

Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Miloslav Beňo

Implementing the Dynamic Languages using DLR Technology

Department of Software Engineering

Supervisor: RNDr. Filip Zavoral, Ph.D.

Study Program: Computer Science, Software Systems

- 2 -

I would like to thank Filip Zavoral for his professional guidance and patience. Also I have

to thank Tomas Matousek from Microsoft for his invaluable advices and comments

related to DLR. An acknowledgement belongs also to my colleagues and co-workers

Jakub Misek and Tomas Petricek for consultations and comments.

Above all, I would like to thank my parents for their support throughout my studies.

I declare that I have written this thesis by myself and that I have used only the
cited resources. I agree with lending of this master thesis.

Miloslav Beňo
In Prague

- 3 -

Contents

 INTRODUCTION ... 7 2.

 OVERVIEW .. 9 3.

3.1. COMMON LANGUAGE INFRASTRUCTURE (CLI) ... 9

3.2. DYNAMIC LANGUAGES .. 10

3.3. PHALANGER ... 11

3.4. REASONS FOR IMPLEMENTING PHP LANGUAGE ON DLR.. 12

3.5. PHPP - PHP ON TOP OF DYNAMIC LANGUAGE RUNTIME .. 13

 DYNAMIC LANGUAGE RUNTIME ... 15 4.

4.1. ARCHITECTURE .. 16

4.2. COMMON HOSTING MODEL.. 17

4.3. DLR EXPRESSION TREES ... 17

4.4. DYNAMIC OPERATIONS ... 19

4.4.1. Before DLR .. 19

4.4.2. DLR approach .. 20

4.4.3. Set of operations ... 22

4.5. DLR INTEROPERABILITY PROTOCOL ... 23

4.5.1. DynamicObject and ExpandoObject ... 24

4.5.2. IDynamicMetaObjectProvider and DynamicMetaObject .. 25

4.5.3. DynamicMetaObjectBinder and fallback method ... 26

4.5.4. DLR interoperability model ... 26

4.6. UNIFIED TYPE SYSTEM ... 27

4.7. DLR LANGUAGE PROJECT STRUCTURE... 27

4.8. LANGUAGECONTEXT CLASS ... 28

4.9. DLR ADAPTIVE COMPILATION ... 29

4.10. SUMMARY ... 30

 HIGH-LEVEL LANGUAGE FUNCTIONALITIES.. 32 5.

5.1. PHP CODE COMPILATION .. 32

5.2. PHP FUNCTIONS ... 33

5.3. ASP.NET COOPERATION ... 35

5.4. INTERACTIVE MODE SUPPORT... 37

5.5. .NET INTEROPERABILITY .. 38

 COMPILATION PROCESS .. 40 6.

6.1. ARCHITECTURE .. 40

6.2. LEXER/PARSER ... 40

6.3. PHALANGER AST .. 41

6.4. TRANSFORMING PHALANGER AST INTO EXPRESSION TREES (DLR AST) ... 42

- 4 -

 IMPLEMENTING LANGUAGE FEATURES ... 44 7.

7.1. SCRIPT .. 44

7.1.1. Scope ... 45

7.1.2. Declarations .. 47

7.1.3. Inclusion .. 48

7.1.4. Dynamic code execution ... 50

7.2. VARIABLES .. 52

7.2.1. Local variables storage ... 52

7.2.2. Global variable storage ... 53

7.2.3. Indirect variables ... 54

7.2.4. Auto-global and Super-global variables .. 55

7.2.5. Types ... 55

7.3. OPERATORS .. 56

7.4. FUNCTIONS .. 57

7.4.1. Args-aware and Args-unaware functions ... 58

7.4.2. Arguments count ... 59

7.4.3. Locals .. 59

7.4.4. Resolving overloads .. 60

7.5. OBJECTS ... 61

7.6. CONTROL-FLOW STATEMENTS .. 62

7.7. SUMMARY .. 64

 EVALUATION ... 65 8.

 CONCLUSION .. 68 9.

REFERENCES .. 69

APPENDIX A. CD CONTENT .. 73

APPENDIX B. DLR INTEROPERABILITY PROTOCOL SCHEMA ... 74

- 5 -

Title: Implementing the Dynamic Languages using DLR Technology
Author: Miloslav Beňo
Department: Department of Software Engineering
Supervisor: RNDr. Filip Zavoral, Ph.D.
Supervisor's e-mail address: zavoral@ksi.mff.cuni.cz

Abstract: The Microsoft .NET Framework was from the beginning designed to support
broad range of languages on a Common Language Runtime (CLR). CLR provides shared
services such as garbage collection, JIT and tools integration. The other benefit is that
these languages can work together and use libraries written in any of them as well as
.NET Base class library (BCL).

The CLR didn’t have the support for dynamic languages. Their dynamic nature makes the
compilation uneasy and places high demands on the language runtime. Unlike static
languages as C# which don’t require runtime support other than CLR itself. How difficult
was it to make the dynamic language on .NET can be seen in the open-source
implementation of PHP language on .NET called Phalanger. Its code is really complex and
hard to survey. This is a serious problem for an open-source project, because it’s hard to
contribute.

The new Dynamic Language Runtime (DLR) makes a difference. It adds a lot of support
for dynamic languages on .NET, that makes implementing the dynamic languages much
easier and it also enables the interoperability between the dynamic languages built on
DLR and standard static languages on .NET.

This work focuses on features of PHP dynamic language and discusses how they can be
implemented in DLR. A part of this work is a pilot implementation of PHP language on
DLR; the target of this implementation is to prove some new concepts, find advantages
and disadvantages that DLR brings and serves as an example for implementing the
dynamic language on DLR.

 Keywords- dynamic language, DLR, Phalanger, PHP, .NET, CLR

- 6 -

Název: Implementace dynamických jayzků nad DLR technologií
Autor: Miloslav Beňo
Katedra: Department of Software Engineering
Vedoucí diplomové práce: RNDr. Filip Zavoral, Ph.D.
e-mail vedoucího: zavoral@ksi.mff.cuni.cz

Abstrakt: The Microsoft .NET Framework byl od jeho počátku vytvořen tak, aby
podporoval široké spektrum jazyků nad Common Language Runtime (CLR). CLR poskytuje
technologie jako garbage collection, JIT nebo integrované vývojové nástroje. Další
výhodou je, že tyto jazyky spolu mohou komunikovat a využívat knihovny napsané
v kterémkoliv z nich a rovněž tak .NET Base class library (BCL).

CLR nemělo podporu dynamických jazyků. Jejich dynamická povaha dělá z kompilace
nelehký úkol a klade velké nároky na runtime jazyka. Narozdíl od statických jazyků jako je
C#, který nepotřebuje jiný runtime než je přítomen v CLR samotném. Jak těžké bylo
vytvořít dynamický jazyk nad .NET je možné vidět na open-source projektu Phalanger.
Jeho kód je velmi komplexní a je obtížné do něj proniknout. To je vážný problém pro
open-source projekt, jelikož je těžké se na něm začít podílet.

Nový Dynamic Language Runtime (DLR) přináší změnu. Přidává mnoho podpory pro
dynamické jazyky nad .NET, což dělá implementaci dynamických jazyků znatelně snažší a
rovněž umožňuje interoperabilitu mezi dynamickými jazyky vytvořenými nad DLR a
standartními statickými jazyky nad .NET.

Tato práce se zaměřuje na vlastnosti PHP dynamického jazyka a diskutuje jak jej lze
naimplementovat nad DLR. Částí této práce je pilotní implementace PHP jazyka nad DLR,
jejímž cílem je ověřít si některé nové koncepty, najít výhody a nevýhody které DLR prináší
a taktéž slouží jako příklad implementace dynamického jazyka nad DLR.

Klíčová slova- dynamický jazyk, DLR, Phalanger, PHP, .NET, CLR

- 7 -

2. Introduction

From the beginning the Microsoft .NET Framework [1] was designed for supporting

various programming languages on a Common Language Runtime (CLR) [2] and allowing

them to interoperate between each other. Beside this key value, the CLR also provides

number of shared services as garbage collection, Just-In-Time compilation, and

integrated tools for debugging, profiling and common security model. The .NET

languages can also use the power of .NET Base class library (BCL).

The .NET simplifies the implementation of new languages, because a lot of difficult

engineering work is already done. The compiler doesn’t have to work with the

processor’s instructions, just with Microsoft Intermediate Language (MSIL) [3] which is a

higher level set of instructions.

Although the .NET makes implementing a programming language easier, implementing a

dynamic language (see 3.2) was still very difficult. The CLR didn’t have any support for

them. The .NET was originally designed for static languages as C# or Visual Basic. And

unlike them the dynamic languages as PHP [4], Python [5] or Ruby [6] need broad

support of the language runtime, because of their dynamic nature.

The dynamic languages have become very popular during the past years. The reason for

this might be that they are more flexible and less restrictive than static languages.

Because of this, it’s more efficient to use them for certain applications for a price of

higher possibility of runtime bugs. Developers want to use their preferable dynamic

language and have .NET interoperability for building applications and providing scripting

for applications.

When .NET lacked support of dynamic language the Phalanger project (see 3.3) was

created. It’s compiler of PHP language for .NET platform could serve as one of the

examples of dynamic languages on .NET. It’s a very complex project that had to solve all

the aspects and difficulties of dynamic language compiler. Its complexity makes it hard

to contribute and being open-source project is a big problem.

Nowadays the Dynamic Language Runtime's (DLR) (see 0.) appears to make

implementing the dynamic languages a much easier job than it was before. Its goal is to

- 8 -

enable a common playground of dynamic languages on .NET. The DLR adds small sets of

the key features to the CLR on .NET platform and set of services designed for the needs

of dynamic languages. With these features it’s much easier to implement the efficient

dynamic language on .NET platform. More importantly, it enables interoperability

between dynamic languages that use DLR as well as between static languages that

already exists on .NET.

By using DLR the dynamic language automatically gets support of tools and integration

with libraries and platforms. The true benefit here is sharing. It lets language

implementers to focus just on their language and its semantics rather than building

bunch of services for their language. So it’s not necessary for example to build a garbage

collector or to create development tools from scratch. Furthermore every time the DLR

or .NET improves, the language implementation will benefit from this without any work.

This works focus on features, especially dynamic features, of PHP language and discuss

how they can be implemented on top of the DLR. The implementation concepts are

compared to the ones used in Phalanger.

The part of this work is PHPp (see 3.5) - a pilot implementation of PHP language on DLR.

It has been made to try and compare these new concepts with the old ones, examine

performance gains, find difficulties coming from using DLR etc. It also serves as an

example of using DLR to implement the dynamic language.

Completed PHP language implementation on DLR would make whole project easier to

survey and contribute. It would improve the performance, but more importantly it

enables interoperability between other dynamic languages on DLR. It actually brings

more benefits (see 3.4).

- 9 -

 Overview 3.

This section presents important technologies related to this work, explains dynamic

languages and how they differs from static languages. Also presents motivations why to

implement a language on DLR.

3.1. Common Language Infrastructure (CLI)

The core aspects of the Microsoft .NET

lies in the Common Language

Infrastructure (CLI) [7]. The purpose of

CLI is to provide a language-neutral

platform for application development

and execution, including functions for

exception handling, garbage collection,

security, and interoperability.

Microsoft's implementation of the CLI is

called the Common Language Runtime

or CLR.

The CLR provides the appearance of

application virtual machine with

Microsoft Intermediate Language

(MSIL) instructions. The MSIL is a universal assembler-like language independent on the

hardware. The MSIL is compiled by CLR during execution to the processors instructions

of the machine where the program is actually running. The language compilers just

generate MSIL and don’t need to consider the capabilities of the specific CPU that will

execute the program.

The MSIL is designed to describe the code of a static language. The Listing 1 illustrates

the situation where two integer numbers are added. The instruction “add” takes two

integer values from the stack, adds them and puts the result back into the stack. During

Figure 1. Visual overview of the Common Language
Infrastructure (CLI)

- 10 -

the compilation process it was known that x is an integer, not something else. That is

different than in the dynamic languages.

C# MSIL

int x = 5; L_0000: ldc.i4.5

L_0001: stloc.0

int res = x + 2; L_0002: ldloc.0

L_0003: ldc.i4.2

L_0004: add

L_0005: stloc.1

Console.WriteLine(res); L_0006: ldloc.1

L_0007: call void

[mscorlib]System.Console::WriteLine(int32)

Listing 1. C# code and coresponding MSIL

3.2. Dynamic languages

The dynamic language [8] is a high-level programming language which behavior is known

just at time of the execution, not during the compilation in contrast to the static

languages. The behavior could be altered by adding new code, by extending objects and

definitions, or by modifying the type system, all during the program execution.

Most of the dynamic languages are dynamically typed, but not all of them. A language is

called dynamically typed when the most of the type checking is performed during

runtime, not during the compilation process. User can for example generate the types

during runtime. The dynamic typing is more flexible than static typing, since static type

[9] checkers can consistently reject the code that would actually work. On the other

hand the static type checking ensures that type errors will not occur during execution of

a program.

The dynamic typing is the biggest problem during

implementation of the dynamic language on .NET.,

because the MSIL is a static language and requires

knowledge of the variable type during the

compilation. However, the types of the variables in

the dynamic language are known only at runtime

and can be changed at any time. The problem here

is how a compiler should declare the variables in MSIL when the type isn’t known.

x = 20;

if (test)

 y = 10;

else

 y = "14.5";

res = x + y;

Listing 2. Example of the dynamic typing

http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Void
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Console
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Console/WriteLine(Int32)
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Int32

- 11 -

Listing 2 shows the example of the dynamic code. The problem of dynamic typing

system is illustrated on this example. How should be variable y typed? It could be either

integer or string, depending on the value of test.

This isn’t the only problem. Other issue is the semantics of the operations. The

operation + might be either arithmetical addition or string concatenation, which are

obviously different instructions in MSIL. And the result in this case could be float or

string.

The language implementers have to deal with these problems, but usual solutions

(4.4.1) aren’t efficient. How to deal with them and how DLR will make it simpler and

more efficient is explained at 4.4.2.

3.3. Phalanger

The Phalanger [10] [11] is a PHP language compiler for .NET Platform. It was started on

Charles University in Prague in 2003 and it became first-class .NET language. It’s possible

to not just compile the existing PHP web application into verifiable managed .NET

assemblies, but also create console applications, windows application and newly also

Silverlight [12] applications. And on a top of that, it’s possible to use it in Visual studio

2005 and 20081 with intellisense [13] and other tools coming from integration with this

IDE.

In the version 1.0 primary goal was to be able to compile any existing PHP applications in

to the MSIL. The 2.0 version added the goal to allow interoperability between PHP and

.NET world (see .NET Interoperability5.5). This means that in the version 2.0 it is possible

to use most of the .NET objects right from the PHP code. That opened many possibilities

for this language. But this is one way interoperability, the both ways it’s little bit more

complicated, but still possible in version 2.0. Hover it becomes much easier with the

new feature build into Phalanger called DuckTyping (see 5.5).

1
Phalanger integration for Visual Studio 2010 is being developed in these moments.

- 12 -

The Phalanger can run real-world PHP applications with a minor or no modifications. It

provides a robust platform for PHP applications with many advantages over the

traditional implementation of PHP language compiler. The Phalanger benefits greatly

from being built on top of .NET CLR. The execution of applications is faster when

compared to standard PHP interpreter2. It’s also easily configurable using the ASP.NET

configuration systems, more reliable and secure due to the very well tested managed

environment of ASP.NET. Examples include Wordpress, MediaWiki, phpMyAdmin and

phpBB. The huge benefit is also lot of libraries and tools implemented on .NET that

Phalanger can use.

Phalanger became an open source project in 2.0 version and it was released under

Microsoft Shared Source Permissive License (it allows commercial usage, modification,

and redistribution, see the license for details).

3.4. Reasons for implementing PHP language on DLR

The Phalanger project doesn't use DLR or any other compiler framework. Its

implementation has to deal with all the problems which come from PHP’s dynamic

nature itself. This makes its code very complex and hardly readable.

PHP is a scripting language aimed particularly at rapid development of simple server-side

HTML-generating scripts. Its dynamic nature makes the compilation an uneasy task and

also places high demands on the language runtime. Unlike statically typed languages

such as C#, which require no runtime support other than the CLR itself.

Being open-source project, the Phalanger needs support of the community. However,

actual implementation makes participation on this project very difficult.

There are many reasons for reimplementing Phalanger’s core to use DLR:

 Clarity of code. By respecting traditional architecture of DLR languages, more

people could easily start to see inside the project.

2
 Newest version of PHP are actually faster than Phalanger in these moments, but Phalanger core team is

working on many optimizations. Being compiler it has great performance potential, it can even use DLR in
situation where it’s most beneficial and combine it with its emited MSIL code.

http://en.wikipedia.org/wiki/MediaWiki
http://en.wikipedia.org/wiki/PhpMyAdmin
http://en.wikipedia.org/wiki/PhpBB
http://www.codeplex.com/Project/License.aspx?ProjectName=Phalanger

- 13 -

 Moved responsibility. When language uses DLR a lot of hard engineering

work is already done. Every time the DLR or .NET will improve the language

will benefit from this too without any work.

 Effectiveness. The DLR offers services that can improve the efficiency of the

language implementing it. As fast dynamic dispatch, call-sites, etc.

 Interoperability. The language can interoperate not just with .NET static

languages, but also with other dynamic languages based on DLR.

 Common hosting environment. The DLR could be hosted in any .NET

applications. Therefore the language can be used in the newly developed

environments without any work.

 IDE. The language will get the implicit colorization, completion, and

parameter tips in editing tools hosting DLR.

3.5. PHPp - PHP on top of Dynamic Language Runtime

Phalanger being compiler of PHP language into .NET platform compiles source code into

MSIL. Its main purpose was to enable execution of PHP scripts on the Microsoft .NET

Platform. By cooperating with ASP.NET technology enables to generate web-pages

written in PHP.

As well as primary goal for Phalanger for PHP implementation on DLR is to enable full

functionality of existing PHP scripts without modification. The condition is that code

doesn’t rely on specific features provided by UNIX platform or the Apache server nor on

undocumented, obsolete or faulty functionality of the original PHP interpreter.

Sometimes is problematic decide if some feature is bug or desired functionality, here

could occur differences between PHPp implementation and original one. But most of the

time it’s necessary copy the buggy behavior because existing application rely on this.

The Phalanger project is currently part of PHPp solution and it can’t be modified. This

restriction is set up, because in the future version there will not be any Phalanger

project included. The PHPp uses from Phalanger following parts: scanner, parser and

Phalanger AST. They weren’t extracted this time because they are highly dependent on

- 14 -

the rest of the Phalanger. That might seem as a design mistake, but it’s because of the

dynamic nature of PHP. All the other parts from Phalanger when used in PHPp are

moved into its solution.

- 15 -

 Dynamic Language Runtime 4.

The Dynamic Language Runtime [14] [15] [16] mission is to enable an environment for

dynamic languages on top of the .NET CLR. The language implementation should be

much easier with DLR, because lot of problems coming from this are already solved and

packed in DLR.

The language implementer can just focus on language specificities, as scanner, parser

and runtime semantics of his language. The rest is on DLR. To be more specific, it takes

care of the MSIL code generation and its optimization, as well as of the dynamic method

dispatch, hosting environment and dynamic type system [9].

However easier language implementation isn’t the key value for using DLR. By using it as

a common underlying system the language implementations can easily interoperate

with one another. Hence, it won’t be a problem to write a library in some dynamic

language and use it in another. This powerful feature applies also on statically typed

.NET languages. The DLR joins both the dynamic and static worlds together.

The main idea of DLR is that it’s possible to implement the dynamic language

specificities on top of a generic language-agnostic abstract syntax tree, whose nodes

corresponds to a specific functionality that is common to many dynamic languages. In

.NET 3.5 the Expressions Trees (ETs) were introduced to model code for LINQ

expressions in C# and VB. These expressions were limited; they could not contain control

flow, assignment or dynamic dispatch nodes, only simple expression. Expressions Trees

in version 2 were extended by previously mentioned capabilities to be able to represent

full method bodies.

Other problematic issue when developing the dynamic language without DLR was

performance. The dynamic operations are a lot slower than static operations, because

they have to solve almost everything during runtime. The DLR helps significantly in this

matter by focusing on fast dynamic dispatch capabilities and call site caching. And also

every time the DLR or .NET improves, the language implementation will benefit from this

without any work.

- 16 -

The DLR doesn’t exist just for new .net dynamic languages. It also provides services for

already existing languages for fast dynamic dispatch capabilities and for library support.

For instance, C# in NET 4.0 comes with a new dynamic keyword that enables use of

dynamic objects.

The DLR also provides common hosting environment for dynamic languages. It makes

possible to employ dynamic languages in any .NET application.

This section contains some basic information about DLR, description of a few important

concepts and its interoperability protocol. It is included to the work, because in the time

of starting this work, there wasn’t available any documentation other than source code,

some blog posts and discussions with creators of DLR (see Appendix B. DLR

interoperability protocol schema). Nowadays there is available documentation of DLR

[17], however not entirely complete.

4.1. Architecture

The main parts that DLR offers are:

 Common hosting model (4.2)

 Shared abstract semantic tree representation (DLR Expression Trees 4.3)

 Unified dynamic type system (4.6)

 Support for fast dynamic operations (4.4)

 Interoperability protocol (4.5)

 Utilities (to make it easier to implement dynamic language, as DefaultBinder)

- 17 -

Figure 2. Conceptual architecture diagram of DLR (altered picture originally from [17])

4.2. Common hosting model

One of the advantages of DLR is its common hosting model. The application developers

can use DLR in its solutions to provide scripting capabilities, or they can create

integrated developments tools, testing solutions or any kind of application that can use

or is related to dynamic languages. By incorporating DLR common hosting model, any

DLR language can be hosted in this environment. For detailed information about

common hosting model and its concepts see [18].

4.3. DLR Expression Trees

The DLR Expression Trees [19] are expression-based. All of the nodes are based on a one

abstract class called Expression and have a result value and type. The statements are

modeled as expressions having a void return type. Void is already allowed as a type,

indicating there is no return value for an expression. There are a number of reasons for

choosing this design for Expression Trees. DLR avoids the dual type hierarchies and being

expression-based matches many languages as Lisp, Scheme, Ruby, F# and doesn’t harm

modeling other languages as PHP.

Dynamic Language Runtime (DLR)

Common Hosting

ScriptSource

ScriptEngine ScriptScope ScriptRuntime

CompiledCode

ObjectOperations

ScriptHost

Runtime

Rules Binders CallSites

Utilities

COM Interop

Common Language Runtime (CLR)

Language Implementation

LanguageContext

IDynamicMetaObjectProvider

Shared AST (Expression Trees)

Compiler Utilities

DynamicObject ExpandoObject DynamicMetaObject

- 18 -

When building the Expression Trees it’s not allowed to create their instances directly,

instead it’s necessary to use the factory methods. They are included in base class

Expression. The factory methods can create the nodes with particular node kind and

check the restrictions. For example, when creating a MethodCallExpression to call

"System.Console.WriteLine(string)", or when creating an assignment, the factory method

checks that the type of the variable is assignable from the type of the right-hand

expression.

Some of the other most important nodes in the DLR Trees are:

 UnaryExpression - Negate, Convert, logical Not, Throw (it existed

ThrowExpression, but later it was changed to UnaryExpression to be consistent

with a design)

 BinaryExpression - comparisons, arithmetic and logical operations, array index

 MemberExpression - field or property access

 MethodCallExpression - call to a method specified via MethodInfo

 NewExpression - calling a constructor to create an instance of .NET class

 ParameterExpression - a value of the variable

 ConditionalExpression - condition ? ifTrue : ifFalse

 ...

Since Expression Trees represent complex programs, statement-like constructs are

needed also:

 LoopExpression

 ReturnExpression

 TryExpression

 SwitchExpression

 ...

The above mentioned nodes are used to model static behaviors. However the dynamic

language needs to have a way to model dynamic behaviors. Because of this Expression

Trees contains DynamicExpression node.

- 19 -

function dostuff($a,$b)

{

 return $a + $b;

}

DynamicExpression represents dynamic operations whose exact semantic isn’t known

during a compilation and has to be determined during runtime. These nodes are

provided just with information where to get the semantics during runtime. The provider

of this information is called Binder. In some sense it marks the sub Expression Trees as

late-bound.

4.4. Dynamic operations

What makes dynamic languages truly dynamic are the dynamic operations. When

compiling static code, there are static operations. The compiler knows the types of the

operands and it can emit the exact instruction for this operation. The exact instruction

can be emitted only when the types of the operands are known. However in dynamic

code the information about the type isn’t available during compilation. What to do with

operation has to be determined during runtime when operands are known.

4.4.1. Before DLR

Listing 3 shows the function that returns addition of

two variables. In PHP it could be the addition of

doubles, integers or when using a string as an

operand it would convert it into a number and add it

with the other operand. Other dynamic languages can

even consider + operation as a string concatenation. There are many possible semantics

for one simple operation.

Usual way how this dynamic behavior was implemented in .NET was to place a method

call instead of particular instruction for this operation. The called method has to decide

what action to do.

Since the types of the arguments and

return type aren’t known, this helper

method has to take and return object

types.

Listing 3. Php function for adding to
variables

public static object Add(

 object a, object b)

{

 if (a is int && b is int)

 return (int)a + (int)b;

 if (a is string && b is string)

 return String.Concat(

 (string)a, (string)b);

 throw new NotImplementedException();

}

Listing 4. Example of simple Add helper method

- 20 -

Listing 4 illustrates a simple helper method for adding operation. It has just two

semantics. When both arguments are integers it performs an addition on them and

when they are strings a concatenation is performed. Otherwise the

NotImplementedException is thrown.

This simple approach works quite well. Unfortunately there are a few disadvantages.

First it’s possible to single out only finite number of types to handle the way the int and

string are handled. Every type that would need to be supported has to be added to this

method and the sequences of if statements would grow. The number of tests to perform

before finding the right operation wouldn’t be insignificant.

The other problem is caused by using an object type. The primitive types have to be

boxed [20] when they are passed as an object argument, which is a slow operation. And

there are cases where this could be avoided. For example when a variable and int

constant is added. When using the helper method with signature where the second

argument is int, the not just boxing and conversion is saved, but also the number of

necessary tests inside the helper method.

Implementations of languages could (and mostly had) have many types of helper

methods for one single operation. That was resulting in a huge code and finally big

assembly file of this language.

Despite of these disadvantages, this was the usual way how the dynamic operations

were implemented in .NET dynamic languages, including Phalanger.

4.4.2. DLR approach

The way to express dynamic

behavior in DLR Expression Trees

is using special node called

DynamicExpression. This node is

placed into the tree on spots

where dynamic operation has to be used. Hence, instead of putting the method call to a

MSA.Expression.Dynamic(

 Binders.BinaryOperationBinder(Operation),

 typeof(object),

 LeftExpression,

 RightExpression);

Listing 5. ExpressionTree for dynamic binary operation

- 21 -

helper method, the DynamicExpression node is placed there. It’s provided with a

reference to a so called Binder and with a list of arguments of the operation as shows

Listing 5.

In general terms, this node is

generated by the compiler to

indicate the place where a

particular operation occurs,

but its exact semantics has to

be determined during the

runtime.

When the DLR generates the code for this node it emits the instance of so called CallSite

(also known as dynamic site) and in a place of the actual operation it generates

invocation of the CallSite's Target delegate.

When the delegate is invoked for the first time it just calls the binder and asks it how to

perform this operation. There are two important elements in this process. First one is

that the delegate could be changed (replaced by better version). And second, the

delegate doesn’t ask the binder to perform the operation, but asks how to do this

operation. Next time when the same operation must be performed, it’s not necessary to

call the binder again, because CallSite learned it and improved the delegate.

Listing 6 shows sample of CallSite’s Target delegate generated during runtime in C#.

(DLR compiles the delegate directly to MSIL). It already knows how to perform the

operation on integers and strings. When a new type combination occurs it calls the

binder again.

When the binder is asked by the delegate how to perform a certain operation on

particular operand types it answers by returning a so called rule. The rule is in DLR

compound expression formed from the test and implementation for the operation in

Expression Trees. The implementation expression tree represents the operation

semantic. And the test expression specify situation in which this implementation can be

reused again in the future. For example two rules can be seen at Listing 6. First rule in

// The language's answer for int,int

if (d1 is int && d2 is int) {

 return (int)d1 + (int)d2;

}

// The language's answer for string,string

if (d1 is string && d2 is string) {

 return String.Concat(

 (string)d1, (string)d2);

}

// delegate doesn’t know and asks binder

return site.Update(site, d1, d2);

Listing 6. CallSite’s Target delegate

- 22 -

the example has the test on both arguments whether they are integers. If test passes

the provided implementation is performed. In this case two integers are added.

As could be seen generated delegate’s code on Listing 6 is very similar to the code in

Listing 4. The difference is that the code for these rules is generated only when

particular operation already happened. Usually there is enormous chance when one

operation with some operands happened, the next time; operands will have the same

type.

Actually the previous paragraph is big simplifications, but illustrates the idea. In reality

there is a complex caching mechanism behind it [21]. Important is that performance gain

is significant, because it usually just performs only one condition and then performs the

operation.

This caching system for dynamic operations in DLR is based on an original idea know as

polymorphic inline cache [22].

Another performance gain comes from a signature of CallSite’s target delegate. DLR

generates the signature which arguments are strongly typed which prevents

unnecessary conversions and boxing.

4.4.3. Set of operations

In order to support lot of languages DLR has to offer broad set of operations that has to

cover complete set of features for these languages. Hence, an objects from different

languages can communicate (4.5) with a set of common operations that can be

performed on the objects.

Operation Example Description

GetMember Object.member Gets the member of the object. If member
doesn’t exist some languages can create a
new one, return null, throw exception,
etc.

SetMember Object.member = value Assigns a value to an object’s member. If
member doesn’t exist some languages can
create a new member, trow a exception,
etc.

DeleteMember delete object.member Deletes a member of the object.

- 23 -

GetIndex object[index] Access to an indexed element of an object
that retrives value.

SetIndex object[index] = value Access to an indexed element of an object
that assigns value.

DeleteIndex delete object[index] Access to an indexed element of an object
that deletes the element.

Invoke a(args) Invokes invocable object

InvokeMember Object.a(args) Invokes a invocable member object

CreateInstance New X(args) Creates an instance of an object

Convert (TargetType)object Converts an object to a targettype

UnaryOperation -a Unary operation

BinaryOperation a + b Binary operation

Table 1. Set of DLR interoperability operations

For unary operation and binary operation there is a parameter that specify what kind of

operation it really is. This is the set of these operations: Decrement, Increment, Negate,

Positive, Not, Add, Subtract, Multiply, Divide, Mod, ExclusiveOr, BitwiseAnd, BitwiseOr,

LeftShift, RightShift, Equals, GreaterThan, LessThan, NotEquals, GreaterThanOrEqual,

Power, LessThanOrEqual, InPlaceMultiply, InPlaceSubtract, InPlaceExclusiveOr,

InPlaceLeftShift, InPlaceRightShift, InPlaceMod, InPlaceAdd, InPlaceBitwiseAnd,

InPlaceBitwiseOr, InPlaceDivide, InPlacePower.

The dynamic languages in order to fulfill language semantics can implement these

operations. For example GetMember or SetMember can act very differently depending

on the language. If member doesn’t exist, some languages can create a new one, return

null, throw exception, etc.

4.5. DLR Interoperability protocol

DLR enables that languages can communicate between each other not knowing anything

about the other language implementation. The idea is that a type system is based on

passing messages to objects. Because all the languages have its own implementation, it’s

very difficult to think about it on a type level. But it’s possible to view all of the

languages from perspective of the objects and messages that are sent between them.

Particularly the object is any object implementing IDynamicMetaObjectProvider

interface and messages are the operations between those objects (see 4.4.3).

- 24 -

DLR interoperability protocol3 consists of these main elements:

 ExpandoObject class

 Classes inheriting DynamicObject abstract class

 Classes implementing interface IDynamicMetaObjectProvider and its complement

DynamicMetaObject defining the operation semantics for the classes

 Language semantics defined at DynamicMetaObjectBinder subclasses in the fallback

methods

This list is ordered from the highest level to the lowest level that gives most control over

operations binding.

4.5.1. DynamicObject and ExpandoObject

There is lot of code in the static languages that look like this:

Customer.Element("address").Element("zipcode"). This is exactly situation where

dynamic languages offer a higher level of abstraction in a code, therefore it’s more

natural and simpler to read and orient inside the code like this. In the static languages

isn’t possible to add members to the objects during runtime, but for dynamic languages

it’s easy. In dynamic language it can look like this: Customer.Address.ZipCode.

The DLR brings to .NET a namespace System.Dynamic. In this namespace there is the

class ExpandoObject which is effective implementation of a dynamic property bag.

Instances of this class can add and delete members at runtime. Because it supports

dynamic binding it enables syntax shown above.

In C# in .NET 4.0 there is a new

keyword dynamic [23]. C# as a

static language enables dynamic

dispatch capabilities, which makes

it some kind of hybrid

3
 DLR Interoperability protocol is often called also IDynamicMetaObjectProvider protocol.

dynamic customer = new ExpandoObject();

customer.Name = "Karel Nyvlt";

customer.Phone = "555-123-456";

customer.Address = new ExpandoObject();

customer.Address.Street = "Jemenska 5";

customer.Address.City = "Prague";

customer.Address.Country = "CZ";

customer.Address.ZipCode = "16000";

Listing 7. Example of using ExpandoObject in C#

- 25 -

static/dynamic language [24]. Because of this feature it’s possible to write a code like

shown at Listing 7. In this code there is an instance of the class ExpandoObject and all

the members are dynamically added during runtime.

DynamicObject is a base class for specifying dynamic behavior at runtime. It allows users

to override its operations and implement a custom behavior for them (4.4.3). It gives

much more control than ExpandoObject, but has to be inherited.

Both DynamicObject inherited classes and ExpandoObject can participate in DLR

interoperability protocol, because they implement an interface

IDynamicMetaObjectProvider (see 4.5.2). They are intended for library authors that

want to offer dynamic features for their libraries. However language implementers need

more control and to take advantage of a fast dynamic dispatch, therefore they have to

use IDynamicMetaObjectProvider

4.5.2. IDynamicMetaObjectProvider and DynamicMetaObject

The lower level for implementing dynamic dispatch capabilities on object than

DynamicObject is the interface IDynamicMetaObjectProvider. Actually DynamicObject

implements IDynamicMetaObjectProvider. This interface has only one method –

GetMetaObject() that returns DynamicMetaObject.

Language implementers inherit from DynamicMetaObject abstract class to define its

custom dynamic operations for their objects implementing

IDynamicMetaObjectProvider. It defines same set of the operations (4.4.3) as

DynamicObject. Important difference is that DynamicObject performs the operations

itself. DynamicMetaObject creates rules for the operation (expression tree of the

operation and restrictions as explained at 4.4.2). Hence, it enables using call site cache

for these operations resulting in a better performance for these dynamic operations

than usual solutions in the static languages, which is just a method call for every

operation, usually with lot of type checks inside the method.

- 26 -

4.5.3. DynamicMetaObjectBinder and fallback method

To enable interoperability for a language on DLR, the language has to create its binders

by deriving them from a class DynamicMetaObjectBinder or its subclasses.

DynamicMetaObjectBinder has the subclasses for all the common operations from the

DLR interoperability protocol (see 4.4.3).

For language implementers the most important method to override from

DynamicMetaObjectBinder is a Fallback method. This method defines actual semantics

for the operations in the language by means of the rules that are created in these

methods equally as in DynamicMetaObject.

In DLR it’s available DefaultBinder which performs the operation according to .NET

semantics. It’s simple way for language implementers to get started. The languages can

use DefaultBinder by deriving from it and then override the implementations of the

operations to fulfill its language semantics.

4.5.4. DLR interoperability model

When an operation is executed during the runtime, the DLR doesn’t know how to

perform the operation and asks DynamicMetaObjectBinder what to do with the

operation. The main principle in DLR is that objects get first chance to perform the

operation, because the object can come from another language which can have

different semantics. Hence, firstly the operands are taken and if any of them is

DynamicObject or implements IDynamicMetaObjectProvider, the operation is performed

by DynamicObject itself or the operation is created in DynamicMetaObject for object

implementing IDynamicMetaObjectProvider. If this isn’t the case the operation will be

performed according to the language semantics defined by fallback method of the

DynamicMetaObjectBinder.

This model is simplified, but it can illustrate the idea of the interoperability protocol. The

example can be a class MyPhpClass defined in PHP used from IronPython [25]. When

GetMember operation is called dynamically on the instance of this type with operand

__class__ (myobject.__class__), firstly it gets a chance to handle the operation PHP

object itself. Let’s assume that this object doesn’t have any member called __class__.

- 27 -

Then it gets the chance to answer fallback method of the DynamicMetaObjectBinder

implemented in IronPython and because in IronPython all the classes have implicit

member __class__ (returns the object’s type) the binder returns the appropriate rule.

This is very important design because it allows to have unified type system based on

standard .NET types and the languages in most cases don’t have to have wrappers for its

objects. This is explained in more detail in section 4.6.

4.6. Unified type system

One of the main principles of DLR is using standard .NET’s object as the root of the type

system [26]. Hence there shouldn’t be any runtime wrappers e.g. PhpObject, PhpArray,

RubyObject etc. This resulting in a cleaner design and a better performance in the

interoperability between languages, because it isn’t necessary to rewrap the objects

when they are passed from one language to another. This is possible because in DLR

types aren’t important, only important fact is that the objects implements

IDynamicMetaObjectProvider interface and the complement DynamicMetaObject that

are defining how to perform the operations on these objects.

4.7. DLR Language project structure

The DLR implementations of the languages respect certain architecture model. A

developer who has awareness of one DLR language can easily orient in another DLR

language implementation.

PHPp project respects this structure and can be seen as an example. It is divided into

these main parts:

Directory Description

 Compiler Contains all necessary classes for compilation phase

(transformation of the AST into DLR Expression trees).

Including lexical scope, AstGenerator etc.

o AST This directory includes one file for each AST node.

 Hosting Classes for language hosting environments.

 Runtime The actual runtime of the dynamic language. The

- 28 -

LanguageContext (4.8) class resides here.

o Binders Contains binders for twelve standard DLR operations.

o Operations Contains static methods for language operations.

o Types Classes to represent language type hierarchy and its meta-

object to provide descriptions of the operations above

them in forms of AST.
Table 2. Language implementation structure

4.8. LanguageContext class

When building a language on DLR, LanguageContext class from

Microsoft.Scripting.Runtime has to be inherited to provide language specific facilities to

communicate with DLR and properties of the language. This is the object that represents

a language that is

implemented on the DLR and

supports the DLR’s common

hosting model.

It contains identification of the language, version information, references to namespaces

distributed from the hosted environment, provides binders for the operations, global

variables, and many more members that support various higher-level features in the

DLR.

Almost all its members have its default behavior; the only one that is purely abstract is

CompileSourceCode method that returns ScriptCode class. Hence, it has to be

implemented.

Typical implementation of this method consists of calling a parser to code inside

SourceUnit which creates an AST of the language. Then AstGenerator class is created and

this AST is transformed into DLR Expression Tree which is given to the instance of the

inherited class from the abstract ScriptCode. Usually the language has its own

implementation of the ScriptCode class.

protected override ScriptCode CompileSourceCode(

SourceUnit sourceUnit,

CompilerOptions options,

ErrorSink errorSink)

Listing 8. CompileSourceCode method

- 29 -

4.9. DLR Adaptive compilation

Any code that isn’t known during compilation has to be compiled during runtime. This is

actually desirable when the execution of this code takes more time; in fact compiled

code performs more efficiently. But when the block of code has low time demands

which is usual case; the compilation takes actually more amount of time than its actual

execution.

The DLR comes with an efficient solution for this problem. Because a compiler on the

DLR doesn’t generate MSIL but expression trees, the DLR can either compile code or

interpret it. Hence, the code with low time demands can be interpreted and code which

execution will take more time can be compiled.

Let’s define code that has low time demands as a code whose number of iterations of

some part of the code (loop, function, method) during execution is lower than a given

number – compilation threshold. Clearly to find out if code has low time demands is

possible only during its execution (some pre- analysis could be possible, but not in the

general case). Therefore, in the DLR there is present feature called adaptive compilation.

The adaptive compilation doesn’t compile the code (Expression tree) before execution.

The code when executed is interpreted and iterations of its code parts (loop, function,

method) are counted. When the compilation threshold is reached for some part, the DLR

runs compilation of this code on the background thread, while still interpreting the code.

When compilation is finished, the DLR switches to the compiled code.

The adaptive compilation doesn’t have to be used only for a code that isn’t available in

time of the compilation; it can be used generally on all the code. This would certainly

improve start-up problem caused by compilation of the code. Actually IronRuby [27]

uses this feature as its default behavior for all its code.

- 30 -

To use this feature it’s just necessary to call an extension method [28]

LightCompile(this LambdaExpression, int compilationThreashold) of a class

Microsoft.Scripting.Generation.CompilerHelpers instead of usual

LambdaExpression.Compile method. To follow the DLR conventions the ScriptCode class

should be inherited. ScriptCode class represents compiled code that is bound to a

specific LanguageContext, but not to a specific scope. In inherited class should be

implemented a static method that can look like one depictured in Listing 9.

4.10. Summary

The DLR makes much easier to implement an efficient dynamic language on .NET. There

isn’t necessary to generate directly MSIL code, but just higher-level expression trees. The

DLR can not only compile the code to MSIL, it can also interpret it or to use sophisticated

solutions as adaptive compilation.

When implementing a dynamic language it’s desirable to use static expression nodes

when possible because of the performance. But in this case there won’t be any

performance gain in comparison with the older dynamic languages on .NET that don’t

use DLR.

However DLR makes real difference in the dynamic code. When isn’t possible to use

static expression nodes (behavior will be known during runtime), the dynamic

expression nodes has to be used. In this situation the performance gain is significant

internal static Delegate/*!*/ CompileLambda(

LambdaExpression/*!*/ lambda,

bool debugMode,

bool noAdaptiveCompilation,

int compilationThreshold) {

 if (debugMode) {

 return CompileDebug(lambda);

 } else if (noAdaptiveCompilation) {

 return lambda.Compile();

 } else {

 return lambda.LightCompile(compilationThreshold);

 }

}

Listing 9. CompileLambda method

- 31 -

when used the DLR in comparison to the usual implementation of dynamic operations

(4.4.1).

The DLR also comes with common hosting model that allow using any DLR language at

the application that can use the dynamic languages as scripting language, etc.

The most important advantage is the DLR interoperability protocol that allows

interoperability not only between dynamic languages based on DLR, but also between

static .NET languages. This protocol is based on IDynamicMetaObjectProvider interface

and DynamicMetaObject that provides semantics in the forms of rules for the operations

on objects implementing this interface. When objects don’t provide its own semantics

the actual language semantics for dynamic operations is provided by fallback method of

DynamicMetaObjectBinder for a particular operation.

The DLR can be used also on higher levels by library implementers. They can use

ExpandoObject or DynamicObject to bring dynamic capabilities into their libraries;

Hence, increasing the level of abstraction for its users.

The DLR creates a common environment for dynamic languages on .NET platform as well

as CLR created a common environment for static languages. This all together creates

very strong platform that can use the best from any language implemented on directly

.NET or DLR.

- 32 -

 High-level language functionalities 5.

This section describes a main high-level language functionalities for PHP language that

can be implemented on the DLR.

5.1. PHP code compilation

PHP has tree possibilities to be implemented on top of the .NET:

 Create interpreter of the PHP language to simulate its behavior in the managed

environment.

 Create a front-end compiler targeting the MSIL byte-code, leaving back-end to

the JIT as well as a native code generation and optimization.

 Create front-end compiler that targets DLR expression trees, so whole code

generation is left to handle by this runtime.

The second one is far better solutions than first one, because MSIL is powerful enough

to host many language features of PHP, however there is a problem with dynamic

features that couldn’t’ be compiled directly and have to simulated by the runtime. The

Phalanger compiler chooses this way.

The third possibility is the newest one and wasn’t available when Phalanger was built.

The solution based on this runtime doesn’t have to generate MSIL directly, instead

generates higher level expression trees. It also brings a capability to host many dynamic

features of PHP. This solution is applied in PHPp.

PHP code can be divided into two main categories according its character:

 Static

This code can be handled in a compilation time so the resulting code can run

more effectively than a traditional interpreted PHP code. Although operations

have dynamic character according to types actually presented during execution.

A lot can be known from a static type analysis during the compilation, resulting

into pure static code.

- 33 -

 Dynamic

There is no way to know a dynamic code in the compile time (e.g. the code can

come from a user into eval construct). How to handle this code has to be

resolved during runtime.

Phalanger handles well a static code that can be compiled, although all the operations in

the actual version are resolved during runtime. There are some optimizations, but good

type analysis during compilation would result in much faster code. However a dynamic

code requires an execution of a compiler to generate MSIL during the runtime, which is

followed by executing the JIT compiler. This isn’t very effective, but Phalanger relies on

the assumption that an experienced programmer doesn’t use these constructs very

often, because in most of the cases it’s possible to reach the same behavior by using

“cleaner” techniques.

The DLR brings important advantages; because a code is represented as an expression

tree, it can be either compiled or interpreted. Hence, the code with static character can

be pre-compiled and dynamic features can be interpreted during the runtime. It even

implements more sophisticated solution called adaptive compilation (see 4.9).

5.2. PHP functions

PHP language offers several hundred functions available to use in PHP scripts. Hence,

the alternative PHP implementation has to be able to offer compatible set of functions

to be able to run existing PHP applications.

PHP functions could be categorized into tree main categories:

 PHP language constructs that work directly with variables, functions, objects etc.

(e.g. eval, echo, require, include, …)

 Built-in functions for strings and array manipulations, file system functions,

regular expressions, mathematical functions, …

 External functions from PHP extensions used for database access, LDAP, image

manipulation, …

- 34 -

PHP language’s constructs are used very often; therefore have to be implemented

completely and as effectively as possible. They have to be implemented by the compiler

even if the construct looks like regular function call. The most of them have to be re-

implemented because their tight coupling to the compiler’s core.

Built-in function is larger set of functions than the PHP constructs. In Phalanger there is a

separate project called PHP.NET Class Library which contains a completely managed

implementation of these functions in C#. This Library is well designed and could be

extended to implement PHP functions in new versions of PHP. It can be also reused for

the DLR version, but it will have to be adapted to the new type system.

The Last category of PHP functions are external functions which are provided by

unmanaged dynamically linked libraries (in Windows platform) called PHP extensions.

These libraries are loaded into address space of PHP and they communicate with it using

a predefined set of functions (called Zend API). Original PHP distribution contains a large

amount of these extensions. They could be re-implemented into the PHP Class Library in

some .NET language. However the PHP extension could be written by anyone, hence the

number of them isn’t limited and it’s impossible to implement them all into the class

library.

Phalanger is implementing a few of the extensions which are used very often and their

performance has big impact on lot of PHP applications, for example MySql extension.

For all the others PHP 4 extensions4 Phalanger introduces a model to use them in .NET

applications. The model is sufficiently general that could be used from any .NET

application. Hence, it’s suitable for using in PHPp.

This model has two modes of using PHP extensions:

 Collocated – The PHP extension is loaded into the same AppDomain as hosting

application.

 Isolated – The PHP extension is loaded into different AppDomain than hosting

application.

4
 PHP 5 extensions are not supported right now, because Phalanger’s model for extensions doesn’t

implement lot of functions in new Zend API.

- 35 -

Collocated mode could be used in the trusted PHP extensions, because of risk of loading

them into the same application domain (AppDomain - is a logical space in its own

address space) [29] as a hosting application. The advantage is a huge performance gain.

It could be from 5 to 10 times faster than the isolated mode.

The isolated mode loads PHP extension into an AppDomain of a special project called

ExtManager. An application that wants to use a PHP extension has to communicate with

the ExtManager through .NET remoting, because of isolated address spaces. The

communication overhead is clearly a performance issue, but the main process is

protected from unmanaged exceptions that can occur in the extension (programmed in

native code) and could cause a termination of the sever process.

With the ExtManager there was introduced a ShmChannel communication protocol for

.NET remoting based on shared memory. It’s much faster alternative than a TcpChannel

and an HttpChannel shipped with .NET, but still can’t beat the performance of collocated

mode.

5.3. ASP.NET cooperation

In the DLR implementation of PHP language there are two possible approaches to

enable cooperation with ASP.NET.

First approach presented in Phalanger uses http handlers in ASP.NET. The cooperation is

enabled by an object implementing an interface for responding the requests send to

web-server. In IIS it’s necessary to associate .php files to be handled by ASP.NET.

ASP.NET process hosts web application in its application domains. Phalanger and its http

handler exist on one of AppDomains of ASP.NET process and handle the requests. This

approach is used to simulate behavior of regular PHP web application and could be used

by a DLR language as well.

Second approach is to use PHP as .NET language for ASP.NET pages (.aspx), as well as

could be used C#, visual basic or any other static .net language. This approach has some

important assumptions, the language used with ASP.NET has to generate regular on-disk

- 36 -

assembly with .NET class that inherits from System.Web.UI.Page and language has to

have its Code Document Object Model (CodeDOM) [30] provider. Both of them were

fulfilled in Phalanger, because it has so called Pure mode (see 5.5), that generates CLR

classes to on disk assemblies as regular static .net language. And also it has Phalanger

CodeDOM provider.

Both assumptions are needed because of model that ASP.NET is designed on. The

ASP.NET to be independent of a language uses CodeDOM technology. Asp.net pages are

parsed and transformed to language independent CodeDOM tree. This tree represents

.NET class that is inherited from System.Web.UI.Page, but doesn’t have any other

language-specific assumption. This tree is later passed to an instantiated specific

CodeDOM provider (which provider is used depends on setting is aspx page). This

CodeDOM provider generates the target language source code from the CodeDOM tree.

This source code is connected with a code-behind for aspx page and compiled by the

language compiler into .NET assembly (a DLL).

The languages implemented on top of the DLR can’t use this original model for ASP.NET

pages. In general the dynamic languages can’t fulfill requirements to satisfy this model.

Even though they can have a class construct they can’t easily generate .NET classes,

mostly because of lack of strong typing. As a consequence it’s impossible to implement

the language CodeDOM provider needed by ASP.NET. Hence, it was introduced another

model to enable use of DLR languages in ASP.NET pages [31]. Nowadays it’s available

only for IronPython, but soon it should work for all DLR languages.

The principle of the new dynamic language extensibility model for ASP.NET is not to use

the CodeDOM, rather to use feature no-compile page. This feature changes the target of

parsing asp.net page file. It doesn’t create the CodeDOM tree, but a control builder tree,

a special data structure that keeps track of everything that it needs to know to create

pages. Afterwards the tree instantiates all the controls that are represented by nodes in

it. However this no-compile mode makes impossible to use any programmatic code

(everything has to be declared), it was hacked a little bit, so the programmatic code is

transparently included in special controls and later run on top of the DLR. That was only

change into System.Web.dll (the main ASP.NET assembly).

- 37 -

class PhpConsole : ConsoleHost

{

 protected override Type Provider

 {

 get { return typeof(PhpContext); }

 }

 protected override CommandLine CreateCommandLine()

 {

 return new PhpCommandLine();

 }

 [STAThread]

 static int Main(string[] args)

 {

 return new PhpConsole().Run(args);

 }

}

5.4. Interactive mode support

An interactive mode is a console application that allows entering a code which is

immediately evaluated and a user can see the result. It’s helpful for debugging, testing

and priceless for language developers that can try actually implemented features.

To support interactive mode a DLR language has to inherit a CommandLine class. The

class has a lot of members to override. But for example for PHPp needs was necessary to

inherit only a Logo member that servers to print information about the language that

console shows in the start-up.

Optionally a ConsoleOptions class can be inherited to provide specific console starting

options.

The console project could look like the one from PHPp shown at Listing 10. This code is

really simple, but it’s sufficient for PHPp purposes.

To completely support interactive mode it’s

necessary to alter parser of the language to

return the result of parsing in a form of

ScriptCodeParseResult shown at Listing 11.

It’s important because the DLR console can

recognize when user press enter weather

public enum ScriptCodeParseResult {

 Complete,

 Empty,

 Invalid,

 IncompleteToken,

 IncompleteStatement,

}

Listing 10. PHPp console implementation

Listing 11. ScriptCodeParseResult enum

- 38 -

the statement is invalid or just incomplete and sill can be completed correctly. In that

case console allows user to enter more code for actual statement on a new line.

5.5. .NET Interoperability

Phalanger introduced both-way interoperability from PHP language to statically typed

languages on .NET. To enable a one-way interoperability from .NET to PHP was

straightforward, because Phalanger compiles PHP code into MSIL and therefore it can

easily create an instances of.NET classes, inherit from them and call .NET methods. Only

problem was that .NET supports method overloads and PHP doesn’t. Hence, there isn’t

any defined behavior to resolve which method overload should be called (see 7.4.4).

The other direction interoperability from PHP into .NET is more complicated, because

it’s crucial to use objects from a language without any type information in the statically

typed environment. In Phalanger from the beginning existed so called pure mode [32]. In

this mode compiler generates CLR classes to on disk assemblies as regular static .NET

language. But it’s not completely compatible with PHP, it uses more logic known from C#

and therefore can be used only for some specific applications. It has several restrictions:

 No global code can be present. Hence, every script can contain only top-level

declarations of classes and functions. The entry point is a static function called

Main in the selected main class.

 No dynamic inclusions are allowed. It means that all inclusions are specified

globally and unconditionally. Therefore scripts can be merged together during

compilation.

Although in the pure mode generated classes can be used from any statically typed

language on .NET, it isn’t very convenient. A problem is that every method argument

including return arguments will be typed as an object, because Phalanger can’t know

during compilation what types will have when used in the runtime. This approach isn’t

type safe. Therefore new technique based on a principle called duck typing [33] [34] was

introduced.

- 39 -

Duck typing is based on an idea, which says that object is compatible with an interface if

it has all its methods and properties required by the interface, regardless whether the

object actually implements the interface or not.

Having a class that should be used from .NET, it is necessary to declare an interface in a

static .NET language. This interface basically defines types for the PHP class without

types. Than in the Phalanger runtime is possible to create an instance of the class

implementing the interface. This object can be used in strongly typed way. Nowadays

Phalanger is even capable of generating these strongly typed interfaces itself from a PHP

code that includes XML comments and can create a strongly typed object transparently

from the PHP code.

The DLR comes with a new interoperability model that enables full interoperability with

static and dynamic languages. It’s not limited only to calling methods, but it’s possible to

inherit from a class from other language. For example Ruby programmer could take a

PHP code (using a PHP implementation on DLR), derive from its classes written in Ruby

also using .NET classes and then Python programmer can take it and use in its

application completely written in Python. The DLR interoperability model is explained in

more detail in section 4.5.

- 40 -

 Compilation process 6.

This section describes compiler of the PHP language. Being dynamic the compiler is just

one part of the language, it also relies on the runtime to perform dynamic operations.

6.1. Architecture

A compiler of the PHP language has to have all important parts as a usual static language

compiler [35] [36]. The compilation goes through series of loosely coupled components:

lexer, parser, AST of the language and generation of DLR Expression Trees. The final

Expression Tree is highly dependent on the language runtime based on DLR. This is

different than a usual static compiler which generates series of instructions for

processor, or MSIL in case of .NET.

Because lexer, parser, AST are loosely coupled components, they can be taken from

Phalanger and can be reused to build PHP language on top of the DLR. They almost don’t

have to be modified, only for some exceptions explained in section 6.2.

6.2. Lexer/Parser

To make a lexicalization and parse a PHP source code, the language compiler has to have

a lexer and a parser module. They can be the same as in the Phalanger, where the

lexicalization module is generated using the modified GPLEX project [37] which is an

open source generator for lexical scanners in C# that accepts “LEX-like” input format.

And the parser is built by the GPPG [38]; a project made for generating LALR(1) parsers

that accepts a “YACC/BISON-like” input specification and produces a C# output file.

The lexer and the parser module in Phalanger could work without the rest of the project.

Hence, they can be extracted and used in an implementation of PHP on the DLR with

slight modifications:

 Parser should return ScriptCodeParseResult depictured on Listing 11.

- 41 -

 Lexer and parser should be modified to allow a usage of the new PHP syntax

which isn’t currently implemented in Phalanger e.g. namespaces5.

Except from these small modifications these components can be reused to build an

abstract syntax tree (AST).

6.3. Phalanger AST

Whole PHP source code is internally

represented after parsing by

Phalanger’s abstract syntax tree

(AST). On Figure 3 there are base

classes of the hierarchy. The base

abstract class for all the AST nodes is

AstNode. The GlobalCode is the class

that represents the root node for

AST. A LangElement class contains

the source code position information and its most important successors are Statement

and Expression. The difference between these two is that Statement doesn’t return any

value and Expression does.

The GlobalCode, Statement and Expression contain these important virtual methods that

are overridden by its successors:

 Emit. This method was used by Phalanger for generating the MSIL code. PHPp

doesn’t use it.

 Analyze. Method for analyzing and optimizing the AST

 VisitMe. The visitor method that calls the appropriate method in the visitor

depending on actual AST node. It’s used by Intellisense for Visual Studio

integration or for creating the DLR Expression Trees.

5
 Namespaces were actually presented in Phalanger before they were presented by original PHP

interpreter. They were necessary for .NET interoperability purposes. However PHP namespaces have
different syntax that has to be modified in Phalanger for compatibility purposes.

Figure 3. Base Phalanger's AST classes

- 42 -

6.4. Transforming Phalanger AST into Expression trees (DLR AST)

One of the main jobs of language implementations that target DLR is to produce the DLR

Trees (also called Expression Trees). The Expression Trees are essentially the DLR

representation of programs. Traditional language implementations as well as the DLR

languages implement their own language-specific ASTs. To work with the Dynamic

Language Runtime it’s necessary to transform the language-specific tree into language-

agnostic Expression Trees.

There are several reasons for keeping language-specific tree and not creating the

expression trees directly from parser.

 Simplicity. It’s much easier to create the language-specific tree from a parser of a

language, because the tree is designed from the syntax. And expression trees

might not have a direct equivalent for some AST nodes.

 Services based on language AST. For example intellisense services that are

specialized on particular language. The expression trees might not have

necessary information available.

 Changing the target platform. This isn’t probably common case, but it can

happen.

 Good design. It respects a common software design principles—loosely coupled

components

The main parts for the translation are:

 TransformToDlrVisitor. Visitor for transforming Phalanger AST into the DLR

expression trees.

 Scope. A class for implementing a PHP scope semantics behavior.

 DlrAstGenerator. An instance of this class is included in TransformToDlrVisitor

and provides helper methods and objects that are useful for more than one AST

node. It also includes the Scope.

 AST directory. This directory includes one file for each Phalanger AST node,

where is the implementation of Transform method that transform actual node

into an expression tree node.

- 43 -

The PHPp have also a custom AST to represent completely PHP programs. This AST

comes from Phalanger project. The PHPp uses the visitor to translate the Phalanger’s

AST into the expression trees. The visitor is implemented as a partial class divided into

numerous files, because of big number of AST nodes. Each file corresponds with one

Phalanger AST node.

- 44 -

 Implementing language features 7.

One of the main problems of PHP is a lack of the formal documentation. The

documentation is presented on the internet in means of examples and discussions. For a

regular user it’s sufficient source of information, however for purposes of implementing

a compiler it isn’t sufficient. Hence, it’s necessary to make a lot of discovery and try a lot

of experiments on an original PHP interpreter to find out how it behaves. It also helps to

look into the source code of the PHP interpreter and Phalanger’s source code. But it has

to be always checked a compatibility with the new version of the PHP interpreter,

because of incompatibility issues with Phalanger.

This chapter presents and explains features of the PHP language and discuss how they

can be implemented using the DLR. As an example it’s used PHPp.

7.1. Script

PHP scripts contain mix of a HTML code and a PHP code. The code is enclosed in a

special type of tags (<? ?>, <?php ?> and <script language="php"></script> "brackets"). The

code outside these tags that occurs in php file is taken as a parameter to echo language

construct.

In PHP there can be present a global code and global declarations that are explained in

chapter 7.1.1. The global code is represented by a GlobalCode AST node which is

transformed into a LambdaExpression with a BlockExpression that holds the top-level

expressions. The LambdaExpression could be compiled by the DLR; the result of

compilation is a delegate which can be executed. The signature of the lambda function

should have as a parameter Scope object that contains reference to a LanguageContext

object; it usually looks like this Func<LanguageScope, object, object>.

The dynamic languages on the DLR should inherit a ScriptCode class to represent script

in this language. An instance of this the ScriptCode is an instance of compiled code that

is bound to a specific LanguageContext but not to a specific ScriptScope. The code can be

re-executed multiple times in different scopes. Hosting API counterpart for this class is

CompiledCode class.

- 45 -

<?php

$a = 1; /* global scope */

function foo()

{

 $a = 2;

 echo $a; /* reference to local scope variable */

}

foo();

echo $a;

?>

/* Output of this script is: 21 */

7.1.1. Scope

A Scope is an object that encloses the context where values and expressions are

associated. It contains declarations or definitions of identifiers. It’s used to define a

visibility. Various programming

languages have various types of

scopes.

Listing 12 shows scope semantics of

C# language. It has scopes basically in

every occurrence of braces { }.

PHP has simpler scope semantics

then other languages, which is

depictured on Listing 13. There are

just two scopes: global and local.

Each identifier belongs to just one

scope. Global variables aren’t available implicitly in the local scopes and have to be

explicitly signed with a global keyword.

The scope in the dynamic languages could be divided also into two classes depending

how they are used:

Static (lexical or analysis) scope is used during a compilation process; it contains

all variables that are known during the compilation. It has to allow a static look-

up.

namespace N // namespace scope, merely

 //groups identifiers

{

 class C // class scope,

 //defines/declares member

 //variables and functions

 {

 public void M()//outermost block

 //(method) scope, contains

 //executable statements

 {

 if (condition)

 {

 // inner block scope for

 //conditionally executed

 //statements

 }

 }

 }

}

Listing 12. Various scopes declared in the language C#

Listing 13. Example of PHP scope semantics

- 46 -

function foo()

{

 $x = 5;

 $y = 20;

 eval(“echo $x+$y;“);

 //prints 25

}

 Dynamic (runtime) scope is object used during the runtime which contains

variables mostly declared during the runtime (not always). But it has to allow a

dynamic look-up for these variables during the runtime.

Many other languages than PHP needs a complex hierarchy of Scope classes with

different properties for methods, closures etc. In PHP as a runtime scope it is necessary

only one class PhpLocalScope for storing runtime local

variables for functions with unoptimized local variables.

When it’s necessary to use unoptimized variables is

explained in section 7.2.1.

The actual implementation of a runtime scope could be

made as a collection of the variables e.g. hash table.

The global scope however has to be dynamic in all cases, because it has to bind host-

provided variables for variables from script that includes actually processed one. In the

DLR global scope is usually implemented by inheriting a ScopeExtension class which is

supposed to extend a DLR class Microsoft.Scripting.Runtime.Scope6. This inherited class

from the ScopeExtension, let’s call it PhpScopeExtension should have a reference to top-

level scope in the code – a real global scope object of the language.

When transforming an AST into the expression tree the runtime scope isn’t actually

available, there is only its representation available as the expression tree, it’s usually

contained in an instance of class called ScopeBuilder. This class actually creates the

dynamic scope (if it’s necessary) as a local hidden variable in a context of a function

which is actually transformed. It doesn’t contain real runtime variables and values, these

entities are represented as the expressions trees. ScopeBuilder also usually contains

representations of the LanguageContext. The real dynamic scope will be available in the

runtime and it will be set from the hidden parameters. The appropriate signature of all

functions is necessary.

6
 Scope class is sealed therefore can’t be inherited

Listing 14. Eval construct using local scope
example

- 47 -

The actual scope during the runtime is set from a AstGenerator instance with a pair of

methods Enter and Leave that define life span of scope which is entered. In PHP because

of the simple scope semantic it’s sufficient to have only EnterFunction and

LeaveFunction.

PHPp has implemented only the static scope in the class Scope. A GetOrMakeLocal

method is used every time an identifier is used. When it’s the identifier of an variable,

the variable is automatically created and returned or just returned when it already

existed.

However only global and local scopes exist, it’ is necessary to keep the chain of scopes,

because more independent local scopes can be nested.

When an actual local scope is finished, a FinishScope method is called to get the DLR

LambdaExpression, which is basically a captured block of code that is similar to a .NET

method body. The LambdaExpression takes the input thought parameters that are

expected to be fully bound.

7.1.2. Declarations

The PHP code can contain these declarations:

 Functions

 Classes

 Interfaces

The declarations stated in the global code are called unconditional and can’t be

rewritten. When a user tries to rewrite an unconditional declaration the program has to

fail with error “Function cannot be redeclared"7. All unconditional declarations takes

effect before any global code is evaluated. Hence, it’s possible to instantiate class or call

function declared later in the code.

7
 I’ve chosen to allow possibility of rewriting the declarations in an interactive mode session for better

testing options. Thanks to this it’s possible to rewrite declarations if it suites better to the actual needs .

- 48 -

PHP also allows placing declarations into control-flow statements as if-then-else or into

a function or a method body. In this case the declaration is considered conditional,

because it depends on a runtime evaluation whether or not and when it takes effect.

Note that once the declaration is evaluated it can’t be undone and it will live as long as

global scope.

If script contains conditional declarations and one unconditional declaration, the

conditional declarations don’t have to be transformed into Expression trees; instead

their body has to include one ThrowExpression.

All declarations take place in a scope that is available in all the scopes. Whether or not

declarations is nested or comes from included script it’s always available.

In the DLR conditional declarations could be solved in a number of ways. In PHPp the

body of the function is transformed into the LambdaExpression which is placed into

Assign expression node that represents assigning this lambda into a special variable

available in all the scopes. When evaluated the compiled lambda is assigned into the

variable. Any other assignment into this variable would throw an exception. A function

call is translated into obtaining the value of the variable and calling the lambda.

7.1.3. Inclusion

In PHP there are four inclusion statements: include, include_once, require, require_once

whose behavior differs only in the treatment of a repeated inclusion and in an error

handling.

The inclusion allows including a specified file into the actual source code. It can be

thought as an include statement appears, the file that the statement is referencing to is

placed on a location of the statement. Inclusion as well as declaration can be conditional

or unconditional. The behavior is analogous.

Include/require constructs with _once suffix means that the specific file can be loaded

only once in an execution of a script. If file can’t be included, the include statement

- 49 -

throws a warning and continues in the execution. On the other hand require construct

throws a fatal error and execution of the script is halted.

Included script could be divided into two parts:

 Declarative

 Executive

A declarative part contains all declarations in an included script. If inclusion is

unconditional, all unconditional declarations of the included script take effect. They are

available after the include statement in all the scopes and can’t be rewritten. If inclusion

is conditional, all unconditional declarations are conditional as well depending on the

condition for the inclusion statement.

All conditional declarations contained in the included script stay conditional with the

respect to its condition (Treated in same way as in chapter 7.1.2).

The executive part of the included file is its global code. This code has to be executed in

the scope from which is the include construct called. This means it has to have available

all the variables from the scope.

A dynamic inclusion can be implemented as a method call of static method e.g.

DoInclude with the signature requiring a runtime scope object of an including function or

a method in case of conditional inclusion or a global scope in a case of unconditional

inclusion. Also an including file and an included file have to be part of the signature. The

DoInclude signature could look like this (Scope, string includedFile, string

currentFileName)->void considering that the scope argument has also reference to

LanguageContext object. The LanguageContext is important because it contains a

method for compiling file and creating lambda out of it.

A DoInclude method resolves includedFile path in case it’s a relative to an absolute path,

it opens the file and proceed analogously as if processing newly opened script, only

difference isn’t initialized but is distributed from the parameter. Hence, the file is

compiled into the lambda and run with passed scope.

- 50 -

In case of include_once or require_once constructs are executed, another static method

has to be called, let’s call it IncludeOnce. This method has to check whether this file was

included before or not. This information could be stored in the global scope.

In PHPp inclusion is treated in a same way as the way described above. Therefore the

callback routine is placed in a place of the inclusion statement. When it's called the

source file name is evaluated and a content of the file is loaded and transformed into

the DLR expression. This DLR expression is compiled into a lambda which is executed on

the given scope.

In this section only dynamic inclusion was considered. That means that actual inclusion

always takes place during runtime. That’s because DLR is a runtime and in the time of

writing this work pre-compilation wasn’t available. This can be thought as downside of

the DLR, because Phalanger gains performance benefit because of static inclusion

performed during compilation. Therefore during runtime there aren’t any file operations

and unnecessary compilation. Nowadays in the DLR this could be compensated by

cashing mechanisms and in the future pre-compilation will make possible static

inclusion.

7.1.4. Dynamic code execution

This section focus on an execution of a code that isn’t known during compilation and

therefore it has to be compiled or interpreted during runtime. In PHP this happens in the

following cases:

 Inclusion constructs as were explained in section 7.1.3.

 Eval construct evaluates a given string as PHP code on an actual scope.

 Assert function checks the given assertion expression and takes an appropriate

action if its result is FALSE. The actions are defined by assert_options function.

 Create_function creates an anonymous function from the parameters passed,

and returns a unique name for it.

 Inheriting from a class unknown in compile time is the construction that has to

be evaluated during runtime. It’s common to inherit from a parent class which is

in a different file than a child class. The parent class file is dynamically included.

- 51 -

Therefore the parent class isn’t known during compilation, the creation of the

child class has to be postponed to the runtime. The same applies to interfaces.

All these cases can be generalized as a special case of using eval construct. Table 3

shows the PHP code that is equivalent for the above constructs.

Construct Equivalent with eval construct

Include $filename eval("?>".file_get_contents("second.php")."<?");

Assert(expression); eval("return expression;") == false

create_function ($args,$code) function my_create_function($args,$body)

{

 global $_dynamicfn;

 $_dynamicfn++;

 $name = "_dynamicfn".$_dynamicfn;

 $a = eval('function

'.$name.'('.$args.'){'.$body.'};');

 return $name;

}

Class child extends parent

{

//body

}

eval("Class child extends parent

{

//body

}");

Table 3. Runtime code evaluation constructs

For inclusion statements only include equivalent is mentioned, but all the other versions

of the inclusion function need just a slight modification.

All these methods can be implemented this way in PHP, but for better performance is

useful implement those as static methods (in C# or the other language in which the

implementation is being written) and on the places where they are called place a

method call expression. However the declaration of class inheriting from unknown class

can be directly transformed into calling eval construct.

The generalization of all the above cases allows continuing by discussing only eval

construct implementation.

A signature of the eval construct as well as include needs to have a runtime scope object

and a string containing valid PHP code. The function takes the string given as a

parameter, runs parser on it and creates AST tree. Then the AST is converted into the

DLR expression tree and compiled into a lambda function, which will run on the given

scope object.

- 52 -

In Phalanger there was a performance drawback in the runtime code evaluation,

because of overhead caused by compilation; this problem can be solved by the DLR

adaptive compilation (see 4.9).

7.2. Variables

PHP variables identifiers are always string literals. If used any other type (in case of

indirect variable) in place of variable name, it has to be implicitly converted into the

string type.

The PHP variable always belongs to one scope, global or local. When used in a global

code or included by the global code it belongs to the global scope. If a variable is used in

a function or a method or it’s used in a global code included there, it belongs to a local

scope of a function or a method. Therefore a user function or a method can’t access any

other local variable of another function or any global variable implicitly (a user can use

the global keyword in the function that allows usage of the specified global variable).

An exception from this rule are special auto-global or super-global variables which are

automatically accessible from both scopes. They are predefined and user can’t create

them.

7.2.1. Local variables storage

How local variables can be stored depends on whether a static or a dynamic scope has

to be used. The ideal is if only static (lexical) scope would be necessary as is in the static

languages. In this case optimized local variables can be used; this means that all the local

variables are compiled as CLI local variables of a function. This is optimal situation

because those variables can be even stored in CPU’s registers. Gladly usually PHP code is

written with the good culture and therefore it is possible.

However PHP being dynamic language has to use the runtime scope for local variables in

some cases. In this case we are talking about unoptimized local variables, because local

variables can’t be implemented as CLI local variables, but they have to be inside the

- 53 -

runtime scope. This is clearly slower than real local variables, because runtime scope is

in fact just some collection and access into this collection is made every time the

variable is used.

The unoptimized local variables have to be used in these situations:

 Eval equivalent constructs (explained in 7.1.4) take a parameter as a code and

runs it on actual scope. Hence, the current runtime scope has to be used as the

scope for eval contained code, which isn’t known during compilation. The scope

has to offer the runtime variables for this code.

 Special library functions have to have variables available at the runtime as a

collection e.g. compact, extract, get_defined_variables

There is also a hybrid situation when optimized local variables can be used, but the

function also has to use the runtime scope.

 Indirect variables or functions are referenced by a string (or any other

expression that is converted into string) with a name of the variable evaluated

during runtime. When indirect variable is contained in a function the referencing

is made by a special custom look-up explained in section 7.2.3. Listing 15 shows

the situation when indirect variable is used.

7.2.2. Global variable storage

Global variables can be store only in the runtime scope, because of the following

reasons:

 DLR host-provided variables – The DLR hosting environment can provide scripts

with global variables.

 Dynamic inclusion – when a script is included, its global code has to continue on

the scope from the code that called the inclusion.

 $GLOBALS – this super-global variable is an array of global variables.

Hence, a global code can’t have optimized local variables.

- 54 -

7.2.3. Indirect variables

In PHP variables can be accessed using two dollar

(or more dollars) notion that takes a value of a

specified variable, converts it to a string (if isn’t

already) and the string is used to reference an

actual variable that is going to be accessed.

PHP also allows using this syntax ${expression} to access a variable. The expression is

evaluated during runtime, converted to a string and used to reference the variable.

There is an ambiguity problem in PHP when using double dollar notion with arrays e.g.

$$a[1] can mean two things. Either accessing array in the variable $a or accessing an

array in variable that is referenced by the value in the variable $a. This can be specified

clearly be using ${} syntax i.e. ${$a[1]} for the first case, ${$a}[1] for the other.

When indirect variables are used in a global code or in a function that already has to use

the runtime scope – it has unoptimized local variables. The dynamic look-up into the

runtime scope is performed. This is a simple situation and could be used for all the

situations in general, but to optimize the access when function has optimized local

variables the hybrid look-up can be used.

When function has optimized local variables, all of them are stored as CLI local variables,

but the indirect variable access can create a new variable during runtime. Hence, the

runtime scope has to be available, but in the beginning of the function it is empty and

can be accessed only by the indirect variable access. The runtime scope isn’t accessed by

anything else because the function has optimized local variables. Hence, it doesn’t

contain any eval equivalent construct or special library function call as explained at

7.2.1.

The hybrid look-up means that for each indirect access to a variable a switch statement

has to be generated. The switch statement chooses the right CLI local variable according

to names and if isn’t available, the access to runtime scope is performed.

function foo()

{

 $x = ”neco”;

 $$x = 20;

 echo $neco;

 //prints 20

}

Listing 15. Indirect variable use example

- 55 -

The hybrid look-up has to be done this way because there isn’t any local variable

reflection in CLI. However switch statement over strings is highly optimized in .NET.

7.2.4. Auto-global and Super-global variables

The Auto-global variables are automatically available variables which can be provided by

the hosting environment e.g. the console hosting environment should provide a script

with these auto-global variables:

 $argc — The number of arguments passed to the script

 $argv — Array of arguments passed to the script

In PHP there is also a special kind of variable called super-global that is available

automatically in all the scopes.

The Superglobal variables are always arrays that contain these values:

 $GLOBALS — References all variables available in global scope

 $_SERVER — Server and execution environment information

 $_GET — HTTP GET variables

 $_POST — HTTP POST variables

 $_FILES — HTTP File Upload variables

 $_REQUEST — HTTP Request variables

 $_SESSION — Session variables

 $_ENV — Environment variables

 $_COOKIE — HTTP Cookies

 In the DLR the auto-global variables could be just putted into the runtime global scope.

Implementing the super-global variables can be made in the LanguageContext class.

7.2.5. Types

The PHP language doesn’t explicitly require user to work with types, actually this is

hidden and the language works with types implicitly. In PHP exists types listed in Table 4.

http://www.php.net/manual/en/reserved.variables.argc.php
http://www.php.net/manual/en/reserved.variables.argv.php
http://www.php.net/manual/en/reserved.variables.globals.php
http://www.php.net/manual/en/reserved.variables.server.php
http://www.php.net/manual/en/reserved.variables.get.php
http://www.php.net/manual/en/reserved.variables.post.php
http://www.php.net/manual/en/reserved.variables.files.php
http://www.php.net/manual/en/reserved.variables.request.php
http://www.php.net/manual/en/reserved.variables.session.php
http://www.php.net/manual/en/reserved.variables.environment.php
http://www.php.net/manual/en/reserved.variables.cookies.php

- 56 -

Type Representation

int System.Int32

bool System.Boolean

double System.Double

string System.String

array See 7.7

object See 7.5

resource See 7.7

Table 4. PHP types and its representations

For the .NET interoperability purposes it’s also necessary to add System.long type and all

the operations of the language has to be extended with the semantics for this type.

7.3. Operators

In PHP there are three groups of operators: unary, binary and ternary. Unary and binary

operators in PHP are dynamic and to implement them the DLR fast dynamic dispatch

mechanism can be used (4.4). However the DLR doesn’t support ternary operator in its

set of common operations, but PHP ternary operator (a?b:c) isn’t dynamic and it can be

converted to one if statement during compilation.

In Phalanger and in the other dynamic languages which aren’t built on DLR, the

operators are implemented by static methods. For example an operator plus was

implemented by a method object Add(object,object). However for optimization reasons

it would be ideal to have more overloads; one overload for each type combination of

operands. But this would make the source code and final binary file very big. In

Phalanger there are just few type combination overloads for the most common ones e.g.

object Add(object,int) for cases when a user adds a constant i.e. $a + 1.

Having a language based on DLR allows generating the DynamicExpression node during

compilation of an operation. In PHP the node has to be provided with binder for unary

operation PhpUnaryOperationBinder or PhpBinaryOperationBinder for a binary

- 57 -

operation. In fallback methods (4.5.3) of these binders there is implemented a

mechanism that builds the rules for the operations. Therefore it isn’t necessary to have a

code for all the operators and all the type combinations of operands; just the

mechanism that can generate the efficient rules for these cases.

7.4. Functions

As stated in 7.1.2 a PHP function declaration can be conditional or unconditional. They

both can be transformed into the LambdaExpression. The LambdaExpression should

have signature according to formal arguments defined in the function. However the

formal arguments are not sufficient, because it’s necessary to have a reference to the

global runtime scope, because there are declared functions, classes, interfaces and

global variables. The other option is that the LanguageContext can be present instead of

the global runtime scope, assuming there is a reference to GlobalScope inside. Hence,

the signature of the function can look like this (GlobalScope, Object*) -> Object or

(LanguageContext, Object*) -> Object. For a method it’s necessary to have this variable

reference to represent an instance of object on which the method is called inside the

method, therefore the signature can be (Instance,GlobalScope, Object*) -> Object.

The above stated signature would be sufficient in all static cases, therefore when it’s

clear in the compile time which function will be called e.g. static method or

unconditional function. In this case function call could be represented by

MethodCallExpression. But if the function is conditional (has more versions and in the

runtime is decided which one will be called) or it is a method, therefore instance could

be unknown during compile time, the function has to be called dynamically.

The dynamic case is solved by generating the DynamicExpression during compilation,

therefore choosing the method is postponed to the runtime. All compiled

LambdaExpression should be wrapped in an object (let’s call it PhpFunction) that

implements IDynamicMetaObjectProvider interface and its PhpFunction.Meta inherited

from DynamicMetaObject providing the rule for invoke operation that calls this lambda

function.

- 58 -

Recall, the rule is compound expression consisting of the test and implementation of the

action (see 4.4.2). The test would be sufficient only testing a number of arguments,

because the types are always objects8 and implementation of this call action depends on

whether the function is args-aware or –unaware (7.4.2). In the place of the

DynamicExpression when compiled is created a CallSite with target delegate signature

according to runtime arguments.

7.4.1. Args-aware and Args-unaware functions

In Phalanger there are used two terms: Args-aware and –unaware function. A function is

args-aware if and only if it contains eval, assert, an inclusion, an indirect function call or

a compile-time known call to an arguments-handling function. Otherwise, it is said to be

args-unaware. The arguments-handling functions are some functions present in the

Phalanger class library e.g. func_get_arg, func_get_args and func_get_arg_count. These

functions have to access arguments of the function as an array.

PhpFunction.Meta will generate the rule for the invoke operation according to the type

of function:

 Args-unaware function

Lambda is called with a proper number of arguments.

 Args-aware function

Args-aware function can’t be just called with a proper number of arguments, because

the supplied arguments have to be available in some kind of collection. The obvious

solution would be to use an array of objects, but it wouldn’t be very efficient, because

every call of args-aware function would need to create a new array of objects. A better

solution is to use one pre-initialized collection for each call in one script run. Let’s call

the collection PhpStack (as it’s called in Phalanger). Hence, the rule will pushes the

arguments into the PhpStack before the function call. Then the pushed arguments, they

8
 The mechanism that would use also types information of the arguments could be useful in case of late

compilation of a function. A function would be compiled with known types arguments and inlined to the
target delegate. Hence, it would bring performance gain, because the signature would have exact types
and it wouldn’t be necessary convert and box arguments next time the function would be called with the
same type arguments.

- 59 -

are available inside the function in PhpStack and in the end of the function they are all

poped. The signature of this function can stay like it was said before (LanguageContext,

Object*) -> Object, because PhpStack is initialized in the LanguageContext once in the

beginning and it has its reference.

7.4.2. Arguments count

PHP allows calling a function with less or more arguments than is a number of formal

arguments of the function. When calling a function with:

 Fewer arguments than formal arguments

The arguments that aren’t provided by the function call should be set to zero

and its equivalents for other types (false for bool, null for an object,”” for string,

0.0 for double) and warning should be generated for each missing argument

 More arguments than formal arguments

The function is called with the right number of arguments. No warning is

generated because all the arguments including the ones exceeding the number

of formal arguments can be accessed by arguments-handling functions and If

those functions aren’t present inside the function there isn’t way how to access

them. Therefore they can be forgotten.

 Exact number of arguments

The function is called with the right number of arguments.

Hence, PhpFunction.Meta generates the rule for the invoke operation also according to

the number of arguments supplied for the call.

7.4.3. Locals

Recall that there can be optimized or unoptimized local variables (see 7.2.1). The

function’s arguments have to be also considered as local variables. In case of optimized

locals, when local variables are implemented directly as CLI local variables, arguments of

the function are also implicitly local variables.

When the function has unoptimized locals, thus the local variables are stored in the

runtime scope, the arguments of the function call have to be deep copied into the

- 60 -

runtime scope to be considered also local variables. This has to be done in the beginning

of the function, directly after local runtime scope initialization.

7.4.4. Resolving overloads

The PHP language doesn’t support function’s or method’s overloads. But to enable the

interoperability with .NET it’s necessary to have a mechanism that finds a proper .NET

overload when a function is called. The overload resolution is postponed to the runtime

when types of the arguments are known. Hence, the appropriate overload could be

selected according to the PHP semantic.

A problem is that there isn’t any PHP semantics for the overload resolution, but by

examining the semantics of the PHP operations and the implicit conversions it could be

assumed the right PHP-like behavior.

It can be said that the PHP operators can be implemented as function overloads with

permutation of supported types. And during runtime the proper overload is selected

according to the known argument types. From this it could be assumed how overload

resolution should work.

The idea of the overload resolution algorithm in a pseudo code is depicted at Figure 4.

It’s important to rate the implicit conversions for arguments, because just using a first

overload that would match with the standard PHP implicit conversion would result in an

unexpected behavior. For example: Console.WriteLine method has many overloads and

first one with only one argument is Console.WriteLine(bool). Therefore calling

Console.WriteLine(”Hola!”) would implicitly convert string “Hola!” to bool value true. As

a result “true” would be printed in the screen, which isn’t clearly intended behavior.

The lot of important details weren’t mentioned e.g. optimization, last argument can be

marked as param, etc, but the complete overload resolution algorithm for PHP is out of

scope of this work9.

9
This will be covered in detail in some future publication.

- 61 -

The important is that this resolution for overloads will be implemented in the rules that

come from NetFunction.Meta derived from DynamicMetaObject. As PhpFunction serves

to represent PHP functions, NetFunction can serve to represent .NET method.

7.5. Objects

PHP is class–based object oriented language. It supports multiple inheritance of

interfaces and single inheritance of classes. It also has one special feature; it can add or

remove properties (not methods) to an instance during runtime. As stated at 7.1.2

unconditional declaration of a class can’t be altered, same as conditional declaration

when evaluated during runtime. Hence, the declaration of the class can’t be changed,

only instances can add or remove fields.

A PhpClass class can be used to represent the class declaration; it contains reference to

the PhpClass from which inherits and to the objects that represent interfaces, collection

for properties and methods. To represent methods it can be used the PhpFunction (7.4)

ResolveOverloads(Arguments[],Overloads[])
{

 Overloads = getOverloadsWithNArguments(Overloads, Arguments.Length);

 int i = 0;
 foreach (object Overload in Overloads)
 {

 // Rates the implicit conversions necessary to fit the overload
 result = RateConversions(Arguments,Overload);
 if (result < bestResult)
 {
 bestResult = result;
 bestIndex = i;

// No implicit conversion is ne
 if (result == BestConversion)
 break;
 }

 i++;
 }

 convertedArguments = Convert(Overloads[i],Arguments);
 Overloads[i](convertedArguments);
}

Figure 4. Pseudo code of overload resolution algorithm for PHP

- 62 -

with the signature of the lambda containing reference to the instance of the class. This is

to provide $this keyword inside the methods.

The PhpClass implementing IDynamicMetaObjectProvider and its complement the

PhpClass.Meta is inherited from DynamicMetaObject. The PhpClass.Meta provides rules

for operation on the class. Most important one is clearly CreateInstance operation

(when new operator is called on the class). It has to produce a rule which initialize the

PhpObject for representing instances.

The PhpObject also implements IDynamicMetaObjectProvider and has PhpObject.Meta

inherited from DynamicMetaObject. It contains reference to the PhpClass, collection for

properties which are copied during initialization from the PhpClass, storage for data of

the instance. Methods can just stay at the PhpClass and their calls are forwarded there.

The PhpObject.Meta provides the rules for operations that can be performed on an

instance of a class. For example a GetMember operation on the PhpObject will need the

rule that examines the presence of a member with the name given by operation in the

collection for properties present in the PhpObject. If exist it returns it, if not it prints a

notice “Undefined property”.

This demonstrates the principle how the classes of dynamic language can be

implemented on the DLR. But implementing the classes efficiently is a complex problem.

It’s necessary to use .NET reflection to emit real classes into a dynamic assembly

implementing the principles explained in chapter 4.5. However even IronRuby nowadays

uses for classes this approach.

7.6. Control-flow statements

PHP includes control flow statements as language elements; however the DLR is purely

expression-based. The DLR node always has a return value and type. But it’s possible to

model statements just by returning void type.

- 63 -

These are control-flow statements available in PHP:

 While and Do-while

 For

 Foreach

 If

 Switch

 Break and continue

 Return

The behavior is known from other well-known programming languages. Hence, their

implementation should be straightforward in the DLR. There is however interesting

difference that makes it a little bit more complicated.

PHP optionally allows a user to declare break or continue statement with having a

parameter specifying the number of loops or switch statements that should be exited

before the script execution continues. The value of the parameter may not even be

known at the compile-time because it may be a non-constant expression such as a

variable.

During compilation of loop statements a BranchingStack class is used to store the list of

statements where break or continue can be used in. Each of these statements is

represented by a pair of Label objects which are then used as arguments for break and

continue AST nodes. The argument of break or continue specifies a level of nesting of

the accessed statement, with 0 or 1 being for the nearest. If there is no argument

specified the nearest is taken into account. If a constant is specified, the correct

statement is selected from the BranchingStack. For an unknown expression, a switch

statement tree is created, where correct statement is selected and used based on the

runtime value.

- 64 -

7.7. Summary

This chapter doesn’t completely cover implementation of all the language features of

PHP. But it should introduce into the problematic of implementation of a dynamic

language, illustrates concepts and presents the problems and their solutions.

This chapter didn’t mention following features:

 Variables

- References

- Type conversions

- Operator chaining

 Constants

 Functions

- Indirect Function Calls

- Callbacks

- Arguments passed by a reference

 Objects

- Constructors

- Destructors

- Cloning

- Conversions to string

- Getters

- Setters

- Callers

- Serialization

- Interfaces

 Resource type

 Array type

 Error handling

- 65 -

 Evaluation 8.

The tests were performed on the following configuration:

 PC

- Manufacturer - Lenovo

- Model – ThinkPad T500

 Software

- Operating System - Microsoft Windows 7 Professional x64

- CLR Version - 2.0.50727.4200

- DLR Version : 0.91

 CPU

- Full Name - Intel(R) Core(TM)2 Duo CPU P8600 @ 2.40GHz

- Number of Cores - 2

- RAM – 4 GB

The expressions used in this test were evaluated 20 000 000 times. Figure 5 shows time

needed to finish the task.

Figure 5. Performance evaluation of PHPp on DLR

0

2

4

6

8

10

12

14

Sec

PHP 5.3.1

Phalanger 2.0

PHPp on DLR

- 66 -

As could be seen operations with integer, boolean and double are significantly faster

than both Phalanger and PHP 5.3.1. But when string type with numeric value is used as

operand traditional PHP is faster. However the DLR approach improved this operation,

because PHPp uses same conversion algorithm as Phalanger. This conversion algorithm

takes most of the time, therefore by optimizing it the speed can be improved even

more.

In a static function call PHPp is the slowest one, because there isn’t any optimization at

all in this moment. PHPp just uses lambda functions from the DLR to implement

function. Phalanger is in this test the fastest one, because of compilation. However

when we compare it to the dynamic call it could be seen how DLR is strong on dynamic

operations. PHPp is the fastest; it has almost the same result as in the static call.

Figure 6. Performance evaluation of algorithms written in PHP

Testing of some algorithms written in PHP shows significant improvement in

performance within Phalanger and PHPp. PHPp is considerably faster than Phalanger, in

bubblesort test even faster than PHP. Considering that PHPp isn’t optimized and there is

a big space for optimizations, it is very good result.

0

10

20

30

40

50

60

quicksort(10^5) bubblesort(10^4) fibonacci(29)

Se
c

PHP 5.3.1

Phalanger 2.0

PHPp on DLR

- 67 -

Despite of the fact that PHPp isn’t made to fully use potential of DLR and also uses old

version of DLR10, shows a real potential in the dynamic operations, which is exactly what

it should. Also it has to be considered that building the dynamic language on top of DLR

is significantly easier than without it and first of all it brings one invaluable benefit which

is interoperability with the static and dynamic languages on .NET.

10
 It could be assumed that performance of the newest version of DLR improved.

- 68 -

 Conclusion 9.

This thesis focuses on implementing the PHP language on top of the new Dynamic

Language Runtime. It describes some of the features and concepts of the DLR and

discusses methods and approaches to use it for implementation of the PHP language.

It’s focused more deeply to the PHP language; however most of the ideas can be used in

an implementation of any other dynamic language on the DLR.

The pilot implementation of the PHP language on the DLR called PHPp demonstrates

implementation of some of the presented ideas and serves as an example of language

implementation on the DLR. Future enhancements of the Phalanger project are planned

to use the DLR and they will include many concepts from PHPp project in a step-by-step

integration.

The DLR makes implementing efficient DLR language on .NET easier than it was before,

because it’s not necessary to emit MSIL code instead DLR expression trees are created.

Because of that it’s much less work for language implementers and the DLR can compile

them or interpret them. The DLR can also use more sophisticated methods like adaptive

compilation. The most important advantages are the interoperability with static and

dynamic languages, a better performance of dynamic operations and common hosting

environment.

- 69 -

References

[1] Microsoft Corporation..NET Framework Developer Center.

http://msdn.microsoft.com/en-us/netframework/default.aspx

[2] Erik Meijer and John Gough. (2001) Technical Overview of the Common Language

Runtime. http://research.microsoft.com/~emeijer/Papers/CLR.pdf

[3] Serge Lidin, Inside Microsoft®.NET IL Assembler.: Microsoft Press, 2002.

[4] PHP. www.php.net

[5] Python. Python Programming Language. http://www.python.org/

[6] Ruby. Ruby Programming Language. http://www.ruby-lang.org/en/

[7] ECMA. (2006, June) Standard ECMA-335: Common Language Infrastructure.

http://www.ecma-international.org/publications/standards/Ecma-335.htm

[8] Laurence Tratt, "Dynamically Typed Languages," in Advances in Computers, 2009,

pp. 149–184.

[9] E. Meijer and P. Drayton, "Static typing where possible, dynamic typing when

needed: The end of the cold war between programming languages," in OOPSLA’04

Workshop on Revival of Dynamic Languages, 2004.

[10] Phalanger project. www.php-compiler.net

[11] J. Benda, T. Matousek, and L. Prosek, "Phalanger: Compiling and running PHP

applications on the Microsoft.NET platform.," in Proceedings of.NET Technologies

2006, the 4th International Conference on.NET Technolgoies, Plzen, 2006, pp. 11–

20.

[12] Microsoft Corporation. Silverlight. http://www.silverlight.net/

http://msdn.microsoft.com/en-us/netframework/default.aspx
http://research.microsoft.com/~emeijer/Papers/CLR.pdf
www.php.net
http://www.python.org/
http://www.ruby-lang.org/en/
http://www.ecma-international.org/publications/standards/Ecma-335.htm
www.php-compiler.net
http://www.silverlight.net/

- 70 -

[13] Misek J. and Zavoral F, "Syntactic and Semantic Prediction in Dynamic Languages,"

in SERA 2009, Studies in Computational Intelligence, Springer Verlag, 2009.

[14] Microsoft Corporation. Microsoft Dynamic Language Runtime.

http://www.codeplex.com/dlr

[15] Bill Chiles. CLR Inside Out: IronPython and the Dynamic Language Runtime.

http://msdn.microsoft.com/en-us/magazine/cc163344.aspx

[16] Jim Hugunin. A Dynamic Language Runtime (DLR).

http://blogs.msdn.com/b/hugunin/archive/2007/04/30/a-dynamic-language-

runtime-dlr.aspx

[17] Bill Chiles and Alex Turner. Dynamic Language Runtime Overview.

http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Doc

umentation

[18] Bill Chiles. DLR Hosting Spec.

http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Doc

umentation

[19] Bill Chiles. Expression Trees v2 Spec.

http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Doc

umentation

[20] Jeffrey Richter. (2000, December) Type Fundamentals.

http://msdn.microsoft.com/en-us/magazine/cc301569.aspx

[21] Alex Turner and Bill Chiles. Sites, Binders, and Dynamic Object Interop Spec.

http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Doc

umentation

http://www.codeplex.com/dlr
http://msdn.microsoft.com/en-us/magazine/cc163344.aspx
http://blogs.msdn.com/b/hugunin/archive/2007/04/30/a-dynamic-language-runtime-dlr.aspx
http://blogs.msdn.com/b/hugunin/archive/2007/04/30/a-dynamic-language-runtime-dlr.aspx
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Documentation
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Documentation
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Documentation
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Documentation
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Documentation
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Documentation
http://msdn.microsoft.com/en-us/magazine/cc301569.aspx
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Documentation
http://dlr.codeplex.com/wikipage?title=Docs%20and%20specs&referringTitle=Documentation

- 71 -

[22] Urs Hölzle, Craig Chambers, and David Ungar, "Optimizing dynamically-typed

object-oriented languages with polymorphic inline caches," in Proceedings of the

European Conference on Object-Oriented Programming, 1991.

[23] Microsoft Corporation. Using Type dynamic (C# Programming Guide).

http://msdn.microsoft.com/en-us/library/dd264736(VS.100).aspx

[24] Martín Abadi, Luca Cardelli, Benjamin C. Pierce, and Gordon D. Plotkin, "Dynamic

typing in a statically typed language," ACM Transactions on Programming

Languages and Systems (TOPLAS), pp. 237–268, April 1991.

[25] Microsoft Corporation. IronPython - the Python programming language for the.NET

Framework. http://ironpython.net/

[26] Jim Hugunin. (2007 , May) The One True Object (Part 1).

http://blogs.msdn.com/b/hugunin/archive/2007/05/02/the-one-true-object-part-

1.aspx

[27] Microsoft Corporation. IronRuby. http://ironruby.net/

[28] Microsoft Corporation. Extension Methods (C# Programming Guide).

http://msdn.microsoft.com/en-us/library/bb383977.aspx

[29] Microsoft Corporation. Application Domains Overview.

http://msdn.microsoft.com/en-us/library/2bh4z9hs(v=VS.71).aspx

[30] Microsoft Corporation. Using CodeDOM. http://msdn.microsoft.com/en-

us/library/y2k85ax6.aspx

[31] Microsoft Corporation. The New Dynamic Language Extensibility Model for

ASP.NET. http://www.asp.net/learn/whitepapers/ironpython

[32] Tomas Petricek. (2007, January) Phalanger, PHP for.NET: Introduction for.NET

developers. http://www.codeproject.com/KB/cross-platform/phalanger-intro.aspx

http://msdn.microsoft.com/en-us/library/dd264736(VS.100).aspx
http://ironpython.net/
http://blogs.msdn.com/b/hugunin/archive/2007/05/02/the-one-true-object-part-1.aspx
http://blogs.msdn.com/b/hugunin/archive/2007/05/02/the-one-true-object-part-1.aspx
http://ironruby.net/
http://msdn.microsoft.com/en-us/library/bb383977.aspx
http://msdn.microsoft.com/en-us/library/2bh4z9hs(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/y2k85ax6.aspx
http://msdn.microsoft.com/en-us/library/y2k85ax6.aspx
http://www.asp.net/learn/whitepapers/ironpython
http://www.codeproject.com/KB/cross-platform/phalanger-intro.aspx

- 72 -

[33] Abonyi A., Balas D., Beno M., Misek J., and Zavoral F., "Phalanger Improvements,"

Department of Software Engineering, Charles University in Prague, Technical report

2009.

[34] Tomas Petricek. Using PHP objects from C# in a type-safe way.

http://tomasp.net/blog/ducktyping-in-phalaner.aspx

[35] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and Tools.:

Addison-Wesley, Reading, Mass, 1986.

[36] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and

Computation. 1979: Addison-Wesley.

[37] John Gough. The Gardens Point Scanner Generator.

http://plas.fit.qut.edu.au/gplex/

[38] Wayne Kelly. The Gardens Point Parser Generator. http://plas.fit.qut.edu.au/gppg/

http://tomasp.net/blog/ducktyping-in-phalaner.aspx
http://plas.fit.qut.edu.au/gplex/
http://plas.fit.qut.edu.au/gppg/

- 73 -

Appendix A. CD content

 Documents

o Implementing the Dynamic Languages using DLR Technology.pdf

o DLR

 Dlr-overview.pdf - Dynamic Language Runtime overview

 Dlr-spec-hosting.pdf - DLR common hosting model specification

 Expr-tree-spec.pdf - Expression Trees v2 specification

 Library-authors-introduction.pdf-DLR introduction for library authors

 Sites-binders-dynobj-interop.pdf- Specification of interoperability

protocol

 Sympl.pdf – Documentation of the example of a dynamic language

implemented on the DLR

o Phalanger

 User.pdf – Phalanger documentation, user's guide

 Binaries

o Phalanger 2.0 (June 2010)

 Phalanger_(June_2010).msi - Phalanger 2.0, php compiler installation

 Phalanger_(June_2010)_VS2008_SP1.msi - Visual Studio integration

installation

o Phpdlr(PHPp)

 PhpConsole – The interactive mode for PHP on the DLR

 Source codes

o Phalanger - Phalanger project source codes.

o DLR

 Newest source code – newest available DLR source code

 Release – DLR 1.0 source code

o Phpdlr(PHPp)

 Language -

 PhpConsole –interactive mode for PHP on the DLR

 Phpp – implementation of PHP on DLR

 Runtime – older DLR’s source code

 Phalanger – older Phalanger’s source code, Phpdlr(PHPp) is based on

this version

- 74 -

Appendix B. DLR interoperability protocol schema

It was particularly very difficult to write about and work on the constantly changing

environment without any good publications. The best source of knowledge was the

actual source code of DLR and talks with developers of DLR. But because of this it will be

actually one of the first existing publications about DLR. The DLR was released in late

April this year.

This is documentation of DLR interoperability protocol from the creators of Microsoft

Dynamic Language Runtime available during writing this work.

- 75 -

