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Chapter 1 

Introduction 

 

The topic of this thesis deals with one of the most important components of the 
airlines planning process  -  the Rotation assignment problem. More specifically, it deals with 
the problem of determining which aircrafts should operate which flight and non-flight 
activities (a sequence of such activities is called a ��������) while respecting that all the 
activities must be operated by exactly one aircraft and other certain numbers of additional 
rules must hold. Also, in the optimization version of the problem, such assignment of the 
activities to aircrafts should be done in a way that minimizes the cost associated with 
operating the aircrafts and violations of certain rules.  

The rotation assignment problem has been very extensively investigated over years in 
the field of Operation research, as utilizing aircraft use is one of the most important 
concerns of the airlines industry. Every change, every improvement over utilization of 
aircrafts can have a huge impact on costs and profits for an airliner. 

Many solution approaches have been proposed for many variations of the problem. 
Most of them deal with it as a problem of Mathematical programming, where the problem is 
expressed in a mathematical model and solved by mathematical methods. But still, there are 
not many Constraint programming approaches towards the problem as Constraint 
programming is relatively young comparing with other problem solving techniques.  
 

 

1.1 Related problems 

As we will show later in chapter 3, the rotation assignment problem is in fact an 
instance of the NP-Complete problem of Set partitioning [10] and as such it is related to 
many theoretical and practical problems. From the theoretical related problems we can 
name the Set covering problems, the Bin packing problem and other partitioning, covering 
NP-Hard problems [10]. From the practical problems, the Cutting stock problem [20] is one 
of the most related, the task of the problem is to cut a long roll of paper into patterns of 
smaller rolls, so that the cost associated with each pattern is minimized while the demands 
for smaller rolls are satisfied – in this sense, we can see that there’s a relation between the 
patterns and the schedules for individual aircrafts and a relation between the paper rolls and 
the activities. Also, the Vehicle routing problem [19] can be considered as a related problem, 
where the task is to service a number of customers with a fleet of vehicles – in this case, we 
can relate the vehicles to the aircrafts and the positions of the customers in locations can be 
viewed as the positions of the activities in time slots. 
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1.2 Related works 

As already said, the rotation scheduling problem is mostly modeled and solved by 
mathematical methods, e.g., by Linear programming (LP) techniques. This approach is the 
most common in the industry (see an exhaustive survey of the techniques in [8] or [9]), 
thanks to the fact that mathematical methods, particularly linear programming, has been 
exhaustively studied and many software toolkits are available and optimized over years. 

One of the first proposals regarding the problem is the work of A. Levin from 1971 [21] 
where he proposed a network flow model for the problem and then solved by using LP 
techniques called Dantzig-Wolfe decomposition and Delayed column generation [22]. 

Another significant collaboration of 6 authors in the papers of Barnhart et al. [23] 

emerged in 1998, where the authors solved a combined fleet assignment and aircraft routing 
problem by an approach based on maintenance feasible strings of activities, that are 
combined to create feasible routes, within the framework of delayed column generation and 
a technique called Branch-and-Price [24]. 
 

A perfect example for showing the fundamentals of delayed column generation and 
current mathematical approaches is covered in the book from Michael Pinedo [1]. The 
rotation assignment problem is abstractly expressed as a combinatorial problem of finding a 
set of paths of certain properties in a graph. Such graph is then considered as a pricing sub-
problem. Because of existence of many such paths, the delayed column generation is 
deployed to efficiently generate paths. Within the Delayed column generation framework 
the problem is again modeled as a matrix, a system of linear equations, with an objective 
function, where each column of the matrix represents a path satisfying the required 
properties. Because there are many such paths, it is not possible to include all of such 
columns in the matrix, thus one starts with an initial solution set of columns and generates 
only additional columns that might improve the solution and one does so only when it is 
needed, e.g., when optimality is not reached yet. The column generation process is then 
continued by deducing certain values from the existing set of columns, so called dual 
variables, which indicates how much each “resource” variables (in our case the activities) 
might affect the cost of the solution if it will be included in the next generated column. 
These variables are then projected onto the pricing sub-problem graph to change the 
weights of the graph’s arcs. After that, a new path from the changed graph is generated and 
is projected back to the column generation matrix, where the column generation process is 
iterated again. 
 

In the work of L.-M. Rousseau et al. [14] the authors dealt with the Vehicle routing 
problem by using constraint programming to solve the pricing sub-problem within the 
column generation algorithm. The pricing sub-problem model proposed by Rousseau is also 
based on graph and it uses ��		
���� and ��
�
	
���� variables to describe a path, as well 
as variables for arrival times and vehicle capacity. The basic constraints are �

_����
�
�� 
constraints over the successors, constraints maintaining consistency between successors and 
predecessors, and time and capacity propagation constraints.  

In the Ph.D. thesis of M. Grönkvist [5] the author used constraint programming to get a 
good initial solution for the column generation process to solve the Rotation assignment 
problem, since a good initial solution helps converge to optimum much faster. Grönkvist also 
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build a CP model on a graph to find paths with certain properties in it. The CP model also 
uses  ��		
���� and ��
�
	
���� variables to describe a path and �

_����
�
�� 
constraints over the successors to achieve disjointedness of the paths. 

 
However, we shall notice that Grönkvist and Rousseau model their problems in CP as 

consistency models, where desired properties are strictly required, and optimization is done 
outside of the CP framework.  

 
Nevertheless, an attempt to perform some kind of optimization in CP has been made, 

in the Master thesis of E. Kilborn[4] the author used a similar model to the model used by 
Grönkvist (in fact, Grönkvist was his thesis supervisor) with an extension to the model in the 
sense that if an activity cannot be included in the solution due to violations of required 
properties then such activity is simply discarded (such activity is represented in the model as ��		
����(�)  =  � for some activity �). The optimization is then about minimizing the 
number of the discarded activities. This is a quite benevolent approach towards solving the 
problem, as the definition of the problem states that all activities must be allocated to the 
resources. 

 

I should also mention that my employer is company The Kite, s.r.o. [25], a midsize 
company in Prague, specializing on optimization of logistics and airlines planning processes 
for the Czech airliner ČSA and others. And because the results of this thesis will be verified 
and deployed in their systems, I had access to some of their optimization solutions for the 
Rotation assignment problem. The first one is called “Complex solution”, the second one 
“Aircraft usage reduction” and the third one is “FIFO/LIFO”. The first two algorithms are 
perfect examples of the above mentioned LP techniques, based on column generation 
technique and proprietary search heuristics they are very fast and able to get good solutions 
in a short time. The last one, is an algorithm based on search heuristics and backtracking, but 
sometimes when facing with complicated conflicts it fails to assign all activities to the 
aircrafts. 

In this thesis I have chosen to model and solve the optimization version of the 
Rotation assignment problem within the Constraint programming framework. I’ve decided to 
do so in order to figure out whether a CP approach to the problem is practically possible and 
whether it has advantages over other approaches – if the answer would be positive then the 
CP model would be further developed and incorporated into existing solutions of the 
company. Next to it, because the CP techniques represent a new approach which has been 
successfully applied to many optimization problems, but has not been fully applied in the 
field of rotation assignment yet, it would be an interesting challenge to figure it out.  

The CP model for the problem that I will propose uses the concept of the paths in a 
graph it uses variables ��		
����, ��
�
	
���� and the constraint �

_����
�
�� over ��		
���� to achieve disjointedness of the paths. In this sense it shares the common 
concept with the existing works, But such basic model alone, would be sufficient only in case 
of feasibility check, not for optimization purposes at all. In order to achieve the above 
mentioned goals we will see that many further adaptions and improvements has to be done.  

In the end, I will mention an attempt with a different approach towards the 
optimization version of the rotation assignment problem. In the work of D. Sosnowsk, J. 
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Rolim [6] the authors used a combination of probabilistic and local search approaches, 
particularly the simulated annealing technique, where some local perturbations on an 
existing solution are made and then accepted on the basis of probability. 
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1.3 Thesis outline 

 

The thesis is divided into six parts: 

Chapter 2: The Rotation Assignment Problem 

In this part, the problem is exactly and formally formulated. 

 

Chapter 3: An Abstract Model 

In this part, an abstract graph model describing the problem is defined. 

 

Chapter 4: Constraint Programming techniques 

In this part, the concepts of Constraint programming are introduced. 

 

Chapter 5: A Constraint Programming approach 

In this part, Constraint programming models for the problem are defined. A complete 

algorithm for solving the problem is introduced. 

 

Chapter 6: Computation results 

In this part, computations results are presented. 

 

Chapter 7: Conclusion 

In this part, final remarks and conclusion are said. 

 

 

 

 

 

 

 

 

 

 



14 
 

Chapter 2 

The Rotation Assignment Problem 

 

The purpose of this chapter is to describe the problem in details. I will specify the 
important characteristics of the variables we are going to operate with, I will describe how 
the solution to the problem looks like, the constraints on it and the characteristic that 
determines the solution quality. 

 

2.1  Problem specification 

 

Let us consider the input of the Rotation assignment problem as a set of unary 
resources � =  ��� | 1 ≤ � ≤ ��, representing a given set of � aircrafts, and a set of non-
preemptive activities � =  ��� | 1 ≤ � ≤ ��, representing a given set of n rotations. 

Furthermore, for each resource and activity let us focus on their following important characteristics. 
Specification of activities variables 

Each activity �� has the following a priori known unchangeable attributes: 

- ��  defines the time point when the activity starts 
- �� defines the duration of the activity  
- 
�  defines the time point when the activity ends, where 
� =  �� +  �� 
- 6��  defines the non-negative time period during which the activity can consume 

the allocated resource before it starts 
- ���  defines the non-negative time period during which the activity can consume 

the allocated resource after it ends 
- �
�  defines the starting location of the activity 
- 

�  defines the ending location of the activity 
- �	�  defines a subset of R to which the activity can be allocated 

Additionally, each activity �� has a decision variable ���   determining a resource from R  to which the activity is to be allocated to. 

Activities are divided into 2 types: 

- Flight activities 

- Reservation activities 

The reservation activities have identical starting locations and ending locations, i.e., for 
the reservation activity ��  it holds �
� =  

�. The reservation activities are a priori 
allocated to their respective resources only, i.e., for the reservation activity ��   it holds 
that �	� = ��8� for some �8 ∈ �. 
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2.2 Solution to the problem specification 

 

The solution to the Rotation assignment problem is a schedule, an allocation of the 
activities to the resources. In our case, the schedule is represented by a set : of disjoint 

sequences of the activities :;< = =�>?< , �@?< , … , �8?< B, where � ∈ :;< ⟺ ��D = ��,   � E �, �� ∈ �.   
Furthermore, on each of the above mentioned sequences :;< and on every activity �� 

we want to impose the following constraints C. These constraints are further divided into 
Soft constraints and Hard constraints. With the soft constraints we require that a schedule 
violating a soft constraint must be penalized by an associated penalty cost. Whereas with 
the hard constraints, we require a proper schedule to satisfy all such constraints. 

 

Soft constraints are: 

• (C1)  For each pair of activities (��, �G) from :;<, where H ≥  � +  1, the non-

overlapping property  
� ≤  �G  must hold. 

• (C2)  For each pair of activities (��, �G) from :;<, where H ≥  � +  1, there is a 

time distance between the end of �� and the start of �G, i.e. it must hold 

that J�G −  
�L ≥  ��G, where ��G = maxN���, 6�GO if both �� and  �G are flying 

activities, otherwise ��G = minN���, 6�GO. 

 
Note: Observe that there’s a certain relation between the constraints C1 and 

C2 over the distance J�G −  
�L; C1 requires J�G −  
�L ≥ 0, whereas C2 

requires J�G −  
�L ≥ ��G ≥ 0. Thus once C1 is violated C2 is violated as well. 

 
Hard constraints are: 

 

• (C3)  For each pair of activities (��, �G) from :;<, where H =  � +  1, the starting 

location of �Gmust be the same as the ending location of ��, i.e. �
G =  

�. 
• (C4)  Each activity �� must be compatible with its allocated resource ��, i.e. ��� ∈ �	�. 
• (C5)  Each activity must be allocated to exactly one resource, that means for 

any resource �G ≠  �� and its nonempty sequence of activities :;Rit must hold 

that   :;< ∩ :;R = ∅   and ∀ �� ∈ � ∃ �� : �� ∈ :;<, hence ⋃ :;<;<∈ Y = �. 

• (C6) The starting times of activities in the same sequence must be increasing, 

i.e. ∀J��, �GL ϵ :;< , H ≥  � +  1, �G >  ��. 
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2.3 Schedule quality evaluation 

To evaluate the quality of the schedule and its consistency with the constraints C we 
consider an objective function \(:, �, ]), which determines the cost value for a set : of the 
sequences of activities � allocated to resources � violating the soft constraints of C.  

The objective function is formulated as the following:        

\(:, �, ]) = ∑
  

_`D(�)  + ∑ `a(�� , �G) D<,DR ∈ b? �cG d;eYb? ∈ b              (2.1) 

 

Where each cost sub-function ` is defined as follows: 

• `D(�) calculates the cost value for assigning activities to resource �, i.e. 

`D(�) = f	; ,                                                   :�  ≠ ∅0                                                 ��ℎ
�h��
i                            (2.2)  

    

Where  	; is a predefined constant. 

 

• `a(�� , �G) determines the cost which is proportional to Τ =  �G − 
� time 

units of a possible violation of either the constraint (C1) or (C2), i.e., 

 

`a(��, �G) = k]Dl + ]mln + ]oln@,                                     n ≥ p�l ]ql ,                                                        0 < n < p�l i               (2.3) 

 

In case of violation of (C1) when Τ < 0: 

n = |s|,  ]Dl = ]D>, ]ml = ]m>,  ]ol = ]o>, ]ql = ]q>, p�l = p�>. 

 

In case of violation of (C2) when 0 ≤ Τ < ��G: 
n = ��G − s,  ]Dl = ]D@, ]ml = ]m@,  ]ol = ]o@, ]ql = ]q@, p�l = p�@ 

Where ]D>, ]m>, ]o>, ]q>, p�>, ]D@, ]m@,  ]o@, ]q@, p�@ are predefined real 
constants smaller than infinity (∞). 

Note: Each `a(��, �G) is in fact a constant since it can be a priori 

determined independently on a schedule.  
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Definition 2.1.: We call the schedule a feasible schedule iff the schedule satisfies all the hard 
constraints of C. 

Definition 2.1.: We call the schedule an ������
 schedule iff the schedule is feasible, there’s 
no other feasible schedule that has lower cost, and its cost is less than infinity (∞). 

Definition 2.3.: We call a sequence of activities :;< allocated to a resource �� a �
����	
 �	ℎ
��

 :;< . 
Note: For us a schedule is simply an allocation of the activities to the resources. Thus, even a 
resource schedule :;< is a representation of a schedule, albeit not necessarily a feasible one. 
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Chapter 3 

An Abstract Model 

 

In this chapter I will describe the problem as an abstract model, a graph model, which 
lays the foundations for solving the problem. I will focus on how to represent the activities, 
the relations between the activities and finally, how to define a solution to the problem in 
the abstract model. 

 

3.1 A graph model 

Model 3.1: Weighted connection network 

I have chosen to model the problem with a so-called weighted connection network 

[15]. The approach to model the problem as a graph is very common. Particularly, the 
following proposed graph was inspired by a graph model which can be found in the book of 
M. Pinedo [1], where the author defined five types of nodes and arcs to capture, among 
other issues, the origination of an activity, the termination of an activity and certain time 
compatibility between two activities. However, since we want to capture the resources 
compatibility of the activities, time and location compatibility between two consecutive 
activities and certain cost associated for each two consecutive activities, we will have to 
define our model differently. Let us propose the following graph model: 

The weighted connection network is a directed graph  

                                                  u =  (v, w, 	)                                                             
 

where V is a set of vertices and |v| = |�| + |�| + 2 = � + � + 2 , w ⊆ v ×  v  is a 
set the arcs and 	: v ×  v →  ℝ is a weight function. (See section 2.1.0 for the 
definitions of � and �.) 

 

We define v as four types of vertices - source, sink, resource vertices and activity 

vertices: 

- Activity vertices represent the activities which are to be scheduled, i.e.   ∀� ∈ � ∃~D  E v.                          
- Resource vertices represent the resources to which activities can be allocated 

to, i.e. ∀� ∈ � ∃~; E v. 
- Source and sink are two special vertices from which (to which) arcs to (from) 

other vertices can be linked. 
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Next, we define w and four types of arcs - source arcs, sink arcs, resource arcs and 
activity arcs:  

- Source arcs lead from the source vertex to every resource vertex, i.e.   ∀� ∈ �  ∃
 = (~���;o� , ~;) E w.  
- A resource arc going from a resource vertex to an activity vertex expresses 

that the activity associated with the activity vertex can be allocated to the 
particular resource, i.e. ∀� E �	D ∃
 = (~; , ~D) E w, ∀� ∈ �.  

- An activity arc between two activity vertices means that a connection 
between them is possible, i.e.,  ∀��, �G ∈ � J��, �GL satisfies ]3 and ]6 ∧ �	� ∩ �	G ≠ ∅ ⇒ ∃
 = =~D< , ~DRB E w 

- And at last, sink arcs go from each activity vertex to the sink vertex, i.e. ∀��  ∈ � ∃
 = J~D< , ~���8L E w.  

 

Finally the weight function 	: v ×  v →  ℝ is defined as follows: 

            (3.1) 

	J~� , ~�L = k`D(�)                                            ~� resource vertex for � ∧ ~� activity vertex `a(��, ��)                                                                             ~� , ~�  activity vertices0                                                                                                                    ��ℎ
�h��
i 
 

Note: Notice that, the graph model we have just proposed is by definition an acyclic directed graph. 

Since there’s no node leading back to the source, neither to the resource vertices, originations of the 

activity arcs represent activities that start earlier than the activities represented by the terminations 

of the arcs, and the last there’s no arc leading from the sink. 

 

3.2 Problem solution in the Abstract model 

Notation: From now we will denote a path with a vertex ~� to vertex ~G  by a symbol ~� ↝ ~G.  

Observation 3.1: For an abstract model graph u = (v, w, 	), any path ����	
 ↝ ���� 
contains at least one resource vertex and at least one activity vertex. 

Proof: By the definition of the model, there’s no arc leading directly from the source to 
the sink in u, neither a direct arc from the source to an activity vertex, neither a direct arc 
from a resource vertex to the sink, thus any path ����	
 ↝ ���� must contain at least a 
resource vertex and at least one activity vertex. 

Observation 3.2: In an abstract model graph u = (v, w, 	) any path p ����	
 ↝ ���� 
contains exactly one resource vertex, the ending vertex of the first arc of the path, i.e.  � =  =~�� = ����	
, ~>� = ~; , … , ~8� = ����B for some ~;  E v. And the path represents a 

resource schedule. 
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Proof: Firstly, let us prove that the path contains exactly one resource vertex. By the 
definition of the model, there’s no arc leading to resource vertices in u, except those from 
the source, and because there’s no arc leading to the source vertex path � cannot contain 
more than one resource vertex. From the previous observation 3.1 it is implied that there’s 
exactly one resource vertex on �. 

Now, let us proof that the path represents a resource schedule. In section 2.2.0 we 
defined that a resource schedule is sequence of the activities allocated to a resource. In this 
case it is true; the activities which are expressed by the activity vertices of the path (from 
observation 3.1. there’s at least one activity vertex) are allocated to the resource which is 
expressed by the only resource node of the path. 

Note that, the resource schedule represented by the path might not necessarily satisfy 
the hard constraints ].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The source vertex and arcs are in red, the resource vertices and arcs are in black, the activity 
vertices and arcs are in green, the sink vertex and arcs are in blue. 

Figure 3.1 An example of a weighted connection network. 
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Observation 3.3: An optimal solution for the Rotation assignment problem �� can be 
formulated as a set :� of paths ����	
 ↝ ���� in graph u�� = (v, �, 	) as follows: 

(3.2) 

 :� ∶= argmin� ��� �� �D��� ���;o�↝���8 � �� u�� 
� 	̅(�)�∈�   

 

Such that 

                 � ���� = 1� ∈ � ,                    ∀~D  �	��~��� ~
��
� ∈ v                           (3.3) 

� ������?�� = 1� ∈ ��?;����;o� ��;��l ∈ �
,            ∀~D  �	��~��� ~
��
� ∈ v          (3.4) 

Where 

	(̅�) ∶=  � 	(~; , ~�)(�?,�<)∈��? ;��.  ��;��l
+ � 	(~� , ~G)i�<↝�R i⊆��< ��� ;��.  ��;��l

,   �  ����	
 ↝ ����  
  ���� = � 1                                                                                           ~D ∈ �0                                                                                   ��ℎ
�h��
i  

��?�� =  f 1                                                                                 J~; , ~D<LE w 0                                                                                   ��ℎ
�h��
i 
 

Proof: The schedule represented by the set of paths :� =  ��>, �@, … , �8� satisfies all the 
hard constraints of ] and its cost is minimum because: 

• A resource schedule represented by a path ��  ∈ :� is a resource schedule for exactly 
one resource due to observation 3.2 and it has at least one activity due to 
observation 3.1. 

• A resource schedule represented by a path ��  ∈ :� satisfies constraints ]3 and ]6 
because all activity arcs of �� satisfy the constraints by the definition of the activity 
arcs. 

• The schedule represented by :� satisfies constraint ]5  because:  
 
All activities are allocated to the resources, i.e. ∀� ∈ � ∃:; � ∈ :; , i.e. ∀~D �	��~��� ~
��
� ∈ v  ∃ ���ℎ � ∈  :�  s. t.  ���� = 1.  
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For contradiction, suppose that equation 3.3 holds but there’s an activity � that is not 
allocated to any resource. That would mean that  for ~D ∈ v representing 
activity �  ���� = 0, ∀ ���ℎ � ∈  :� , i.e. ∑ ���� = 0� ∈ b� . 
But that is in contradiction with the premise that equation 3.3 holds.  
 
Furthermore, each activity is allocated to exactly one resource.  
For contradiction, suppose that equation 3.3 holds but there’s an activity � that is 
allocated to more than one resource, i.e. � ∈ :;� ∧ � ∈ :;G , �� ≠ �G. By definition, it 

would mean that for ~D  ∈ v representing activity � ∃��, �G ∈ :�, �� ≠ �G , ����< = 1 ∧ ����R = 1, thus ����< + ����R > 1. By definition, ����� ≥ 0  ∀�8 ∈ :�, thus it must hold that ����< + ����R + ∑ ����� > 1�� ∈ b�,����<,����R .  

But that is in contradiction with the premise that equation 3.3 holds. 
 

• The schedule represented by :� satisfies constraint ]4 because: 
 
All activities are allocated to their compatible resources only. 
For contradiction, suppose that equations 3.3, 3.4 hold but ∃activity � and 
resource � s. t.  � ∈ :;  ∧ � ∉ �	D. By definitions, for ~D ∈ v  representing �  
and path ��   ∈  :� representing :;<  it holds ~D  ∈ �� , thus ����< = 1.  

By definition �� ∉ �	� → J~;< , ~DL ∉  w for ~;<  representing resource ��, thus ��?<�� = 0.  
Equation 3.3. holds, so ∑ ����� ∈ � = ����< + ∑ ����R�R ∈ b�,�R��< = 1 + ∑ ����R�R ∈ b�,�R��< = 1, hence ∑ ����R�R ∈ b�,�R��< = 0. By definition ∀�G ∈ :� ����R ≥ 0, thus ∀�G ∈ :�  �G ≠ ��, ����R = 0.  

Thus 
 � ������?�� =� ∈ :�~� �
����	
 ~
��
� ∈ �

 ����<��?<�� + � ����R��?R���R ∈ :� �H≠��= 1 ∗ 0 + � 0 ∗ ��?R���R ∈ :� �H≠��
= 0 

 
But this is in contradiction with the premise that 3.4 holds.  
 

• The schedule represented by :� is a feasible schedule.  
From the previous proofs we can observe that is true because the schedule satisfies 
all the hard constraints. 
Consequence: Any set of paths ����	
 ↝ ���� that satisfy equations 3.3 and 3.4 
represents a feasible schedule and vice versa, every feasible schedule can be 
represented by such set of paths. 
 

• The sum ∑ 	̅(�)�∈b�  is equal to the cost of the schedule represented by :�. 

To prove that, let us prove that the cost of a path computed by function 	̅  is equal to 
the cost of a resource schedule represented by the path first.  
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Consider arbitrary path � = (~���;o� , ~; , ~>� , … , ~8� , ~���8) ∈ :� representing a 

resource schedule :;, we will prove that 	̅(�) = `D(�) + ∑ `a(��? , �G?) D<? ,DR?  ∈ b? �cG . 

According to observation 3.1 and 3.2 there’s exactly one resource vertex and at least 
one activity vertex in the path. That implies that there’s exactly one resource arc,  
which is (~; , ~>�). From the definition of the weight function 	, 	(~; , ~>�) = `D(�). 

Also by definition, ∀pair of activity vertices i~�� , ~G� i ∈ � representing a pair of 

activities ��; , �G? ∈  :;  it holds that 	(i~�� , ~G� i) = `aJ��? , �G?L. Thus for path � representing resource schedule :; = (�>? , �@? , … , �8?) it holds that 	(̅�) = 	(i~���;o� , ~; i) + 	 =~; , ~>�B + � 	 =~�� , ~G�B> ¡ �cG ¡ 8 + 	(~8, ~���8) = 

= 0 + `D(�) + � `aJ��? , �G?L> ¡ �cG ¡ 8 + 0 = `D(�) + � `a(��? , �G?) D<? ,DR?  ∈ b? �cG
 

Because path � was an arbitrary path, it holds for all paths of :�. 
 

Let us now prove that the cost of the schedule : = �:;¢£ , :;¤£ , … , :;�£ ¥ represented 

by :� = N�>£¦ , �@£¦ , … , �8£¦O is equal to ∑ 	̅(�)�∈b� . From the definition of function 

2.1 we know that the cost of : is a sum of the costs of each resource schedule of :, 
from the previous proof we know that the cost of a resource schedule is equal to the 
cost of a path representing it, thus: ∑ 	(̅�)�∈b� = ∑ §`D(�) + ∑ `a(��? , �G?) D<? ,DR?  ∈ b? �cG ¨�eb�b?;��;������q m© � =
∑   §`D(�) + ∑ `a(��? , �G?) D<? ,DR?  ∈ b? �cG ¨b? ∈ b = ∑   §`D(�) + ∑ `a(��, �G) D<,DR ∈ b? �cG ¨b? ∈ b   

 

• The schedule represented by :� has the lowest cost because: 
 

For contradiction suppose that there’s another schedule :ª which is represented by a 

set of paths :�«   and whose cost is lower than the cost of schedule : represented 

by :�. From the previous proof we can see that the cost of :ª is equal to the cost of :�«  and the cost of : is equal to the cost of :�. Hence the cost of :�«   is lower than 
the cost of :�. But that is in contradiction with the minimum cost of :�.  
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Observation 3.4:  The Rotation assignment problem (ROT) is a special case of the Minimum 
set partitioning problem (MSP) [10]. That is, ROT is NP-Hard.  
 

Proof:   The MSP problem is formulated as follows, for a given universe ¬ 
of � elements and a given set of subsets :­ = �:­>, :­@, … , :­�� of ¬, a set partition is a 
set ® = �:­>¯ , :­@¯ , … , :­8¯� s.t. ® ⊆ :­ and ⋃ :­�b°<∈± = ¬, ⋃ SB´ ∩ SBµ´�µ = ∅. The 

optimization task of the MSP is to find a set partition ® with the minimum cost with a given 
cost function ]���(:­�) ∀:­� ⊆ ¬ and ]���(®) ≔ ∑ ]���(:­�)b°<∈± .  

Since it is known that MSP is a NP-Hard problem [10], in the complexity theory in 
order to show that the ROT problem is NP-Hard as well, we need to show that there exists a 
reduction, a transformation of one problem to the other, i.e. ∃� polynomial time complex  s. t.  ∀� ∈ MSP iff �(�)  ∈ ROT. 

We will construct the reduction � as follows: 

• ∀:­� ∈ :­ create a resource ��, i.e. resource set  � ≔ ���|:­� ∈ :­�  
• For convenience, for each element of ¬ assign it a unique index from 1 to �, so we 

can denote ¬ as ¬ = �

��>, 

��@, … , 

��»�  
• For ∀

��8 ∈ ¬ create an activity �8 such that:  

- �8 = �, �8 = 0.99, 
8 = �8 + �8, 6�8 = ��8 = 0, �
8 = 

8 = ½���� 
- �	8 = ��� |:­� ∈ :­, 

��8 ∈ :­�� 

• All the constants for `a  are 0, i.e. `a(��, �G) = 0 ∀��, �G  
• ∀�� ∈ � 	;< = f]���(:­�),            ∀� E � s. t. �� ∈ �	D → � ∈ :;<∞,                                                            ��ℎ
�h��
 i   

Notation: � ̅means reduction � applied only on elements or set of elements of ¬. 

Observe that, ∀:­� = N
>< , 
@< … , 
8<O ⊆ ¬ ∃:�� = �(̅:­�), :�� = ��>?< , �@?< … , �8?< � 

with the cost 	;< = ]���(:­�). Also observe that, any schedule : satisfies constraints ]3, ]4 automatically due to the values of the attributes of the activities and that we can 
always linearly order them in the way to make the constraints hold. Also by definition, any 
arbitrary resource schedule :; = ��>? , �@? , … , �8?� satisfies ]6 because  ∀��, �G ∈ :; , � < H: �� = � < H = �G. 

  
 “�(�)  ∈ �¿s → � ∈ À:�":  
Observation: If : is an  optimal and feasible schedule, then ∀:;� = ��>?< , �@?< … , �8?< ¥ ∈ : ∃ :­� = N
>< , 
@< … , 
8<O s.t. �̅Â>J:;�L = :­�.  Proof: because ∀�8?< ∈ :;<: �8?< ∈ :;< →  �� ∈ �	8?< ,  thus ∃ 
8?< ∈ :­�.   Then it means |:­�| ≥ |:��| . Let us prove that |:­�| = |:��|. For contradiction, if |:­�| > |:��| then ∃ 
l< ∈ :­� �(̅
l<)= �l< ∉ :;< but �� ∈ �	l�. Suppose that :;� ≠ ∅ then by definition `DJ:;<L = 	;< = ∞, thus \(:, �, ])=∞, which is not optimal. 
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An optimal and feasible schedule : after reduction �Â> represents an optimal partition ® 
because:  

• By the definition of a feasible schedule, for ∀:;�, :;G ∈ :: :;< ∩ :;R = ∅, thus ∀ Å:­� = �̅Â>J:;�L, :­G = �̅Â> =:;GBÆ: :­� ∩  :­G = �̅Â>J:;�L ∩ �̅Â> =:;GB =�̅Â> =:;< ∩ :;RB = �̅Â>(∅) = ∅.  

• By definition, ⋃ :;<b?<∈ b = �, thus ¬ = �̅Â>(�) = �̅Â> =⋃ :;<b?<∈ b B = ⋃ �̅Â>J:;<Lb?<∈ b = ⋃ :­� b°<Ç�È−1=b?<B b?<∈ b 
.  

• Firstly, let us prove that the cost of : is equal to the cost of ® because: 

\(:, �, ]) = �   §`D(��)  + � `a(��, �G) D<,DR ∈ b?< �cG
¨ = � `D(��)b?< ∈ b  ;<eYb?< ∈ b

+ 0 = � 	;<b?< ∈ b
= � ]���(:­�) 

b°< Ç �̅É¢Jb?<L ∈ b
= ]���(®) 

: has the minimum cost, thus ® has the minimum cost as well. Because for 
contradiction, if there’s another ®Ê s.t.  ]���(®Ê) < ]���(®), then there exists a schedule :̅ = �(®Ê) whose cost ]���(®Ê) = \(:̅, �, ]) < \(:, �, ]) = ]���(®), but that is in 
contradiction with the minimum cost of :. 

• Thanks to the definitions of �	8∀ �8 ∈ � and the cost values:   

∀:;< ∈ : �̅Â>J:;�L = :­� ∈ :­. Thus ® ⋃ :­�b°<Ç�̅É¢Jb?<Lb?<∈b ⊆ :­, i.e. only “allowed” 

resource schedules are optimal ones, because if ∃:;� �̅Â>J:;� L = :­� ∉ :­  then 

there is not a defined resource �� then :� ∉ :� either.  

 

“� ∈ À:� → �(�)  ∈ �¿s": 
Analogically, by the definition, for an optimum partition ®, it holds that ® has minimum cost 
thus a schedule : reconstructed by reduction � has the minimum cost, ® covers all elements 
of ¬ thus :  contains all activities, sets in ® are disjoint thus corresponding resource 
schedules are disjoint, other hard constraints hold because of the definition of the reduction 
for elements of ¬ to the activities and ® ⊆ :­, :­ defines a set of feasible resource 
schedules. 

 

 Consequence: After showing that the Rotation assignment problem is NP-Hard, we 
can conclude that it is highly improbable that there exists a polynomial time algorithm for 
the problem, unless NP = P. And that in spite of all our efforts, our designed algorithm 
cannot guarantee polynomial time complexity and in some cases it can have exponential 
time complexity. 
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Chapter 4 

Constraint Programming techniques 

 

In this chapter I will very briefly introduce the concept of Constraint Programming (CP) 
and its essentials and techniques. The knowledge about CP I’ve received is from the lectures 
of Professor Roman Barták [2], for further reading about CP I recommend, for instance, the 
book by F. Rossi, P. van Beek, T. Walsh [3]. 

 

4.1 Constraint programming 

Constraint programming is a problem solving paradigm, which lies in precise 
definitions and separation of variables, constraints and search algorithms involved in solving 
a combinatorial problems. A combinatorial problem is then solved by being defined as an 
instance of the Constraint Satisfaction Problem, i.e. as a finite set of variables and a finite set 
of constraints between the variables. 

4.1.1 Variables 

Variables usually represent decisions or alternatives for some significant objects of the 
problem which is to be solved. Each variable � has a domain Ë(�) expressing possible values 
the variable can take. 

4.1.2 Constraints 

Obviously, constraints play a central role in CP. A constraint is simply a relation defined 
on a set of variables limiting possible combination of values of the involved variables. 
Constraints can be of various kinds, e.g. an arithmetic formula, a Boolean formula, or a very 
abstract relation. Constraints can include various number of variables, called as the arity of a 
constraint, and can be stated either implicitly (e.g. by an arithmetic formula), or explicitly 
(i.e., a constraint is enumerated as a set of tuples of values that satisfy the constraint). An 
assignment of values to variables that satisfy all the constraints involved in an instance of the 
CSP is called a solution of the CSP.  
 

Note:  
A constraint 	(�>, … , �8) is satisfied if ∃(�>, … , �8) ∈ 	 for �> ∈ Ë(�>), … , �8 ∈ Ë(�8) 

 
  
 

Example 4.1: Let us demonstrate the basics of CP on a simple CSP example. Consider a 3 
integer variables ®, Ì, Í, whose domains are Ë(®) = �1,2�, Ë(Ì) = �1�, Ë(Í) = �1,2� and 
constraints are ® ≠ Ì, Í ≠ ®. Then the solution to the example is for instance assignment  ® = 2, Ì = 1, Í = 1. 
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4.2 Constraint propagation 

 
Constraint propagation is one of the key ideas of CP. The idea is that the constraints 

are not only used to test the validity of a solution, but also as a way to remove the values 
from the domain (a process called domain reduction), deduce new constraints and detect 
combination of values of variables that can never be in a solution (such values are so-called 
inconsistencies). This process can be very complex and solving an instance of CSP is NP-
complete (after all, sometimes we solve NP-hard problems as a CSP [11]) 
 

4.2.1 Consistency techniques 

 

One of the ways to achieve a solution in CP is through removing inconsistent values 
from the variables’ domains. Such techniques are called consistency techniques, which were 
first introduced in the work of Waltz[12].  

 
Since consistency techniques are crucial components of constraint propagation, 

several techniques have been proposed. The names of basic consistency techniques are 
derived from the graph notions, where constraints are represented as a 	��������� Î���ℎ where each node represents a variable and each arc corresponds to a 
binary constraint (it was shown that arbitrary CSP can be transformed to an equivalent 
binary CSP [13]). The consistency techniques varies in complexity, from the simplest  ���
 	������
�	�, which removes from the variables’ domains values inconsistent with 
unary constraints, to ��	 	������
�	�, which removes values from the variables’ domains 
that are inconsistent with binary constraints, to complex ���ℎ 	������
�	� and Ï −	������
�	� techniques [2]. 
 

To grasp the ideas of consistency techniques, let us briefly describe the most widely 
used arc consistency algorithm AC-3 [2] and demonstrate in on example 4.2 below. The 
algorithm is based on repeated �
~������ of the arcs, removing inconsistencies from the 
domains of variables involved in the respective binary constraints represented by the arcs, 
till a consistent state is reached or some domain becomes empty. The AC-3 algorithm is 
efficient in the way that it performs re-revisions only for those arcs that are possibly affected 
by a previous revision.  

 
Example 4.2: Let us solve the problem from example 4.1 by AC-3. By looking at constraint ® ≠ Í, we can conclude that ® ≠ Í no revisions were performed on neither arc (®, Í) nor (Í, ®). By analyzing the constraint ® ≠ Ì and arc (®, Ì) we can deduce that, if ® will be 
assigned to 1 then there’s no value in Ë(Ì) to make the constraint ® ≠ Ì hold (there’s no ������� ~�
�
 for 1), thus the revision removes value 1 from Ë(®). We do not need to 
revise arc (Ì, ®)- this is the smart trick of AC3 of not performing unnecessary re-revisions 
from deducing, that since 1 didn’t have a support value in Ë(Ì) then no value in Ë(Ì) 
needed 1 as a support value either. But now, the domain Ë(®) has changed and hence ® ≠ Í might not hold and we need to revise arc (Í, ®) again. Revision of arc (Í, ®) removes 
value 2 from Ë(Í). After performing AC3 the domains are in a consistent state with Ë(®) = �2�, Ë(Ì) = �1�, Ë(Í) = �1�. Below is figure 4.1 illustrating the situation. 
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AC3 removes local inconsistencies 
Figure 4.1 

 
 
4.2.2 Search strategies 

 Due to that most of constraint propagation techniques are incomplete in the sense of 
not removing all inconsistencies, some kind of search is needed in order to find a solution of 
a problem. Usually, search is implemented by the means of some tree search algorithm. 
Roughly spoken, there are two general components of a tree search algorithm, the way to go 
“forward”, i.e. when and which decisions are taken (in case of a CSP it is which values will be 
assigned to variables) in the search – so called search heuristics, and the way to “backward”, 
i.e. how the algorithm shall behave when a contradiction occurs – referred as backtracking 

strategy.  

 As mentioned above, one of the essential components of searching for a solution are 
search heuristics. In CP, the way how one can define the search heuristics is by variable and 
value ordering. The strategy for selecting variables and values at each point can be crucial 
for the performance of a search algorithm. One of the often mentioned strategies is that one 
can select a variable that is likely to fail and a value that is likely to succeed. But of course, 
the ordering doesn’t have to be statically set but may depend on the context a search has 
performed so far. 

 

4.2.3 Optimization in CP 

 Optimization in CP is mostly done in a very simplistic way. The often mentioned 
approach is by defining an objective function over the variables involved in the optimization 
and expressing the function as a cost (CSP) variable, on which the optimization constraints 
are applied, e.g. at the beginning a solution is found in a normal way without optimizing, 
then, the cost of the just found solution is used as a bound value to constrain the cost of the 
consequent solutions to be better, after that, one can restart or continue the search. 

 

{1, 2} 

{1} {1, 2} 

X 

Y Z 
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 The approach described above is simple but it would be more efficient, if we 
efficiently exploit of the structure of the objective function or use the knowledge from the 
previous solution’s computation. Possible ways how to improve the approach is, for 
instance, using parallel search, where results of one search line can be congruently 
propagated to other search lines; or using a heuristic function that optimistically forecasts 
the cost of the current solution and stop the search if even the optimistic heuristic cannot 
reach the required result. 
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Chapter 5 

A Constraint Programming approach 

 

 So far I’ve been talking about the connection network model and constraint 
programming just to lay foundations for a constraint programming model for the Rotation 
assignment problem. So let us go ahead to formulate the basic constraint model and then, 
step by step, we will improve and modify it to be more efficient. 

 

5.1 Specification of the CP model 

The constraint programming model is naturally derived from the graph model in 
section 3.1.0.  

In the graph model, we found out that a solution to the rotation assignment problem 
is a set of disjoint paths ����	
 ↝ ���� that have the least cost. To describe such paths we 
need the variables that are sufficient to express that. A natural way how to describe a path is 
that for each node of the path, representing an activity, we consider its successor node on 
the path, representing the activity that can start after the respective activity.  For this 
purpose we define for a node � a variable called :�		
����(�)  whose domain Ë(:�		
����(�))  expresses all possible successor nodes of �. 

So, together � and :�		
����(�) represent a connection, but of course it is still not 
sufficient since in this context it is possible that a path can have a repeated node or it can 
have a node in common with a different path, thus the paths are not disjoint. To prevent this 
situation to happen we use a constraint called �

_����
�
�� (�>, �@, … , ��) [16]. This 
standard constraint restricts that all its variables in the argument must be assigned to 
different values. Thus, by using the constraint in the form of �

_����
�
�� (:�		
����(�>), :�		
����(�@), … , :�		
����(��)) we can achieve that 
there’s no node that would be a successor node of multiple nodes, thus all the paths are 
disjoint.  

One might ask, how can we be sure that all the paths constructed by the :�		
���� variables and the �

_����
�
�� constraint are the paths ����	
 ↝ ����, as it 
might happen that the paths create cycles? Note that, it cannot happen in our CP model, 
since it is built on the graph model, which we already noticed that it is acyclic. So, the paths 
in the CP model can never create cycles. 

However, by enforcing disjointedness of the paths ����	
 ↝ ���� we encounter a 
problem. All the desired paths start from the source and end at the sink, so they cannot be 
disjoint. Also, in the solution set of the paths there are multiple arcs emanating from the 
source node. How can we resolve these problems? In the CP model we will not consider the 
source and the sink nodes and arcs simply don’t exist in the CP model. But that creates a 
new problem - what are successors of the last nodes, how can we quickly recognize what is 
the first or the last node of a path by just looking at the variables :�		
����? We can again 



31 
 

recall the graph model 3.1 and its  � resource nodes and apply them in this situation. We 
will make them to represent the first nodes but also the last nodes of the paths. How can we 
make them be the first nodes? In the graph model we notice that, for each activity that is 
compatible with its resource there’s a resource arc leading from the particular resource 
vertex to the activity node, so since there aren’t the source and the sink nodes, the resource 
vertices can already represent the first nodes. However, in order to make them the last 
nodes, we will extend the domains of the :�		
���� variables representing the activities by 
the resources that they can be allocated to. And at last, to model the situation that a 
resource is not used we will add a loop arc going from the vertex representing the particular 
resource back to itself. In order to do so, for each resource � we will extend the domain Ë(:�		
����(�))  by value �. Notice that, in effect, after all these extensions we have 
introduced new cycles into the model, but it will not make any problem as the cycles are 
disjoint. 

However, is it sufficient to describe our problem so far? The answer is no, because 
obviously we are missing a way how to express to which resource activities can be allocated 
to. For this purpose we define a variable �
����	
(�) for a node �, whose domain 
enumerates all possible resources compatible with the activity represented by node �. And 
for the nodes representing the resources �
����	
 variables will be by default assigned to 
the respective resources.  

While the variable �
����	
(�) is sufficient to describe a schedule alone, it is weak 
in the terms of practical use and propagation strength, and we must find a way how to link it 
with the variables :�		
����.  This is the point where we can recall the observation 3.2, that 
a path ����	
 ↝ ���� represents a schedule for exactly one resource, thus all activities 
represented by the nodes of the path are allocated to the same resource, thus two activities 
creating a connection must be allocated to the same resource! We can capture this 
relationship by a simple constraint  �
����	
(:�		
����(�) ) =  �
����	
(�) or by using 
the standard w

�
�� constraint in the form of w

�
��(:�		
����(�), �
����	
,�
����	
(�) ). The constraint w

�
��(Ð��
�, v�������, v�
�
) forces the variable at 
index Ð��
� in the variable list v��p��� to take the value of v�
�
. Note that, by introducing �
����	
 variables and binding it with :�		
���� variables we also solve a problem, when 
a path can have multiple resource nodes - when the last activity node of a sub-path of the 
path can lead to another different resource node and this process goes on till the last activity 
node of the path leads back to the first starting resource node. But by enforcing that all the 
nodes of a path must have the same �
����	
 value, we’ve avoided this problem. 

So far the basic model captures the description of the paths but since the topic of this 
thesis is about optimization in CP, the model is not sufficient in this sense. We have to 
incorporate the objective function 3.2 of the problem into the model. As it has been already 
spoken in section 4.1.5, we can introduce a variable ]��� into the model to represent the 
objective function, on which we will perform optimization. Consequently, we have to 
introduce a mechanism how to link the ]��� variable with other components of the model. 
For these purposes we will use a similar approach to the one described in section 3.2 to 
represent the cost of the solution, which covers the cost for resources usage and the penalty 
costs of every conflicting activity pairs. Thus, with the weight function 	 defined in section 
3.1.0 the ]��� variable is defined as follows: 
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]��� = � 	( �, :�		
����(�))
 >¡�¡»

 + � 	( �, H) »c�¡»Ñ�G∈�ÒÒb�oo�(�)
 

�

:�		�(�) = f �:�		
����(�)� ∪ �

:�		�J:�		
����(�)L,           :�		
����(�) > �∅,                                                                                                      ��ℎ
�h��
 i 
 

 

 

 

 

Model 5.1 A CP model for the Rotation assignment problem CSP-ROTAS-Basic 

For a given weighted connection network u =  (v, w, 	) defined in section 3.1.0 we 

define a CP model CSP-ROTAS-Basic as the following: 

 

:�		
����(�) =  ]������6
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�
����	
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:�		
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:�		
����(�)                                           � + 1 ≤ � ≤ � + � 

�
����	
(�) =  �����6

�
����	
�(�)                                            � + 1 ≤ � ≤ � + � 

 

w

�
�� J:�		
����(�), �
����	
, �
����	
(�)L                             ∀ 1 ≤ � ≤ � + � 

�

_����
�
��(:�		
����) 
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����(�))
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An example of the CP model derived from figure 3.1. The newly introduced arrows leading back to 

the resource are in red, the source and sink vertices and arcs are gone. The domains of �
����	
 variables are in brackets. :�		
���� variables are represented by the arrows implicitly. 

Figure 5.1 
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5.2 Searching for the best solution 

 

5.2.1 Search heuristics 

 As we have already talked about, the search heuristics can have a huge impact on the 
performance a search. In CP, the search heuristics include variable and value ordering. What 
are good heuristics for our case? Although I tried to branch on the Successor variables and I 
tried to use the often recommended way ordering, i.e., by selecting a variable with the 
smallest domain, and the smallest value, it was not possible to get a solution in a reasonable 
time. Thus, I‘ve chosen different search heuristics. 

 Firstly, I’ve chosen to branch on the �
����	
 variables, i.e. for each activity we 
choose to which resource it will be allocated to. I’ve decided to do so in order to reduce the 
number of alternatives at each point for the search process, i.e. by the size of the domains of 
the variables. Because the number of resources to which an activity can be allocated to is 
much smaller than the number of possible successor activities, which is in our case virtually 
all activities that have later start time. The choice was also proven experimentally, when 
branching over the :�		
���� variables a solution was not reached even after 30 minutes 
for a weekly schedule, whereas with the same data when branching over the �
����	
 
variables solution was reached in less than 5 seconds. 

 Regarding the question which �
����	
 variable is selected for assignment first, I’ve 
chosen the approach of selecting a variable representing the activity with the earliest start 
time first, so when a contradiction occurs, e.g., a schedule‘s cost is too high, we can surely 
say that is because of the position of the earlier starting activities and backtrack accordingly 
in the search process. Thanks to this approach we will see later that it will help us further in 
propagating constraints. 

For value selection, i.e., to which resource we will allocate an activity I’ve observed 
these cases: 

- Optimal schedules with no cost have also connections with zero costs 
- Although we can face alternatives with the same cost, those alternatives can differ in 

the terms of pre-assigned activities (recall Reservation activities), which can influence 
the outcome of scheduling. That is, it doesn’t matter to which resource we assign a 
given activity � cost-wise, but the resources have different pre-assigned activities 
that start later than the activity �, and the choice to which resource we will assign � 
to can, of course, influence the future choices. To illustrate the situation let us look at 
figures 5.1 and 5.2. below: 
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Figure 5.2 

 

In figure 5.2, if we assign � to resource �2, then in order to avoid a penalty we 
will assign � to �1 and then there’s no place to assign � to avoid a penalty. The 
situation would be completely different if we assign � to resource �1 first, then � to �2, then � to �1. A better strategy here would be that, for � we should have 
chosen a resource where “larger room” between � and the next pre-assigned activity 
is, so other later activities can fit in. 
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Figure 5.3 

 

However, in a different situation at Figure 5.3, if we assign � to �1 because 
we want to keep the maximum time distance between � and the next pre-assigned 
activity, then there will be no resource to move � to without violating the constraints. 
The situation would be better if we moved � to �2 first. So, a better strategy here is 
to choose a resource where there is “smaller room” between a given activity and the 
next pre-assigned activity in order to save room for longer activities. 

Although the two mentioned strategies are completely opposite, we should 
not choose only one of them. That’s why our approach regarding value ordering is 
that we lexicographically order the alternatives according the cost first and then 
according to the time distance between a given activity and its next pre-assigned 
activity. Hence, when considering the alternatives, we branch on the alternative with 
the least cost first and then later on, we branch on the remaining alternatives; when 
facing with alternatives where some of them have the same the least cost, we branch 
on the alternative with the least cost and the largest time distance first, then we 
select the alternative with the least cost but with the smallest time distance, and 
later on we branch on the remaining alternatives.  
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5.3 Implementing and improving the basic CP model 

 

5.3.1 More efficient constraint propagation 

 If we recall the brief introduction of constraint propagation and consistency 
techniques in section 4.2, then we would realize that the whenever the domain of a variable 
changes - be it a removal of values from the domain, a change of the bound of the domains, 
a variable assignment - it will trigger a cascade of constraint propagations and consistency 
checks on all the variables linked with the particular variable by some constraint. This 
process is necessary in order to propagate the changes as much as possible. However, 
sometimes such process doesn’t have a real effect on reduction of the domains of variables  
and the computational overhead involved in the process can have a significant impact on the 
performance of a solving algorithm. 

Notation: From now we will denote construction: if ��
���
 
~
�� then 	��������        
with the meaning that when an event, a condition described in ��
���
 
~
�� holds a 
restriction, a constraint described in 	��������� is posted, added to the model. 

An exemplary improvement can be achieved if we look closer how the constraint w

�
�� J:�		
����(�), �
����	
, �
����	
(�)L works. The constraint is triggered 

whenever there’s a change in domain Ë(�
����	
(�)) or Ë(:�		
����(�)), then the 
constraint would go through all � ∈ :�		
����(�) to check out whether �
����	
(�) ∩�
����	
(�)  ≠ ∅ . This process can be triggered many times without having a real effect on 
constraint propagation. This was also observed by Kilborn [4] and Grönkvist [5], who 
implemented a similar procedure in their models. 

To avoid such overhead the constraint w

�
�� is removed from the model and we 
define a new constraint s���

�:] (�
����	
, :�		
����, ]���) as follows: 

ÔÕ �
����	
(�) = � Ö×ØÙ w

�
�� (:�		
����(�), �
����	
, �) 

ÔÕ :�		
����(�) = H Ö×ØÙ �
����	
(�) = �
���	
(H) 
 

5.3.2 Faster tunneling  

Observation 5.1:  With the variable ordering described in section 5.2.1, it holds that if 
activity �  is to be assigned to resource � and all activities starting before � are already 
allocated and there’s an activity �, the last activity assigned to � having the starting time 
earlier than �, then � must be the successor activity of �. More formally: 

ifififif �
����	
(�) =  � ∧ ∀� �D <  �© �
���	
(�) is assigned ∧  
∃� �
����	
(�) = �, :�		
����(�) not assigned, �l < �© ∧  
 ∄� �
���	
(�) = �, �l < �Û < �©  

     Ö×ØÙ :�		
����(�) =  � 
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Proof: From the premise we know that � is the last activity assigned to � starting 
before � and thanks to the variable ordering we know that all other activities, that will be 
assigned to � after assignment of � start later than �, and therefore, the activity that starts 
immediately after � must be �. Note that, although there might exist an activity that has 
starting time equal to starting time of �, but after assignment of � to �, the activity cannot 
be assigned to � anymore due to the constraint ]6. 

Thanks to this observation we can extend the functionality of the s���

�:] constraint so that when the premise of the observation holds we can for sure 
tunnel this event to the :�		
���� variables as :�		
����(�) =  �. Although this is a small 
extension of the s���

�:] constraint, the performance of the model has been improved 
by average 5 times! 

 

5.3.3 A different value ordering, introduction of redundancy to strengthen 

constraint propagation 

  If we look closer at the way how the constraints w

�
�� J:�		
����(�), �
����	
, �
����	
(�)L and  �

_����
�
��(:�		
����) 

combined with the variable ordering work, we can see that there’s a lot of inefficiency!  
Firstly, when assignment :�		
����(��) = �G  occurs, this change affects (reduces) the domains of other unassigned �i :�		
����(�8) |� > H � variables very poorly, since none of them have �G  in their domains (variablesi :�		
����(��),   i
 < � might have had �G  in their domains but they are mostly assigned already).  
Secondly, when assignment :�		
����(��) = �G  occurs, the domains of �i :�		
����(�8) |� > H � variables are mostly not assigned yet, thus propagation of  variable ]��� as defined cannot occur yet. 
For these reasons I’ve changed the variable ordering in such a way that instead of selecting the variable representing the earliest activity first, the variable corresponding to the last starting activity is selected. It may sound unintuitive, but it fixes the above mentioned shortcomings: 

- when :�		
����(��) = �G  occurs, many other variables :�		
����(��), 
 < � are still unassigned and might have �G  in their domains as well, so the constraint �

_����
�
��(:�		
����) can do its job pretty well here. 
- when assignment :�		
����(��) = �G  occurs, the domains of �i :�		
����(�8) |� > H � variables are mostly assigned already, thus propagation of the cost variable is efficient 
But now with the new variable ordering we can see that our use of constraint �
����	
(�) = � → w

�
�� (:�		
����(�), �
����	
, �) described in section 5.3.1 is pretty useless, because �
����	
(:�		
����(�))  is probably already assigned since :�		
����(�) represents either an activity starting after � or it is a resource. With the new variable ordering it would be more effective to state that activities starting before � must be allocated to the same resource as �. This is the reason why we introduce new variables into the model – ��
�
	
����, which for each activity � express the 



39 
 

activity that starts right before �, i.e., in our graph model it is the preceding node of a particular node on a path. Now, we can adapt the constraint s���

�:] into: 
  ÔÕ �
����	
(�) = � Ö×ØÙ w

�
�� (��
�
	
����(�), �
����	
, �) 

 ÔÕ �
����	
(�) = � Ö×ØÙ w

�
�� (Successor(i), Resource, r) 
ÔÕ Pre�
	
����(H) = � Ö×ØÙ �
����	
(�) = �
���	
(H) 

 And bind the ��
�
	
���� and :�		
���� variables by: 
��
�
	
����(H) = � ↔ :�		
����(�) = H 

 
Furthermore, with the new variable ordering we cannot use observation 5.1, but of course we can still apply an analogical idea, we just need to adapt it to:  

ifififif �
����	
(�) =  � ∧ ∀� �l < �D �
���	
(�) is assigned ∧ ∃� �
����	
(�) =  �, ��
�
	
����(�) not assigned, �l < �©  ∧∄� �
����	
(�) = �, �l < �Û < �© Ö×ØÙ ��
�
	
����(�) = � ∧ :�		
����(�) =  �.  
One might ask, why don’t we also post constrain �

_����
�
��(��
�
	
����) as it might also help the propagation. This is because of the same reasons mentioned above. When assignment ��
�
	
����(H) = � occurs, most of the unassigned variables are ��
�
	
����(
), 
 < �, which of course don’t have  � in their domains Ë(��
�
	
����(
)) and therefore the overhead caused by constraint a

_����
�
��(��
�
	
����) doesn’t pay off.   

5.3.4 Getting a better initial bound 

 

What if we take the soft constraint ]1 as a hard one? Then we might not get an 
optimal solution, but thanks to this restriction we can make the search space much smaller 
while an achieved solution is still acceptable and then we can use this possible solution as a 
higher bound for the original problem (with ]1 as a soft constraint). With ]1 as a hard 
constraint in mind, we can state that any overlapping activities must be allocated to 
different resources and they can be neither successors nor predecessors of each others. And 
so, we can add these constraints into the model: 

∀� ∈ �: (�, �)  ∉ ]1      →     �
����	
(�) ≠ �
����	
(�)                ∀ � ∈ � 

(�, �)  ∉ ]1      →    � ∉ :�		
����(�)                                      ∀ � ∈ � 

(�, �)  ∉ ]1      →    � ∉ ��
�
	
����(�)                                  ∀ � ∈ � 
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After adding these constraints, the performance of the search improved so significantly that 
it is enough to run the model with these constraints added with 1/4 of allowed time first and 
then, if a result is reached, we use the result as a better initial bound for further 
optimizations. 

 

5.3.5 Implementing the cost function 

Although the ]��� variable is nicely formulated, but due to possible inefficiencies 
when every small change in the domains of :�		
���� constraint propagation can be 
triggered without any real effect on the ]��� variable, in practice we opted to implement 
propagation of the cost in a different way. We extend the constraint, or rather in this case 
the propagation procedure, s���

�:] (�
����	
, :�		
����, ]���) to continuously 
update the value of the ]��� variable. The constraint increases the lower bound of the ]��� 
variable after each assignment of :�		
���� variables, i.e., after an assignment, say, :�		
����(�) = �, it increases the lower bound of ]��� by a sum of costs of connections 
between � and its succeeding activities. Recall that, this is possible thanks to the new 
variable ordering where all variables :�		
���� representing activities starting after � are 
assigned already in the most situations. Also, we can observe that, if activity � doesn’t 
violate constraints ]1 or ]2 with a particular activity, say �, then it doesn’t violate the 
constraints with any other activities starting after � either. We can more formally describe 
the process as:  

]��� = < 0, ∞) 

  ÔÕ :�		
����(�) = � ∧ ∀� �l < �D :�		
����(�) is assigned 

Ö×ØÙ  min(]���) ≔   min(]���)  + � 	(�, �)
© ∈a����b�o�(l)  

where  

]����:�	�(�) = f�:�		
����(�)� ∪ ]����:�	�J:�		
����(�)L, 	J�, :�		
����(�)L  ≠ 0 ∅,                                                                                                                       ��ℎ
�h��
 i 
 

 

5.3.6 Better representation of the cost for using resources  

Although the cost for using a resource is computed in s���

�:] and is represented 
together with other costs by the ]��� variable, it would be handy if we have a way to count 
and restrict resource usage directly - for instance, we have some good solutions with the 
same cost, e.g., in some solutions there are more violations of the soft constraints, whereas 
some solutions have less violations of the soft constrains but uses more resource, then we 
would prefer the solution with the least resource use instead. The motivation of preferring 
the minimized resource usage is that sometimes we don’t know exactly how costly it might 
be to operate a resource and only some estimations can be provided while the real cost can 
be much higher due to many possible complications. However, back to the problem, how 
can we quickly recognize whether a resource is used or not? If we remember the definition 
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of the first � artificial variables :�		
���� which represent resources, then we would recall 
that if :�		
����(�) =  �, 1 ≤ � ≤ �, then it would imply that resource � is not used. And by 
simply counting how many such situations occurred we can tell how many resources are not 
used. In the model we introduce a new variable ä��¬�
��
����	
� formally as follows: 

 

ä��¬�
��
����	
� = � å(:�		
����(�) = �)
> ¡ �¡»  

å(6) =  f 1           6 = ���
  0           6 = ��
�
i 
 

5.4 Combining local search and CP    

 Because of the non-polynomial complexity nature of our problem, unless NP≠P, it is 
difficult to guarantee time needed to solve problems with large data inputs. For example, in 
average it takes about 5 seconds to find a good schedule for a week with around 250 
activities, but for a month it takes 6 minutes to find a good schedule. To cope with this 
problem, I’ve decided to make a tradeoff between the run time requirements of the model 
and the quality of a solution by applying local search. Local search is a common term for 
heuristics which gradually improve solutions by small local changes. The advantage of local 
search is that it can find a local optimum fast on smaller data input, but inherently, the 
disadvantage is that while we can reach a local optimum, it doesn’t mean that subsequent 
local optima can converge to a global optimum. However sometimes, actually this is our 
case, the main goal is not to get a global optimum but a good solution in a short time. 

 

5.4.1 Large neighbourhood search 

 One of the possible ways how to perform a local search is that one selects a part of 
an initial solution over which changes are made in order to gradually improve the initial 
solution. This approach, called p��Î
 �
�Îℎ6���ℎ��� �
��	ℎ, was proposed by P. Shaw 
[17] and was successfully applied, for instance, for solving the Vehicle  routing problem [18].  

There are many ways how to implement the Large neighborhood search. In this case,  
I’ve chosen the way by splitting the time range of input data into consecutive smaller 
periods, called h����h�, in each of them a local improvement is performed. 

Because of the nature of our problem I had to make some modification to have the 
approach working well. Because activities can lie in the border between two neighbor 
windows, a good solution in the first window can prevent us to have an even better solution 
in the second window due to placing of the activities in the border. Therefore, I let the 
windows to overlap each other by a small portion. Also, thanks to the fact that our CP model 
is build over a graph model, I can easily fix all the activities that are optimized previously and 
lie outside of the actual window to their already allocated resources, and then let the CSP 
solver [7] to find a solution in the actual window, that together with the fixed activities must 
form a better solution than a known best solution. In our approach we make several 
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iterations (passes) over an input, and for each pass we increase the size of windows 
gradually (until the size reaches a maximal value). In the end, after the pass with the largest 
possible window, we decrease the size of windows to just one day to try to resolve complex 
conflicts that were not solved in previous passes due to larger input at once.  

 Thanks to applying this customized approach the performance of the search for large 
input data improved significantly, the run time of the program has decreased by one third. 
The whole algorithm is written in a pseudo code below as algorithm 5.1. 

 

5.4.2 Search methods 

 I should mention that the CP package that I use is called Gecode [7]. It offers two 
search engines for optimization of a CSP. The first is called Restart and the other one is 
Brach-and-Bound (BB). Roughly spoken, in Restart once a solution is found, the search 
process is restarted using the cost of the previous solution to bound the search for better 
solutions; in BB once a solution is found, the cost of the solution is posted to other partial, 
not completely solved instances yet to restrict them to be better and the search process is 
continued.  

I have chosen for the BB approach, because principally it uses smaller computation 
overhead than Restart. 
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5.5 The complete approach for the Rotations Assignment problem based on CP  

Finally, in this section I present a final CP model and a complete solution for the 
Rotations assignment problem as well. 

 

Model 5.2: A CP model for the Rotation assignment problem CSP-ROTAS 

For a given weighted connection network u =  (v, w, 	),  defined in section 3.1.0, we define 

a CP model CSP-ROTAS as the following: 

 

:�		
����(�) =  ]������6

�(�)  ∪ ���                                                         ∀ 1 ≤ � ≤ � 

�
����	
(�) = ���                                                                                              ∀ 1 ≤ � ≤ � 

:�		
����(�) =  �����6

:�		
����(�)                                           � + 1 ≤ � ≤ � + � 

��
�
	
����(�) =  �����6

��
�
	
����(�)                                 � + 1 ≤ � ≤ � + � 

�
����	
(�) =  �����6

�
����	
�(�)                                            � + 1 ≤ � ≤ � + � 

]��� = � 	J �, :�		
����(�)L
 >¡�¡»

 + � 	( �, H) »c�¡»Ñ�G∈�ÒÒb�oo�(�)
 

ä��¬�
��
����	
� = < 0, � > 
 

ä�¿~
�
��(:�		
����, �
����	
) * 
�

_����
�
��(:�		
����) 

s���

�:] (�
����	
, :�		
����, ]���) 
��
�
	
����(H) = � ↔ :�		
����(�) = H 

Where  

]������6

�(�) = � �	��~���_���
_H | (�, �	��~���_���
_H) ∈ w �  
�����6

�
����	
�(�) =  � �
����	
_���
_� | (�
����	
_���
_�, �) ∈ w �   
�����6

:�		
����(�) = �H | (�, H) ∈ w� ∪ �����6

�
����	
�(�) 
�����6

��
�
	
����(�) = �H | (H, �) ∈ w� ∪  �����6

�
����	
�(�) 

�

:�		�(�) = f �:�		
����(�)� ∪ �

:�		�J:�		
����(�)L,            :�		
����(�) > �∅,                                                                                                        ��ℎ
�h��
 i 
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ä��¬�
��
����	
� = � å(:�		
����(�) = �)
> ¡ �¡»  

å(6) =  f1              6 = ���
0            6 = ��
�
i 
 

s���

�:] (�
����	
, :�		
����, ]���) is deçined as:  

ÔÕ �
����	
��� =  � ∧ ∀� �l < �D �
���	
��� is assigned ∧ 

∃� �
����	
��� =  �, ��
�
	
������� not assigned, �l < �©  ∧ 

∄� �
���	
��� = �, �l < �Û < �©  

Ö×ØÙ ��
�
	
������� = � ∧ :�		
������� =  � 

 

ifififif �
����	
��� = � Ö×ØÙ w

�
�� ���
�
	
�������, �
����	
, �� 

ÔÕ �
����	
��� = � Ö×ØÙ w

�
�� �:�		
�������, �
����	
, �� 

ÔÕ ��
�
	
��or�j� = i Ö×ØÙ �
����	
��� = �
���	
�H� 

 

 

ä�¿~
�
�� is defined as: 

∀� ∈ �: 

��, ��  ∉ ]1      →     �
����	
��� ≠ �
����	
���                ∀ � ∈ � 

��, ��  ∉ ]1      →    � ∉ :�		
�������                                      ∀ � ∈ � 

��, ��  ∉ ]1      →    � ∉ ��
�
	
�������                                  ∀ � ∈ � 

 

Note: ä�¿~
�
�� is not always added to the model, it depends on whether we strictly 
want a schedule without overlapping of activities or to check out existence of such 
schedule. 
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Algorithm 5.1: CP-LOCALSEACH-ROTAS 

data 

�  : a set of resources, � : a set of activities, ] : constraints ] on schedules  

window : time window 

è»Dl : maximal size for time window, èm : basic size for time window 

[ts,  te] : the whole planning period 

[ts
curr,  te

curr] : current planning period 

∆å : look up range, ∆� : multiplier for timeout, ∆h : multiplier for window 

T : maximal timeout allowed for solution finding 

n6 : a constant for default timeout  

n1� : a constant for timeout for one day fine tuning 

MINRESOURCE : a flag to minimize resource use only 

MINCOST : a flag to minimize the cost  

 

procedure CP-LOCALSEACH-ROTAS 

G ⟵ createConnectionNetwork(�, �, ]) 

CSP-ROTAS ⟵ createCPModel(G) 

BestSol  ⟵ Fix all activities on their default resources according to the input * 

[ts
curr, te

curr] ⟵ [ts, ts + window] 

T ⟵ n6; window ⟵ èm 

if  BestSol  has some violations of constraints ] then repeat 

Unfix all activities inside [ts
curr -  ∆å, te

curr + ∆å] on G 

CSP-ROTAS ⟵ createCPModel(G) 

 tmpSol ⟵ Solve(CSP-ROTAS, BestSol, MINCOST, T) 

 if tmpSol ≠ FAIL then 

  BestSol ⟵ tmpSol 

  Store BestSol  to G,  Fix all activities of G according to BestSol 

[ts
curr, te

curr] ⟵  [ts
curr  + window, te

curr + window] 

if ts
curr ≥ te then 

if window = 1 day then 

  window ⟵ te - ts 

  T ⟵ all time left 

 else if window ≥ è»Dl  or  window ≥ te - ts then 

  window ⟵ 1 day; timeout ⟵ n1�; ∆å ⟵ 0  

  do not increase window and T any more later on 

else 

 T ⟵ T * ∆�; window ⟵ window * ∆h 

[ts
curr, te

curr] ⟵ [ts, ts + window] 

until BestSol  has no violation of ]  or  BestSol  is good enough  or  no time left 

 

if  BestSol  has no violation of ] or is good enough  then  

T ⟵ all time left 

Unfix all activities inside [ts
  -  ∆å, te

  + ∆å] on G 

CSP-ROTAS ⟵ createCPModel(G) 

 tmpSol ⟵ Solve(CSP-ROTAS, BestSol, MINRESOURCE, T) 

 if tmpSol ≠ FAIL then 

  BestSol ⟵ tmpSol 

return BestSol 

end CP-LOCALSEACH-ROTAS 
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procedure Solve(CSP-ROTAS, BestSol, runMode, T) 

if runMode = MINRESOURCE then 

 CSP-ROTASX  ⟵ CSP-ROTAS + 

   restrict   ä��¬�
��
����	
� > BestSol. ä��¬�
��
����	
� 

CSP-ROTASX  ⟵ CSP-ROTASX  + restrict  ]��� ≤ BestSol.Cost 

else 

  CSP-ROTASX  ⟵ CSP-ROTAS   +  restrict  ]��� < BestSol.Cost 

  

CSP-ROTASY ⟵ CSP-ROTASX + NoOverlap constraint 

 tmpSol ⟵ Find a solution for CSP-ROTASY using BB search with 1/3*T  timeout 

if tmpSol ≠ FAIL  and  tmpSol.Cost < BestSol.Cost  then 

CSP-ROTASX ⟵ CSP-ROTASX  + restrict  ]��� < BestSol.Cost 

 

BestSol ⟵Find a best solution for CSP-ROTASX using BB  search with 2/3*T  

if BestSol = FAIL then 

 BestSol  ⟵ tmpSol 

 

return BestSol 

end Solve 
 

 

Note: Although it is not important for the CP or the graph model, in practice in our case the 
activities are from the input by default assigned to some resources. The character and the 
quality of the default assignment can vary and can be unpredictable. But since we don’t have 
any solution in the beginning, we can use it as a starting point (something is still better than 
nothing). 
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Chapter 6 

Computation results 

In this chapter I would like to present the experimental results of my work.  

 

Testing environment: 

Hardware: 

 CPU Intel Xeon 3.2GHz, 2GB RAM. OS Windows server 2003 R2 

Data: 

During the work I had an opportunity to access to two databases provided by 
company The Kite, s.r.o [25]:  

1. Database AVES  is artificially generated, has small numbers of reservation 
activities and has been pre-optimized, so it is “easy” to optimize  

2. Database AVESX has data from real life which includes many reservation 
activities, has been deliberately so it can have problematic parts with unsolvable 
conflicts 

Software: 

 Optimization module WK version 4.1. R02, build 1012 from June 20 2010 

In the optimization module WK, in which was working with, I had access to 3 of 4 
other algorithms solving the same problem:  

- Algorithm “FIFO/LIFO” is based on proprietary search heuristics and backtracking. 
- Algorithm “Complex Solution” is based on proprietary search heuristics and the 

Column generation technique. 
- Algorithm “Aircraft usage reduction” is also base on proprietary search heuristics and 

the Column generation technique with stronger emphases on optimizing the 
resource usage. 

- The fourth one is the most complex one. Although I didn’t have access to this 
algorithm directly, it is known that it produces the best results of the three above but 
is very slow - the algorithm is usually let run over night. 

All these algorithms have been developed over years and the first three are already 
mentioned in the introduction chapter, they represent the standard approach in the industry 
by using linear programming techniques. Although they are proprietary algorithms, we can 
observe their working characteristic from the results, see the remarks on the results below. 
In the following paragraphs I’ll present comparison results with the 3 accessible algorithms.  
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Additionally, I tested three versions of the CP approach:  

- ROTAS Final  -  This is the full model  

- ROTAS No-Tunnel  -  This is the full model without the tunnel constraint described              
                                            in section 5.3.2 

- ROTAS No-Local  -  This is the full model without the large neighbourhood search  
- ROTAS Simple  -  This is completely the basic model 5.1 without search   

heuristics, variable ordering and local search. Only the 
smallest domain size and  the smallest value of �
����	
 or 
:�		
���� variables  approach of was used.  

Note that, the ROTAS No-Tunnel version is tested in each case twice to demontrate the 
quality of the solution within the same run time given to other ROTAS models and needed 
run time in order to achieve the same results as other models. 

Testing parameters: 

During the testing the following the cost scheme is defined for functions from section 2.3.0: 
The constants can be defined by the user. 

o For `D��� 	; = 6000 ∀� ∈ � 

o For `ê���, �G�:   ]D
> = 0, ]m

> = 100, ]o
> = 100, ]q

> = 0,  p�> = 0 

     ]D
@ = 50, ]m

@ = 5, ]o
@ = 5, ]q

@ = 0,  p�@ = 0 

 

 

Table 6.1: Results on AVES for Aircraft type 319 

Period in days Resources in total Activities total Reserve activities 

7 (17.-23.6.’10) 16 262 0 

 

Algorithm Run time in seconds Used resources Schedule cost 

LIFO/FIFO 1 9 61350 

Complex Solution 1 10 67300 

Aircraft reduction less than 1 9 61350 

ROTAS No-Tunnel 5 8 FAIL 

ROTAS No-Tunnel 45 8 56000 

ROTAS No-Local 5 8 56000 

ROTAS Simple  1000 -  - 

ROTAS Final 5 8 56000 
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Period in days Resources in total Activities total Reserve activities 

14 (24.6-7.7.’10) 16 429 0 

 

Algorithm Run time in seconds Used resources Schedule cost 

LIFO/FIFO 1 9 68200 

Complex Solution 1 10 74150 

Aircraft reduction 1 9 68200 

ROTAS No-Tunnel 26 8 64200 

ROTAS No-Tunnel 45 8 63300 

ROTAS No-Local 26 8 63300 

ROTAS Final 26 8 63300 

 

 

 

Period in days Resources in total Activities total Reserve activities 

30 (17.6-16.7.’10) 16 664 0 

 

Algorithm Run time in seconds Used resources Schedule cost 

LIFO/FIFO 1 9 83450 

Complex Solution 1 10 89400 

Aircraft reduction 1 9 83450 

ROTAS No-Tunnel 170 8 79900 

ROTAS No-Tunnel 70 8 83650 

ROTAS No-Local 70 8 79450 

ROTAS Final 70 8 79900 

 

From the results we can see that the three other algorithms are much faster than ours. 
This is due to their working characteristics, which takes an already optimized schedule with 
numbers of small conflicts and they focus on solving these conflicts only, in this case most of 
them solve the conflicts by just putting the conflicting activities on new resources. Obviously 
the approach gives the high speed for the algorithms but overall, using new resources 
comes, of course, costly. That’s where our “ROTAS Final” algorithm trades off some amount 
of time spending on solving for better utilization of resources resulting in better schedules’ 
costs. 

Comparing ROTAS Final with other ROTAS models we might find it interesting that the 
No-Local version performs slightly better in the period of 30 days where the cost is even 
lower than the ROTAS-Final version, this is because it spends the whole given time to solve 
the month and in case of AVES data which are “easy” to solve it pays off. From the results we 
can also see that the No-Tunnel version is very behind others in the terms of the run time. I 
also tested the ROTAS-Simple version on the period of a week but when no solution was 
provided even after 1000 seconds, I think it sufficient to demonstrate that it is practically 
unusable comparing with others. 
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Table 6.2: Results on AVESX for Aircraft type 320 

Period in days Resources in total Activities total Reserve activities 

7 (27.10.-2.11.’10) 11 (3 are blocked) 429 157 

 

Algorithm Run time in seconds Used resources Schedule cost 

LIFO/FIFO 1 - FAIL-4unsched. acts. 

Complex Solution 1 - FAIL-1unsched. acts. 

Aircraft reduction 1 8 218427650 

ROTAS No-Tunnel 300 8 180028950 

ROTAS No-Tunnel 43 8 238715700 

ROTAS No-Local 43 8 180028950 

ROTAS final 43 8 180028950 

 

 

Period in days Resources in total Activities total Reserve activities 

14 (3.11.-17.11.’10) 11 (3 are blocked) 590 194 

 

Algorithm Run time in seconds Used resources Schedule cost 

LIFO/FIFO 1 - FAIL-4unsched. acts. 

Complex Solution 1 8 257591700 

Aircraft reduction 1 8 257591700 

ROTAS No-Tunnel 65 8 239835750 

ROTAS No-Local 65 8 256942850 

ROTAS final 65 8 239835750 

 

 

Period in days Resources in total Activities total Reserve activities 

31 (26.10.-25.11.’10) 11 (3 are blocked) 1038   352 

 

Algorithm Run time in seconds Used resources Schedule cost 

LIFO/FIFO 1 - FAIL-9unsched. acts. 

Complex Solution 2 8 286822150 

Aircraft reduction 2 8 288156150 

ROTAS No-Tunnel 1000 8 300542700 

ROTAS No-Tunnel 252 8 300542700 

ROTAS No-Local 252 8 566059200 

ROTAS final 252 8 253790950 
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Since data from AVESX are difficult in the way that is has many reservation activities 
and some parts cannot be solved without having some conflicts left, the approach of other 
algorithms did not work well on it. The “LIFO/FIFO” and even once “Complex Solution” 
algorithms failed to find allocations for all activities. The LP algorithms are optimized for 
speed and they expect that the input is somewhat good so they can make some changes by 
focusing on and solving the conflicting activities and left the other activities the same as 
much as possible. But sometimes it is not possible and it is required to make significant 
changes in order to improve the cost of a schedule, and this is where our “ROTAS Final” 
model excels. It trades off a reasonable time (but not that all night) spent on problem solving 
for getting much better results. Considering that it takes only a little more than 4 minutes to 
solve a schedule for a month, it is a good compromise. 

The ROTAS models perfectly exhibit their nature on AVESX data. The ROTAS No-Local 
version was on par with the Final version on AVES data, but with AVESX where the input 
difficulty and size rise the quality of solutions deteriorate quickly. But note that, it does not 
imply that the No-Local version is worse than the ones with local search. Theoretically, since 
the No-Local version uses the Branch-and-Bound method which completely explores the 
search space, it can eventually provide a global optimum. The reason of the No-Local version 
being worse here is that it was provided a limited run time. Interesting is also period 3.11.-
17.11.’10 when the ROTAS No-Tunnel version performs on par with others. I think this is 
because there were not many changes possible to perform. Otherwise, the ROTAS No-
Tunnel version is again way behind others in the term of the run time.  

 

Note that, although due to the NP-Hard nature of the problem we cannot guarantee 
the time complexity of the model, unless NP = P, but from the experimental results (and 
practical use) we can see that the time complexity is at average about ¿��@� where � is 
number of the activities. 
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Chapter 7 

Conclusion 

 

The field of the interest of this thesis has been extensively investigated. However, 
unlike other works mentioned in the introduction chapter, my work is mainly different in the 
way that it focuses on the optimization aspect of the problem within the framework of 
Constraint programming. And as far as I know, it is the only model that deals with the 
optimization version of the Rotation assignment problem within the framework of CP. 

As showed in the introduction chapter, solving approaches for the problem evolves 
from one to another. The CP model presented in this thesis shares similarities in concept 
with other existing works ([1], [4], [5], [14]), but as its focus is different, the design of the 
model had to adapt and evolve significantly in order to meet its goal.  

In this thesis I formally presented the optimization version of the problem, then an 
abstract model was defined and on which a solving CP model and a customized local search 
technique was designed. In order to perform the optimization in CP only, many associated 
issues needed to be solved and designed. Among the most important components we can 
name:  

- the search heuristic – variable choice, variable and value ordering, which is crucial to 
the performance of the solution finding search. 

- the efficient representation and implementation of the objective function,  
- the tight tunneling between variables 
- the practically more efficient use of constraints,  
- the way to achieve a better initial bound for the solution  
- and the way of better expressing resource usage.  

In this thesis I’ve showed that it is possible to solve the optimization version of the 
Rotation assignment problem as a CSP, but not only that, from the computation results we 
can conclude that the CP approach and the solving algorithm can compete with other 
existing approaches, especially as a good balance between the run time and the quality of 
solutions.  

From the experimental results we can also observe the characteristics of CP and LP. 
While CP is strong in exhaustive and fast scanning through the search space so we can get 
good results “from the scratch” in a reasonable time, LP techniques are fast and strong in 
making small tuning changes of an existing solution, the last steps towards the optimum. 

In the end, I should mentioned that in the future, this work will be continually 
developing and evolving over time, as it is supported by real life application and is deployed 
to solve real life situations. 
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