn−1(Hn) ⊇ · · ·

is constant for n ≥ s(m) and let ρm : lim
←−

Hn → Hm be the limit map for each m. It follows easily

that s(m) ≤ s(m′) for m < m′. We will prove by induction that Im ρm = Imhmhm+1 · · ·hs(m)−1.
Together with the assumption that lim

←−
Hn = 0, this will imply the T-nilpotency. Let us fix xm ∈

Imhmhm+1 · · ·hs(m)−1. All we need to do is to construct by induction a sequence of elements
(xn)m<n<ω such that xn ∈ Imhnhn+1 · · ·hs(n)−1 ⊆ Hn and xn−1 = hn−1(xn) for each n > m.
Suppose we have already constructed xn−1 for some n. Then, by the chain condition, there is
y ∈ Hs(n) such that hn−1hn · · ·hs(n)−1(y) = xn−1. We can put xn = hn · · ·hs(n)−1(y). ¤

We are in a position now to give a connection between vanishing of ExtiR and the chain condi-
tions mentioned above (the Mittag-Leffler condition and T-nilpotency). We state the connection
in the following key lemma:

Lemma 4.6. Let (Cn, fn)n<ω be a countable direct system of finitely presented modules and let
M be an arbitrary module. Consider the following conditions:

(1) Ext1R(lim−→
Cn, M (ω)) = Ext2R(lim−→

Cn,M (ω)) = 0.

(2) The inverse system (HomR(Cn,M),HomR(fn,M))n<ω is Mittag-Leffler and
(Ext1R(Cn,M),Ext1R(fn,M))n<ω is T-nilpotent.

(3) Ext1R(lim−→
Cn, M (ω)) = 0.

Then (1) implies (2) and (2) implies (3).

Proof. (1) =⇒ (2). Assume Ext1R(lim−→
Cn,M (ω)) = Ext2R(lim−→

Cn,M (ω)) = 0. Then the inverse

system (HomR(Cn,M),HomR(fn,M))n<ω is Mittag-Leffler by Corollary 4.2. By Proposition 1.4
we have lim

←−
1HomR(Cn,M) = 0, and subsequently it follows by Lemma 4.4 that

lim
←−

Ext1R(Cn,M) ∼= Ext1R(lim−→
Cn,M) = 0

Next, let 0 → Dn → Pn → Cn → 0 be the countable direct system given by Lemma 4.3. Since

Ext1R(lim−→
Dn,M (ω)) = Ext2R(lim−→

Cn,M (ω)) = 0

by dimension shifting, the inverse system (HomR(Dn, M))n<ω is also Mittag-Leffler by Corol-
lary 4.2. Then (Ext1R(Cn, M))n<ω is Mittag-Leffler as well, since an epimorfic image of a Mittag-
Leffler inverse system is Mittag-Leffler again, [20, Proposition 13.2.1]. Thus, (Ext1R(Cn,M))n<ω

is T-nilpotent by Lemma 4.5.
(2) =⇒ (3). Clearly, condition (2) implies that (HomR(Cn,M (ω)))n<ω is Mittag-Leffler and

(Ext1R(Cn,M (ω)))n<ω is T-nilpotent. Hence

Ext1R(lim−→
Cn,M (ω)) = lim

←−
Ext1R(Cn,M (ω)) = 0

by Lemmas 4.4 and 4.5. ¤

With the previous lemma in mind, a natural question arises when Ext1R(f, M) is a zero map for
a homomorphism f : X → Y between finitely presented modules. It is possible to characterize
such maps f when Ext1R(f, M) = 0 as M runs over all modules in the right-hand class of a
complete cotorsion pair. We state this precisely in Lemma 4.7. In view of [30], the lemma can
be viewed as a module-theoretic counterpart of [29, Lemmas 3.4 (3) and 3.8].

Lemma 4.7. Let (A,B) be a complete cotorsion pair in Mod-R and let f : X → Y be a
homomorphism between R-modules. Then the following are equivalent:

(1) Ext1R(f,B) = 0 for every B ∈ B,
(2) f factors through some module in A.

Proof. (1) =⇒ (2). Let 0 → B → A → Y → 0 be a special A-precover of Y and consider the
following pull-back diagram:

0 −−−−→ B −−−−→ Q −−−−→ X −−−−→ 0
∥

∥

∥





y

f





y

0 −−−−→ B −−−−→ A −−−−→ Y −−−−→ 0
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Then the upper row splits by assumption and f factors through A.
(2) =⇒ (1). This is easy, since the assumption that f factors through some A ∈ A implies

that Ext1R(f, B) factors through Ext1R(A, B) = 0 for each B ∈ B. ¤

Now, we can characterize countably presented modules in the left-hand class of a cotorsion pair
satisfying the hypotheses of TCMC. Actually, we state the theorem more generally, for cotorsion
pairs satisfying somewhat weaker conditions. Recall that by Theorem 3.5, every cotorsion pair
satisfying the hypotheses of TCMC is complete.

Theorem 4.8. Let R be a right coherent ring and (A,B) be a complete hereditary cotorsion pair
with B closed under (countable) direct sums. Denote by I the ideal of all morphisms in mod-R
which factor through some module from A. Then the following are equivalent for a countably
presented module M :

(1) M ∈ A,
(2) M is a direct limit of a countable system (Cn, fn)n<ω of finitely presented modules such
that fn ∈ I for every n and (HomR(Cn, B),HomR(fn, B))n<ω is Mittag-Leffler for each
B ∈ B.

If, in addition, A is closed under (countable) direct limits, then these conditions are further
equivalent to:

(3) M is a direct limit of a countable system (Cn, fn)n<ω of finitely presented modules such
that fn ∈ I for every n.

Proof. (1) =⇒ (2). Let us fix (any) countable system (Dn, gn)n<ω of finitely presented modules
such that M = lim

−→
Dn. Assume M ∈ A and B ∈ B. Then B(ω) ∈ B and Ext1R(lim−→

Dn, B(ω)) =

Ext2R(lim−→
Dn, B(ω)) = 0 by assumption. So the inverse system (HomR(Dn, B),HomR(gn, B))n<ω

is Mittag-Leffler and the system (Ext1R(Dn, B),Ext1R(gn, B))n<ω is T-nilpotent for each B ∈ B
by Lemma 4.6.

Now, we will by induction construct a strictly increasing sequence n0 < n1 < · · · of natural
numbers such that the compositions

fi = gni+1−1 . . . gni+1gni
: Dni

→ Dni+1

satisfy Ext1R(fi, B) = 0 for each i < ω and B ∈ B. Let us start with n0 = 0. For the
inductive step, assume that ni has already been constructed. If there is some l > ni such that
Ext1R(gl−1 . . . gni+1gni

, B) = 0 for each B ∈ B, we are done since we can put ni+1 = l. If this was
not the case, there would be some Bl ∈ B for each l > ni such that Ext

1
R(gl−1 . . . gni+1gni

, Bl) 6=
0. But this would imply that (Ext1R(Dn,

⊕

l>ni
Bl))n<ω is not T-nilpotent, a contradiction.

Finally, we can just put Ci = Dni
and observe using Lemma 4.7 that fi ∈ I for each i < ω.

(2) =⇒ (1). This follows directly from Lemma 4.6, since the inverse system (Ext1R(Cn, B),
Ext1R(fn, B))n<ω is clearly T-nilpotent for each B ∈ B (see Lemma 4.7).

(2) =⇒ (3) is obvious.

(3) =⇒ (1). For each n, write fn as a composition of the form Cn
un→ An

vn→ Cn+1 with
An ∈ A. In this way, we get a direct system

C0
u0→ A0

v0→ C1
u1→ A1

v1→ C2
u2→ · · · .

Now, lim
−→n<ω

Cn = lim
−→n<ω

An. Hence M ∈ A since A is closed under countable direct limits. ¤

The preceding theorem allows us to characterize modules in the right-hand class of a cotorsion
pair satisfying the assumptions of TCMC. Again, we state the following theorem for more general
cotorsion pairs than those in question for TCMC. Note that for projective cotorsion pairs over
self-injective artin algebras, the following statement is a consequence of [30, Corollary 7.7] and
[29, Theorem A].

Theorem 4.9. Let R be a right coherent ring and (A,B) be a hereditary cotorsion pair in Mod-R
with B closed under unions of well-ordered chains. Denote by I the ideal of all morphisms in
mod-R which factor through some module from A. Then the following are equivalent:

(1) B ∈ B,
(2) Ext1R(f,B) = 0 for each f ∈ I.
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Proof. (1) =⇒ (2). This is clear, since in this case, for each f ∈ I, the map Ext1R(f,B) factors
through Ext1R(A,B) = 0 for some A ∈ A.

(2) =⇒ (1). Recall that the cotorsion pair is of countable type and complete by Theorem 3.5.
Moreover, every countably presented module in A can be expressed as a direct limit of a direct
system (Cn, fn)n<ω with all the morphisms fn in I by Theorem 4.8.

Let us define a class of modules C as

C = {M ∈ Mod-R | Ext1R(f, M) = 0 for each f ∈ I}

By definition B ⊆ C.
Note that since every f ∈ I is a morphism between strongly finitely presented modules,

say f : X → Y , and it is not difficult to see that the functors Ext1R(X,−) and Ext1R(Y,−)
are coherent in this case, so is the functor Ff = ImExt1R(f,−). Hence C is a definable class
as it is defined by vanishing of the functors Ff where f runs through a representative set of
morphisms from I. In particular, this means that showing C ⊆ B reduces just to showing that
every pure-injective module M ∈ C is already in B, since definable classes are determined by the
pure-injective modules they contain.

To this end, assume that M ∈ C is pure-injective and A ∈ A is countably presented. Then
A = lim

−→
Cn where (Cn, fn)n<ω is a direct system such that fn ∈ I for each n. In particular,

Ext1R(fn,M) = 0 by assumption and

Ext1R(A,M) = Ext1R(lim−→
Cn,M) ∼= lim

←−
Ext1R(Cn,M) = 0

by Auslander’s lemma. Finally, since (A,B) is of countable type and A was arbitrary, it follows
that M ∈ B. ¤

Remark. (i) Countable type of the cotorsion pair considered in Theorem 4.9 together with
Lemma 3.4 imply that when defining I, we may assume that the modules from A through which
the maps f ∈ I are required to factorize are all countably presented.

(ii) To determine which implication of pp-formulas corresponds to the coherent functor Ff from
the proof of Theorem 4.9, we build the following commutative diagram

0 −−−−→ K
iX−−−−→ FX

pX
−−−−→ X −−−−→ 0





y
i





y

s





y

f

0 −−−−→ L
iY−−−−→ FY

pY
−−−−→ Y −−−−→ 0

with FX , FY finitely generated free, K,L finitely presented, s a split embedding and i, iX , iY
inclusions. Now, an equivalent statement to Ff (M) = 0 is that every homomorphism from K
into M which extends to L must extend to FX as well, and this can be routinely translated to an
implication between two pp-formulas to be satisfied in M . If we denote by H the pushout of i and
iX , and by h the pushout map L → H, then the latter actually means that CokerHomR(h,M) =
0. Thus, CokerHomR(h,−) is a coherent functor which may be equivalently used instead of Ff

when defining B.

5. Direct limits and pure-epimorphic images

In the cases when TCMC holds true, the class A of any cotorsion pair (A,B) meeting its
assumptions must be closed under pure-epimorphic images. Indeed, in this setting, we have
A = lim

−→
(A ∩ mod-R) and the latter class is closed under pure-epimorphic images by the well-

known result of Lenzing (cf. [32] or [19, Lemma 1.2.9]). In this section, we prove that the
hypotheses of TCMC do always imply that A is closed under pure-epimorphic images. As
a consequence, we prove that every complete cotorsion pair with both classes closed under
arbitrary direct limits is cogenerated by a single pure-injective module—this can be viewed as a
module-theoretic counterpart of [29, Theorem C].

Note that the first part—to make sure that A is closed under pure-epimorphic images—
is the crucial one. For projective cotorsion pairs over self-injective algebras which satisfy the
hypotheses of TCMC, this property follows by analysis of the proofs in [29] and [30]. But when
proving this in a more general setting, one obstacle appears. Namely, complete cotorsion pairs
provide us with approximations (special precovers and preenvelopes) which are not functorial in
general. Therefore, implementing the rather simple underlying idea—expressing each module in
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A in terms of direct limits of A-precovers of finitely presented modules and proving that this
transfers to pure-epimorphic images—requires several technical steps. In particular, we need
special indexing sets for our direct systems which we call inverse trees.

We start with a preparatory lemma. Recall that for an ordinal number α, we denote by |α|
the cardinality of α when viewed as the set of all smaller ordinals.

Definition 5.1. A direct system (Mi, fji | i, j ∈ I & i ≤ j) of R-modules is said to be continuous
if (Mk, fkj | j ∈ J) is the direct limit of the system (Mi, fji | i, j ∈ J & i ≤ j) whenever J is a
directed subposet of I and k is a supremum of J in I.

Lemma 5.2. Let κ be an infinite cardinal and M be a κ-presented module. Then M is a direct
limit of a continuous well-ordered system (Mα, fβα | α ≤ β < κ) such that for all α < κ, Mα is
|α|-presented.

Proof. We can start as in Lemma 1.1. Let
⊕

β<κ

xβR
g
→

⊕

γ<κ

yγR → M → 0

be a free presentation of M . For each α < κ, let Xα be the subset of all ordinals β < α such that
f(xβ) ∈

⊕

γ<α yγR. If we define Mα as the cokernel of the restriction
⊕

β∈Xα
xβR →

⊕

γ<α yγR

of g, it is easy to see that the direct system (Mα | α < κ) together with the natural maps has
the properties we require. ¤

For a set X, we will denote by X∗ the set of all finite strings over X, that is, all functions
u : n → X for n < ω. We will denote strings by letters u, v, w, . . . and write them as sequences
of elements of X, which we will denote by Greek letters for a reason which will be clear soon. For
example, we write u = α0α1 . . . αn−1. When u, v are strings, we denote by uv their concatenation,
we define the length of a string u in the usual way and denote it by ℓ(u), and we identify strings
of length 1 with elements in X. The empty string is denoted by ∅. Note that the set X∗ together
with the concatenation operation is nothing else than the free monoid over X.

Definition 5.3. Let κ be an infinite cardinal and κ∗ be the free monoid over κ. Let us equip
κ∗ \ {∅} with a partial order in the following way: If u = α0α1 . . . αn−1 and v = β0β1 . . . βm−1,
we put u ≤ v if

(1) n ≥ m,
(2) α0α1 . . . αm−2 = β0β1 . . . βm−2, and
(3) αm−1 ≤ βm−1 as ordinal numbers.

Then an inverse tree over κ is the subposet of (κ∗ \ {∅},≤) defined as

Iκ =
{

α0α1 . . . αn−1

∣

∣

(

∀i ≤ n − 2
)(

αi is infinite, non-limit & αi+1 < |αi|
)}

.

For convenience, given a non-empty string u = α0α1 . . . αn−1 ∈ κ∗, we define the tail of u,
denoted by t(u), to be the last symbol αn−1 of u, and the rank of u, rk(u), to be the cardinal
number |αn−1|. Notice that in this terminology, the tail of a string u ∈ Iκ is allowed to be a
limit or finite ordinal.

Having defined inverse trees, we can start collecting basic properties of the partial ordering:

Lemma 5.4. Let (Iκ,≤) be an inverse tree, and let v and u = β0 . . . βm−2βm−1 be two elements
of Iκ such that v < u. Then there is w ∈ Iκ such that v ≤ w < u and one of the following cases
holds true:

(1) There is an ordinal γ < βm−1 such that w = β0β1 . . . βm−2γ.
(2) There is an ordinal γ < |βm−1| such that w = β0β1 . . . βm−2βm−1γ.

Proof. This follows easily from the definition. Notice that (2) can only hold if βm−1 = t(u) is
infinite and non-limit. ¤

As an immediate corollary, we will see that the properties of u ∈ Iκ with respect to the
ordering depend very much on the tail (and rank) of u:

Corollary 5.5. Let u = α0 . . . αn−2αn−1 ∈ Iκ. Then the following hold in (Iκ,≤):

(1) If t(u) = 0, then u is a minimal element.
(2) If t(u) is non-zero finite, then u has a unique immediate predecessor.
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(3) If t(u) is an infinite non-limit ordinal, then u = sup{uγ | γ < rk(u)}.
(4) If t(u) is a limit ordinal, then u = sup{α0 . . . αn−2γ | γ < t(u)}.

We have seen that an element u ∈ Iκ can be expressed as a supremum of a chain of strictly
smaller elements if and only if rk(u) is infinite. If so, this chain depends on whether t(u) is a limit
ordinal or not. We will prove in the next lemma that as far as we are concerned with continuous
direct systems indexed with Iκ, this expression of u as a supremum is essentially unique.

Lemma 5.6. Let u ∈ Iκ be of infinite rank and C be the chain as in Corollary 5.5 (3) or (4)
such that u = supC in Iκ. Let J ⊆ Iκ be a directed subposet of Iκ such that u = supJ in Iκ and
u 6∈ J . Then C ∩ J is cofinal in J .

Proof. Choose some j ∈ J of the least possible length. Since J is directed, u is the supremum of
the upper set ↑j = {i ∈ J | i ≥ j}, too. By the definition of the ordering and the fact that j has
been taken of the least possible length, we see that each i ∈ (↑j) is of the form β0β1 . . . βm−2γi

where β0, β1, . . . , βm−2 are fixed and γi < |βm−2|. Thus u = β0β1 . . . βm−2 provided that sup{γi |
i ∈ (↑j)} = |βm−2| (case (3)), and u = β0β1 . . . βm−2βm−1 if βm−1 = sup{γi | i ∈ (↑j)} < |βm−2|
(case (4)). Hence, ↑j ⊆ C ∩ J by assumption, and C ∩ J is cofinal in J since ↑j is. ¤

So far, we have studied elements strictly smaller than a given u ∈ Iκ. But, we will also need
to look “upwards”:

Lemma 5.7. Let (Iκ,≤) be an inverse tree. Then

(1) For each u ∈ Iκ, the upper set ↑u = {w ∈ Iκ | w ≥ u} is well-ordered.
(2) (Iκ,≤) is directed.
(3) Every non-empty bounded subset X ⊆ Iκ has a supremum in Iκ.

Proof. (1). It follows from the definition that ↑u is a totally ordered subset of Iκ. If X ⊆ (↑u)
is nonempty, then the longest string u ∈ X with the minimum tail t(u) is the least element in
X. Hence, ↑u is well-ordered.

(2). Let u = α1 . . . αn−1, v = β1 . . . βm−1 be elements in Iκ. Then max{α1, β1}, viewed as a
string of length 1, is greater than both u and v.

(3). Suppose X ⊆ Iκ is non-empty and has an upper bound u ∈ Iκ. In other words, u ∈ Y
for Y =

⋂

w∈X(↑w). But since for any v ∈ X clearly Y ⊆ (↑v), there must be the least element
in Y , which is by definition the supremum of X. ¤

In view of the preceding lemma, we can introduce the following definition:

Definition 5.8. Let (Iκ,≤) be an inverse tree and u = α0 . . . αn−2αn−1 ∈ Iκ. Then the
successor of u in Iκ is defined as s(u) = α0 . . . αn−2β where β = α + 1 is the ordinal successor
of α. Similarly, if t(u) = αn−1 is non-limit and non-zero, we define the predecessor of u as
p(u) = α0 . . . αn−2γ where γ = α − 1 is the ordinal predecessor of α.

Note that by Lemma 5.7, s(u) is the unique immediate successor of u in (Iκ,≤). On the
other hand, even if p(u) is defined, there still may be other elements in Iκ less than u that
are incomparable with p(u)—see Lemma 5.4. We can summarize our observations in a figure
showing “neighbourhoods” of elements u ∈ Iκ depending on t(u), where w ∈ κ∗ is the string
obtained from u by removing its last symbol:

t(u) infinite and non-limit t(u) limit

p(u) // u // s(u)

uγ // u(γ + 1)

II
wγ // w(γ + 1) // u // s(u)

This picture also shows the motivation for calling (Iκ,≤) an inverse tree. From each u ∈ Iκ,
there is exactly one possible way towards greater elements, while when traveling in Iκ down the
ordering, there are many branches. The rank zero elements of Iκ can be viewed as leaves. Just
the root is missing—it is easy to see that Iκ has no maximal element.

Next, we will turn our attention back to modules. We shall see that each infinitely presented
module is the direct limit of a special direct system indexed by an inverse tree.
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Lemma 5.9. Let κ be an infinite cardinal and M be a κ-presented module. Then M is the direct
limit of a continuous direct system (Mu, fvu | u, v ∈ Iκ & u ≤ v) indexed by the inverse tree Iκ

and such that Mu is rk(u)-presented for each u ∈ Iκ.

Proof. We will construct the direct system by induction on ℓ(u) using Lemma 5.2. If ℓ(u) = 1,
then u can be viewed as an ordinal number < κ and we just use the modules Mu and morphisms
fvu obtained for M by Lemma 5.2.

Suppose we have defined Mu and fvu for all u, v ∈ Iκ with ℓ(u), ℓ(v) ≤ n. Let v ∈ Iκ be
arbitrary with ℓ(v) = n and such that t(v) is infinite and non-limit. Then by using Lemma 5.2
for Mv, we obtain a well-ordered continuous system (Mv

α, fv
βα | α ≤ β < rk(v)), and we set

Mvα = Mv
α and fvβ,vα = fv

βα for all α ≤ β < rk(v). Finally, the morphisms fv,vα, α < rk(v),
will be defined as the colimit maps Mv

α → Mv, and the rest of the morphisms fu,vα just by
taking the appropriate compositions.

The correctness of this construction is ensured by the properties of Iκ proved above, and the
fact that (Mu | u ∈ Iκ) is continuous is taken care of by Lemma 5.6. ¤

The crucial fact about inverse trees is that, under the assumptions of TCMC, they allow us
to construct for each module a continuous direct system of special precovers:

Lemma 5.10. Let (A,B) be a complete cotorsion pair with both classes closed under direct
limits, κ be an infinite cardinal, and M be a κ-presented module. Then there is a continuous

direct system of short exact sequences 0 → Bu
ιu→ Au

πu→ Mu → 0 indexed by Iκ such that Bu ∈ B,
Au ∈ A, Mu is rk(u)-presented for each u ∈ Iκ, and M is the direct limit of the modules Mu.

Proof. We start with the continuous direct system (Mu, fvu | u, v ∈ Iκ & u ≤ v) given by
Lemma 5.9 and construct the exact sequences for each u ∈ Iκ by transfinite induction on t(u).

For each u ∈ Iκ of finite rank, we choose a special A-precover,

0 → Bu
ιu→ Au

πu→ Mu → 0,

of Mu, and if t(u) > 0, we find appropriate morphisms gup(u) : Ap(u) → Au and hup(u) : Bp(u) →
Bu using the precover property for the map fup(u) ◦ πp(u).

Suppose that α is a limit ordinal and the sequences 0 → Bu
ιu→ Au

πu→ Mu → 0 and the maps
between them have been constructed for all u ∈ Iκ with t(u) < α. Then for each v ∈ Iκ with

t(v) = α, we define the exact sequence 0 → Bv
ιv→ Av

πv→ Mv → 0 as the direct limit of the direct

system of already constructed short exact sequences 0 → Bw
ιw→ Aw

πw→ Mw → 0 where w runs
over the chain given by Corollary 5.5 (4) used for v. By assumption, we get Av ∈ A and Bv ∈ B.

Finally, suppose that α = δ+1 for some infinite δ and we have constructed the exact sequences
for all u ∈ Iκ such that t(u) ≤ δ. Similarly as above, we define for each v ∈ Iκ with t(v) = α

the exact sequence 0 → Bv
ιv→ Av

πv→ Mv → 0 as the direct limit of the direct system of short

exact sequences 0 → Bvβ

ιvβ
→ Avβ

πvβ
→ Mvβ → 0 where β runs over all ordinal numbers < rk(v).

The morphisms gvp(v) : Ap(v) → Av and hvp(v) : Bp(v) → Bv can be defined again by the
precover property and the rest of the morphisms by obvious compositions. This concludes the
construction.

The fact that the direct system of the exact sequences just constructed is well-defined and
continuous follows from the lemmas above, in particular from Lemmas 5.4 and 5.6. ¤

Before stating one of the main results in this section, let us recall that a cotorsion pair
satisfying the assumptions of TCMC is complete by Theorem 3.5 (2), thus it fits the setting of
the following theorem.

Theorem 5.11. Let (A,B) be a complete cotorsion pair with both classes closed under direct
limits. Then A is closed under pure epimorphic images.

Proof. Let M be a pure epimorphic image of a module from A. We can assume that M is not
finitely presented since otherwise M is trivially in A. Hence, Lemma 5.10 gives us a continuous

direct system 0 → Bu
ιu→ Au

πu→ Mu → 0 indexed by Iκ for some κ, and the direct limit

0 → B
ι
→ A

π
→ M → 0 of this system is a special A-precover of M . It follows from our

assumption on M that π is a pure epimorphism.
Now, M is also the direct limit of some direct system (Ki, kji | i ¹ j) consisting of finitely

presented modules and indexed by some poset (J,¹). We claim that although there is no obvious
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relation between the direct systems (Mu | u ∈ Iκ) and (Ki | i ∈ J), the following holds: For each
i ∈ J , there is s(i) ∈ J such that i ≺ s(i) and ks(i)i factors through Au for some u ∈ Iκ of finite
rank.

To this end, denote for all i ∈ J by ki : Ki → M the colimit maps and fix an arbitrary i ∈ J .
Then ki can be factorized through π since Ki is finitely presented and π is pure. Moreover,
since A = lim

−→Iκ
Au, there is u1 ∈ Iκ such that ki factors through Au1

. If rk(u1) is finite, we put

u = u1. If not, Au1
is by Corollary 5.5 the direct limit of a direct system consisting of some

modules Av with t(v) < t(u1). Hence, ki further factors through Au2
for some u2 ∈ Iκ such that

t(u2) < t(u1). If the rank of u2 is finite, we put u = u2. Otherwise, we construct in a similar
way u3 such that t(u3) < t(u2), and so forth. Since there are no infinite descending sequences
of ordinals, we must arrive at some u = un of finite rank after finitely many steps.

Hence, there must be ui ∈ Iκ of finite rank such that ki factors through π ◦ gui
= fui

◦ πui

where gui
: Aui

→ A and fui
: Mui

→ M are the colimit maps. That is, ki = fui
◦πui

◦ei for some
ei : Ki → Aui

and, since Mui
is finitely presented by Lemma 5.10, fui

further factors as kji
◦dui

for some dui
: Mui

→ Kji
and ji ∈ J such that ji ≻ i. Together, we have ki = kji

◦ dui
◦πui

◦ ei.
Thus, using the fact that Ki is finitely presented and well-known properties of direct limits,
there must exist some s(i) º ji such that ks(i)i = ks(i)ji

◦ dui
◦ πui

◦ ei, and the claim is proved.

Now set J̃ = J ×{0, 1} and define (J̃ ,¹) as the poset generated by the relations (i, 0) ¹ (j, 0)
and (i, 0) ¹ (i, 1) ¹ (s(i), 0) where i, j ∈ J, i ¹ j. Further, for such i, j, put K(i,0) = Ki,
K(i,1) = Aui

, k(j,0),(i,0) = kji, k(i,1),(i,0) = ei, and k(s(i),0),(i,1) = ks(i)ji
◦ dui

◦ πui
, using the

same notation as above. In this way, defining the remaining morphisms as the appropriate
compositions, we obtain the system (Kx, kyx | x, y ∈ J̃ & x ¹ y) which is easily seen to be
direct, it has M as its direct limit, and (K(i,1) | i ∈ J) forms a cofinal subsystem. Therefore, M
is a direct limit of this cofinal subsystem, which clearly consists of modules from A.

¤

Now, we can prove the crucial statement regarding cogeneration of cotorsion pairs by a single
pure-injective module. To this end, we need the following notion from [37, Section 9.4]: A
pure-injective module N is said to be an elementary cogenerator if every pure-injective direct
summand of a module elementarily equivalent to Nℵ0 is a direct summand of some power of N .
Further recall that the dual module Md of a module M is defined as Md = HomZ(M, Q/Z). It is
a well-known fact that any module M is an elementary submodel in its double dual Mdd as well
as in any reduced F-power M I/ΣFM I provided that F is an ultrafilter on P(I) (cf. Definition 2.1,
these reduced powers are called ultrapowers).

Proposition 5.12. Let (A,B) be a complete cotorsion pair with B closed under direct limits.
Then there exists a pure-injective module E such that the class KerExt1R(−, E) coincides with
the class of all pure-epimorphic images of modules from A. Moreover, E can be taken of the
form

∏

k∈K Ek, with Ek indecomposable for each k ∈ K.

Proof. First of all, since B is closed under direct products and direct limits, it is closed under
ultrapowers as well. Thence M ∈ B implies by Frayne’s Theorem that N ∈ B provided that N
is a pure-injective direct summand of a module elementarily equivalent to M . In particular, B
is closed under taking double dual modules.

If we denote by (D, E) the cotorsion pair cogenenerated by the class of all pure-injective
modules from B, then D is exactly the class of all pure-epimorphic images of modules from A
(cf. [5, Lemmas 2.1 and 2.2]; here, the completeness of (A,B) and B being closed under double
duals are actually needed).

By [37, Corollary 9.36], for every module M there exists an elementary cogenerator elemen-
tarily equivalent to M . Thus, by the first paragraph, we may consider a representative set S
consisting of elementary cogenerators in B such that any module in B is elementarily equivalent
to a module from S. Now define E to be the direct product of all modules from S. To finish the
main part of our proof, it is enough to show that any pure-injective module from B is in Prod(E),
the class of all direct summands of powers of E. This is sufficient since then the left-hand class
of the cotorsion pair cogenerated by {E} will coincide with D.

Let, therefore, M ∈ B be a pure-injective module and N ∈ S be a module elementarily
equivalent to M . By [37, Proposition 2.30], M is a pure submodule (hence a direct summand)
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in a module elementarily equivalent to Nℵ0 . Thus M is a direct summand of some power of N
by the definition of elementary cogenerator.

To prove the moreover statement, first recall that, by a well-known result of Fischer, E =
PE(

⊕

j∈J Ej)⊕F where PE stands for pure-injective hull, Ej is indecomposable pure-injective
for each j ∈ J , and F has no indecomposable direct summands; it may happen that J is empty
or F = 0. By [37, Corollary 4.38], F is a direct summand of a direct product, say

∏

l∈L El,
of indecomposable pure-injective direct summands of modules elementarily equivalent to E.
According to the first paragraph, El ∈ B for every l ∈ L. It follows that PE(

⊕

j∈J Ej)⊕
∏

l∈L El

cogenerates the same cotorsion pair as E does. Further, PE(
⊕

j∈J Ej) is a direct summand in
∏

j∈J Ej and the latter module is in B since it is elementarily equivalent to PE(
⊕

j∈J Ej) ∈ B.

(Here, we use the fact that the direct sum is an elementary submodel in its pure-injective hull
as well as in the direct product.) Thus, again,

∏

k∈J∪L Ek cogenerates the same cotorsion pair
as E did. ¤

We are in a position to state the main result of this section. It is in fact an immediate
consequence of the previous statements.

Theorem 5.13. Let C = (A,B) be a complete cotorsion pair with both classes closed under direct
limits. Then C is cogenerated by a direct product of indecomposable pure-injective modules.

Proof. This follows easily by Theorem 5.11 and Proposition 5.12. ¤

Remark. (1). Note that if R is an artin algebra or, more generally, a semi-primary ring and
(A,B) is a projective cotorsion pair satisfying the hypotheses of TCMC, it follows from [31,
Corollary 4.5] that the class B is also of the form KerExt1R(−, N) for a pure-injective module
N .

(2). The distinction between closure under direct limits and closure under pure-epimorphic
images is rather subtle. The two notions often coincide, but no example of a (hereditary)
cotorsion pair (A,B) with A closed under direct limits and not closed under pure-epimorphic
images is known to the authors as yet.

6. Compactly generated triangulated categories

In this section, we compare the results we have obtained above with the work of Krause
on smashing localizations of triangulated categories in [29, 27]. As mentioned before, there
is a bijective correspondence between smashing localizing pairs in the stable module category
and certain cotorsion pairs in the usual module category which works for self-injective artin
algebras [30]. However, as we want to indicate now, there are strong analogues of both settings
well beyond where the correspondence from [30] works. First, we will recall some necessary
terminology.

Let T be a triangulated category which admits arbitrary (set indexed) coproducts. We will
not define this concept here since it is well-known and the definition is rather complicated, but
we refer for example to [18, IV], [21] or [25, §3]. We say that an object C ∈ T is compact if the
canonical map

⊕

i HomT (C,Xi) → HomT (C,
∐

i Xi) is an isomorphism for any family (Xi)i∈I

of objects of T . Here, we will denote coproducts in T by the symbol
∐

to distinguish them
from direct sums of abelian groups. Let us denote by T0 the full subcategory of T formed by
the compact objects. The category T is then called compactly generated if

(1) T0 is equivalent to a small category.
(2) Whenever X ∈ T such that HomT (C, X) = 0 for all C ∈ T0, then X = 0.

As an important example here, let R be a quasi-Frobenius ring, that is a ring for which pro-
jective and injective modules coincide, and let Mod-R be the stable category, that is the quotient
of Mod-R modulo the projective modules. Then Mod-R is triangulated [21] and compactly
generated [29, §1.5]. Moreover, compact objects are precisely those isomorphic in Mod-R to
finitely generated R-modules. Other examples of compactly generated triangulated categories
are unbounded derived categories of module categories and the stable homotopy category.

Let X be a full triangulated subcategory of T . Then X is called localizing if X is closed under
forming coproducts with respect to T . We call X strictly localizing if the inclusion X → T has
a right adjoint. Finally, X is said to be smashing if the right adjoint preserves coproducts. Note
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that being a smashing subcategory is stronger than being strictly localizing, which in turn is
stronger than being a localizing subcategory.

A localizing subcategory X ⊆ T is generated by a class C of objects in T if it is the smallest
localizing subcategory of T containing C. Notice that T itself is generated by T0 as a localizing
subcategory (cf. [39, §5] or [35, Theorem 2.1]).

As in [30], we define (X ,Y) to be a localizing pair if X is a strictly localizing subcategory of
T and Y = KerHomT (X ,−). The objects in Y are then called X -local. Note that this definition
makes sense also for non-compactly generated triangulated categories and with this in mind,
(X ,Y) is a localizing pair in T if and only if (Y,X ) is a localizing pair in T op. Moreover, the
class X is smashing if and only if the class Y of all X -local objects is closed under coproducts.

There is a useful analogue of countable direct limits in a triangulated category, called a
homotopy colimit. Let

X0
ϕ0
→ X1

ϕ1
→ X2

ϕ2
→ · · ·

be a sequence of maps in T . A homotopy colimit of the sequence, denoted by hocolim−−−−−→Xi, is by

definition an object X which occurs in the triangle
∐

i<ω

Xi
Φ
→

∐

i<ω

Xi → X →
∐

i<ω

Xi[1] (‡)

where the i-th component of the map Φ is the composite

Xi

( id
−ϕi

)
→ Xi ⊔ Xi+1

j
→

∐

i<ω

Xi

and j is the split monomorphism to the coproduct. Note that a homotopy colimit is unique up
to a (non-unique) isomorphism. As an easy but important fact, we point up that when applying
the functor HomT (−, Z) on (‡) for any Z ∈ T , we get an exact sequence

0 ← lim
←−

1HomT (Xi, Z) ←
∏

HomT (Xi, Z)
Φ

∗

←

∏
HomT (Xi, Z) ← lim

←−
HomT (Xi, Z) ← 0

where Φ∗ = HomT (Φ, Z) and lim
←−

1 is the first derived functor of inverse limit.
Having recalled the terminology, we also recall the crucial correspondence between cotorsion

pairs and localizing pairs shown in [30]:

Theorem 6.1. Let R be a self-injective artin algebra, Mod-R the category of all right R-modules
and Mod-R the stable category. Then the assignment

(A,B) → (A,B)

gives a bijective correspondence between projective cotorsion pairs in Mod-R and localizing pairs
in Mod-R. Moreover, the following hold:

(1) A is smashing in Mod-R if and only if both A and B are closed under direct limits in
Mod-R.

(2) A is generated, as a localizing subcategory in Mod-R, by a set of compact objects if and
only if (A,B) is a cotorsion pair of finite type in Mod-R.

Proof. This is an immediate consequence of [30, Theorem 7.6 and Corollary 7.7] and [4, Corollary
4.6]. ¤

We have proved in Theorem 3.5 that any cotorsion pair (A,B) coming from a smashing
localizing pair is of countable type. We show that it is possible to state a similar countable type
result for Mod-R purely in the language of triangulated categories.

Definition 6.2. Let T be a compactly generated triangulated category. We call an object X ∈ T

countable if it is isomorphic to the homotopy colimit of a sequence of maps X0
ϕ0
→ X1

ϕ1
→ X2

ϕ2
→ · · ·

between compact objects. Furthermore, let Tω stand for the full subcategory of T formed by all
countable objects.

Note that Tω is skeletally small. Now we can state the following theorem:

Theorem 6.3. Let R be a self-injective artin algebra and T = Mod-R the stable category of
right R-modules. Then every smashing subcategory of T is generated, as a localizing subcategory
of T , by a set of countable objects.
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We postpone the proof until after a few preparatory observations and lemmas. First note
that countable objects in Mod-R for a self-injective algebra R are precisely those isomorphic in
Mod-R to countably generated modules from Mod-R, see [39, Lemma 4.3].

Next, we recall a technical statement concerning vanishing of derived functors of inverse limits.
We recall that lim

←−
k stands for the k-th derived functor of inverse limit and, for convenience, we

let ℵ−1 = 1.

Lemma 6.4. [33] Let R be a ring and I be a directed set whose smallest cofinal subset has
cardinality ℵα, where α is an ordinal number or −1. Put

d = sup{k < ω | lim
←−

kNi 6= 0 for some (Ni)i∈Iop}

where (Ni)i∈Iop stands for an inverse system of right R-modules indexed by Iop. Then d = α+1
if α is finite and d = ω if α is an infinite ordinal number.

The latter lemma has important consequences for direct limits that are “small enough”. Recall
that given a class C of modules, we denote by Add C the class of all direct summands of arbitrary
direct sums of modules in C.

Lemma 6.5. Let R be a ring and (Mi)i∈I be a direct system of R-modules such that |I| < ℵω.
Then there is an exact sequence:

0 → Xn → · · · → X1 → X0 → lim
−→

Mi → 0,

where n is a non-negative integer and Xj ∈ Add {Mi | i ∈ I} for all j = 0, . . . , n.

Proof. Consider the canonical presentation of lim
−→

Mi:

· · ·
δ2→

⊕

i0<i1<i2

Mi0i1i2

δ1→
⊕

i0<i1

Mi0i1

δ0→
⊕

i0∈I

Mi0 → lim
−→

Mi → 0,

where Mi0i1...ik
= Mi0 for all k-tuples i0 < i1 < · · · < ik of elements of I. This is an exact

sequence and it follows from [23] that

lim
←−

k HomR(Mi, Y ) = KerHomR(δk, Y )/ ImHomR(δk−1, Y )

for any R-module Y and any k ≥ 0 (we let δ−1 = 0 here). If we take the smallest n such that
|I| ≤ ℵn and Y = Ker δn, it follows from Lemma 6.4 that the inclusion

0 → Ker δn →
⊕

i0<i1<···<in+1

Mi0i1...in+1

splits since lim
←−

n+2HomR(Mi, Y ) = 0 in this case. The claim of the lemma follows immediately.
¤

Corollary 6.6. Let R be a quasi-Frobenius ring and let A be a localizing subcategory of Mod-R.
Assume that (Mi)i∈I is a direct system in Mod-R such that |I| < ℵω and Mi is an object of A
for each i ∈ I. Then also lim

−→
Mi is an object of A.

Proof. Note that any localizing subcategory is closed under direct summands [11]. Then the
claim follows immediately from the preceding lemma when taking into account that triangles in
Mod-R correspond to short exact sequences in Mod-R and that the canonical functor Mod-R →
Mod-R preserves coproducts. ¤

Now we are in a position to prove the theorem.

Proof of Theorem 6.3. Let A be a smashing subcategory of T = Mod-R and let (A,B) be the
corresponding projective cotorsion pair in Mod-R with B closed under direct limits given by
Theorem 6.1. Then by Theorem 3.5, there is a set S of countably generated R-modules that
generates the cotorsion pair.

Let us denote by L the localizing subcategory of T generated by S, viewed as set of (countable)

objects of T . We claim that then for each X ∈ T , there is a triangle X
wX→ BX → LX → X[1]

in T such that BX ∈ B and LX ∈ L.
Let us assume for a moment that we have proved the claim and let A ∈ A. If we consider the

shifted triangle LA[−1]
f
→ A

wA→ BA → LA, then clearly wA = 0 and f is split epi. Hence, A is a
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direct summand of LA[−1] and consequently, since L is closed under direct summands by [11],
A ∈ L. Thus, A = L and the theorem follows.

Therefore, it remains to prove the claim. Let X ∈ T . If we view X as an R-module, we can
construct a special B-preenvelope 0 → X → BX → LX → 0 following the lines of [19, Theorem
3.2.1]: We construct a well-ordered continuous chain

B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bα ⊆ · · ·

indexed by ordinal numbers such that B0 = X and Bα+1 is a universal extension of Bα by
modules from S. That is, there is an exact sequence of the form:

0 → Bα → Bα+1 →
⊕

j∈Jα

Yj → 0,

where Yj is isomorphic to a module from S for each j ∈ Jα and the connecting homomorphisms

δZ : HomR(Z,
⊕

j∈J Yj) → Ext1R(Z, Bα) are surjective for all Z ∈ S. In particular, Ext1R(Z,−)
applied on Bα ⊆ Bβ for any α < β gives the zero map. Since all the modules in S are countably
presented, any morphism Ω(Z) → Bℵ1

in Mod-R, where Z ∈ S, factors through the inclusion
Bα ⊆ Bℵ1

for some α < ℵ1. It follows that Ext
1
R(Z,Bℵ1

) = 0 for each Z ∈ S; hence Bℵ1
∈ B.

Now, if we set Lα = Bα/X for each α, we have a well-ordered continuous chain

L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Lα ⊆ · · ·

such that Lα+1/Lα
∼= Bα+1/Bα ∈ AddS. It follows from Eklof’s Lemma ([19, Lemma 3.1.2] or

[16, Lemma 1]) that Lα ∈ A for each ordinal α. Hence, 0 → X → Bℵ1
→ Lℵ1

→ 0 is a special
B-preenvelope of X.
Now let us focus on the corresponding triangle X → Bℵ1

→ Lℵ1
→ X[1] in T . Clearly

Bℵ1
∈ B. Moreover, it follows by a straightforward transfinite induction on α that Lα ∈ L for

each α ≤ ℵ1. For α = 0, obviously L0 = 0 ∈ L. To pass from α to α + 1, we use the fact that
the third term in the triangle Lα → Lα+1 →

∐

j∈Jα
Yj → Lα[1] is in AddS. Finally, limit steps

are taken care of by Corollary 6.6. The claim is proved and so is the theorem. ¤

Inspired by Theorem 6.3, we can ask the following question:

Question (Countable Telescope Conjecture). Let T be an arbitrary compactly generated
triangulated category. Is every smashing localizing subcategory of T generated by a set of
countable objects?2

In this context, it is a natural question if one can characterize the countable objects in a
smashing subcategory of a triangulated category. That is, we are looking for a triangulated
category analogue of Theorem 4.8. It turns out that there is an analogous statement that holds
for any compactly generated triangulated category.

Theorem 6.7. Let T be a compactly generated triangulated category and let X be a smashing
subcategory of T . Denote by I the ideal of all morphisms between compact objects which factor
through some object in X . Then the following are equivalent for a countable object X ∈ T :

(1) X ∈ X ,
(2) X is the homotopy colimit of a countable direct system (Xn, ϕn) of compact objects such
that ϕn ∈ I for every n.

Proof. (1) =⇒ (2). Since X is countable, we have X = hocolim−−−−−→Yn where (Yn, ψn) is a

direct system of compact objects (not necessarily from X ). Let Z be an X -local object and let

Z̃ =
∐

i<ω Zi, where Zi = Z for each i < ω. By assumption, Z̃ is also X -local. If we apply

HomT (−, Z̃) on the triangle
∐

n Yn
Φ
→

∐

n Yn → X →
∐

n Yn[1], we see that HomT (Φ, Z̃) is an
isomorphism. Hence we get:

lim
←−

HomT (Yn, Z̃) = 0 = lim
←−

1HomT (Yn, Z̃).

Note also that HomT (Yn, Z̃) is canonically isomorphic to HomT (Yn, Z)(ω) for each n < ω since
all the Yn are compact. Consequently, the inverse system

(HomT (Yn, Z),HomT (ψn, Z))n<ω

2An affirmative and far more general answer to this question was given by Krause in [28, §7.4] after submission
of this paper.
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is Mittag-Leffler by Proposition 1.4 and T-nilpotent by Lemma 4.5. Since the class of all X -local
objects is closed under coproducts, we infer, as in the proof of Theorem 4.8, that there are some
bounds for T-nilpotency common for all X -local objects Z. In other words, there is a cofinal
subsystem (Ynk

, ϕk | k < ω) of the direct system (Yn, ψn) such that HomT (ϕk, Z) = 0 for all
k < ω and X -local objects Z. Note that X ∼= hocolim−−−−−→k

Ynk
since the homotopy colimit does not

change when passing to a cofinal subsystem, [36, Lemma 1.7.1].
Finally, if ϕ is a morphism in T such that HomT (ϕ,Z) = 0 whenever Z is X -local, then ϕ

factors through an object in X by [29, Lemmas 3.4 and 3.8]. Hence, ϕk ∈ I for each k and we
can just put Xk = Ynk

.
(2) =⇒ (1). If X and (Xn, ϕn) are as in the assumption, then, by Lemma 4.5,

lim
←−

HomT (Xn, Z) = 0 = lim
←−

1HomT (Xn, Z)

whenever Z is X -local. Thus, if we consider the triangle
∐

n Xn
Φ
→

∐

n Xn → X →
∐

n Xn[1]
defining X, then HomT (Φ, Z) is an isomorphism. For a similar reason, HomT (Φ[1], Z) is an
isomorphism, and consequently HomT (X,Z) = 0 for all X -local objects Z. In other words:
X ∈ X . ¤

Triangulated category analogues of Theorems 4.9 and 5.13, the remaining main results of this
paper, have been proved by Krause in [29]. We include the corresponding statements from [29]
here to underline how straightforward the translation is. Let us start with Theorem 4.9—actually,
[29, Theorem A] served as an inspiration for it:

Theorem 6.8. [29, Theorem A] Let T be a compactly generated triangulated category and let X
be a smashing subcategory of T . Denote by I the ideal of all morphisms between compact objects
which factor through some object in X . Then the following are equivalent for Y ∈ T :

(1) Y is X -local,
(2) HomT (f, Y ) = 0 for each f ∈ I.

We conclude the paper with an analogue of Theorem 5.13. Let us first recall that one defines
pure-injective objects in a compactly generated triangulated category T as follows (see [29]):
Let us call a morphism X → Y in T a pure monomorphism if the induced map HomT (C, X)→
HomT (C, Y ) is a monomorphism for every compact objects C. An object X is then called pure-
injective if every pure monomorphism X → Y splits. As for module categories, the isomorphism
classes of indecomposable pure-injective objects form a set which we call a spectrum of T . The
following has been proved in [29]:

Theorem 6.9. [29, Theorem C] Let T be a compactly generated triangulated category and let
X be a smashing subcategory of T . Then X ∈ X if and only if HomT (X, Y ) = 0 for each
indecomposable pure-injective X -local object Y .

For stable module categories over self-injective artin algebras, the correspondence via Theo-
rem 6.1 works especially well because of the following result from [29]:

Proposition 6.10. [29, Proposition 1.16] Let R be a quasi-Frobenius ring and X be a right
R-module. Then X is a pure-injective module if and only if X is a pure-injective object in
Mod-R.
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[3] L. Angeleri Hügel, D. Happel and H. Krause, Handbook of Tilting Theory, London Math. Soc. Lect.
Note Ser., Vol. 332, Cambridge Univ. Press, 2007.
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KAPLANSKY CLASSES, FINITE CHARACTER, AND ℵ1–PROJECTIVITY

JAN ŠAROCH AND JAN TRLIFAJ

Abstract. Kaplansky classes emerged in the context of Enochs’ solution of the Flat Cover
Conjecture. Their connection to abstract model theory goes back to [3]: a class C of roots of
Ext is a Kaplansky class closed under direct limits, iff the pair (C,≤) is an abstract elementary
class (AEC) in the sense of Shelah. A question was raised whether this AEC has finite
character. We give a positive answer in case C = ⊥C′ for a class of pure–injective modules
C′. This yields a positive answer for all AECs of roots of Ext over any right noetherian right
hereditary ring R.

If (C,≤) is an AEC of roots of Ext then C is known to be a covering class. However,
Kaplansky classes need not even be precovering in general: We prove that the class D of all
ℵ1–projective modules is a Kaplansky class for any ring R, but it fails to be precovering in
case R is not right perfect, the class ⊥(D⊥) equals the class of all flat modules and consists of
modules of projective dimension ≤ 1. Assuming the Singular Cardinal Hypothesis, we prove
that D is not precovering for each countable non–right perfect ring R.

Introduction

A class A of (right R–) modules is a Kaplansky class provided there is a regular infinite
cardinal κ such that for each 0 6= A ∈ A and X ⊆ A with |X| ≤ κ, there exists a ≤ κ–presented
module A′ ∈ A such that X ⊆ A′ ⊆ A and A/A′ ∈ A.
Kaplansky classes naturally occur in algebra, homotopy theory, and model theory. The fact

that the class FL of all flat modules over an arbitrary ring is a Kaplansky class was crucial
for proving the Flat Cover Conjecture in [6]. In [11] it was shown that Kaplansky classes are
important sources of module approximations. In [14] the notion was extended to Grothendieck
categories G, and applied to constructing model category structures in the category of all un-
bounded chain complexes over G. In these cases the focus was on Kaplansky classes closed under
direct limits.
In parallel, deconstructible classes of modules have widely been used as a set–theoretic tool

of homological algebra in [7], [8], [9], [15] et al. (see Definition 1.3 below). Recently it has been
shown in [12] that deconstructible classes provide an appropriate setting for application of the
methods of Hovey [19]; thus a generalization of the main results of [14] to classes not necessarily
closed under direct limits was obtained in [12, Theorem 1.1].
There is close relation between Kaplansky classes and deconstructible classes: Let C be a class

of modules closed under transfinite extensions. If C is deconstructible then C is a Kaplansky
class, and the converse holds when C is closed under direct limits (cf. Lemma 1.4).
Many classes C closed under transfinite extensions are the classes of roots of Ext, that is, they

are of the form C = ⊥C′ for a class of modules C′, where

⊥C′ =
⋂

1≤i<ω

KerExtiR(−, C′) = {M | ExtiR(M,C ′) = 0 for all C ′ ∈ C′ and i ≥ 1}.

Thus, if a class C of roots of Ext is closed under direct limits, then C is a Kaplansky class if and
only if C is deconstructible.

The connection to model theory was discovered somewhat later. In [3] the following link
between Kaplansky classes and abstract model theory was established: Consider a pair (C,≤)
where C is a class of roots of Ext, and ≤ is the partial order on C defined by C0 ≤ C1 if C0 is
a submodule of C1 such that C0, C1, C1/C0 ∈ C. By [3, 1.18], (C,≤) is an abstract elementary
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Key words and phrases. Kaplansky class, Ext, deconstructible class, abstract elementary class of finite char-
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class (AEC) in the sense of Shelah [24] if and only if C is a Kaplansky class closed under direct
limits. Such AECs are called the AECs of roots of Ext. By [3, Theorem 1.20(1)], if C′ is a class
of pure–injective modules then (⊥C′,≤) is an AEC; indeed, all known examples of AECs of roots
of Ext are of this form (we refer to Section 1 for unexplained notation).
An important property of abstract elementary classes, called finite character, was introduced

in [20] (cf. Definition 1.5). [3, Question 4.1(2)] asks whether AECs of roots of Ext have finite
character. A positive answer for the AECs arising from tilting and cotilting modules was obtained
in [26, Theorems 1.4 and 2.2]. The main result of our Section 1 gives a positive answer for all
known examples of AECs of roots of Ext:

Theorem 0.1. (1) Let R be any ring and (C,≤) be an AEC of roots of Ext such that C = ⊥C′

for a class of pure–injective modules C′. Then (C,≤) has finite character.
(2) Let R be a right noetherian and right hereditary ring. Then each AEC of roots of Ext
has finite character.

If C is a Kaplansky class closed under direct limits and extensions, then C is deconstructible.
If C moreover contains all projective modules, then C is a covering class, [11, 2.9]. As mentioned
above, for classes of modules not closed under direct limits, the property of being Kaplansky is
weaker than that of being deconstructible. In fact, the gap between the two notions is rather big
in general: While a deconstructible class closed under transfinite extensions, direct summands,
and containing R, is always precovering [15, 3.2.4], this is not true of Kaplansky classes.

In order to prove this, we will consider the class D of all ℵ1–projective modules (see Definition
2.2). It is well known that D ⊆ FL, and that D is closed under transfinite extensions, direct
summands, and contains all projective modules. It has recently been proved in [18] that D is
deconstructible, if and only if R is a right perfect ring. The main results of Section 2 reads as
follows:

Theorem 0.2. Let R be an arbitrary ring.

(1) D is a Kaplansky class.
(2) (SCH) If R is countable then ⊥(D⊥) = FL.
(3) Assume that R is not right perfect, FL consists of modules of projective dimension ≤ 1,
and ⊥(D⊥) = FL. Then D is not precovering.

(4) (SCH) Let R be a countable non–right perfect ring. Then D is not precovering.

Here, the notation SCH means that the proof uses a set–theoretic assumption called the
Singular Cardinal Hypothesis (see Section §2 for more details).
For unexplained terminology, we refer to [8], [10] and [15].

1. Kaplansky classes of roots of Ext and AECs of finite character

The following definition is due to Shelah [24] (see also [2, Chap. 4]):

Definition 1.1. A pair (C,≤) is an abstract elementary class (or AEC for short) if C is a class
of structures (in a fixed vocabulary τ), and ≤ is a partial order on C, both C and ≤ are closed
under isomorphism, and satisfy

• (A1) If A ≤ B then A is a substructure of B.
• (A2) If (Ai | i < δ) is a ≤–increasing chain of elements of C (that is, Ai ≤ Ai+1 for all

i < δ, and Ai =
⋃

j<i Aj for all limit ordinals i < δ) then

(1)
⋃

i<δ Ai ∈ C;
(2) Aj ≤

⋃

i<δ Ai for each j < δ;
(3) If M ∈ C and Ai ≤ M for each j < δ, then

⋃

i<δ Ai ≤ M .
• (A3) If A,B,C ∈ C, A ≤ C, B ≤ C and A is a substructure of B then A ≤ B.
• (A4) There is a cardinal κ such that if A is a substructure of B ∈ C then there is A′ ∈ C
which contains A as a substructure so that A′ ≤ B, and the cardinality of A′ is at most
|A|+ κ.

If A ≤ B then A is called a strong substructure of B. An embedding f : A → B is strong if
f(A) ≤ B.
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Basic examples of AECs come from first order logic: the class of all models of a first order
theory with the relation of being an elementary submodel is an AEC. The theory of AECs thus
generalizes classical model theory to a much more abstract setting — we refer to [2] for more
details.

In [3], a new kind of AECs were introduced that arise in homological algebra, namely those
of the form (⊥D,≤) where D is a class of modules over a ring R (see Introduction).
Before describing the results from [3] that are relevant here, we pause to recall the notions

and basic properties of transfinite extensions and deconstructible classes from [7] and [18]:

Definition 1.2. Let R be a ring and A a class of modules. A moduleM is a transfinite extension
of modules in A provided there exists a chain of submodules of M , M = (Mα | α ≤ σ), such
that Mα ⊆ Mα+1 and Mα+1/Mα is isomorphic to an element of A for each α < λ, M0 = 0,
Mσ =M , and Mα =

⋃

β<α Mβ for each limit ordinal α ≤ σ.

The well–known Eklof Lemma ([8, XII.1.5]) says that each class of roots of Ext is closed under
transfinite extensions, that is, for any class of modules C′, M ∈ ⊥C′ whenever M is a transfinite
extension of modules in ⊥C′.

Definition 1.3. ([3], [7]). Let R be a ring. A class of modules A is deconstructible (or has
refinements) in case there is an infinite cardinal κ such that each module M ∈ A is a transfinite
extension of modules in A<κ, where A<κ denotes the class of all < κ–presented modules in A.

The following was proved in [18, Lemmas 6.7 and 6.9]:

Lemma 1.4. Let R be a ring and A a class of modules.

(1) Assume that A is a deconstructible class closed under transfinite extensions. Then A is
a Kaplansky class.

(2) Assume that A is closed under extensions and direct limits. Then A is deconstructible,
if and only if A is a Kaplansky class.

In [18, Example 6.8], an example is given showing that the notion of a Kaplansky class is
weaker in general than that of a deconstructible class: If R is a right self–injective von Neumann
regular ring and A is the class of all non–singular modules, then A is Kaplansky, but not
deconstructible. Since in this particular setting, non–singular = ℵ1–projective (see Definition
2.2), Theorem 0.2(1) generalizes [18, Example 6.8] to arbitrary non–right perfect rings R.
In [3, §1] it was proved that for each ring R and each class of modules C′, the pair (⊥C′,≤) is

an AEC, if and only if the class ⊥C′ is closed under direct limits and it is deconstructible.
If C′ is a class of pure–injective modules then ⊥C′ is closed under direct limits and is decon-

structible by [9], so (⊥C′,≤) is an AEC. All known examples of AECs of roots of Ext arise in
this way (cf. [3]). We denote the class of all pure–injective modules by PI.

We will prove that if C′ ⊆ PI then the AEC (⊥C′,≤) always satisfies the following finiteness
property introduced by Hyttinen and Kesälä in [20]:

Definition 1.5. An AEC (C,≤) has finite character if for all A,B ∈ C such that A is a sub-
structure of B, we have A ≤ B provided that for each finite set F ⊆ A there exist C ∈ C and
strong embeddings f : A → C and g : B → C such that f ↾ F = g ↾ F .

For AECs having amalgamation there is another way of expressing finite character due to
Kueker [21, §3]. (An AEC (C,≤) has amalgamation if for all A,B, C ∈ C such that A ≤ B,
A ≤ C, and A = B ∩ C, there exist D ∈ C and a map f : B ∪ C → D such that f ↾ B
and f ↾ C are strong embeddings. The existence of pushouts in module categories easily yields
amalgamation for each AEC of roots of Ext, see [3, Lemma 2.1].)

Lemma 1.6. (Kueker) Let (C,≤) be an AEC with amalgamation. Then the following are
equivalent:

(1) (C,≤) has finite character.
(2) For all A,B ∈ C, if A is a substructure of B and for each finite set F ⊆ A there is a

strong embedding f : A → B such that f ↾ F = idF , then A ≤ B.
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Proof. That (1) implies (2) is clear even without amalgamation: one takes C = B and g = idB .
(2) implies (1): Let {Fα | α < λ} be the set of all finite subsets of A. The premise of (1)

implies that for each α < λ there exist C ′
α ∈ C such that B ≤ C ′

α and a strong embedding
fα : A → C ′

α such that fα ↾ Fα = idFα
.

By induction of α, we will construct a ≤–increasing chain (Cα | α < λ) of elements of C
such that for each α < λ, B is a strong submodel of Cα, and for each β ≤ α, there is a strong
embedding fβ : A → Cα such that fβ ↾ Fβ = idFβ

. For α = 0 we take C0 = C ′
0.

For the non–limit step, we can w.l.o.g. assume that Cα ∩ C ′
α = B, use amalgamation for the

strong embeddings B ≤ Cα and B ≤ C ′
α, and define Cα+1 = D. If α < λ is a limit ordinal,

it suffices to take Cα =
⋃

β<α Cβ because Cα ∈ C by Axiom (A2)(2), and B ≤ Cα by Axiom

(A2)(3).
Let C =

⋃

α<λ Cα. Then (2) applied to the pair (A,C) gives A ≤ C. Since B ≤ C, Axiom
(A3) yields A ≤ B. ¤

Before stating the key proposition of this section, let us briefly recall some notions from
approximation theory of modules. A pair (A,B) of classes of modules is a cotorsion pair if
A = ⊥1B = KerExt1R(−,B) and B = A⊥1 = KerExt1R(A,−). We say that the cotorsion pair
is hereditary provided that A is closed under taking kernels of epimorphisms, or equivalently,
A = ⊥B. A cotorsion pair (A,B) is complete if A is a special precovering class, i.e., for every
module M there exists an R–epimorphism ψ : A → M with A ∈ A and Ker ψ ∈ B; such ψ is
called a special A–precover of M .
More in general, a class of modules C is a precovering class provided that for each module M

there exists a R–homomorphism ψ : C → M with C ∈ C such that for each R–homomorphism
ψ′ : C ′ → M with C ′ ∈ C there exists an R–homomorphism ϕ : C ′ → C such that ψ′ = ψϕ. The
map ψ is a C–precover of M .

Proposition 1.7. Let R be a ring and (C, C′) be a hereditary cotorsion pair such that (C,≤) is
an AEC. If ⊥1(C ∩ C′) ⊇ ⊥1(PI ∩ C′) then (C,≤) has finite character.

Proof. We will verify condition (2) of Lemma 1.6, so we consider A,B ∈ C with A ⊆ B satisfying
the premise of that condition. Let {bα | α < λ} be an R–generating subset of B and denote by
S the set of all sequences (rα) ∈ R(λ) such that

∑

α<λ bαrα ∈ A.

In order to prove that A ≤ B, we have to show that Ext1R(B/A,C ′) = 0 for each C ′ ∈ C′.
Note that it is not necessary to check all of C′—it suffices to prove vanishing of Ext just for the
pure–injective modules from C′; then, by our assumption, Ext1R(B/A,C ′) = 0 will hold for each
C ′ ∈ C ∩ C′. Now, if Ext1R(B/A,E) 6= 0 for some E ∈ C′, then there must be g ∈ HomR(A, E)
that cannot be extended to h ∈ HomR(B, E) (because Ext1R(B, C ′) = 0 for all C ′ ∈ C′). Since C
is deconstructible, (C, C′) is complete by [15, 3.2.1]. Thus there is a special C–precover ψ : C → E
of E. Then clearly C ∈ C ∩ C′, and as A ∈ C, we may factorize g through ψ and then extend
it to a homomorphism from B to C ′ which, composed with ψ, yields an extension h of g, a
contradiction.
So it remains to prove that for all C ′ ∈ PI∩C′ and g ∈ HomR(A,C ′) there exists an extension

h ∈ HomR(B, C ′) of g; then Ext1R(B/A,C ′) = 0, and A ≤ B as claimed.
We define an (infinite) system S of R–linear equations in the variables {xα | α < λ} as follows.

The equations will be indexed by the elements of S: for each sequence r̄ = (rα) ∈ S we define
ar̄ =

∑

α<λ bαrα(∈ A), and let the equation indexed by r̄ be
∑

α<λ xαrα = g(ar̄).

We claim that each finite subsystem of S is solvable in C ′. Indeed, let r̄0 = (r0α), . . . , r̄
n−1 =

(rn−1
α ) be finitely many elements of S. Let F = {ar̄i | i < n}.
By the premise on A and B, there is a monomorphism f ∈ HomR(A,B) such that f ↾ F = idF

and A′ = f(A) ≤ B. So Ext1R(B/A′, C ′) = 0, hence there is h′ ∈ HomR(B, C ′) such that
h′ ↾ A′ = gf−1.
Define d′α = h′(bα) for each α < λ. Then for each i < n we have

∑

α<λ

d′αri
α = h′(

∑

α<λ

bαri
α) = h′(ar̄i) = gf−1(ar̄i) = g(ar̄i).

So (d′
α | α < λ) is a solution in C ′ of the finite subsystem of S indexed by {r̄0, . . . , r̄n−1} ⊆ S.

Since C ′ is pure–injective, the system S has a global solution in C ′, that is, there exist
(dα | α < λ) in C ′ such that

∑

α<λ dαrα = g(ar̄) for each r̄ = (rα) ∈ S (see e.g. [15, 1.2.19]).
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Define h ∈ HomR(B,C ′) by h(
∑

α<λ bαrα) =
∑

α<λ dαrα. This is possible since
∑

α<λ bαr0α =
∑

α<λ bαr1α implies
∑

α<λ bαrα = 0 ∈ A where r̄ = r̄0−r̄1 ∈ S and ar̄ = 0. The equation indexed

by r̄ yields
∑

α<λ dαrα = g(ar̄) = 0, hence h(
∑

α<λ bαr0α) = h(
∑

α<λ bαr1α).
Finally, if a ∈ A then a = ar̄ =

∑

α<λ bαrα for some r̄ = (rα) ∈ S, so h(a) = h(
∑

α<λ bαrα) =
∑

α<λ dαrα = g(a). This proves that h extends g. ¤

Now, we are in a position to prove a more general version of Theorem 0.1(1):

Theorem 1.8. Let R be a ring and (⊥C′,≤) be an AEC such that either C′ consists of pure–
injective modules or ⊥C′ is closed under products. Then (⊥C′,≤) has finite character.

Proof. Let C = ⊥C′. In the first case, since all cosyzygies of pure–injective modules are pure–
injective (see e.g. [15, 3.2.10]), possibly enlarging C′, we can assume that C = ⊥1C′. The class C
is thus a left–hand class of a hereditary cotorsion pair satisfying the assumptions of Proposition
1.7.
Let C be closed under products and assume w.l.o.g. that (C, C′) is a hereditary cotorsion pair.

We show that C∩C′ consists of pure–injective modules; this will again allow us to use Proposition
1.7.
By the well–known characterization of pure–injective modules (cf. [15, 1.2.19]), it suffices to

show that Ext1R(M
λ/M (λ), M) = 0 for every M ∈ C ∩ C′ and all cardinals λ. However

Mλ/M (λ) = lim
−→

F∈[λ]<ω

Mλ\F ,

where [λ]<ω denotes the set of all finite subsets of λ, and C is closed under direct limits and
products, so Mλ/M (λ) ∈ C, and Ext1R(M

λ/M (λ),M) = 0, q.e.d. ¤

As a corollary, we obtain the two main results from [26]:

Corollary 1.9. Let R be a ring and let (⊥C′,≤) be an AEC such that either C = ⊥C′ is a
cotilting class, or C′ is a tilting class. Then (⊥C′,≤) has finite character.

Proof. In the first case, C is closed under direct products, so Theorem 1.8 applies directly.
In the second case, there are an n < ω and a resolving set S consisting of strongly finitely

presented modules of projective dimension ≤ n such that C′ = S⊥1 (see [5] or [15, 5.2.10]).
Moreover, C = ⊥E where E is the class of all pure–injective modules in C′ (see [1, §2] or [15,
4.5.8]), so Theorem 1.8 applies again. ¤

Whether Theorem 1.8 covers the general case, that is, whether each AEC of roots of Ext has
finite character, remains an open problem.
There is, however, a case where the answer is positive, namely the case of Theorem 0.1(2):

Corollary 1.10. Let R be a right noetherian right hereditary ring and let (⊥C′,≤) be any AEC
of roots of Ext. Then (⊥C′,≤) has finite character.

Proof. By assumption C′ consists of modules of injective dimension ≤ 1, so we have ⊥C′ = ⊥E
where E is the class of pure–injective envelopes of all modules in C′ by [3, 1.10], and Theorem
1.8 applies. ¤

2. The Kaplansky class of all ℵ1–projective modules

We start with refining the notion of a Kaplansky class. Given an infinite cardinal κ and a
class A of modules, we say that A is a κ–Kaplansky class provided that for each 0 6= A ∈ A
and X ⊆ A with |X| ≤ κ, there exists a ≤ κ–presented C ∈ A such that X ⊆ C ⊆ A and
A/C ∈ A. (So A is Kaplansky class in case there is an infinite regular cardinal κ such that A is
κ–Kaplansky.)

Lemma 2.1. Let R be a ring and λ = |R| + ℵ0. Let A be a module and κ be a cardinal such
that κλ = κ. Then for each X ⊆ A with |X| ≤ κ there exists a ≤ κ–presented submodule C of A
containing X, with the following property:
Each system of R–linear equations with ≤ λ variables and ≤ λ parameters from C has a

solution in C provided that it has a solution in A.
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Proof. The module C will be defined as the union of a well–ordered chain (Ci | i < λ+) of
≤ κ–presented submodules of A. Put C0 = 〈X〉. Having constructed Ci for some i < λ+, we
define Ci+1 in such a way that it contains a solution of each system of R–linear equations with
≤ λ variables and ≤ λ parameters from Ci that has a solution in A. Since the length of the
solution vector is ≤ λ and the number of such systems of equations is ≤ κλ · 2λ = κ, Ci+1 can
be chosen ≤ κ–presented. If i < λ+ is limit, we put Ci =

⋃

j<i Cj .
Now it is easy to see, that C defined in this way has the desired property. Indeed, if a system

of R–linear equations uses only ≤ λ parameters from C, then these are already elements of some
Ci and the solution we are looking for can be found in Ci+1. ¤

We recall the definitions of an ℵ1–projective module and a Q–Mittag–Leffler module from
[18]:

Definition 2.2. Let R be a ring and M be a module.

(1) M is ℵ1–projective provided that there is a system S consisting of countably generated
projective submodules of M such that
(1) S is closed under unions of countable well–ordered ascending chains,
(2) every countable subset of M is contained in an element of S.

(2) Let Q be a class of left R–modules. Denote by DQ the class of all flat Q–Mittag–Leffler
modules, that is, the flat modules M such that the canonical morphism

ρ : M ⊗R

∏

i∈I

Qi →
∏

i∈I

M ⊗R Qi

is monic for each family of left R–modules (Qi | i ∈ I) from Q.

The remarkable fact is that ℵ1–projective modules coincide with the flat Q–Mittag–Leffler
modules when Q is the class of all left R–modules (see [18, Theorem 2.9]).
Now we can prove a generalization of Theorem 0.2(1):

Theorem 2.3. Let DQ denote the class of all flat Q–Mittag–Leffler modules. Then DQ is a
κ–Kaplansky class provided that κλ = κ, where λ = |R|+ ℵ0.
In particular, the class of all ℵ1–projective modules is a Kaplansky class.

Proof. Let us put A = DQ. For given A ∈ A and X ⊆ A with |X| ≤ κ, Lemma 2.1 provides us
with a module C.
Clearly C ∈ A, since C is pure in A and A is closed under pure submodules by [18, Lemma

4.1]. So it remains to prove that A/C ∈ A.
First (by [18, Theorem 2.5]), it is enough to show that every ≤ λ–generated pure submodule

of A/C is an element of A. So let B/C be such a submodule and let {bi + C | i < µ} be its
generating subset (µ ≤ λ). Now consider the system of all R–linear equations

∑

i∈I xiri = c
where c ∈ C, ri ∈ R, I is a finite subset of µ and

∑

i∈I biri = c holds in A. This system has µ
variables, ≤ λ parameters from C, since |

∑

i<µ biR| ≤ λ, and (bi | i < µ) solves it in A. Thus

there must be also a solution (ci | i < µ) in C. Put J =
∑

i<µ(bi − ci)R.

By the definition of J , we have J + C = B and J ∩ C = 0. Moreover, C pure in A and B/C
pure in A/C imply that B is pure in A. Then J , being a direct summand of B, is pure in A too,
hence J ∼= B/C ∈ A by [18, Lemma 4.1].
As mentioned above, the class of ℵ1–projective modules coincides with DMod–R

and it suffices

to choose κ = (2λ)+. (2λ need not be a regular cardinal; however κ is regular and κλ = κ holds
by a cardinal–arithmetic result due to Hausdorff.) ¤

Given an infinite cardinal λ, we say that a submodule C of a module A is λ–pure if every
system of R–linear equations of cardinality < λ with parameters from C has a solution in C
provided that it has a solution in A. Thus ℵ0–purity coincides with the classical purity. Lemma
2.1 says that for every subset X of A with |X| ≤ κ, there is a λ+–pure submodule C of A
containing X with |C| ≤ κ provided that κ = κλ. We can refer to this C as to λ+–purification
of X in A.

Corollary 2.4. DQ is closed under taking cokernels of (|R|+ ℵ0)
+–pure embeddings.

Proof. Contained in the proof of Theorem 2.3.

Now, we recall some notions and results from the set theory. We denote by SCH the so–called

Singular Cardinal Hypothesis. It says that, whenever κ is a singular cardinal, then κcf(κ) =
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max{2cf(κ), κ+}. One of its useful consequences is that 2κ = (2<κ)+ provided that κ is a
singular cardinal with cf(2<κ) < κ. From this, it follows that 2κ = κ+ holds for all strong limit
singular cardinals κ, ie. singular cardinals with the property that 2µ < κ whenever µ < κ. It is
known, that in order to construct a model of ZFC where SCH does not hold, one needs to use
larger cardinal than just a measurable one. On the other hand, SCH follows, for instance, from
the generalized continuum hypothesis (GCH) which is provably consistent with ZFC.
Given an uncountable regular cardinal κ and E its stationary subset, we denote by ♦∗

κE the
following assertion:

There exists a sequence (Wα | α ∈ E, Wα ⊆ P(α)) such that (∀α ∈ E) |Wα| ≤ |α| and
with the property that, for every X ⊆ κ, there exists a closed unbounded set C ⊆ κ such that
(∀α ∈ C ∩ E)X ∩ α ∈ Wα.

By the result of Gregory from [17] (also see [23]), ♦∗
κ+E(λ) holds if κ > ℵ0, 2

κ = κ+, κλ = κ
and λ is an infinite regular cardinal. Here E(λ) = {α < κ+ | cf(α) = λ}. On the other hand,
it is a well-known result due to Kunen that ♦∗

κE implies ♦κD for all stationary D ⊆ E (for all
regular uncountable cardinals κ).
Finally, we recall the definition of the i (Beth) function. Given an infinite cardinal λ, we put

i0(λ) = λ and then inductively iα+1(λ) = 2
iα(λ) for an ordinal α, and iα(λ) =

⋃

β<α iβ(λ)
whenever α is limit.
For the rest of this section, let λ = |R|+ℵ0. Before proving our next result, we need to recall

a proposition from [18].

Proposition 2.5. ([18, 5.5]) Let κ be an infinite regular cardinal and N = lim
−→i<ω

Fi be the

direct limit of a countable direct system of modules. Then there exists a module M with the
following properties and such that M ∈ DQ if

⊕

i<ω Fi ∈ DQ.
(i) M has a strictly increasing filtration L = (Lα | α ≤ κ+); so Lκ+ =M .
(ii) If |F | + λ ≤ κ, then Lα is a ≤ κ–presented module for each α < κ+. In particular,

|M | = κ+.
(iii) Let ν < µ ≤ κ+ and assume that cf(ν) = ω. Then there exists a module K ⊆ Lµ/Lν

such that Lµ/Lν = Lν+1/Lν ⊕ K, and Lν+1/Lν
∼= N .

(iv) Let n < ω. If
⊕

i<ω Fi ∈ Pn, then M ∈ Pn+1.

The following theorem relies on the Singular Cardinal Hypothesis.

Theorem 2.6. (SCH) Let B be an R–module and λ = |R|+ℵ0. Assume that Ext
1
R(DQ, B) = 0.

Then KerExt1R(−, B) contains all direct limits of countable direct systems of modules from DQ.
Moreover, if there is n < ω such that the countable direct system consists of modules from Pn,

then the hypothesis can be weakened to Ext1R(DQ ∩ Pn+1, B) = 0.

Proof. Put A = KerExt1R(−, B). We shall work along the lines of the proof of [18, Theorem
6.10] with A′ = DQ. So assume, by the way of contradiction, that there is a module N 6∈ A
which is the direct limit of a countable direct system of modules Fi (i < ω) from DQ. Put
F =

⊕

i<ω Fi and define κ = iλ+(|E(B)|+ |F |); notice that κ is a strong limit singular cardinal
with cofinality λ+. Let M ∈ DQ be a module obtained by Proposition 2.5 for this κ and N .
For this M , we construct a new filtration M = (Mα ∈ DQ | α ≤ κ+) with the property that

|Mα| ≤ κ, for α < κ+, and M/Mα ∈ DQ provided that cf(α) > λ or α is non–limit. If the
moreover clause applies, we require additionally that Mα,M/Mα ∈ Pn+1 for all α ≤ κ+.
So let us start with M0 = 0 and assume that Mβ has been constructed for all β < α ≤ κ+. If

α is limit, we put Mα =
⋃

β<α Mβ . If α = γ + 1 for γ with cf(γ) > λ, obtain Mα as a module

C from Lemma 2.1 with X =Mγ +Lα and A =M . Otherwise said, Mα is a λ+–purification of
Mγ + Lα in M . Notice that κ = κλ (even in ZFC) because cf(κ) = λ+ and κ is strong limit. In
the last remaining case, there are two possibilities:

(i) Every f ∈ HomR(Mγ , B) can be extended to an element of HomR(K,B) whenever Mγ ⊆
K ⊆ M and |K| ≤ κ. Then proceed as in the previous step.
(ii) There is an f ∈ HomR(Mγ , B) which does not extend to some submodule K ⊃ Mγ of M
with |K| ≤ κ. Then take X = K + Lα instead of Mγ + Lα.

By Corollary 2.4, we have M/Mα ∈ DQ whenever α is non–limit. If cf(α) > λ, then Mα is
also a λ+–pure submodule in M since the ≤ λ parameters in the system of equations have to
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be contained in some Mβ for β < α non–limit. Thus M/Mα ∈ DQ again. Regardless of the
cofinality of α, we have Mα ∈ DQ since all the modules Mα are pure in M . If there is no n < ω
such that F ∈ Pn, then the filtration M = (Mα | α ≤ κ+) has the desired properties and we
can skip the following paragraph.
If F ∈ Pn for some n < ω, we know that M ∈ Pn+1 by Proposition 2.5(iv). Then there

is a filtration (Pα | α ≤ κ+) with |Pα| ≤ κ for α < κ+, and such that its consecutive factors
belong to Pn+1 (cf. [15, 4.1.11]). Further, the set S = {α < κ+ | Pα = Mα} is closed and
unbounded in κ+. Since E(λ+) is stationary in κ+, we can define a continuous non–decreasing
function f : κ+ → S such that f(α + 1) ∈ E(λ+) for all α < κ+. If we put f(κ+) = κ+ and
f(0) = 0, then (Mf(α) | α ≤ κ+) is a filtration of M with the same properties as (Mα | α ≤ κ+).

Additionaly, for all α ≤ κ+, we have Mf(α),M/Mf(α) ∈ Pn+1 by Eklof Lemma. For the sake of

convenience, we renumber the modules Mα by putting Mα :=Mf(α); thenM = (Mα | α ≤ κ+)
is a filtration of M with the desired properties.
We show that we can find a subfiltration of M with consecutive factors in A. The only

possible obstacle could be that the set D = {α < κ+ | Mα+1/Mα 6∈ A} is stationary. If so, by
the construction ofM, we have that D =

⋃

{E(µ)∩D | µ is an infinite regular cardinal, µ ≤ λ}.
It follows that there is some µ ≤ λ such that E(µ) ∩ D is stationary (since a union of ≤ κ
non–stationary subsets of κ+ cannot be stationary). We have that κµ = κ and SCH implies
2κ = κ+. Thus we have ♦κ+(E(µ)∩D) by the set–theoretic results mentioned above. It follows
immediately from the definition of ♦ that ♦κ+D holds too. So we may use [15, Lemma 10.1.1]
(see also [22, Lemma 1.2]) to conclude that M 6∈ A which is a contradiction with M ∈ DQ.
Now since we know that D is not a stationary subset in κ+, we can choose a closed and

unbounded subset U of κ+ such that E ∩ U = ∅, and we can take the subfiltration M′ =
(M ′

α | α < κ+) of M indexed by the elements of U . The step (ii) of our construction has
guaranteed that, in M, whenever there is α < β < κ+ with Mβ/Mα 6∈ A then it was the case
that Mα+1/Mα 6∈ A too. It means that all consecutive factors in M′ have to belong to A.
Finally, C = {α < κ+ | M ′

α = Lα} is closed and unbounded in κ+. Thus there are ν, µ ∈ C
such that ν < µ and cf(ν) = ω. We know that M ′

µ/M ′
ν ∈ A by Eklof Lemma. At the same

time however, Lµ/Lν =M ′
µ/M ′

ν contains N as a direct summand by Proposition 2.5(iii). So we
arrived at the desired contradiction with N 6∈ A which completes our proof. ¤

Remark 2.7. By an unexpected result of Shelah from [25, pg. 309], for cardinals κ ≥ iω(ℵ0),
2κ = κ+ holds if and only if ♦κ+ . It says in fact that the diamond principle loses its combinatorial
strength above the first singular strong limit cardinal; the implication ♦κ+ ⇒ 2κ = κ+ is trivial.
For our case, it means that SCH is not a uselessly strong assumption. In fact, we cannot weaken
it much further if we intend to use [15, Lemma 10.1.1] as the key step in the proof of Theorem
2.6.

The following implies Theorem 0.2(2):

Theorem 2.8. (SCH) Let R be a countable ring. Then a module B is cotorsion if and only if
Ext1R(D, B) = 0. So ⊥(D⊥

Q) = FL for any class of left R–modules Q.

Proof. The only–if part is trivial, so let us turn our attention to the if one. Recall that over a
countable ring, the class of all flat modules is ℵ1–deconstructible. In other words, in order to
show that B is a cotorsion module, it suffices to prove that Ext1R(N, B) = 0 for every countable
flat module N . Since any flat module is a direct limit of free ones, which are always in D,
Theorem 2.6 applies. ¤

Next, we prove Theorem 0.2(3):

Theorem 2.9. Let R be a ring such that ⊥(D⊥) = FL and FL consists of modules of projective
dimension ≤ 1. Then D is a precovering class if and only if R is right perfect.

Proof. If R is a right perfect ring, then D = FL is covering by a classic result of Bass. For the
rest of the proof, we assume that R is not right perfect. So there exists a flat module N which is
not ℵ1–projective. Let us denote by H the cotorsion hull of N . Then H is also flat, and H /∈ D
because D is closed under pure submodules. Assume there exists a D–precover f : D → H.
Since D contains a projective generator, f is surjective.
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By assumption, for each non–cotorsion submodule B of D there exists UB ∈ D such that
Ext1R(UB , B) 6= 0. Let U =

⊕

B UB and let

0 −−−−→ K
θ

−−−−→ F −−−−→ U −−−−→ 0

be a projective presentation of U . By assumption, K is projective. We are going to define a
module G ∈ D and an epimorphism g : G → H which cannot be factorized through f ; this will
contradict the assumption that f is a D–precover of H.

G will be constructed as the last term of a continuous chain (Gα | α ≤ τ) of modules from D.
The ordinal τ will be chosen ≤ µ+, where µ = |D|. Together with the chain (Gα | α ≤ τ), we
will also construct a chain (gα | α ≤ τ) of epimorphisms gα : Gα → H.
We start with G0 = R(H), and let g0 : G0 → H be any epimorphism. For the induction step,

assume that Gβ and gβ : Gβ → H are defined for all β < α ≤ µ+. Then Gα and gα are defined
as the unions of the respective objects constructed in previous steps provided that α is limit.
The case of α non–limit is divided into two subcases:

(i) α = γ + 1 is an odd ordinal. This step is almost identical to the one in the proof of [12,
Theorem 5.8]. Denote by Iγ the set of all homomorphisms h from Gγ to D such that Im(fh) = H
and Im(h) is not cotorsion. For each h ∈ Iγ there exists a φh ∈ HomR(K, Im(h)) that cannot
be factorized through θ. Moreover, since K is projective, there is ψh ∈ HomR(K,Gγ) such that

φh = hψh. Denote by Θ the inclusion of K(Iγ) into F (Iγ), and define Ψ ∈ HomR(K
(Iγ), Gγ) so

that the h-th component of Ψ is ψh, for each h ∈ Iγ . The module Gα is defined by the pushout
of Θ and Ψ:

K(Iγ) Θ
−−−−→ F (Iγ)

Ψ





y

Ω





y

Gγ
⊆

−−−−→ Gα.

Since U (Iγ) is flat and H is cotorsion, gγ extends to some gα : Gα → H.

(ii) α = γ+1 is an even ordinal. In this step, we will deal with cotorsion submodules ofD. Denote
by Jγ the set of all cotorsion submodules C of D which are images of some h ∈ HomR(Gγ , D)
and such that Im(f ↾ C) = H, that is, C +Ker(f) = D. Note that for each C ∈ Jγ , C ∩Ker(f)
is not a cotorsion module. Otherwise C = (C ∩Ker(f))⊕C ′ where C ′ ∼= D/Ker(f) ∼= H, hence
D = Ker(f) ⊕ C ′, and H ∈ D, a contradiction. Since Ext1R(U,C) = 0, it follows that for each
C ∈ Jγ , there exists a homomorphism ψC : U → H which cannot be factorized through f ↾ C.

Define Gα = Gγ ⊕ U (Jγ) and extend gγ to gα using the maps ψC .

In both cases, we have that Gγ+1/Gγ ∈ D, so every Gα constructed is in D. Note that for
γ < µ+, either Gγ 6= Gγ+1 or Gγ+1 6= Gγ+2 (otherwise gγ cannot be factorized through f , so f
is not a D–precover of H).
So G = Gµ+ is defined, and g = gµ+ can be factorized through f , that is, there is h : G → D

such that fh = g. Put C = Im(h). Then there is γ < µ+ such that Im(h ↾ Gα) = Im(h ↾ Gγ)
whenever γ < α ≤ µ+ (because µ = |D|). We can assume that γ is odd provided that C is
cotorsion, and even otherwise.
If γ is even, we use the same argument as in the proof of [12, Theorem 5.8]. Put h0 = h ↾ Gγ

and h1 = h ↾ Gγ+1. Then h1Ω extends h0Ψ to a homomorphism F (Iγ) → C. Denote by ιh0

and ι′h0 the h0-th canonical embedding of K into K(Iγ) and of F into F (Iγ), respectively. Then
h1Ωι′h0 extends h0Ψιh0 = h0ψh0 = φh0 to a homomorphism F → C, in contradiction with the
definition of φh0 .
If γ is odd, C ∈ Jγ and the factorization h ↾ Gγ+1 of gγ+1 through f yields a factorization of

ψC through f ↾ C, a contradiction.
So g ∈ HomR(G,H) cannot be factorized through f , a contradiction. ¤

We finish by a discussion of the two assumptions of Theorem 2.9.
The rings R for which FL consists of modules of projective dimension ≤ 1 include all right

hereditary rings (trivially), all countable rings (because a countably presented flat module has
projective dimension ≤ 1 by a classic result of Jensen and Osofsky), all commutative noetherian
rings of Krull dimension ≤ 1 (by a classic result of Gruson and Jensen), and all almost perfect
domains (by a recent result of Fuchs and Lee, [13, Corollary 6.4]).
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In particular, assertion (4) of Theorem 0.2 follows from its parts (2) and (3).

As for the condition ⊥(D⊥) = FL, we first recall the following recent results:

Lemma 2.10. Let R be a ring.
(i) Assume that the class D is closed under direct products. Then ⊥(D⊥) = FL.
(ii) The class D is closed under direct products, iff R is left coherent and for each n ≥ 1,

intersections of arbitrary families of finitely generated left R–submodules of Rn are finitely gen-
erated. In particular, this holds when R is left noetherian.
(iii) Let R be a von Neumann regular ring. Then D is the class of all modules M such that

each finitely generated submodule of M is projective. If R is left or right self–injective then D is
closed under direct products.

Proof. (i) is proved in [4], (ii) in [18, Theorem 4.7], and (iii) follows from [18, Propositions 3.4
and 4.11]. ¤

There is an immediate corollary of Theorem 2.9 and Lemma 2.10(i):

Corollary 2.11. Let R be a non–right perfect ring such that D is closed under direct products
and FL consists of modules of projective dimension ≤ 1. Then D is not a precovering class. In
particular, this holds when R is 1–Gorenstein.

Notice that unlike Theorem 0.2(4), Corollary 2.11 does not cover all countable non–right
perfect rings:

Example 2.12. Let R be any countable von Neumann regular ring such that R is not right
perfect (For example, let R = lim

−→n<ω
M2n(K) where K is a countable field, Mm(K) denotes the

full m×m matrix ring over K, and the direct system maps are induced by the 2–block diagonal
ring embeddings of M2n(K) into M2n+1(K) for each n < ω.) We will show that D is not closed
under direct products.
Since R is countable and von Neumann regular, each finitely generated left ideal is principal,

generated by an idempotent, and each infinitely generated left ideal is generated by a countable
set of orthogonal idempotents, see [16, §2]. Let {ei | i < ω} be an orthogonal set of non–zero
idempotents generating an infinitely generated maximal left ideal I =

⊕

i<ω Rei of R (such left
ideal exists because R is not right perfect).
Consider the decreasing chain of left ideals

R(1− e0) ) R(1− e0 − e2) ) · · · ) R(1−
∑

j<i

e2j) ) R(1−
∑

j≤i

e2j) ) · · · .

Assume D is closed under direct products. Then, by Lemmma 2.10(ii), the intersection of this
chain is finitely generated, so

⋂

i<ω R(1−
∑

j<i e2j) = Rf for an idempotent f ∈ R. Note that

for each r ∈ R, we have r.f = r iff r.e2i = 0 for all i < ω. It follows that
⊕

i<ω Re2i ∩ Rf = 0,
and

⊕

i<ω Re2i+1 ⊆ Rf . So I (
⊕

i<ω Re2i⊕Rf , whence
⊕

i<ω Re2i⊕Rf = R, in contradiction
with R being finitely generated.

Finally, we prove that in the particular case of von Neumann regular rings, the condition ‘FL
consists of modules of projective dimension ≤ 1’ in Corollary 2.11 can actually be dropped.

Proposition 2.13. Let R be a von Neumann regular ring which is not right perfect. Assume D
is closed under direct products (for example, assume R is left or right self–injective). Then D is
not a precovering class.

Proof. Since R is von Neumann regular, each module is flat, and each cotorsion module is
injective. By Lemma 2.10(iii), D coincides with the class of all modules M such that each
finitely generated submodule of M is projective. Since R is non–singular, D ⊆ N where N
denotes the class of all non–singular modules. Notice that N is closed under injective hulls.
By assumption, R is not right perfect, so there is a simple non–projective module S. Clearly

S is singular, so E(S) /∈ N where E(S) denotes the injective hull of S.
Assume there is a D–precover f : D → E(S) of E(S). Since D contains all projective modules,

f is surjective. Moreover f extends to g : E(D) → E(S), and E(D) ∈ N . Take an arbitrary
D′ ∈ D and consider the exact sequence

0 −−−−→ K −−−−→ E(D)
g

−−−−→ E(S) −−−−→ 0.
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Then Ext1R(D
′, E(D)) = 0, HomR(D

′, g) is surjective because f is D–precover of E(S), and
Ext1R(D

′,K) = 0. So K ∈ D⊥ is cotorsion by Lemma 2.10(i). Then the exact sequence above
splits and E(S) ∈ N , a contradiction. ¤
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