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Abstract

The thesis deals with logic of questions (erotetic logic), which is one of the
branches of non-classical logic. In the introductory part we speak generally
about formalization of questions and the newest approaches to questions in
logic are summed up. We introduce a formalization based on sets of direct
answers and point out the role of inferences with questions. The rest of the
thesis consists of two parts that can be read independently.

The first part focuses on relationships among consequence relations in
inferential erotetic logic (IEL). We keep the framework of original IEL, intro-
duced by Andrzej Wísniewski, together with the representation of questions
by sets of direct answers. Answers are strictly formulas of the declarative lan-
guage. The mix of interrogatives and declaratives occours just on the level of
consequences. Consequence relations with questions are defined by means of
multiple-conclusion entailment among sets of declarative formulas. This way,
one can work with classes of models and to make transparent some properties
and relationships. We provide a general study of erotetic inferences based on
IEL that is open for non-classical applications.

The second part contains epistemic erotetic logic. A question is under-
stood as a set of direct answers; however, this time the set is finite. The
satisfiability of a question in a state (possible world) of an epistemic model
is defined by three conditions (a questioner does not know any direct answer,
each direct answer considers as possible and at least one of them must be the
right one). This approach is a new one and it is suitable for generalization
to every epistemic-like system by questions and common erotetic concepts
(e.g., various types of answers and erotetic inferences). The goal of this study
is a future application in communication theory of a group of agents. We
finish this part by multi-agent public announcement logic with application
of questions by answer mining in a group of agents.



Abstrakt

Práce se zabývá jedńım z odvětv́ı neklasických logik – logikou otázek (erotet-
ickou logikou). V úvodńı části se hovoř́ı obecně o formalizovaném př́ıstupu
k otázkám v logice a současně je stručně shrnuta zejména nejnověǰśı historie
tohoto odvětv́ı. Zde je též zd̊uvodňována smysluplnost zachyceńı úsudk̊u,
v nichž se otázky objevuj́ı, a je představena formalizace otázky založená na
explicitńım stanoveńı množiny př́ımých odpověd́ı. Zbytek práce je rozdělen
na dvě části, které lze č́ıst nezávisle.

Prvńı část se zabývá d̊usledkovými relacemi v inferenčńı erotetické logice
(inferential erotetic logic). Plně zde využ́ıváme rámec p̊uvodńı inferenčńı
erotetické logiky zavedené Andrzejem Wísniewskim. Použ́ıváme výhradně
formalizaci otázek pomoćı množiny př́ımých odpověd́ı, kdy př́ımé odpovědi
jsou formule deklarativńıho jazyka. Protože jsou d̊usledkové relace s otázkami
definovány pomoćı klasického v́ıcezávěrového sémantického d̊usledku, využ́ı-
váme při d̊ukazech př́ıstup založený na tř́ıdách model̊u. V této části nám
jde o obecný př́ıstup ovšem s omezeńım, kdy je deklarativńı jazyk rozš́ı̌ren
o otázky, ale k propojeńı deklarativńıho a interogativńıho jazyka dojde až
na úrovni d̊usledkových relaćı. Primárńım zájmem je studovat vztahy mezi
jednotlivými erotetickými d̊usledkovými relacemi.

Druhá část obsahuje epistemickou erotetickou logiku. Prvotńı je epis-
temický rámec tvořený zvolenou epistemickou logikou. Otázka je nadále
formalizována jako množina př́ımých odpověd́ı, tentokrát však uvažujeme
konečnou variantu a jej́ı splněnost v možném světě epistemického modelu
je vázána na platnost tř́ı epistemických podmı́nek (tazatel nezná žádnou z
odpověd́ı, každou z př́ımých odpověd́ı však považuje za možnou a alespoň
jedna z př́ımých odpověd́ı muśı být správná). Jde o nový př́ıstup, který
umožňuje rozš́ı̌rit libovolný epistemický systém o otázky a s nimi spojenou
erotetickou terminologii (r̊uzné typy odpověd́ı, inference s otázkami a daľśı).
Přestože i zde se snaž́ıme o obecný systém, naš́ım hlavńım ćılem je komu-
nikace ve skupině agent̊u při hledáńı odpověd́ı na otázky. V závěru druhé
části tak představujeme multiagentńı logiku veřejného vyhlášeńı (public an-
nouncement logic) s otázkami a skupinovými znalostmi.



Preface

The work on this thesis started in 2003 when I met logic of questions—the
branch of logic, which seemed to me very promising in possible applications
and open for an extensive development. At the very beginning, I balanced
between the reasons for and against having a special logic of questions. Then
I was lucky to find two erotetic logics that proved their vitality in the recent
years. The first one was inferential erotetic logic (IEL) developed by Andrzej
Wísniewski and his collaborators and the second one was an intensional ap-
proach to questions of Jeroen Groenendijk and Martin Stokhof.

My interest in non-standard consequence relations brought me to the
study of inferential erotetic logic first. IEL provides consequence relations
with declaratives as well as interrogatives. I decided to learn this system,
to go through the relationships of inferences with questions and, inspired by
the methodology of a question representation used in IEL, to suggest some
generalizations and new relationships. (See chapter 2.)

During the study of IEL, I worked with my colleagues on epistemic in-
terpretation of the relevant logic, see our results in [22] and in [2]. This
and the intensional approach of Groenendijk and Stokhof were inspiration
for my own extension of epistemic logic by questions. In many approaches
to the formalization of interrogative sentences, epistemic terminology is used
and questions are often seen as requirements of knowledge completion. I
wished to formulate a completely general framework that can be used in all
‘epistemic-like’ systems. Such aspirations were successful, and the findings
are presented in chapter 3. Naturally, if there is an epistemic system with
questions, it is only one step away to its dynamic application. In the thesis
I decided to use public announcement logic together with a group epistemic
modalities and chapter 4 contains results obtained in this field.

Structure of the thesis

The thesis includes two main parts that can be read independently. The first
one is chapter 2 and the second one consists of chapters 3 and 4. Chapter 1
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provides common methodology for both parts. Chapter 2 can be understood
as an inspiration of some erotetic concepts used in the rest of the thesis. The
mentioned independence of chapter 2 and chapters 3 and 4 is also implied
by the fact that these parts are based on separate papers—chapter 2 was
published in [31] and a simplified version of chapters 3 and 4 appeared in [32]
for the first time and [33] contains the last results from chapter 4.

Chapter 2

↗
Chapter 1

↘
Chapter 3 → Chapter 4

Chapter 2 can be read as a full introduction to the topic. In chapters 3 and
4 it is not the case, the basic knowledge of modal logic is required.

The last chapter 5 contains some final remarks to the used set-of-answers
methodology, to the main results in the second part of the thesis, and to the
related approaches, and also discusses further directions.

Chapter 1: Logic and questions

The chapter briefly introduces the multi-paradigmatic situation in the metho-
dology of erotetic logic and contains a short historical overview of this branch
of logic with a special emphasis on the recent development. We introduce
briefly inferential erotetic logic, Groenendijk-Stokhof’s intensional approach,
and some developments of these theories. However, the core of the chapter is
devoted to a formalization of questions based on sets of answers. We justify
the usefulness of the methodology in the study of consequence relations with
questions as well as in an epistemic interpretation of questions.

Chapter 2: Consequence relations in inferential erotetic
logic

This part is aimed to study relationships among consequence relations that
were introduced by inferential erotetic logic (IEL). We keep the framework of
IEL, but the question representation uses the methodology from chapter 1.
IEL requires that declarative and interrogative formulas are not mixed on
the object-language level. Also, answers are strictly declarative sentences.
The defined consequence relations with questions are naturally based on the
multiple-conclusion entailment among sets of declarative formulas. We add
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the semantic range of a question to the terminology of IEL and sets of declar-
atives are associated with classes of models. This ‘model-based approach’
makes proofs and properties transparent. This chapter, a technical overview
of some IEL concepts and their properties, can provide a general framework
and inspiration for the work with inferences among questions and declara-
tives.

Chapter 3: Epistemic logic with questions

The main goal is to incorporate questions in a general epistemic framework.
Questions are considered to be finite sets of direct answers and their satisfi-
ability in a state of an epistemic model is based on three conditions, which
express ignorance and presuppositions of a questioner. While this definition
of questions’ askability is fully general for any ‘epistemic-like’ system and
it is not necessary to keep the finite set-of-answers methodology, we work
with the normal multi-modal propositional logic K as a background for the
introduction of multi-agent epistemic logic. In this framework, a question
becomes a complex modal formula. Inspired by inferential structures in IEL,
we show that there are ‘philosophically’ similar structures based on classical
implication. The rest of the chapter is devoted to answerhood conditions and
the role of implication with respect to epistemic context and conjunctions of
yes-no questions.

Chapter 4: A step to dynamization of erotetic logic

This chapter takes the full advantage of the multi-agent setting from chap-
ter 3 and can be considered as an application of the introduced erotetic-epi-
stemic approach in a dynamic framework. We define here an epistemic logic
based on the modal system S5 extended by group modalities together with
public announcement modality. Askablity of questions as well as answerhood
conditions are studied from the viewpoint of groups of agents. Finally we
show the role of questions and group modalities in answer ‘mining’ among
agents.
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Chapter 1

Logic and questions

1.1 Questions, answers, and inferences

In this chapter we wish to show that it is reasonable to consider questions as a
part of logical study. In logic, declarative sentences usually have their formal
(logical) counterparts and play an important role in argumentation. We
often see logic to be primarily a study of inferences. Inferential structures are
studied in formal systems, which can differ in the formalization of declaratives
as well as in admitting or rejecting of some principles.

We believe that the dealing with questions in the logical framework will be
justified if we show that questions can play an autonomous and important role
in inferences. Perhaps this point may be considered as the most important
to justify logic of questions.1

This introductory chapter provides a brief overview of history as well as
methodology in recent approaches to erotetic logic. However, the main aim is
to concentrate on a methodology used in the rest of the paper—we introduce
and discuss a variant of the methodology based on sets of answers.

1.1.1 Questions and answers

Let us imagine a group of three players: Ann, Bill, and Catherine. Each of
them has one card and nobody can see the cards of the others. One of the
cards is the Joker and everybody knows this fact. Then

Who has the Joker?

is a reasonable sentence in this situation. We recognize it as an interrogative
sentence because of its word order and the question mark. The hearing

1In this paper we use the term logic of questions in the same meaning as erotetic logic,
a discussion on both terms can be found in [16].

1



1.1. Questions, answers, and inferences

or uttering of an interrogative is followed by intonation and interrogative
pronounce.

An interrogative sentence includes a pragmatic aspect. It is a “request to
an addressee to provide the speaker with certain information”—interrogative
speech act [14, p. 1057]. Pragmatic approach emphasizes the roles of a
speaker and an addressee, which seem to be outside of the interrogative
context, but it seems very important in an analysis of questions. This can
be the reason why some logicians argue against erotetic logic.

If we want to work with interrogatives in a formal system, we have to
decide two problems:

1. What is the formal shape of questions?

2. What is the (formal) semantics of questions?

Reviewing the history of erotetic logic, there is no unique solution. There
are many approaches to the formalization of questions and every approach
varies according to what is considered as important. Logic of questions is
considered to be multiparadigmatic. This is nicely illustrated by Harrah’s
examples of ‘meta-axioms’, see [15, pp. 25–26]. He groups them into three
sets according to the acceptance by erotetic logicians.

1. The first group includes meta-axioms accepted in almost all systems.
Harrah calls them absolute axioms and examples are:

(a) Every question has at least one partial answer.

(b) (In systems with negation) For every statement P , there exists a
question Q whose direct answers include P and the negation of P .

(c) Every question Q has a presupposition P such that: P is a state-
ment, and if Q has any true direct answer, then P is true.

2. The second group, standard axioms, is often accepted, but not in all
systems.

(a) Every question has at least one direct answer.

(b) Every direct answer is a statement.

(c) Every partial answer is implied by some direct answer.

(d) Every question is expressed by at least one interrogative.

(e) Each interrogative expresses exactly one question.

(f) Given an interrogative I there is an effective method for deter-
mining the direct answers to the question expressed by I.

2



1.1. Questions, answers, and inferences

3. The last group is called excentric axioms. Thus, the following examples
of such axioms are accepted only in some interrogative systems.

(a) If two questions have the same direct answers, then the two ques-
tions are identical.

(b) Every question Q has a presupposition that is true just in case
some direct answer to Q is true.

Let us notice the terminology, the difference between interrogative (sentence)
and question was just introduced by standard axioms. The first term mostly
refers to a type of sentence and the second one is a bit more complex. A ques-
tion is expressed by an interrogative (sentence) and can be ‘posed’, ‘asked’,
etc. Similarly, a proposition is expressed by a declarative (sentence), cf. [16].
Although we are used to use interrogative and question in the same meaning,
if necessary, the term interrogative sentence is reserved for a natural-language
sentence.

What seems to be common to all approaches is viewing questions as
something structured and connected with answers. The relationship

question — answer(s)

is a very conspicuous sign and the meaning of questions is closely connected
to answerhood conditions.

Since an answer to a question is often represented by a declarative, the
starting point of many erotetic theories is a formal system for declaratives.
“Any first-order language can be supplemented with a question-and-answer
system” [44, p. 37]. This broadly accepted statement combines both the
formal shape and the meaning of a question. Questions’ autonomy de-
pends on the chosen solution. Wísniewski distinguishes two basic groups of
erotetic theories: reductionist and non-reductionist theories. Roughly speak-
ing, non-reductionism is characterized by questions that “are not reducible to
expressions of other syntactic categories” [44, p. 40]. The boundary between
both groups is vague. Perhaps only pure pragmatically oriented approaches
belong to the radical reductionism with a complete rejection of questions as
a specific entity. An example of such approach is commented in [30].

1.1.2 Inferences with questions

Although there is a discussion whether it is necessary to work with questions
as a new specific entity, almost all theorists agree that questions play a
specific role in inferences. Let us come back to our group of players. The

3



1.1. Questions, answers, and inferences

situation, where the Joker is held by a member of the group, can raise to the
question

Q: Who has the Joker?

from the declarative

Either Ann has the Joker or Bill has the Joker or Catherine has
the Joker.

What makes this raising reasonable are answerhood conditions of Q con-
nected to the declarative.

Another kind of inferential structure is based on declaratives as well as
questions among premises. For example, from

Q: Who has the Joker?

and

Γ: The only person from London has the Joker.

can be inferred the question

Q1: Who is from London?

The relationship of the inferred question Q1 and the question Q is based on
their answerhood conditions again. An answer to Q can provide an answer
to Q1 with respect to the context Γ. Moreover, in this example, Q can be
inferred from Q1 and Γ as well. This shows that the relationship is structured
dependently on various kinds of answerhood conditions and contexts. Let us
have Q the same, but the context is

A person from London has the Joker.

If two persons are from London and we gain their names in an answer to Q1,
then we receive only a partial answer to Q.2 If each player (or nobody) is
from London and an answer to Q1 does not provide any help for the answering
of Q, it has no sense to speak of an inferential relation between Q and Q1

with respect to this context.
The role of answerhood conditions in inferences among questions is clearly

obvious in the following example: From any (complete) answer to Q we gain
a (complete) answer to the question

2Informally, a partial answer does not completely answer a question, but it eliminates
some of the possible answers.
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1.2. Set-of-answers methodology

Has Ann the Joker?

as well as for the questions

Has Bill the Joker?

and

Has Catherine the Joker?

Roughly and informally speaking, answerhood conditions of the previous
three questions are ‘entailed’ in the answerhood conditions of the question
Q; they can be inferred from the answerhood conditions of Q. The question
Has Ann the Joker? is ‘entailed’ by Q.

Though we do not doubt that there are inference-like structures with
questions based on answerhood conditions, we have been still faced with the
problem how to formalize the relationship of questions and answers. We see
the convenient solution in a liberal set-of-answers methodology.

1.2 Set-of-answers methodology

In the previous section we emphasized the close connection of questions and
answers in most erotetic theories as well as in inferential structures with
questions. We believe that we can solve the problem of the formal shape
of questions together with the problem of the questions’ semantics. In this
section we introduce a formalization of questions based on a set of answers.
Our aim is to show that such approach can also reflect some semantic and
pragmatic requirements.

1.2.1 Semantics of questions

Some theories do not admit that questions could have an independent mean-
ing in logic. For example, questions are paraphrased by declarative sentences;
the question Who has the Joker? may be then paraphrased by

I ask you who has the Joker.

Another way is the paraphrasing by epistemic-imperative sentences:

Bring it about that I know who has the Joker!

5



1.2. Set-of-answers methodology

The propriety of both paraphrases as a complete meaning of a question is
rather problematic. Although we expect to utilize the importance of a ques-
tioner and an addressee later on, now it may be second-rate from the semantic
viewpoint.

Nuel Belnap formulated three methodological constraints on a theory
of questions, which he used for a classification and evaluation of erotetic
theories:3

1. Independence Interrogatives are entitled to a meaning of their own.

2. Equivalence Interrogatives and their embedded forms are to be tre-
ated on a par.

3. Answerhood The meaning of an interrogative resides in its answer-
hood conditions.

The most important is the first requirement, which is the main sign of
non-reductionist theories. To accept ‘independence requirement’ means that
we are obliged to look for a specific semantics of questions. The ‘equivalence
requirement’ is closely related to a semantic entailment and is dependent on
the chosen semantics. The ‘answerhood’ requires that the meaning of ques-
tions is related to the meaning of answers. Moreover, we can work with the
idea that the semantics of answers forms a good background for the study of
the meaning of interrogatives. The approach, where answers are crucial for
the meaning of questions, is displayed in Hamblin’s postulates from 1958:

1. Knowing what counts as an answer is equivalent to knowing the ques-
tion.

2. An answer to a question is a statement.

3. The possible answers to a question are an exhaustive set of mutually
exclusive possibilities.

Each postulate may be argued against and the detailed discussion is available
in [14]. However, according to David Harrah, adopting the first one is “the
giant step toward formalization often called set-of-answers methodology” [16,
section 2]. Although there are many kinds of set-of-answers methodology
(SAM, for short) in the literature, we will not make any survey here. In the
next subsection we introduce an easy idea of a question representation by a
set of direct answers.

3Belnap, N.D., ‘Approaches to the semantics of questions in natural language. Part I’,
Pittsburgh, 1981. Cited from [13, p. 3–4].
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1.2. Set-of-answers methodology

1.2.2 Sets of answers

Generally, without any context, the question Who has the Joker? can be
answered by expressions of the following form:

Ann.
Ann has it.
Ann has the Joker.
Ann and Bill.
...
Batman has the Joker.
...
Your friends.
People at this table.
...
Nobody.
etc.

The question seems to be answered if a (complete) list of Joker’s owners is
given. We can assume that answers are sentences; thus, the first three items
in the list have the same meaning in the answering of this question. From
the viewpoint of propositional logic and in accordance with the first two
Hamblin’s postulates, we can understand every question closely connected
with a set of (propositional) formulas—answers.

Of course, we can receive the following responses to the same question as
well:

Ann hasn’t the Joker.

or

I don’t know who has the Joker.

Neither of them answers completely the question Who has the Joker?. The
first one can be considered to be a partial answer; it removes some answers
as impossible, e.g., all answers with Ann having the Joker. The second one
appears to bear another kind of information; an addressee says to a questioner
that she has the same problem and would ask the same question. We will
return to this topic shortly in Section 4.4.

If we had decided to represent every question by a complete set of its
answers, we would not have a clear and useful formalization of questions.
Let us return to our example. Considering the context, a questioner expects
one of the following responses to the question Who has the Joker? :

7
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α: Ann has the Joker.
β: Bill has the Joker.
γ: Catherine has the Joker.

In fact, the question might be reformulated to

Q′: Who has the Joker: Ann, Bill, or Catherine?

The question Q′ is a combination of the question

Who has the Joker?

and the context

Either Ann has the Joker or Bill has the Joker or Catherine has
the Joker.

Of course, various responses to Q′ can be received again, but the ‘core’ an-
swers (the term direct answers will be used) are α, β, and γ. The sentence

δ: Neither Ann nor Bill have the Joker.

is an answer, from which γ is inferred thanks to the context; δ is a complete
answer to Q′. Complete answers are ‘solutions’ of a question and the set of
direct answers is a subset of the set of complete ones.

Our SAM is inspired by the syntactic representation of questions in in-
ferential erotetic logic founded by Andrzej Wísniewski.4 We want to be very
liberal and this leads us to considering questions to be sets of formulas,
which play the role of direct answers. A (general) declarative language L is
extended only by curly brackets ({, }) and question mark (?).

A question is the following structure

?{α1, α2, . . .}

where α1, α2, . . . are formulas of the extended language.
No wonder that we want to impose some restrictions on direct answers

to keep their exclusive position. Such restrictions are mostly combination
of syntactic as well as semantic requirements. From the syntactic viewpoint
and being inspired by the previous examples, we require:

1. Formulas α1, α2, . . . are syntactically distinct.

2. A set of direct answers has at least two elements.

4The best overview of questions’ formalization in inferential erotetic logic is in the
chapter 3 of the book [44]. See the article [46] as well.
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1.2. Set-of-answers methodology

Both restrictions introduce questions as ‘tasks’ with at least two distinct
‘solutions’. Syntactical distinctness is a first step to the idea that direct
answers form the ‘core’ of questions’ meaning. In semantics we will require
non-equivalence above that.

The most typical questions with only two direct answers are yes-no ques-
tions. The question

Has Ann the Joker?

has, in fact, the following two direct answers:

Yes. (Ann has the Joker.)
No. (Ann has not the Joker.)

Such question will be identified with the form ?{α,¬α} and shortened as
?α. A yes-no question is a variant of a whether question, where an answer
is a choice from two possibilities.5 The role of negation is considered to be
very important in SAM. Negation is always related to a background sys-
tem and receiving ¬α can mean more than ‘it is not the case that α’—it
expresses something like ‘strict denial of α’. Compare it with an epistemic
interpretation of relevant logic in [22].

We believe that the introduced SAM is more or less successful in for-
malization of most types of natural language interrogatives with respect to
the chosen background logical system. However, it brings more—the next
subsection informally shows how to incorporate epistemic aspects.

1.2.3 Epistemic aspects of SAM

In section 1.2.1 we used the paraphrase

Bring it about that I know who has the Joker!

for the question Who has the Joker? as it is common in Hintikka’s analysis
[17]. It is natural to see epistemic aspects in the meaning of questions. At
first sight, a question expresses an ignorance of a questioner delivered to an
addressee. Looking for an epistemic counterpart of questions in the history of
erotetic logic, the most known are epistemic-imperative approaches of Åqvist
and Hintikka. These theories are reductionist ones, questions are translated
into epistemic-imperative statements. Generally, both approaches are based
on the idea of a questioner who does not know any answer to a question and
who calls for a completion of knowledge.6

5For example, Is two even or odd? is such a question with a possible formalization
?{α1, α2}.

6More details are in [16] and [44, chapter 2].
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Epistemic analysis of questions has two important levels. The first one,
personal level, works with the knowledge and ignorance of a questioner. The
second one, pragmatic level, considers an exchange of information in a group
of agents, which is supposed to be used in a theory of communication.

Let us return to the question

Q′: Who has the Joker: Ann, Bill, or Catherine?

with the formalization based on the discussion in the previous section: Q′ =
?{α, β, γ}. Just introduced SAM makes it possible to specify expectations
and presuppositions of a questioner. A questioner expresses not only the
ignorance of Joker’s holder, but the presupposition that the holder must be
either Ann or Bill or Catherine. In the personal level, our SAM informs us
what answers are considered as possible and, moreover, what is the rank of
complete answers.

To employ the pragmatic level we have to indicate a questioner and an
addressee. In particular, if Catherine wants to find out who has the Joker
in the group of her friends-players, she could ask ?c{α, β} publicly among
them. This will be studied in chapters 3 and 4.

1.3 Note on the recent history of erotetic lo-

gic

We are not going to present a complete survey of erotetic theories. The
reader can find a comprehensive overview of the history of erotetic logic in
[16]. Erotetic theories with the main influence in this field of study are
described in [44, chapter 2] as well. Moreover, both papers provide a good
introduction to the terminology used in logic of questions and cover enough
the history of erotetic logic till the 1990s. The period from the 1950s till 1990s
is mapped in [15]. Mainly linguistic viewpoint with the detailed discussion
about the semantics of questions and pragmatic approaches can be found in
[14].

The logic of questions has, maybe surprisingly, a long history. F. Cohen
and R. Carnap seem to be the first authors attempting to formalize questions
in a logical framework—their attempts date back to the 1920s [16, p. 3]. The
first ‘boom’ of logical approach to questions took place in the 1950s (Ham-
blin, Prior, Stahl) and continued in the 1960s (Åqvist, Harrah, Kubiński).
The first comprehensive monograph on questions [1] brought into life many
important terms used in erotetic logic so far. The late 1970s gave birth to in-
fluential reductionist theories: Hintikka’s epistemic-imperative approach and
Tichý’s approach based on his transparent intensional logic [37].

10
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Most influential modern logics of questions with the important role of
erotetic inferences are

• intensional approach of Jeroen Groenendijk and Martin Stokhof and

• inferential erotetic logic (IEL) of Andrzej Wísniewski.

Both theories appears fully developed in the 1990s and we consider them
giving birth to several approaches some of which are still influential.

1.3.1 Inferential erotetic logic

Wísniewski’s IEL is a complex system dealing with various interrogative in-
ferential structures. The influence of Belnap’s and Kubiński’s works is appar-
ent. Primarily it is based on classical logic and a formalization of questions,
which is very similar to the introduced SAM. Conclusion relations among
questions and declaratives are defined on the metalanguage level where the
role of multiple-conclusion entailment is important. The advantage of IEL
is its possible generalization for non-classical logics. Chapter 2 is devoted
to the slightly modified IEL. All important terms concerning interrogative
inferences are introduced and studied in their mutual relationships. In this
chapter the reader can find a list of relevant publications to this topic. The
book [44] and article [46] contain a nicely written presentation of Wísniewski’s
approach.

The complex study of erotetic inferential structures in IEL predetermines
studies based on an old idea that a (principal) question can be answered
by asking auxiliary questions. This searching process can be seen as a tree
with a principal question (and context expressed by declaratives) in the root.
Nodes bear auxiliary questions (with context). A move from node to node is
justified by IEL inferences in the direction to leaves with answers. Erotetic
search scenarios is the name for this approach, see the paper [47]. The
similar idea is developed in Hintikka’s interrogative model of inquiry reflecting
the usefulness of questions in reasoning [18]. Hintikka’s approach has an
application in game-theoretic framework for belief revision theory, cf. [10].7

The IEL methodology makes it possible to transform the derivability of a
declarative formula into a sequence of questions and produce an analytic-tab-
leaux style calculus—socratic proofs, see [49] for classical propositional logic
and [21] for some normal modal propositional logics.

7IEL used to be presented as an alternative to Hintikka’s approach (cf. [46, 47]).
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1.3.2 Intensional erotetic logic

Groenendijk’s and Stokhof’s approach can be called intensional erotetic logic.
Intensional semantics is the background of the meaning of questions. The
meaning of a declarative sentence is given by truth conditions and forms a
subset of logical space. Logical space is understood as a set of all ‘possible
states’ (possible worlds, indexes, situations). Intension of a declarative is
then a set of states where the declarative is true (this is called proposition).
Extension of a declarative is its truth value in a given situation. Combin-
ing intensional semantics with the full acceptance of Hamblin’s postulates
we obtain the meaning of a question as a partitioning of logical space. In
accordance with the third postulate, answers to a question form exhaustive
set of mutually exclusive propositions. Partitioning of logical space is the
intension of a question. Extension of a question in a given situation is the
answer, which is true there. Questions’ representation is similar to SAM
with restrictions posed by Hamblin’s postulates. This approach introduces
an entailment between two questions as a refinement of a partitioning:

A question Q entails a question Q1 iff each answer to Q implies
an answer to Q1.

(A question Q provides a refinement of the Q1-partitioning.) Moreover, many
important terms are naturally defined (partial answer, complete answer, in-
formative value of answers, and others). See [13] and [14].

This intensional approach influenced many works in the last ten years. It
is a good inspiration for epistemic representations of questions, see [6] and
[29]. Very recently the logic of questions receives more attention in connection
with dynamic aspects of epistemic logic and communication theory, cf. [40].

Groenendijk’s and Stokhof’s intensional interpretation inspired some ex-
tensional approaches. [27] brings a many-valued interpretation of declaratives
and interrogatives based on bilattices and in the paper [25] Gentzen style cal-
culus is presented.8 [34] gives a syntactic characterization of answerhood for
the partition semantics of questions and then the authors implement parti-
tion semantics in question answering algorithm based on tableaux theorem
proving [35].9

Presented logics of questions deal with questions as having ‘crisp’ answers.
However, we can imagine that there is a scale of answers, e.g., in case of yes-no
questions, the scale

yes — rather yes — rather no — no

8An algebraic approach, where sets of answers form distributive lattices, is studied also
in [19].

9Nice and brief comments are in [12].
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1.3. Note on the recent history of erotetic logic

is usual in questionnaires. Such kind of scale does not require to intro-
duce four new answers, but it corresponds to comparative degrees of truth
of the original yes-/no-answer. Truth-degrees are studied in multi-valued
logics. The paper [4] presents propositional Groenendijk-Stokhof’s erotetic
logic with fuzzy intensional semantics based on fuzzy class theory. Although
fuzzy logic seems to be suitable for the study of reasoning under vagueness,
its combination with logic of questions is still rather underdeveloped.
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Chapter 2

Consequence relations in
inferential erotetic logic

2.1 Introduction

Inferential structures that will be introduced and studied in this chapter
are based on the slightly adapted inferential erotetic logic (IEL). We utilize
the framework of this theory and show some properties, relationships, and
possible generalizations.

2.1.1 Adapted set-of-answers methodology in IEL

Inferential erotetic logic accepts only the first two Hamblin’s postulates and
tries to keep the maximum of the (classical) declarative logic and its conse-
quence relation. On the syntactic level of a considered formalized language, a
question is assigned to a set of sentences (direct answers). Direct answers are
declarative formulas, each question has at least two direct answers, and each
finite and at least two-element set of sentences is the set of direct answers to
some question [46, p. 11].

Let us apply our SAM introduced in the previous chapter. We define
a (general) erotetic language LQ. A (general) declarative language L is ex-
tended by curly brackets ({, }) and question mark (?).1 In the correspondence
with Section1.2 a question Q is the following structure

?{α1, α2, . . .}

For the set of direct answers of a question Q we will use the symbol dQ.

1In this chapter we use only propositional examples in the language with common
connectives (∧,∨,→,¬).
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2.1. Introduction

Let us repeat that direct answers are syntactically distinct and |dQ| ≥ 2.
Moreover, we require here that elements of dQ are declarative sentences.

In case of finite versions of questions ?{α1, . . . , αn} we suppose that the
listed direct answers are semantically non-equivalent. The class of finite
questions corresponds to the class of questions of the first kind in [44]. Some
of them are important in our future examples and counterexamples. Let us
mention two abbreviations and terms that are very frequent in this thesis:

• Simple yes-no questions are of the form ?α, which is an abbreviation
for ?{α,¬α}. If α is an atomic formula, then the term atomic yes-no
question is used.

• A conjunctive question ?|α, β| requires the answer whether α (and not
β), or β (and not α), or neither α nor β, or both (α and β). It is
an abbreviation for ?{(α ∧ β), (¬α ∧ β), (α ∧ ¬β), (¬α ∧ ¬β)}. Similar
versions are ?|α, β, γ|, ?|α, β, γ, δ|, and so on.2

In the original version of IEL, questions are not identified with sets of
direct answers: questions belong to an object-level language and are expres-
sions of a strictly defined form, but the form is designed in such a way that,
on the metalanguage level (and only here), the expression which occurs af-
ter the question mark designates the set of direct answers to the question.
Questions are defined in such a way that sets of direct answers to them are
explicitly specified. The general framework of IEL allows for other ways of
formalizing questions.3

To avoid a misunderstanding, we will use the following metavariables in
this chapter:

• small Greek letters (α, β, ϕ, . . .) for declarative sentences,

• Q,Q1, . . . for questions,

• capital Greek letters (Γ,∆, . . .) for sets of declaratives, and

• Φ,Φ1, . . . for sets of questions.

2.1.2 Consequence relations in IEL

Consequence relations are the central point of logic. Declarative logic can be
defined by its consequence relation as a set of pairs 〈Γ,∆〉, where Γ and ∆ are

2Original IEL uses the symbol ?±|α, β|, etc.
3Personal communication with Andrzej Wísniewski.
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sets of (declarative) formulas and ∆ is usually considered to be a singleton.
Inferential erotetic logic makes one step more and adds new consequence re-
lations mixing declaratives and interrogatives. The most important relations,
which we are going to introduce, are the following:

• Evocation is a binary relation 〈Γ, Q〉 between a set of declaratives Γ
and a question.

• Erotetic implication is a ternary relation 〈Q,Γ, Q1〉 between an initial
question Q and an implied question Q1 with respect to a set of declar-
atives Γ.

• Reducibility is a ternary relation 〈Q,Γ,Φ〉 between an initial question
Q and a set of questions Φ with respect to a set of declaratives Γ.

Motivations and natural-language examples of these consequence relations
will be introduced in the next sections. In the literature, let us recommend
texts [44, 46] for both the evocation and erotetic implication; reducibility is
studied in [20, 44, 50].

Our aim is to study erotetic consequence relations in a very general man-
ner, independently of the logic behind. The definitions of IEL consequences
are based on the semantic entailment and the model approach relative to the
chosen logical background.

2.1.3 Model-based approach

The following model-based approach was inspired by minimal erotetic se-
mantics from [46]. Let us introduce the set of all models for a declarative
language as follows:

ML = {M
∣∣ M is a (semantic) model for L}.

The term model varies dependently on a background logic L. If L is classical
propositional logic (CPL, for short), then MCPL is a set of all valuations.
In case of predicate logic it is a set of all structures with a realizations of
non-logical symbols. Because of the possibility of adding some other con-
straints for models we will deal with (e.g., finiteness, preferred models, etc.),
let us generally use a set M ⊆ML. If necessary, the background logic and
restrictions posed on models will be stated explicitly.

Speaking about tautologies of a logic L we mean the set of formulas

TautL = {ϕ
∣∣ (∀M ∈ML)(M |= ϕ)}.
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If a restricted set of models M is in use, we speak about M-tautologies

TautML = {ϕ
∣∣ (∀M ∈M)(M |= ϕ)}.

All semantic terms may be relativized to M. Each declarative sentence
ϕ (in the language L) has its (restricted) set of models

Mϕ = {M ∈M
∣∣ M |= ϕ}

and similarly for a set of sentences Γ

MΓ = {M ∈M
∣∣ (∀γ ∈ Γ)(M |= γ)}.

(Semantic) entailment

Let us recall the common (semantic) entailment relation. For any set of
formulas Γ and any formula ψ:

Γ |= ψ iff MΓ ⊆Mψ.

In case Γ = {ϕ} we write only ϕ |= ψ.

ϕ |= ψ iff Mϕ ⊆Mψ

Now, we introduce multiple-conclusion entailment (mc-entailment, for
short).

Γ ||= ∆ iff MΓ ⊆
⋃
δ∈∆

Mδ

If MΓ =M∆, let us write Γ ≡ ∆.4

Mc-entailment is reflexive (Γ ||= Γ), but it is neither symmetric nor tran-
sitive relation:

Example 1. Let Γ ⊆ TautL, ∆ be a set of sentences containing at least one
tautology and at least one contradiction, and Σ be such that

⋃
σ∈ΣMσ ⊂ML.

Then Γ ||= ∆ and ∆ ||= Σ, but Γ |6|= Σ.

Entailment is definable by mc-entailment:

Γ |= ϕ iff Γ ||= {ϕ}

On the other hand, mc-entailment is not definable by entailment. In this
context, the following theorem could be surprising at the first sight.5

4In case of the semantic equivalence of formulas ϕ and ψ it will be only written ϕ ≡ ψ.
On the other hand, two different sets of models do not imply the existence of two different
sets of sentences (in L).

5We say that mc-entailment is compact iff for each Γ ||= ∆ there are finite subsets
G ⊆ Γ and D ⊆ ∆ such that G ||= D.
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Theorem 1. Entailment (for logic L) is compact iff mc-entailment (for L)
is compact.

Proof. See [44, pp. 109–110].

2.1.4 Basic properties of questions

After we have introduced the SAM representation of questions and the mo-
del-based approach, we can mention some basic properties of questions. First,
let us introduce the term soundness, which is one of the most important terms
in IEL.

Definition 1. A question Q is sound in M iff ∃α ∈ dQ such that M |= α.

A question is sound with respect to a model M whenever it has at least
one direct answer true in M. See [44, p. 113].

For all IEL consequnce relations, it is important to state the soundness
of a question with respect to a set of declaratives.

Definition 2. A question Q is sound relative to Γ iff Γ ||= dQ.

The sum of all classes of models of each direct answer α, i.e.,
⋃
α∈dQMα,

is called semantic range of a question Q. Considering semantic range, our
liberal approach admits some strange questions; one of them is a completely
contradictory question that has only contradictions in its set of direct an-
swers, its semantic range beeing just ∅. Another type is a question with a
tautology among its direct answers, then the semantic range expands to the
whole M. Questions with such a range are called safe.6 Of course, it need
not be any tautology among direct answers for to be a safe question.

Definition 3. • A question Q is safe iff
⋃
α∈dQMα =M.

• A question Q is risky iff
⋃
α∈dQMα ⊂M.

Questions ?α, ?|α, β| are safe in CPL, but neither is safe in Bochvar logic.
If β is not equivalent to ¬α, then ?{α, β} is risky in CPL. Neither ?α nor
?|α, β| are safe in intuitionistic logic, but there are safe questions in this logic;
just each question with at least one tautology among direct answers. Simple
yes-no questions are safe in logics that accept the law of excluded middle.

It is good to emphasize that the set of direct answers of a safe question
is mc-entailed by every set of declaratives. On the other hand, knowing a
question to be sound relative to every set of declaratives implies its safeness.

Fact 1. Q is safe iff (∀Γ)(Γ ||= dQ).

Specially, safe questions are sound relative to Γ = ∅.
6This term originates from Nuel Belnap.
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2.1.5 The road we are going to take

After introducing evocation and the term presupposition of a question in
section 2.2, we will show the role of maximal and prospective presuppositions
in the relationship to semantic range of questions. Some classes of questions
will be based on it. One could be surprised that we are not going to discuss
answers in this section; in fact, there is not much to say about them. It
turns out that various types of answers do not play any special role in the
inferential structures.

Section 2.3 is crucial from the chosen viewpoint. We investigate erotetic
implication and reducibility there. An important part is devoted to a dis-
cussion of the role of an auxiliary set of declaratives. We will demonstrate
some variants of erotetic implication and their properties. The chosen formal
shape of questions in IEL makes it possible to compare questions in the sense
of their answerhood power. Inspired by [13] and [44, section 5.2.3] we will
examine the relationship of ‘giving an answer’ of one question to another,
which is a generalisation of Kubiński’s term ‘weaker question’.

Questions will be considered as independent structures not being com-
bined by logical connectives. Reviewing the definitions of erotetic implication
and reducibility we can recognize their ‘both-sidedness’ and just reducibility
can substitute such combination of questions.

This brings us to the last note on the use of symbols |= and `. Because of
the clear border between declarative and interrogative parts of the language
LQ we will use them in many meanings. However, the meaning will be
transparent by the context the symbols are used in. Compare the definition of
evocation and various definitions of erotetic implications in the next sections.

2.2 Questions and declaratives

In this section, we introduce two terms: evocation and presupposition. The
first one will provide a consequence relation between a set of declaratives
and a question. The second one is an important term in almost all logics of
questions and there are some classes of questions based on it in IEL.

2.2.1 Evocation

Consider the following example: after a lecture, we expect a lecturer to be
ready to answer some questions that were evoked by his or her talk. Thus,
evocation seems to be the most obvious relationship among declarative sen-
tences and questions. (Of course, next to the connection question—answer.)
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Almost every information can give rise to a question. What is the aim of
such a question?

First, it should complete our knowledge in some direction. Asking a
question we want to get more then by the conclusion based on a background
knowledge. A question Q should be informative relative to Γ, it means, there
is no direct answer to Q which is a conclusion of Γ.

Second, after answering an evoked question, no matter how, the answer
must be consistent with the evoking knowledge. Moreover, transmission of
truth into soundness is required: if an evoking set of declaratives has a model,
there must be at least one direct answer of the evoked question that is true
in this model. An evoked question should be sound relative to an evoking
set of declaratives (see Definition 2).7

The definition of evocation is based on the previous two points (cf. [44,
46]). A question Q is evoked by a set of declaratives Γ if Q is sound and
informative relative to Γ.

Definition 4. A set of declarative sentences Γ evokes a question Q (let us
write Γ |= Q) iff

1. Γ ||= dQ,

2. (∀α ∈ dQ)(Γ 6|= α).

In our model-based approach we can rewrite both conditions this way:

1. MΓ ⊆
⋃
α∈dQMα

2. (∀α ∈ dQ)(MΓ 6⊆ Mα)

In some special cases (e.g., dQ is finite or entailment is compact) we can
define evocation without the link to mc-entailment. The first condition is of
the form: there are α1, . . . , αn ∈ dQ such that Γ |=

∨n
1 αi.

This is the case of one of our introductory examples. Let us remind the
group of three card players. The context

Γ: Either Ann has the Joker or Bill has the Joker or Catherine
has the Joker.

evokes the question

Q: Who has the Joker: Ann, Bill, or Catherine?

7For now, as we do not discuss epistemic issues, we shall not use the word ‘knowledge’
but the phrases ‘set of declarative(s) (sentences)’ or ‘database’ will be used instead.
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with direct answers

α: Ann has the Joker.
β: Bill has the Joker.
γ: Catherine has the Joker.

Let Γ consist of one formula in the form of disjunction of direct answers of
Q, thus, the first condition is satisfied. The second one is satisfied because
no direct answer is entailed by Γ.

Evocation yields some clear and useful properties of both a set of declar-
atives and an evoked question. The following fact lists some of them.

Fact 2. If Γ |= Q, then

• Γ is not a contradictory set,

• there is no tautology in dQ, and

• Q is not a completely contradictory question.

However, by Fact 1, we obtain a less intuitive conclusion: every safe
question is evoked by any Γ that does not entail any direct answer to it. It
underlines the special position of safe questions and their semantic range.
When we restrict the definition of evocation to risky questions only, we get
the definition of generation, see [44, chapter 6].

Generation does not solve all problems with irrelevant and inefficient
evoked questions either. We can accept another restriction to avoid ques-
tions that have direct answers which are incompatible with declaratives in Γ.
Borrowing an example from [7], Γ = {α ∨ β, γ} evokes also ?{α, β,¬γ}. To
eliminate this, the consistency of each direct answer with respect to Γ could
be required, i.e., we could add the third condition to Definition 4:

(∀α ∈ dQ)(MΓ ∩Mα 6= ∅)

Some solutions of the problem of irrelevant and inefficient questions based
on a semantics in the background are discussed in the just mentioned pa-
per [7]. For our purpose, the study of consequence relations in IEL, we keep
Definition 4 unchanged.

Back to safe questions, let us mention the following fact:

Fact 3. If ∅ |= Q, then Q is safe.

As a conclusion of semantic definition of evocation we have the following
expected behavior of evocation: semantically equivalent databases evoke the
same questions.
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Fact 4. For every Γ,∆ and Q, if Γ ≡ ∆, then Γ |= Q iff ∆ |= Q.

If Γ evokes Q, then we have to be careful of concluding that there is a
subset ∆ ⊆ Γ such that ∆ evokes Q, see the first item in the following fact.

Fact 5. If Γ |= Q and ∆ ⊆ Γ ⊆ Σ, then

• ∆ |= Q if ∆ ||= dQ,

• Σ |= Q if (∀α ∈ dQ)(Σ 6|= α).

The second item points out the non-monotonicity of evocation (in declar-
atives). Considering questions as sets of answers, evocation is non-monotonic
in interrogatives as well, see section 2.3.3.

Fact 6. If Γ |= Q and the entailment is compact, then ∆ |= Q1 for some
finite subset dQ1 of dQ and some finite subset ∆ of Γ.

These and some more properties of evocation (and generation) are dis-
cussed in the book [44].

2.2.2 Presuppositions

Many properties of questions are based on the concept of presupposition.
Everyone who has attended a basic course of research methods in social
sciences has heard of importance to consider presuppositions of a question in
questionaries.

If we receive the question Who has the Joker: Ann, Bill, or Catherine?,
we can recognize that it is presupposed that Ann has it or Bill has it or
Catherine has it. What is presupposed must be valid under each answer to a
question. Moreover, an answer to a question should bring at least the same
information as presupposition does. The following definition (originally given
by Nuel Belnap) is from [44]:

Definition 5. A declarative formula ϕ is a presupposition of a question Q
iff (∀α ∈ dQ)(α |= ϕ).

A presupposition of a question is entailed by each direct answer to the
question. Let us write PresQ for the set of all presuppositions of Q.

At the first sight, the set PresQ could contain a lot of sentences. Let
us have a question Q = ?{α1, α2}, the set of presuppositions (e.g., in CPL)
contains (α1 ∨ α2), (α1 ∨ α2 ∨ ϕ), (α1 ∨ α2 ∨ ¬ϕ), etc. Looking at the very
relevant member (α1 ∨ α2) it is useful to introduce the concept of maximal
presupposition. Formula (α1∨α2) entails each presupposition of the question
Q.
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Definition 6. A declarative formula ϕ is a maximal presupposition of a
question Q iff ϕ ∈ PresQ and (∀ψ ∈ PresQ)(ϕ |= ψ).

The model-theoretical view shows it in a direct way. The definition of
presupposition gives

⋃
α∈dQMα ⊆Mϕ, for each ϕ ∈ PresQ, which means⋃

α∈dQ

Mα ⊆
⋂

ϕ∈PresQ

Mϕ =MPresQ

and the setMPresQ is a model-based counterpart to the definition of maximal
presuppositions.

If the background logic has tautologies, each of them is in PresQ.

TautML ⊆ PresQ

Considering safe questions we get

Fact 7. If Q is safe, then PresQ = TautML .

This fact says that if Q is safe, then
⋃
α∈dQMα = MPresQ. In classical

propositional logic the disjunction of all direct answers of a question is a
presupposition of this question and if PresQ = TautMCPL, then Q is safe.
This evokes a (meta)question whether the implication from right to left is
valid. If Q is not safe, then we know that

⋃
α∈dQMα is a proper subset of

M. But what about MPresQ? After introducing a class of normal questions
(see page 25) it will be valid MPresQ ⊂ M as well as the implication from
right to left (see Fact 9).

A presupposition can be seen as an information which is announced by
asking a question, without answering it. Such information is relatively small.
The semantic range of all maximal presuppositions is wider than the range
of a question. Looking at finite CPL example where the disjunction of all
direct answers forms just the semantic range of the question brings us to the
idea of prospective presupposition. It is a presupposition which a question Q
is sound relative to.

Definition 7. A declarative formula ϕ is a prospective presupposition of a
question Q iff ϕ ∈ PresQ and ϕ ||= dQ. Let us write ϕ ∈ PPresQ.

All prospective presuppositions of a question are equivalent:

Lemma 1. If ϕ, ψ ∈ PPresQ, then ϕ ≡ ψ.

Proof. If M |= ϕ, then there is α ∈ dQ such that M |= α. Since ψ ∈ PresQ,
α |= ψ and it gives M |= ψ. We got ϕ |= ψ.

ψ |= ϕ is proved by the same way.
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A prospective presupposition forms exactly the semantic range of a ques-
tion. ⋃

α∈dQ

Mα =MPPresQ

If Q has a prospective presupposition, it can be understood as the ‘strongest’
one.

Two questions with the same sets of presuppositions have the same pros-
pective presuppositions.

Lemma 2. If PresQ = PresQ1 and both PPresQ and PPresQ1 are not empty,
then PPresQ = PPresQ1.

Proof. We show that if ϕ ∈ PPresQ and ψ ∈ PPresQ1, then ϕ ≡ ψ.
ϕ ∈ PPresQ implies Mϕ =

⋃
α∈dQMα and

⋃
α∈dQMα ⊆ Mψ, because

ψ ∈ PresQ. It gives Mϕ ⊆Mψ and ϕ |= ψ.
The proof that ψ |= ϕ is similar.

Presuppositions of evoked questions are entailed by the evoking set of
declaratives.

Fact 8. If Γ |= Q, then Γ |= ϕ, for each ϕ ∈ PresQ.

The implication from right to left does not hold. If we only know MΓ ⊆
MPresQ, we are not sure about MΓ ⊆

⋃
α∈dQMα as required by the first

condition of evocation. Clearly, the informativeness must be ensured as well.
Let us note that it cannot be improved by replacing of PresQ by PPresQ.
We will return to this in the next subsection at the topic of normal ques-
tions. To sum up all general conditions of an evoked question (by Γ) and its
presuppositions let us look at this diagram:

MΓ ⊆
⋃
α∈dQMα = MPPresQ ⊆ MPresQ

Classes of questions based on presuppositions

Using the term presupposition we can define some classes of questions. Names
and definitions of the classes are from [44]. We only add the model-based ap-
proach and make transparent some results on presuppositions and evocations
(chapters 4 and 5 in [44]).
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Normal questions A question Q is called normal if it is sound relative to
its set of presuppositions (PresQ ||= dQ).

• Q ∈ normal iff
⋃
α∈dQMα =MPresQ

Model-based approach introduces normal questions as questions with seman-
tic range delimitated by models of maximal presuppositions. Working with
finite sets of direct answers and in logical systems with the ‘classical’ be-
havior of disjunction (each direct answer entails the disjunction of all direct
answers) we do not leave the class normal. Non-normal questions can be
found in classical predicate logic.

Two announced facts follow. They continue on the discussions at Fact 7
and Fact 8.

Fact 9. If PresQ = TautML and Q is normal, then Q is safe.

Let us only add the clear fact, that the class of safe questions is a subset
of the class of normal questions.

safe ⊆ normal

The following fact and Fact 8 give the conditions for evocation of normal
questions.8

Fact 10. If Γ |= ϕ, for each ϕ ∈ PresQ, and Γ 6|= α, for each α ∈ dQ of a
normal question Q, then Γ |= Q.

Regular questions Each question with the non-empty set of prospective
presuppositions is regular.

• Q ∈ regular iff (∃ϕ ∈ PresQ)(ϕ ||= dQ)

Regularity of Q gives MPresQ ⊆Mϕ ⊆
⋃
α∈dQMα and it holds

regular ⊆ normal

If entailment is compact, both classes are equal.
Normal questions are sound relative to PresQ and regular questions are

sound relative to PPresQ. The following example shows an expected fact
that it is still not sufficient for evocation.

Example 2 (in CPL). Let Q = ?{(α ∨ β), α}. This question is normal
and regular, the formula (α ∨ β) is a prospective presupposition of Q, but
PresQ 6|= Q.

8Cf. Theorem 5.23 in [44].
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If there is a set of declaratives Γ such that Γ |= Q, then normal (regular)
questions are sound as well as informative relative to PresQ (PPresQ). This
is summed up by

Lemma 3. Let Γ |= Q, for some set of declaratives Γ. Then

1. Q ∈ normal implies PresQ |= Q.

2. Q ∈ regular implies ϕ |= Q, for ϕ ∈ PPresQ.

Proof. For the first item, only informativeness (relative to PresQ) must be
showed. But if it is not valid, then Fact 8 causes non-informativeness of Q
relative to Γ.

The second item is provable by the same idea.

Self-rhetorical questions Another special class of questions are self-rhe-
torical questions. They have at least one direct answer entailed by the set of
presuppositions.

• Q ∈ self-rhetorical iff (∃α ∈ dQ)(PresQ |= α)

From this definition, it is clear that self-rhetorical questions are normal. How-
ever, do we ask such questions? This class includes such strange questions as
completely contradictory questions that have only contradictions in the set
of direct answers, and questions with tautologies among direct answers.

An evoked question is not of this kind.

Lemma 4. If there is Γ such that Γ |= Q, then Q is not self-rhetorical.

Proof. From Fact 8.

Proper questions Normal and not self-rhetorical questions are called pro-
per. Proper questions are evoked by their set of presuppositions.

• Q ∈ proper iff PresQ |= Q

Evoked normal questions are proper (compare both Lemma 3 and Lemma 4)
and this makes the class proper prominent. The set of all presuppositions
of a question Q is believed to be a natural (declarative) context for evocation
of Q.
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2.3 Questions and questions

This section is devoted to inferential structures in which questions appear
on both sides (erotetic implication and reducibility of questions to sets of
questions) and to relations between two questions based on their sets of
direct answers. The second point focuses on ‘answerhood power’ of questions
formalized by the adapted set-of-answers methodology.

2.3.1 Erotetic implication

Now, we extend the class of inferences by ‘implication’ between two questions
with a possible assistance of some set of declaratives. Let us start with an
easy and a bit tricky example. If I ask

Q: What is Peter a graduate of: a faculty of law or a faculty of
economy?

then I can be satisfied by the answer

He is a lawyer.

even if I did not ask

Q1: What is Peter: a lawyer or an economist?

The connection between both questions could be shown by the following set
of declaratives:

Someone is a graduate of a faculty of law iff he/she is a lawyer.
Someone is a graduate of a faculty of economy iff he/she is an
economist.

The first question Q can be formalized by ?{α1, α2} and the latter one,
speaking of Peter’s position, can be ?{β1, β2}. Looking at the questions
there is no connection between them. The relationship is based on the set of
declaratives Γ = {(α1 ↔ β1), (α2 ↔ β2)}. Now, we say that Q implies Q1 on
the basis of Γ and write Γ, Q |= Q1.

This relation is called erotetic implication (e-implication, for short) and
the following definition is from [44]:9

Definition 8. A question Q implies a question Q1 on the basis of a set of
declaratives Γ iff

9We will write shortly Γ ∪ ϕ instead of Γ ∪ {ϕ}.
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1. (∀α ∈ dQ)(Γ ∪ α ||= dQ1),

2. (∀β ∈ dQ1)(∃∆ ⊂ dQ)(∆ 6= ∅ and Γ ∪ β ||= ∆).

Returning to the introductory example, both questions are even eroteti-
cally equivalent with respect to Γ: Γ, Q |= Q1 as well as Γ, Q1 |= Q.

The definition requires a little comment. The first clause should express
the soundness of an implied question relative to each extension of Γ by α ∈
dQ. This transmission of truth/soundness into soundness has the following
meaning: if there is a model of Γ and a direct answer to Q, then there must
be a direct answer to Q1 that is valid in this model. If Q1 is safe, then this
condition is always valid (see Fact 1).

The second clause requires direct answers to Q1 to be cognitively useful
in restricting the set of direct answers of the implying question Q.

In comparison with evocation, the role of the set of declaratives is a bit
different. Γ plays, especially, the auxiliary role; e-implication is monotonic
in declaratives and it gives the following [44, p. 173]:

Fact 11. If Γ, Q |= Q1, then ∆,Γ, Q |= Q1, for any set of declaratives ∆.

This could be called weakening in declaratives. From this, it is clear that
⊥, Q |= Q1, for each Q and Q1.

We wil say a word or two about auxiliary sets of declaratives in the next
subsection.

Pure erotetic implication

Pure e-implication is e-implication with the empty set of declaratives. In
our semantic approach, Γ includes only tautologies of a chosen logical sys-
tem. From Fact 11, whenever two questions are in the relation of pure
e-implication, then they are in the relation of e-implication for each set of
declaratives.

If one question purely e-implies another question, then both questions
have the same semantic range.

Lemma 5. If Q |= Q1, then
⋃
α∈dQMα =

⋃
β∈dQ1

Mβ.

Proof. From the first condition of Definition 8⋃
α∈dQ

Mα ⊆
⋃

β∈dQ1

Mβ

and from the second one⋃
β∈dQ1

Mβ ⊆
⋃
∆

⋃
α∈∆

Mα ⊆
⋃
α∈dQ

Mα.
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From this we can conclude that classes of safe and risky questions are
closed under pure e-implication for both implied and implying questions.10

Fact 12. If Q |= Q1, then Q is safe (risky) iff Q1 is safe (risky).

The same semantic range of questions linked together by pure e-implica-
tion does not form an equivalence relation on questions (see non-symmetry
in Example 4 and non-transitivity in Example 5). On the other hand, pure
e-implication has some important consequences for classes of presupposi-
tions.11

Lemma 6. If Q |= Q1, then PresQ = PresQ1.

Proof. First, let us prove PresQ ⊆ PresQ1. Let ϕ ∈ PresQ, so
⋃
α∈dQMα ⊆

Mϕ. Simultaneously, we know that from the second condition of the defini-
tion of pure e-implication there is a non-empty ∆ ⊂ dQ, for each β ∈ dQ1,
such that Mβ ⊆

⋃
α∈∆Mα ⊆

⋃
α∈dQMα. Thus, Mβ ⊆ Mϕ, for each

β ∈ dQ1.
Second, for proving PresQ1 ⊆ PresQ suppose ϕ ∈ PresQ1. The following

inclusions are valid Mα ⊆
⋃
β∈dQ1

Mβ ⊆Mϕ, for each α ∈ dQ.

The claim of Lemma 6 is not extendable to the general e-implication (cf.
Example 3).

On this lemma we can base the following statement about an influence
of pure e-implication on classes of normal and regular questions.

Theorem 2. If Q |= Q1, then Q is normal iff Q1 is normal.

Proof. If Q is normal, then⋃
β∈dQ1

Mβ =
⋃
α∈dQ

Mα =MPresQ =MPresQ1

The first equation is from Lemma 5, the second one is from the normality of
Q, and the third one is from Lemma 6.

It is easy to prove a similar fact for regular questions.

Theorem 3. If Q |= Q1, then Q is regular iff Q1 is regular.

10Cf. Theorem 7.29 in [44, p. 184]
11See the same result in [44, p. 184], Theorem 7.33.
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Proof. Let us suppose Q |= Q1 and Q is regular. From Q |= Q1 and Lemma 5
we obtain

⋃
α∈dQMα =

⋃
β∈dQ1

Mβ, which means thatMPPresQ =MPPresQ1 .
The regularity of Q implies that there is a formula ϕ ∈ PPresQ. Putting it
together, Mϕ =

⋃
β∈dQ1

Mβ. Thus, ϕ ∈ PPresQ1.

Both theorems have similar results we have got for safe (risky) ques-
tions in Fact 12. Classes of normal and regular questions are closed to pure
e-implication. Normal (regular) questions purely imply only normal (regular)
questions and they are purely implied by the same kind of questions.12

Concerning classes of questions in relationship with e-implication, let us
add that whenever Q |= Q1, then Q is completely contradicory question iff
Q1 is.

Note on auxiliary sets of declaratives in e-implication Let us re-
mind the introductory example on page 27 to emphasize the importance of
declaratives for e-implication. Similarly, the following example will point out
the role of implicitly and explicitly expressed presuppositions.

Example 3 (in CPL). If Q1 = ?{α, β, γ} and Q2 = ?{α, β} (for atomic
α, β, γ), then neither Q1 |= Q2 nor Q2 |= Q1 (see the different semantic
ranges of both questions). On the other hand, if we would know that it must
be (α ∨ β), then (α ∨ β), Q1 |= Q2.

Keeping the context of this example: the question Q2 is normal as well
as regular, then PPresQ2 ||= dQ2 and, in addition, there is ∆, non-empty
proper subset of dQ1, such that PPresQ2 ||= ∆. It gives PPresQ2, Q1 |= Q2.
If the set PPresQ2 is explicitly expressed, the implication from Q1 to Q2 is
justified.

But now, back to the general approach. In the following fact we display
when we can say that two questions and a set of declaratives are in the
relationship of e-implication.

Fact 13. Let us have Γ and two questions Q1 and Q2. In order to conclude
Γ, Q1 |= Q2 it is sufficient to have Γ ||= dQ2 and Γ ||= ∆, where ∆ is a
non-empty proper subset of dQ1.

This fact can be formulated in this form: if Q2 is sound relative to Γ and
Γ gives a partial answer to Q1, then Q1 implies Q2 with respect to Γ. We will
add some points to this discussion in section 2.3.2 and in the last paragraph
of section 2.3.4.

12Theorems 2 and 3 put together results in [44, pp. 185–186].
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Regular erotetic implication

A special kind of e-implication arises if there is exactly one direct answer in
each ∆ in the second clause of Definition 8. Then we say that Q regularly
implies Q1 (on the basis of Γ). The following definition originates from [46,
p. 26]:

Definition 9. A question Q regularly implies a question Q1 on the basis of
a set of declaratives Γ iff

1. (∀α ∈ dQ)(Γ ∪ α ||= dQ1),

2. (∀β ∈ dQ1)(∃α ∈ dQ)(Γ ∪ β |= α).

Because of the special importance of this relation let us use the symbol
` for it (so we write Γ, Q ` Q1).

In the case of pure regular e-implication, both conditions are changed into
the form:

1. (∀α ∈ dQ)(α ||= dQ1),

2. (∀β ∈ dQ1)(∃α ∈ dQ)(β |= α).

If Q ` Q1 such that we can answer Q1, then we have an answer to Q.
The relationship of pure regular e-implication between two questions says
that the implied question is ‘stronger’ than the implying one in the sense of
answerhood (see also section 2.3.3).

Regularity can be enforced by the minimal number of direct answers of
an implying question: if Q |= Q1 and |dQ| = 2, then Q ` Q1.

Basic properties of erotetic implication

In this subsection, we are going to be interested in such properties as reflex-
ivity, symmetry, and transitivity of e-implication.

Erotetic implication is a reflexive relation.

Fact 14. Γ, Q |= Q, for each Γ and Q.

Even if there are examples of the symmetric behavior of e-implication, it
is not a symmetric relation, generally.

Example 4 (in CPL). Let Q1 = ?{(α ∨ β), α} and Q2 = ?{α, β}. Then
Q1 |= Q2, but Q2 6|= Q1.
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In this example there is no non-empty proper subset of dQ2 for the for-
mula (α ∨ β) to fulfil the second condition in the definition of e-implication.
Moreover, it is useful to add that Q1 regularly implies Q2.

Erotetic implication is not transitive either.

Example 5 (in CPL). ?(α ∧ β) ` ?|α, β| and ?|α, β| |= ?α, but ?(α ∧ β) 6|=
?α.

On the other hand, if we consider regular e-implication only, the following
theorem is valid.

Theorem 4. If Q1 ` Q2 and Q2 ` Q3, then Q1 ` Q3.

Proof. The first condition of Definition 9 is proved by Lemma 5.
The second clause of this definition is based on regularity that gives (∀γ ∈

dQ3)(∃α ∈ dQ1)(Mγ ⊆Mα).

We can do a cautious strengthening by the following fact:

Fact 15. If Γ, Q1 ` Q2 and Q2 ` Q3, then Γ, Q1 ` Q3.

As a final remark, let us add that presuppositions of an implied question
are entailed by each direct answer of an implying question (with respect to
an auxiliary set of declaratives).

Fact 16. Let Γ, Q |= Q1. Then

1. (∀α ∈ dQ)(∀ϕ ∈ PresQ1)(Γ ∪ α |= ϕ)

2. If e-implication is regular, then (∀β ∈ dQ1)(∀ϕ ∈ PresQ)(Γ ∪ β |= ϕ).

2.3.2 Evocation and erotetic implication

Both types of inferential structures can appear together and we are going to
investigate their interaction.

As shown in the next example, e-implication does not preserve evocation.
If we know Γ |= Q1 and Q1 |= Q2, it does not mean that it must be Γ |= Q2.

Example 6 (in CPL). • {(α ∨ β)} |= ?|α, β| and ?|α, β| |= ?(α ∨ β),
but {(α ∨ β)} 6|= ?(α ∨ β).

• {α} |= ?|α, β| and {α}, ?|α, β| |= ?α, but there is an answer to ?α in
{α}.

32



2.3. Questions and questions

Of course, we do not see anything pathological in this example. Knowing
(α ∨ β), resp. α, it is superfluous to ask ?(α ∨ β), resp. ?α.

Generally, this brings us back to the role of an auxiliary set of declara-
tives in e-implication. Due to the admissibility of weakening in declaratives
(Fact 11) we can arrive at structures of e-implications with Γ containing (di-
rect) answers to some of the two questions. On the other hand, there are
some solutions of this problem proposed by erotetic logicians.13

In contrast to the previous example, we can prove that evocation carries
over through a regular e-implication.

Lemma 7. If Γ |= Q1 and Q1 ` Q2, then Γ |= Q2.

Proof. The first condition requires MΓ ⊆
⋃
β∈dQ2

Mβ. It is valid because of
the same semantic range of both questions.

Let us suppose that there is β ∈ dQ2 entailed by Γ. Then MΓ ⊆ Mβ

and, thanks to regularity of e-implication, MΓ ⊆ Mα, for some α ∈ dQ1.
But it is in contradiction with Γ |= Q1.

Lemma 7 can be formulated not only in the version of pure regular
e-implication.

Theorem 5. If Γ |= Q1 and Γ, Q1 ` Q2, then Γ |= Q2.

Proof. First, we prove Γ ||= dQ2. Supposing it is not true, then there is a
model M0 of Γ such that M0 6|= β, for each β ∈ dQ2. Because of Γ ||= dQ1,
there is α0 ∈ dQ1 and M0 |= α0. From Γ∪α ||= dQ2, for each α ∈ dQ1, there
must be some β0 ∈ dQ2 such that M0 |= β0 and that is a contradiction.

Secondly, let us suppose that there is β0 ∈ dQ2 and Γ |= β0. Regularity
and second condition of e-implication give Γ ∪ β0 |= α and it follows Γ |= α
that is in contradiction with Γ |= Q1.

Since regularity was used only in the second part of the proof, we get an
expected fact that Γ |= Q1 and Γ, Q1 ` Q2 gives soundness of an implied
question Q2 relative to Γ.14

At the first sight, it need not be Γ, Q1 |= Q2 or Γ, Q2 |= Q1 if we only
know that Γ |= Q1 as well as Γ |= Q2.

15 Generally, neither evocation nor

13See, for example, the definition of strong e-implication given by Wísniewski in [44].
Fact 13 includes the original inspiration for the definition of strong e-implication. The
definition is the same as that of e-implication, but Γ 6||= ∆ is added into the second clause.

14The second part of the proof of Theorem 5 could be slightly changed and we obtain
that strong e-implication carries over as well. (Andrzej Wísniewski called my attention to
this.)

15Let us take as an example (in CPL) the case {ϕ} |= ?α and {ϕ} |= ?β. Then neither
{ϕ}, ?α |= ?β nor {ϕ}, ?β |= ?α.

33



2.3. Questions and questions

e-implication says something new about structures of engaged questions.
Nevertheless, we can expect that some clearing up of the structure of sets
of direct answers could be helpful for the study of inferences. This will be
discussed in the next section.

2.3.3 Comparing questions: relations of questions ba-
sed on direct answers

So far we have introduced inferences that can provide certain relations be-
tween questions. Moreover, it would be useful to be able to compare ques-
tions with respect to their ‘answerhood power’. The chosen set-of-answers
methodology brings us to a natural approach. Sets of direct answers can be
purely compared or we can investigate their relationship based on entailment
relation, moreover, we can control the cardinality of sets of direct answers by
a mapping from one set to the other.

Let us start with relations among questions based on pure comparison of
sets of direct answers.

Definition 10. • Two questions are equal (Q1 = Q2) iff they have the
same set of direct answers (dQ1 = dQ2).

16

• A question Q1 is included in a question Q2 (Q1 ⊂ Q2) iff dQ1 ⊂ dQ2.

This approach could be extended in a semantic way. We say that (an
answer) α gives an answer to a question Q iff there is β ∈ dQ such that
α |= β. Having two questions Q1 and Q2 we can define a relationship of
‘giving answers’:

Definition 11. A question Q1 gives a (direct) answer to Q2 iff (∀α ∈
dQ1)(∃β ∈ dQ2)(α |= β).

In this definition the first question is considered as to be (semantically)
‘stronger’ than the second one. For this we use the symbol ≥ and write
Q1 ≥ Q2.

If Q1 = Q2 or Q1 ⊂ Q2, then Q1 ≥ Q2 and, moreover, each direct answer
to Q1 not only gives an answer to Q2 but also is a (direct) answer to Q2, i.e.,
(∀α ∈ dQ1)(∃β ∈ dQ2)(α ≡ β).

16The original definition refers to equivalent questions instead of equal (cf. [44, p. 135]),
but we use the first term for erotetically equivalent or semantically equivalent. In our
set-of-answers methodology (questions are defined by sets of direct answers), this term is
redundant.

34



2.3. Questions and questions

The ordering based on the relation ≥ has a slightly non-intuitive conse-
quence: a completely contradictory question is the strongest one. However,
the class of evoked questions is not affected by this problem.

Let us note an expected fact—stronger questions presuppose more than
weaker ones.

Fact 17. If Q1 ≥ Q2, then PresQ2 ⊆ PresQ1.

This fact is not too useful. It is better to notice the relationship among
maximal presuppositions. We have MPresQ1 ⊆ MPresQ2 . Each maximal pre-
supposition of a stronger question entails a maximal presupposition of a
weaker one, respectively, a prospective presuposition of a stronger question
entails a prospective presupposition of a weaker question. The semantic range
of a stronger question is included in the semantic range of a weaker question.

Fact 18. If Q1 ≥ Q2, then
⋃
α∈dQ1

Mα ⊆
⋃
β∈dQ2

Mβ.

It follows that the set of safe questions is closed under weaker questions.

Fact 19. If Q1 is safe and Q1 ≥ Q2, then Q2 is safe.

The next example shows that safeness of weaker questions is not trans-
ferred to stronger ones.

Example 7 (in CPL). ?{β ∧ α,¬β} ≥ ?β

Answerhood, evocation, and erotetic implication

We can show some results of evocation and e-implication based on properties
of the ≥-relation. The first one is an obvious fact that an implied stronger
question is regularly implied.

Lemma 8. If Γ, Q1 |= Q2 and Q2 ≥ Q1, then Γ, Q1 ` Q2.

Recall what is required of the regular e-implication: (∀β ∈ dQ2)(∃α ∈
dQ1)(Γ ∪ β |= α). Then the lemma follows.

If the relation ≥ is turned, i.e., Q1 gives an answer to Q2, then whenever
Q1 implies Q2, Q2 regularly implies Q1 (both with respect to Γ). Moreover,
both questions are erotetically equivalent relative to Γ.

Theorem 6. If Γ, Q1 |= Q2 and Q1 ≥ Q2, then Γ, Q2 ` Q1.

Proof. First, we need to show that Γ∪β ||= dQ1, for each β ∈ dQ2. But it is
an easy conclusion from Γ, Q1 |= Q2 because there is a subset ∆ ⊆ dQ1 for
each β ∈ dQ2 such that Γ ∪ β ||= ∆.

The second condition of regular e-implication is obvious, it follows from
Q1 ≥ Q2.
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Now, as it was stated before, we are going to study the influence of ‘giving
answers’ on the relationship of evocation and e-implication. We know that,
generally, if Γ evokes Q1 and Q2, it need not be that either Q1 implies Q2

or Q2 implies Q1 (with respect to Γ). If a stronger question is evoked by Γ,
then every weaker question regularly implies this stronger one with respect
to Γ.

Theorem 7. If Γ |= Q1 and Q1 ≥ Q2, then Γ, Q2 ` Q1.

Proof. First, Γ ∪ β ||= dQ1 is required for each β ∈ dQ2. We get Γ ||= dQ1

from Γ |= Q1.
Second, from Q1 ≥ Q2 we have (∀α ∈ dQ1)(∃β ∈ dQ2)(α |= β) and it

gives the second condition of regular e-implication (∀α ∈ dQ1)(∃β ∈ dQ2)(Γ∪
α |= β).

To digress for a moment, this repeated connection of ≥ and regular
e-implication is not an accident. The definition of regular e-implication says
that if Q1 ` Q2, then Q2 gives an answer to Q1, i.e., Q2 ≥ Q1. However,
‘giving an answer’ does not produce e-implication, see the next example.

Example 8 (in CPL). ?{(α ∧ ϕ), (β ∧ ψ)} ≥ ?{α, β}, but neither ?{(α ∧
ϕ), (β ∧ ψ)} |= ?{α, β} nor ?{α, β} |= ?{(α ∧ ϕ), (β ∧ ψ)}.

To go back to evocation, it is clear that two equal questions are both
evoked by a set of declaratives if one of them is evoked by this set. Generally,
it is not sufficient to know Γ |= Q1 and Q1 ≥ Q2 to conclude Γ |= Q2.
An evoked stronger question only implies the soundness of weaker questions
relative to Γ. Let us illustrate it in the case that the first question is included
in the second one (Q1 ⊂ Q2); there could be a direct answer to Q2 which is
entailed by Γ. This reminds us of the non-monotonic behavior of evocation.
Notice that Q2 ⊂ Q1 will not help us either. In the connection with the
relation ≥ we have to require a version of an equality.17

Fact 20. Let Q1 ≥ Q2 and Q2 ≥ Q1. Then

• Γ |= Q1 iff Γ |= Q2,

• Q1 ` Q2 as well as Q2 ` Q1.

17We are not going to introduce a special name for this relationship; it is included in
the erotetic equivalence.
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Controlling the cardinality of sets of direct answers

The set of direct answers of a weaker question can be much larger than that
of a stronger question. The book [44] introduces two relations originated
from Tadeusz Kubiński that prevent this uncontrolled cardinality.

Definition 12. A question Q1 is stronger then Q2 (Q1 � Q2) iff there is a
surjection j : dQ1 → dQ2 such that for each α ∈ dQ1, α |= j(α).

The number of direct answers of the weaker question Q2 does not exceed
the cardinality of dQ1, i.e., |dQ1| ≥ |dQ2|. From the surjection, additionaly,
we know that each direct answer of a weaker question is given by some direct
answer to a stronger question. We have used the term stronger in a bit
informal way for questions that ‘give an answer’ to weaker ones. It is clear
that if Q1 � Q2, then Q1 ≥ Q2. But, unfortunately, we cannot provide
any special improvement of previous results for �-relation. In particular,
Examples 7 and 8 are valid for �-relation as well.

The other definition corresponds to a both-way relationship of ‘being
stronger’.

Definition 13. A question Q1 is equipollent to a question Q2 (Q1 ≡ Q2) iff
there is a bijection i : dQ1 → dQ2 such that for each α ∈ dQ1, α ≡ i(α).

In this case, both sets of direct answers have the same cardinality (|dQ1| =
|dQ2|). Let us add expected results gained from equipollency.

Fact 21. If Q1 ≡ Q2, then

• both Q1 � Q2 and Q2 � Q1,

• Γ |= Q1 iff Γ |= Q2,

• Q1 ` Q2 as well as Q2 ` Q1.

Of course, two equal questions are equipollent.

Partial answerhood

We declared that the study of various types of answers (generally speaking,
answerhood) is not the central point of this chapter. However, we can utilize
the idea evoked by the second clause of Definition 8. Narrowing down the
set of direct answers of an implying question seems to be a good base for the
definition of partial answer.
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Definition 14. A declarative ϕ gives a partial answer to a question Q iff
there is a non-empty proper subset ∆ ⊂ dQ such that ϕ ||= ∆.18

This definition allows us to cover many terms from the concept of the
answerhood. Every direct answer gives a partial answer. Whenever ψ gives
a (direct) answer, then ψ gives a partial answer. As a useful conclusion we
obtain a weaker version of Theorem 7:

Fact 22. If Γ |= Q1 and each α ∈ dQ1 gives a partial answer to Q2, then
Γ, Q2 |= Q1.

2.3.4 Questions and sets of questions

Working in the classsical logic, let us imagine we would like to know whether
it is the case that α or it is the case that β. The question ?{α, β} is posed.
But there could be a problem when an entity, to which we are going to
address this question, is not able to accept it. This can be caused, e.g.,
by a restricted language-acceptability, i.e., a device cannot ‘understand’ this
question. However, assume that there exist two devices such that: the first
one can be asked by the question ?α, and the other one is able to work
with the question ?β. From both machines, independently, we can get the
following pairs of answers: {α, β}, {¬α, β}, {α,¬β} or {¬α,¬β}.

Posing the question Q = ?{α, β} we expect that if an answer to Q is true,
then there must be a true answer to each question from the set {?α, ?β}.
Thus, we obtain a soundness transmission from an initial question to a set
of questions.

Generally speaking, let us suppose that there are a question Q and a set
of questions Φ = {Q1, Q2, . . .}. For each model of a direct answer to Q there
must be a direct answer in each Qi valid in this model.

(∀α ∈ dQ)(∀Qi ∈ Φ)(α ||= dQi)

Possible states (of the world) given by answers to questions in the set Φ must
be in a similar relation to the initial question. Whenever we keep a model
of the choice of direct answers from each question in Φ, then there must be
a direct answer to Q true in this model. For this, let us introduce a choice
function ξ such that ξ(Qi) chooses exactly one direct answer from dQi. For
each set of questions Φ and a choice function ξ there is a choice set AΦ

ξ =

{ξ(Qi)
∣∣ Qi ∈ Φ}.19 The soundness condition in the other direction (from a

set to initial question) will be expressed, generally, by (∀AΦ
ξ )(AΦ

ξ ||= dQ).

18Compare this definition with Definition 4.10 in [44].
19If the set Φ is clear from the context, we will write only Aξ.

38



2.3. Questions and questions

Back to our example, there are four choice sets:

Aξ1 = {α, β}

Aξ2 = {¬α, β}

Aξ3 = {α,¬β}

Aξ4 = {¬α,¬β}

But the fourth one is not in compliance with the second soundness require-
ment, it is in contradiction with our (prospective) presupposition (α ∨ β).
If we admit the additional answer (¬α ∧ ¬β) and a question in the form
?{α, β, (¬α ∧ ¬β)}, mutual soundness of this question and the set of ques-
tions {?α, ?β} will be valid. But this solution seems to be rather awkward.
A questioner posing the question ?{α, β} evidently presupposes (α∨β). This
will bring us to the definition of reducibility with respect to an auxiliary set
of declaratives and the mutual soundness will be required in the following
forms:

(∀α ∈ dQ)(∀Qi ∈ Φ)(Γ ∪ α ||= dQi)

and
(∀AΦ

ξ )(Γ ∪ AΦ
ξ ||= dQ).

Our example produces more than soundness of Q relative to each AΦ
ξ

(with respect to Γ), also efficacy of each AΦ
ξ with respect to a question Q is

valid:
(∀AΦ

ξ )(∃α ∈ dQ)(Γ ∪ AΦ
ξ |= α).

It will be reasonable to keep this strengthening. We require to obtain at
least one answer to an initial question from a choice set. Whenever Γ and
AΦ
ξ describe the state of the world, there must be a direct answer to a question

Q that does the same job.

Reducibility of questions to sets of questions

We can take advantage of the previous discussion for the direct definition
of reducibility of a question to a set of questions. Now, we introduce pure
reducibility that does not use any auxiliary set of declaratives.

Definition 15. A question Q is purely reducible to a non-empty set of
questions Φ iff

1. (∀α ∈ dQ)(∀Qi ∈ Φ)(α ||= dQi)

2. (∀AΦ
ξ )(∃α ∈ dQ)(AΦ

ξ |= α)
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3. (∀Qi ∈ Φ)(|dQi| ≤ |dQ|)

First two conditions express mutual soundness, the second one adds effi-
ciacy, as it was discussed, and the last one requires relative simplicity. If Q is
reducible to a set Φ, we will write Q� Φ. The definition of pure reducibility
was introduced by Andrzej Wísniewski in [43].

Example 9 (in CPL). • ?{α, β, (¬α ∧ ¬β)} � {?α, ?β}

• ?|α, β| � {?α, ?β}

• ?(α ◦ β)� {?α, ?β}, where ◦ is any of the connectives: ∧,∨,→

In the first item, there is the ‘pure’ version from the introductory discus-
sion. All items display reducibilities between initial safe questions and sets
of safe questions. The following theorem shows that it is not an accident.

Theorem 8. If Q� Φ, then Q is safe iff each Qi ∈ Φ is safe,

Proof. The first condition of Definition 15 can be rewritten as
⋃
α∈dQMα ⊆⋃

β∈dQi
Mβ, for each Qi ∈ Φ, and it gives the implication from left to right.

For the proof of the other implication, let us supposeQ� Φ and that each
Qi ∈ Φ is safe, but Q is not. It implies the existence of model M0 ∈M such
that M0 6|= α, for each α ∈ dQ. The safeness of all Qi gives (∀Qi ∈ Φ)(∃β ∈
dQi)(M0 |= β). Thus, there is AΦ

ξ made from these βs and M0 |= AΦ
ξ . But

it is in contradiction with the second condition of the definition of Q � Φ,
which gives the existence of some α ∈ dQ such that M0 |= α.

From this we know that if there is a risky question among questions in Φ
and Q� Φ, then Q must be risky too (cf. [44, p. 197]).

The rewritten first condition of Definition 15 is of the form⋃
α∈dQ

Mα ⊆
⋂
i

⋃
β∈dQi

Mβ

and it brings out the relationship of semantic ranges. The semantic range of
a reduced question is bounded by the intersection of all semantic ranges of
Qis.

The relation of pure reducibility is reflexive (Q� {Q}) and we can prove
the following version of transitivity:20

Theorem 9. If Q� Φ and each Qi ∈ Φ is reducible to some set of questions
Φi, then Q�

⋃
i Φi.

20Presented Theorem 9 corresponds to Corollary 7.6 in [44].
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Proof. The third condition of Definition 15 is clearly valid.
The first one is easy to prove. From Q � Φ we get

⋃
α∈dQMα ⊆⋃

β∈dQi
Mβ, for each Qi ∈ Φ, and from the reducibility of all Qi in Φ to

an appropriate Φi we have
⋃
β∈dQi

Mβ ⊆
⋃
γ∈dQj

Mγ, for each dQj ∈ Φi. It

gives together
⋃
α∈dQMα ⊆

⋃
γ∈dQj

Mγ, for each Qj ∈
⋃
i Φi.

For the second one we require the existence of α ∈ dQ such that A∪iΦi
ξ |=

α, for each A∪iΦi
ξ . From the reducibility of all Qi in Φ to an appropriate Φi

we have that each AΦi

ξ′ is a subset of some A∪iΦi
ξ . It implies that if there is

any model M of A∪iΦi
ξ , it must be a model of some AΦi

ξ′ . From Q � Φ we

know that there is α ∈ dQ for each choice set AΦ
ξ′′ on Φ. This choice set is

made by elements of all dQi ∈ Φ which are valid in M. It means that AΦ
ξ′′ is

valid in M as well as α ∈ dQ.

Now let us look at the relationship of pure reducibility and pure e-implica-
tion. The following example shows that it need not be that e-implication
causes reducubility. Both definitions have the same first conditions, but the
second condition of reducibility can fail.

Example 10 (in CPL). ?|α, β| |= ?(α ∧ β), but ?|α, β| 6� {?(α ∧ β)}.

On the other hand, we can prove that regular e-implication implies re-
ducibility.

Lemma 9. Let Φ be a set of questions such that Q ` Qi, for each Qi ∈ Φ.
If (∀Qi ∈ Φ)(|dQi| ≤ |dQ|), then Q� Φ.

Proof. Let us prove the second condition of Definition 15 that requires ex-
istence of α ∈ dQ such that MAΦ

ξ ⊆ Mα, for each AΦ
ξ . It is known that

MAΦ
ξ ⊆ Mβ, for each β ∈ AΦ

ξ . If Q ` Qi, then for each β ∈ dQi there is

α ∈ dQ such that Mβ ⊆Mα. Thus, MAΦ
ξ ⊆Mα.

What about if we know Qi |= Q or, even, Qi ` Q, for each Qi ∈ Φ, and
(∀Qi ∈ Φ)(|dQi| ≤ |dQ|), can we conclude that Q � Φ? Example 10 gives
the negative answer to this question as well as ?(α ∧ β) ` ?|α, β|.

Not even reducibility produces e-implication.

Example 11 (in CPL). ?(α ∧ β) � {?α, ?β}, but ?(α ∧ β) is not implied
neither by ?α nor by ?β and ?(α ∧ β) does not imply neither ?α nor ?β.

In the next subsection we will study some special cases of links between
reducibility and e-implication.
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So far we have worked only with the pure reducibility. It could be useful
to introduce the general term of reducibility with respect to a context given
by a set of declaratives. The definition is almost the same as Definition 15,
but the mutual soundness and efficacy conditions are supplemented by an
auxiliary set of declaratives Γ (cf. [20]). We will write Γ, Q� Φ.

Definition 16. A question Q is reducible to a non-empty set of questions
Φ with respect to a set of declaratives Γ iff

1. (∀α ∈ dQ)(∀Qi ∈ Φ)(Γ ∪ α ||= dQi)

2. (∀AΦ
ξ )(∃α ∈ dQ)(Γ ∪ AΦ

ξ |= α)

3. (∀Qi ∈ Φ)(|dQi| ≤ |dQ|)

The introductory discussion is displayed in this example:

Example 12 (in CPL). (α ∨ β), ?{α, β} � {?α, ?β}

As it is expected, the role of Γ is similar to the role of an auxiliary set of
declaratives in e-implication:

Fact 23. If Q� Φ, then Γ, Q� Φ, for each Γ.

So we can speak of weakening in declaratives and it enables us to gener-
alize Lemma 9.

Theorem 10. If Γ, Q ` Qi, for each Qi ∈ Φ, and (∀Qi ∈ Φ)(|dQi| ≤ |dQ|),
then Γ, Q� Φ.

Proof. The third and the first conditions of Definition 16 are obvious.
The second one requires that for each AΦ

ξ there is α ∈ dQ such that

MΓ∪AΦ
ξ ⊆ Mα. From the construction of choice sets we know that for each

AΦ
ξ and Qi ∈ Φ there is β ∈ dQi (member of AΦ

ξ ) such thatMΓ∪AΦ
ξ ⊆MΓ∪β.

The regular e-implication provides that there is α ∈ dQ for each β ∈ dQi

such that MΓ∪β ⊆Mα.

We close this subsection by reversing the ‘direction’ of the reducibility
relation. Let us suppose that we have generated a set of questions Φ that
are evoked by a set of declaratives Γ. Can we conclude that Γ evokes such a
complex question which is reducible to the set Φ? Generally, not. But if we
know that the complex question gives an answer to some question from Φ,
the answer is positive.

Theorem 11. If Γ evokes each question from a set Φ, Q� Φ, and there is
a question Qi ∈ Φ such that Q ≥ Qi, then Γ |= Q.
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Proof. Soundness of Q relative to Γ requires the existence of an answer α ∈
dQ for each model M |= Γ. From the evocation of each Qi ∈ Φ we have
(∀M |= Γ)(∀Qi ∈ Φ)(∃β ∈ dQi)(M |= β). So, each model of Γ produces some
choice set such that (∀M |= Γ)(∃AΦ

ξ )(M |= AΦ
ξ ). Together with reducibility,

where it is stated that (∀AΦ
ξ )(∃α ∈ dQ)(AΦ

ξ |= α), we get Γ ||= dQ.
Informativness of Q with respect to Γ is justified by ≥-relation for some

question Qi ∈ Φ. If Γ |= α, for some α ∈ dQ, then it gives a contradiction
with Γ |= Qi.

Given the conditions of Theorem 11 are met, we obtain:

• Γ, Q |= Qi, for each Qi ∈ Φ, and

• Γ, Qi ` Q, for Q ≥ Qi.

The first item is based on Fact 13 and the second one is given by the help of
Theorem 7.

Reducibility and sets of yes-no questions

The concept of reducibility is primarily devoted to a transformation of a
question to a set of ‘less complex’ questions. The introductory discussion
and its formalization in Example 12 evoke interesting questions:

• If we have an initial question Q = ?{α1, α2, . . .} with, at worse, a
countable list of direct answers, is it possible to reduce it to a set of
yes-no questions based only on direct answers of Q?

• Moreover, could we require the e-implication relationship between Q
and questions in the set Φ?

We can find an easy solution to these problems under condition that
yes-no questions are safe and we have an appropriate set of declaratives. We
will require Q to be sound with respect to Γ.

Theorem 12. Let us suppose that yes-no questions are safe in the background
logic. If a question Q = ?{α1, α2, . . .} is sound with respect to a set Γ, then
there is a set of yes-no questions Φ such that Γ, Q � Φ and Γ, Q |= Qi, for
each Qi ∈ Φ.

Proof. First, we define the set of yes-no questions Φ based on the initial
question Q = ?{α1, α2, . . .} such that

Φ = {?α1, ?α2, . . .}.
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Secondly, we prove the condition that is common for both reducibility and
e-implication. The safeness of members of Φ implies thatMα ⊆

⋃
β∈dQi

Mβ,

for each α ∈ dQ and Qi ∈ Φ. This gives MΓ∪α ⊆
⋃
β∈dQi

Mβ.
To prove reducibility we have to justify the second condition of Defini-

tion 16. We need to find an α ∈ dQ for each AΦ
ξ such that Γ∪AΦ

ξ |= α. Two
cases will be distinguished.

1. If there is α from both AΦ
ξ and dQ, then choose this direct answer.

2. If there is no direct answer α ∈ dQ in AΦ
ξ , then MΓ∪AΦ

ξ = ∅ and we
can take any α from dQ.

The final step is the proof of e-implication. We have to show that for
each Qi and each direct answer β ∈ dQi there is a non-empty subset ∆ ⊂ dQ
such that Γ ∪ β ||= ∆. For this, we use the shape of questions in Φ.

1. If β ∈ dQ, then ∆ could be {β} and Γ ∪ β ||= {β}.

2. If β 6∈ dQ and Γ∪β has at least one model, we recognize thatMΓ∪β ⊆
MΓ. Simultaneously, β must be of the form ¬αj and ∆ can be defined
as dQ\{αj}. Together with soundness of initial question Q with respect
to Γ, which means MΓ ⊆

⋃
α∈dQMα, we get MΓ∪β ⊆

⋃
α∈∆Mα.

This theorem enables us to work with classes of questions which are known
to be sound relative to sets of their presuppositions. (Normal and regular
questions are the obvious example.) Whenever we know that the initial
question is evoked by a set of declaratives, we get the following conclusion.

Fact 24. Working in logics where yes-no questions are safe, if a question
Q = ?{α1, α2, . . .} is evoked by a set of declaratives Γ, then there is a set of
yes-no questions Φ such that Γ, Q� Φ and Γ, Q |= Qi, for each Qi ∈ Φ.

This fact corresponds to main lemma in the paper [20, pp. 104–5] where
a bit different definition of reducibility is used, but the results are the same.

If dQ is finite or the entailment is compact, the set Φ is finite set of
yes-no questions. Simultaneously, it is useful to emphasize that the proof of
Theorem 12 shows how to construct such a set.21

In logics with risky yes-no questions, the first condition of reducibility as
well as e-implication can fail. It need not beMΓ,α ⊆ (Mβ ∪M¬β), for each
α ∈ dQ and each ?β ∈ Φ. More generally, we can ask for a help the auxiliary

21The same result is provided by theorems 7.49–7.51 in [44].
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set of declaratives again. Let us remind Fact 13 and put soundness of each
Qi ∈ Φ with respect to Γ. Going through the proof of Theorem 12, the rest
is valid independently of safeness of yes-no questions. As a conclusion we get

Fact 25. If a question Q = ?{α1, α2, . . .} is sound relative to a set Γ, and
there is a set of yes-no questions Φ = {?α1, ?α2, . . .} (based on Q) such that
Γ ||= dQi, for each Qi ∈ Φ, then Γ, Q� Φ and Γ, Q |= Qi, for each Qi ∈ Φ.

The construction of yes-no questions provided by Theorem 12 does not
prevent the high complexity of such yes-no questions. Observing the last
item of Example 9, it seems worthwhile to enquire whether it is possible to
follow this proces and to reduce a question (with respect to an auxiliary set of
declaratives) to a set of atomic yes-no questions based on subformulas of the
initial question (cf. [50]). The first restriction is clear, yes-no questions must
be safe. But it is not all, the second clause of pure reducibility (Definition 15)
requires the truth-functional connection of subformulas. Then the answer is
positive. We can use repeatedly a cautious extension of Theorem 9:

Fact 26. If Γ, Q� Φ and each Qi ∈ Φ is reducible to some set of questions
Φi, then Γ, Q�

⋃
i Φi.

There is a similar concept in literature, called erotetic search scenarios,
based on properties of the classical logic and erotetic implication (see [46, 47,
48] and [39]). The idea is that there is an initial question (and a context) and
we can get an answer to it by searching through answers of some operative
(auxiliary) questions. Scenarios are trees, an initial question (and a context)
is the root and branching is based on direct answers of auxiliary questions.
The relationship between interrogative nodes is given by erotetic implication.
Some scenarios work with the descending ‘complexity’ of questions from the
root to leafs. If we recall non-transitivity of e-implication (Example 5), we
can recognize the ‘truth-functional’ auxiliary role of the question ?|α, β| as
an interlink between ?(α ∧ β) and questions ?α and ?β.

2.4 Final remarks

IEL is introduced as a very general theory of erotetic inferences dealing with
a general language L extended by questions. Following the IEL-philosophy
and in accordance with our first chapter we decided to introduce questions
as sets of declaratives, which are in the role of direct answers. Inferences
with questions are based on multiple-conclusion entailment that makes it
possible to work with sets of declaratives in premises as well as in conclusions.
Thus, questions are kept as special objects of the language LQ, they are not
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combined by logical constants as declaratives are. All relationships among
questions are based on inferences and a comparison of their sets of direct
answers. The main modification of the original IEL can bee seen in the
chosen SAM and in the model-based approach; the term semantic range of
a question made the semantic work easier and transparent.

In this chapter we studied many properties and relationships, but the
central point was whether we can formulate some relationships (meta-rules)
for erotetic consequence relations in IEL. Our general view did not tend to
provide any axiomatization. The discussed properties and relationships vary
with the chosen background system, especially, they depend on semantics.
IEL opens many possibilities for working with questions in various logical
systems, see [7] as a nice example, and serves as an inspiration for the work
in erotetic logic.
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Chapter 3

Epistemic logic with questions

3.1 Introduction

Communication is essentially connected with an exchange of information.
The basic way to complete someone’s knowledge is the posing of questions.
Although questions differ from declaratives, they play a similar role in reason-
ing. In the recent history of logic of questions we can see a success in finding
the desirable position of the formal approach to questions and in a study of
inferences based on them. Let us recall Wísniewski’s inferential erotetic logic
and the intensional approach of Groenendijk and Stokhof. Such approaches
made it possible to incorporate questions within some formal systems and
not to lose their specific position in inferences. This brings us to an impor-
tant point, on the one hand, questions are specific entities and they bear
some special properties, on the other hand, they are used in formal systems
that are the framework of reasoning.

In Section 1.2 we introduced a formalization of questions called set-of-ans-
wers methodology. It utilizes the close connection of questions and their
answerhood conditions. Simultaneously we mentioned there that it is very
natural to use the epistemic terms in speaking of questions.

The approach we are going to present in this chapter works with epistemic
logic as a background. Roughly speaking, epistemic logic and its semantics
are used for the modeling of knowledge and epistemic possibilities of agents
and groups of them. Epistemic logic in use will be the normal multi-modal
logic. At the very beginning we do not impose any conditions on it; thus,
the working system will be the normal modal (epistemic) logic K with its
standard relational semantics (Kripke frames and models). However, the way
of incorporating questions will be of such generality that it can be applied in
all epistemic-like logics.
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Moreover, the process of communication is a dynamic matter and epis-
temic logic is open to enrichment by dynamic aspects, see, e.g., [42]. These
aspects will be studied later on in chapter 4 where we accept the ‘standard’
model of knowledge based on the modal system S5. Now let us briefly men-
tion what a question and its epistemic meaning are.

In the introductory chapter we use the example with three friends holding
cards. Let us suppose Catherine wants to find out where the Joker-card is.
Then she can ask

Who has the Joker: Ann, or Bill?

From our set-of-answers methodological viewpoint, the question has a two
element set of direct answers:

• Ann has the Joker.

• Bill has the Joker.

In this situation we can recognize the question as ‘reasonable’. Asking it,
Catherine expresses that she

1. does not know what is the right answer to the question,

2. considers the answers to be possible, and, moreover,

3. presupposes what is implicitly included in the answers, i.e., it must be
the case that just either Ann has the Joker or Bill has it.

An agent-questioner provides the information of her ignorance (item 1) as
well as the expected way to complete her knowledge: 2 says that there are
two possibilities and 3 that one of the possibilities is expected. A question is a
store of information of agent’s epistemic state. An asked question means that
listeners can form their partial picture of questioner’s knowledge structure,
which is an important part in communication and solving of problems in
groups.1 As it was mentioned at the beginning, the exchange of information
is a basis of communication. The main aim of communication in a group
is to share data and to solve problems. Very typical example is a group of
scientists trying to find an answer to their scientific problem. Only by sharing
of their knowledge and ignorance they can reach a solution.

Communication will be studied in the next chapter, here we prepare an
‘erotetic epistemic framework’. First, we introduce propositional single-agent

1Jeroen Groenendijk says that “assertions may provide new data, questions may provide
new issues” [12].
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(normal modal) epistemic logic and extend it by questions. We fully apply
our set-of-answers methodology and allow to mix declaratives and interrog-
atives. Questions will be a natural part of inference relations based on the
background logic. Then we discuss answerhood conditions in a relationship
with conditions posed on a ‘reasonable’ question. And, finally, the role of
epistemic context as well as sets of questions are studied.

3.2 Single-agent propositional epistemic logic

and questions

Our approach to epistemic logic is very liberal. The language of classical
propositional logic Lcpl is extended by modalities [i] and 〈i〉. The first one
can be interpreted as ‘agent i knows that. . . ’, ‘agent i believes that. . . ’, etc.
The other one is an ‘epistemic possibility’. Thus, we get a language LKcpl with
a subset of signs for atomic formulas P = {p, q, . . .} and formulas defined as
follows:

ϕ ::= p | ¬ψ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ψ1 → ψ2 | ψ1 ↔ ψ2 | [i]ψ | 〈i〉ψ

Modality 〈i〉 is understood as a dual to [i]:

〈i〉ϕ ≡ ¬[i]¬ϕ

In multi-agent variants of epistemic logic we presuppose that there is a finite
set of agents A = {1, . . . ,m}, where numbers 1, . . . ,m are names for agents.
This section deals with a single-agent variant for the sake of simplicity in
introducing questions and their basic properties. Moreover, we do not restrict
the interpretation of [i] to ‘knowledge’ of an agent i. Now, roughly and
vaguely said, it is just ‘epistemic necessity’ of an agent without restrictions
to knowledge conditions or belief conditions.

Semantics is based on Kripke-style models. Kripke frame is a relational
structure F = 〈S,Ri〉 with a set of states (points, indices, possible worlds) S
and an accessibility relation Ri ⊆ S2. Kripke model M is a pair 〈F , v〉 where
v is a valuation of atomic formulas. The satisfaction relation |= is defined by
a standard way:

1. (M, s) |= p iff (M, s) ∈ v(p)

2. (M, s) |= ¬ϕ iff (M, s) 6|= ϕ

3. (M, s) |= ψ1 ∨ ψ2 iff (M, s) |= ψ1 or (M, s) |= ψ2
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4. (M, s) |= ψ1 ∧ ψ2 iff (M, s) |= ψ1 and (M, s) |= ψ2

5. (M, s) |= ψ1 → ψ2 iff (M, s) |= ψ1 implies (M, s) |= ψ2

6. (M, s) |= [i]ϕ iff (M, s1) |= ϕ, for each s1 such that sRis1

We do not put any restrictions on accessibility relation, thus, we have se-
mantics for the modal system K.

3.2.1 Incorporating questions

We extend epistemic language LKcpl by brackets {, } and the question mark

?i for a question of an agent i. We get the language LKQcpl . For interrogative

formulas metavariables Qi, Qi
1, etc. will be used.

Generally, a question Qi is any formula of the form

?i{α1, . . . , αn},

where dQi = {α1, . . . , αn} is the set of direct answers to a question Q. Direct
answers are formulas of our extended epistemic language LKQcpl and ques-

tions can be among direct answers as well. We suppose that dQi is finite
with at least two syntactically distinct elements. In accordance with our
set-of-answers methodology the intended reading of a question Qi is:

Is it the case that α1 or is it the case that α2 . . . or is it the case
that αn?

Whenever I ask such question, I presuppose that at least one of the direct
answers is the case. Whenever I hear such question, I know that a questioner
presupposes the same, i.e., at least one of the direct answers is the case.
This brings us to an important term presupposition, which is studied in the
next subsection. On the contrary to our liberal SAM we require dQi to be
finite. Working in propositional logics we want to keep direct answers as clear
epistemic possibilities, this seems to be useful in a communication processes.
Simultaneously, it makes easier the concept of ‘presupposing’.

Presuppositions

Taking an inspiration in inferential erotetic logic (see Section 2.2.2) we de-
fine presuppositions of questions as formulas that are implied by each direct
answer. A presupposition is a ‘consequence’ of each direct answer, no matter
which answer is right.2

2Let us make a symbol convention: if it is not necessary to use the index i, we will
omit it.

50



3.2. Single-agent propositional epistemic logic and questions

Definition 17. A formula ϕ is a presupposition of a question Q iff (α→ ϕ)
is valid for each α ∈ dQ. We write ϕ ∈ PresQ.

The set of presuppositions of a question is full of redundant formulas. This
leads to the definition of maximal presuppositions. Maximal presuppositions
imply every presupposition.

Definition 18. A formula ϕ is a maximal presupposition iff ϕ ∈ PresQ and
(ϕ→ ψ) is valid for each ψ ∈ PresQ.

Example 13. A formula (α1 ∨ . . . ∨ αn) is a maximal presupposition of a
question ?{α1, . . . , αn}.

The theory of questions in IEL introduces one more term—prospective
presupposition. The truth of a prospective presupposition at a state of a
model gives the truth of some direct answer at this state. This can be a
modal reformulation of the original IEL definition.

Definition 19. A formula ϕ is a prospective presupposition of a question Q
iff ϕ ∈ PresQ and, for all models M and states s, if (M, s) |= ϕ, then there
is a direct answer α ∈ dQ such that (M, s) |= α. We write ϕ ∈ PPresQ.

A formula (α1 ∨ . . . ∨ αn) is a prospective presupposition of a question
?{α1, . . . , αn} as well.

Because of working with finite sets of direct answers in a system extend-
ing classical propositional logic, things are easier. We need not distinguish
between maximal and prospective presuppositions.3

Theorem 13. The set of prospective presuppositions is equal to the set of
maximal presuppositions of a question Q.

Proof. First, let ϕ ∈ PPresQ but ϕ is not maximal. Since ϕ is not maximal,
there must be (M, s) and ψ ∈ PresQ such that (M, s) |= ϕ and (M, s) 6|= ψ.
(M, s) |= ϕ implies the existence of a direct answer α satisfied in (M, s).
Each presupposition is implied by every direct answer, so is ψ in (M, s) and
it gives (M, s) |= ψ, which is a contradiction.

Second, let ϕ be maximal, but not prospective. In our (finite) case we
can suppose that Q has at least one prospective presupposition. If ϕ is
not prospective, then there is a state (M, s) |= ϕ and (M, s) 6|= α, for each
α ∈ dQ. All presuppositions are satisfied in the state (M, s), so is prospective
presuppositions, but it is in contradiction with the fact that no α is valid in
(M, s).

3In IEL, prospective presuppositions are maximal, but not vice versa, see [44, Corollary
4.10].
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In the next theorem we show the same result we obtained for IEL (see
Lemma 1): All prospective presuppositions of a question are equivalent.

Theorem 14. If ϕ, ψ ∈ PPresQ, then ϕ ≡ ψ.

Proof. For proving semantic equivalence we have to prove ϕ |= ψ as well as
ψ |= ϕ.

If (M, s) |= ϕ, then there is α ∈ dQ such that (M, s) |= α. Since
ψ ∈ PresQ, then (M, s) |= (α → ψ) gives (M, s) |= ψ. We have obtained
ϕ |= ψ.

The other case is similar.

Thus, the symbol PPresQ will be used for a formula representing prospec-
tive presuppositions of a question Q modulo the semantic equivalence.

Note on presupposing and context In the example with card players
we mentioned ‘reasonable’ Catherine’s question

Who has the Joker: Ann, or Bill?

In item 3 (see p. 48) we wrote that either Ann or Bill has the Joker is
Catherine’s presupposition, i.e., it must be the case that Ann has the Joker
(and Bill not), or it must be the case that Bill has the Joker (and Ann not).
This is indicated by comma in the interrogative sentence as well. Catherine’s
presupposition is under influence of the context given by the rules of the card
‘game’:

Just one Joker is distributed among the agents Ann, Bill, and
Catherine.

Now, let us concern the following question:

What is Peter: a lawyer or en economist?

If there is no supplementary context, the question bears a presupposition
that Peter is at least one of the two possibilities (maybe, both of them).
However, the formalization of both questions would be almost the same, it
is expected the form

?{α, β}.

The role of context will be studied later on, viz. subsection Relativized ask-
ability in 3.2.2, especially.
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Askable questions

In semantics for a majority of logical systems we speak about truth or falsity
of a formula (in a particular state of a particular model). It is clear that it
makes little sense to speak about truth/falsity of a question. We introduce
instead a concept of askability of a question. Askability is based on our idea
of a ‘reasonable’ question in a certain situation. ‘Reasonability’ corresponds
to the three conditions we informally mentioned at the introductory example.
Let us repeat and name them:

1. Non-triviality It is not reasonable to ask a question if the answer
is known.

2. Admissibility Each direct answer is considered as possible.

3. Context At least one of the direct answers must be the right one.

Whenever an agent-questioner poses a question, she does not know any (di-
rect) answer to a question, but, simultaneously, she considers all (direct)
answers possible and she is aware of what is presupposed—she knows the
prospective presupposition of a question. The formal definition follows.

Definition 20. It holds for a question Qi = ?i{α1, . . . , αn} that

(M, s) |= Qi

iff

1. (M, s) 6|= [i]α, for each α ∈ dQi

2. (M, s) |= 〈i〉α, for each α ∈ dQi

3. (M, s) |= [i]PPresQi

Then we say that Qi is askable in the state (M, s) (by an agent i).

As we can see, the freedom in the syntactical form of questions was com-
pensated by restrictions in their semantics. We say that a question is (gen-
erally) askable iff there is a model and a state where the question is askable
(by an agent). Askable questions include neither contradiction nor tautology
among their direct answers. The former is excluded by the second condition
and the latter by the first one. A question Qi is askable relative to a model
M by an agent i (let us write M |= Qi) iff (M, s) |= Qi for each s ∈ S. The
definition of |= Qi is straightforward, but there are no ‘tautological’ questions
in K. A question is not askable in a state without successors. In our version
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at least two successors are needed. If we work in systems extending classical
logic, the first condition is equal to (M, s) |= ¬[i]α, i.e., (M, s) |= 〈i〉¬α, for
each α ∈ dQi. We can see the questioner as admitting the possibility of ¬α
for each direct answer α to a question Qi. In these systems, questions are
complex modal formulas. However, Definition 20 is meant in a full generality
without the intention of reduction of questions to the epistemic language.

The epistemic semantic viewpoint represents agent’s ‘knowledge’ in a
state s as an afterset sRi given by the states related to s by an accessibility
relation Ri, i.e., sRi = {s′ : sRis

′}.

s′ · · ·
↗

s
... · · ·

↘
· · ·

Let us return to the following question:

What is Peter: a lawyer or an economist?

This question can be formalized by a formula ?i{α, β}. Its askability in a state
(M, s) requires a substructure on sRi consisting of (at least) two accessible
states, one of them satisfies α (and does not satisfy β) and the other one
β (and does not satisfy α). All states in sRi must satisfy the prospective
presupposition (α ∨ β), because of the context condition.

s1 α, (α ∨ β)

↗
?i{α, β} s

↘
s2 β, (α ∨ β)

Of course, this is a minimal requirement given by askability conditions,
the complete afterset structure can contain other states, some of them may
satisfy both α and β, but none of them satisfies ¬α and ¬β: the question
?i{α, β} does not consider the answer neither α nor β as possible (context
condition)—such answer would be accepted, e.g., by the question

?i{α, β, (¬α ∧ ¬β)}

States in the afterset sRi are understood as epistemic possibilities. In accor-
dance with the non-triviality condition neither α nor β can be true in all of
them. Finally, admissibility condition requires that there must be at least
one ‘α-state’ and at least one ‘β-state’ in sRi.
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3.2.2 Some important classes of questions

In this section we introduce some classes of questions with their semantic
behavior. Yes-no questions and conjunctive questions were introduced in the
previous chapters. In the included subsection we suggest to link conditional
and hypothetical questions with the role of a context, i.e., an auxiliary set of
formulas. The names of classes originate from IEL (cf. [44]).

The very basic questions in their syntactical as well as semantical form
are yes-no questions.

Is Prague the capital of the Czech Republic?

is a question requiring one of the following answers:

• (Yes,) Prague is the capital of the Czech Republic.

• (No,) Prague is not the capital of the Czech Republic.

with the formalization ?i{α,¬α}, which is shortly written as ?iα. This ques-
tion is askable in a state s if there are (at least) two different states available
from s, one satisfies α and the other one ¬α. The afterset sRi is supposed
to have this form:

s1 α

↗
?iα s

↘
s2 ¬α

Reviewing the askability conditions for ?iα we can see that this question
is equivalent to a formula 〈i〉α ∧ 〈i〉¬α. In our system, yes-no questions can
be seen as a ‘contingency modality’. The same requirements are posed by
askability conditions for ?i¬α. In our case, both ?iα and ?i¬α are equiv-
alent. Yes-no questions always form a partitioning on aftersets and their
presuppositions are tautologies. Questions with presuppositions, which are
all tautological, are called safe.

Definition 21. A question Qi is safe iff PPresQi is valid.

Questions that are not safe, will be called risky.4

Another example of safe questions are conjunctive questions. The shortest
one is ?i{(α∧ β), (¬α∧ β), (α∧¬β), (¬α∧¬β)} asking for a full description
based on α and β. We write it as ?i|α, β| and the following figure shows the
required substructure on the afterset.

4The original concepts of safety and riskiness of questions come from Nuel Belnap. See
chapter 2 as well.
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s1 α, β

↗
?i|α, β| s −→ s2 α,¬β

↓ ↘
s3 s4 ¬α, β

¬α,¬β

Similarly to yes-no questions they have the exhaustive set of direct an-
swers and direct answers are mutually exclusive. In section 3.4 we will deal
with some restrictions posed on direct answers, which will enable us to clarify
answerhood conditions.

The question

What is Peter: a lawyer or an economist?

with a formalization ?i{α, β} is a risky one. However, asking this question in
a state an agent does not admit that she can see states where PPres(?i{α, β})
is not satisfied. Let us define this kind of local safeness:

Definition 22. A question Q is safe in a state (M, s) (for an agent i) iff
(M, s1) |= PPresQi, for each s1 ∈ sRi.

Thus, an askable question in a state (for an agent) is safe in this state
(for this agent).

Relativized askability

Let us consider the following question:

Did you stop smoking?

At first sight, it is a yes-no question, but seeing both answers it seems, there
can be something more what is presupposed:

• Yes, I did can mean I had smoked and stopped.

• No, I didn’t can mean I smoked and go on.

Both of them presuppose the smoking in the past. Such question is an
example of a conditional yes-no question with a formalization ?i{(α∧β), (α∧
¬β)}. Generally, conditional questions are of the form

?i{α ∧ β1, α ∧ β2, . . . , α ∧ βn}
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The askability of a conditional question in a state s requires the validity
of α in each accessible state, i.e., an agent ‘knows’ α in s. The notion of
an askable conditional question can be generalized with respect to a set of
formulas. This leads to relativized askability.5

Definition 23. A question Q is askable (by an agent i) in (M, s) with re-
spect to a set of formulas Γ iff (M, s) |= [i]Γ and (M, s) |= Qi. By [i]Γ we
abbreviate the set {[i]γ | γ ∈ Γ}. Then we write (M, s) |= (Γ, Q)i.

A conditional question ?i{α ∧ β1, α ∧ β2, . . . , α ∧ βn} is askable in s if
and only if ?i{β1, . . . , βn} is askable there with respect to the auxiliary set
(knowledge database) {α}.

The term relativized askability will be mostly used for pointing out the im-
portance of a set Γ. Every question askable at a state is askable with respect
to its set of (prospective) presuppositions. It has an expected consequence:

Fact 27. If (M, s) |= (Γ, Q)i, then (M, s) |= (∆, Q)i, for each ∆ ⊆ Γ.

However, relativized askability is not ‘monotonic’ in knowledge databases.
If (M, s) |= (Γ, Q)i, then it need not be (M, s) |= (∆, Q)i, for ∆ ⊃ Γ.

Relativized askability of this kind can be used for an explicit expressing
of the knowledge structure. Catherine’s question

Who has the Joker: Ann, or Bill?

can be formalized by
({¬α ∨ ¬β}, ?{α, β})c

In addition, IEL introduces one more term, hypothetical question, which is
a bit similar to the previous one. A natural language example of hypothetical
yes-no question might be

If you open the door, will you see a bedroom?

with a formalization ?i{(α → β), (α → ¬β)}. A general hypothetical ques-
tion is then

?i{α→ β1, . . . , α→ βn}

Again, the askability of such questions can be understood as based on agent’s
hypothetical knowledge. Our interpretation is: if α is known, then it is to be
decided whether β1, or β2, etc. Using a generalization similar to Definition 23
we obtain

5This term corresponds to question in an information set introduced in [13].

57



3.3. Epistemic erotetic implication

Definition 24. A question Q is askable (by an agent i) in (M, s) with respect
to a set of hypotheses Γ iff (M, s) |= [i]Γ implies (M, s) |= Qi. By [i]Γ we

abbreviate the set {[i]γ | γ ∈ Γ}. Let us write (M, s) |= Γ
i→ Q

Askability of a conditional question ensures the askability of a hypothet-
ical one.

Fact 28. If (M, s) |= (Γ, Q)i, then (M, s) |= Γ
i→ Q.

The only difference of both definitions lies in the words and and implies.
We will return to these concepts in Section 3.5.

3.3 Epistemic erotetic implication

Erotetic inference is implicitly based on the (standard) implication. We say
that a question Q1 implies Q2 (in a state s, for an agent i) whenever askability
of Q1 (in s, for i) implies askability of Q2 (in s, for i).

(M, s) |= Qi
1 → Qi

2 iff (M, s) |= Qi
1 implies (M, s) |= Qi

2

We have mentioned that questions ?iα and ?i¬α have the same askability
conditions. The eqivalence of both questions is a theorem in our system
based on modal logic K. Let us omit the index i for now.

Example 14. Both (?α→ ?¬α) and (?¬α→ ?α) are valid.

The informal meaning of epistemic erotetic implication is very transpar-
ent. Whenever an agent asks Q, then she can ask every question implied by
Q. A question in antecedent is ‘more complex’ then the implied one. Im-
plied question’s required substructure on the afterset must be a substructure
of that required by an implying one. The question

What is Peter: a lawyer or an economist?

implies

Is Peter a lawyer?

as well as

Is Peter an economist?

This can be generalized:

Example 15. ?{α1, . . . , αn} → ?αj is valid, for each j ∈ {1, . . . , n}.
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The following example shows a special position of conjunctive questions
in implications.

Example 16. The following implications are valid:

1. ?|α1, . . . , αn| → ?αj, for each j ∈ {1, . . . , n}.

2. ?|α, β| → ?(α ◦ β), where ◦ is any truth-functional constant.

3. ?|α, β| → ?{α, β, (¬α ∧ ¬β)}

4. ?|α, β, γ| → ?|α, β|

Let us notice that conjunctive questions are safe and they imply safe
questions again. We can prove that it is a rule.

Theorem 15. If Q1 is safe and Q1 → Q2 valid, then Q2 is safe.

Proof. Let us suppose, Q1 is safe and (Q1 → Q2) is valid, but Q2 is not
safe. We take a model M and a state (M, s) where (M, s) |= Q1, then
(M, s) |= Q2. Let us slightly change the afterset of s. We add a single point
s1 accessible from s where the prospective presupposition of Q2 is invalid.
(M, s1) 6|= [i]

∨l
1 βj, for dQ2 = {β1, . . . βl}. In this model the askability of Q1

is not violated at s1, (M, s1) |= Q1, but Q2 is not askable here. This leads to
a contradiction.

We have to be careful when speaking about ‘complexity’ of questions. Is
question ?{α, β} more complex than ?|α, β|? It is easy to check that neither
?|α, β| → ?{α, β} nor ?{α, β} → ?|α, β| are valid. In both cases there is
a problem with the context condition; a risky question ?{α, β} requires the
validity of the disjunction (α ∨ β) on the afterset. The next two examples
emphasize the importance of context condition again.

Example 17. 6|= ?{α, β} → ?{¬α,¬β} as well as 6|= ?{¬α,¬β} → ?{α, β}

Example 18. 6|= ?{α, β, γ} → ?{α, β}

The question ?i{α, β, γ} requires [i](α∨β∨γ), but ?i{α, β} requires ‘only’
[i](α ∨ β), which can fail in the structure sufficient for the askability of the
first question.

An implying question shares presuppositions with the implied one.

Fact 29. If Q1 → Q2 is valid, then if ϕ ∈ PresQ1, then ϕ ∈ PresQ2.

Epistemic erotetic implication has the expected property—transitivity:

Fact 30. If (M, s) |= Q1 → Q2 and (M, s) |= Q2 → Q3, then (M, s) |=
Q1 → Q3.
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3.4 Askability and answerhood

Epistemic erotetic implication creates a relationship among questions. If
a question is askable at a state, so is every implied one. In our system,
Q1 → Q2 if and only if ¬Q2 → ¬Q1. If an implied question is inaskable, so
is the implying one. The askability of a question consists of the validity of
three conditions (non-triviality, admissibility, and context) and inaskability is
a result of the violation of at least one of them. Let us imagine that we know
that Q1 → Q2 and we have the answer to Q2 (non-triviality condition fails),
then we are sure that Q1 is inaskable, but does it mean to have an answer
to Q1? What if Q1 is inaskable because of failing context condition? In this
section we will just deal with such violations of askability conditions, proper-
ties of inaskable questions from various classes of questions, and answerhood
conditions—complete and partial answers will be introduced.

To break the non-triviality condition means that there is a direct answer
which is ‘known’ by an agent (in a state of a model). In fact, an agent knows
a direct answer even if she knows a formula that is equivalent to a direct
answer or she knows a formula from which some direct answer follows. Such
formula is called complete answer.6

Let us define the concept a question is answered at a state:7

Definition 25. A question Qi = ?i{α1, . . . , αn} is answered in (M, s) (for
an agent i) iff (M, s) |=

∨
αj∈dQi ([i]αj). We write (M, s) |= AiQ.

The case of invalid admissibility condition is a bit different. Let us imag-
ine that our agent knows α in a state s. Then, even if she does not know an
answer to a question ?|α, β| in that state, it is not right to ask this question.
All possibilities required by the admissibility condition are not available, in
particular, accessible states with {¬α,¬β} and {¬α, β} are missing. Some
answers to the question ?|α, β| give information that is superfluous in the
state of agent’s knowledge. Formula α is a partial answer to a question
?|α, β|. Partial answer excludes some of the (direct) answers.

Definition 26. A question Qi = ?i{α1, . . . , αn} is partially answered in
(M, s) (for an agent i) iff (M, s) |=

∨
αj∈dQi ([i]¬αj). We write (M, s) |=

PiQ.

In fact, if the admissibility condition fails, there is a direct answer which
is not considered as possible, i.e., (∃α ∈ dQi)((M, s) 6|= 〈i〉α), which is

6In [13] we can find two terms: to be and to give a semantic answer. This distinction
is not necessary here.

7We do not discuss a dynamic approach just now. An answered question is a ‘poten-
tially’ answered question, in fact, an answer need not be uttered among agents.
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equivalent to (∃α ∈ dQi)((M, s) |= [i]¬α) in our system. This means that
our agent can answer the question ?α in (M, s): (∃α ∈ dQi)((M, s) |= Ai?α).
This and example 15 give the proof of the following lemma.

Lemma 10. If (M, s) |= PiQ, then there is a formula ϕ such that (M, s) |=
Ai?ϕ and Qi → ?iϕ is valid.

Let us suppose a question Q is answered. Does it mean that Q is partially
answered? Surprisingly, it is not true that if (M, s) |= AiQ, then (M, s) |=
PiQ. See the next example.

Example 19. s1 ¬α, β
↗

s
↘

s2 α, β

In the structure given by Example 19 the question ?{α, β} is answered in
s (the agent knows β), but it is not partially answered; the agent is not able
to get the knowledge of either ¬α or ¬β, both α and β are still possible.

AiQ implies PiQ for questions with pairs of mutually exclusive direct an-
swers. It means that for each direct answer there is another one such that
both of them cannot be true. Yes-no questions as well as conjunctive ques-
tions are examples from this class. Their sets of direct answers satisfy a more
strict condition, they have mutually exclusive direct answers—the ‘truth’ of
a direct answer (in a state) means that no other direct answer is satisfied
there. However, both conditions are of a semantic nature, it can be caused
by a model and a state. Recall Catherine’s question

Who has the Joker: Ann, or Bill?

with the context, which is important here: it does not admit the afterset
substructure in Example 19. Mutual exclusiveness is not preserved by impli-
cation. We cannot prove anything similar to Theorem 15, in particular, the
answers of the question ?i{α∧β, α∧¬β,¬α∧β} are mutually exclusive, but
this question implies ?i{α, β}, which is not in this class, generally.

Fact 31. If a question Qi has the set dQi with pairs of mutually exclusive
direct answers, then AiQ→ PiQ is valid.

The last option for inaskability is the violation of context condition. Then
an agent does not know (believe) the prospective presupposition of a question.
For example, the question
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Which town is the capital of the Czech Republic: Prague, or
Brno?

can be inaskable, although an agent does not know either complete or partial
answer, but she admits that there is another town, which could be the capital
of the Czech Republic, i.e., neither Prague nor Brno might be the right
answer. Then we say that a question is weakly presupposed by an agent.

Definition 27. A question Qi is weakly presupposed in (M, s) (by an agent
i) iff (M, s) 6|= [i]PPresQi. We write (M, s) |= WiQ.

An askable question in a state (for an agent i) satisfies at least the ‘safe-
ness in a state’ (see Definition 22). If a question Q is safe in (M, s), then Q
cannot be weakly presupposed in (M, s).

Theorem 16. If a question with pairs of mutually exclusive direct answers
Qi is safe in (M, s), then the following conditions are equivalent:

1. (M, s) |= ¬Qi

2. (M, s) |= PiQ

3. There is a formula ϕ such that (M, s) |= Ai?ϕ and Qi → ?iϕ is valid.

Proof. (2⇒1) is clear and (2⇒3) is from Lemma 10.
(1⇒2) If (M, s) |= ¬Qi, then there are three possibilities: (M, s) |= AiQ

or (M, s) |= PiQ or (M, s) |= WiQ. The last one is impossible because of
the safeness of Qi in (M, s). If (M, s) |= AiQ, then (M, s) |= PiQ (from
Fact 31).

(3⇒1) Let us suppose that there is a formula ϕ such that the question
?iϕ is answered in (M, s). From Qi → ?iϕ we know that if (M, s) 6|= ?iϕ,
then (M, s) 6|= Qi.

Partial answerhood of a question Qi in some state is equivalent to the
existence of a yes-no question, which is answered in that state and implied
by Qi. From the validity of Qi → ?iϕ we know that inaskability of ?iϕ

8

implies inaskability of Qi and, therefore, ϕ (as well as ¬ϕ) implies either
some α ∈ dQi or ¬α (for α ∈ dQi).

8(M, s) |= ¬?iϕ iff (M, s) |= Ai?ϕ.
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3.5 Context

In subsection Relativized askability (page 56) we introduced askability
with respect to sets of formulas. While both kinds are understood as variants
of conditional or hypothetical questions, in some situations it can be useful to
display and emphasize the role of a context. Especially if it has an important
position in reasoning. Let us recall the example from Section 2.3.1, where
we discussed erotetic implication in IEL. An agent asking

Q1: What is Peter a graduate of: a faculty of law or a faculty of
economy?

can be satisfied by the answer

He is a lawyer.

even if she did not ask

Q2: What is Peter: a lawyer or an economist?

The connection between both questions could be established by the following
knowledge base Γ:

Someone is a graduate of a faculty of law iff he/she is a lawyer.
Someone is a graduate of a faculty of economy iff he/she is an
economist.

Relativized askability helps us to express that Q1 implies Q2 with respect to
an auxiliary set of formulas Γ, i.e., (Γ, Q1)i → Qi

2. In the example, Q1 can be
formalized by ?{α1, α2}, Q2 by ?{β1, β2}, and Γ = {(α1 ↔ β1), (α2 ↔ β2)},
then

({(α1 ↔ β1), (α2 ↔ β2)}, ?{β1, β2})i → ?i{α1, α2}

is valid. Moreover, the questions Q1 and Q2 are equivalent with respect to
Γ: (Γ, Q1)i → Qi

2 as well as (Γ, Q2)i → Qi
1 is valid.

The prime reason for introducing of the structures (Γ, Q)i is to keep the
importance of a context in inferences with questions. (Γ, Q)i can be consid-
ered as a generalization of conditional questions in our system. (Generalized)
conditional questions consist of two parts: conditional part (context) and
query part. As an easy conclusion of Fact 27 we receive that a conditional
question implies its query part: ?i{α ∧ β1, . . . , α ∧ βn} → ?i{β1, . . . , βn}.

Fact 32. (Γ, Q)i → Qi is valid formula.
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Hypothetical questions consist of such two parts as well, but it is not
valid that ?i{α→ β1, . . . , α→ βn} → ?i{β1, . . . , βn}.

In some sense, we can see (generalized) hypothetical questions, Γ
i→ Q,

as a counterpart of evocation in IEL. Similarly, (generalized) conditional
questions in the interplay with implication, (Γ, Q1)i → Qi

2, seem to be a
counterpart of general erotetic implication in IEL. While the correspondence
could be seen in ‘philosophy’, these structures differs in properties from IEL
ones.

Now, let us list some properties appearing by combination of conditional
and hypothetical questions with implication. Most of them are expected. For
example, the following fact points out the cumulativity of explicitly expressed
presuppositions.

Fact 33. If (M, s) |= (Γ, Q1)i → Qi
2 and (M, s) |= (∆, Q2)i → Qi

3, then
(M, s) |= (Γ ∪∆, Q1)i → Qi

3.

Relativized askability is transfered by implication; if (M, s) |= (Γ, Q1)i
and (M, s) |= (Qi

1 → Qi
2), then (M, s) |= (Γ, Q2)i. And it is easy to check

the following generalization:

Lemma 11. Whenever (M, s) |= (Γ, Q1)i and (M, s) |= (Γ, Q1)i → Qi
2, then

(M, s) |= (Γ, Q2)i.

The same result can be proved for generalized hypothetical questions: If

(M, s) |= Γ
i→ Q1 and (M, s) |= (Qi

1 → Qi
2), then (M, s) |= Γ

i→ Q2.
Finally, we obtain

Theorem 17. If (M, s) |= Γ
i→ Q1 and (M, s) |= (Γ, Q1)i → Qi

2, then

(M, s) |= Γ
i→ Q2.

Proof. Let us suppose (M, s) 6|= Γ
i→ Q2, i.e., (M, s) |= [i]Γ and (M, s) 6|=

Qi
2. From (M, s) |= [i]Γ and (M, s) |= Γ

i→ Q1 we get (M, s) |= Qi
1 and

(M, s) |= (Γ, Q)i. Because of (Γ, Q1)i → Qi
2 we gain (M, s) |= Qi

2, which is a
contradiction.

It is necessary to point out that both variants of relativized askability
were introduced for the explicit expression of the context conditions of a
question. This approach is useful; however, (pure) questions and implication
are of prime importance in our setting.
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3.6 Implied questions

If questions are in the implicational relationship, a transmission of askability
conditions from an implying question to the implied one is justified. An
implied question is understood as ‘less complex’ in its requirements posed on
the afterset substructure. Let us recall Example 159 where Q → ?α is valid
for each α ∈ dQ, thus

Q→
∧
α∈dQ

(?α)

On the one hand, each question ?α is a yes-no question with many good
properties. On the other hand, they may be ‘worse’ in the description of an
agent’s knowledge/ignorance structure than the initial question Q. Might it
be ‘better’ if we consider the whole set of implied questions based on the set
of direct answers to an initial question?

If we consider the set of questions Φ = {?α1, ?α2, . . .}, then inaskability
of some ?α means that the answer is either α or ¬α. In the first case Q is
answered as well, in the second one Q is partially answered. This can be
understood as a form of ‘sufficiency’ condition of the set Φ: answerability
of its members implies at least partial answerability of the initial question
Q. It means, Φ does not include ‘useless’ questions. Moreover, we receive
one more property, Φ is ‘complete’ in a way: if Q is partially answered, then
there must be a question Qj ∈ Φ that is answered. We can understand it as
a form of ‘reducibility’ of an initial question to a set of yes-no questions. In
comparison with IEL, this reducibility is purely based on implication.

Example 16 gives a similar result for conjunctive questions. The set of
yes-no questions can be formed by constituents of their direct answers:

?|α1, . . . , αn| →
n∧
j=1

(?αj)

In this case, we arrive to really less complex questions, but having a partial
answer to ?|α1, . . . , αn| does not give neither answer nor partial answer to
some αj. It could be useful in some cases. An agent can ask questions from
the set Φ = {?α1, . . . , ?αn} and complete her knowledge step by step. The
most important property is that the set Φ does not include useless ques-
tions. Generally speaking, in some communication processes it is useful to
conceal some knowledge or ignorance of a questioner—a criminal investiga-
tion is a nice example. An agent can ask questions from the set Φ without
completely revealing her knowledge structure. Asking a conjunctive question

9Let us omit the index i in this section.

65



3.6. Implied questions

?|α1, . . . , αn| publicly, everybody is informed that the agent-questioner does
not know anything with respect to α1, . . . , αn.
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Chapter 4

A step to dynamization of
erotetic logic

4.1 Introduction

At the beginning of the previous chapter we introduced the language for
multi-agent propositional epistemic logic LKcpl with the set of agents A =
{1, . . . ,m}. If we add an accessibility relation for each agent to Kripke
frames, F = 〈S,R1, . . . , Rm〉, we will obtain multi-modal system K with
box-like modalities [1], . . . , [m]. Although we often used ‘epistemic’ termi-
nology, especially in motivations, this system is not intended for knowledge
representation. In fact, there are many discussions about the best represen-
tation of knowledge as well as belief in the philosophy of logic. Nowadays,
such discussions are brought into life again in studies of substructural logics.
The term knowledge is often subjected to new interpretations based on a
background system.1

The very aim in introducing questions in epistemic-like systems was to
provide an interpretation of questions, which agrees with the interplay of the
idea of representing the knowledge and ignorance structure of a questioner in
the process of asking. The interpretation of questions should be mostly in-
dependent of a background system. In our philosophy, ‘knowledge structure’
and its representation is considered to be primary. This chapter is devoted
to multi-agent epistemic logic with questions based on modal system S5 and
its dynamic extension—public announcement logic.

We often referred to the importance of questions in communication pro-
cesses. This is understood as an information exchange among agents in a
group. The delivering of information in a group has the benefit of (public)

1See, e.g., the definition of knowledge modality inside relevant logic in [2].
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announcements and, as a result, there is a change of epistemic states of group
members.

S5 represents standard epistemic logic, cf. [42, 9], where knowledge is
factive and fully introspective (positively as well as negatively). Of course,
this system is subjected to criticism, see [9, 8] where the ‘logical omniscience
problem’ seems to be the most criticized aspect. However, the goal of this
chapter is to show the role of questions in a formal dynamic-epistemic sys-
tem. So, we are not going to solve any problem of this formal epistemic
representation nor to follow philosophical discussions on it.

First of all we extend the erotetic epistemic framework by group questions
and group epistemic modalities (group knowledge, common knowledge, and
distributed knowledge). This makes it possible to speak about answerhood
conditions for groups of agents. Then we apply the public announcement
modality in the process of answer mining among agents.

4.2 Multi-agent propositional epistemic logic

with questions

We have just said that our epistemic framework would be based on multi-mo-
dal logic S5. Being still in language LKcpl we only have to add that each acces-
sibility relation Ri is equivalence, i.e., reflexive, transitive, and symmetric re-
lation. Accessibility relations seem to play a bit different role now. In logic K
we understand the accessible states as (epistemic) ‘alternatives’ for an actual
state, an agent can see ‘possibilities’. The equivalence relation makes con-
nected states indistinguishable, an agent considers them as having the same
‘value’. Let us recall the group of three friends and just one Joker-card dis-
tributed among them. From Catherine’s viewpoint both possibilities—either
Ann has the Joker or Bill has the Joker—are indistinguishable:

s1 Rc s2

Ann has the Joker ←→ Bill has the Joker

4.2.1 Group epistemic modalities

So far we have worked with personal knowledge. However, in multi-agent
systems we are obliged to introduce new modalities to reflect epistemic states
in groups of agents. The language LKcpl will be extended by symbols EG, CG,
and DG, where G ⊆ A is a group of agents.
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Group knowledge EGϕ means

Each agent (from G) knows ϕ.

and is fully definable by personal knowledges of G-members:

EGϕ↔
∧
i∈G

[i]ϕ

We shall call it group knowledge. Let us stress that EG does not guarantee
that a member of the group G knows that she shares the same information
with some other members of the group.

Common knowledge The group modality CG is stronger in the following
sense: CGϕ requires not only that ϕ is a group knowledge, but also that this
fact is reflected by everybody in G.

Each agent (from G) knows ϕ and each agent knows that each
agent knows ϕ and each agent knows that each agent knows that
each agent knows ϕ and . . .

CG is called common knowledge and expresses that the knowledge is max-
imally shared by everybody in G, each agent is aware of this sharing. CG
can be seen as an infinite conjunction of all finite iterations of the group
knowledge EG:

CGϕ↔ EGϕ ∧ EGEGϕ ∧ EGEGEGϕ ∧ . . .

The system S5C is obtained by adding the operator CG and the semantic
clause:

• (M, s) |= CGϕ iff (M, s1) |= ϕ for each s1 such that s
(⋃

i∈GRi

)∗
s1(⋃

i∈GRi

)∗
is a reflexive and transitive closure of

⋃
i∈GRi and it means that

s1 is accessible from s by each Ri (i ∈ G) in k steps, for any k ≥ 0.
As we said, EG is definable in the language LKcpl, so adding group knowl-

edge is just a conservative extension of the background multimodal epistemic
logic S5. Both languages LKcpl and LKEcpl have the same expressivity. However,
this is not the case of common knowledge. Multi-modal epistemic logic with
common knowledge S5C is not compact, as it is indicated in the definition
of CG and there exists formula in language LKCcpl , which can distinguish two
models that are indistinguishable in language LKcpl, see [42, p. 227].

The relationship of introduced epistemic modalities is the following:
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Fact 34. CGϕ→ EGϕ→ [i]ϕ is valid in S5C for each i ∈ G.

Common knowledge is essential for collective behavior and coordination
of collective actions. In game theory it is often presupposed that rules of a
game are shared by players. It is important to know rules, to know that the
other players know the same rules, to know that they know that we know
it, and so on. In case of questions we considered a question to be (partially)
answered for an agent if she knows a fact based on a direct answer. However,
when we say that a question is (partially) answered for a group of agents?
An answer must not be only known by all members, but it must be generally
known that it is known. Just common knowledge is a good candidate for
group answerhood conditions.

Definition 28. • A question Q is answered in (M, s) for a group G iff
there is α ∈ dQ such that (M, s) |= CGα.

• A question Q is partially answered in (M, s) for a group G iff there is
α ∈ dQ such that (M, s) |= CG(¬α).

Distributed knowledge The last group modality is a bit of another kind.
Let us remind the group of three friends and suppose that Ann has the
Joker. Although neither Catherine nor Bill know it, the knowledge of the
Joker-owner is implicitly contained in the group. If the agents can communi-
cate, they easily reach the hidden fact that Ann has the card. The standard
meaning of DGϕ is given by the semantic clause:

• (M, s) |= DGϕ iff (M, s1) |= ϕ for each s1 such that s
(⋂

i∈GRi

)
s1

ϕ is true in all states that are accessible for every member in G. DG is called
distributed or implicit knowledge. The term distributed knowledge coincides
with the idea of pooling agents’ knowledge together. Let us imagine that
a solution of some problem can be obtained by the collecting of particular
data from each member of a group of agents. The crucial data are distributed
among agents, but nobody can solve the problem alone because of the need
of the other data.

If an agent knows ϕ, then ϕ is distributed knowledge in every agent’s
group:

Fact 35. [i]ϕ→ DGϕ is valid in S5CD for each i ∈ G.

The accessibility relation based on DG is a subset of each Ri. Adding DG

to language LKcpl does not increase its expressivity.2

2Axioms and properties can be found in [23].
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If there is distributed knowledge for a group of agents, then it is dis-
tributed knowledge for every bigger group.

Fact 36. DGϕ→ DG′ϕ is valid in S5CD for G ⊆ G′.

Again, this nicely shows the idea of a hidden information; we can obtain
it by a communication of (only) some agents in the group G′. The role of
distributed knowledge in answerhood will be discussed in the next section.

4.2.2 Group questions and answerhood

We introduced questions in a form of an agent’s personal task that fits in her
knowledge structure. Whenever she wants to find an answer to a question,
she has to communicate the question and find someone who can answer it.
Being in a group of colleagues she asks the question and, in the best case,
there is somebody who knows an answer. A worse case is that nobody can
answer the question—the question is the task for them as well. Such question
is askable by each member of a group G and we shall call it group question.

Definition 29. A question Q is an askable group question in (M, s) (for a
group of agents G) iff (∀i ∈ G)((M, s) |= Qi). Let us write (M, s) |= QG.

Whenever there is a question which is (partially) answered by at least one
agent in a group, then we can see how to reach a (partial) answer. A question
must be publicly posed and the answer is a result of a communication.

Group questions seem to be a worse problem, there is no agent with a
(partial) answer to it in a group. If an answer should be sought inside the
group, there is only one chance to find it. Again communication is important
for to discover ‘hidden’ information, i.e., an answer is present in the group
as distributed knowledge.

Let us have a group of two agents a and b. The following example shows
their knowledge structure:

Example 20. a b
s1 ←→ s2 ←→ s3

α α ¬α
β ¬β ¬β

Agent a cannot distinguish states s1 and s2 and knows α, agent b cannot
distinguish s2 and s3 and knows ¬β. However, neither of them is able to
(partially) answer the yes-no question ?(α → β), it is their group question
?{a,b}(α→ β). If they communicate, they recognize the state s2 to be common
for them. This brings us to the term implicitly (partially) answered question.
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Definition 30. • A question Q is implicitly answered in (M, s) by a
group of agents G iff (∃α ∈ dQ)((M, s) |= DGα).

• A question Q is implicitly partially answered in (M, s) by a group of
agents G iff (∃α ∈ dQ)((M, s) |= DG¬α).

Back to the example, what should agents a and b communicate to gain an
answer to ?(α→ β)? We can find an inspiration in implied yes-no questions.
The question ?(α→ β) implies the disjunction of questions ?α and ?β:

?(α→ β)→ (?α ∨ ?β)

Moreover, the agent a can completely answer ?α and the other one can
completely answer the question ?β. So, it would be useful to communicate
questions ?α and ?β in the group.

Generally, we can prove that if there is a set of questions, their disjunction
is implied by an initial question, and each question from the set can be
(partially) answered by some agent from a group G, then the initial question
is implicitly (partially) answered.

Theorem 18. If there is a set of questions Φ such that each Qk ∈ Φ is
(partially) answered in (M, s) by some agent i ∈ G and (M, s) |= Q →∨
Qk∈ΦQk, then Q is implicitly (partially) answered in (M, s).

Proof. If Q is not sound group question, then Φ = {Q} and there is an agent
having (partial) answer to Q. From Facts 34 and 35 we get that it is implicit
(partial) answer in a group G.

Let us suppose Q is a sound group question in (M, s), then (partial)
answers to questions from Φ are distributed among agents from G. From
(M, s) |= Q→

∨
Qk∈ΦQk we get (M, s) |=

∧
Qk∈Φ ¬Qk → ¬Q. Unsoundness

of Q in (M, s) cannot be caused by violating of context condition because
of its status of sound group question. Now, let us introduce a new agent a,
which pools knowledge of all agents in a group G together. Ra =

⋂
i∈GRi, if

Ra = ∅, then everything is distributed knowledge. Let Ra be nonempty. All
questions Qk ∈ Φ are unsound for a in (M, s), so is Q, and a’s knowledge of
(partial) answer is in afterset sRa.

The content of the theorem is based on the S5CD-valid rule

(ψ1 ∧ . . . ∧ ψm)→ ϕ

([l1]ψ1 ∧ . . . ∧ [lm]ψm)→ D{l1,...,lm}ϕ
(4.1)

which expresses the mentioned idea of pooling agents’ knowledge together
for getting their distributed knowledge.
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A question, which is posed among agents, can be (partially) answered
only if it is at least implicitly (partially) answered by a group. The next
section shows one of the ways of communication formalization in the role of
‘answer mining’.

4.3 Public announcement

Let us return to the group of three friends—Ann, Bill, and Catherine. It is
group knowledge that each of them has one card and nobody knows the cards
of the others and that one of the cards is the Joker. Ann received the Joker,
but neither Bill nor Catherine know which of the other two friends, has it.
In particular, both of them are not able to distinguish between the states
where Ann has the Joker and where she has not. If Ann publicly announces

“I’ve got the Joker.”,

everybody in the group learns this fact. Possible worlds (states) where Ann
does not have the Joker are excluded from the (epistemic) models of both
Bill and Catherine.

Our example gives a typical situation represented in the public announce-
ment logic—after a public announcement of a statement ϕ (“I’ve got the
Joker”), some other statement ψ holds, e.g., Bill knows Ann has the Joker
and Catherine knows Ann has the Joker. In fact, the author of an announced
statement is irrelevant in our framework. The statement is understood as in-
formation coming to each member of a group in the same way. From this
viewpoint Ann’s announcement has the same effect as if an external observer
announces Ann has the Joker.

Formally we introduce logic of public announcement as an extension of
the system S5, cf. [42]. We define a box-like operator [ ], such that the
intended meaning of [ϕ]ψ is:

After the public announcement of ϕ, it holds that ψ.

The semantics of the new announcement operator is given by the following
clause:

• (M, s) |= [ϕ]ψ iff (M, s) |= ϕ implies (M|ϕ, s) |= ψ

where M|ϕ = 〈〈S ′, R′
1, . . . , R

′
m〉, v′〉 is defined as follows:

S ′ = {s ∈ S | s |= ϕ}
R′
i = Ri ∩ S ′2

v′(p) = v(p) ∩ S ′
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The model M|ϕ is obtained from M by deleting of all states where ϕ is not
true and by the corresponding restrictions of accessibility relations and the
valuation function. Again we can introduce a dual operator 〈 〉 defined in a
standard way as 〈ϕ〉ψ iff ¬[ϕ]¬ψ. If we rewrite the corresponding semantic
clause, we obtain

• (M, s) |= 〈ϕ〉ψ iff (M, s) |= ϕ and (M|ϕ, s) |= ψ

The intended meaning of the dual operator is ‘after a truthful announcement
of ϕ, it holds that ψ’. It is easy to see that the diamond-like operator is
stronger:

Lemma 12. 〈ϕ〉ψ → [ϕ]ψ is valid.

The language LK[]
cpl has the same expressive power as the language LKcpl.

This is demonstrated by the following lemma, which provides a reduction of
formulas with the public announcement operator to the epistemic ones. The
corresponding equivalences give, in fact, an axiomatization of the announce-
ment operator in the public announcement epistemic logic without common
knowledge, cf. [42, p. 81].

Lemma 13. The following equivalences are valid in S5 with public announce-
ment modality (where ◦ ∈ {∧,∨,→}):

[ϕ]p ↔ (ϕ→ p)

[ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ)

[ϕ](ψ ◦ χ) ↔ ([ϕ]ψ ◦ [ϕ]χ)

[ϕ][i]ψ ↔ (ϕ→ [i][ϕ]ψ)

[ϕ][ψ]χ ↔ [ϕ ∧ [ϕ]ψ]χ

For common knowledge there is no such reduction (axiom), the language

LKC[]
cpl is more expressive than LKCcpl [42, p. 232]. We only have a rule describing

the relationship between the public announcement and common knowledge,
e.g., the one introduced in [42, p. 83]:

(χ ∧ ϕ)→ [ϕ]ψ ∧ EGχ
(χ ∧ ϕ)→ [ϕ]CGψ

(4.2)

From now, our formal work will proceed in the rich propositional language
LKECDQ[]
cpl with formulas defined as follows:

ϕ ::= p | ¬ψ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ψ1 → ψ2 | ψ1 ↔ ψ2 |
[i]ψ | EGψ | CGψ | DGψ |
?i{ψ1, . . . , ψn} | ?G{ψ1, . . . , ψn} |
[ψ1]ψ2
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4.3. Public announcement

We obtain public announcement logic with common knowledge and questions
PACQ.

4.3.1 Updates and questions

Let us return to our example. As we said, members of a group learn what
was announced. In particular, if Ann says

“I’ve got the Joker.”,

the announced fact becomes commonly known in the group of players {Ann,
Bill, Catherine}. This seems to suggest that a publicly announced proposi-
tion becomes common knowledge . But what if Ann says:

“You don’t know it yet, but I’ve got the Joker.”?

This announcement can be formalized by

(Ja ∧ ¬[b](Ja) ∧ ¬[c](Ja)),

where Ja means Ann has the Joker. Although the formula is true in the
moment of announcement, it is evident that its epistemic part (you don’t
know it yet) becomes invalid after it is announced. So the formula (Ja ∧
¬[b](Ja) ∧ ¬[c](Ja)) becomes false after the announcement.

A formula, which becomes false after it is truthfully announced (as in our
example), is called an unsuccessful update; if it becomes true, we call it a
successful update.

Definition 31.

• Formula ϕ is a successful update in (M, s) iff (M, s) |= 〈ϕ〉ϕ.

• Formula ϕ is an unsuccessful update in (M, s) iff (M, s) |= 〈ϕ〉¬ϕ.

If a formula is an unsuccessful update, it cannot be commonly known
in the updated model. Using the soundness proof of the rule (4.2) we can
prove that a formula is true after a public announcement if and only if it gets
common knowledge after the announcement (see [42, p. 83 and 86]).

Lemma 14. [ϕ]ψ is valid iff [ϕ]CGψ is valid.

As a consequence we get

Lemma 15. [ϕ]ϕ is valid iff [ϕ]CGϕ is valid.

If a formula [ϕ]ϕ is valid, we call it a successful formula.
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Definition 32. Formula ϕ is a successful formula iff [ϕ]ϕ is valid, otherwise
it is an unsuccessful formula

From Lemma 15 we know that publicly announced successful formulas
are commonly known. Atoms, Kiϕ, and ¬Kiϕ (for every ϕ) are examples of
successful formulas.

Successful formulas true in a state are successful updates there:

Lemma 16. If [ϕ]ϕ is valid formula and (M, s) |= ϕ, then (M, s) |= 〈ϕ〉ϕ.

It is easy to verify that in our S5 background system questions are suc-
cessful formulas, i.e.,

Fact 37. [Qi]Qi is valid.

In S5-models a question Qi, which is askable in a state s, is askable in
all states from the equivalence class sRi. No ‘cutting’ of states in the model
M forced by the public announcement of Qi results in (M, s) |= Qi and
(M|Qi , s) 6|= Qi. Thus, a publicly announced question is commonly known
(see Lemma 15). In other words there is no model and state such that
(M, s) 6|= [Qi]Qi.

Successful formulas have an important property: they do not bring any-
thing new if they are announced repeatedly.

Lemma 17. Let ϕ be a successful formula. [ϕ][ϕ]ψ ↔ [ϕ]ψ is valid.

Proof. [ϕ][ϕ]ψ is equivalent to [ϕ ∧ [ϕ]ϕ]ψ (Lemma 13), which is equivalent
to [ϕ]ψ, because of the validity of [ϕ]ϕ (ϕ is successful).

It is no surprise that askable questions (in a state) are successful updates;
it follows from Lemma 16 and Fact 37.

Fact 38. (M, s) |= Qi iff (M, s) |= 〈Qi〉Qi.

Whenever an agent publicly asks a question, it does not cause any change
in her epistemic model, it remains askable until she gets some new informa-
tion.

4.3.2 Public announcement and answerhood

Whenever a question is (partially) answerable in a state, then there is a
formula ϕ such that after a public announcement of ϕ the question becomes
inaskable there. In our example, Ann has the Joker, but neither Bill nor
Catherine know it. If Catherine publicly asks
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“Who has got the Joker?”,

Bill can infer:

“I have not the Joker and Catherine does not know who has it,
therefore Ann has it.”

Catherine’s question was informative for Bill, it caused that the question
Who has got the Joker?, which was askable for Bill, became inaskable after
Catherine had asked it, even if her question was not (partially) answered.
This leads us to the definition of informative formula.

Definition 33. A formula ϕ is informative for an agent i with respect to a
question Q in (M, s) iff (M, s) |= Qi ∧ 〈ϕ〉¬Qi.

Contrary to partial answerhood (see Theorem 16) there need not be any
logical connection between an informative formula and direct answers to a
question. The informativeness can be forced by the shape of a particular
model.

However, it is a clear conclusion of Definition 33 that whenever there is
an askable question in a state for an agent, then after an announcement of an
informative formula the agent obtains at least partial answer to the question.

Lemma 18. If a formula ϕ is informative in (M, s) for an agent i with
respect to a question Q, then there is α ∈ dQ such that (M|ϕ, s) |= [i]α or
(M|ϕ, s) |= [i]¬α.

Proof. From the informativeness of ϕ we obtain (M|ϕ, s) |= ¬Qi, which
means (M|ϕ, s) |= AiQ or (M|ϕ, s) |= PiQ, because of the safeness of Q
in (M, s).

If an informative formula is ‘strong’ enough (i.e., it implies (partial) an-
swer to a question)3, then the (partial) answer is commonly known among
agents in the updated model.

Fact 39. If a formula ϕ is informative in (M, s) for an agent i ∈ G with
respect to a question Q and there is α ∈ dQ such that (ϕ→ α) or (ϕ→ ¬α)
is valid, then (M|ϕ, s) |= CGα or (M|ϕ, s) |= CG¬α.

The core of this fact is that the formula ϕ is true in each state in an
updated model M|ϕ, so is α or ¬α. The role of informativeness is minor, it
‘only’ informs us that a question Q was askable for an agent i in s and that
ϕ can be truthfully announced there.

3We could say that an informative formula ‘gives’ a (partial) answer to a question.
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We have to be careful; informativeness of a formula for an agent does
not imply its informativeness for any other one. The next example shows a
structure where ϕ is informative for the agent a with respect to the question
?α, but it is not informative for b with respect to the same question.

Example 21. a b
s1 ←→ s2 ←→ s3

α ¬α α
¬ϕ ϕ ϕ

4.3.3 Answer mining in a group

In Example 20 we displayed two agents a and b. Neither of them can answer
the question ?(α→ β)—it is their group question. However, the question is
implicitly answered. We can imagine their cooperative communication. The
question ?(α → β) is askable for the agent a and she wants to answer it.
Her colleague b may help. So, a can directly and publicly ask the question
?(α→ β) and reveal her ignorance. A question is a successful formula, thus,
it is commonly known. In cooperative communication agents are supposed
to announce what they know with respect to their group question, i.e., [a]α
and [b]¬β. They come to the (complete) answer ¬(α → β), which is, more-
over, common knowledge. We obtained a sequence of (truthfully) publicly
announced agents’ knowledge leading to a (commonly known) answer:

〈[a]α〉〈[b]¬β〉¬(α→ β),

resp.,
[[a]α][[b]¬β]C{a,b}¬(α→ β).

So our group was successful in seeking an answer using just ‘internal’ re-
sources. They reached an answer after a series of announcements of facts
they know.

This inspires the following idea of question’s ‘solvability’. In general, we
can say that a question is (partially) solvable, if there is a finite series of
truthful announcements of agents’ knowledge after which a (partial) answer
is a result.

Definition 34. A question Q is

• solvable for a group G in a state (M, s) iff there is a set of formu-
las {ψ1, . . . , ψk} and a direct answer α ∈ dQ such that (M, s) |=
〈[l1]ψ1〉 . . . 〈[lk]ψk〉α, where lj ∈ G,
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• partially solvable for a group G in a state (M, s) iff there is a set of
formulas {ψ1, . . . , ψk} and a direct answer α ∈ dQ such that (M, s) |=
〈[l1]ψ1〉 . . . 〈[lk]ψk〉¬α, where lj ∈ G.

Solvability follows the idea of the rule (4.1) describing the pooling agents’
scattered knowledge together. This rule inspired an alternative definition of
distributed knowledge as well, see [11]:

• (M, s) |= D∗
Gϕ iff {ψ | (∃i ∈ G)((M, s) |= [i]ψ)} |= ϕ

D∗
G is not equivalent to DG and the following is proved in [11]:

Theorem 19. If (M, s) |= D∗
Gϕ, then (M, s) |= DGϕ, but not vice versa.

However, solvability is based on finite sets. Our system with common
knowledge is not compact and this brings us to a finite version of D∗

G:

• (M, s) |= D+
Gϕ iff there are ψ1, . . . , ψk such that (M, s) |= [l1]ψ1 ∧ . . .∧

[lk]ψk and formula (ψ1 ∧ . . . ∧ ψk)→ ϕ is valid.

Whenever a (partial) answer of a question is distributed knowledge in the
new sense of D+

G, then the question is solvable.

Lemma 19. If (M, s) |= D+
Gϕ, then (M, s) |= 〈[l1]ψ1〉 . . . 〈[lk]ψk〉ϕ.

Proof. From (M, s) |= D+
Gϕ we obtain that each [lj]ψj is successful formula

true in (M, s). Lemma 16 says that they are successful updates in (M, s)
and, simultaneously, they are commonly known. Let us write M|... for the
updated model after the series of public announcements 〈[l1]ψ1〉 . . . 〈[lk]ψk〉.
It follows that (M|..., s) |= ψj and due to the validity of (ψ1 ∧ . . . ∧ ψk)→ ϕ
we have (M|..., s) |= ϕ.

A formula, which is distributed knowledge in a state, is a successful up-
date there.

Theorem 20. If (M, s) |= D+
Gϕ, then (M, s) |= 〈ϕ〉ϕ.

Proof. Let us suppose that (M, s) |= D+
Gϕ, but (M, s) 6|= 〈ϕ〉ϕ. Then either

(M, s) 6|= ϕ or (M|ϕ, s) 6|= ϕ.

1. (M, s) 6|= ϕ is not possible: s ∈
(
s
⋂
i∈GRi

)
in S5 and (M, s) |= D+

Gϕ
implies (M, s) |= DGϕ (Theorem 19).

2. If (M|ϕ, s) 6|= ϕ, then M|ϕ must be different from the model M|... we
have talked about in the proof of Lemma 19. Thus, there must be a
state s0 which makes the difference.
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(a) It is impossible that s0 ∈ SM|... and s0 6∈ SM|ϕ : each ψj is true in
(M, s0) and (ψ1 ∧ . . . ∧ ψk)→ ϕ is valid, then (M, s0) |= ϕ.

(b) Let s0 6∈ SM|... and s0 ∈ SM|ϕ . s0 ∈ SM|ϕ means that (M, s0) |=
ϕ and from Theorem 19 we obtain s0 ∈

(
s
⋂
i∈GRi

)
. However,

each ψj is known in s by an agent from G, i.e., (M, s) |= DGψj
(Fact 35), thus, (M, s0) |= ψj and it is not possible that s0 6∈ SM|... .

The theorem says an important thing: if an answer to a question is acces-
sible by a communication of agents in a group, then it is successful update.
A successful update becomes common knowledge in the updated model:

Fact 40. If (M, s) |= 〈ϕ〉ϕ, then (M|ϕ, s) |= CGϕ.

As a result we obtain that a question, whose answer is accessible by a
communication of agents, is answered for a group of agents in the updated
model, cf. Definition 28.

4.4 Final remarks

This chapter combines questions in epistemic framework and communication
based on public announcement logic. The background system is S5, which
can be understood as ‘introspective’. Next to positive and negative intro-
spection we can recognize that an agent ‘knows’ questions askable for her:
formula

Qi ↔ [i]Qi

is valid. If (M, s) |= Qi, then the askability of Qi for an agent i holds in each
state in the afterset sRi, i.e., in the equivalence class of s.

In a multi-agent epistemic approach we can understand a question as a
‘task’ (or a ‘problem’) to be solved by a particular group of agents. Com-
munication is one of the basic tools of a group searching for a solution to a
problem (e.g., an answer to a question) and asking questions is one of the
essential parts of this communication. Our liberal SAM makes it possible to
mix knowledge and questions. The question

Who has got the Joker?

is mostly seen as a question about facts. However, we can receive the answer

I don’t know.
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In our setting this answer is not a complete answer to the question Who has
got the Joker?. It solves another kind of questions. Let us return to the
example of three card players. Bill can ask Catherine

Do you know who has got the Joker, Catherine?

This question is primarily asking for Catherine’s knowledge about the card
holder. Expected direct answers are

I know who has got the Joker.
I don’t know who has got the Joker.

The first answer indicates that Catherine can completely answer the question
Who has got the Joker?. The second one indicates that Catherine cannot
completely answer it, but such answer does not reject the possibility that
Catherine knows a partial answer. Whenever Bill wants to find out whether
Who has got the Joker? is a task for Catherine, he should ask

Would you ask the question ‘Who has got the Joker?’, Catherine?

Bill asks Catherine whether the question Who has got the Joker? is a rea-
sonable (askable) question for her. It is a yes-no question formalized by the
formula

?b{?c{Jb, Ja},¬?c{Jb, Ja}}

The first direct answer means that Catherine would ask Who has got the
Joker?, i.e., the question ?c{Jb, Ja} is askable for her. The second one means,
this question is not askable for her, which according to Theorem 16 means
that Catherine can (at least partially) answer that question.

Multi-agent approach with group knowledge modalities makes it possible
to speak on levels of answerhood. An agent’s personal level of answerhood
conditions is based on agent’s knowledge. In case of questions posed in a
group of agents we consider commonly known (partial) answer as a right
solution of a question with respect to a group. If an answer to a question is
sought by a communication inside a group, then an answer must be known
by some member, or it must at least be included as a distributed knowledge.
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Chapter 5

Conclusion

Although we can consider the thesis to consist of two almost independent
parts, some points are common to both of them. Working in inferential
erotetic logic as well as in epistemic erotetic logic I primarily wanted to
provide tools for the development of both branches of erotetic logic. Even if
I do not want to contribute to a philosophical debate on what a question is, it
seems to me that a word or two should be said about the chosen methodology
in both parts of the thesis.

The main inspiration came from the original IEL. It inspired the set-of-an-
swers methodology introduced in the first chapter as well as the emphasis
posed on inferences with questions. SAM is liberal enough to be used in the
presented approaches. It is open for additional restrictions given by both
syntax and semantics. Of course, many objections can be raised against
it, especially, whenever we want to analyze all kinds of natural language
questions. Our intention was to work with propositional logic and to keep
maximum from the logic of declaratives. In the first chapter we showed that
our SAM is convenient for the execution of erotetic inferences and that the
epistemic variant is very natural. Coming back to additional restrictions,
chapter 2 presents SAM containing direct answers as declaratives only. It is
in correspondence with the second Hamblin’s postulate (cf. subsection 1.2.1).
On the contrary, our epistemic erotetic logic (chapters 3 and 4) admits to
have not only declaratives among direct answers.

The first part of the thesis (chapter 2) is fully developed in the IEL frame-
work. Questions and declaratives are mixed only on the level of consequence
relations and the main goal of the chapter is to study relationships among
IEL consequences. Our general approach showed that some relations must be
supported by additional relations among direct answers, cf. results obtained
for regular e-implication, or based on the relationship of ‘strongness’ between
two questions.
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The second part of the thesis is different in its substance. Epistemic
framework is the prime and questions correspond to certain states of knowl-
edge, ignorance, and presuppositions of an agent. This approach is a novelty
inspired by Groenendijk-Stokhof’s intensional erotetic logic together with
our SAM. Questions become a part of epistemic language and they can be
considered as satisfied in an epistemic state (in a model). The semantic
work with questions has almost the same flavor as it is with (epistemic)
declaratives. Only the questions’ satisfiability (askability) in a state is more
complex, being based on three conditions (non-triviality, admissibility, and
context). Although we introduced a general approach, in the rest of the the-
sis we use finite SAM. This makes the work with the context condition and
presuppositions much easier. Also the definition of askability of a question in
a state is of such a generality that it can be used for any epistemic-like logic.
In the thesis we presented epistemic logics K and S5 extended by questions.
Questions are representable by modal formulas there. Thus, these systems
can be considered as ‘reductionist’ ones—of course, it was not intentional.
Being inspired by IEL and Groenendijk-Stokhof’s approach we wanted to
deal with inferences with questions. In this epistemic case, inferences are
based on classical implication. However, we can explicitly work with epis-
temic contexts and obtain similar structures (on the object-language level)
that are introduced in IEL. The conditions required for askability of a ques-
tion nicely correspond to natural answerhood conditions. Discovering them
we were faced with the problem of some restrictions required for the chosen
SAM.

Moreover, all works well with group modalities as well as with public an-
nouncement. If we compare the contents of the chapters, we may find another
division of the thesis. Chapters 2 and 3 can be called ‘logic of questions’,
they study inferences with questions and the relationships of questions and
declaratives. On the other hand, chapter 4 introduces questions as a part
of communication. Dynamic approaches can mostly bear the name ‘logic of
inquiry’. Chapter 4 shows that questions behave well together with updates
and that they play the expected role in the context of distributed knowl-
edge. The framework public announcement logic is based on S5. Publicly
asked questions are successful formulas and an askable question in a state is
a successful update there. As a final result we presented the correspondence
of a finite version of distributed knowledge with cooperative communication
aimed at finding a commonly known (partial) answer to a group question.
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5.1. Related works and future directions

5.1 Related works and future directions

Publications related to inferential erotetic logic were mentioned in chapter 2
and subsection 1.3.1 where we list papers having something to do with an
‘inquiry’ aspect of IEL, which was not studied in chapter 2. Moreover, we
added two papers based on Hintikka’s approach.

The historical part of the first chapter includes many publications refer-
ring to intensional erotetic logic of Groenendijk and Stokhof. Let us point
out the cited dynamic application from [40]. This paper makes the best
of dynamic logic developed in publications of Johan van Benthem and his
collaborators. The usual epistemic model is enriched by a new equivalence
relation of indistinguishability (‘abstract issue relation’). Roughly speaking,
similarly to updates of models based on public announcements, there are
updates for asking yes-no questions.

Closely related to this approach is inquisitive semantics developed by
Jeroen Groenendijk and his collaborators. The generalized version with its
associated logic can be found in [5]. The original idea behind inquisitive se-
mantics is common to dynamic approaches. A cooperative communication is
a raising and resolving issues. Propositions are seen as proposals how to up-
date the common state. “If a proposition consists of two or more possibilities,
it is inquisitive: it invites the other participants to provide information such
that at least one of the proposed updates may be established.” [5, p. 112]

As the recent publications indicate, the combination of epistemic and
dynamic aspects seems to be a good framework for erotetic logic. The goal of
our epistemic logic of questions was just to prepare such a general framework.
It opens many directions of further work, let us mention the most obvious:

• To use another epistemic logic. Relevant epistemic logic proposed by
Ondrej Majer and myself, cf. [2, 22], can be took into account. Relevant
implication provides a good background for erotetic implication. It is
necessary to develop a multi-agent version of relevant epistemic logic.

• To combine our approach with ‘logics of communication’. This should
be based on the recent boom of dynamization, cf. [41, 40, 42]. One
possibility is to apply generalized common knowledge CG(ϕ, ψ), which
is, in fact, equivalent to [ϕ]CGψ. A correspondence with our notion
(partially) solvable question can take advantage of a generalization:
CG(~ϕ, ψ) iff [ϕ1] . . . [ϕn]CGψ.

• To develop a predicate version. This item brings us to an extensive
study of types of answers.
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• To apply non-monotonic approaches. Inferential erotetic logic invites
to non-monotonic applications (e.g., ordering on dQ, preferred models,
default rules based on questions).

• To fuzzify presented approaches. Recall the paper [4] mentioned in
section 1.3.2 as an inspiration.
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epistemic logic. In M. Pelǐs, editor, The Logica Yearbook 2009, pages
157–172. College Publications, 2010.
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[46] A. Wísniewski. Questions and inferences. Logique & Analyse,
173–175:5–43, 2001.
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