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In this thesis we investigate several methods how to improve the quality of statistical
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SemPOS, a metric that uses shallow semantic representation of sentences to evaluate
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Chapter 1

Introduction

Machine translation (MT) uses computers for automatic translation between natural languages.
So far translation quality of state-of-the-art MT systems has not reached the level which is re-
quired for high-quality translation of texts on general topic, which would give us the possibility
to use this technology without human supervision in large scale. Therefore, new methods need to
be investigated and existing models need to be extended to provide automatic translation of better
quality. In this thesis we focus on improving existing methods used in statistical MT systems to
provide better translation quality by employing linguistically rich information.

1.1 Goal of Machine Translation

At present time, MT is still not capable of preserving correct meaning of complex sentences.
It can happen that the meaning of the translated text differs from the original because negation
is used incorrectly, another meaning of a word is used, or the translated sentence just does not
make any sense. Therefore, MT is usually used for gist translation, where we do not need to
understand the exact meaning of a text but rather prefer fast orientation in foreign language texts,
or as a support tools in word processors to facilitate translation done by humans. For high quality
translation we still need to seek human translators who are able to guarantee that the meaning of
a text is preserved.

To get a better notion of the current state of machine translation we present a short example
of MT system output in Figure 1.1, which was obtained by translating the Czech Wikipedia entry
about machine translation1 by a statistical MT system. The translated text contains a lot of the
information from the original article in Czech, but many sentences are ungrammatical or difficult
to understand without previous knowledge about the domain.

1http://cs.wikipedia.org/wiki/Strojový_překlad
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Machine translation (angl. machine to) is a process of an automatic Translation from
one natural language to another using computers. Machine translation is a long time an
important role of computer science, however, is not completely satisfactorily resolved
still. Today many systems are available, whose output is not perfect, but it is sufficient
quality for use in many areas where helps human translators.

Figure 1.1: Example of a state-of-the-art MT system output.

There are several factors that influence the quality of MT in general. The most important
factor is the size of the domain in which we try to translate. If we select a restricted domain with
clearly defined vocabulary, the translation task is relatively easy. The translation system Météo
(Chandioux and Guraud; 1981) is a good example. This system was developed in Canada in the
1980’s to translate weather forecasts between French and English and it was successfully used
for almost 20 years. Since the domain covered only weather terminology and the translated text
had a very rigid structure, the system could be relatively simple and it was possible to operate it
even with hardware available at that time.

Bank
Meaning Czech translation

1. business that provides financial services banka
2. land along the side of a river břeh
3. a large pile of earth, sand, snow násep
4. money in a gambling game that people can win bank

Figure 1.2: Possible meanings of the English noun bank with different Czech translation.

If we extend the translation domain, or even do not restrict it at all, we need to deal with
ambiguity which is innate to every natural language in form of synonyms2 and homonyms.3

Homonyms represent a serious issue because the word alone does not give us any clue which
meaning (and the corresponding translation) is correct. Figure 1.2 shows some possible meanings
of the English noun bank.4 There are four meanings of the word that are expressed by a different
translation in Czech. The most probable translation would be the first one (banka - financial
institution) but there are situations where one of the other meanings should be used, e.g. the
translation břeh in the phrase river bank. If we select the wrong meaning the translated text

2Two words are synonyms if they have the same meaning, e.g. buy and purchase.
3Homonyms are words with the same form but different meaning, e.g. bank.
4This list is not exhaustive - bank can also have other meanings.
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can be very difficult to understand. Therefore, it is necessary to look for hints in the text which
meaning could be the correct one. We can infer the correct meaning of the word being translated
for example from the topic of the text or words co-occurring in the sentence. However, this
makes the system more complex because the translation of one word is dependent on the context
in which it occurs. Thus, it is necessary to design MT systems with good balance between the
complexity, computational viability of the underlying model and available data.

Another factor that strongly affects the quality of machine translation is the selection of the
source and target language. It is easier to translate between languages that have similar sentence
structure and grammar rules, e.g. Spanish and French, than between languages that belong to
different language families, e.g. Czech and English or Greek and Finnish.5 In the former case we
can often translate sentences word by word using only a simple dictionary without any reordering
of words, while it is necessary to perform complex transformations of the sentence structure in the
latter one. If computers need to significantly restructure a sentence because the target language
has completely different grammar rules than the source languages, a lot of small mistakes can
occur on the way. The more difficult the target language is, the more mistakes can happen.
This applies especially to languages with rich morphology, e.g. Czech. When translating from
English to Czech, the structure of the sentence can be more or less preserved but a lot of additional
information has to be provided in the target language because one word can take many different
forms depending on number, gender or other grammatical categories. If we assign one of these
categories wrong, the resulting word form can be different and this one mistake can change the
meaning of the whole sentence.

Current MT research aims at developing systems that are capable of translating text on an
arbitrary topic and between two arbitrary languages. This is a big challenge because the under-
lying model needs to be sufficiently flexible in order to accommodate also language-dependent
phenomena.

1.2 Current MT Development

The prevailing research direction in MT has been represented by statistical MT in recent years.
This term covers a wide range of theoretical approaches to MT which have one fundamental fea-
ture in common: they use large amounts of mono- and bilingual texts to automatically learn rules
to translate from one language to another language. Therefore they are relatively easy and fast to
deploy because they do not require any special knowledge about the languages in consideration
given the mono- and bilingual texts.

5The site http://www.statmt.org/matrix/ shows the translation complexity (expressed as BLEU score) for
selected European language pairs.
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There are two ways to improve the performance of a statistical MT system. First, it is possible
to produce even larger collections of mono- and bilingual texts to get better coverage of the
languages and estimate the translation rules more accurately. This approach is easy to do but it
requires a lot of time and human effort to find and select suitable sources of bilingual training
data. Usually, it is easy to find parallel texts for a specific domain, e.g. legal documents produced
in states or organizations that have multiple official languages. However, for some other domains
like newspaper articles that cover general topics it is difficult to find a suitable source of data
because they are usually produced only in one language.

The second approach to improve the quality of statistical MT systems is to enhance the un-
derlying model by additional features that help to generate better translation from available data.
This can be achieved by deeper analysis of the data and learning additional translation rules from
it. Although this makes the model more complex, it is a promising approach for the near future
because hardware is becoming faster every year and current statistical MT models can be easily
run in parallel environment since they usually translate individual sentences separately. Thus,
incorporating additional sources of information can bring the desired quality improvement while
keeping MT systems suitable even for real-time applications. Harnessing syntactic and semantic
representation of a sentence seems to have high potential for future even though suitable models
taking advantage of this information are still to be developed.

An important step to better MT output is a translation quality metric that can recognize a good
translation from a bad one. In recent years new metrics were proposed using rich annotation
of text, e.g. part-of-speech tags. These metrics show better correlation to human assessment
of translation quality than metrics working only on surface forms. However, the required an-
notation of the evaluated text makes the metrics language dependent and they must be adapted
for each language.

1.3 Outline

In this thesis we focus on improving statistical MT output quality by using rich annotation of data.
We use the phrase-based statistical MT systemMoses (Koehn et al.; 2007) as our baseline system.
We investigate the following two methods:

1. First, we try to employ an MT quality metric which uses rich annotation of the evaluated
text to optimize model parameters of the MT system. The metric was designed directly
for Czech and showed better correlation results with human assessment of translation qua-
lity for Czech than the metric commonly used for parameter optimization.

2. Second, we design an extension of the phrase-based log-linear model. This extension takes
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advantage of rich source-side annotation to generate better translation. The extension is
based on suffix arrays, an efficient data structure that allows to compute feature values
on-demand during the translation process with low time costs.

We structure our work in the following way: first, we introduce the field of machine transla-
tion and related concepts in Section 2. In Section 3, we investigate the possibility of improving
MT system performance by optimizing parameters of the underlying model by employing a more
suitable MT quality metric. In Section 4, we describe an MT model extension which uses con-
text information from the source sentence to improve translation quality. Then, we discuss the
obtained results and comment on their contribution to better translation in Section 5. Finally, we
conclude in Section 6.
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Chapter 2

Background

Before we start with the description of our work, we introduce the field of machine translation.
We focus especially on statistical MT, which represents one of the fastest developing streams
in MT and which has been receiving a lot of research attention in recent years. Thanks to this
fact, statistical MT has been able to report steady improvement in translation quality in the last
decade and is capable of translating even long sentences relatively accurately. However, flawless
automatic translation between natural languages is still an issue for future research.

2.1 Machine Translation

The first attempts to use computers for automatic translation between two natural languages star-
ted shortly after the design of the first computers in the 50’s of the 20th century. One of the first
experiments with automatic translation dates back to 1954 when IBM and Georgetown Univer-
sity tried to translate from Russian to English (Hutchins; 1954). A manually created rule-based
grammar and vocabulary restricted to only 250 words made it possible to translate short sentences
accurately. A lot of expectations were raised by this project, but nearly half of the century was
required to arrive at a point at which MT could be used for translation of an arbitrary sentence.

Various approaches to MT have been proposed in recent years ranging from simple human-
written translation rules to linguistically motivated complex translation systems. As more com-
putational power became available, statistical approaches gained on significance. Their biggest
advantage lies in their universal applicability and fast deployment. Within a few days or even
hours, it is possible to train a translation system for two arbitrary languages. The only requirement
is a large collection of text in both languages that are aligned sentence by sentence. Obtaining
such large collections of text, called corpora, is becoming easier since there are vast amounts
of text on the Internet that can be used for training purposes after careful extraction.
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2.2 Statistical Machine Translation

Statistical MT was pioneered by IBM researchers (Brown et al.; 1990), who based their work
on the noisy-channel model. The idea of using the noisy-channel model dates back to the 1950’s
when it was introduced in the information theory to retrieve the original message from data sent
over an unreliable and noisy transmission channel. However, it took several decades until the
noisy-channel model could be applied in machine translation because computers were not fast
enough and machine-readable corpora of bilingual text were difficult to obtain. In the early
1990’s, both resources were available in sufficient amount. Since then, statistical machine trans-
lation evolved quite rapidly.

2.2.1 Noisy-Channel Model

The idea of the noisy-channel model is simple. Imagine that we want to translate from English
sentence f to Czech sentence e. Wewant to find the Czech sentence ê that maximizes the posterior
probability P(e| f ) given the English sentence f (see Equation 2.1). We can apply the Bayes’
Theorem and receive the following equations:

ê = argmax
e

P(e| f ) (2.1)

= argmax
e

P(e|c)×P(e)
P( f )

(2.2)

= argmax
e

P( f |e)×P(e) (2.3)

where P( f |e) is the probability of translating the English sentence f to the Czech sentence e
and P(e) is the probability of the Czech sentence e.1 In Equation 2.3 it is possible to omit P( f )
because the English sentence f is given and it is constant for all Czech sentences over which we
maximize. Therefore, it does not have any influence on the maximization step and we can take
it out.

The two basic constituents of the noisy-channel model are the probabilities P( f |e) and P(e).
Probability P( f |e) is called translation model because it models the probability that a Czech
sentence e is translated into an English sentence f , and probability P(e) is called language model
because is models the probability of a sentence in a given language.

The noisy-channel model is depicted in Figure 2.1. Informally, we can imagine someone
thinking in Czech but saying everything in English. The produced English sentence can be viewed

1We use letters f and e to denote the source and the target sentence due to historical convention, which was
introduced in publications about the French to English statistical translation system Candide. The f can be also
viewed as an acronym for foreign language.
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as scrambled Czech sentence that was originally in his or her mind. However, we would like to
know what the person was originally thinking and not what he or she said. Therefore, the trans-
lation task is to restore the unscrambled sentence in Czech from the corrupted English sentence.

..Czech.1) .English

.Czech.2) .English.

.argmax
e

P( f |e)×P(e)

Figure 2.1: The noisy-channel model combines the language model P(e) and the translation
model P( f |e) to find the best Czech translation of an English sentence f .

Language Model

Now, we will briefly describe the language model. As already mentioned, the language model is
represented by the probability P(e)which is the probability of the sentence e in a given language.
This probability can be expressed as

P(e1 . . .el) = P(e1) ·P(e2|e1) ·P(el|e1e2 . . .el−1) (2.4)

where e = e1 . . .el is the target language sentence of the length l and P(ei|e1e2 . . .ei−1) the con-
ditional probability that word ei follows the sequence of words e1e2 . . .ei−1. However, it is not
possible to store the conditional probability for all possible sequences of words because of their
large number due to exponential explosion. Therefore, we use an approximation instead, which
is based on n-grams. N-gram is a sequence of n words. For a language model of order n we use
the approximation

P(ei|e1 . . .ei−1)≈ P(ei|ei−n+1 . . .ei−1). (2.5)

Thismeans that we reduce the history we need to remember for everyword only to n−1 preceding
words.

Formally, a language model of order n can be expressed as

P(e1 . . .el) =
l

∏
i=1

P(ei|ei−n+1 . . .ei−1) (2.6)

where e = e1 . . .el is a sentence of the length l and P(ei|ei−n+1 . . .ei−1) the conditional probability
that word ei follows the sequence of words ei−n+1 . . .ei−1.

13



There is a major problem connected with this approach. It can happen that the probability
P(ei|ei−n+1 . . .ei−1) is zero because we have not seen the sequence ei−n+1 . . .ei in the training
data. This would mean that the whole sentence would get zero probability. To overcome this
problem it is necessary to apply smoothing techniques that use shorter history up to uniform
distribution to back-off the n-gram language model.

Translation Model

The translation model is responsible for generating possible translation options for source sen-
tence fragments. Current state-of-the-art translation models follow one of the two basic ap-
proaches:

• phrase-based,

• hierarchical (syntax-based) model.

Phrase-based translation models are simpler because they try to create sentence translations by
concatenating translations of source word sequences, called phrases. Phrases are taken as basic
units and are translated at once. On the other hand, hierarchical models work with the syntactical
tree of the sentence.

Hierarchical models represent a promising branch of statistical MT because they can better
handle structural differences in the source and target language. This is due to the fact that they
explicitly work with syntactic dependencies among the words in form of a parse tree. Neverthe-
less, their performance is still inferior to the state-of-the-art phrase-based statistical MT systems
(Callison-Burch et al.; 2008, 2009). Several formalisms for hierarchical translation model were
proposed using parse tree either on the target side, e.g. Yamada andKnight (2001); Gildea (2003),
both sides, e.g. Shieber and Schabes (1990); Gildea (2003); Eisner (2003), or neither of the sides,
inducing it from parallel data Chiang (2005). It is out of scope of this thesis to describe themmore
in detail. We cover only the phrase-based translation model in Section 2.2.3 since our source-
context model is an extension of the phrase-based model.

2.2.2 Log-Linear Model

The most wide-spread model that is currently used in statistical MT is the log-linear model (Och
and Ney; 2002). It is a generalization of the noisy-channel model because it allows to add also
other components, typically called features, beside the language and the translation model.

The log-linear model uses a set of feature functions hn(e, f ) that take the source sentence f
and the target sentence e as parameters. Each feature has a weight parameter λn that controls the
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significance of the feature. The model can be expressed by the equation

ê = argmax
e

N

∑
n=1

λnhn(e, f ) (2.7)

We can see that the noisy-channel model is a special case of the log-linear model if we use
the feature functions

h1(e, f ) = log P(e) (2.8)

h2(e, f ) = log P( f |e) (2.9)

and set λ1 = λ2 = 1. The probability P(e) corresponds to the language model and the probability
P( f |e) corresponds to the translation model. However, we use logarithm of the probabilities
instead.

..Source Sentence f

.Preprocessing

.̂e = argmax
e

N

∑
n=1

λnhn(e, f )

.Postprocessing

.Target Sentence ê

.. . .

.λ1 ·h1(e, f )

.λn ·hn(e, f )

Figure 2.2: Processing pipeline of an MT system based on the log-linear model which can use
various features functions hn(e, f ) to find the best translation.

The log-linear model allows to define many different feature functions (see Figure 2.2) that
take input sentence f and output sentence e as parameters. Just to mention some functions which
are used in current statistical MT systems:

• length penalty function that penalizes short or long sentences,

• additional language model based on part-of-speech tags,
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• inverse translation probability P(e| f ),

• distortion model that controls how far words can change position in the sentence,

• syntactic or shallow semantic features.

The feature weights λn need to be optimized so that the model performs well. This optimi-
zation is not used in the noisy-channel model since the language and translation model have the
same weight by default. Minimum error rate training (MERT) (Och; 2003) is used as a stand-
ard optimization method for tuning parameters λn. We discuss this topic in Section 2.2.6 more
in detail.

2.2.3 Phrase-Based MT

One of the first statistical MT systems (Brown et al.; 1990) used word-based translation model,
i.e. words in the source sentence were translated one by one. However, there exist sequences
of words in almost every language that have a fixed translation. These sequences can be translated
at once and increase the accuracy of the MT system. Phrase-based models take advantage of this
observation.

Phrase-based models (Och and Ney; 2004) are based on extracting phrase translations, which
are stored in phrase tables, from bilingual texts. This is done in several steps:

1. A word alignment between words in the source and the target language sentence is com-
puted. A word alignment is a many-to-many relation between words that reflects which
source word has the same meaning as a target word. It is possible that a source/target
word is not aligned to any word in the other sentence. There can be also words that are
aligned to several different words. For example English articles do not have a correspond-
ing concept in Czech, therefore the and a are usually unaligned or they are attached to some
other word. Theword alignment can be extended to cover also unalignedwords to get better
translation performance (Och and Ney; 2003).

2. Individual phrase translations are extracted by extending the word alignment to phrase
alignment. This is done by considering all contiguous sequences of words in the source
and the target sentence so that words in the source/target phrase align only to words within
the target/source phrase. Since we require that a phrase is a contiguous sequence of words,
it cannot happen that a word in the middle of a phrase aligns to a word outside of the cor-
responding phrase in the other language. After the phrase extraction is finished, the phrase
translation probabilities are estimated using the phrase co-occurrence counts.
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Figure 2.3 shows an example of a sentence translated by a phrase-based MT system. Short
phrases as The economics profession are translated as one block. Therefore, the noun-adjective
agreement in case, number and gender between the Czech target words ekonomická and profese
can be easily preserved.

..The economics profession .bears .part of .the blame .for this

.Částečně .na tom .nese .vinu .ekonomická profese

Figure 2.3: Phrase-basedMT systems create translation by concatenating individual phrase trans-
lations (with possible reordering of phrases).

The biggest advantage of phrase-based models is that they can capture local dependencies
between words by translating whole phrases instead of single words. The result is that short
phrases are translated quite accurately. However, grammatical relations between distant words
are difficult to handle with phrase-based models. If we consider the sentence

..The .book .you borrowed from the library should be .returned .soon. (2.10)

we can see a long distance relation between the noun book and the verb returned. This relation
must be reflected by grammatical agreement, which is expressed by appropriate ending of the
verb in Czech. However, the words are too distant to constitute one phrase in a phrase-based
model.

2.2.4 Training

The training of a statistical MT system is one of the most computationally intensive parts in the
construction of an MT system. It requires estimation of model parameters as accurately as pos-
sible from large amounts of data.

The major problem is that the training data represents only a subset of all possible sentences
in a language. Even if we collect as much training data as possible, we will still miss a lot of
grammatically correct sentences that will not appear in our training data. Therefore, it is not
possible to get a sufficient amount of information about the actual real-world probabilities and
we can only compute rough estimates. However, this is often enough to construct a statistical
MT system that performs reasonably well.
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The data used for MT training needs to be bilingual and sentence-aligned. This means that
we need two texts, one in the source language and the other one in the target language, they must
be segmented into sentences, and each sentence in one language must have a counterpart in the
other language. Figure 2.4 shows an example of sentence-aligned training data.

English
Such a strategy simply defies common sense .
A Breakthrough Against Hunger
Historically , the stock market has performed well .
Education will be similarly transformed .
Most likely , he would have done worse .
That seems a wise decision .
But the status quo is unacceptable .
Other central banks make similar claims .

Czech
Takové strategie prostě popírají zdravý rozum .
Průlom v boji proti hladovění
Historicky si akciový trh vedl dobře .
Podobně se transformuje školství .
S největší pravděpodobností by se mu dařilo hůře .
Zdá se , že je to moudré rozhodnutí .
Současný stav je ovšem nepřijatelný .
Jiné centrální banky vydaly podobná prohlášení .

Figure 2.4: Example of sentence-aligned training data.

The reason why we require that the training texts are segmented into sentences is simple: it is
much easier to find alignment of words within a sentence containing twenty words rather than
in the whole training data which can consist of millions of words. We can make this simplifi-
cation because a sentence can typically stand alone without substantial syntactical relationship
to other sentences. Of course, we lose some information about the context in which a sentencewas
uttered, but this is a reasonable trade-off since it allows to dramatically simplify the MT model.
Moreover, the simplification allows to translate sentences one by one without any relationship to
other sentences. This can be used for parallelization of the translation process which leads to sig-
nificant speedup. Another reason why to work on the sentence level is that computers can quite
easily recognize the end of the sentence because it is explicitly marked in the text by full stop.
Therefore, it is possible to automatically extract individual sentences from the text with relatively
high accuracy.

Training of statistical MT models is based on estimating probabilities. Usually, the probabi-
lities are computed using relative frequency counts. To illustrate this method better, we estimate
the translation probabilities for the phrase a cat in Figure 2.5. We compute counts of individual
translation options for the phrase using our training data. These counts are listed on the left side
of Figure 2.5. To compute the translation probabilities we simply divide the count of the in-
dividual translation by the total number of translation options weighted by the number of their
occurrences. This method is very intuitive and easy to use. It represents a fundamental method
that is used in statistical MT system training.
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..Counts for the source phrase a cat

.

Target Phrase Count Glossary
kočka 12 catnom

kočce 8 catdat

kočku 10 catacc

jedna kočka 2 one catnom

jednu kočku 1 one catacc

nějaká kočka 3 some catnom

nějaké kočce 4 some catdat

Total 40

.

p(kočka | a cat) = 12
40

p(kočce | a cat) = 8
40

p(kočku | a cat) = 10
40

p(jedna kočka | a cat) = 2
40

p(jednu kočku | a cat) = 1
40

p(nějaká kočka | a cat) = 3
40

p(nějaké kočce | a cat) = 4
40

.Estimated Probability

Figure 2.5: Translation probabilities are computed from training data using relative frequency
counts.

2.2.5 Decoding

The process of translating a source language text is called decoding in statistical MT. It relates
to the noisy-channel model described in Section 2.2.1, which models the extraction of the original
sentence from a corrupted text, i.e. the “decoding” of the sentence. In this section, we describe
the decoding procedure more in detail.

Decoding uses probabilities estimated during the training phase. Usually, each sentence is
segmented into small chunks, i.e. sequences of words, that are translated one by one and then
combined together. However, every small chunk can have multiple correct translations because
it can be expressed in different ways in the target language. Moreover, the longer the sentence
the more chunks need to be translated. If we wanted to find the best translation of a sentence, we
would have to search all combinations.

While the training of an MT system can take several hours up to several days of intensive
parameter optimization because it is done only once, the actual translation of a sentence is more
time critical. We do not want to wait for the translation of one sentence for hours or even days.
Therefore, approximation methods have to be used in order to compute the resulting translation
fast enough. Instead of searching all possible combinations, we try to sort out combinations that
are probably not a good translation. We can thus reduce the search space and can find the best
translation faster.

Nevertheless, it is possible that we discard a partial translation which we think is not very
good, but it is actually part of the best translation. Thus, we can lose the best translation on
the way during the decoding. This problem can be partially solved by keeping not only the best

19



partial translation but several best translations. The partial translations are stored on the decoding
stack, and they are expanded step by step.

After the whole sentence has been processed we can output not only the best translation but
also a set of the best scoring translations. They constitute the so called n-best lists. The n-best lists
typically contain tens or hundreds of translations. Some statistical MT systems output complete
n-best lists and use an external scorer to select the best translation of the input sentence from the
n-best list.

In recent years, experiments with combining output of several MT systems were conducted.
The idea is that some system could be good at a specific translation subtask, e.g. maintaining
the target sentence grammaticality or having better lexical choice, but the overall quality can
be mediocre because of bad performance on some other subtask. Smart combination of several
MT system outputs could therefore lead to better overall quality. However, the results (Callison-
Burch et al.; 2009) are inconclusive about the improvement in translation quality.

2.2.6 Model Parameter Optimization

Optimization of model parameters is an important part of the MT system training pipeline. Each
feature function of the log-linear model has its own weight that needs to be optimized in order to
reflect its impact on the translation quality. TheMinimumError Rate Training (MERT) algorithm
is an established algorithm to get the optimal weights for the log-linear model.

Minimum Error Rate Training

The minimum error rate training algorithm (Och; 2003) is a widely used method in statistical
MT to optimize log-linear model parameters. This process, which is called tuning, is generally
applied after the training of the individual feature functions and before the actual deployment of
the translation system (see Figure 2.6). The goal of this optimization phase is to maximize the
performance of the MT system on a small sample of data, called the development set, in order to
improve the performance on unseen data as well.

Given model weights λi (i ∈ 1 . . .N), the algorithm performs a one-dimensional line minimi-
zation along the i-th dimension in an N-dimensional error space, defined by some MT quality
metric. The line minimization along dimension i represents optimizing the parameter λi, while
keeping all other parameters fixed. This search is repeated along all dimensions until the local
optimum is found. To avoid finding a poor local optimum, the algorithm starts from several ran-
dom initial parameter values. In order to reflect the change in translation quality due to the altered
model weights, the development set is repeatedly translated and the search for better parameters
is continued until no improvement in translation quality can be reached.
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. .̂e = argmax
e

N

∑
n=1

λnhn(e, f ) .2) Optimization of Weights λn

.1) Training of Features hn(e, f )

.3) Search for the Best Translation argmax
e

Figure 2.6: The statistical MT system training can be decomposed into 1) training of feature
functions and 2) optimization of model parameters. Then, the system is ready for 3) decoding.

This method, however, requires a reliable automatic measure of translation quality for the
optimum search. The metric should correlate to human assessment of MT quality. This is a
difficult task because even humans sometimes do not agree which translation is better. Moreover,
it should be easy and fast to compute so that it does not slow down the MERT algorithm.

Metrics

Almost all MT quality metrics2 follow the same principle: they compute some similarity score to
a human reference translation. This approach proved to provide the best results when evaluating
MT system output, even thought it requires a reference set of translations to bemanually translated
by human translators. Nevertheless, the translation can be done only once and it can be reused
many times if we guarantee that the reference set is not included in the training data for MT
systems. Generally, only one reference translation is sufficient to compute the metric score but
some metrics take advantage of several human translations of the same sentence. This can help
the metric to compute a more reliable score because one sentence can often be translated in many
different ways with the same meaning.

One of the first MT metrics with an acceptable human judgment correlation was BLEU
(Papineni et al.; 2002). It is based on the geometric mean of n-gram precision and uses brevity
penalty to penalize candidate translations that are shorter than the reference. Since its introduc-
tion, BLEU has established as the golden standard in MT quality evaluation. Therefore, the first
implementations of MERT used BLEU as the MT quality metric.

Many other MT quality metrics have been designed. The development of new metrics is

2We understand under MT metric only some measure of translation quality that can evaluate MT system output.
There is no direct relation to metrics and metric spaces known from the field of mathematical analysis.
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still ongoing and the metrics’ performance is regularly measured in global evaluation campaigns
(Przybocki et al.; 2008; Callison-Burch et al.; 2010). It is out of scope of this thesis to name all
MT metrics, but we provide a short list of the best known ones:

• WER (Su and Wu; 1992),

• PER (Tillmann et al.; 1997),

• NIST (Doddington; 2002),

• GTM (Turian et al.; 2003),

• Meteor (Banerjee and Lavie; 2005),

• TER (Snover et al.; 2006),

• CDER (Leusch et al.; 2006) or

• SemPOS (Kos and Bojar; 2009).

Any of them can be in principle used in MERT instead of BLEU to find the optimal model
parameters.
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Chapter 3

Rich Annotation in MT Evaluation

In this chapter we investigate the effect of using an MT quality metric which takes advantage of
rich annotation as the translation quality metric in the MERT algorithm.

3.1 Motivation

Using a metric that requires rich annotation of the text, e.g. part of speech or lemma, can help to
evaluate the text on a more suitable level of detail for the given language. We can work on the
level of lemmas instead of the surface forms if the language contains too many forms of one word,
and the translation system is not able to generate the correct word forms. The task to translate
to the correct lemma is easier for the translation system. The metric can give credit at least for
correct lemmas if the system was not capable of generating the correct word forms.

On the other hand, it is possible to use rich annotation to obtain more fine-grained information
about the translated words. We can analyze the translated sentences by available annotation tools
and check that the sentences have appropriate grammatical structure or that all words are assigned
the correct part of speech.

Thus, rich annotation gives us the opportunity to evaluate the translated text more accurately
than metrics working only on surface forms. In this thesis we use a metric called SemPOS,
which works on the level of lemmas to overcome the data sparseness problem for Czech as a
rich morphology language, and which segments words into categories given their semantic part
of speech to increase the evaluation accuracy.
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3.2 SemPOS

The MT evaluation metric SemPOS (Kos; 2008; Kos and Bojar; 2009) is inspired by metrics
based on overlapping of linguistic features in the reference and in the translation (Giménez and
Márquez; 2007).1 It operates on so-called “tectogrammatical” representation of the sentence
(Sgall et al.; 1986; Hajič et al.; 2006), a deep-syntactic dependency tree that includes only content
words as nodes. SemPOS disregards the syntactic structure and uses semantic part of speech
(sempos) of the words (noun, verb, adjective, etc.). There are 19 fine-grained part-of-speech
classes. For each semantic part of speech the overlapping is computed as

overlapping(t) =
∑
i∈I

∑
w∈ri∩ci

min(count(w, t,ri),count(w, t,ci))

∑
i∈I

∑
w∈ri∪ci

max(count(w, t,ri),count(w, t,ci))
(3.1)

The semantic part of speech is denoted t; ci and ri are the candidate and reference translations
of sentence i, and count(w, t,rc) is the number of words w with type t in rc (the reference or the
candidate). The matching is performed on the level of lemmas, i.e. no morphological information
is preserved in ws.

The final SemPOS score is obtained by macro-averaging over all parts of speech:

SemPOS=
1
|T | ∑

t∈T
overlapping(t) (3.2)

where T is the set of semantic part-of-speech types.

3.2.1 Correlation with Human Judgments

Kos and Bojar (2009) and Bojar et al. (2010) report that SemPOS performs generally better than
BLEU, NIST or GTM (all of them are metrics working on surface forms) on Czech. The reason
for this is illustrated in Figure 3.1 and Figure 3.2. SemPOS ignores word order, and all aux-
iliary words (prepositions, particles of complex verbs) are omitted. Only base forms (lemmas)
of content words are considered. The risk of not giving credit for a word due to a difference in
morphological form and of unjustified overestimation due to random agreement in sequences of
tokens is thus much lower.

Bojar et al. (2010) also evaluate the performance of the linear combination of SemPOS and
BLEU. TheBLEU score should compensate for one of themajor drawbacks of SemPOS: SemPOS
completely ignores the word order, which is too coarse even for languages with relatively free

1There are two versions of this article which differ in the overlapping formula. We use the formula from the
article which is available at one of the author’s homepage http://www.lsi.upc.edu/~jgimenez/pubs.html.
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word order like Czech. Thus, weighted linear combination of SemPOS and BLEU (computed
on lemmas) should compensate for this. The reported correlation for the linear combination
of SemPOS and BLEU was indeed slightly better on Czech that for the plain SemPOS score.

SRC Congress yields: US government can pump 700 billion dollars into banks
REF kongres ustoupil : vláda usa m̊uže do bank napumpovat 700 miliard dolar̊u

sys1 kongres výnosy : vláda usa m̊uže čerpadlo 700 miliard dolar̊u v bankách

sys2 kongres vynáš́ı : us vláda m̊uže čerpat 700 miliardu dolar̊u do bank

Figure 3.1: Too much focus on sequences in BLEU: sys2’s output is better but does not score
well. BLEU gave credit to sys1 for 1, 3, 5 and 8 fourgrams, trigrams, bigrams and unigrams,
resp., but only for 0, 0, 1 and 8 n-grams produced by sys2. Confirmed sequences of tokens are
underlined and important errors (not considered by BLEU) are framed.

REF kongres/n ustoupit/v :/n vláda/n usa/n banka/n napumpovat/v 700/n miliarda/n dolar/n

sys1 kongres/n výnos/n :/n vláda/n usa/n moci/v čerpadlo/n 700/n miliarda/n dolar/n banka/n

sys2 kongres/n vynášet/v :/n us/n vláda/n čerpat/v 700/n miliarda/n dolar/n banka/n

Figure 3.2: SemPOS evaluates the overlap of lemmas of content words given their semantic part
of speech (n, v, . . . ). Underlined words are confirmed by the reference.

3.3 Experiments

In our experiments we use SemPOS and the linear combination of SemPOS and BLEU as trans-
lation quality metrics in MERT to tune for better model parameters. By using SemPOS as the
MERT optimization metric we would like to find better model weights that would better reflect
human assessment of MT quality and provide MT system output of higher quality.

3.3.1 System Configuration

We trained the phrase-base statisticalMT systemMoses2 on two datasets taken from theCzEng 0.9
corpus (Bojar and Žabokrtský; 2009):

2Moses is an open-source phrase-based decoder that implements the beam-search algorithm to find the best
translation of a source sentence. It is widely used by the MT research community for developing and testing new
features.
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• Small - consisting of the news domain of CzEng,

• Large - consisting of all CzEng domains except navajo and additionally the EMEA corpus
(Tiedemann; 2009).

Figure 3.3 provides word and sentence counts for both datasets. We use WMT103 devel-
opment sets for model parameter optimization (news-test2008) and evaluation (news-test2009).
The BLEU scores reported in this thesis are based on truecased word forms in the original token-
ization as provided by the decoder. The ± value given with each BLEU score is the average of the
distances to the lower and upper empirical 95% confidence bounds estimated using bootstrapping
(Koehn; 2004).

Sentences Words
English Czech

Small 126,144 2,883,893 2,645,665
Large 7,544,465 89,135,590 79,192,822

Figure 3.3: Statistics for the Small and Large training datasets.

We use the following Moses configuration:

• Standard GIZA++ word alignment based on both source and target lemmas.

• Two alternative decoding paths (forms always truecased):

– form+tag → form,

– form → form.

The first path is more specific and helps to preserve core syntactic elements in the sentence.
The second path serves as a back-off.

• One 5-gram Czech language model of truecased forms trained on the Czech part of the
datasets using SRILM (Stolcke; 2002).

• Lexicalized reordering (orientation-bidirectional-fe) based on forms.

Additionally, we applied significance filtering (Johnson et al.; 2007) of phrase tables (only) for
the Large dataset, because the phrase tables were too large to fit into memory. We set filter value
to a+e and the cut-off threshold to 20.

3http://statmt.org/wmt10/
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In our experiments we use Z-MERT (Zaidan; 2009), a recent implementation of theMERT al-
gorithm, instead of the standard Moses MERT.We implemented a wrapper script zmert-moses.pl
to launch Z-MERT. It supports most of the parameters of the older script mert-moses-new.pl.
More details about the supported parameters are included in Appendix B.

3.3.2 Integration into MT Pipeline

The SemPOS metric requires to assign the (deep-syntactic) lemma and sempos tag to all autose-
mantic words. The original SemPOS implementation uses an external annotation tool TectoMT
(Žabokrtský and Bojar; 2008)4 for the linguistic processing. TectoMT follows the complete
pipeline of tagging, surface-syntactic analysis and deep-syntactic analysis, which is the best but
rather costly way to obtain the required information. Since we need to analyze whole n-best lists
in the MERT algorithm, this process would be too time consuming.

Instead, we apply TectoMT to the training data, express the (deep) lemma and sempos as
additional factors using a blank value for auxiliary words, and use Moses factored translation
to translate from English forms to triplets of Czech form, deep lemma and sempos. Factored
translation models (Koehn et al.; 2007) allow words to be vectors of features.

Figure 3.4 shows that this approach can save significant amount of time compared to the
TectoMT analysis, where one MERT experiment can last more than three days without any im-
provement in the final score. The SemPOS scores for the TectoMT path are lower and the BLEU
scores more unstable than for the factored translation, which suggests that the TectoMT analysis
penalizes ungrammatical sentences whereas factored translation blindly assigns the most prob-
able lemma and sempos tag to each word.

BLEU SemPOS Runtime Iters
TectoMT 9.80±0.40 29.11 3d15h59m 20

7.88±0.37 29.16 3d09h30m 20
Factored 9.20±0.45 29.41 11h29m 20

translation 10.03±0.41 30.45 8h37m 20

Figure 3.4: Processing of n-best lists with TectoMT is very time consuming compared to factored
translation. The table shows two MERT runs for each path optimized towards SemPOS, with
attributes for SemPOS provided either after the translation (TectoMT) or generated during the
translation (factored translation). Translation and annotation (only in TectoMT) tasks were run
on 15 CPUs in parallel.

4http://ufal.mff.cuni.cz/tectomt/
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3.4 Results

The obtained results suggest that optimizing model parameters towards SemPOS does not bring
the desired improvement in translation quality. We use the SemPOS and BLEU metrics to mea-
sure the quality of the final system output.

Small Data

Figure 3.5 shows BLEU and SemPOS scores for the Small data. The first two lines in the table
show the metric scores for the system optimized towards BLEU, and the following two lines
show metrics scores for the system optimized towards SemPOS.

Weights Scores
BLEU SemPOS BLEU SemPOS

1 0 10.44±0.41 30.89
1 0 10.41±0.41 30.74
0 1 10.03±0.41 30.45
0 1 9.20±0.45 29.41
1 1 9.58±0.43 30.36

2 1 10.17±0.39 30.48
3 1 10.27±0.44 30.96
5 1 10.29±0.42 30.58
1 2 9.82±0.41 30.56
1 3 9.28±0.40 30.18
1 5 8.92±0.40 29.75

Figure 3.5: Optimization towards BLEU, SemPOS and the linear combination of SemPOS and
BLEU on the Small dataset. The best results are obtained when optimizing towards plain BLEU,
or a linear combination of SemPOS and BLEU with the dominance of BLEU.

It is interesting that both metric scores drop if we use SemPOS for tuning the model parame-
ters. This could be explained that SemPOS is not stable in evaluating the MT output and misleads
the MERT algorithm into choosing suboptimal parameter values.

The best BLEU score (10.44) is obtained when we optimize towards plain BLEU. However,
the best SemPOS score (30.96) is not obtained when optimizing towards SemPOS but towards a
linear combination of BLEU and SemPOSwith weights 3:1. The explanation could be that BLEU
maintains the stability and SemPOS helps a little bit with lexical choice of words. Nevertheless,
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the improvement in SemPOS score is only marginal compared to one of the scores obtained for
plain optimization towards BLEU (30.89).

All linear combinations with the domination of SemPOS over BLEU result in drop in both
scores: the higher the weight of SemPOS the higher the drop. This supports the hypothesis that
SemPOS destabilizes MERT and prevents it from finding the optimal values even for SemPOS
itself.

Large Data

In general, the instability of SemPOS is not as high on the Large data as on the Small data.
Figure 3.6 shows that the change in SemPOS scores is rather moderate. Moreover, the highest
SemPOS scores are achieved when optimizing towards SemPOS or a linear combination of
SemPOS and BLEU with the dominance of SemPOS.

Weights Scores
BLEU SemPOS BLEU SemPOS

1 0 12.77±0.47 32.19
1 0 12.62±0.46 31.75
0 1 11.06±0.40 32.80
0 1 11.37±0.41 32.24
1 1 12.42±0.46 32.63

2 1 12.71±0.47 32.34
3 1 12.75±0.47 31.96
5 1 12.84±0.50 32.18
1 2 12.49±0.47 32.67
1 3 12.08±0.43 32.77
1 5 12.34±0.45 32.39

Figure 3.6: Optimization towards BLEU, SemPOS and the linear combination of SemPOS and
BLEU on the Large dataset. The best BLEU score (12.84) is obtained for the linear combination
of SemPOS and BLEU with weights 1:5, however, the score is not significantly better than when
optimizing towards plain BLEU (12.77). The best SemPOS score (32.80) is obtained when using
plain SemPOS as optimization metric.

However, whenwe optimize towards plain SemPOSwe can still see a significant drop in BLEU
score: from 12.77 to 11.06. On the other hand, SemPOS scores stay relatively high even if we use
plain BLEU as the optimization metric. This leads to the observation that optimization towards
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plain BLEU leads to a relatively high SemPOS score, but optimization towards plain SemPOS
does not necessarily mean a high BLEU score.

The linear combination of SemPOS and BLEU in MERT does not bring any significant
change in metric scores. Nevertheless, we can observe that the inclusion of BLEU in the lin-
ear combination stabilizes the overall scores of both metrics.
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Chapter 4

Source-Context Model

In this chapter we describe an extension of the log-linear model with the source-context model.
This extension should help the decoder to prefer more suitable translations in the context of the
source sentence and improve the translation quality.

The source-context model consists of a set of individual source-context features. We under-
stand under a source-context feature any function that takes a source sentence and a translation
phrase pair (consisting of a source and a target phrase) as input and returns some score for the
phrase pair in the context of the source sentence. We assume that the source phrase is a substring
of the sentence.

We restrict the context only to the current source sentence. It would be possible to consider
wider context as surrounding source sentences or even the whole source document. However,
this approach would not be compatible with the decoder we use, which considers sentences as
separate units and translates them individually. Target side context would be also a potential way
to improve translation quality but we could evaluate only the context of the target text which has
been generated so far.

4.1 Motivation

The biggest advantage of the source-context model is that it canmakemore fine-grained decisions
than the basic log-linear model based only on the translation model. Without the source-context
model the decoder evaluates each phrase translation only in global context, i.e. it cannot dif-
ferentiate whether a phrase has a specific translation in a given context, and it must rely on the
language model that it will be able to sort out the improbable translations.
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We see the following potential benefits of the source-context model:

• Better lexical choice
The source sentence can provide valuable information about the context in which the source
phrase was uttered. Therefore it is possible to select a better translation. We can take the
word bank and its possible translations (see Section 1.1) as an example.

Let’s assume that we need to translate the phrase bank of snow to Czech, which would
be translated as hromada sněhu, but we have not seen the phrase bank of snow in our
training data. Therefore we need to constitute the phrase from smaller phrases consisting
of individual words. If we always took the most probable translation of each word, we
would most certainly get a translation banka sněhu, since bank usually means a financial
institution. However, this is not the desired translation.

With the source-context model we can take the surrounding words, e.g. snow, and look
whether they occur near the word bank in the corpus. We will get several occurrences of
snow bankwith appropriate translation bank→ hromada, but no translation bank→ banka.
This can force the decoder to select the preferred translation option hromada instead of the
globally preferred option banka, if the source-context feature overweighted the translation
model. See Figure 4.1 for illustration.

..

bank → banka 0.9
bank → hromada 0.1

· · ·
of snow → sněhu 1.0

.a)

.
Source-context corpus
English: . . . snow bank . . .

Czech: . . . hromada sněhu . . .

.b)

.bank .of snow

.banka .hromada .sněhu

.
bank TM SCX TM × SCX
banka 0.9 0.1 0.09

hromada 0.1 1.0 0.1
.c)

Figure 4.1: Illustration of the influence of a source-context feature which uses surrounding words
to promote more suitable translations; a) phrase table, b) example of a co-occurrence of bank and
snow in the source-context corpus, c) feature values for the translationmodel (TM) and the source-
context feature (SCX) with the resulting scores, which prefer hromada as a translation of bank.
The feature score SCX for banka is low because this word does not occur in the source-context
corpus near snow.
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• Better selection of word forms
Selected source-context features can help the MT system to generate better word forms of
translated words. They can filter out words forms in the target language that are not suitable
in the given source sentence context. We show this effect on the sentence you see a cat
which we would like to translate to Czech. In English, there is fixed word order: sub-
ject, in nominative, generally precedes the content bearing verb, and object, in dative or
accusative, follows the verb in a normal sentence. We can use this observation when we
translate the phrase a cat. Because it follows a content verb, the Czech translation will be
probably in some other case than nominative and the source-context feature can reflect this
fact. This situation is depicted in Figure 4.2: the translation table probabilities prefer kočka
in nominative because it appeared most of the time in nominative in the training corpus.
On the other hand the source-context feature uses the knowledge about the preceding word
to alter the probabilities in favor of kočcedat and kočkuacc. Thus, the preferred translation
kočkuacc has a better chance to be chosen by the decoder.

.

.

..a cat

..VB a cat

.

Form Prob Glossary
kočka 0.4 catnom

kočce 0.4 catdat

kočku 0.2 catacc

.

Form Prob Glossary
kočka 0.1 catnom

kočce 0.5 catdat

kočku 0.4 catacc

.Translation table:

.Source-context feature:

.Sentence: you|PPR see|VB a cat

Figure 4.2: Source context can support better word form choice on the target side.

We showed twomotivation examples that the source-context model in form of source-context
features can improve phrase-basedMT. Before we start with the description of the source-context
model more in detail we provide an overview about past approaches to source context in MT
in Section 4.2. Then, we describe the implemented features in Section 4.3, and provide some
implementation details in Section 4.4. Finally, we discuss our experiments in Section 4.5 and
provide results in Section 4.6.
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4.2 Past Work

Several approaches to source context in MT have been examined in recent years. They range
from incorporating a word sense disambiguation (WSD) module into statistical MT decoder to
help with better lexical choice. Other approach, inspired by the WSD techniques, decomposed
the external WSD module into many separate source-context features and used them directly in
the log-linear model. Finally, source context has been also used to rerank n-best lists to select the
best sentence translation.

4.2.1 Word Sense Disambiguation

Even though WSD represents a separate research field in natural language processing, it can help
machine translation to some extent, because it tries to solve a similar subproblem as MT does:
we want to find the most accurate meaning/translation of a word/phrase in a given context both
in WSD and MT. Therefore, it is reasonable to use a technique which performs well in WSD to
improve MT quality. Currently, state-of the-art WSD systems can provide quite accurate results,
which makes them a promising approach to improve MT.

However, there are several differences between WSD and MT. WSD tries to get the most
plausible meaning only of one word, while we want to get the best translation for a sequence
of words in MT. Moreover, WSD is typically a classification task which has a predefined sense
inventory. On the other hand, MT systems need to be capable of translating any arbitrary sentence
and common dictionaries and phrase tables do not often contain all possible translations of a word.
Therefore the MT task is much more difficult than plain word sense disambiguation.

WSD for Phrase-Based MT

One of the first experiments with WSD in statistical MT was done by Carpuat and Wu (2005).
They incorporated a dedicated WSD module into a phrase-based MT system. They used two
different approaches:

• First, they used the WSD module to restrict possible translation options for a given phrase
to agree with the WSD prediction of some source word. Thus, they restricted the set of
translation options filtering out phrases that contained translations inconsistent with the
WSD module.

• Second, they used WSD in post-processing of a sentence when they directly replaced a
translated word by the WSD prediction.
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The results for Chinese to English translation were not very promising because none of the
approaches did help to increase the MT quality. Since the WSD module was limited only to
individual words, it did not have any significantly positive effect on the translation quality. Gen-
erally, the WSD module decreased the performance of the MT system with the exception of a
few words that were disambiguated better. The authors modified their approach from disambig-
uation of single words to disambiguation of whole phrases in Carpuat andWu (2007) and reported
improvement in translation quality for the same language pair (see Section 4.2.2).

WSD for Hierarchical MT

Another branch of research was focused on hierarchical MT systems. Chan et al. (2007) in-
tegrated an external WSD system into a hierarchical MT system, Hiero Chiang (2007). Hiero
implements the synchronous context-free grammar (CFG) formalism. Synchronous CFG is an
extension of the classical context-free grammar to pairs of languages. The elementary structures
in synchronous CFG are rewrite rules with aligned pairs of right-hand sides

R → 〈γ ,α ,∼〉 (4.1)

where R is a nonterminal, γ and α are strings of terminals and nonterminals, and ∼ is a one-to-
one correspondence between nonterminals in γ and α . A synchronous CFG derivation begins
with a pair of linked start symbols. At each step, two linked nonterminals are rewritten by the
components γ and α from the right-hand side of a rule until no rule can be applied. Hiero follows
the log-linear model with feature functions defined on derivations covering the source sentence.

Chan et al. (2007) defined probability

Pwsd(t|s) (4.2)

of theWSD classifier and added this probability as a new feature to the log-linear model. Pwsd(t|s)
is the contextual probability of choosing t as a translation for s where t is some substring of
terminal symbols inα from ruleR, and s some substring of terminal symbols in γ . This probability
was defined only on nouns, verbs and adjectives, which were part of s. Therefore the WSD
module did not cover all possible synchronous CFG rules, and penalized1 rules for which the
probability was defined. Thus, it was necessary to add a second feature that would reward rules
suggested by the WSD classifier

Ptywsd = exp(−|t|) (4.3)

1Remember that the log-linear model tries to maximize sum of probability logarithms. Since the highest value
for probability is one, the logarithm is never a positive value.
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where |t| is the length of the suggested translation t, to compensate for the negative value of the
first feature.

The contextual probability Pwsd(t|s) was computed for every rule R considered during de-
coding using precomputed knowledge about lexical collocation, part-of-speech collocation, and
wide context.

• Lexical Collocations
Lexical collocation considered only local context. Three features were defined on sur-
rounding tokens:

– token immediately to the left of s,

– token immediately to the right of s,

– tokens immediately to the left and right of s.

• Part-of-Speech Collocations
For parts of speech, features were defined on part of speech of tokens on the following
positions relative to s:

– token immediately to the left of s,

– current token s,

– token immediately to the right of s.

• Wide Context
Wide context considered all unigrams (single words) in the surrounding context of s. These
unigrams could be in a different sentence than s, however the authors do not provide details
about the maximum span of this context. They performed feature selection on surrounding
words by including a unigram only if it occurred three or more times in some sense of s in
the training data.

The authors reported statistically significant improvements in BLEU score over the baseline
Hiero system for Chinese to English translation direction. Nevertheless, the achieved scores were
only slightly better than the baseline system.

4.2.2 Disambiguation of Phrases

Later research suggests that if we disambiguate whole phrases instead of individual words we
can obtain even better performance of MT systems.
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Dedicated WSD Module

Instead of forcing the decoder to match translations of individual words selected by a WSD
module, Carpuat and Wu (2007, 2008) enhance a phrase-based MT system by a WSD model
to provide a context-dependent probability distribution over the possible translation options for
a given source phrasal lexicon entry.

The advantage of this approach is that the basic unit to disambiguate are whole phrases, in-
stead of disambiguating individual words as in WSD. The sense candidates are provided by the
baseline phrase tables. The probability distribution over the possible target translation candidates
is computed using feature set containing:

• bag of all words in the source sentence,

• local collocations,

• position-sensitive local POS tags,

• basic dependency features.

Unfortunately, the authors are not specific enough how they used these features. They report
that the contextual phrase-based lexicon improved the translation quality on a Chinese to English
translation task. The results were consistently better for eight different MT metrics.

Rich Log-Linear Features

One of the most straightforward ways to use source-context information during decoding is to
define a set of features

p(e| f , fcontext) (4.4)

where e is the target language phrase, f is the source language phrase, and fcontext is the context
of the source phrase in the sentence in which it was observed. Such features can be directly used
in the log-linear model, and the model can automatically take care of finding correct weights for
the features. This approach was chosen by Gimpel and Smith (2008) who directly added a set of
feature functions to the log-linear phrase-based model. We will use the notation f l

k for the source
phrase f if we want to stress that is begins at position k and ends at position l in the sentence.

The feature functions were divided into following subsets:

• Lexical Collocations
For a source phrase f l

k , Gimpel and Smith (2008) included context of a the m-length se-
quence before it ( f k−1

k−m) and them-length sequence after it ( f l+m
l+1 ). They used context lengths
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for m = {1,2}, padding sentences with m special symbols at the beginning and at the end.
For each value of m, they included three features:

– p(e| f , f k−1
k−m), the left lexical context;

– p(e| f , f l+m
l+1 ), the right lexical context;

– p(e| f , f k−1
k−m, f l+m

l+1 ), both sides.

• Part-of-Speech Collocations
They used the same set of the lexical context features described above, but with POS tags
replacing words in the context. They also include a feature which conditions on the POS
tag sequence of the actual phrase being translated.

• Syntax
The following parse tree features were used:

– Is the phrase (exactly) a constituent?

– What is the nonterminal label of the lowest node in the parse tree that covers the
phrase?

– What is the nonterminal label or POS of the highest nonterminal node that ends im-
mediately before the phrase? Begins immediately after the phrase?

– Is the phrase strictly to the left of the root word, does it contain the root word, or is it
strictly to the right of the root word?

• Position in Sentence
These features used information about the position of the phrase f l

k in the source sentence
f , the phrase length, and the sentence length n.

– Is the phrase at the start of the sentence (k = 1)?

– Is the phrase at the end of the sentence (l = n)?

– A quantization of r = k+ l−k+1
2

n , the relative position in (0, 1) of the phrase’s midpoint
within f . They chose the smallest q ∈ 0.2,0.4,0.6,0.8,1 such that q > r.

– A quantization of c = l−k+1
n , the fraction of the words in f that are covered by the

phrase. They chose the smallest q ∈ 1
40 ,

1
20 ,

1
10 ,

1
5 ,

1
3 ,1 such that q > c.

The additional data which were required to compute the context features were extracted along
with the phrase pairs during the execution of the standard phrase extraction algorithm, and the
feature values were directly used during scoring the phrases by the decoder.

38



The selection of features was quite similar to features used by Carpuat and Wu (2007), al-
though Gimpel and Smith (2008) also additionally included positional features.

Gimpel and Smith (2008) reported variable performance of individual feature types ranging
across test sets and language pairs. For Chinese to English translation, statistically significant
improvement was measured for lexical collocations on one test set, and POS collocations and
syntactic features on another test set. The performance for German to English translation was
mixed, sometimes causing decrease in translation quality.

CCG Tags

Another approach to use source-context information in MT is mentioned by Birch and Osborne
(2007) who used combinatorial categorial grammar (CCG) tags to include syntactical information
into phrase-based MT system. They enriched the source side by CCG tags and used the tags as
additional factor in factored translation.

Combinatorial categorial grammar is a formalism that assigns tags to individual words which
reflect syntactical relations to other words. To put it simple, these tags contain information about
additional words to fill required slots of a word to make it a well-formed sentence. For example
a noun can be assigned a tag that says that a verb is required, since the simplest sentence consists
of a noun and a verb. Words can be usually used in various syntactic structures and the same
word can be assigned different CCG tags. For each word, we can then create a lexical entry with
possible CCG tags.

There are two approaches to CCG tags in MT described in (Birch and Osborne; 2007). The
first one suggests to use CCG tags on the target side and run an additional language model over
them. However, we are interested only in the source side features in this thesis, hence we will
discuss only the second approach. The authors extended an existing log-linear phrase-based MT
system by adding the translation probabilities

P(tw|sw+ccg) (4.5)

which represent the conditional probability of translating source phrase sw+cgg annotated with
CCG tags to the target phrase tw. They did not use back-off techniques to deal with sparse data
but used a log-linear combination of feature functions defined over the source and target phrase.

The results obtained from experiments performed on German to English translation show that
the feature functions defined over each source and target phrase should not be directly combined
with the phrase-based log-linear model. They should be rather computed separately and only
one cumulative score should be passed to the general log-linear model in order to improve the
translation quality. The explication is that by including more but less informative features in
one model, too much explanatory power may be transfered to the more specific features. In other
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words, MERT training tends to overestimate the (negative or positive) weight for features that fire
very rarely. Smith et al. (2005) demonstrated that using ensembles of separately trained models
and combining them in a logarithmic opinion pool leads to better parameter values.

Trigger-Based Lexicon Model

Mauser et al. (2009) proposed the trigger-based lexicon model

p(e| f1, f2) (4.6)

based on triplets of words consisting of two source words f1, f2 and one target word e . The
two source words can be viewed as triggers for a target word from the triplet. The triggers can
originate from words of the whole source sentence, also crossing phrase boundaries of the con-
ventional bilingual phrase pairs. The proposed model is able to capture long-distance effects such
as verb splits or adjustments to lexical choice of the target word given the topic-triggers of the
source sentence. The authors applied this model directly when scoring bilingual phrase pairs.
Given a trained model for p(e| f1, f2), they computed the feature score htrip of a phrase pair (ē, f̄ )
as

htrip(ē, f̄ , f J
0 ) =−∑

i
log

(
2

J · (J+1)∑
j

∑
j′> j

p(ēi| f j, f j′)

)
(4.7)

where i moves over all target words in the phrase ē, the second sum selects all source sentence
words f J

0 including the empty word, and j′ > j covers the rest of the source sentence right of
the first trigger. Negative log-probabilities were taken and normalized to obtain the final score
(representing costs) for the given phrase pair. They trained the model on a subset of the overall
training data because of the enormous number of triplets. The subcorpus contained 1.4M sentence
pairs with 32.3M running words on the English side.

The authors reported a consistent improvement in BLEU and TER score for Chinese to Eng-
lish and Arabic to English translation over two test sets. This suggests that the context of the
whole source sentence can disambiguate the target phrase without taking account of which part
of the source sentence contributed to the target phrase.

4.2.3 Sentence-Level Disambiguation

Discriminative Lexicon Model

Mauser et al. (2009) also proposed a discriminative word lexicon model and integrated it into the
standard phrase-based MT. The core of their model was a classifier that predicts target words,
given the words of the source sentence. The structure of the source as well as the target sentence
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was neglected in the model. They modeled the probability of the set of target words in a sentence
e given the set of source words f . For each word in the target vocabulary, they calculated a
probability for being or not being included in the set. The probability of the whole set was the
product over the entire target vocabulary VE:

P(e|f) = ∏
e∈e

P(e+|f) · ∏
e∈VE\e

P(e−|f) (4.8)

The event e+ denotes that the target word e is included in the target sentence and e− if not.
Theymodeled the individual factors P(e|f) of the probability in Equation 4.8 as a log-linear model
using the source words from f as binary features

φ( f , f) =

{
1 if f ∈ f
0 else

(4.9)

and lambda weights λ f ,·:

P(e+|f) =
exp
(
∑ f∈f λ f ,e · φ( f , f)

)
∑e+,e− exp

(
∑ f∈f λ f ,e · φ( f , f)

) (4.10)

The authors used the probability P(e|f) as an additional feature in the log-linear model. They
argue that the discriminative word lexicon model, which completely disregards the structure in
source and target sentences, is a suitable complement of the phrase model in phrase-based MT
because it is able to predict global aspects of the sentence like tense or vocabulary changes in
questions, while the phrase model is good in predicting translations in a local context. The re-
sults show similar performance, i.e. consistent improvement over the baseline system, as for the
trigger-based lexicon model described in the section above.

N-best List Reranking

A completely different approach to source-context information was reported by Sudoh et al.
(2008). Instead of using source-side information directly in the decoding process, they used a
hierarchical system to generate an n-best list which was then reranked using source-context fea-
tures. They used a large number of sparse binary features for the reranking, among them also
context-dependent word pair features. These features were bag-of-words of both source- and
target-side in the previous sentence, where target-side context words were extracted from n-best
translation candidates.

The approach of Sudoh et al. (2008) is interesting because they used context words from
the directly preceding sentence and not from the current sentence. Their motivation was to ex-
tract contextual information from dialogue utterances, when the word selection depends on the
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previous utterances. However, the context features turned out to capture many general word
co-occurrences and the reranker failed to distinguish better translation candidates from others.

4.3 Log-Linear Features

In this section, we discuss our approach to source context in phrase-based MT. We use a similar
approach as Gimpel and Smith (2008) who defined a wide range of log-linear feature functions
and integrated them directly into the log-linear model.

4.3.1 Collocation Features

Gimpel and Smith (2008) reported that the most useful source-context feature used part-of-speech
tags of the surrounding words of a phrase. It requires that the source sentence is analyzed by a
tagger and all words are assigned a POS tag.

Rich Factors

We decided to extend this approach to additional factors that could also bring an improvement in
MT quality. We used the TectoMT platform to annotate the Small and Large datasets2 mentioned
in the previous chapter with the following factors:

• pos - part of speech,

• lemma - tectogrammatical (deep) lemma,

• formeme - contains information about the morphosyntactic form of a word, e.g. the case
and the lemma of the preposition for nouns; see Žabokrtský et al. (2008),

• sempos - semantic part of speech.

The last three factors are defined only for content words, which have an explicit representation
on the tectogrammatical (deep syntactic) layer. The remaining words are assigned blank values.

We define two types of collocation features on the surface form and the above mentioned
factors:

• exact collocation and

• loose collocation.
2We use the same annotated data as in Bojar and Kos (2010).
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Exact Collocation

Under exact collocation we understand the same type of collocation as Gimpel and Smith (2008)
used in their work. For the phrase f l

k , which begins at position k and ends at position l, we define
the contextual probability

pExact f actor(e| f actork−1
k−le f t , f l

k, f actorl+right
l+1 ) (4.11)

where e is the target phrase, le f t is the size of the left context and right the size of the right
context of the phrase f l

k; f actork−1
k−le f t and f actorl+right

l+1 are sequences of factors of the type f actor
surrounding the phrase f l

k . It is possible to define different lengths of the left and right context;
context of zero lengthmeans that it is not considered at all. The contextual probability is estimated
from frequency counts from the training data and it requires that the context is exactly matched
when extracting the counts. Figure 4.3 shows an example of an exact collocation feature on POS
tags with the left context of two factors and the right context of one factor.

.. ..PRP VBD ..a cat ..VBG .. .tag1 tag2 . .a cat . .tag3

....

....

.Corpus
.Source phrase (with context)

.=? .=?

.I|PRP saw|VBD a cat chasing|VBG a|DT mouse|NN

Figure 4.3: Exact collocation features require that the left and the right context of a phrase match
in the given factor. The count of phrases with matching context is extracted from the corpus and
used to compute the feature value.

Loose Collocation

While exact collocation requires exact match of the left and right context, loose collocation views
surrounding context as a set of factors and computes how many factors from the context are
confirmed by the training data. The number of confirmed factors is then normalized by the size
of the context. The loose contextual probability is formally defined as

pLoose f actor(e| f actork−1
k−le f t , f l

k, f actorl+right
l+1 ) =

∑
T

|Context( f l
k) ∩Context(Ti)|

|Context( f l
k)|

|T |
(4.12)
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where T is the set of occurrences of the phrase pair 〈 f l
k,e〉 in the training data; Context( f l

k) is
a set of factors from the left and right context of the source phrase f l

k; Context(Ti) is a set of
factors from the left and right source context of the i-th occurrence of the phrase pair 〈 f l

k,e〉 in
the training data. Figure 4.4 shows and example of a loose collocation feature with the left and
right context of three factors.

.. ..#PersPron see ..a cat ..chase - mouse .. .ctx1 ctx2 ctx3 . .a cat . .ctx4 ctx5 ctx6

....

....

.Corpus
.Source phrase (with context)

.#PersPron see chase - mouse .ctx1 ctx2 ctx3 ctx4 ctx5 ctx6

.Context( f l
k) .Context(Ti)

.=?

.I|#PersPron saw|see a cat chasing|chase a|- mouse|mouse

Figure 4.4: Loose collocation features create a set of context factorsContext( f l
k) andContext(Ti)

first (same tokens are used only once). Then, the number of matching factors is counted.

The context cannot cross sentence boundaries for exact nor loose collocation, i.e. the left
context of a word at the beginning of a sentence is always empty and the right context for the last
word in a sentence as well. Alternatively, we could use special values to pad the beginning and
the end of the sentence.

4.3.2 Dependency Features

Dependency features require that the source sentence is parsed by a syntactical parser. We do not
use constituent parse tree as Gimpel and Smith (2008), but dependency tree instead. Therefore
we need to define dependency features on the dependency parse tree structure. We examine three
features:

• depth of the phrase - lowest depth of a word from the phrase in the dependency parse tree,

• is the phrase part of a subtree - is it (fully) connected by the parent-child relation,

• position relative to the sentence root - is the phrase to the right, to the left or does it
contain the root word.
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4.3.3 Logistic Function

Although it would be possible to use the source-context feature values directly in the log-linear
model, we pass their logarithm to the model instead. Since the above mentioned source-context
features return a score from the interval [0,∞), we need to be careful if they returned zero because
the logarithmic function is defined only on the interval (0,∞). Therefore, we use the logistic
function

flogistic(x) =
1

1+ exp(−x)
(4.13)

to transform the feature values first and then apply the logarithm. The logistic function is defined
on real numbers and returns a value from the interval (0,1). The values passed to the log-linear
model undergo to following transformation

log( flogistic( f eature value)) (4.14)

and are always negative. We see an advantage in this approach because the transformed feature
values are from a clearly defined range and the model and especially the parameter optimization
algorithm MERT are not confused by arbitrarily large numbers.

4.4 Implementation Details

In this section we describe the implementation of the source-context model and its integration in
the phrase-based MT system Moses.

Since we would like to compute the source-context features over a richly annotated corpus,
which can itself consume a lot of memory, it would be intractable to store the feature values for
each translation pair explicitly. Instead, we use a data structure that can efficiently compute the
frequency and location of the translation phrase pairs in large bilingual corpora, and estimate the
feature values on-the-fly.

4.4.1 Suffix Arrays

We use a special data structure called suffix array (Manber and Myers; 1990) to compute the
necessary document statistics. This data structure creates an index for searching substrings or
n-grams in a large corpus. Its biggest advantage is that it requires only O(n) space for its own
internal representation, where n is the size of the corpus, but it allows to compute frequency
counts of an arbitrary phrase only in O(log(n)) time.

Abstractly, a suffix array is a lexicographically-sorted list of all suffixes in a corpus, where
a suffix is a substring running from each position in the text to the end. However, rather than
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actually storing all suffixes, a suffix array can be constructed by creating a list of references to
each of the suffixes in a corpus. Figure 4.5 shows how a suffix array is initialized for a corpus
containing the sentence banana (for the sake of simplicity we represent words as single char-
acters, i.e. banana illustrates a sentence containing six words). Each token in the corpus has a
corresponding place in the suffix array, which is identical in length to the corpus. The final state
of the suffix array is shown on the right side of Figure 4.5, which is as a list of the indices of
tokens in the corpus that corresponds to a lexicographically sorted list of the suffixes. The ad-
vantages of this representation are that it is compact and easily searchable. Typically, it is stored
as an array of integers where the array has the same length as the corpus. Because it is organized
lexicographically, any phrase can be quickly located within it using binary search.

..Corpus (with indexed tokens)

.
1 2 3 4 5 6
b a n a n a

.Suffix Array

.

Index Sorted Suffix
6 a
4 ana
2 anana
1 banana
5 na
3 nana

.Probability

.
p(a) = 1

2
p(na) = 1

3

Figure 4.5: Suffix arrays are created by sorting word indexes from the corpus. N-gram positions
in the corpus can be found by two binary searches which locate the beginning and the end of the
n-gram in the suffix array.

Bilingual Suffix Arrays

Suffix arrays need to be adapted for statistical MT so that they can operate over bilingual corpus
(Callison-Burch et al.; 2005). The following components are required:

• Two suffix arrays: one created from the source language part of the corpus, the other one
created from the target language part of the corpus.
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• An index that tells us the correspondence between sentence numbers and positions in the
source and target language corpora.

• A word alignment for each sentence pair in the parallel corpus.

In order to compute the source-context feature values, we need to have a method to locate po-
sitions of the source phrase f in the source corpus given a source-target translation pair 〈 f ,e〉.
This method should be fast to compute because we do not want to spoil the memory advantage
achieved by using suffix arrays. The position extraction method consists of two phases:

1. A set S of source phrase positions in the source corpus, and a set T of target phrase positions
in the target corpus are extracted. The extractions take O(2log(n)) time, where n is the size
of the corpus, since they require two binary searches to locate the beginning and end of the
source/target phrase in the respective corpus.

2. The smaller set of positions is taken (either S or T ) and aligned phrases from the comple-
mental part of the corpus are extracted for each position using the word alignment. If the
aligned phrase matches the respective part of the translation pair, the source corpus position
of the source phrase is stored in a set A of aligned translation pairs. After the second phase,
the set A contains positions in the source corpus at which the source phrase f begins, which
is aligned to the target phrase e.

This approach is very efficient if at least one of the phrases e or f occurs only a few times in
the corpus. However, we also need to handle situations in which both the source and the target
phrase are very frequent in the corpus, e.g. if the phrase pair consists of full stop on both sides.
Since full stop appears (almost) in every sentence, we would have to evaluate every feature on
millions of occurrences if we took the Large dataset (which contains more than 7M sentences).

To solve this problem, we select only a small sample of the maximum size M from all oc-
currences in the set A. This does not influence phrase pairs which occur rarely because they fit
into the limit completely, but reduces large sets to a reasonable size. Callison-Burch et al. (2005)
showed that sample size of 500 elements should be sufficient to estimate translation probabilities
from bilingual suffix arrays. We use the same threshold to limit the size of the set A.

Nevertheless, we also need to limit the size of the sets S and T , which contain positions of
the source/target phrase in the source/target corpus, because we use the smaller one of them to
create the set A. Their size should be larger than M (maximum size of A) because we discard
some occurrences that are not aligned to a phase which matches the other part of the phrase pair.
We limit the size of S and T to be at most five times larger than A, i.e. at most 2500 elements.
This limit is arbitrarily chosen and a more detailed analysis should be done to find the optimal
value.
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Lopez (2007) suggests a different solution to the problem of too frequent phrases. Because
the number of very frequent phrases is (due to Zipf’s Law) relatively small they precompute their
positions in the corpus and store them in a separate lookup table. Nevertheless, we follow the
subsampling approach because it does not require any special precomputation and is easier to
implement.

Corpus with Restricted Factors

Source-context features work with rich annotation of data. Each word from the source sentence,
i.e. the sentence being translated, and the source language training corpus must contain rich
factors which the source-context features work with. When we create the suffix arrays we need to
sort the word indexes according to the lexicographical ordering defined on the words. However,
using a richly annotated corpus would shuffle the preferred lexicographical ordering on surface
forms. For example the POS tags used as a rich factor would force the suffix array to sort the
array according to the current POS tag first and not according to the following word form. Thus,
we would not be able to extract long n-grams correctly. Therefore, we need to create two parallel
corpora for each suffix array:

1. corpus with full annotation,

2. corpus with restricted factors over which we will create the suffix array. Usually, this
corpus will contain only surface forms to represent plain n-grams.

After the suffix array is created, i.e. the indexes are sorted according to the lexicographical
ordering on the restricted factors, we can lookup the richly annotated words in the full corpus
using word indexes stored in the suffix array. We can do that because the positions of words in
the restricted corpus are the same as in the full corpus. When we extract a word with the index
i from the suffix array, we can directly look at the i-th position in the full corpus to get the rich
factors of the word. The restricted corpus is used only for the creation of the suffix array.

4.4.2 Integration into Moses

In our work, we took advantage of an already existing implementation of suffix arrays in Moses.
However, it was necessary to extended it so that it can work with rich factors, and adapt it for the
extraction of bilingual phrases.

The interface betweenMoses and the context features is the class SourceContextFeatures,
an implementation of the abstract class StatefulFeatureFunction. The concrete class con-
tains a pointer to the class SourceContextBilingualDynSuffixArray which stores pointers
to the individual source-context feature classes (see Figure 4.6).
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. .Moses

. .StatefulFeatureFunction

.SourceContextFeatures.SourceContextBilingualDynSuffixArray

.ScxFeature .LooseCollocationScxFeature

.ExactCollocationScxFeature

.DependencyScxFeature

.1

.1..n

Figure 4.6: A simplified UML diagram for classes related to source-context features.

When Moses collects feature scores for a translation option the function

virtual FFState* Evaluate(
const Hypothesis& cur_hypo,
const FFState* prev_state,
ScoreComponentCollection* accumulator)

declared in the abstract class StatefulFeatureFunction is called. Because a translation option
of a source phrase can occur at many different places in the target sentence, the function can be
called many times with similar parameters that differ only in the position of the target phrase
in the target sentence. Since this difference does not have any influence on the source-context
scores, we can cache the already computed values and reuse them later within the same source
sentence. This can significantly speed up the computation time.

Aggregation of Feature Scores

With the increasing number of source-context features the MERT algorithm needs to optimize
more and more feature weights. This negatively influences the runtime of the algorithm and
makes it more difficult to find optimal weights. Birch and Osborne (2007) suggested that using
one cumulative score instead of many less informative ones could have better impact on the trans-
lation quality. Therefore, we implemented the option to aggregate all features into one cumulative
score which is passed to Moses. In the MERT algorithm, only one weight for the aggregate score
needs to be optimized.
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We allow to assign weights to the features which are aggregated. Thus, the aggregate score
is a linear combination of the individual feature scores. The weights need to be optimized by an
external program. We do no provide any method to optimize them automatically.

Moses Configuration

There are two possible ways to pass parameters to Moses. Either through command line argu-
ments or in a configuration file, usually called moses.ini. Source-context features can be con-
figured in both ways. We will describe only the latter one because the command line arguments
require the same format as the configuration file (for more details see theMoses documentation3).

There are two parameters that define which source-context features will be used:

• source-context-file
This parameter consists of six parts which are written on the same line separated by a blank
space:

1. Factor specification for the richly annotated corpus, e.g. '0,1,2-0' which means
that the parallel corpus has three input (source) factors and one output (target) factor.
The factor indexes must match indexes used in other parts of the Moses configuration
file.

2. Factor specification for the restricted corpus, e.g. '0-0'. In this case, only the first
factor on the source and the target side will be used to create (sort) the suffix array.

3. Number of weights passed to the log-linear model.

4. Specification of the source-context features. Individual features are separated by '|'.
The exact form of the specification is described below.

5. Aggregate weights separated by '|', or the string none if all feature scores are passed
to the log-linear model. The number of aggregate weights must match the number of
features.

6. Path to the richly annotated bilingual corpus. The files <path to corpus>.src,
<path to corpus>.trg and <path to corpus>.ali must exist, which contain the
source corpus, the target corpus and the alignment file. The source and target corpus
must contain each sentence on a separate line, and the alignment file must be in the
standard alignment format used by Moses (e.g. '0-1 1-2 2-0'). The direction of
the alignment pairs should be source→target word index.

3http://www.statmt.org/moses/
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• weight-sc
This parameter is followed by the log-linear model weights for the source-context features,
each weight on a separate line. The number of weights must match the number of features.
If aggregate weights were specified in the parameter source-context-file, only one
weight should be used.

Figure 4.7 shows an excerpt from a Moses configuration file which specifies two source-context
features.

# source-context features specification
[source-context-file]
0,1,2-0 0-0 2 e:1:-1|l:2:-5+5 none /home/kos/corpora/corpus-news

# source-context weights
[weight-sc]
0.5
0.5

Figure 4.7: Moses configuration file excerpt specifying two source context features: one exact
collocation feature using the directly preceding factor with index 1, and one loose collocation
feature using five preceding and five following factors with index 2 as context.

Now, we will describe how the features are specified. Exact and loose collocation features
follow the same specification pattern:

<type>:<factor>:<context> (4.15)

where <type> is the type of the feature: the string 'exact' or 'e' for exact collocation, and
'loose' or 'l' for loose collocation; <factor> is the index of the source factor the collo-
cation feature works on, and <context> is the size of the left and right context in the form
'-<left>+<right>', where <left> and <right> are a single digit.

For exact collocation, it is possible to specify the zero context '-0+0'. This is an extension
which does not follow the formal definition of the exact collocation. In this case we do not check
the surrounding context but all factors inside of the current phrase. This option can be viewed as
an alternative to factored translation because we condition the translation options on the factors
of the source phrase. The zero context cannot be used for loose collocation.

Dependency features follow a similar specification pattern as collocation features:

<type>:<dep factor>:<subtype> (4.16)
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where <type> is the string 'dependency' or 'd'; <dep factor> is the index of the source factor
that contains index of the (dependency-tree) parent in the sentence; and <subtype> specifies the
subtype of the dependency feature, as they were introduced in Section 4.3.2:

• 0 - depth in the dependency tree,

• 1 - subtree in the dependency tree,

• 2 - phrase position relative to the root word.

4.5 Experiments

In order to test whether the implemented source-context features can improve MT translation
quality, we run several experiments. In all experiments we optimize the feature weights towards
BLEU using Z-MERT as in Chapter 3. We use the script zmert-moses.pl to launch Z-MERT.

4.5.1 Training Data

There are four possible combinations of the Small and the Large data (which were introduced in
Section 3.3.1) to train the simple phrase-based system and the source-context model:4

1. Small phrase-based + Small source context,

2. Large phrase-based + Small source context,

3. Small phrase-based + Large source context,

4. Large phrase-based + Large source context.

The configuration of the simple phrase-based system, which we denote as baseline in the follow-
ing experiments, is the same as in Section 3.3.1.

We encountered a performance problemwhen we tried to run the source-context model on the
Large data. For each MERT iteration the suffix arrays need to be created. While the creation of
suffix arrays takes less than minute for the Small data (126k sentences), we need more than half
an hour only for parsing the suffix array corpora for the Large data (7.5M sentences). This makes
the MERT optimization too slow. Figure 4.8 gives more details on the time necessary to load the
suffix arrays. We also include the optimized BLEU and SemPOS scores for both experiments,

4The term “training” is not exact for the source-context model because there is no training phase. We use the
“training” data to construct the suffix arrays and compute the feature values on-demand during decoding. Neverthe-
less, we use this term to call the data in a unified way.
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which used Small data to train the baseline and five loose collocation features on surface forms
as the source-context model.

Data Sentences Time to Load BLEU SemPOS MERT Runtime
Small 126,144 46s < 1m 10.42±0.42 29.89 4h24m (8)
Large 7,544,465 2712s ∼ 45m 10.23±0.42 29.59 1d22h29m (20)

Figure 4.8: Initialization of suffix arrays (Time to Load) takes too long for the Large training
data. Moreover, the Large data did not bring an improvement in BLEU nor in SemPOS score
(Small data used for baseline). Number of MERT iterations in brackets.

There is no improvement in neither of the scores for the Large data compared to the Small
data used in the source-context model. Therefore, we run our experiments only for the first two
combinations, i.e. Small simple phrase-based + Small source context and Large simple phrase-
based + Small source context, which use only the Small data for the source-context model. In
the following text we will denote the first option as Small (using Small data to train the baseline
system), and the second option as Large (using Large data to train the baseline system).

4.5.2 Collocation Feature Sets

Because of the large number of possible combinations of the collocation features, we group them
into the so-called elementary sets. These sets are parametrized by the factor they try to match: we
use 1) surface form, 2) POS tag, 3) lemma, 4) formeme and 5) sempos as factors. Each elementary
set contains five feature functions with different context sizes:

• Exact collocation:

– left = 1, right = 0,

– left = 0, right = 1,

– left = 2, right = 0,

– left = 0, right = 2,

– left = 1, right = 1.

• Loose collocation:

– left = 3, right = 0,

– left = 0, right = 3,
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– left = 5, right = 0,

– left = 0, right = 5,

– left = 3, right = 3.

Thus, we have five elementary sets, whichwewill denote form, pos, lemma, formeme and sempos,
for both collocation types, and each elementary set contains five source-context features.

We do not need to define elementary sets for dependency features because there are only three
of them.

4.5.3 Aggregated Features

We are also interested in the influence of aggregating all source-context features into one cu-
mulative score. We did not implement any special algorithm to find the optimal weights for the
linear combination of individual features into the cumulative score. We simply take the weights
that were found by MERT when we evaluated the elementary sets and used all source-context
feature values in the log-linear model. This is a very coarse approach because the weights were
optimized together with other features of the log-linear model. Therefore they can be strongly
influenced by other components of the log-linear model, which probably have bigger influence
on the translation quality than the source-context features.

4.6 Results

The obtained results do not provide any conclusive evidence that source-context features can
significantly improve translation quality. Even though slight improvement can be observed for
selected features, it is only small and within the confidence intervals for BLEU.

Small Data

First, we took all features of the same type and used them in one source-context model: there were
25 exact collocation features (five factors× five context sizes), 25 loose collocation features and
3 dependency features. Furthermore, we combined all features into one big model, which had 53
features all together. Figure 4.9 shows BLEU and SemPOS scores for these models measured on
the Small data.

The biggest improvement both in BLEU and SemPOS scores was achieved by the dependency
features. We can also see that there is negative correlation between the number of features used
in the model and the BLEU score. This implies that if the number of features becomes too big,
MERT has difficulties to find the optimal weights.
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Scores MERT
BLEU SemPOS Time Iters

Baseline 10.21±0.39 29.65 4h55m 18
All Exact (25) 10.39±0.43 29.56 12h46m 12
All Loose (25) 10.33±0.44 29.68 21h12m 18
All Dep. (3) 10.43±0.42 29.81 10h58m 15
All (53) 9.93±0.43 29.73 2d00h54m 20

Figure 4.9: BLEU and SemPOS scores for the baseline and the combined source-context features
(number of individual features in brackets) - Small data.

To get more detailed information about the performance of the collocation features, we also
ran experiments with the elementary feature sets described in Section 4.5.2. Figure 4.10 shows
that the highest SemPOS score was achieved by exact collocation features on POS tags. The
highest score for loose collocation features was on surface forms, closely followed by lemmas.
We explain this that part-of-speech tags can help to disambiguate neighbouring words in exact
collocation, whereas surface forms and lemmas can have impact over long distances in loose
collocation. On the other hand, the performance of POS tags in loose collocation is close to
the baseline which suggests that they are less effective at long distances. The BLEU scores for
individual elementary sets do not differ very much but they usually correlate with the SemPOS
scores.

Exact Loose
Factor BLEU SemPOS BLEU SemPOS
Baseline 10.21±0.39 29.65 10.21±0.39 29.65
form 10.37±0.42 29.57 10.42±0.42 29.89
pos 10.39±0.41 30.14 10.29±0.43 29.65
lemma 10.30±0.43 29.82 10.35±0.43 29.83
formeme 10.34±0.41 29.83 10.31±0.42 29.68
sempos 10.42±0.42 29.79 10.40±0.41 29.62

Figure 4.10: Detailed BLEU and SemPOS scores for exact and loose collocation features - Small
data.
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Large Data

We ran the same experiments for the Large data as for the Small data. Figure 4.11 contains
results for the grouped source-context models, which used 25 exact collocation features, 25 loose
collocation features, 3 dependency features and a combination of all 53 source-context features.
The BLEU score was consistently better for all four source-context models than for the baseline
system but within the confidence intervals. On the contrary, SemPOS score was the highest for
the baseline system. If we compare it to the Small data results, where the SemPOS score increased
in almost all cases, we can argue that source-context features helped in the Small data setting with
better lexical choice. The impact was smaller for the Large data, because the translation model
alone could provide better lexical choice. The drop in the metric scores for source-context models
containing large number of features in not as high as for the Small data.

Scores MERT
BLEU SemPOS Time Iters

Baseline 12.78±0.45 31.45 1h48m 4
All Exact (25) 12.89±0.46 31.42 9h57m 6
All Loose (25) 12.81±0.46 31.02 10h20m 6
All Dep. (3) 12.97±0.45 31.15 4h58m 6
All (53) 12.88±0.46 31.38 2d09h18m 9

Figure 4.11: BLEU and SemPOS scores for the baseline and the combined source-context fea-
tures (number of individual features in brackets) - Large data.

Exact Loose
Factor BLEU SemPOS BLEU SemPOS
Baseline 12.78±0.45 31.45 12.78±0.45 31.45
form 12.91±0.46 31.43 12.92±0.46 31.47
pos 12.95±0.45 31.09 12.86±0.47 31.51
lemma 12.82±0.47 31.56 12.90±0.46 31.46
formeme 12.79±0.46 31.33 12.76±0.44 31.32
sempos 12.81±0.46 31.24 12.76±0.45 31.30

Figure 4.12: Detailed scores for exact and loose collocation features - Large data.

The detailed scores for collocation features in Figure 4.12 confirm our observations for Small
data: exact collocation features appreciate morphological advice and perform the best on part-of-
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speech tags, whereas loose collocation benefits the most from surface forms and lemmas, which
supply information about lexical choice.

Aggregate Features

Aggregate features, which pass only one score (a linear combination of source-context feature
scores) to the log-linear model, did not bring any significant improvement. We evaluated the
aggregate features on elementary sets that had the most promising results in the previous sec-
tion—pos and sempos for exact collocation, and form and lemma for loose collocation. The
evaluation was done only on the Small data.

Figure 4.13 shows that the BLEU scores did not change much compared to the baseline but
there is a consistent decrease in SemPOS for all experiments. We denote the experiments from
which the aggregate weights were taken as baseline.

Baseline Aggregate
Colloc. Factor BLEU SemPOS BLEU SemPOS
Exact pos 10.39±0.41 30.14 10.38±0.42 29.43
Exact sempos 10.42±0.42 29.79 10.32±0.42 29.59
Loose form 10.42±0.42 29.89 10.43±0.43 .29.41
Loose lemma 10.35±0.43 29.83 10.42±0.43 29.61

Figure 4.13: Aggregate features do not help to improve translation quality, probably due to bad-
quality aggregate weights - Small data.

Zero and Wide Context

We also wanted to see the influence of zero context for exact collocation and wide context for
loose collocation features. Zero context ('-0+0') is defined only for exact collocation features
and means that instead of looking on surrounding words, we require that factors of words inside
of the phrase match the source phrase factors (see Section 4.4.2). We evaluate zero context for
pos and formeme factors.

We consider five preceding and five following words '-5+5', and nine preceding words and
nine following words '-9+9' of a phrase as wide context for loose collocation features, which
we evaluate only on lemma that showed the most promising results on elementary sets.

Figure 4.14 shows metric scores for selected exact and loose collocation features. In all ex-
periments, the source-context model consists of only one feature. We evaluate the features on
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the Small data and the baseline scores are reported for Moses configuration that does not use the
source-context model.

Colloc Context Factor BLEU SemPOS
Baseline - - 10.21±0.39 29.65
Exact -0+0 pos 10.33±0.43 29.63
Exact -0+0 formeme 10.14±0.41 29.71
Loose -5+5 lemma 10.09±0.44 29.76
Loose -9+9 lemma 10.44±0.41 29.85

Figure 4.14: Zero and wide context - Small data.

The exact collocation features show mixed results for BLEU and SemPOS. There is an im-
provement in SemPOS for the loose collocation features which is consistent with observations for
other loose collocation features. This suggests that loose collocation on lemma can help with bet-
ter lexical choice which is appreciated by SemPOS. Nevertheless, the BLEU score for collocation
features oscillates around the baseline score.
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Chapter 5

Discussion and Future Work

Neither of the two approaches we tried brought statistically significant improvement in transla-
tion quality. While using SemPOS as optimization metric in MERT showed to be unstable and
influenced the MT quality rather negatively, there were several promising results for the source-
context model. Nevertheless, our experiments did not provide any conclusive evidence about
statistically significant improvement.

SemPOS in MERT

The main reason why SemPOS is not a suitable MERT optimization metric is that it completely
ignores surface forms and focuses only on matching correct lemmas. While this is sufficient
when evaluating output of systems which already tried to target the correct surface forms, it is
not suitable for defining the MERT error space. The SemPOS score cannot distinguish between
two sentences that contain words having the same lemmas but different word forms in different
word order. This forces the MERT algorithm to make an arbitrary choice which translation is
better.

The linear combination of SemPOS and BLEU results in increased stability of the optimized
weights. Nevertheless, it would be advisable to get some human feedback in form of manual
evaluation of the system output whether the combination of both metrics resulted in increased
translation quality.

Source-Context Model

The contribution of the source-context model to better translation quality could not be proved.
There are many factors that could influence the performance of the source-context features:
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• Size of the source-context corpus
We could compute the source-context features only on the Small data because of the ex-
tremely long loading time of suffix arrays. The only experiment we did using the Large
data for the source-context model did not show any quality improvement in MT metric
scores. However, the lower performance could be only on the selected features and some
other features could have better impact on the translation quality. After modification of the
loading procedure for suffix arrays, it would be interesting to evaluate the features also on
the Large data. There is a large potential for improvement: many phrase pairs, which did
not occur in the Small data, received the default score. By evaluating the features on the
Large data we could get feature values with higher discriminative power.

• Better sampling method
Before evaluating the source-context features for a given source-target phrase pair, we need
to extract their positions in the corpus. The implemented method can discard some phrase
occurrences if they do not fit into the sample limit. This can be a problem if the source
phrase occurs many times in the source corpus, the target phrase occurs many times in the
target corpus, but they are aligned to each other only in few cases. When we create the
samples from either side of the corpus we can discard by chance the few aligned occur-
rences. Therefore, a more fine-grained approach could be used that would first filter the
sentences (i.e. sentence pairs from the bilingual corpus) in which both the source phrase
and the target phrase occur. However, we need to design this filtering method with com-
putational complexity in mind because it would be intractable to go through all sentences
in the corpus for large corpora containing millions of sentences.

• Additional features
We evaluated only a limited set of source-context features. The source-context model
is flexible enough to compute additional features that use other linguistically motivated
factors. It is sufficient to provide the new factors in the source corpus. Another approach
would be to include in the collocation context only words that fulfill some condition, e.g.
take as context only content words. Similar approach was described by Chan et al. (2007)
who used only nouns, verbs and adjectives as context. Furthermore, the dependency fea-
tures could be enhanced by features that check that the parent or sons’ factors match a given
value.

• Optimization of aggregate weights
We tried only a rough estimation of the aggregate feature weights, which we obtained from
the MERT optimization. Some more sophisticated method should be used to obtain better
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weights that would better reflect the contribution of the individual features to the aggregate
score.

To illustrate the performance of individual source-context features, we selected two example
sentences from the test set and show the baseline output together with the output of exact colloca-
tion features on part-of-speech tags (pos) and loose collocation features on surface forms (form)
for the Large data.

Figure 5.1 shows a fragment of a sentence for which the source-context features provided a
better translation than the baseline system without the source-context model. Both of the features
selected the correct word forms for the translation of the phrase chief economist. The baseline
system selects correct words but puts them into nominative, even though they should be in gen-
itive, which was correctly recognized by both source-context features. On the other hand, exact
collocation features make a mistake when translating the phrase proposed plan. They choose a
translation option návrh plánu that is grammatically correct but has a slightly different meaning
than the reference translation.

SRC According to the chief economist of Patria Finance , David Marek , the proposed plan is a good idea ...
REF Navrhovaný plán je podle hlavního ekonoma Patria Finance Davida Marka dobrým nápadem ...
Baseline Podle hlavnínom ekonomnom Patria Finance , David Marek , navrhovanýad j plánnoun je dobrý nápad ...

Exact:pos Podle hlavníhogen ekonomagen , David Marek z Patria Finance , návrhnoun plánunoun je dobrý nápad ...

Loose:form Podle hlavníhogen ekonomagen , David Marek z Patria Finance , navrhovanýad j plánnoun je dobrý nápad ...

Figure 5.1: Source-context features can help to choose better word forms (underlined) than the
baseline system. However, they can also force the system into an unsuitable translation, that
conveys a different meaning than the original sentence (framed).

SRC Then I scurried to my seat .
REF Pak jsem rychle vplula na své místo .

Baseline Pak jsem se na mém místěloc .
Exact:pos Pak jsem se na své místoacc .

Loose:form Pak jsem se na moje místoacc .

Figure 5.2: Both source context features choose a translation option in correct case. Moreover,
the exact collocation features managed to recognize that they need to use the possessive reflexive
pronoun své instead of the possessive pronoun moje.

The second example sentence, depicted in Figure 5.2, shows that the collocation features can
help with case selection. If we omit the mistake of leaving out the translation of the verb scurried1

1Probably due to the fact that this word is not in the dictionary of the translation system.
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which is done by all three systems, both collocation features correctly choose the translation of
seat in accusative (místo) whereas the baseline system prefers locative (místě). Moreover, exact
collocation features choose the correct form of the possessive pronoun my→své. The baseline
system and the loose collocation features select the wrong word form mém and moje.
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Chapter 6

Conclusion

In this thesis we investigated two possible ways to improve translation quality of statistical phrase-
based MT systems.

First, we adapted the MERT algorithm to be able to optimize the log-linear model parameters
towards a metric using rich annotation—SemPOS. Although the metric is good at comparing
different MT systems, the results show that it is bad at comparing candidates from a single system
in an n-best list. Therefore, the optimized parameters strongly vary in quality measured in BLEU
and SemPOS score.

Second, we implemented the source-context model based on suffix arrays. The biggest ad-
vantage of suffix arrays is that they can effectively represent large collections of richly annotated
data and provide methods for fast extraction of n-grams from the data. Richly annotated bilingual
copora can be used to define a wide range of features that are directly used in the log-linear model.
We introduced a set of collocation and dependency features on the source side over factors con-
taining rich linguistic information. The feature values are calculated on-demand during decoding
and there is no need for training. Thus, the source-context model is easy to use and fast to deploy.

We evaluated the contribution of the source-context model only on small data because we
encountered performance problems connected with loading of the suffix arrays. This problem
could be solved by loading the suffix arrays from a precomputed format in which all words are
represented by an integer value instead of the string. The highest MT quality improvement was
measured for exact collocation on POS tags, and loose collocation on surface forms and lem-
mas. However, the improvement was only moderate and within confidence intervals of BLEU.
Therefore, it is not possible to state that the source-context model improves translation quality.
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Giménez, J. and Márquez, L. (2007). Linguistic Features for Automatic Evaluation of Hetero-
genous MT Systems, Proceedings of the Second Workshop on Statistical Machine Translation,
Association for Computational Linguistics, Prague, pp. 256–264.

Gimpel, K. and Smith, N. A. (2008). Rich Source-Side Context for Statistical Machine Transla-
tion, Proceedings of the Third Workshop on Statistical Machine Translation, Association for
Computational Linguistics, Columbus, Ohio, pp. 9–17.
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Appendix A

Semantic Part-of-Speech Types

Semantic POS tag Description
n.denot denominating semantic noun

n.denot.neg denominating semantic noun with which the negation is represented
separately

n.pron.def.demon definite pronominal semantic noun: demonstrative pronoun

n.pron.def.pers definite pronominal semantic noun: personal pronoun

n.pron.indef indefinite pronominal semantic noun

n.quant.def definite quantificational semantic noun

adj.denot denominating semantic adjective

adj.pron.def.demon definite pronominal semantic adjective: demonstrative pronoun

adj.pron.indef indefinite pronominal semantic adjective

adj.quant.def definite quantificational semantic adjective

adj.quant.indef indefinite quantificational semantic adjective

adj.quant.grad gradable quantificational semantic adjective

adv.denot.ngrad.nneg non-gradable denominating semantic adverb, impossible to negate

adv.denot.ngrad.neg non-gradable denominating semantic adverb, possible to negate

adv.denot.grad.nneg gradable denominating semantic adverb, impossible to negate

adv.denot.grad.neg gradable denominating semantic adverb, possible to negate

adv.pron.def definite pronominal semantic adverb

adv.pron.indef indefinite pronominal semantic adverb

v semantic verb

Figure A.1: Semantic POS types.
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Appendix B

User Documentation for zmert-moses.pl

The script zmert-moses.pl is used for launching the MERT algorithm to optimize the log-linear
model parameters. It is used as interface which transforms user specified parameters into form
suitable for Z-MERT,1 an implementation of the MERT algorithm.

B.1 Synopsis

The following parameters are recognized:

zmert-moses.pl input-text references decoder-executable decoder.ini
--working-dir=STRING
--rootdir=STRING
--mertdir=STRING
--jobs=N
--mosesparallelcmd=STRING
--old-sge
--queue-flags=STRING
--decoder-flags=STRING
--filtercmd=STRING
--no-filter-phrase-table
--scorenbestcmd=STRING
--inputtype=N
--nbest=N

1http://www.cs.jhu.edu/~ozaidan/zmert/
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--maxiter=N
--lambdas=STRING
--allow-unknown-lambdas
--lambdas-out=STRING
--activate-features=STRING
--predictable-seeds
--metric=STRING
--semposbleu-weights=STRING
--extract-sempos=STRING
--norm=STRING
--verbose
--mert-verbose=N
--decoder-verbose=N
--help

B.2 Parameters

Environment Settings

• --working-dir=STRING
Name of the working directory where all files during the tuning phase are created. Default
name is mert-dir.

• --rootdir=STRING
Directory where Moses helper scripts reside. zmert-moses.pl is located in directory
rootdir/training.

• --mertdir=STRING
Directory with zmert.jar, which contains implementation of the MERT algorithm. Default
location is MOSES-DIR/zmert.

• --jobs=N
Run components capable of running in parallel with N jobs.

• --mosesparallelcmd=STRING
Use a different script to run decoder instead of moses-parallel.pl.
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• --old-sge
Passed to moses-parallel, assume Sun Grid Engine < 6.0.

• --queue-flags=STRING
Parameters that are passed to qsub, e.g. '-l ws06osssmt=true'. The default setting is
'-l mem free=0.5G -hard'. To reset the parameters, please use --queue-flags=' '
(i.e. a space between the quotes).

• --decoder-flags=STRING
Extra parameters for the decoder.

• --filtercmd=STRING
Path to filter-model-given-input.pl script, which filters phrase tables to include only phrases
in a given input text.

• --no-filter-phrase-table
Disallow filtering of phrase tables. Useful if binary phrase tables are available.

• --scorenbestcmd=STRING
Path to scoring script score-nbest.py.

Z-MERT Settings

• --inputtype=N
Handle different input types for Moses:

– 0 - text,

– 1 - confusion network,

– 2 - lattices (not implemented yet).

Default value is 0.

• --nbest=N
Size of n-best list that is used by MERT. Default value is 100.

• --maxiter=N
Maximum number of MERT iterations. The number of iterations is unlimited by default.

• --lambdas=STRING
Default values and ranges for lambdas. A complex string like 'd:1,0.5-1.5 lm:1,0.5-1.5
tm:0.3,0.2-0.7;0.2,0.2-0.7; w:0,-0.5-0.5' is expected.
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• --allow-unknown-lambdas
Keep going even if someone supplies a new lambda in the --lambdas option (such as
'newmodel:1,0-1'). Optimize the lambda with starting and minimum/maximum value
as defined in --lambdas.

• --lambdas-out=STRING
File where final lambdas should be written.

• --activate-features=STRING
Comma-separated list of features to optimize. Optimize all features if not defined.

• --predictable-seeds=N
Provide predictable seeds to MERT so that random restarts are the same on every run.

• --metric=STRING
Metric name used for optimization includingmetric parameters such as 'BLEU 4 closest'
or 'SemPOS 0 1'. Use default metric parameters by specifying only the metric name, e.g.
BLEU or SemPOS. Supported metrics are

– BLEU,

– TER,

– TER-BLEU (TER minus BLEU),

– SemPOS,

– SemPOS BLEU (SemPOS plus BLEU).

SemPOS metric requires 2 parameters:

1. factor position of t-lemma,

2. factor position of sempos in input text.

Default values are '0 1'.

SemPOS BLEU metric requires 7 parameters:

1. weight of SemPOS,

2. weight of BLEU,

3. factor position of lemma for SemPOS in input,

4. factor position of sempos for SemPOS in input,
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5. max n-gram for BLEU,

6. reference length strategy for BLEU,

7. input position of factor to compute BLEU.

Default parameters are '1 1 1 2 4 closest 0'. For more details about default BLEU
and TER parameters see Z-MERT documentation.2

• --semposbleu-weights=STRING
Weights for SemPOS and BLEU in format N:M where N is SemPOS weight and M BLEU
weight. This parameter has effect only if --metric=SemPOS BLEU.

• --extract-sempos=STRING
Specify how factors required by the evaluation metric are extracted from the decoder out-
put:

– none - decoder generates all required factors,

– factors:<factor list> - extract factors with index in <factor list> from decoder
output, e.g. factors:0,2,3 to extract the first, third and fourth factor from the de-
coder output. If this option is used the factor extraction precedes the default parameter
extraction specified in the --metric parameter.

– tmt - use TectoMT3 to generate required factors from surface word forms.

This parameter should be used only with SemPOS or SemPOS BLEU metric.

• --norm=STRING
Select lambdas normalization for Z-MERT which is applied after each iteration:

– none - no normalization,

– absval 1 lm - scale weights so that the weight for lm equals 1,

– maxabsval 1 - scale weights so the maximum absolute value is 1,

– minabsval 1 - scale weights so the minimum absolute value is 1,

– LNorm 2 1 - scale weights so that the L-2 norm equals 1,

In the above, lm can be replaced by any other feature name, and the numbers can also be
replaced by other numerical values.

2http://www.cs.jhu.edu/~ozaidan/zmert/
3http://ufal.mff.cuni.cz/tectomt
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Verbosity

• --verbose
Turn on verbose mode in zmert-moses.pl.

• --mert-verbose=N
Z-MERT verbosity:

– 0 - only decoder warnings and error messages are included,

– 1 - default level of verbosity,

– 2 - even more verbose output.

• --decoder-verbose=N
Decoder verbosity:

– 0 - decoder output is ignored,

– 1 - decoder output (STDOUT and STDERR) is integrated into own output.

• --help
Print help for zmert-moses.pl.
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