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Autor: Pavol Gál
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Abstrakt: Táto práca je zameraná predovšetkým na intervalové booleovské fun-
kcie. Práca prezentuje základné znalosti o booleovských funkciách, ich reprezen-
táciách a hlavne sa koncentruje na pozit́ıvne booleovské funkcie. Práca cituje
viacero známych výsledkov o intervalových funkciách, ako sú ich rôzne vlast-
nosti, niektoré rozpoznávacie algoritmy a ich zložitosť. Práca ďalej zavádza ko-
mutat́ıvne booleovské funkcie a študuje vlastnosti komutat́ıvnych pozit́ıvnych
booleovských funkcíı a niektorých odvodených foriem. Práca formuluje viacero
tvrdeńı o ich štruktúre a počte intervalov. Novým a najdôležiteǰśım výsledkom je
algoritmus na rozpoznávanie pozit́ıvnych 3-intervalových funkcíı. Na záver práca
analyzuje štruktúru a počet intervalov niektorých konkrétnych všeobecných boo-
leovských funkcíı.
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Chapter 1

Introduction

In general, Boolean functions, are very complex topic which has been studied
for several decades and introduced many interesting results. Boolean functions
can be perceived from several points of view and divided into various classes
according to their special characteristics, properties, evaluation complexities etc.

In this thesis we will focus on special class of Boolean functions called Interval
functions. We will study their properties and properties of a few specialized
subclasses. We will also show some algorithms to recognize functions from these
particular subclasses. We will start with some essential definitions. Then we will
proceed with the most important representations of Boolean functions, followed
by definitions of already mentioned specialized subclasses and then we will finally
come to Interval Boolean functions themselves.

1.1 Boolean functions

In this section we will define Boolean functions and the most important terms
and notations which are closely related to them.

Definition (Boolean function). A Boolean function (or function for short) on
n propositional variables is a mapping f : {0, 1}n 7→ {0, 1}

Boolean values 1 and 0 we usually denote as true and false respectively.

Definition (Boolean vector). A Boolean vector (or vector for short) of length
n is an n-tuple of such Boolean values. We will denote these vectors by x , y , ...

For vectors u , v of the same length n we denote by u ≥ v , that u is
componentwise greater than or equal to v , i.e., ∀i ∈ {1, ..., n} : ui ≥ vi. We use
vector relations =, 6=, <, >, ≤ in a similar manner.

The bits of vector x ∈ {0, 1}n will be denoted by x1,...xn. The vector x also
corresponds to an integer number x with binary representation equal to x . In
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this case x1 is the most significant bit of x and xn the least significant bit. Hence
x =

∑n
i=1 xi2

n−i. Also, for any integer x we denote by x the vector corresponding
to the binary representation of x.

Definition (Truepoint). A Boolean vector x for Boolean function f is called a
truepoint (or true for short) if f(x ) = 1. The set of all truepoints is denoted by
T (f).

Definition (Falsepoint). A Boolean vector x for Boolean function f is called
a falsepoint (or false for short) if f(x ) = 0. The set of all falsepoints is denoted
by F (f).

For function f on n variables and v ∈ {0, 1} we denote by f [xi := v] the
function on (n− 1) variables, which is formed from f by fixing the value of i-th
variable to v.
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Chapter 2

Representations of Boolean
Functions

For any progress in the following text we need to represent Boolean functions
in a way which is the most suitable for our purposes. We will start with a very
simple representation.

2.1 Truth table

Definition (Truth table). A truth table for Boolean function f on n variables
is the table of all unique n-dimensional input Boolean vectors x of the function
f on the left side and their appropriate function values f(x ) on the right side.

This definition is valid because a Boolean function is defined on a finite set
and therefore its truth table has a finite amount of rows. When the function is
represented by such a truth table, the input vectors are usually sorted from 0
vector (vector where each its element is equal to 0) to 1 vector and variables are
separated into columns so each variable has one column. This representation is
easy to understand and easy to imagine. In the following text we will use it for
easy and visual explanation of other representations. However, since the amount
of all input vectors for Boolean function on n variables is 2n, also its truth table
has 2n rows. Therefore truth table is not an effective representation at all.

2.2 Logical operators

The most common representation of Boolean functions is using logical operators.
Arguments of such operators can be Boolean variables or results of other logical
operators. In other words, logical operators can be (recursively) combined. They
differ by number of arguments and are defined by all combinations of Boolean
values in arguments and corresponding result values. Such definitions are easily
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x1 x2 x3 f(x )
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 2.1: Truth table of Boolean function f on 3 variables

figured by truth tables. The most important and the most common operators
are negation also denoted by NOT or ¬, logical conjunction (or conjunction for
short) denoted by AND or ∧ and logical disjunction (or disjunction) denoted by
OR or ∨. They are all defined in tables 2.2 and 2.3 and we will use them in the
rest of the thesis. We added also exclusive disjunction (denoted by XOR or ⊕).
Although this operator is not as commonly used as previous ones, for us it will
prove important and we will use it in a few topics.

x ¬x
0 1
1 0

Table 2.2: Logical operators: NOT

x y x ∧ y x ∨ y x⊕ y
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Table 2.3: Logical operators: AND, OR, XOR

Other logical operators are figured in table 2.4. These are implication (⇒
or →), equivalence (⇔ or ↔), negation of conjunction (NAND) and negation of
disjunction (NOR). Except of the implication they are all less used operators. The
implication is used almost strictly in Propositional and Predicate Logic (see [8])
and NAND together with NOR are used in circuits (see [13]).

As we mentioned earlier, logical operators are not only unary and binary.
For instance, conjunction and disjunction can be defined as n-ary operators as
follows.
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x y x⇒ y x⇔ y x NAND y x NOR y
0 0 1 1 1 1
0 1 1 0 1 0
1 0 0 0 1 0
1 1 1 1 0 0

Table 2.4: Logical operators: implication, equivalence, NAND, NOR

Definition (n-ary conjunction). The conjunction of n Boolean variables (or
n-dimensional Boolean vector) is true if and only if all n variables (elements of
the vector) are true.

Definition (n-ary disjunction). The disjunction of n Boolean variables (or n-
dimensional Boolean vector) is false if and only if all n variables (elements of the
vector) are false.

Observation 2.2.1. Binary conjunction and disjunction as well as exclusive
disjunction are commutative and associative binary operators. Which means
that for every Boolean variable x, y, z following equalities hold.

x � y = y � x (2.1a)

(x � y) � z = x � (y � z) (2.1b)

where symbol � stands for any of previously mentioned operators.

Although these are quite obvious and trivial properties of certain logical
operators, we will find them very useful in several chapters of the thesis. At
least, these properties allow us to skip brackets when we want to put the same
operator (one of these three) between several variables and evaluate them in any
order.

Furthermore, this is the reason why iterative use of binary conjunction and
disjunction is equivalent with their n-ary definitions.

We have to mention that not all logical operators have properties 2.1. For
instance, the implication is neither commutative nor associative operator. Before
we continue any further, we will need one more trivial observation.

Observation 2.2.2. Logical conjunction and disjunction are distributive be-
tween each other. This means that for every Boolean variable x, y, z equalities
2.2 hold. Furthermore, for negation of these operators De Morgan rules (2.3)
hold.

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (2.2a)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (2.2b)

10



¬(x ∧ y) = ¬x ∨ ¬y (2.3a)

¬(x ∨ y) = ¬x ∧ ¬y (2.3b)

2.3 Normal forms and their properties

At this point we can proceed to widely used representations of Boolean functions
called Normal forms. These representations are based on logical operators AND,
OR and NOT. However, before we get to their definition, we need several basic
notations and definitions.

For more convenient and compact usage we will denote negation of Boolean
variable ¬x as x. We will also frequently denote conjunction x ∧ y as multipli-
cation xy omitting the operator.

Definition (Literal). A literal is Boolean variable x and its negation x (posi-
tive and negative literal, respectively). The pair of literals x and x is called the
complementary pair.

Definition (Term). A term t is an elementary conjunction of literals if every
propositional variable appears in it at most once, i.e., if I ∩ J = ∅

t =
∧
i∈I

xi ∧
∧
j∈J

xj (2.4)

A term is called linear if it contains exactly one literal and it is called quadratic
if it contains exactly two literals. We also define analogous construct for disjunc-
tion.

Definition (Clause). A clause l is an elementary disjunction of literals if every
propositional variable appears in it at most once, i.e., if I ∩ J = ∅

l =
∨
i∈I

xi ∨
∨
j∈J

xj (2.5)

Definition (Normal forms). A disjunctive normal form (or DNF ) is a disjunc-
tion of terms. A conjunctive normal form (or CNF ) is a conjunction of clauses.

Proposition 2.3.1. Every Boolean function can be represented by a DNF and
a CNF.

Proof. First, we will represent the given function by a truth table. We will now
construct the DNF representation. We choose all rows where the function value
is 1. From each such row we will construct the term as follows. Each variable
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which is set to 1 will appear in the term as positive literal and each variable set
to 0 will appear as negative literal. The disjunction of these terms will be the
DNF representation of given function. This way we have for each truepoint of
the given function exactly one term which will be evaluated as 1. Therefore, for
each truepoint disjunction of such terms will be 1. On the other hand, for each
falsepoint we have no term which could be evaluated as 1. Hence our DNF will
be 0 for each falsepoint of the given function.

The CNF can be constructed from the truth table analogously. For creation of
clauses we would just pick the rows with 0 function value and flip the negation
of literals. The proof of the equivalence of such CNF with the given Boolean
function would be also analogous.

From now on we will from these two representation use only DNF. We will
often refer a conjunction of literals (e.g. a part of the term) as set of literals and
we will work with it as with set. We can do this because the value of conjunction
does not depend on the order of evaluation of its literals but it strictly depends
on their presence in it. Also for DNF F and term t we denote by t ∈ F the fact,
that t is contained in F .

Definition (Satisfaction, falsification). For Boolean vector v and term t we say,
that t satisfies (falsifies resp.) v if t evaluates to 1 (0 resp.) on v. Analogously
we say that F satisfies (falsifies resp.) v if F evaluates to 1 (0 resp.) on v or we
can say if at least one term of F evaluates to 1 (all terms of F evaluates to 0
resp.) on v.

We define the DNF version of well known satisfiability problem (which is
originally defined for CNF) as follows.

Definition (Falsifiability problem). Given a DNF F , does there exist an as-
signment of Boolean values to the variables which is falsified by F?

Definition (Absorption). We say that term t absorbs term t′ if t consists of a
subset of literals which constitute term t′.

Given Boolean functions f and g on the same set of variables, we denote by
f ≤ g the fact that g is satisfied for any assignment of values to the variables for
which f is satisfied. Hence, for example, if a term t absorbs term t′, then t′ ≤ t.
Also for every term t, which constitutes a term in a DNF F , it holds that t ≤ F
since when t = 1 for some evaluation of variables, then for the same evaluation
F = 1 holds.

Definition (Implicant). We call a term t an implicant of a DNF F if t ≤ F .
Hence every term t ∈ F is an implicant of F .
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Definition (Prime implicant). We call t a prime implicant if t is an implicant
of F and there is no implicant t′ 6= t of F , for which t ≤ t′ ≤ F .

Definition (Prime DNF). We call DNF F a prime DNF if it consists exclusively
of prime implicants.

Definition (Irredundant DNF). We call DNF F irredundant if for any term
t ∈ F , DNF F ′ produced from F by deleting t does not represent the same
function as F .

Proposition 2.3.2. If F belongs to some class of DNFs C, for which we can
solve the falsifiability problem in polynomial time and which is closed under par-
tial assignment, then we can test in polynomial time for a term t and a DNF F
whether t is an implicant of F .

Proof. Let t = x1...xlpy1...yln be a term. Then t is an implicant of F if and
only if F [x1 := 1, ..., xlp := 1, y1 := 0, ..., yln := 0] is not falsifiable (there is no
assignment to the remaining variables which makes the DNF evaluate to 0).

Definition (Conflict). We say, that two terms t1 and t2 conflict in a variable x
if t1 contains literal x and t2 contains literal x.

Definition (Consensus). Two terms t1 and t2 have a consensus if they conflict
in exactly one variable. If t1 = Ax and t2 = Bx, where A, B are two sets of
literals and x is the only variable, in which t1 and t2 have conflict, we call a term
t = AB a consensus of terms t1 and t2. We denote this fact by t = cons(t1, t2).

Proposition 2.3.3. If t1 and t2 are two implicants of function f , which have a
consensus, then cons(t1, t2) is an implicant of f .

Proof. Let t1 = Ax and t2 = Bx. If cons(t1, t2) = A ∧ B = 1, then both A = 1
and B = 1. Therefore exactly one of the terms Ax and Bx is equal to 1. And
since they are both implicants of f , f = 1 must hold.

Given any DNF F , it is possible to create prime and irredundant DNF F ′ by
certain series of absorptions and consensuses. This method is called consensual
method and is described in [9]. However, it is not generally very effective and it
can easily reach exponential complexity.

The problem of effective creation of prime and irredundant DNF is not the
purpose of the thesis. However, there are classes of Boolean functions for which
there exists a polynomial solution of this problem.

For more results about logical operators and normal forms we refer to [1]
and [10].
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2.4 Branching tree

Definition (Branching tree). A branching tree of a Boolean function f on n
variables is a complete binary tree of depth n. Each inner node represents one
variable. The edge which leads to its left (right) son evaluates this variable with
0 (1 respectively). Inner nodes on the same level of the tree represent the same
variable and each level corresponds with the different variable. Each path from
root to the leaf then represents one of 2n input Boolean vectors of function f .
Each leaf represents the function value, which corresponds to the input vector
represented by the path from the root to this leaf.

Figure 2.1: A branching tree of the same function as the Truth table 2.1

We can easily observe, that this representation is very large just like the
truth table. Actually branching tree and truth table are quite analogous. They
both hold all values of the represented function together with their correspond-
ing input vectors. However, the vectors are in the branching tree sorted by its
definition, while in the truth table the sorting is optional. Also depending on the
order of the variables on the path from the root of the tree to its leaves the infor-
mation about significance of bits of the vectors is stored in the branching tree.
We will find this property extremely important for our purposes. Although, we
could easily store such information in truth table as well (representing it by the
order of input variable columns and then sorting the input vectors accordingly),
we will rather use the branching tree, because it is a graphical representation
and therefore it is easier to imagine and remember.

The branching tree has one more property that will be useful for us. Given a
Boolean function f and one of its branching tree representations, then by fixing
the variable x which is represented by its root to zero (one) we get a sub-function
f [x := 0] (f [x := 1], resp.) represented by direct left (right, resp.) subtree of the
root.

We define also some operations on branching trees. These operations will
transform the branching tree of represented function f and order π of its variables
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to another branching tree representing the same function f but different order
π′ of its variables. We will benefit of these operators later in the thesis.

Definition (Operator moveRootDown(j)). Given the branching tree of function
f on n variables and order π = (π(1), π(2), ..., π(n)) of its variables, operator
moveRootDown(j) transforms the tree so it represents the function f and order
π′, where π′ = (π(2), ..., π(j), π(1), π(j + 1), ..., π(n)).

Figure 2.2: Operation moveRootDown(j)

This operator simply moves the evaluation of the first (root) variable j − 1
levels down on the j-th level. Figure 2.2 shows the operator moveRootDown(j)
and how it transforms the original branching tree. Note, that after applying
this operator, all subtrees with roots on j-th level of the remain unchanged,
only their order is permuted. In other words, all 2j functions which can be
created from f by fixing first j variables according to the order π are the same,
only their representations within the branching tree permute among themselves.
Specifically, this permutation of mentioned subtrees can be described as follows.
We will take first 2j

2
subtrees as they are ordered in the original tree (starting from

the leftmost one) and declare them the ordered set L and similarly we declare
the ordered set R from the rest of these subtrees finishing in the rightmost one.
Now we will create their new ordering by choosing them from these ordered sets,
with respect to the set order, starting in the set L and alternating to the other
set after each choice.

Definition (Operator moveToRoot(j)). Given the branching tree of function
f on n variables and order π = (π(1), π(2), ..., π(n)) of its variables, operator
moveToRoot(j) transforms the tree so it represents the function f and order π′,
where π′ = (π(j), π(1), ..., π(j − 1), π(j + 1), ..., π(n)).

15



Figure 2.3: Operation moveToRoot(j)

This operator moves the evaluation of the variable xπ(j) j − 1 levels up to
the root of the tree. Figure 2.3 shows, how the operator moveToRoot(j) works.
We can see that it, again, permutes the subtrees with roots on j-th level. In this
case the permutation is as follows. We will take every even subtree in such order
as they appear in the original tree and we will will put them it this order after
the rest of the subtrees (odd ones), which we will keep in the same relative order
as they were in the original tree.

We can easily observe, that previous two operators are reverse each to other.
We will now introduce two more operators.

Definition (Operator moveDown(i,j)). Given the branching tree of function
f on n variables and order π = (π(1), π(2), ..., π(n)) of its variables, operator
moveDown(i,j) transforms the tree so it represents the function f and order π′,
where π′ = (π(1), ..., π(i− 1), π(i+ 1), ..., π(i+ j), π(i), π(i+ j + 1), ..., π(n)).

Definition (Operator moveUp(i,j)). Given the branching tree of function f
on n variables and order π = (π(1), π(2), ..., π(n)) of its variables, operator
moveUp(i,j) transforms the tree so it represents the function f and order π′,
where π′ = (π(1), ..., π(i− j − 1), π(i), π(i− j), ..., π(i− 1), π(i+ 1), ..., π(n)).

Operators moveDown(i,j) and moveUp(i,j) will take the variable on i-th level
of the tree and move it up resp. down j levels. They are, again, reverse each to
other. It is also easy to observe that operator moveDown(i,j) is actually opera-
tor moveRootDown(j+1) applied on each subtree with root on i-th level of the
original tree. Similarly operator moveUp(i,j) is operator moveToRoot(j+1) ap-
plied on each subtree with root on i-th level. Therefore, in both of these cases,
the subtrees with roots on (i + j)-th level will remain unchanged but permute
accordingly.
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Observation 2.4.1. Operator moveRootDown(2) is identical with operator move-
ToRoot(2). They will both swap root variable with the one on second level of
the branching tree.

Operator moveDown(i,1)is identical with operator moveUp(i+1,1). They will
both swap variables on i-th and (i+ 1)-th level of the branching tree.
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Chapter 3

Positive and Negative Boolean
Functions

Definition (Positivity in variable). We say, that the Boolean function f on n
variables is positive in variable xi if for each (n− 1)-dimensional Boolean vector
x’ holds: f [xi := 0](x’ ) ≤ f [xi := 1](x’ ).

Definition (Negativity in variable). We say, that the Boolean function f on n
variables is negative in variable xi if for each (n−1)-dimensional Boolean vector
x’ holds: f [xi := 0](x’ ) ≥ f [xi := 1](x’ ).

Definition (Positive and negative Boolean function). We say, that the Boolean
function f on n variables is positive (negative) if it is positive (negative, resp.)
in all n variables. The class of positive Boolean functions will be denoted by C+,
the class of negative Boolean functions by C−.

In most of the papers (e.g. in [4]) we can meet with another definition of
positive and negative Boolean function. This definition is closely connected to
DNF representation. We will present it as theorem of equivalence with previous
definition.

Definition (Positive and negative term). A term t defined by 2.4 is called
positive if it contains no negative literals (i.e., if J = ∅) and it is called negative
if it contains no positive literals (i.e., if I = ∅).

Definition (Positive and negative DNF). A DNF is called positive (negative)
if it contains only positive (negative, resp.) terms.

Theorem 3.0.2. A Boolean function is positive (negative) if and only if it has
at least one representation by a positive DNF (negative DNF, resp.).
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Proof. For constant Boolean function theorem holds trivially.
(if part) Let f be a Boolean function on n ≥ 1 variables, which has at least

one representation by a positive DNF. Let F be such representation. Let x be an
arbitrary variable. Then x is contained in F only as positive literal. Let t1,...,tk
be all terms in F which contain x and s1,...,sl all terms which do not contain
x. In F [x := 0] all terms ti will disappear and in F [x := 1] all terms ti will
be shortened by one variable (x). Terms sj will remain the same in both cases.
Therefore all terms which are in F [x := 0] are also in F [x := 1], hence for each
y ∈ {0, 1}n−1 F [x := 0](y) ≤ F [x := 1](y) holds.

(only if part) Let f be positive function on n ≥ 1 variables. Let F be its DNF.
Let x be a variable which is contained in F as negative literal. Let t = Ax be an
implicant of f , which is present in F . Let us now consider term t′ = Ax. Let y
be a vector which is satisfied by t′. Naturally, y has the bit which corresponds
to variable x set to 1. We will create vector ỹ from y by switching the bit, which
corresponds to variable x, from 1 to 0. Then t satisfies ỹ and since t is implicant
f , ỹ is the truepoint of f .

From positivity of f we know, that F(ỹ) ≤ F(y), because ỹ differs from y
in exactly one bit and this bit is 1 in y . Hence y is also a truepoint and t′ is
also implicant of f . Therefore if we create DNF F ′ from F by adding term t′ (if
it was not already present), it represents the same function f . Now we can add
implicant A = cons(t, t′) = cons(Ax,Ax) which will absorb both terms t and t′.

This way we can simply omit all negative literals in any DNF of positive
Boolean function thus creating a positive DNF of this function.

Proof is analogous for negative function.

Proposition 3.0.3. Class of positive (negative) Boolean functions is closed un-
der partial assignment.

Proof. Follows trivially from existence of its positive (negative) DNF. By as-
signing any variable in such DNF the positivity of all remaining literals stays
unchanged.

Lemma 3.0.4. For any positive Boolean function f and its arbitrary variable x
holds, that f = f [x := 0] ∨ xf [x := 1].

Proof. We will consider prime and irredundant DNFs F and F ’ of function f and
the right side of the equation respectively and prove that they are equal. These
DNFs are, of course, positive, because as the proof of Theorem 3.0.2 shows, any
implicant which contains negative literal is absorbed by implicant without this
literal and therefore it cannot be prime.

Let F consist of prime implicants T = {t1, ..., tk, xr1, ..., xrl}, where none of
the terms ti or rj contains literal x. Any term ti is not a subset of any term
rj, otherwise rj would be absorbed. This means that the prime and irredundant
DNF F0 of function f [x := 0] consists exactly of terms T0 = {t1, ..., tk}, be-
cause the rest of the terms are evaluated as false by fixation of variable x to 0.
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Similarly, the prime and irredundant DNF F1 of function f [x := 1] consists of
terms T1 = {ti, r1, ..., rl|i ∈ I ⊆ {1, ..., k}} (some terms ti can be absorbed by
some terms rj, but this does not concern us). Hence F ′ consists of implicants
{t1, ..., tk, xr1, ..., xrl} = T , because any term xti is absorbed by corresponding
term ti.
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Chapter 4

Interval Boolean Functions

4.1 Basic definitions

Interval Boolean functions were first introduced in [7]. This research was inspired
by optimization requirements in the area of hardware verification ([5], [11]) and
software testing ([12]), where compact DNF representations of interval functions
provide faster generation of the test data.

Before we proceed to the definition of interval functions themselves, we need
to define the permutation of a Boolean vector.

Definition (Permutation of vector). For vector x ∈ {0, 1}n and for permutation
π : {1, ..., n} 7→ {1, ..., n} we denote by x π the vector of n bits formed by
permuting bits of x by π. That means xπi = xπ(i). By xπ we denote the number
with binary representation x π.

Definition (0-interval function). Booolean function f : {0, 1} 7→ {0, 1}n is
called a 0-truepoint-interval function (0-falsepoint-interval function) if it is iden-
tically equal to zero (one, resp), i.e., f(x ) = 0 (f(x ) = 1, resp.) holds for all
x ∈ {0, 1}n.

Definition (k-truepoint-interval function). Boolean function f : {0, 1} 7→
{0, 1}n is called a k-truepoint-interval function for k ≥ 1 if it is a (k − 1)-
truepoint-interval function or there exist k pairs of n-bit integers a1,b1,...,ak,bk,
a1 ≤ b1 < a2 ≤ b2 < ... < ak ≤ bk, and permutation π of {1, ..., n}, such that for
every n-bit vector x ∈ {0, 1}n we get f(x ) = 1 if and only if xπ ∈ ∪ki=1[a

i, bi].
The class of k-truepoint-interval functions will be denoted by Ck−T−int. The class
of positive (negative resp.) k-truepoint-interval functions will be denoted by
C+k−T−int (C−k−T−int, resp.).

We define k-falsepoint-interval function analogously (f(x ) = 0 in this case).
In the following text we will usually work with k-truepoint-interval functions.

Therefore we will refer to them as k-interval functions omitting ”truepoint” to
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make it shorter. Also notation of classes of k-truepoint-interval functions will
be usually without the ”T” character: Ck−int, C+k−int and C−k−int. If we need to
distinguish between truepoint and falsepoint k-interval function we will refer to
them explicitly.

Now, when we know the definition of interval functions, we can see the use-
fulness of the branching tree. The order of variables along the path from root to
the leaves represents particular permutation π and leaves of the tree, read form
left to right, display the studied intervals for this π.

Definition (Commutative Boolean function). We say, that Boolean function f
is commutative if the vector of leaves of the branching tree is identical for every
ordering π of variables of function f .

Example. Boolean function on n variables �ni=1xi where � stands for one of
conjunction, disjunction and exclusive disjunction is commutative. It trivially
follows from their properties 2.1. We already know, that ∧ni=1xi is actually n-ary
conjunction and ∨ni=1xi is n-ary disjunction. Function ⊕ni=1xi is called parity on
n variables and it equals 1 if and only if the sum of all its input variables is
odd. We denote it as PARITYn and we will study this particular function further
later in the thesis. We will also study negation of parity on n variables, which we
will denote as PARITYn ⊕ 1. It is quite clear, that PARITYn ⊕ 1 is a commutative
function as well and it has the same truepoint intervals as PARITYn has falsepoint
intervals and vice versa.

4.2 Hardness of Recognition problem

Besides studying the properties of k-interval functions, we would also like to look
into following problem (or its weaker variations): We are given DNF F and we
want to decide whether F represents an k-interval function and if so we also want
to output the permutation of input bits and the intervals [ai, bi] for i ∈ {1, ..., k}
which prove that F represents a k-interval function. This problem is hard when
we consider general DNFs (i.e. with no additional requirements) as inputs. This
fact is presented more specifically in following theorem, which is a generalized
version of Theorem 1 in [2].

Theorem 4.2.1. It is co-NP-hard to decide whether a given general DNF rep-
resents an k-interval function. This remains true even when we are given a
permutation π specifying the only permutation of input bits we should consider.
In the latter case the problem is co-NP-complete.

Proof. Let DNF F be given. Let us first prove the co-NP-hardness. We will take
an instance of the problem TAUT which is defined as follows: given a DNF F
decide whether F is a tautology or, in other words, if F evaluates to 1 for all
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assignments of Boolean values to variables. This problem is known to be co-
NP-complete [6]. By deciding whether F represents a 1-interval function (for
some ordering of input bits) and determining corresponding interval [a, b] we
can provide answer to the problem TAUT because F represents tautology if and
only if [a, b] equals [0, 2n − 1] that is [a, b] spans all the integers represented by
vectors from {0, 1}n. Moreover, for tautology it is not significant which order of
variables we consider, tautology is constant 1 on the whole interval [0, 2n−1] for
every order.

To see that the latter version of our problem is in co-NP we only need to
observe that when we are given the permutation π of variables and 2k+1 binary
vectors x 0,x 1, ...,x 2k such that x 1 < x 2 < ... < x 2k and F(x 2i) = 1 for i ∈
{0, ..., k} and F(x 2j+1) = 0 for j ∈ {0, ..., k − 1} we have a certificate of a
negative answer which can be verified in polynomial time.

4.3 Closure of k-interval functions

We will now present a few general properties of k-interval functions as they are
introduced in [3]. We will use them quite frequently in the rest of the thesis.

Lemma 4.3.1. Let f be a Boolean function on n variables and let π be an
ordering of its variables, with respect to which f can be represented by k intervals.
Then the function f ′ = f [xi := c], where i ∈ {1, ..., n} and c ∈ {0, 1}, can be
represented by k or less intervals with respect to ordering π′ formed from π by
restriction on {1, ..., i− 1, i+ 1, ..., n}.
Proof. Let π be the ordering of variables for which f can be represented by k
intervals. We will proceed by contradiction. Suppose that f ′ cannot be repre-
sented by k or less intervals with respect to ordering π′ which is π projected on
{1, ..., i − 1, i + 1, ..., n}. Then there are 2k + 1 vectors a1, ...,ak+1, b1, ..., bk of
(n− 1) bits with the following properties:

1. ∀j ∈ {1, ..., k + 1} : f ′(a j) = 1

2. ∀j ∈ {1, ..., k} : f ′(bj) = 0

3. ∀j ∈ {1, ..., k} : aπ
′

j < bπ
′

j < aπ
′

j+1

These vectors prove that f ′ cannot be represented by k intervals with respect to
ordering π′. But if we insert the value c as the i-th bit in every vector a j and b l
we will get 2k + 1 vectors of n bits proving that f cannot be represented by k
intervals with respect to the ordering π. This is the desired contradiction.

Corollary 4.3.2. For any k ∈ {0, ...} the classes Ck−T−int, C+k−T−int, C
−
k−T−int

are closed under partial assignment (holds for k-falsepoint-interval functions as
well).

Proof. Follows directly from Lemma 4.3.1 and Proposition 3.0.3.
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Chapter 5

Positive k-Interval Functions

In this chapter we will more thoroughly examine positive k-interval functions.
We will present some basic properties and already known recognition algorithms.
We will also study commutative positive k-interval functions and formulate some
theorems about them. And finally we will introduce new algorithm for recogni-
tion of positive 3-interval functions. Since construction of positive and prime (and
consequently irredundant) DNF of Boolean function is in general hard problem,
we will always assume that the given positive function is already in this form.

5.1 Basic properties of positive k-interval func-

tions

Following lemma is already introduced and proved in [3] for positive k-truepoint-
interval functions. We will generalize it also for k-falsepoint-interval functions.

Lemma 5.1.1.
(a) Let f be a positive k-truepoint-interval function, where k ≥ 1, on n

variables, which is not a 0-truepoint-interval function and which is represented
by intervals [a1, b1] < ... < [a′k, b

′
k] where 0 < k′ ≤ k. Then b′k = 2n − 1.

(b) Let f be a positive k-falsepoint-interval function, where k ≥ 1, on n
variables, which is not a 0-falsepoint-interval function and which is represented
by intervals [a1, b1] < ... < [a′k, b

′
k] where 0 < k′ ≤ k. Then a1 = 0.

Proof.
(a) Clearly, if f is positive (and not identically equal to 0, which is implied

by the assumption), f(1 ) = 1 must hold. This follows directly from existence of
positive DNF (Theorem 3.0.2).

(b) Analogous.

Analogous version of Lemma 5.1.1 naturally holds for negative functions. We
will use this lemma implicitly in the rest of this chapter. But before we proceed,
let us present a simple corollary.
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Corollary 5.1.2. For each k ≥ 1 and non-constant function f holds:

f ∈ C+k−T−int ⇔ f ∈ C+k−F−int
f ∈ C−k−T−int ⇔ f ∈ C−k−F−int

In other words, positive and negative non-constant functions have equal num-
ber of truepoint and falsepoint intervals.

Proof. Follows trivially from the fact, that for k ≥ 1 the projection of positive
function starts as 0 and ends as 1 (for negative starts as 1 and ends as 0), which
is exactly what Lemma 5.1.1 claims.

Lemma 5.1.3. Let f be a positive k-interval function on n variables according to
the ordering of variables π represented by intervals [a1, b1] < ... < [ak−1, bk−1] <
[ak, 2

n − 1]. Let F be a positive DNF of function f . Then F ′ created from F
by switching the positivity of all literals (to negative) is the DNF of negative k-
interval function f ′ represented by intervals [0, ak] < [bk−1, ak−1] < ... < [b1, a1]
with respect to the same ordering of variables π, where ai and bi are formed
from ai and bi respectively by exchanging zeros to ones and vice versa, i.e.
ai = 2n − 1− ai and bi = 2n − 1− bi for i ∈ {1, .., k}.

Proof. Follows directly from the fact that F(x ) = 1 ⇔ F ′(x ) = 1 if x and F ′
are formed from x and F in such a way as is described in lemma.

Theorem 5.1.4. Let A be an algorithm which recognizes positive k-interval
functions given in their positive DNF in Θ(t) time. Then algorithm A can be
used to recognize negative k-interval function given in their negative DNF in
Θ(t) time.

Proof. Follows directly from Lemma 5.1.3. We will use it backwards. Given a
negative DNF F we will switch the literals thus creating a positive DNF F ′.
Then we will execute the algorithm A with input F ′. If its answer is NO, we
also output NO. If the answer is that F ′ represents a positive k-interval function,
we also get the permutation and interval and we output the same permutation
and the ”mirrored” version of the interval according to the Lemma 5.1.3.

Theorem 5.1.4 is already formulated in [2] for positive 1-interval functions.
We have just generalized it for positive k-interval functions.

The conclusion of this section is as follows. When studying positive or nega-
tive truepoint or falsepoint k-interval functions, it is sufficient to focus only on
positive k-truepoint-interval functions. The rest can be easily converted to them,
therefore it is not necessary to deal with them any further.
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5.2 Recognition of positive 1-interval functions

In this section we will present the algorithm for recognition positive 1-interval
functions together with all its details and proofs as they are introduced in [2]. It
is crucial for any further progress, that we thoroughly understand all important
properties of positive 1-interval functions and how and why the algorithm works.
We will start with the most important property of positive 1-interval function.

Lemma 5.2.1. Let f be a positive interval Boolean function with respect to
permutation π of variables which represents interval [a, 2n − 1], where a > 0.
Let c = a − 1 = c1c2...cn and let xi be the most significant variable with respect
to π (that is i = π−1(1)). Let F be a prime DNF representation of f . Then
either xi is a linear term in F or xi appears in every term of F . Moreover
f ′ = f [xi := c1] is again an interval function representing interval [a′, 2n−1 − 1],
where a′ − 1 = c2c3...cn, and F [xi := c1] is a prime DNF representation of f ′.

Proof. As we know from Lemma 5.1.1, any positive 1-interval function represents
(possibly empty) interval [a, 2n−1] for some a. In the case a ≤ 2n−1 for any vector
z ∈ {0, 1}n for which the most significant bit of zπ equals 1 it is necessary for
f(z ) to be 1 because zπ ≥ 2n−1 ≥ a. Hence in F there must be the positive linear
term formed by variable xi corresponding to this most significant bit otherwise
F is not prime. By fixing xi to c1 = 0 in F we just remove xi from it. The
resulting F ′ represents function f ′ and behaves identically as f on vectors with
xi equal to 0. Thus it is an interval function representing [0c2...cn+1, 2n−1−1] =
[c2...cn + 1, 2n−1 − 1]. DNF F ′ is again prime and irredundant because we only
removed linear term xi and xi doesn’t occur in any other term of F ′.

In the case a > 2n−1 function f must be 0 on any vector z ∈ {0, 1}n for
which zπ has the most significant bit set to 0 because all these vectors represent
numbers smaller than a. Therefore by fixing variable xi to 0 in F we must get
DNF equal to constant zero. That means that every term of F must contain
the positive literal xi. By setting xi to c1 = 1 in F we get DNF F ′ where every
term has xi removed from it. DNF F ′ represents function f ′ which behaves
identically as f on vectors with xi equal to 1. Thus it is again 1-interval function
representing interval formed from [1c2...cn + 1, 2n−1] by removing the first bit
of both boundaries, that is [c2...cn + 1, 2n−1 − 1]. DNF F ′ is again prime and
irredundant based on the same properties of F .

Observation 5.2.2. In prime and irredundant DNF F of a positive 1-interval
function on n ≥ 2 variables, there does not exist pair of two variables xi, xj
(i 6= j) such that xi occurs in F as linear term and xj occurs in every term of F .
This is a trivial observation, since the existence of one of these variables directly
contradicts with the existence of the other one.

From the previous lemma and its proof we can better understand the struc-
ture of positive 1-interval function. This structure also suggest following strategy
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how the recognition algorithm should work. In each step we will find the variable
which satisfies the conditions of lemma and fix it appropriately thus truncating
the constant half of the branching tree. We will now proceed with algorithm
itself.

Algorithm 1 - Positive 1-Interval Function Recognition

Input: A nonempty prime and irredundant positive DNF F on n variables
representing function f .

Output: Order x1, ..., xn of variables and n-bit number a if F represents a
positive 1-interval function with respect to this order defined by interval [a, 2n−
1]. NO otherwise.

if F(1 ) = 0 then F is constant 0, output empty interval endif1
if F(0 ) = 1 then F is constant 1, tautology, output [0, 2n − 1] endif2
c := 0 {c will denote the actual value of a− 13
b := 0, m := 04
while F can be changed by at least one of the following steps5
do6

for each variable y constituting linear term of F7
do8

xm+1 := y,m := m+ 19
F := F [y := 0]10

enddo {After cycle terminates F has no linear terms}11
for each variable y that is contained in every term of F12
do13

c := c+ 2n−1−m, xm+1 := y,m := m+ 114
F := F [y := 1]15

enddo {After cycle terminates F has no variable contained in every term}16
enddo {end of the while cyclus started at line 6}17
while m < n {if F is an interval function then it does not depend on the18
remaining variables and hence these variables do not extend the representing19
interval}20
do21

c := c+ 2n−1−m22
m := m+ 123

enddo24
if F = ∅25
then26

a := c+ 127
output [a, 2n − 1]28

else29
output NO30

endif31
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Theorem 5.2.3. Previous algorithm correctly recognizes positive prime DNFs
representing positive 1-interval functions and for each such function outputs an
order of variables and the interval represented by this 1-interval function.

Proof. The correctness follows from Lemma 5.2.1. When we process one variable
y and fix its value we get another DNF which is again prime and irredundant
according to Lemma 5.2.1 and represents a positive 1-interval function if and only
if the original function was a positive 1-interval function. We also set the most
significant bit of the boundary c according to the condition that y fulfilled. Now
we can iterate the process because all preconditions of algorithm are satisfied.

If we cannot process all variables of DNF F before halting we know the
condition of Lemma 5.2.1 is not satisfied and thus F does not represent 1-interval
function.

If we can process all variables of F then it means that a sufficient condition
for F to represent 1-interval function was satisfied but we still need to add 1 bit
to c for every variable of f not present in F .

We also note that the order of steps 7 and 12 must be exactly as in our
algorithm because in the last iteration of the while loop 5-17 when we always
have DNF consisting of just one variable it is necessary to treat it like a linear
term and not increase c by one (on line 14) to get the right value of a.

In [2] is also presented exact method how to implement this algorithm in
Θ(l) time. We will present only basic idea of this implementation, since it is not
crucial for our progress to know it in details.

After short analysis of algorithm it is clear that algorithm processes at most
n iterations and their complexity depends on following operations:

1. Find and remove from F (some) variable that occurs in every term of F
2. Find and remove from F (some) linear term y

To implement these operations so that all iterations of the algorithm run
O(l) we use three types of data structures: Structure T (t) corresponding to
every term t, a structure V (x) for every variable x, and also a structure L(r) for
every literal r of DNF F . For every term t we will also remember in n(t) the
number of variables in t and for every variable x we will store in t(x) the number
of literals formed by x (this equals to the number of terms x is in).

From these unit structures we are able to build in O(l) time a complex
structure which consists of various ordered double-linked lists linked also among
themselves. In this structure we can find variables which satisfy Lemma 5.2.1 in
constant time because the sorting is done according to n(t) (sorting itself can be
performed by RadixSort also in O(l) time). Removing the elements from such
structure is straightforward and altogether takes the same time as building it.
We remind that this is only the idea of implementation and all details together
with the proof of linear complexity can be found in [2].
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5.3 Commutative positive Boolean functions

Definition (k-subset function on n variables). For n ≥ 1 and 1 ≤ k ≤ n, we
call positive function f on n variables k-subset function if it has the following
prime and irredundant positive DNF representation:

∨
J⊆{1,...,n}
|J |=k

(∧
i∈J

xi

)
(5.1)

In other words all implicants are of size k and they constitute all subsets of
variables of this size. We will denote such function as Snk .

Observation 5.3.1. Sn1 is n-ary disjunction and Snn is n-ary conjunction.

Lemma 5.3.2. Let f be a commutative Boolean function. Let f(x) = a, a ∈
{0, 1}. Then for any permutation π holds that f(xπ) = a.

Proof. Let us consider a branching tree of function f and arbitrary order of its
variables π0. In this branching tree the leaf x, which corresponds to the vector
x holds the value a.

In the branching tree for function f and ordering π the leaf xπ holds the
value a. But from the definition of commutative function, in this branching tree
the leaf x holds the value a as well. Therefore f(x ) = f(x π) = a.

Proposition 5.3.3. For any n ≥ 1 and 1 ≤ k ≤ n function Snk is commutative.

Proof. Let x be a truepoint of function Snk , let x π be arbitrary permutation of
its bits. There exists at least one term t in Snk such that t(x ) = 1. According to
the definition, this term contains exactly k literals. Therefore there must be at
least k bits in x equal to one (these bits must correspond to variables in t but
this does not concern us). This means that x π contains also at least k true-bits.
We pick any k such bits and those represent certain subset of function variables
of size k. But since in Snk are all k-element subsets of variables as terms, there
must be also one which satisfies our choice of true-bits. Hence Snk (x π) = 1.

Now let x be a falsepoint. Snk contains all k-element subsets of variables as
terms. Therefore x must contain less then k true-bits, otherwise it would be
satisfied by at least one of the terms. Hence any bitwise permutation x π of x
must also contain less then k true-bits and because of this there exists no term
in Snk which would satisfy it.

Theorem 5.3.4. Let f be a commutative positive Boolean function on n vari-
ables, which is not a constant function. Then there exists k ≥ 1 such that f is
k-subset function Snk .
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Proof. Let x be a truepoint of function f with the least amount of true-bits. We
denote this amount k (k ≥ 1 because f is not constant zero). Since the function
is commutative all bitwise permutations of x have to be truepoints (Lemma
5.3.2). Therefore all k-element subsets of function variables have to be present
in its positive DNF representation. Let Snk be such representation.

Let y1 be vector with l true-bits and y2 vector with l + 1 true-bits. If y1

is truepoint, then all its permutations have to be truepoints because of the
commutativity. Then there exists truepoint yπ1 which differs from y2 in exactly
one bit, specifically false-bit in yπ1 and true-bit in y2. From the positivity of f ,
specifically in variable which corresponds to this bit we have that f(yπ1 ) ≤ f(y2)
and therefore y2 has to be truepoint as well.

By applying this induction step from l = k we see that, all vectors which
have at least k true-bits are truepoints and we already know that Snk satisfies
these vectors.

Since x is the truepoint with the least amount of true-bits any vector with
less than k true-bits has to be falsepoint. And when we choose any such vector
z we can see that Snk (z ) = 0 because all terms in Snk are too large to satisfy z .
Hence Snk is indeed function f .

Theorem 5.3.5. Boolean function Snk , for any n ≥ 1 and 1 ≤ k ≤ n, is repre-
sented by

(
n−1
k−1
)

intervals for any ordering of its variables.

Proof. We will denote number of intervals for function Snk (for any ordering of
its variables) as |Snk |.

Let us now analyze, what happens if we fix one of the variables in function
Snk . Without loss of generality we choose xn. Snk [xn := 0] will loose all the terms
which contain xn and the rest of them will remain unchanged. Therefore:

Snk [xn := 0] =
∨

J⊆{1,...,n−1}
|J |=k

(∧
i∈J

xi

)
= Sn−1k

In Snk [xn := 1] all the terms which contain xn will be shortened by one variable
and become the terms of length k − 1. These are all (k − 1)-element subsets of
variables x1, ..., xn−1. Terms which do not contain xn will stay unchanged as
terms of size k. However, each one of them has at least one subset of size k − 1
present in the formula as term (because all of them are present) and it will be
absorbed by this term. Therefore all terms of size k are redundant and can be
removed and we can write Snk [xn := 1] as follows:

Snk [xn := 1] =
∨

J⊆{1,...,n−1}
|J |=k−1

(∧
i∈J

xi

)
= Sn−1k−1
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Figure 5.1: A branching tree of function Snk

In the branching tree (Figure 5.1) we can see, that the interval projection of
Snk is formed by concatenating of projections of Snk [xn := 0] and Snk [xn := 1] in
this order. And applying Lemma 5.1.1 (i.e. the rightmost leaf in the left subtree
is 1 and the leftmost leaf in the right subtree is 0) we can say following:

|Snk | = |Snk [xn := 0]|+ |Snk [xn := 1]| = |Sn−1k |+ |Sn−1k−1 |

Now for n-ary conjunction and disjunction we know, that they are 1-interval
functions. So |Sn1 | = 1 and |Snn | = 1 for n ∈ {1, ...}. We can also see that for the
number of intervals of functions Snk holds the very same recurrent equation as
for binomial coefficients

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
. Putting all this knowledge together

we get as direct conclusion that Snk =
(
n−1
k−1

)
because binomial coefficients start

in n = k = 0 and k-subset functions on n variables start in n = k = 1.

In [3] a lower bound approximation of number of intervals for MAJORITYn
function is calculated as 2bn/2c − 2. Boolean function on n variables MAJORITYn
is defined to be 1 if and only if there are more input variables with value 1 than
those with value 0. To make this approximation more accurate, we have just
calculated the exact number of its intervals.

Proposition 5.3.6. Boolean function MAJORITYn is represented by
(

n−1
dn/2e−1

)
in-

tervals for any ordering of its variables.

Proof. We only need to prove that MAJORITYn is actually function Sndn/2e. Then
the proposition follows directly from Theorem 5.3.5.

Let x be a truepoint of MAJORITYn function. From definition of MAJORITYn it
has to have more true-bits then false-bits. Therefore it has to have at least dn

2
e

ones. And since Snk has all dn
2
e-element subsets of its variables as terms, there

has to be at least one, which satisfies x .
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Now let x be a falsepoint. According to the definition of MAJORITYn, it has
less than dn

2
e ones. In Snk are all terms of length dn

2
e, hence there is no term

which could satisfy x .

Corollary 5.3.7. Maximum number of intervals for a commutative positive
Boolean function on n variables is

(
n−1
dn/2e−1

)
, i.e. this maximum is attained by

the MAJORITYn function.

Proof. Follows directly form Theorem 5.3.4, Theorem 5.3.5 and the fact, that
( n
bn/2c) = ( n

dn/2e) is the largest binomial coefficient for given n.

Hypothesis 1. Let f be a positive k-interval Boolean function on n variables
such that f ∈ C+k−int \ C

+
(k−1)−int. Then k ≤

(
n−1
dn/2e−1

)
.

5.4 Forms derived from commutative positive

functions

We will start this section with presentation of two lemmas from [3] and their
proofs. These lemmas, together with their proofs, will give us better insight into
the basic structure of positive k-interval functions.

Lemma 5.4.1. Let f be a positive k-interval function on n variables. Let i be
an index 1 ≥ i ≥ n such that at least one of the following conditions is satisfied.

∀x(xi = 0⇒ f(x) = 0) (5.2a)

∀x(xi = 1⇒ f(x) = 1) (5.2b)

Then there is order π with respect to which f can be represented by l intervals
[c1, d1] < ... < [cl; 2n − 1], where l ≤ k, and such that π(i) = 1, i.e., xi is the
most significant variable with respect to π.

Proof. It is best to view the situation on a branching tree. Figure 5.2 captures the
branching trees of a function in which index i satisfies the conditions 5.2. We can
see that if we take xi as the most significant variable, then one of the root subtrees
contains either only truepoints or only falsepoints. Moreover, since the function
considered is positive, the other subtree of the root has the nearest vector also
truepoint or falsepoint (same as all the vectors in the other subtree) or it is
identically equal to zero or one. Hence the interval representation of this possibly
non-constant subtree can be easily extended to an interval representation of the
whole tree which has the same number of intervals.

Now we proceed with the formal proof. First, if both conditions 5.2a and 5.2b
are satisfied by index i then f does not depend on values of other input variables
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Figure 5.2: Condition 5.2a on the left and condition 5.2b on the right in a
branching tree.

but xi because f(x ) = 1 for any vector x such that xi = 1 and f(x ) = 0 for any
vector x such that xi = 0. In this case l = 1 because f can be represented by
interval [2n−1, 2n − 1] for any order having xi as the most significant variable.

In the rest of the proof we assume that i satisfies exactly one of conditions
5.2a, 5.2b. We shall define function g on n − 1 variables. We set g = f [xi := 1]
if i satisfies the condition 5.2a or g = f [xi := 0] otherwise. In either case g is
a k-interval function according to Lemma 4.3.1. Let π′ be an order of variables
{x1, ..., xi−1, xi+1, ..., xn} with respect to which g can be represented by l ≤ k
intervals. We construct the desired order π from π′ in the following way. We
set π(i) = 1 and for all j 6= i we set π(i) = π′(i) + 1, i.e., we add xi as the
most significant variable to π′. We claim that f is represented by l intervals
with respect to π′. This is true because if the condition 5.2a is satisfied, then
all vectors x with xi = 0 are falsepoints, every truepoint u has ui = 1, hence
uπ > xπ, and f(y) = 1 holds for any vector y with yi = 1 if and only if g(y ′) = 1,
where y ’ is formed from y by removing the i-th bit.

If the condition 5.2b is satisfied, then all vectors x with xi = 1 are truepoints,
every falsepoint v has vi = 0, hence vπ < xπ, and f(y) = 0 holds for any vector y
with yi = 0 if and only if g(y ′) = 0, where y ’ is again formed from y by removing
the i-th bit. Thus if [c1, d1] < ... < [cl, 2n−1 − 1] are the intervals representing
g with respect to π′ then we can form from them an interval representation of
f with respect to π by adding 1 (in case the condition 5.2a is satisfied) or 0
(in case the condition 5.2b is satisfied) as the most significant bit to all interval
boundaries except 2n−1 − 1 which is always transformed into 2n − 1.

Lemma 5.4.2. Let F be a prime DNF representing positive function f . Then

(a) every term of F contains variable xi if and only if i satisfies the condition
5.2a,

(b) variable xi forms a linear term in F if and only if i satisfies the condition
5.2b.
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Proof. We shall start with the first implications of the equivalences. In (a), if
every term of F contains xi, then any vector x having xi = 0 is a falsepoint, hence
every truepoint must have the i-th bit equal to 1. Similarly, if in (b) variable xi
forms a linear term in F , then any vector x having xi = 1 is a truepoint, hence
every falsepoint must have the i-th bit equal to 0.

Now we shall prove the second implications. If i satisfies the condition 5.2a,
then by fixing xi to 0 in F we must get an empty DNF, because it represents
the function identically equal to 0. Hence xi must occur in every term of F .
Similarly, if i satisfies the condition 5.2b, then by fixing xi to 1 in F , we must
get a DNF representing the function, which is identically equal to 1. Hence xi
must form a linear term in F .

Corollary 5.4.3. Let F be a positive DNF representing f ∈ C+k−int \ C
+
(k−1)−int,

where k ≥ 1. Let xi be a variable forming a linear term in F (let c := 0 in
this case), or contained in every term of F (let c := 1 in this case). Then there
exists ordering π, with respect to which f can be represented by k intervals and
such that π(i) = 1, i.e., xi is the most significant variable with respect to π.
Moreover, for every ordering π of variables of f , such that π(i) = 1, f can
be represented by k intervals with respect to π if and only if f [xi := c] can be
represented by k intervals with respect to ordering π′, where π′ is a restriction of
π to the remaining variables.

Proof. Follows directly from Lemmas 5.4.1 and 5.4.2.

Note, that this corollary is generalized Lemma 5.2.1 for k-interval functions
and it is presented in [4] as Lemma 2.2.

We will now proceed with some specific, generalized, forms of positive Boolean
functions and we will study the properties of these forms. Later, we will be able
to use some of them for recognition of positive 3-interval functions.

Definition (k-subset m-variable function form). For n,m ≥ 1 and 1 ≤ k ≤ m,
we say that a positive function f on n + m − 1 variables x1, ..., xm−1, y1, ..., yn
has the form of k-subset m-variable function if it can be written as follows:

∨
I⊆{1,...,m−1}
|I|=k

(∧
i∈I

xi

)
∨

∨
Jl⊆{1,...,m−1}
|Jl|=k−1

(∧
j∈Jl

xj ∧ Fl

)
(5.3)

Where Fl are positive non-constant Boolean functions on n variables y1, ..., yn.
We will denote such form as S̃mk . Note, that by set {1, ..., 0} we mean empty set.

Observation 5.4.4. Number of Fl functions is
(
m−1
k−1

)
, i.e. l ∈ {1, ...,

(
m−1
k−1

)
}.

This is a direct corollary of the fact that number of (k − 1)-element subsets of
(m− 1)-element set is

(
m−1
k−1

)
.
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Observation 5.4.5. S̃mk form can be created from Smk function by choice of one
arbitrary variable, e.g. xm, and replacing all its occurrences with n-ary functions
Fl. Note, that all terms of Smk which do not contain variable xm will after such
replacement remain unchanged. This also means, that if all functions Fl are
equal and they are functions on one variable, then S̃mk = Smk .

Observation 5.4.6. S̃1
1 = F1. Therefore all positive Boolean functions have

form S̃1
1 . For m ≥ 2, functions S̃m1 and S̃mm look like following:

S̃m1 =
∨

I⊆{1,...,m−1}
|I|=1

(∧
i∈I

xi

)
∨
∨
J1=∅

(∧
j∈J1

xj ∧ F1

)
= x1 ∨ x2 ∨ ... ∨ xm−1 ∨ F1

S̃mm =
∨
I=∅

(∧
i∈I

xi

)
∨

∨
J1={1,...,m−1}

(∧
j∈J1

xj ∧ F1

)
= x1 ∧ x2 ∧ ... ∧ xm−1 ∧ F1

Therefore, if the function has form S̃m1 or S̃mm for certain m, it has also form

S̃m′1 or S̃m′m′ respectively for any 1 ≤ m′ ≤ m. Also if the function does not have

form S̃m1 or S̃mm for m ≥ 2, it cannot have form S̃m′1 or S̃m′m′ respectively for any
m′ ≥ m.

Lemma 5.4.7. Let f be a positive Boolean function, which can be written in
form S̃mk for m ≥ 3 and 2 ≤ k ≤ m− 1. Then it cannot be written in form S̃m′k′
for any m′ 6= m,m′ ≥ 2 or any k′ 6= k, 1 ≤ k′ ≤ m′.

Proof. Given a form S̃mk of function f with some functions Fl, without loss of
generality in their prime and irredundant DNF form, let us consider some other
form S̃m′k′ with some functions Fl′ along with prime and irredundant DNF form
D of function f .

We will denote the part of S̃mk without functions Fl as part A and the rest

of the formula as part B. For form S̃m′k′ it will be A’ and B’. Since m ≥ 2 and
k ≤ m− 1, part A is not empty. Also since m ≥ 3 and k ≥ 2, all terms in part
A are at least quadratic and each function Fl is conjuncted with at least one
literal xj.

Since all functions Fl are positive functions on at least one variable, then if we
decompose part B using the distributivity, we will get terms of length at least k.
Moreover, all terms in part B contain exactly k− 1 variables from {x1, ..., xm−1}
together with at least one variable yi, while all terms in part A consist of exactly
k literals from set {x1, ..., xm−1} and no yi. Therefore no term from part A is
a subset of any term from part B and vice versa and consequently no term from
part A can absorb any term from part B and vice versa. And since all functions
Fl were in their prime and irredundant DNFs, terms in part B cannot absorb
each other as well, therefore this decomposed form of S̃mk is already DNF D.
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Because all terms in DNF D are at least of length k, for any form S̃m′k′ must

hold that k′ ≥ k. If in S̃m′k′ held that k′ > k, then all terms from part A would

be too short to be present in part A’ of S̃m′k′ . But since functions Fl′ of form S̃m′k′
have to contain at least one literal, terms from part A of form S̃mk would be too

short also for part B’ of form S̃m′k′ . Therefore k′ ≤ k and consequently k′ = k

and S̃m′k′ = S̃m′k .
Without loss of generality let V = {x1, ..., xm′x , y1, ..., ym′y} be the set of m′−

1 = m′x +m′y variables which define form S̃m′k .
Of course m′x 6= 0, because in that case we would need to have in part A’

terms, which consist exclusively of yi variables (since m′ > 1 and consequently
m′y > 1) and we do not have such terms in D.

Now let us consider m′y = 0. Naturally, then m′x = m′ − 1 and since we only

have m − 1 variables xi and for m′ = m holds that S̃m′k = S̃mk , we only need to
analyze the case where m′ < m, therefore m′x < m− 1.

In part A’ we have all necessary terms on variables x1, ..., xm′x and the rest of

the terms from part A of function S̃mk will be in part B’ of S̃m′k . Part A’ satisfies

now the definition of S̃m′k . However, in part B’ we have, among other terms, term
x1...xqxm−r...xm−1Ty such that 1 ≤ q ≤ m′x; m

′
x < m− r ≤ m− 1; q+ r = k− 1

and Ty is a term from one of functions Fl, i.e. there are q literals from x1, ..., xm′x
and r literals from xm′x+1, ..., xm−1 and some literals yj. But this term does not

satisfy the definition of form S̃m′k because it has less than k − 1 literals from set
of variables x1, ..., xm′x . Hence m′y 6= 0.

The last possibility is that m′x ≥ 1 and m′y ≥ 1. In part A’ we have to have
all k-element subsets of V as terms. Therefore for i ∈ {0, ..., k} we need each

Tx ∈
({x1,...,xm′x}

i

)
combined with Ty ∈

({y1,...,ym′y}
k−i

)
present in part A’ as term

Tx ∧ Ty. But in DNF D we have such terms only for i ∈ {k − 1, k}. Hence we
would need k = 1, which is in contradiction with conditions of the lemma.

Lemma 5.4.8. Let f be a positive Boolean function, which has the form S̃mk ,
where m ≥ 2 and 2 ≤ k ≤ m with the set of embedded functions F = {Fl; l ∈
{1, ...,

(
m−1
k−1

)
}}. Then for any h ∈ {1, ...,m− 1} holds:

S̃mk [xh := 0] = S̃m−1k

S̃mk [xh := 1] = S̃m−1k−1

Moreover, the set F0 of functions Fl present in S̃mk [xh := 0] is disjoint with

the set F1 of functions Fl present in S̃mk [xh := 1] and F0 ∪ F1 = F .

Proof. Let xh be arbitrary variable, h ∈ {1, ...,m − 1}. We will now analyze,
what happens if we fix it.
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In function S̃mk [xh := 0] all terms, which contain xh and all conjunctions with
Fl with occurrence of xh, will disappear. The rest of the function will remain
unchanged. Therefore:

S̃mk [xh := 0] =
∨

I⊆{1,...,h−1,h+1,...,m−1}
|I|=k

(∧
i∈I

xi

)
∨

∨
Jl⊆{1,...,h−1,h+1,...,m−1}

|Jl|=k−1

(∧
j∈Jl

xj ∧ Fl

)

So S̃mk [xi := 0] = S̃m−1k with m − 2 variables x1, ..., xh−1, xh+1, ..., xm−1 and
certain

(
m−2
k−1

)
functions Fl.

In function S̃mk [xh := 1] all terms, which contain xh and all Fl conjunctions
with occurrence of xh, will be shortened by one variable (xh). All terms without
xh will be absorbed by shortened ones. Also the Fl conjunctions, without the
occurrence of xh (note, that those are exactly the ones which remained in function

S̃mk [xh := 0]), will be absorbed by the shortened terms, specifically by the ones

without Fl functions. Therefore S̃mk [xh := 1] will look like following:

S̃mk [xh := 1] =
∨

I⊆{1,...,h−1,h+1,...,m−1}
|I|=k−1

(∧
i∈I

xi

)
∨

∨
Jl⊆{1,...,h−1,h+1,...,m−1}

|Jl|=k−2

(∧
j∈Jl

xj ∧ Fl

)

Hence S̃mk [xh := 1] = S̃m−1k−1 with m − 2 variables x1, ..., xh−1, xh+1, ..., xm−1
and certain

(
m−2
k−2

)
functions Fl, where the set of these functions is disjoint with

the set of the ones in S̃mk [xh := 0].

Lemma 5.4.9. Let f be a positive Boolean function, which has the form S̃mk ,
where m ≥ 1 and 1 ≤ k ≤ m with the set of embedded functions F = {Fl; l ∈
{1, ...,

(
m−1
k−1

)
}}. If all functions Fl ∈ F are positive 1-interval functions on n

variables with respect to the same ordering of their variables yπ(1), ..., yπ(n), then
f is a positive

(
m−1
k−1

)
-interval function on m+n-1 variables. This holds for any

ordering of its variables xπ̃(1), ..., xπ̃(m−1), yπ(1), ..., yπ(n), where π̃ is any permuta-
tion of m− 1 elements.

Proof. We will proceed by induction on n.
We already know that S̃1

1 = F1 and for m ≥ 2 forms S̃m1 and S̃mm look like
following:

S̃m1 = x1 ∨ x2 ∨ ... ∨ xm−1 ∨ F1

S̃mm = x1 ∧ x2 ∧ ... ∧ xm−1 ∧ F1
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And if F1 is a positive non-constant 1-interval function, then both S̃m1 and S̃mm
are positive non-constant 1-interval functions according to the iterative use of the
Corollary 5.4.3. Moreover, this holds for any ordering of variables x1, ..., xm−1,
because all these variables satisfy the conditions of the Corollary 5.4.3 regardless
the order of their choice.

Now for the inductive step.
Let m ≥ 2 and 2 ≤ k ≤ m− 1. Suppose, that for l ∈ {1, ...,

(
m−1
k−1

)
}, we have

positive non-constant functions Fl on n variables y1, ..., yn, which are 1-interval
functions with respect to the same ordering of their variables π. Without loss
of generality π is identity. We will, naturally, use the positive DNFs of these
functions. We need to prove that if we replace all occurrences of variable xm in
function Smk , thus creating the function S̃mk , it will be positive

(
m−1
k−1

)
-interval

function for all orderings of its variables which are stated in the lemma.
Let us now consider such function S̃mk and analyze it. It is obvious, that this

function is positive, because it contains only positive literals and applying the
distributivity of binary conjunction and disjunction, which does not change the
positivity of literals, we are able to create its positive DNF.

According to the Lemma 5.4.8, S̃mk [xh := 0] = S̃m−1k and S̃mk [xh := 1] = S̃m−1k−1 .
All functions Fl are positive 1-interval functions with respect to ordering of
their variables y1, ..., yn. Therefore, from the inductive assumption we have that
functions S̃mk [xh := 0] and S̃mk [xh := 1] are positive

(
m−2
k−1

)
- and

(
m−2
k−2

)
-interval

functions respectively with respect to any ordering of variables xπ̃′(1), ..., xπ̃′(h−1),
xπ̃′(h+1), ..., xπ̃′(m−1), y1, ..., yn (π̃′ being any permutation of m-2 elements). Hence,

if we build the branching tree with xh in root, its left subtree S̃mk [xh := 0] and

its right subtree S̃mk [xh := 1] we see, that we have function with
(
m−2
k−1

)
+
(
m−2
k−2

)
=(

m−1
k−1

)
intervals for any ordering of variables xh, xπ̃′(1), ..., xπ̃′(h−1), xπ̃′(h+1), ...,

xπ̃′(m−1), y1, ..., yn. And since our choice of xh was arbitrary, it holds for any
ordering xπ̃(1), ..., xπ̃(m−1), yπ(1), ..., xπ(n), where π̃ is any permutation of m − 1
elements.

Now we will allow some of the Fl functions in form S̃mk to be constant.
Therefore we need following definition.

Definition (S̃mk [0], S̃mk [1]). Let the positive Boolean function f have the form

S̃mk and F = {Fl; l ∈ {1, ..,
(
m−1
k−1

)
}} be the set of embedded functions. If we allow

some functions F0 ⊆ F to be constant zero (the rest of them will remain non-

constant), we will denote the form as S̃mk [0]. Similarly, if we allow some functions
F1 ⊆ F to be constant one (the rest is again non-constant), we will denote the

form as S̃mk [1].

Observation 5.4.10. If in previous definition F0 = F , then S̃mk [0] = Sm−1k . If

F1 = F , then S̃mk [1] = Sm−1k−1 .
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Observation 5.4.11. Lemma 5.4.8 holds for forms S̃mk [0] and S̃mk [1] as well, i.e.
for any xh and a ∈ {0, 1} holds:

S̃mk [a][xh := 0] = S̃m−1k [a]

S̃mk [a][xh := 1] = S̃m−1k−1 [a]

Lemma 5.4.12.
(a) Let m ≥ 2 and 1 ≤ k ≤ m− 1. Let the positive Boolean function f have

form S̃mk [0], for a set of constant zero functions F0. Then f is non-constant func-
tion, which cannot be represented by less than

(
m−2
k−1

)
intervals for any ordering

of its variables.
(b) Let m ≥ 2 and 2 ≤ k ≤ m. Let the positive Boolean function f have form

S̃mk [1], for a set of constant one functions F1. Then f is non-constant function,
which cannot be represented by less than

(
m−2
k−2

)
intervals for any ordering of its

variables.

Proof. We will proceed by induction on n.
(a) For m ≥ 2 and 1 ≤ k ≤ m − 1 all functions S̃mk contain at least one

term, which is not conjuncted with any function Fl , therefore they cannot be
constant even if some functions Fl were constant zero. Hence for m ≥ 2 and
1 ≤ k ≤ m − 1 function S̃mk [0] is non-constant, thus at least 1-interval for any

ordering of its variables. Specifically, this holds for functions S̃m1 [0] and S̃mm−1[0],
where m ≥ 2.

Given the function f in form S̃mk [0], where m ≥ 3 and 2 ≤ k ≤ m − 2, and
ordering π of its variables, we want to prove that it has at least

(
m−2
k−1

)
intervals

with respect to the ordering π.
Let variables yi, ..., yi+j, xk be the most significant variables in this ordering

with xk being the first occurrence of variable from x1, ..., xm−1. Note that j can
be equal to zero (thus xk being the only variable in this list). We will fix all
variables yi, ..., yi+1 to 0. After these fixations, the function f is still in the form
S̃mk [0]. Only thing which could happen is, that some more functions Fl are now
constant 0 as well.

Now we are looking at the leftmost subtree in depth j of the branching tree
of the given function f with the decision variable xh. Function still has the form
S̃mk [0], therefore the direct left subtree of xh represents function S̃mk [0][xh := 0] =

S̃m−1k [0] and the direct right subtree of xh function S̃mk [0][xh := 1] = S̃m−1k−1 [0].
And from the inductive assumption we know, that these functions cannont be
represented by less than

(
m−3
k−1

)
and

(
m−3
k−2

)
intervals respectively. Therefore the

branching tree in the root xh cannot represent less than
(
m−3
k−1

)
+
(
m−3
k−2

)
=
(
m−2
k−1

)
intervals with respect to any ordering of remaining variables. Hence the whole
branching tree for ordering π cannot represent less than

(
m−2
k−1

)
intervals.
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(b) For m ≥ 2 and 2 ≤ k ≤ m all functions S̃mk contain at least one non-empty
set of literals, which is conjuncted with corresponding function Fl , therefore they
cannot be constant even if some functions Fl were constant one. Hence for m ≥ 2
and 2 ≤ k ≤ m function S̃mk [1] is non-constant, thus at least 1-interval for any

ordering of its variables. Specifically, this holds for functions S̃m2 [1] and S̃mm [0],
where m ≥ 2.

The inductive step for part (b) is analogous with the one in part (a), we only
fix variables yi, ..., yi+j to 1.

Lemma 5.4.13. Positive Boolean function f , which has form S̃mk (m ≥ 1, 1 ≤
k ≤ m), is non-constant and cannot be represented by less than

(
m−1
k−1

)
intervals

for any set of functions Fl and any ordering of its variables.

Proof. We will again proceed by induction on n.
Functions Fl are non-constant functions, therefore function S̃mk is not con-

stant thus at least 1-interval function with respect to any ordering of its variables
for any m ≥ 1 and 1 ≤ k ≤ m. Specifically, functions S̃m1 and S̃mm for m ≥ 1 are
at least 1-interval functions for any ordering of their variables.

Let the function f in form S̃mk , where m ≥ 2 and 2 ≤ k ≤ m−1, be given. We
consider arbitrary ordering π of its variables and explore the branching tree. Let
variables yi, ..., yi+j, xh be the most significant variables in this order according
to π with xk being the first occurrence of variable from x1, ..., xm−1. Note that j
can be equal to zero (thus xh being the only variable in this list).

(L) We will fix these variables to 0 one by one, starting with yi. Let yq be
the current variable. If there is l such that Fl = yq, then by fixing it to 0, the

analyzed function will gain the form S̃mk [0]. And according to the Lemma 5.4.12,
it cannot be represented by less then

(
m−2
k−1

)
intervals with respect to any ordering

of its remaining variables. If such yq does not occur all the way until we get to

xh, it only means, that we still have the form S̃mk . According to the Lemma 5.4.8,

if we fix xh to 0, we will get a function in form S̃m−1k . And from the inductive
assumption we have that it cannot be represented by less then

(
m−2
k−1

)
intervals

with respect to any ordering of remaining variables.
This means that in the branching tree, which represents the given function f

and ordering of variables π, exists the leftmost subtree somewhere in the depth
d ∈ 1, ..., j + 1 which has at least

(
m−2
k−1

)
intervals.

(R) Now we will start to fix variables yi, ..., yi+j, xh to 1. Again, let yq be
the current variable. If there is l such that Fl = yq, then by fixing it to 1, the

analyzed function will gain the form S̃mk [1]. And according to the Lemma 5.4.12,
it cannot be represented by less then

(
m−2
k−2

)
. If such yq does not occur until we

get to xh, we still have the form S̃mk . According to the Lemma 5.4.8, if we fix xh
to 1, we will get a function in form S̃m−1k−1 . And from the inductive assumption

we have that it cannot be represented by less then
(
m−2
k−2

)
intervals with respect

to any ordering of remaining variables.
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This means that in the analyzed branching tree exists the rightmost subtree
in the depth d ∈ 1, ..., j + 1 which has at least

(
m−2
k−2

)
intervals.

And when we put (L) and (R) together, we get the conclusion, that the
branching tree for function f and ordering of its variables π represents at least(
m−2
k−1

)
+
(
m−2
k−2

)
=
(
m−1
k−1

)
intervals.

Proposition 5.4.14. For m ≥ 3 and a ∈ {0, 1} forms S̃m2 [a] and S̃mm−1[a]

degenerate into forms S̃m′2 and S̃m′m′−1 respectively, where m′ < m.

Proof. We will denote the part of the formula without functions Fl as part A
and the rest as part B. Let xj be arbitrary variable from x1, ..., xm−1.

(a) Let the function f have the form S̃m2 . In part A of this form there are(
m−1
2

)
quadratic terms, specifically

(
m−2
2

)
terms without xj and

(
m−1
1

)
= m − 1

terms with xj. Part B consists of conjunctions xl ∧ Fl, l ∈ 1, ...,m− 1.
If one of the functions Fl , let it be Fj, is constant 0, the function f will

loose conjunction xj ∧ Fj and we can rearrange function f as follows. We will
move all terms with xj from the part A to the part B and using distributivity we
will create new conjunctions xl ∧ (xj ∨ Fl), l ∈ 1, ..., j − 1, j + 1, ...,m− 1 thus

creating the form S̃m−12 .
If function Fj is constant 1, the function f will loose conjunction xj ∧ Fj

leaving only xj as linear term. This term will absorb all terms containing xj of

the part A and we will get the form xj ∨ S̃m−12 . So in this case, the function f
does not degenerate directly but it creates disjunction of degenerated form and
linear term. However, this does not concern us, because in potential recognition
algorithm we can at this point use the Corollary 5.4.3.

(b) Now let the function f have the form S̃mm−1. In the part A of this form there
is only term x1x2...xm−1. The part B consists of conjunctions

∧
xi 6=xl xi ∧ Fl, l ∈

1, ...,m− 1.
If function Fj is constant 0, the function f will loose conjunction

∧
xi 6=xj xi∧Fj

and xj is now in all members of the part B as well as in the only term of the

part A. Therefore, after using the distributivity, f has the form xj ∧ S̃m−1m−2 . So
in this case, the function f does not degenerate directly as well but it creates
conjunction of degenerated form and literal xj.

If function Fj is constant 1, the function f will loose conjunction
∧
xi 6=xl xi∧Fl

leaving there term only
∧
xi 6=xl . This term will move to the part A and absorb the

original term x1x2...xm−1. All members of the part B can now be rearranged as
xl ∧ (xj ∧ Fl), l ∈ 1, ..., j − 1, j + 1, ...,m− 1. Hence the function will gain form

form S̃m−1m−2 and in potential recognition algorithm we can again use the Corollary
5.4.3.

For all four cases holds that, if any other function Fl is constant, function f
will further degenerate in the corresponding way.

Observation 5.4.15. Such degeneration does not necessarily happen in forms
S̃mk for m ≥ 5 and 3 ≤ k ≤ m− 2.
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For instance, if we take the function S5
3 on variables x1, ..., x5, we can see

that it has the form S̃5
3 , where F1 = ... = F6 = x5. When we now create the

form S̃5
3 [0] by replacing the function F6 with constant zero, we can see that we

lost exactly one term and nothing can be absorbed. This function does not have
a form S̃mk for any k > 1 or m > 1.

Similarly, when we replace the function F6 with constant one, thus creating
the form S̃5

3 [1], we will get one quadratic term, which will absorb exactly two of

the other terms. Such function again does not have a form S̃mk for any k > 1 or
m > 1.

In following text we will denote the number of intervals of function f with
respect to the ordering of its variables π as |f |π.

Lemma 5.4.16. Let f be a Boolean function on m + n − 1 variables, which
has form S̃mk for m ≥ 1 and 1 ≤ k ≤ m with the set of embedded functions
F = {Fl; l ∈ {1, ...,

(
m−1
k−1

)
}} and let π̃ be ordering of variables y1, ..., yn. Then

for any ordering π of all variables of function f , such that all variables xi (i ∈
{1, ...,m− 1}) are more significant then all variables yj (j ∈ {1, ..., n}) and π̃ is
the restriction of π on variables y1, ..., yn, function f has K intervals with respect
to the ordering π, where K is following:

K =

(m−1
k−1)∑
l=1

|Fl|π̃ (5.4)

Proof. This is a variant of the Lemma 5.4.9 and the proof is very similar. We
will again proceed by induction on n.

For S̃1
1 holds trivially. For S̃m1 and S̃mm , where m ≥ 2 holds because of the

very same reasons as in proof of the Lemma 5.4.9.
Now let m ≥ 2, 2 ≤ k ≤ m−1 and h ∈ {1, ...,m−1}. S̃mk [xπ(h) := 0] = S̃m−1k

and S̃mk [xπ(h) := 1] = S̃m−1k−1 with the disjoint sets F0 and F1 of functions Fl such

that |F0| =
(
m−2
k−1

)
, |F1| =

(
m−2
k−2

)
and F0 ∪ F1 = F .

From the inductive assumption we have that S̃m−1k is represented by K0 =∑
Fl∈F0

|Fl|π̃ and S̃m−1k−1 by K1 =
∑
Fl∈F1

|Fl|π̃ intervals with respect to any or-
dering π′ on the rest of the variables, which satisfies the conditions of the lemma.

Therefore, the number of intervals of the function f with respect to the
ordering π is K0 +K1 which is exactly what formula 5.4 says.

Hypothesis 2. Let f be a Boolean function, which can be written in form S̃mk
for m ≥ 1 and 1 ≤ k ≤ m. Then f ∈ C+K−int \ C

+
(K−1)−int for following K:

K = min
π

{ (m−1
k−1)∑
l=1

|Fl|π

}
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Observation 5.4.17. Given a positive Boolean function in form S̃mk on variables
x1, ..., xm−1, y1, ..., yn if we fix all variables x1, ..., xm−1 we will get following. If we
fix any k1 < k − 1 of them to 1 and the rest to 0, then we will get the constant
zero function, because there is no term which has less then k variables from this
set. If we fix any k2 ≥ k of them to 1 and the rest to zero we will get constant
one function, because at least one term from the part A (again, part A are terms
without Fl functions) is evaluated as true. If we fix exactly k − 1 of them to 1
and the rest to 0 (there is

(
m−1
k−1

)
such fixations) we will get all the functions Fl .

This holds because for each such fixation all terms from part A are evaluated as
false and exactly one conjunction with one of the Fl functions is evaluated as
true.

Lemma 5.4.18. Let f be the positive Boolean function on n+m− 1 variables.
If f has the form S̃mk (m ≥ 3; 2 ≤ k ≤ m−1), then all the sets of m−1 variables
which define this form have m− 2 variables shared.

Proof. Let us consider two arbitrary not equal sets of such m − 1 variables
X = {x1, ..., xm−1} and X ′ = {x′1, ..., x′m−1}. In order to have the form S̃mk for
both these sets, function f has to contain all k-element subsets of X (part A
of the DNF) and all k-element subsets of X’ (part A’) as terms. But it must
also hold, that each term of f contains at least k − 1 variables from the set X,
specifically also the terms in part A’. Since X and X ′ are not equal, there has to
be at least one term in part A’ which has at least one variable from set X̃ (and
not from set X).

Without loss of generality, let the term t1 = x′1x2...xk be one of such terms.
Variables x2, ..., xk are from set X ′ and also from set X and x′1 is element of X ′

but not of X. Now let us consider any other such term t2 = x′ixj...xj+k−2 (x′i
being the variable from X ′ \ X). If it held that x′i 6= x1, then there had to be
term t3 = x′1x

′
ixj...xj+k−3 (if k = 2, then {xj, ..., xj+k−3} is empty set) which

would have less then k − 1 variables from X.
Hence x′i = x′1 and consequently X ′ \ X = {x′1}, i.e. sets X and X ′ have

m − 2 elements shared. Furthermore, all terms contain k − 1 variables from
X ∩X ′ and for any other set of variables X ′′, defining the form S̃mk , must hold
that (X ∩X ′) ⊂ X ′′. The proof of this inclusion is analogous to the one we have
just presented.

Lemma 5.4.18 tells us that if the positive Boolean function f has form S̃mk ,
there can be several sets of m−1 variables which define this form. However, they
all share the same m− 2 variables. Direct corollary of this fact is that, given the
function f which has the form S̃mk (for m ≥ 2, 2 ≤ k ≤ m − 1), it can be also
written in following form.
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∨
I⊆{1,...,m−2}
|I|=k

(∧
i∈I

xi

)
∨

∨
I⊆{1,...,m−2}
|I|=k−1

z∈{z1,...,zr}

(∧
i∈I

xi ∧ z

)
∨

(5.5)

∨
∨

Jl⊆{1,...,m−2}
|Jl|=k−1

(∧
j∈Jl

xj ∧ Gl

)
∨

∨
Jl⊆{1,...,m−2}
|Jl|=k−2

(∧
j∈Jl

xj ∧
r∧
q=1

zq ∧ Gl

)

Where sets Xi = {x1, ..., xm−2, zi}, i ∈ {1, ..., r} are all unequal sets of vari-

ables, which define form S̃mk and Gl are positive functions not containing any of
the variables x1, ..., xm2 , z1, ..., zr. Note, that for m = 3 and k = 2, this is the
form (3) presented in [4].

The structure of the form 5.5 is exactly as above because for every set Xi

following conditions hold:

1. there have to be all k-element subsets of Xi present as terms

2. in every term there is (k−1)-element subset of Xi, specifically either k−1
elements from set {x1, ..., xm−2} or k − 2 elements from set {x1, ..., xm−2}
and variable zi

3. function has neither the form S̃2
1 nor S̃2

2

We will finish this section with the lemma saying something important about
number of intervals of functions which have the form S̃mk for more then one set
of variables x1, ..., xm−1.

Lemma 5.4.19. Let f be a positive Boolean function on n + m − 1 variables,
which can be written in form S̃mk (m ≥ 3; 2 ≤ k ≤ m−1). Let X = {x1, ..., xm−1}
be one of the sets of variables defining this form. Let b =

(
m−1
k−1

)
. Let π be the or-

dering of variables y1, ..., yn of embedded functions F1,...,Fb with respect to which
they are represented by K1, ..., Kb intervals respectively, such that K =

∑b
i=1Ki

is minimal among all orderings of these variables. Then for any set X ′ 6= X
of m− 1 variables of function f , which also define its form S̃mk holds, that em-
bedded functions F ′1, ...,F ′b can be represented by K1, ..., Kb intervals respectively
with respect to the same ordering of their variables.

Proof. Due to Lemma 5.4.18, if f has the form S̃mk , then it can also be written in
the form 5.5. Without loss of generality let the set of variables {xm−1, y1, ..., yr−1}
be the set {z1, ..., zr} in the form 5.5. Function f can then have the form S̃mk
defined by any of the sets Xi = {x1, ..., xm−2, zi}, i ∈ {1, ..., r} and X1 = X.
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First, we shall prove, that functions G1, ...,Gb (from 5.5) can be represented
by at most K1, ..., Kb intervals respectively with respect to the same ordering of
their variables.

As we already said in Observation 5.4.17, we can get all the functions Fl each
one by fixing k−1 variables from X to 1 and the rest to 0. If we do these fixations
in our form 5.5 we will get the following.

Fi =
r∧

h=2

zhGi; i ∈ {1, ...,
(
m−2
k−2

)
}

Fj =
r∨

h=2

zh ∨ Gj; j ∈ {
(
m−2
k−2

)
+ 1, ...,

(
m−1
k−1

)
}

Where first s =
(
m−2
k−2

)
fixations are such that z1 = xm−1 is fixed to 1 and in

the rest
(
m−2
k−1

)
of them it is fixed to 0.

Due to Corollary 4.3.2 we know, that functions G1 = F1[z2 := 1]...[zr :=
1], ...,Gs = Fs[z2 := 1]...[zr := 1],Gs+1 = Fs+1[z2 := 0]...[zr := 0], ...,Gb =
Fb[z2 := 0]...[zr := 0] are positive functions represented by K ′1, ..., K

′
r intervals

respectively with respect to the restriction π0 of the ordering π to the remaining
variables and for each l ∈ {1, ..., b} holds that K ′l ≤ Kl.

Let us now consider set of variables Xj, j 6= 1, w.l.o.g. we choose Xr. The
embedded functions for this set are following.

F ′i =
r−1∧
h=1

zhGi; i ∈ {1, ..., s}

F ′j =
r−1∨
h=1

zh ∨ Gj; j ∈ {s+ 1, ..., b}

Now according to the Corollary 5.4.3 for each l ∈ {1, ..., b} function Fl has
exactly K ′l intervals with respect to the ordering π1 of its variables created from
ordering π0 by adding variables z1, ..., zr−1 as the first r−1 most significant ones
in any ordering.

Moreover if for any l held, that K ′l < Kl, then
∑b

i=1K
′
i < K. But that would

mean that for ordering π the summation of intervals was not minimal. Therefore
K ′l = Kl for each l.
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5.5 Recognition of positive 3-interval functions

Lemma 5.5.1. Let f be a positive 1-interval function on n variables, which is
not identically equal to zero. Let π be an ordering, with respect to which f can
be represented by one interval, and let xi be the most significant variable, i.e.,
π(i) = 1. Then xi defines the form S̃2

1 or S̃2
2 of function f .

This lemma is already introduced and proved in [3] as Corollary 3.8. We will
skip the proof and continue with other lemma from [3], which we will prove in a
different way. This will prepare us for a more complex proof later.

Lemma 5.5.2. Let f be a positive Boolean function on n variables which cannot
be written in forms S̃2

1 or S̃2
2 (and therefore is not a 1-interval function). Then

if f is a 2-interval function, it has form S̃3
2 and embedded functions F1 and F2

are 1-interval functions with respect to the same ordering of their variables.

Proof. In following proof we implicitly use these properties of positive non-
constant k-interval function g on m variables and their ordering π:

(i) g(0) = 0 and g(2n − 1) = 1 (Lemma 5.1.1)

(ii) if g is 1-interval with respect to the ordering π, 0 ≤ a ≤ 2n−1 and g(a) = 0,
then g(a′) = 0 for all 0 ≤ a′ ≤ a according to π (trivial)

(iii) if g is 1-interval with respect to the ordering π, 0 ≤ a ≤ 2n−1 and g(b) = 1,
then g(b′) = 1 for all b ≤ b′ ≤ 2n − 1 according to π (trivial)

(iv) if in arbitrary branching tree of g (with root variable xi) left half of the
tree is constant zero (g[xi := 0] = 0)), then g = xi ∧F1 for certain F1 thus

g has form S̃2
2 (Corollary 5.4.3)

(v) if in arbitrary branching tree of g (with root variable xi) right half of the
tree is constant one (g[xi := 1] = 1)), then g = xi ∨ F1 for certain F1 thus

g has form S̃2
1 (Corollary 5.4.3)

(vi) g = g[xi := 0] ∨ xig[xi := 1] for any i ∈ {1, ...,m} (Lemma 3.0.4)

Let π be the ordering of variables with respect to which f is represented by
2 intervals. Without loss of generality, π is identity. Of course f(0 ) = 0 and
f(1 ) = 1.

We will denote functions on n− 1 variables f0 = f [x1 := 0] and f1 = f [x1 :=

1]. Since f has neither form S̃2
1 nor S̃2

2 , neither one of functions f0 and f1 is
constant. Hence f(2n−1− 1) = f(01...1) = f0(1 ) = 1, and f(2n−2) = f(10...0) =
f1(0 ) = 0. We will now explore the branching tree of function f according to
the ordering π.
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This branching tree represents, of course, 2-interval function. Therefore both
f0 and f1 are 1-interval with respect to the ordering π restricted on their vari-
ables.

Now if f1(01...1) = f(101...1) = 0 (thus f1[x2 := 0] being constant 0), then
we would from positivity need also f(001...1) = f0(01...1) = 0 and function
f0[x2 := 0] being constant 0 as well. But that would mean that f [x2 := 0]

would be constant 0 function and therefore f would have form S̃2
2 , which is in

contradiction with assumptions of the lemma. So f1(01...1) = f(101...1) = 1

and f1[x2 := 1] is constant 1, therefore f1 has form S̃2
1 and f1[x2 := 0] is a

non-constant 1-interval function with respect to π restricted on its variables. We
denote it as F1.

If f0(10...0) = f(010...0) = 1, then f0[x2 := 1] is constant 1, and consequently
f [x2 := 1] constant 1 as well. But this cannot be, because in that case f would

have form S̃2
1 . Therefore f0(10...0) = f(010...0) = 0 and f0[x2 := 0] is constant

0, hence f0 has form S̃2
2 and f0[x2 := 1] is 1-interval function with respect

to π restricted on its variables (which are the very same variables as function
f1[x2 := 0] has). We denote it as F2. Figure 5.3 captures such positive 2-interval
function.

Figure 5.3: Branching tree of a positive 2-interval Boolean function.

If we put this knowledge together, we get that f = S̃2
2 ∨ x1S̃2

1 = x2F2 ∨
x1(x2∨F1). After applying distributivity we have f = x1x2∨x1F1∨x2F2, which

is exactly the form S̃3
2 . Moreover, functions F1 and F2 are positive 1-interval

functions with respect to the ordering π restricted on their variables.

Corollary 5.5.3. Let f be a positive Boolean function on n variables which
cannot be written in forms S̃2

1 or S̃2
2 . Then f ∈ C+2−int \ C+1−int if and only if it
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has form S̃3
2 and functions F1 and F2 are 1-interval functions according to the

same ordering of their variables.

Proof.
(if part) Follows from Lemmas 5.4.9 (there exists ordering π with respect

to which function is 2-interval) and 5.4.13 (there does not exist any ordering π′

with respect to which function is 1-interval).
(only if part) Is actually Lemma 5.5.2

Lemma 5.5.4. Let f be a positive Boolean function on n variables which cannot
be written in forms S̃2

1 or S̃2
2 (and therefore is not a 1-interval function). Then

if f is 3-interval function such that it is not 2-interval function, it has one of
the following forms:

(a) S̃3
2 and one of the functions F1 and F2 is non-constant 1-interval function

and the other one is 2-interval (such that it is not 1-interval) function with
respect to the same ordering of their variables; also for any ordering of their
variables, they cannot be simultaneously represented by one interval.

(b) S̃4
2 and F1, F2, F3 are non-constant 1-interval functions with respect to the

same ordering of their variables.

(c) S̃4
3 and F1, F2, F3 are non-constant 1-interval functions with respect to the

same ordering of their variables.

(d) 5.6, where functions F1, F2 and F1∨F2∨F3 are 1-interval functions on the
same n−3 variables with respect to the same ordering of their variables; F1,
F2, F3 are non-constant functions except F3 can be constant zero

(e) 5.7, where functions F1, F1∨F2 and F1∨F3 are 1-interval functions on the
same n−3 variables with respect to the same ordering of their variables; F1,
F2, F3 cannot be constant one and F1 cannot be either constant zero

xixk ∨ xjxk ∨ xiF1 ∨ xjF2 ∨ xixjF3 (5.6)

xixj ∨ xkF1 ∨ xixkF2 ∨ xjxkF3 (5.7)

Proof. In this proof we implicitly use the very same properties (i) - (vi) of non-
constant positive k-interval functions as in proof of the Lemma 5.5.2.

Let π be the ordering of variables with respect to which f is represented by
3 intervals. Without loss of generality, π is identity.

We will again denote f0 = f [x1 := 0] and f1 = f [x1 := 1]. These functions
are again not constant. Again f0(0 ) = f1(0 ) = 0 and f0(1 ) = f1(1 ) = 1. Now
either f0 is 1-interval and f1 is 2-interval, both with respect to π restricted on
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their variables, or vice versa. We will explore the branching tree according to the
ordering π for both cases.

In following text we will several times find out that our positive 3-interval
function f has the form S̃3

2 . In all these cases, the two embedded functions cannot
be both represented by one interval at once with respect to any ordering of their
variables. If they could, function f would be then 2-interval according to the
Lemma 5.4.9, which cannot be.

(a) Let f0 be 1-interval and f1 2-interval. Figure 5.4 shows, which vectors
are considered as we progress on this proof. These vectors are numbered by the
order of our progression and they correspond with the numbers in the text.

Figure 5.4: Analysis of 3-interval function with 2 intervals in right subtree

(1) If f0(10..0) = f(010..0) = 1, then f0[x2 := 1] is constant one and from the
positivity f1[x2 := 1] is constant one as well. From there f [x2 := 1] is constant

one and f has form S̃2
1 which is against conditions of the lemma. Therefore

f0(10..0) = f(010..0) = 0 and f0[x2 := 0] is constant zero and f0 has form S̃2
2 .

Now we have two possibilities. (2) Either f1(10..0) = f(110..0) = 1 or 0. In
the first case f1[x2 := 1] is constant one (if it was not, it could not be positive)

and f1 has the form S̃2
1 thus f having form S̃3

2 . Specifically f1[x2 := 0] = F1 is
2-interval function, f0[x2 := 1] = F1 is 1-interval function, both with respect to
restricted π, and f = x2F2 ∨ x1(x2 ∨ F1) = x1x2 ∨ x1F1 ∨ x2F2.

We will now move to the second case, where f1(10..0) = f(110..0) = 0. We
consider (3) f(101...1) = f1(01...1) = 0. In this case f1[x2 := 0] would have
to be constant zero (otherwise it could not be positive) and since f0[x2 := 0] is
constant zero, it would hold, that f [x2 := 0] would be constant zero and therefore

f would have form S̃2
2 , which cannot be according to our assumptions. Therefore

f1(01...1) = 1 and functions f0[x2 := 1], f1[x2 := 0] and f1[x2 := 1] are 1-interval
functions with respect to same the ordering π restricted on their variables. We
will denote them as f01, f10 and f11. Constant zero function f0[x2 := 0]will be
denoted as f00.
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(4) We consider f(1101...1) = f11(01...1) = 0, thus f11[x3 := 0] being con-
stant zero. Then from positivity of f we have that f [1001...1] = f [0101...1] = 0
and both f01[x3 := 0] and f10[x3 := 0] are constant 0. If we put this together
with the fact that f00 is constant zero as well, we would get that f [x3 := 0] is

constant zero function resulting into f having form S̃2
2 , which cannot happen.

Therefore f(1101...1) = f11(01...1) = 1 and f11[x3 := 1] is constant one. We will
denote non-constant positive 1-interval function f11[x3 := 0] as F3.

Next we have two possibilities (5) on input vector (1010...0) of function f .
Firstly f(1010...0) = f10(10...0) = 0 and consequently f10[x3 := 0] is constant
zero, and we denote f10[x3 := 1] as F2. This case consists of two more subcases.
(6) First is f(0110...0) = f01(10...0) = 0. Then f01[x3 := 0] is constant zero and
we denote f01[x3 := 1] as F1. In this subcase f = x2x3F1∨x1(x3F2∨x2(x3∨F3)) =

x1x2x3 ∨ x2x3F1 ∨ x1x3F2 ∨ x1x2F3, which is form S̃4
3 with three embedded 1-

interval functions.
In the second subcase (6) we have f(0110...0) = f01(10...0) = 1. Then

f01[x3 := 1] is constant one and we denote 1-interval function f01[x3 := 0]
as F1 (possibly constant zero). Now we will on our current branching tree
apply operator moveRootDown(3) and we can see in the Figure 5.5 that we
have got a new ordering of variables π1 = (x2, x3, x1, x4, ..., xn) with respect
to which function f is also 3-interval function. Moreover, we can write f =
x3(x1F2)∨x2(x3∨ (F1∨x1F3)) = x2x3∨x2(F1∨x1F3)∨x3(x1F2), which is form

S̃3
2 with embedded 2-interval function F ′1 = F1 ∨ x1F3 and 1-interval function
F ′2 = x1F2, both with respect to the ordering π1 restricted on their variables.
Also F1 cannot be constant zero, otherwise f would be 2-interval function with
respect to π1.

Figure 5.5: One of the cases of positive 3-interval function

Now we proceed with the case, where (5) f(1010...0) = f10(10...0) = 1
and consequently f10[x3 := 1] is constant one. We denote 1-interval function
f10[x3 := 0] (possibly constant zero) as F2.
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We will again explore two subcases. (6)First is that f(0110...0) = f01(10...0) =
0. Then f01[x3 := 0] is constant zero and we denote 1-interval function f01[x3 :=
1] as F1. We will now on our branching tree apply operator moveDown(2,1)
and as we can see in Figure 5.6, we will get a new branching tree of 3-interval
function f with respect to the ordering π2 = (x1, x3, x2, x4, ..., xn). We can also
see that if F2 was constant zero, function f would be 2-interval with respect
to the ordering π2. Therefore F2 is not constant zero and we can again write
f = x3(x2F1) ∨ x1(x3 ∨ (F2 ∨ x2F3)) = x1x3 ∨ x1(F2 ∨ x2F3) ∨ x3(x2F1), which

is form S̃3
2 with embedded 2-interval function F ′1 = F2 ∨ x2F3 and 1-interval

function F ′2 = x2F1, both with respect to the ordering π2 restricted on their
variables.

Figure 5.6: One of the cases of positive 3-interval function

(6) The second subcase is that f(0110...0) = f01(10...0) = 1. Then f01[x3 :=
1] is constant one and we denote 1-interval function (possibly constant zero)
f01[x3 := 0] as F1. Now we have f = x2(x3 ∨ F1) ∨ x1(x3 ∨ F2 ∨ x2(x3 ∨ F3)).
After applying distributivity and one absorption, we will get f = x1x3 ∨ x2x3 ∨
x1F2∨x2F1∨x1x2F3. From the positivity of f it must hold, that F1 ≤ F3 and F2

≤ F3 (i.e. F3 has the longest truepoint interval), because every input vector of f
such that it is also input vector of F3 (of course restricted on appropriate bits)
differs form input vectors corresponding to F1 in exactly one bit and this bit is
1 for F3. The reason is the same for the second inequality. Therefore F3 can be
written as F3 = F1 ∨F2 ∨F ′3 and consequently f = x1x3 ∨ x2x3 ∨ x1F2 ∨ x2F1 ∨
x1x2F1 ∨ x1x2F1 ∨ x1x2F ′3. If we now again apply distributivity and another
several absorptions, we have f = x1x3 ∨ x2x3 ∨ x1F2 ∨ x2F1 ∨ x1x2F ′3, which
is the form 5.6 such that F ′3 can be constant zero (even though F3 cannot be
constant). Figure 5.7 captures positive 3-interval function which has the form
5.6.

Finally, we have to look what would happen if one of the functions F1 or
F2 was constant zero. If F1 was constant zero, we can do the operation move-
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Figure 5.7: Positive 3-interval function having the form 5.6.

Figure 5.8: One of the cases of positive 3-interval function

Down(2,1) and we will get permutation π3 = (x1, x3, x2, x4, ..., xn) with respect

to which function f is 3-interval and has form S̃3
2 = x1x3∨x1(F2∨x2F3)∨x3(x2)

as Figure 5.8 shows. Clearly, both of them cannot be constant zero, because in
that case f would be 2-interval with respect to the ordering π3.

If F2 was constant zero, we can do the operation moveRootDown(3) and we
will get permutation π4 = (x2, x3, x1, x4, ..., xn) with respect to which function

f is 3-interval and has form S̃3
2 = x2x3 ∨ x2(F1 ∨ x1F3) ∨ x3(x1) as Figure 5.9

shows.
(b) Now let f0 be 2-interval and f1 1-interval.
The first several steps of this part of the proof are analogous to the previous

part. Using strictly complement thoughts and choices of vectors (e.g. instead of
vector (010...0) having the value 1, we will consider vector (101...1) and its value
0) we will get to the following state of the branching tree.
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Figure 5.9: One of the cases of positive 3-interval function

f(0010...0) = f(010...0) = f(10...0) = 0, f(001...1) = f(01...1) = f(101...1) =
1. We again denote f00, f01, f10, f11 the same subtrees as in the previous case and
f00[x3 := 0] is constant zero and f11 is constant one. f00[x3 := 1], f01, f10 are pos-
itive non-constant 1-interval functions with respect to the ordering π restricted
on their variables. f00[x3 := 1] will be denoted as F1. Numbers in Figure 5.10
help with better orientation similarly as in the previous case.

Figure 5.10: Analysis of 3-interval function with 2 intervals in left subtree

Now we will consider (5) f(0101...1) = f01(01...1) = 1 and consequently
f01[x3 := 1] constant one. We denote f01[x3 := 0] as F2. This case consists of two
subcases. (6) First is f(1001...1) = f10(01...1) = 1. Then f10[x3 := 1] is constant
one and we denote f10[x3 := 0] as F3. In this subcase f = x3F1 ∨ x2(x3 ∨ F2) ∨
x1(x2 ∨ (x3 ∨F3)) = x1x2 ∨ x1x3 ∨ x2x3 ∨ x1F3 ∨ x2F2 ∨ x3F1, which is form S̃4

2

with three embedded 1-interval functions.
In the second subcase (6) we have f(1001...1) = f10(01...1) = 0. Then

f10[x3 := 0] is constant zero and we denote 1-interval function f10[x3 := 1]
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as F3 (possibly constant one). Now we will on our current branching tree ap-
ply the operator moveRootDown(3) and we can see in the Figure 5.11 that
we have got a new ordering of variables π5 = (x2, x3, x1, x4, ..., xn) with re-
spect to which function f is also 3-interval function. Moreover, we can write
f = x3(F1 ∨ x1F3) ∨ x2(x3 ∨ (x1 ∨ F2)) = x2x3 ∨ x2(x1 ∨ F2) ∨ x3(F1 ∨ x1F3),

which is form S̃3
2 with embedded 2-interval function F ′1 = F1 ∨ x1F3 and 1-

interval function F ′2 = x1 ∨ F2, both with respect to the ordering π5 restricted
on their variables. Also F3 cannot be constant one, otherwise f would be 2-
interval function with respect to π5.

Figure 5.11: One of the cases of positive 3-interval function

Now we proceed with the case, where (5) f(0101...1) = f01(01...1) = 0
and consequently f01[x3 := 0] is constant zero. We denote 1-interval function
f01[x3 := 1] (possibly constant one) as F2.

We will explore another two subcases. (6) First is that f(1001...1) = f10(01...1) =
1. Then f10[x3 := 1] is constant one and we denote 1-interval function f10[x3 := 0]
as F3. We will on this branching tree apply operator moveDown(2,1) and as we
can see in Figure 5.12, we will get a new branching tree of 3-interval func-
tion f with respect to the ordering π6 = (x1, x3, x2, x4, ..., xn). We can also
see that if F2 was constant one, function f would be 2-interval with respect
to the ordering π6. Therefore F2 is not constant one and we can again write
f = x3(F1 ∨ x2F2) ∨ x1(x3 ∨ (x2 ∨ F3)) = x1x3 ∨ x1(x2 ∨ F3) ∨ x3(F1 ∨ x2F2),

which is form S̃3
2 with embedded 2-interval function F ′1 = F1 ∨ x2F2 and 1-

interval function F ′2 = x2 ∨ F3, both with respect to the ordering π6 restricted
on their variables.

The second subcase (6) is that f(1001...1) = f10(01...1) = 0. Then f10[x3 :=
0] is constant zero and we denote 1-interval function (possibly constant one)
f10[x3 := 1] as F3. Now we have f = x3F1 ∨ x2x3F2 ∨ (x3F3 ∨ x2) = x1x2 ∨
x3F1∨x2x3F2∨x1x3F3. From the positivity of f it must hold, that F1 ≤ F2 and
F1 ≤ F3 (i.e. F1 has the shortest truepoint interval), because of the same reasons

54



Figure 5.12: One of the cases of positive 3-interval function

Figure 5.13: Positive 3-interval function having the form 5.7.

as in the analysis of the form 5.6. Therefore F2 = F1 ∨ F ′2 and F3 = F1 ∨ F ′3
and we can write f = x1x2 ∨ x3F1 ∨ x2x3F1 ∨ x2x3F ′2 ∨ x1x3F1 ∨ x2x3F ′3 =
x1x2 ∨ x3F1 ∨ x2x3F ′2 ∨ x2x3F ′3, which is form 5.7, such that F ′2 and F ′3 can
be constant zero even though F2 and F3 cannot. Figure 5.13 shows positive
3-interval function with this form.

At last, we have to show that neither one of the functions F2 or F3 cannot be
constant one. If F3 was constant one, we can do the operation moveDown(2,1)
and we will get permutation π7 = (x1, x3, x2, x4, ..., xn) with respect to which

function f is 3-interval and has form S̃3
2 = x1x3 ∨ x1(x2) ∨ x3(F1 ∨ x2F2) as

Figure 5.14 shows. Clearly, both of them cannot be constant one, otherwise f
would be 2-interval with respect to the ordering π7.

If F2 was constant one, we can do the operation moveRootDown(3) and we
will get permutation π8 = (x2, x3, x1, x4, ..., xn) with respect to which function
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Figure 5.14: One of the cases of positive 3-interval function

Figure 5.15: The last case of positive 3-interval function

f is 3-interval and has form S̃3
2 = x2x3 ∨ x2(x1) ∨ x3(F1 ∨ x1F3) as Figure 5.15

shows.
At this point we have run out of all possible cases of positive function f

having three intervals with respect to the ordering π of its variables and the
proof is complete.

Observation 5.5.5.
Properties of form 5.6:

(d1) there are two quadratic terms which share one variable (we will call it the
leading variable) and this variable is not present in any other terms; the rest
of the terms contain at least one of the other variables of these quadratic
terms (co-leading variables xi, xj)

(d2) there is at least one term with xi and one with xj both without the leading
variable
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(d3) there are at least four terms

(d4) for each variable holds that it is not present in at least two terms

(d5) there are at least two different pairs of disjoint terms

(d6) there is no term with both co-leading variables of length less than three

Properties of form 5.7:

(e1) there is variable xk (we will call it the leading variable) which is present in
every term except of one

(e2) the only term without the leading variable is quadratic (and contains two
co-leading variables)

(e3) there is no other term with both variables from above mentioned quadratic
term (it would be absorbed)

(e4) there is at least one term with the leading variable

(e5) there is at least one pair of disjoint terms

Lemma 5.5.6. Positive Boolean function f cannot have more than one of the
forms (a) - (e) from Lemma 5.5.4 at once.

Proof. From Lemma 5.4.7 we know, that f cannot have any two of forms S̃3
2 , S̃4

2

and S̃4
3 at once. It is also clear that it cannot have form S̃4

3 together with any

of the forms 5.6 or 5.7. This is true simply because S̃4
3 has all terms of length

at least three and the other two forms contain some quadratic terms. Properties
(d2), (d3) and (e1) ensure, that f cannot have forms 5.6 and 5.7 at once as well.

We can observe that there are no disjoint terms in form S̃3
2 . Hence it is

incompatible with both forms 5.6 and 5.7 (properties (d5) and (e5)).

For each variable in S̃4
2 holds that it is not present in at least three terms,

therefore f cannot have this form together with the form 5.7 as well.
In form 5.6 it is not possible to pick set of three variables such that there

would be all its 2-element subsets present in it as quadratic terms. Specifically,
for leading and co-leading variables it is impossible by their definition and since
at least one of co-leading variables is present in each term, there is no other
considerable set of variables. Hence f cannot have both forms 5.6 and S̃4

2 simul-
taneously.

Corollary 5.5.7. Let f be a positive Boolean function on n variables which
cannot be written in forms S̃2

1 or S̃2
2 . Then f ∈ C+3−int \ C+2−int if and only if it

has exactly one the forms (a) - (e) from Lemma 5.5.4.
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Proof. Lemma 5.5.6 ensures, that neither two of (a) - (e) can be fulfilled together.
Now we proceed with the proof of equivalence.

(only if part) is Lemma 5.5.4.

(if part) for (a) From Lemma 5.4.13 we have that S̃3
2 cannot have less than

two intervals for any ordering of its variables. Also embedded functions are not
1-interval with respect to the same ordering of their variables, therefore it is not
2-interval function (Lemma 5.5.2) as well. And from Lemma 5.4.16 there exist

ordering π of its variables with respect to which S̃3
2 has three intervals.

(if part) for (b),(c) Follows from Lemmas 5.4.13 and 5.4.9.
(if part) for (d),(e) Figures 5.7 and 5.13 show that functions in these forms

can be represented by three intervals and since they cannot have any of the forms
S̃2
1 , S̃2

2 and S̃3
2 , they cannot be represented by less intervals (Lemmas 5.2.1 and

5.5.2).

We already know, how to recognize positive 1-interval function. Corollary
5.5.3 gives us the hint, how to recognize positive 2-interval function, which is
not 1-interval. We can look for the suitable pair of variables, which define its
form S̃3

2 , such that its embedded functions are 1-interval. Lemma 5.4.19 ensures
us that if any such pair of variables exists, then all pairs of variables defining
other forms S̃3

2 have also embedded 1-interval functions. Therefore we can choose
any one of them.

The recognition algorithm for positive 2-interval functions was already in-
troduced in [4], but the proof of correctness was too specific for that problem.
We used more general lemmas, which can be reused also for positive 3-interval
functions and even for some cases of k-interval functions, where k ≥ 4.

Now, as Corollary 5.5.7 suggests, if we have a positive function, which is 3-
interval and not 2-interval, we can look for forms (a) - (e) from Lemma 5.5.4. If

we find pair or triplet of variables defining forms S̃3
2 , S̃4

2 , S̃4
3 , Lemma 5.4.19 again

ensures us that we do not have to consider any other ones. However, if we find
leading and co-leading variables for forms 5.6 or 5.7, we do not know if we have
the suitable ones, if we really have the ones for which the embedded functions are
1-interval with respect to the same ordering of their variables. Following lemmas
will solve this problem and allow us to pick any such triplet of variables. We will
be then almost ready to construct the recognition algorithm.

Lemma 5.5.8. Let f be a positive 3-interval Boolean function which has the form
(d) from Lemma 5.5.4 with the leading variable xk and co-leading variables xi, xj.
Then for any other leading triplet of variables x′i, x

′
j, x
′
k which define another

form 5.6 with embedded functions F ′1,F ′2,F ′3 holds, that functions F ′1,F ′2 and
F ′1 ∨ F ′2 ∨ F ′3 are 1-interval with respect to the same ordering of their variables.

Proof. First we consider the most basic function f which has the form 5.6. In
function x1x3 ∨ x2x3 ∨ x1x4 ∨ x2x4 can obviously be any variable chosen as the
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leading one, consequently define co-leading variables and for each such choice
the lemma holds.

Now we consider a more complex function f = xixk ∨ xjxk ∨ xiF1 ∨ xj(F2 ∨
xiF3). Obviously, because of the property (d1), it is not possible to find triplet
of variables disjoint with set {xi, xj, xk}.

First case is that one of the co-leading variables can be also leading variable.
Let it be xi. This means that xk becomes co-leading variable and F1 is function
of one variable xl and this variable becomes the second co-leading variable. Also
F3 is constant zero, otherwise xi would be in more than two terms. And since
xjF2 does not contain variable xi, it must be possible to write F2= xlF , where
F is not constant one (otherwise we would get the most basic case) and does not
contain any of variables xi, xj, xk, xl. Consequently f = xkxi∨xlxi∨xkxj∨xlxjF
and F1= xl, F ′1 = xj, F ′2 = xjF ,F ′3 = 0. Furthermore, there is no other triplet of
leading variables because we have only three quadratic terms with two possible
leading variables and the rest of the terms are of length at least three.

And since functions F1= xl and F2=F1∨F2∨F3= xlF are 1-interval with
respect to the same ordering π of their variables, from Corollary 4.3.2 we have
that if we fix xl appropriately, F is 1-interval with respect to the ordering π1
created from π by restriction to the remaining variables (second function will
become constant, which is 1-interval with respect to any ordering). Finally, when
we apply Corollary 5.4.3, we have that functions F ′1 and F ′2 = F ′1 ∨ F ′2 ∨ F ′3 are
1-interval with respect to the ordering π2 created from π1 by adding xj as the
most significant variable.

If we consider case, in which the leading or any other variable becomes co-
leading, we will get again the previous case. Therefore, in all other cases co-
leading variables remain the same and some other variable becomes the leading
one. We can than write the function f as follows.

xi(
l∨

r=1

xr ∨ G1) ∨ xj(
l∨

r=1

xr ∨ G2) ∨ xixjG3

Where all variables xr can be the leading ones and xk is one of them. The
rest of the proof is analogous to the proof of Lemma 5.4.19. Using the Corollary
4.3.2, we will find out that functions G1,G2 and G1 ∨ G2 ∨ G3 are 1-interval with
respect to the same ordering π3 derived from π by restriction to their variables.
Finally, using Corollary 5.4.3, we will be able to see that for any xq ∈ {x1, ..., xr}
considered as the leading variable, functions F ′1,F ′2 and F ′1 ∨ F ′2 ∨ F ′3 are 1-
interval with respect to the ordering π4 created from π3 by adding variables
x1, ..., xq−1, xq+1, ..., xr as the most significant ones in any ordering.

Lemma 5.5.9. Let f be a positive 3-interval Boolean function which has the form
(e) from Lemma 5.5.4 with the leading variable xk and co-leading variables xi, xj.
Then for any other leading triplet of variables x′i, x

′
j, x
′
k which define another
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form 5.7 with embedded functions F ′1,F ′2,F ′3 holds, that functions F ′1,F ′1 ∨ F ′2
and F ′1 ∨ F ′3 are 1-interval with respect to the same ordering of their variables.

Proof. First we consider the most basic function f which has the form 5.7. In
function x1x2 ∨ x3x4 can obviously be any variable chosen as the leading one,
consequently define co-leading variables and for each such choice the lemma
holds.

Now we consider a more complex function f = xixj∨xkF1∨xkxiF2∨xkxjF3.
Obviously, because of the properties (e1) and (e2), it is not possible to find triplet
of variables disjoint with set {xi, xj, xk}.

If one of the co-leading variables, w.l.o.g. xi, becomes leading variable, then
F3 must be constant zero. And since xk is present in each one of the rest of
the terms, it must become the co-leading variable. Then F1= xl and xl is the
second co-leading variable and we can write f = xkxl ∨ xixj ∨ xixkF and F=F2

cannot be constant zero (otherwise we would get the most basic case). Also
F ′1 = xj,F ′2 = F and F ′3 = 0. Furthermore, there is no other triplet of leading
variables because we have only two disjoint quadratic terms with two possible
pairs of co-leading variables and all other terms are of length at least three.

Similarly as in previous proof, since functions F1 = F1∨F3 = xl and F1∨F2 =
xl ∨F are 1-interval with respect to the same ordering π of their variables, from
Corollary 4.3.2 we have that F is 1-interval with respect to the ordering π1
created from π by restriction to the remaining variables. Finally, when we apply
Corollary 5.4.3 once again we have that functions F ′1 = F ′1 ∨F ′3 and F ′1 ∨F ′2 are
1-interval with respect to the ordering π2 created from π1 by adding xj as the
most significant variable.

If we consider case, where the leading or any other variable becomes co-
leading, we will again get the previous case. Therefore, in all other cases co-
leading variables remain the same and some other variable becomes the leading
one. We can than write the function f as follows.

xixj ∨ (
l∧

r=1

xr ∧ G1) ∨ (
l∧

r=1

xr ∧ xiG2) ∨ (
l∧

r=1

xr ∧ xjG3)

Where all variables xr can be the leading ones, xk is one of them and the rest
of the proof is analogous to the proof of the previous lemma.

Before we introduce the recognition algorithm, we have to deal with one
more problem. Specifically, we need to analyze the form S̃3

2 of positive 3-interval
function f which is not 2-interval. This is the case when for embedded functions
F1 and F2 does not exist ordering π with respect to which they are both 1-
interval.

As algorithm for recognition of positive 1-interval function presents, at each
step there is some non-empty set I (if it is empty, function is not 1-interval) of
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variables, from which we can choose next variable for the constructed ordering.
It is always the set of all variables constituting linear terms or the set of all
variables contained in all terms. It is clear, that we can always choose any one of
them. If two (or more) functions have shared ordering of variables, with respect
to which they are 1-interval, the intersection I0 of their sets I1, I2 has to be
always non-empty.

If the shared ordering does not exist, I0 has to be at some point (sooner then
we process all variables) empty. This can happen in following ways:

1 The set Ii for exactly one of the functions becomes empty.

2 The sets I1, I2 for both functions become empty.

3 Both sets I1, I2 are non-empty but they are disjoint.

Let us analyze the first case, when the set Ii became empty for exactly one of
the functions (let it be F2 with set I2). It means, that this function has neither
linear term nor one common variable in all terms. Therefore, due to Lemma
5.5.1, it is not 1-interval and consequently it must be 2-interval and have the
form S̃3

2 (otherwise the function f is not 3-interval).
The second case is not interesting for us, because it means, that neither one

of the embedded functions is 1-interval and therefore f cannot be 3-interval.
The last case is the most complicated. It could mean two more scenarios. The

first is that both functions are 1-interval, only with respect to different orderings.
The second is that one of them is 1-interval and the other one is 2-interval, but
it has the form S̃2

1 or S̃2
2 .

We will deal with all this cases in our implementation, which will be described
in the proof of correctness and time complexity of our algorithm. For that we
need the last lemma.

Lemma 5.5.10. Let the positive non-constant function f on n variables have
exactly 1 ≤ m < n variables present as linear terms or present in all its terms.
Then if we fix any other variable, we will get non-constant function.

Proof.
(a) Without loss of generality, let x1, ..., xm be all variables present as linear

terms. Then M = {xm+1, ..., xn} is non-empty set of remaining variables. It is
clear, that if we fix any variable from M to zero, then all variables x1, ..., xm
remain present as linear terms and function is not constant. From positivity if
for any j ∈ {1, ..., n} held that f [xj := 1] = 0, then also f [xj := 0] = 0 and f
would have to be constant zero, which is forbidden by our assumptions. If for
any xj ∈ M held that f [xj := 1] = 1, then from Lemma 5.4.2 xj is also present
as linear term and f would not contain exactly m linear terms but more.

(b) The proof is analogous for variables occurring in all terms.
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Algorithm 2 - Positive 3-Interval Function Recognition

Input: A nonempty prime and irredundant positive DNF F on n variables
representing function f .

Output: Order x1, ..., xn of variables and n-bit numbers a1, b1, a2, b2, a3 if F
represents a positive 3-interval function with respect to this order defined by
interval [a1, b1], [a2, b2] and [a3, 2n − 1]. NO otherwise.

if F(1 ) = 0 then F is constant 0, output empty interval halt endif1
if F(0 ) = 1 then F is constant 1, tautology, output [0, 2n − 1] halt endif2
a1 := 0 #c will denote the actual value of a− 13
i := 14
F1 := F5
while Fi 6= ∅ and i ≤ n and ∃j(Fi[zj := 0] = 0 ∨ Fi[xj := 1] = 1) do6

if Fi[zj := 0] = 0 then #xj appears in every term7
a1i := 18
Fi+1 := Fi[zj := 1]9

else #xj forms a linear term10
Fi+1 := Fi[zj := 1]11

endif12
π(i) := j13
i := i+ 114

done15
if F = ∅ then #in this case f can be represented by one interval16

while i ≤ n do17
π(j) := i, for some j ≤ n, which is not mapped yet18
i := i+ 119

done20
output ordering π and interval [a1, 2n − 1]21
halt22

endif23
b1 := a2 := a124
if ∃j, k such that xj, xk define form S̃3

2 of Fi then25
if Fi[xj := 0][xk := 1] ∈ C+1−int ∧ Fi[xj := 1][xk := 0] ∈ C+1−int and both with26
respect to the same ordering π′ then27

π(i) := j; π(i+ 1) := k28
a1i := 0; a1i+1 := 129
b1i := 0; b1i+1 := 130
a2i := 1; a2i+1 := 031
Find interval [c1, 2n−i−1−1] representing Fi[xj := 0][xk := 1] with respect32
to ordering π′33
Find interval [c2, 2n−i−1−1] representing Fi[xj := 1][xk := 0] with respect34
to ordering π′35
a1 := a11...a

1
i+1c

136

62



b1 := b11...b
1
i+111...137

a2 := a21...a
2
i+1c

238
for all k ≤ n unmapped by π do39

π(k) = π′(k − i− 1)40
done41
output ordering π and intervals [a1, b1] and [a2, 2n − 1]42
halt43

endif44
b2 := a3 := a245
if Fi[xj := 0][xk := 1] ∈ C+1−int ∧ Fi[xj := 1][xk := 0] ∈ C+2−int and both with46
respect to the same ordering π′ then47

π(i) := j; π(i+ 1) := k48
a1i := 0; a1i+1 := 149
b1i := 0; b1i+1 := 150
a2i := 1; a2i+1 := 051
b2i := 1; b1i+1 := 052
a3i := 1; a2i+1 := 053
Find interval [c1, 2n−i−1−1] representing Fi[xj := 0][xk := 1] with respect54
to ordering π′55
Find intervals [c2, d2], [c3, 2n−i−1−1] representing Fi[xj := 1][xk := 0] with56
respect to ordering π′57
a1 := a11...a

1
i+1c

158
b1 := b11...b

1
i+111...159

a2 := a21...a
2
i+1c

260
b2 := b21...b

2
i+1d

261
a3 := a31...a

3
i+1c

362
for all k ≤ n unmapped by π do63

π(k) = π′(k − i− 1)64
done65
output ordering π and intervals [a1, b1], [a

2, b2] and [a3, 2n − 1]66
halt67

elseif Fi[xj := 0][xk := 1] ∈ C+2−int ∧ Fi[xj := 1][xk := 0] ∈ C+1−int and both68
with respect to the same ordering π′ then69

π(i) := j; π(i+ 1) := k70
a1i := 0; a1i+1 := 171
b1i := 0; b1i+1 := 172
a2i := 0; a2i+1 := 173
b2i := 0; b1i+1 := 174
a3i := 1; a2i+1 := 075
Find intervals [c1, d1], [c2, 2n−i−1−1] representing Fi[xj := 0][xk := 1] with76
respect to ordering π′77
Find interval [c3, 2n−i−1−1] representing Fi[xj := 1][xk := 0] with respect78
to ordering π′79
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a1 := a11...a
1
i+1c

180
b1 := b11...b

1
i+1d

181
a2 := a21...a

2
i+1c

282
b2 := b21...b

2
i+111..183

a3 := a31...a
3
i+1c

384
for all k ≤ n unmapped by π do85

π(k) = π′(k − i− 1)86
done87
output ordering π and intervals [a1, b1], [a

2, b2] and [a3, 2n − 1]88
halt89

endif90
endif91
b2 := a3 := a292
if ∃j, k, l (xj, xk, xl define form S̃4

2 of Fi and Fi[xj := 0][xk := 0][xl := 1] ∈ C+1−int93
∧ Fi[xj := 0][xk := 1][xl := 0] ∈ C+1−int ∧ Fi[xj := 1][xk := 0][xl := 0] ∈ C+1−int all94
with respect to the same ordering π′) then95

π(i) := j; π(i+ 1) := k; π(i+ 2) := l96
a1i := 0; a1i+1 := 0; a1i+2 := 197
b1i := 0; b1i+1 := 0; b1i+2 := 198
a2i := 0; a2i+1 := 1; a2i+2 := 099
b2i := 0; b2i+1 := 1; b2i+2 := 0100
a3i := 1; a3i+1 := 0; a3i+2 := 0101
Find interval [c1, 2n−i−2 − 1] representing Fi[xj := 0][xk := 0][xl := 1] with102
respect to ordering π′103
Find interval [c2, 2n−i−2 − 1] representing Fi[xj := 0][xk := 1][xl := 0] with104
respect to ordering π′105
Find interval [c3, 2n−i−2 − 1] representing Fi[xj := 1][xk := 0][xl := 0] with106
respect to ordering π′107
a1 := a11...a

1
i+2c

1108
b1 := b11...b

1
i+211...1109

a2 := a21...a
2
i+2c

2110
b2 := b21...b

2
i+211...1111

a3 := a31...a
3
i+2c

3112
for all k ≤ n unmapped by π do113

π(k) = π′(k − i− 2)114
done115
output ordering π and intervals [a1, b1], [a2, b2] and [a3, 2n − 1]116
halt117

elseif ∃j, k, l (xj, xk, xl define form S̃4
3 of Fi and Fi[xj := 0][xk := 1][xl := 1] ∈118

C+1−int ∧ Fi[xj := 1][xk := 0][xl := 1] ∈ C+1−int ∧ Fi[xj := 1][xk := 1][xl := 0] ∈119
C+1−int all with respect to the same ordering π′) then120

π(i) := j; π(i+ 1) := k; π(i+ 2) := l121
a1i := 0; a1i+1 := 1; a1i+2 := 1122
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b1i := 0; b1i+1 := 1; b1i+2 := 1123
a2i := 1; a2i+1 := 0; a2i+2 := 1124
b2i := 1; b2i+1 := 0; b2i+2 := 1125
a3i := 1; a3i+1 := 1; a3i+2 := 0126
Find interval [c1, 2n−i−2 − 1] representing Fi[xj := 0][xk := 1][xl := 1] with127
respect to ordering π′128
Find interval [c2, 2n−i−2 − 1] representing Fi[xj := 1][xk := 0][xl := 1] with129
respect to ordering π′130
Find interval [c3, 2n−i−2 − 1] representing Fi[xj := 1][xk := 1][xl := 0] with131
respect to ordering π′132
a1 := a11...a

1
i+2c

1133
b1 := b11...b

1
i+211...1134

a2 := a21...a
2
i+2c

2135
b2 := b21...b

2
i+211...1136

a3 := a31...a
3
i+2c

3137
for all k ≤ n unmapped by π do138

π(k) = π′(k − i− 2)139
done140
output ordering π and intervals [a1, b1], [a2, b2] and [a3, 2n − 1]141
halt142

elseif ∃j, k, l (xj, xk, xl define form 5.6 of Fi with leading variable xl and143
Fi[xj := 0][xk := 1][xl := 0] ∈ C+1−int ∧ Fi[xj := 1][xk := 0][xl := 0] ∈ C+1−int144
∧ Fi[xj := 1][xk := 1][xl := 0] ∈ C+1−int all with respect to the same ordering π′)145
then146

π(i) := j; π(i+ 1) := k; π(i+ 2) := l147
a1i := 0; a1i+1 := 1; a1i+2 := 0148
b1i := 0; b1i+1 := 1; b1i+2 := 0149
a2i := 1; a2i+1 := 0; a2i+2 := 0150
b2i := 1; b2i+1 := 0; b2i+2 := 0151
a3i := 1; a3i+1 := 1; a3i+2 := 0152
Find interval [c1, 2n−i−2 − 1] representing Fi[xj := 0][xk := 1][xl := 0] with153
respect to ordering π′154
Find interval [c2, 2n−i−2 − 1] representing Fi[xj := 1][xk := 0][xl := 0] with155
respect to ordering π′156
Find interval [c3, 2n−i−2 − 1] representing Fi[xj := 1][xk := 1][xl := 0] with157
respect to ordering π′158
a1 := a11...a

1
i+2c

1159
b1 := b11...b

1
i+211...1160

a2 := a21...a
2
i+2c

2161
b2 := b21...b

2
i+211...1162

a3 := a31...a
3
i+2c

3163
for all k ≤ n unmapped by π do164

π(k) = π′(k − i− 2)165
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done166
output ordering π and intervals [a1, b1], [a2, b2] and [a3, 2n − 1]167
halt168

elseif ∃j, k, l (xj, xk, xl define form 5.7 of Fi with leading variable xl and169
Fi[xj := 0][xk := 1][xl := 0] ∈ C+1−int ∧ Fi[xj := 1][xk := 0][xl := 0] ∈ C+1−int170
∧ Fi[xj := 1][xk := 1][xl := 0] ∈ C+1−int all with respect to the same ordering π′)171
then172

π(i) := j; π(i+ 1) := k; π(i+ 2) := l173
a1i := 0; a1i+1 := 0; a1i+2 := 1174
b1i := 0; b1i+1 := 0; b1i+2 := 1175
a2i := 0; a2i+1 := 1; a2i+2 := 1176
b2i := 0; b2i+1 := 1; b2i+2 := 1177
a3i := 1; a3i+1 := 0; a3i+2 := 1178
Find interval [c1, 2n−i−2 − 1] representing Fi[xj := 0][xk := 0][xl := 1] with179
respect to ordering π′180
Find interval [c2, 2n−i−2 − 1] representing Fi[xj := 0][xk := 1][xl := 1] with181
respect to ordering π′182
Find interval [c3, 2n−i−2 − 1] representing Fi[xj := 1][xk := 0][xl := 1] with183
respect to ordering π′184
a1 := a11...a

1
i+2c

1185
b1 := b11...b

1
i+211...1186

a2 := a21...a
2
i+2c

2187
b2 := b21...b

2
i+211...1188

a3 := a31...a
3
i+2c

3189
for all k ≤ n unmapped by π do190

π(k) = π′(k − i− 2)191
done192
output ordering π and intervals [a1, b1], [a2, b2] and [a3, 2n − 1]193
halt194

else195
output NO196

endif197

Now we are ready to prove the correctness of Algorithm 2. Part of this proof
is actually the proof of correctness of algorithm recognizing positive 2-interval
functions and is taken from [4] with some adjustments so we can continue with
the recognition of 3-interval functions.

Theorem 5.5.11. Algorithm 2 correctly recognizes positive 3-interval functions
on n variables in prime and irredundant DNF and can be implemented to run in
O(n.l) time, where l is the length of the given DNF.

Proof. The first part (steps 6 - 23) of Algorithm 2 is in fact the algorithm rec-
ognizing positive 1-interval functions. If the algorithm outputs 0 or an ordering
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and one interval, then the correctness of this output follows from the correct-
ness of that algorithm (Theorem 5.2.3). If this part terminates with a nonempty
DNF, then due to Lemma 5.5.1 the input function is not a 1-interval function
and the parts of π and a1, which has been constructed so far, are correct in the
sense, that if there is a 2-interval representation of the input function f , then
it can be constructed by extending this π and a1. This is justified by Corollary
5.4.3, because in the first part of the algorithm only variables forming linear
terms or occurring in every term are taken as the most significant ones. If the
resulting DNF Fi is not empty, then (according to Corollary 5.5.3) it represents
a 2-interval function if and only if it has pair of variables xi, xj defining the form

S̃3
2 and embedded functions are 1-interval with respect to the same ordering of

the remaining variables. Due to Lemma 5.4.19 we can choose any pair, which
defines the form S̃3

2 .
If the previous condition is not fulfilled, Lemma 5.5.2 tells us that the given

function is not 2-interval. At this point, Corollary 5.5.7 guarantees that Fi is
3-interval if and only if it has exactly one of the forms S̃3

2 , S̃4
2 , S̃4

3 , 5.6 or 5.7 and
the embedded functions satisfy the respective condition as described in Lemma
5.5.4. In any of these cases we will again look for set of defining (leading, resp.)
variables and Lemmas 5.4.19, 5.5.8 and 5.5.9 ensure us that we can choose any
such set.

Afterwards, we need to check if the embedded functions are 1-interval (or in
one case one of them 2-interval). In all cases, where we have to check several
functions if they are 1-interval with respect to the same ordering of their vari-
ables, we can use several instances of the algorithm recognizing positive 1-interval
functions running in parallel.

How to implement such parallel executions is described in [2]. Specifically,
in the implementation of the algorithm recognizing general 1-interval functions.
That parallel implementation is designed for two parallel runs, however, it is not
hard to see that it can be used for three runs as well. It maintains the set I, which
is intersection of sets I1 and I2 of variables possible to choose in current step of
respective runs. Such set can be in the same way maintained for three runs. Each
time when we add a new suitable variable into one of the sets I1, I2, I3, we can
in constant time (according to the implementation in [2]) check if the variable is
present in both of the other sets, and if so, add it also to the intersection I.

However, as we already analyzed above, the situation gets more complicated,
if we want to run in parallel one algorithm for recognition of 1-interval functions
and other one for 2-interval functions. We will proceed as follows.

At first, we will run the algorithms for both these functions separately to
determine if they are both 1-interval only with respect to a different ordering, or
one of them is 2-interval such that it is not 1-interval. This is done in O(l) time.

In the case that one of them is 2-interval (let it be F2 and consequently F1 is
1-interval), we will run the parallel implementation as above until we get empty
intersection I. Since F1 is 1-interval, its set I1 is not empty and if the shared
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ordering exists, one of the variables from I1 has to be the most significant among
unprocessed variables. Otherwise F1 would have at least 2-intervals with respect
to any other ordering, because it satisfies conditions of Lemma 5.5.10.

The 2-interval function F2 has one of the forms S̃2
1 , S̃2

2 or S̃3
2 . In the first two

cases it has its own non-empty set I2, which is disjoint with I1 and therefore
satisfies the conditions of Lemma 5.5.10. Specifically, fixing any variable from I1
will break function F2 into two non-constant functions.

If F2 has form S̃3
2 , then fixing any variable will result in two non-constant

functions as well. This is ensured by pair of Lemmas 5.4.8 and 5.4.13 or by
Lemma 5.4.12 depending on which variable is fixed and if the fixation makes one
of the embedded functions constant.

Therefore, for each xi ∈ I1 we will try to finish the execution of three par-
allel algorithms for recognition 1-interval functions F1[xj := a],F2[xj := 0] and
F2[xj := 1], where a is appropriate value according to the algorithm. This will
be finished in O(n.l) time. If the shared ordering exists, one of these executions
will find it, because in this way, we try all possibilities.

The situation is a little different, when we have two 1-interval functions.
In this case when intersection I becomes empty, both I1 and I2 are non-empty,
but disjoint. In this case we will simply try all variables from both sets and
finish three parallel executions as described above. In each case, according to the
choice of variable, one of the functions will be in the role of 1-interval function
and the second one will break into two 1-interval functions according to the
Lemma 5.5.10. This will again take O(n.l) time.

The last thing is to show, how to find all five 3-interval forms in O(n.l) time.
In the following text T will be the number of terms in DNF Fi.

To identify the pair of defining variables of form S̃3
2 (on line 25), we need

to go through the DNF once, identify quadratic terms and count occurrences of
every variable. Then we go through all the pairs of variables forming quadratic
terms and choose the first pair, for which the sum of the occurrences of both
variables is equal to T + 1 (because of the occurrences in the quadratic term
formed by such pair).

The situation is similar with identification of the triplet of variables for form
S̃4
3 (line 118). We go through the DNF once, identify terms of length three and

count occurrences of every variable. We also check if all terms are of length at
least three. Then we go through all the triplets of variables forming terms of
length three and choose the first one, for which the sum of the occurrences of
variables is equal to 2T + 1 and each variable has at least three occurrences.

The detection of form S̃4
2 (line 94) is different. If we have a candidate triplet

of variables, such that there are tree quadratic terms with them, then we can
in constant time check if they are the correct ones. We simply check if the sum
of their occurrences is T + 3 and each one has at least three occurrences. If we
choose any quadratic term (during the counting walk through the DNF), at least
one of its variables has to be one of the variables of the correct triplet. Therefore,
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for both these variables we simply try all
(
n
2

)
combinations with the rest of the

variables until we find the correct set. This takes in total O(n2 + l), which is
also O(n.l).

In order to detect the leading and co-leading variables of form 5.6 on the
line 143, we go through the DNF once, identify quadratic terms and count the
occurrences of variables in DNF and occurrences of variables in quadratic terms
and for each variable create the linked list of terms in which it occurs. Then
we go through all variables and check those, which satisfy following conditions.
They have two occurrences in DNF and two terms in its linked list are quadratic.
Hence they define two candidates for co-leading variables. For each such variable
then we go through the DNF once more and check if each term contains at least
one of the co-leading variables. This is obviously done in O(n.l) time.

The leading and the co-leading variables of form 5.7 (line 169) can be detected
as follows. At first, we perform the counting walk through the DNF and pick an
arbitrary quadratic term. Then we go through the list of variables and look for
the variable, which is not in this term and has T −1 occurrences. If we find such
variable, we have our triplet of leading variables. If not, then one of the variables
of our quadratic term has to be the leading variable (otherwise we conclude that
Fi does not have the form 5.7). We check the number of occurrences of these
variables, go once through the DNF and look for the terms without one of these
variables. If for one of them holds, that it has T − 1 occurrences and we found
quadratic term without it, we have found the triplet of leading variables. This
is done in O(n+ l) time, which is also O(l).

When we summarize the time of all analyzed procedures we will get overall
time of execution O(n.l).
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Chapter 6

General k-Interval Functions

6.1 PARITYn function

As we already know, that PARITYn and PARITYn⊕ 1 are commutative functions.
We will now look closer into their structure and we will calculate the number of
their intervals.

Theorem 6.1.1. Function PARITYn has round(2
n

3
) truepoint intervals and d2n

3
e

falsepoint intervals for any ordering of its variables.

Proof. Since PARITYn ⊕ 1 is negation of PARITYn, it is easy to observe, that
PARITYn has equal truepoint intervals as PARITYn ⊕ 1 has falsepoint intervals
and vice versa. Therefore it is sufficient to calculate only the number of truepoint
intervals for both these functions.

We will denote number of truepoint intervals for PARITYn as Pn and for
PARITYn ⊕ 1 as P n.

Let us now analyze, what happens if we fix one of the variables in PARITYn
function. Without loss of generality we choose xn. We know, that PARITYn =
PARITYn−1 ⊕ xn. Hence PARITYn[xn := 0] ⇔ PARITYn−1 ⊕ 0 which is equivalent
to PARITYn−1 and PARITYn[xn := 1]⇔ PARITYn−1 ⊕ 1.

Therefore, if we want to construct the projection interval of PARITYn, we need
to concatenate the projection intervals of PARITYn−1 and PARITYn−1 ⊕ 1 in this
particular order.

Now we need to analyze what are the values of leftmost and rightmost points
of projection interval of studied functions. PARITYn(0 ) = 0 and PARITYn ⊕ 1(0 ) =
1 for any n. n-dimensional vector 1 has even amount of ones if and only if n is
even. Therefore from the definition of PARITYn function we have that PARITYn−1(1 ) =
1 and PARITYn−1 ⊕ 1(1 ) = 0 if and only if n is even.

Therefore for each k ∈ {1, ...} following equalities hold:

n = 2k ⇒ Pn = Pn−1 + Pn−1 − 1 (6.1a)

n = 2k + 1⇒ Pn = Pn−1 + Pn−1 (6.1b)
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In other words, if we concatenate projections for even n, then the projection
of PARITYn−1 ends with truepoint interval, which will be merged with starting
truepoint interval of PARITYn−1 ⊕ 1 and therefore we will loose one interval.

Moreover if n is odd, then PARITYn has equal number of truepoint intervals as
falsepoint intervals as a direct corollary of the fact that the projection interval
starts in 0 and ends in 1. Similarly for even n the projection starts in 0 and
also ends in 0, therefore it has one more falsepoint interval than it has truepoint
intervals. Since Pn is also the number of falsepoint intervals of PARITYn, we can
write:

n = 2k ⇒ Pn = Pn + 1 (6.2a)

n = 2k + 1⇒ Pn = Pn (6.2b)

If we put equations 6.1 and 6.2 together, we will get following:

Pn = 2Pn−1 + (−1)n−1

This equation can be be iteratively decomposed until we get the summation
starting in n = 0:

Pn = 2Pn−1 + (−1)n−1

Pn = 4Pn−2 + 21(−1)n−2 + 20(−1)n−1

Pn = 8Pn−3 + 22(−1)n−3 + 21(−1)n−2 + 20(−1)n−1

...

Pn =
n−1∑
k=0

2k(−1)n−1−k = (−1)n−1
n−1∑
k=0

(−2)k

Pn = (−1)n+1 (−2)n − 1

−3
=

2n

3
− (−1)n

3
= round

(
2n

3

)
We already have the number of truepoint intervals for PARITYn. We can

further observe, that for even n we round 2n

3
to the next smaller integer and for

odd n we round it to the next greater integer. And since for even n we have one
more falsepoint interval as we have truepoint intervals, we can conclude that the
number of falsepoint intervals for PARITYn is d2n

3
e.
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6.2 Number of intervals for general k-interval

functions

In paper [3] the following hypothesis is presented as Theorem 1.5.

Hypothesis 3. Any boolean function on n variables has at most 2n−1 = 2n

2

intervals. Moreover, this bound is tight.

The proof suggests as an example a function, which alternate zeros and ones
on every neighboring vectors in given ordering and claims that PARITYn is such
function. However, we already know that PARITYn does not look like this and
also has less intervals as proved in Theorem 6.1.1, namely 2n

3
instead of 2n

2
. This

alternating of values actually happens for any i ∈ {1, ..., n} on n-ary function
f = xi for any ordering of variables where xi is the least significant one. And
we can easily observe, that this function is 1-interval function for any ordering
of variables where xi is the most significant one. Therefore, there are Boolean
functions on n variables that have for certain ordering of their variables 2n−1

intervals, however, this bound is not tight.
We believe that a more exact proposition about the number of intervals for

general k-interval functions can be formulated. However, we do not have the
proof for it, therefore we will present it as another hypothesis.

Hypothesis 4. Let f be a k-interval Boolean function on n variables such that
f ∈ Ck−int \ C(k−1)−int. Then k ≤ d2n

3
e.
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Chapter 7

Conclusion

In the thesis we studied mainly positive k-interval functions. We discovered some
of their forms and analyzed their properties. We formulated various propositions
and we used them in the new recognition algorithm for positive 3-interval func-
tions. However, many of these propositions are generalized for positive k-interval
functions and can be utilized in further studies of such functions and possible
recognition algorithms for k ≥ 4.

It the would be useful to prove Hypothesis 2 in order to make any progress
in this area for k ≥ 4. However, it will definitely not be enough. Since the
forms S̃mk are not the only forms of positive Boolean functions, it is required to
discover and analyze also other forms. It is possible to begin with those forms
S̃mk [0] and S̃mk [1], which according to Observation 5.4.15 do not degenerate into

forms S̃mk . Unfortunately, it still might not be enough. As we could see, positive
3-interval functions can have also forms 5.6 and 5.7 and it is appropriate to
assume that positive k-interval functions for k ≥ 4 will also have some other
forms. Therefore, it might be necessary to somehow generalize such forms and
analyze their properties.

When we consider time complexity of possible algorithm for recognition of
positive k-interval functions, where k ≥ 4, it is sufficient to consider the case,
when such function has the form S̃3

2 and one of embedded functions is 3-interval.
It is obvious, that k will get into the exponent at least at this point. It is possible,
that the exponent might get only to n.

Finally, the thesis studied the structure and number of intervals of functions
MAJORITY and PARITY. We also formulated the Hypothesis 1 and 4 that these
functions have the highest tight bound amount of intervals among positive and
general boolean functions respectively. We assume that the proofs would require
to show, that if the given function has for some ordering of its variables more
intervals, it should be possible to find (using the branching tree operators) the
ordering with respect to which the given function has less or the same number
of intervals as the respective one of these functions.
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