Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Tomas Petrusek

Prostredi pro vyvoj modularnich ridicich
systému v robotice

Environment for modular robot control
system development

Department of Software Engineering

Supervisor: RNDr. David Obdrzalek
Study Program: Computer science, Software systems

2010

I would like to thank to my supervisor David Obdrzalek for his invaluable
help, his patience and overall support. My thanks also goes to the MART
team members for sharing ideas, encouragement, useful comments, and for
building the robots. Last but not least, I would like to thank to my friends
and family, especially parents, for supporting me during my studies.

I declare that I have written this master thesis on my own and listed all used
sources. | agree with lending of the thesis.

Prague, 6 August 2010 Tomas Petrusek

Contents

Introduction

1.1 Motivation
1.2 Goals.
1.3 Thesis structure

Related work

2.1 Existing solutionso
2.1.1 Microsoft Robotics Developer Studio
2.1.2 Player Project oL
2.1.3 LEGO Mindstorms NXT
214 Others L

2.2 Summary

Problem analysis

Software design

4.1 Layers
4.1.1 Hardware abstraction layer
4.1.2 Hardware communication layer
4.1.3 Smart layer

4.2 Threading

4.3 Localization
4.3.1 Advancing inputso
4.3.2 Checking inputs L.

Implementation

5.1 Design patterns Lo
5.1.1 Singleton oo
5.1.2 Observer
5.1.3 Facade
514 State

5.2 The core and environment
5.2.1 Threading Lo
5.2.2 Brain and strategies
5.2.3 Scheduler (HCL)
5.24 Equipment (HAL)
52,5 Timers

11
12
13
14

16

18
19
20
20
21
22
23
24
24

C

5.2.6 Configuration management

5.3 CANBus
5.3.1 Changes to the CAN-Festival library
54 Modules
54.1 HCL module
5.4.2 HAL module
5.5 Localizationo
5.5.1 Monte Carlo Localization algorithm
5.5.2 Point and Position
5.5.3 Localization interfaces
5.54 Beaconsin MCL
5.5.5 Emtirelylost oo
5.6 Drivero
5.6.1 Absolute movement
5.6.2 Relative movement
5.6.3 Advanced planning
5.7 Joystick
Evaluation and future work
6.1 Real life deployment
6.2 Futurework
6.2.1 Portability L
6.2.2 Real-time environment
6.2.3 Distributed environment
6.2.4 Runtime module loading
6.2.5 Movement modules and Hermite curves
6.2.6 New hardware components
6.2.7 CANopenstack,
Conclusion

User documentation
A.1 Installation guide
A.2 Robot implementation guide L.

Platform support

B.1 Hardware platforms L.
B.2 Hardware components
B.3 Communication

CD contents

Bibliography

50

51
o1
35

61
61
63
63

66

67

Title: Environment for modular robot control system development
Author: Toméas Petrisek

Department: Department of Software Engineering

Supervisor: RNDr. David Obdrzalek

Supervisor’s e-mail address: David.Obdrzalek@mff.cuni.cz

Abstract: The subject of the thesis is the design and implementation of a
modular control system environment, which could be used in robotics. Both
autonomous and guided robots are supported. The higher-level software com-
ponents like localization, steering, decision making, etc. are effectively sepa-
rated from the underlying hardware devices and their communication protocols
in the environment. Based on the layered design, hardware-independent algo-
rithms can be implemented. These can run on different hardware platforms
just by exchanging specific device drivers. Written in C++ using standard
libraries, the final software is highly portable and extensible. Support for new
platforms and hardware modules can be implemented easily. The whole sys-
tem was tested on two robots and the particular instances of the systems built
using this development environment are included in the solution and partially
described in the thesis.

Keywords: modular control system, layered software architecture, robotic
software, autonomous robot

Nazev prace: Prostiedi pro vyvoj modularnich fidicich systému v robotice
Autor: Toméas Petrisek
Katedra: Katedra softwarového inzenyrstvi

Vedouci diplomové prace: RNDr. David Obdrzalek
E-mail vedouciho: David.Obdrzalek@mff.cuni.cz

Abstrakt: Praca sa zaoberd navrhom a implementaciou modularneho ria-
diaceho systému, vhodného pre pouzitie v robotike. Systém podporuje au-
tonémnych ako aj rucne riadenych robotov. V navrhovanom prostredi je
kladeny doéraz na oddelenie komponent vyssich vrstiev ako lokalizacia, riadenie,
rozhodovanie atd., od komunika¢nych prostriedkov hardwarovych zariadeni.
Vrstevnaty néavrh umoziuje implementaciu algoritmov, ktoré st aplikovatelné
na roznych fyzickych platforméch iba za vymeny pouzitych ovlddacov zaria-
deni. Findlny program je naprogramovany v jazyku C++ s pouzitim Stan-
dardnych kniZnic, je dobre prenositelny a rozsiritelny. Do prostredia je mozné
jednoducho pridat podporu novych robotickych platforiem a hardwarovych
modulov. Systém ako celok bol testovany na dvoch robotoch. Konkrétne in-
Stancie riadiacich systémov vytvorené v tomto programovom prostredi ako aj
ich stru¢ny popis su stcastou tejto prace.

Klic¢ova slova: modularni fidici systém, vrstvend softwarova architektura,
roboticky software, autonomni robot

Chapter 1

Introduction

Robots and robotic constructions occupy peoples’ mind since the times. Robots
in the previous century were mostly static, fulfilling just simple tasks. Nowa-
days, robots are more mobile, user friendly, smart, and “talkative”. They
stand much closer to humans. The rapid development of hardware calls for
better and better software solution not only for the industry, but also for en-
tertainment purposes.

There is no precise definition of a robot which satisfies everyone. Some of
the definitions define it as automatically operated machine, that it looks and
acts like a human being, it performs complex and repetitive tasks or it is even
replacing humans. An electro-mechanical system is usually considered a robot,
if it has several or possibly all of the following properties: it is able to move
on its own; it can sense the environment and manipulate objects in it; it is
programmable; it exhibits intelligent behavior.

“A robot is an automatically guided machine which is able to do
tasks on its own, almost always due to electronically-programmed
instructions. Another common characteristic is that by its appear-
ance or movements, a robot often conveys a sense that it has intent

or agency of its own.”
(Wikipedia)

1.1 Motivation

Given the vast opportunities in this area (see e.g. the Handbook of Robotics [1]),
there are several reasons, why it is good and interesting to develop an envi-
ronment for modular robot control system development.

Most of the robots share some parts or ideas behind their design. We
can think of moving on wheels, legs, decision making, localization, vision, etc.
Using the similarities it could be possible to build a system which would be
universal for all robots of the same kind. By extending this system it would
become more and more universal, and in the end a generally applicable to
almost any robot.

Localization is the key feature of every robot. The robot needs to know its
position with sufficient precision and accuracy in order to perform useful ac-
tions. Otherwise, its actions are strongly limited. The goal of any localization
algorithm is to determine the most probable position based on a given set of
data supplied by many sensors of variable precision and accuracy. It should be
independent of the purpose of the robot. The actual sensors, such as odom-
etry, obstacle detectors, beacons and bumpers, should be the only variable
component. Localization is a fairly well researched area, thus there are many
possible algorithms to choose from (e.g. Kalman filter, Markov localization
based on grid, or Monte-Carlo localization).

The choice of steering algorithms unlike localization is tightly related to
the actual hardware design. There are multiple different types of steering:
differential steering, Ackermann steering (car-like) or unidirectional steering.
Steering algorithms can be further differentiated by the method of control.
The first possible solution is to adjust the speed of the left and the right wheel
separately. Another way is to control the speed and the direction, similar
to the steering wheel and pedals in a car. Yet another option is to use a
unidirectional joystick.

Vision algorithms, which are responsible for image recognition, are cru-
cial too. Robots, which do not require computer vision may be autonomous,
however not entirely universal. Examples include automatic welding machines
found in car factories or robots producing printed circuit boards. Vision is crit-
ical for fully autonomous robots, as it provides much more useful information
than dedicated sensors. One can use either one camera or even more cameras
to provide stereo vision, which is not only able to identify an object’s position,
but also the distance from the robot.

Robotic hardware and software construction is a great topic for article pub-
lication and conference presentations. A broad space for research is available.
There are plenty of different algorithms to implement, test, and compare.

1.2 Goals

The aim of this thesis is to design and implement a modular control system
environment. By environment is meant the software environment with frame-
work functions, where the modules are loaded based on the concrete instance
of the implemented control system. It should provide some API to interact
between these modules and to perform some robotic tasks. The modules are
relatively small pieces of code, which are exchangeable (if they implement the
same interface), and serves communication or computational purposes.

The software will be implemented in C++ with use of standard libraries
to be easily portable across multiple hardware architectures and operating
systems (with the exception of the low level parts of module implementations).
Rationale for these decisions will be explained in Chapter 5.

The environment should be tested on real robots. New control system
creation as also module creation will be documented and explained on sample
implementation.

1.3 Thesis structure

The text is structured as follows.

Chapter 2 gives an overview of the related work and other existing solutions.

Chapter 3 proposes some key features of the software design.

Chapter 4 introduces the complete design of the system environment.

Chapter 5 lays out how the design was implemented, what technical means
were used and how the code is structured.

Chapter 6 discusses the contribution of the thesis and its real life deploy-
ment. It also notices some future plans, that could improve the system.

Chapter 7 summarizes the achievements.

Appendices contain the user documentation (App. A) with installation
guide, software core functionality description, and a new control system
implementation guide. It also describes the hardware platforms and com-
ponents (App. B) on which this software have been thoroughly tested.
The CD contents listing is included as well (App. C).

Chapter 2

Related work

The author of this text is one of the leading members of the MART! team.
Together with other team members he took part on building the robots, com-
peting in the Eurobot contests [2] and other competitions, and also publications
on international conferences.

Throughout the development of this system, three papers have been writ-
ten. The first one describes the mapping between hardware and software in
the design of the robots, the second one deals with robot localization in known
environment, and the third is describing the overall (software and hardware)
design of one robot. For more information, refer to [3], [4], [5].

This environment was also used as platform for implementation of the
MOSYR? [6] software project. It was about implementing modules that form
a control system as much universal as possible. The final goal was to share
higher level modules and strategies between robots built on different hardware
platforms with distinct hardware devices.

2.1 Existing solutions

This robot control system environment is not the only project in this area. In
this chapter a brief description of several other solutions can be found. Each
of the listed projects has some pros and cons but none of them meetings the
defined requirements. However, some ideas seen in these projects also helped
to find better solutions for some problems.

2.1.1 Microsoft Robotics Developer Studio

Microsoft Robotics Developer Studio [7] is a development, runtime, and simu-
lation environment for robot control designated for academic and commercial
application as well as for hobby use. It consists of two major parts, the Visual
Programming Language and the Visual Simulation Environment.

The supported programming languages are C++, C#, Visual Basic .NET,
IronPython or potentially any other .NET language. For users, who are not

Mat-phys Robot Team
2Modulérni systém fizeni — Modular control system

-@: RoboticsTutorial3 - Microsoft Visual Programming Language [E=E)

File Edit View Build Run Help

DEHl9 3 AX[»rw
Basic Activities - x GenericContactSensors X | GenericDifferentialDrive | Project - x
@ Activity = Diagram % [RandomDrive X | I+ & piagrams
Y ankile GensricContactsensars u¥ Diagram
{5 Caleulate . I () Configurations
vz Data =
SHloin
= Merge Variable RandomCrive|
S Drassed |Ger P & Resuit
2 switch [+ ool
tBiList i
S ! Properties - X
Find service .. ﬁ- e
= All Found = ARerBackup L Tum @ v *Result
& Announce H @ p- e
Arcos Bumper m AferTum §— prive-# .
% \rcos Core Bolarity ! Polarity -
8 cccs e —

& BlobTracker

&% BoeBot BASIC Stamp 2

&% BoeBot Generic Contac This element has no propertie

% BoeBot Generic Encode

% BoeBot Generic Motor

& Common DSS Test Img. m Variatle

«3 Direction Dialog o 2

& Direction Dislag (V)

W Explorer

B fischertechnik® -
m » . m

Saved

Figure 2.1: Microsoft Robotics Developer Studio — Visual Programming Lan-
guage

able to create applications in any of the supported languages, a drag & drop
style visual programming component called Visual Programming Language
(see Figure 2.1) is installed with Microsoft Robotics Developer Studio.

Visual Simulation Environment (see Figure 2.2) is another important com-
ponent of Microsoft Robotics Developer Studio. It supports physically accurate
three-dimensional simulation of the robot’s behavior in virtual environment.

Microsoft Robotics Developer Studio is based on Microsoft CCR (Con-
currency & Coordination Runtime) and DSS Toolkit (Decentralized Software
Services), to enable asynchronous, parallel, and distributed application execu-
tion. This framework is also suitable for many other areas outside robotics.

The final application can either be a classic Windows application or it can

Figure 2.2: Microsoft Robotics Developer Studio — Visual Simulation Environ-
ment

10

be a web service with a web-based user interface. The application can either
control the robot over network via a connected PC (both wired and wireless
connections by Bluetooth or Wi-Fi are supported), or it can run directly on a
fully autonomous robot. A necessary requirement is the use of the Microsoft
Windows platform.

The product is currently available in multiple editions: commercial Stan-
dard (approx. $500), Academic and Express edition, which is free but rather
limited in terms of functionality and license.

2.1.2 Player Project

The Player Project [8] is composed of several independent components. The
most important one is Player — a network server for robot control.

Player is a robot hardware abstraction layer (in the terminology used in
this work, it consists of both the HAL and the HCL layer — see 4 for further
information). It provides a TCP/IP based interface to sensors and actuators.
On the other end of the connection, there is a so-called player-client, which is
responsible for the higher-level robot control. Player-clients are not parts of
the project. It is up to the programmer to create a corresponding application
for the particular purpose of the robot. In spite of this fact, several pre-created
solutions for interactive control are freely available. The key benefit of this
philosophy is the freedom to choose any programming language according to
the programmer’s preferences, as long as it can access the TCP/IP networking
stack. The Player Project itself is made available under the GPL license for
Linux/Solaris/BSD.

Player controls the particular physical or simulated virtual hardware through
drivers. These are provided for a given hardware set. It is also possible to cre-
ate a custom driver for devices, which are not supported out of the box. A
special category includes abstract drivers, which encapsulate a few useful al-
gorithms, such as adaptable Monte Carlo Localization. Abstract drivers rely
on other (ordinary) drivers.

The Player Project is tightly coupled with two other projects: Stage and

rlaser erl’

ime 111,700 ma; time 111,640

e 111.680

Figure 2.3: Player Project, Stage, and Gazebo

11

Figure 2.4: LEGO Mindstorms NXT — robotic claw arm and a small octobot

Gazebo simulators. Stage simulates a single or more typically a numerous pop-
ulation of robots in two-dimensional environment (2D bitmap). It is particu-
larly aimed on quick simulation of autonomous multi-robots, without emphasis
on the accuracy.

The second simulator Gazebo (see Figure 2.3) simulates one or more robots
in three-dimensional world. It is more accurate, and thus naturally much
more resource demanding than Stage. Gazebo is able to generate realistic
virtual sensor values. Thanks to the built-in implementation of rigid body
kinematics, it can simulate interactions between robots as well as with the
virtual environment.

The theoretical portability between physical hardware in the real world
and simulated hardware in virtual environment without changes to the player-
client is one of the main advantages of the Player Project. However, the
use of a virtual camera in Gazebo for image recognition tuning is disputable.
The main practical difficulty of the Player Project is currently the awkward
usability. Even the installation is being described as “tricky” in the official
documentation.

2.1.3 LEGO Mindstorms NXT

LEGO Mindstorms NXT [9] is the most recent version of the robotic set from
the producer of the well-known LEGO building set. All the required hardware,
including a control unit NXT Brick (48 MHz ARM7, 64 KB RAM, three
servomotors and several different sensors are included in the package.

LEGO Mindstorms is typically programmed in an intuitive drag & drop
software on Windows or Mac OS X (see Figure 2.5). The compiled code
is then transferred into the NXT Brick through USB or Bluetooth. Visual
programming is however not the only way to create the control software for
a LEGO robot. Both the runtime environment byte-code and the NXT Brick
firmware are freely available under an open-source license. Therefore, many
third-party solutions have emerged. It is hence possible to control the LEGO
robot (see Figure 2.4) by programs written in a wide range of programming
languages, including C and C++. Languages like Prolog and Python are

12

(B LEGO MINDSTORMS NXT.

Home > Vehicles » Triok > 1. Driving Base

TriBot

F

- <& pon ©a Oe B¢ Sirowr Sye— @[7] | Need he

3 hove the cursor aver an abjectto read about Hs fundton. For
® Sonan: O OL 0O 4 Ouwaion: 3] [Reions) | peties e e mndion:
a More hel
W@ D 2 S| B vanacins © pllske O b cosm
-
-

4 0 ¥

Figure 2.5: LEGO Mindstorms NXT — development software

partially supported too. Such applications must however run on a computer
constantly connected to the NXT Brick over a wireless link.

Thanks to the open specification of the hardware peripherals and the con-
nection protocol (IC or RS-485) there are many other third-party hardware
components available (e.g. compass, gyroscope, accelerometer), apart from
the standard set of sensors (contact, light, ultra-sound range finder and micro-
phone).

It would not be fair to treat this product as just a toy. This platform is
a great starting point into the world of robotics, especially for applications,
where the described hardware is sufficient.

2.1.4 Others

As it is unfortunately not possible to mention every project in robotics concern-
ing this topic, only couple of other interesting solutions are briefly described.
Webots [10] is a professional three-dimensional robot simulator. It can sim-
ulate one or more robots, multi-robots, both mobile and walking robots, and
even reconfigurable modular robots, which are hard to construct in practice.
Webots run on Linux, Mac OS X, and Windows. It can accurately simulate
collisions and rigid body kinematics. The control software for simulated robots
can be written in a wide range of programming languages. The simulated world
is described in a language similar to VRML. Webots is a commercial project,
in the price range between hundreds and thousands of Swiss Francs, depending
on the license. A free, but less advanced alternative to Webots is Simbad [11].
It is a three-dimensional autonomous robot simulator written in Java. It is
designated primarily for scientific and academic use. Simbad performs sim-
ulation and three-dimensional visualization of one or more robots, including
sensor simulation — cameras, range finders, and bumpers. It does not try to
be a realistic physical simulation of the real world. Control programs for the
simulated robots can only be written in Java (or Python).

13

Mobile Robot Programming Toolkit (MRPT) [12] is an extensive set of
portable libraries written in C++-, designated primarily for mobile robotics
developers. Rather than complete robot architecture, it is only set of tools.
MRPT covers a whole range of robotic solutions, such as simultaneous lo-
calization and mapping (SLAM), computer vision, route planning (obstacle
avoidance), processing and visualization of extensive sets of measured data,
compression and serialization, 3D (6D) geometry, probabilistic functions and
Kalman filters.

Carnegie Mellon Robot Navigation Toolkit (CARMEN) [13], is a toolkit of
programs to control mobile robots, their sensors, logging, localization, route
planning and mapping. Communication between the programs is provided by
the IPC package, which is distributed with CARMEN. Given the separation of
the functionality into stand-alone programs, CARMEN is highly modular. It
is written in C (not C++) and it only runs on Linux. Carmen’s real usability is
considerably questionable. The latest version (0.7.4-beta) has some unresolved
issues, which have to be kept in mind when using this toolkit (i.e. the necessity
to use a laser range finder). At the time of writing this text, it was not possible
to try this environment out and it does not seem to be finished yet.

Description and images about some of these and the earlier described so-
lutions can be found in [14].

2.2 Summary

Since several interesting software products in the area of robotics have been
introduced, it is necessary to justify the decision to develop a new modular
robot control system environment, which is considered more suitable for the
specific needs.

The major drawback of Microsoft Robotics Developer Studio is the neces-
sity to use the Windows platform, not only for development but also for the
software running on the autonomous robot. Taking into account the choice
of the available and commonly used robotic hardware platform, it was better
to avoid such limitation. Considering the license costs of Webots from Cyber-
botics, usage of this professional and complex tool was not possible. LEGO
Mindstorms NXT is too tightly coupled with a particular hardware platform,
and hence not suitable for this use. Simbad Project is only a simulator a vi-
sualization tool written in Java. It is not designated to control a real robot
at all. MRPT has not been applied either, because at that time it was only
for localization with Kalman filter and some basic computer vision. However,
we have separately used some of the libraries used by MRPT (OpenCV [15]).
CARMEN is considered to be the closest solution in terms of ideas. The key
differences are their choice of the C language and only program-level modular-
ity.

There was an attempted to use the Player Project with the Gazebo sim-
ulator, to test the high-level layer of this system. Instead of accessing the
HAL layer directly, a TCP/IP emulation layer to the Player “HAL” had to
be provided. Some simple simulations have been successfully set up and run,

14

but due to Gazebos’ high demands for computational power and the lack of
available documentation the more complex tests were unsuccessful.

15

Chapter 3

Problem analysis

The software design, as it will be described later in Chapter 4, was not made
all of sudden. It was based on the specification and requirements for robotic
platforms and real robots. This chapter is a brief description of the incremental
design decisions and requirements.

Hardware independent algorithm implementation (1.1) means, that the
algorithm will use devices of the same kind via the device interface. This
divides the hardware drivers from higher level functions and leads to a layered
software design. It is always a question, how many layers are enough.

Communication type and topology between the hardware modules and the
mainboard is important in deciding how the lowest, the communication layer
will look like. Some solutions (e.g. with RS-232 link) requires message merging
and packet building, because if every module would be allowed to transmit its
own message, the speed would not be adequate. Other solutions, which use
bus topology with addressed messages do not need this, but they need to solve
sending serialization. See Figure 3.1 to compare the bus and point-to-point
topology. In case of using more communication channels, the device drivers
has to be grouped together, to not wait for each others blocking I/O operations
if not necessary. This requires threads in the communication layer.

There are always problems with speed. Some devices are fast (e.g. en-
coders) and some are too slow (e.g. range finder) in measuring or in com-
munication. This triggers, that the slow devices’ messages are rare and much
more precious than the fast repeating ones. If the system would allow push-
ing the information to the next layer (the algorithm), the device speed would
dictate the processing speed of the main computational unit, thus it would
create an unwanted requirement for its computational power. The algorithm
could be also implemented the way, that it drops some data coming from the
fast device, but it is not easy to choose the right data to drop. Taking this in
consideration, the pull communication model was approved for data-exchange
between layers.

To distinct between hardware specific drivers and algorithms, it would be
enough to have two layers, one for communication, and one for algorithms
(later it will be called abstraction layer). But in case of autonomous robots
there is also some logic, which drives the robot, asks for its position and

16

Encoder 1
e D:%
Encoder 1 .23 @
X RS'232{MCU% Q R ’—__Encoder 2

&

LED Parel
o s Ewm T] computer CU 2
(with COM port) (with COM port) A/D - Battery meter
Motor 1
CEncoder 1> C Motor 3 > CCompass>
2
use—{ USBOFCY ey | | |
% bridge | |
Motor 2 Control panel New modules
Computer CEncoder 2> @ultons & LEDS>

(with USB port)

Figure 3.1: Comparing point-to-point (RS-232) to bus (I>C) topology

achieves some defined goals. There are several ways how to implement this
logic. 1t can be hardcoded, or finite state machine can be used, or even neural
networks or fuzzy logic can be applied on this problem. Thinking about these
possibilities, creating a separate layer for this task is a good idea.

Hence with the number of three layers, with modules in them, communi-
cating using pull model and using threads for parallelism, the design is much
more defined.

17

Chapter 4

Software design

Well-formed software design based on thorough analysis is essential in large-
scale projects. Comprehensible design allows and simplifies upcoming imple-
mentation. Moreover, it makes the consecutive project expansion possible in
any way.

Scalability is a very important feature of this project. Resulting software
should be not only suitable for simple robots (for example those used for edu-
cational purposes), but also for complex autonomous robots built for outdoor
tasks. Such use-cases differ in code size, amount of mounted actuators and
sensors, which goes hand in hand with the amount of loaded driver modules
and finally by computing power requirements.

The second most important feature of software in this domain is portability.
In this case, portability in more general way is meant, not only between various
operating systems but also between various hardware platforms. It is quite
common for robotic systems not to run on typical desktop PCs but to use
specialized hardware such as embedded devices or even microcontrollers only.

As it was already mentioned in Chapter 3, the design of this control sys-
tem environment is based on the experience with design, implementation and
testing in the previous years. In general, such approach leads to good-quality
solutions. The only disadvantage of this approach is the time demand. In this
case it means more than three years of testing, participating on various robot
contests with the MART team and gradual upgrading of the control software
because of requirements creep.

Nevertheless, it was worth it — this project’s result is a system that satisfies
all our requirements. Applications will not need adjustments in the software
core — the only eventual changes would be small edits of existing modules or
the creation of new specialized modules for devices that have not yet been used
with the project.

In the beginning of this chapter, the control system environment is decom-
posed into individual layers. Then the focus is moved to the features, tasks,
and inter-layer communication. At the end the threading model and one of
the most important modules — the localization design is discussed, which is
likely to appear in every implementation on a real robot.

18

/Brain
= Strategy Strategy
o Defensive Offensive Other strategy modules
T
5 Objectives - Objectives
(% Decwsmns - Decisions
o
5 (Equipment \’/
§ : i i Other HAL modules
< Driver [Odometry W (Localizer w (RangeFinder w (Beacon w
S - GotoXY/() - GetPosition() -MCL - Moving average - GetPosition() { 3
S - GoForward() - GetPosition() - Value correction 3
2 - Steering
= - Speeding
T
|
f
%’ (Schedule
5 (Motor (Ieft)w (Motor (Right) w (Encoders (RangeFlndeﬂ (Beaco Other HCL modules
g - SetSpeed() SetSpeed - Encoder value -Requestand | | - Beacon va\ues @
2 - Brake() Brake read distance
g
S I~
=
N mcp25><>< SMBus
(o]
5}
%
5 [1] I (- HMN] [H2] I (]
® Individual CAN modules Individual 12C modules Individual RS232 module
(0]
04

Figure 4.1: Layered software design

4.1 Layers

Layered architecture is very popular in many branches. One example could
be client-server applications where layered approach helps to separate data,
business logic, and the presentation layer. Another example is communication
model design (such as ISO/OSI, TCP/IP, Bluetooth, CAN) where individual
layers represent certain level of communication abstraction. Layered design
approach brings many advantages. It helps to decompose a complex problem
into smaller and simpler parts — layers. Then these parts should be solved in
an isolated manner. It also increases modularity, for example, you can replace
a particular layer with an alternate implementation if required.

It is very handy to use layered architecture for large software projects as
well as for this project. The problem of task decomposition is not always
straightforward. The final number of used layers, their purpose, and their
mutual connection is deduced from the analysis. This system’s architecture
consists of three layers: Smart Layer, Hardware abstraction layer (HAL) and
Hardware communication layer (HCL). However, looking at problem of the
robot’s control two more layers can be seen: hardware itself and kernel modules
— drivers (see Figure 4.1).

Inter-layer communication is only possible between neighboring layers and
this rule is strict. A pull model is being used for communication purposes
(with few exceptions). This means that particular modules pull information
from the modules on the same or adjacent layers. This proved to be very useful
for all sorts of components regardless of their speed. Setting the service call
rate prevents modules from being flooded by unnecessary messages coming
from fast devices. Otherwise, it would be necessary to implement message
prioritizing and some intelligent message dropping system for modules that
are unable to process messages on time.

Another kind of communication is inter-module communication used by
modules belonging to the same layer. A good example is the robot driving
module — Driver, which uses the localization module often — Localizer. Inter-
module communication is being used solely on the Hardware abstraction layer.

4.1.1 Hardware abstraction layer

Hardware abstraction layer (HAL) consists of modules, which define certain
abstraction above hardware components. These modules may be further com-
bined and form logical blocks representing certain functionality. For example,
instead of having distinct modules for left wheel encoder and right wheel en-
coder, there is logical block — odometry module that encapsulates these en-
coders.

This layer also consists of modules, which provide interface to access hard-
ware components described in Section B.2. Furthermore, there are modules
that combine a certain amount of modules from communication layer. For ex-
ample, odometry, localization, and robot motion control modules. Odometry
gets robot position according to the information from two encoders. Localiza-
tion processes information from other modules such as the odometry module,
rangefinder, beaconing system etc. Robot’s motion control modules receive
commands from the Brain and then motors perform its actions (in the case
of differential driving, the left, and the right motor). As another example you
can imagine a robotic hand abstraction on this layer. This would encapsulate
several servomotors or other motors for movement and also multiple buttons
as boundary position switches or touch sensors of a real hand.

4.1.2 Hardware communication layer

Hardware communication layer (HCL) is the lowest layer in this software.
Under this layer, there are only the kernel drivers for the employed hardware
or communication libraries and the hardware itself.

The main purpose of this layer is to map hardware devices to software
objects. To describe what is understood under the term device mapping, let
us consider this example. The range finder hardware component is attached
to the communication bus as an independent device. To be able to use it in
this system, it also has an object registered in the communication layer, which
only exchanges data. There is no special function on this level, only the raw

20

device data — exactly the same noisy values as this rangefinder provides. To
expose its full functionality and the meaning of the raw data, there is also a
corresponding object on the abstraction layer. This HAL object can also filter
the data to eliminate peaks, noise and non-sense values. This is described in
detail in [3].

As mentioned earlier, not many calculations should be performed on this
layer, only the communication with the devices. Instances of classes written to
represent some kind of hardware drivers register to this layer. The purpose of
this layer is to call these registered objects and let them communicate, to get
new data from the hardware, send new instructions to the actuators or even
setup the devices.

On this layer, there have been already implemented different communica-
tion protocols, e.g. RS-232, I2C , IOCTL for USB devices, or CAN. Implemen-
tation and communication are done by the modules themselves, the essential
infrastructure (libraries, system calls, files, etc.) is provided by the kernel of
the operating system.

4.1.3 Smart layer

Smart layer is the topmost layer of this system. Its purpose is to control the
robot. To do this, it uses the Hardware abstraction layer. It can perform
autonomous decisions or procedures that could be triggered by human with
a remote control (game pad, keyboard, buttons on robot control panel, or
another way).

The Smart layer is referred as the Brain. The Brain is pluggable too,
as the other layers of the system. The modules here are called strategies
and their purpose is different as on the lower levels. Instead of the device
communication (HCL) or the device functions (HAL), the strategy contains
mission objectives, decision-making, state checking, and understanding of the
modules on the abstraction layer. The knowledge of registered HAL objects
is essential in this place, as this is the only way to control the robot from this
layer.

Decision making in the strategy itself can be done by a finite state machine
for instance. Its implementation is simple and the possible use still remains
universal. Other decision-making models could be used as well. It is the
user’s choice. There are many references of successful use of Probability Fuzzy
Cognitive Maps or Neural Networks for example.

The flow of consequent actions can also be re-planned asynchronously, by
sensing some interruption to the normal flow with the state checking unit of
the strategy. This is performed simultaneously with the use of threading (see
Section 4.2).

There could be several strategies present in one robotic system. In case
of robotic football, we can think about an offensive and a defensive strategy.
These strategies can have similar states in their state machines, but the state-
transition function will differ. In case of the Eurobot competition, we can find
something similar. It is possible to implement a simple strategy for homolo-

21

gation where the main objective is to score one point with highest possible
certainty and some different strategies for the game itself, where the robot is
supposed to score as much as possible.

Similarly, as the states are changing in the finite state machine in one strat-
egy, Brain can also change the whole strategy itself. This can be considered
as a higher level of decision-making. This strategy exchange can happen on
an extensive environment change, when the previous strategy is not suitable
anymore.

The ability to have more strategies side-by-side gives the developers the
opportunity for further testing and creating new strategies separately without
changing the old ones. These strategies can be compared to each other to
choose the better, faster, and more suitable approach for the given task. Which
strategy is the best is usually not that obvious before conducting the tests. In
case of competing with an opponent, the winning strategy can differ, as the
opponents are manifold.

4.2 Threading

There are generally various hardware and software components in any robotic
system. These components usually require different rate of service calls. After
analyzing the character of these demands, it is necessary to assert their correct
planning. For this purpose, there is a standard operating system mechanism
— thread. It is essential to guarantee that these tasks do not slow down each
other, and that they use system resources as efficiently as possible. For example
acquiring the compass data (a slow, blocking I/O operation), should not limit
robot’s decision-making process (computational task on the CPU) on the game
strategy level.

There are couple of threads on the communication layer. It is possible to
assign a dedicated thread to every device and to define its service call rate.
However, better approach is to divide the devices into groups by priority (for
simplicity reasons) or by protocol they are using. These groups are defined
in the strategy, so different strategies can prioritize different devices. It is
also possible to create an individual thread for a device that has a blocking
communication routine.

The abstraction layer modules proved to be fast enough to run in one
thread. They are usually just computational functions enumerating some val-
ues. They do not block the whole layer on I/O operations as the communica-
tion layer modules do.

The Smart layer is divided into two threads named master and slave. Mas-
ter thread is allowed to pause, temporarily or permanently reschedule, or even
cancel the actual task running in the slave thread. Consider the following case
— the robot has started following its planned route from one spot to another,
all of a sudden, an obstacle appears on its route (another robot, human, game
element etc.) at this moment it is necessary to react by rescheduling the actual
task to the collision-avoiding maneuver. After successful collision avoidance,
the robot can continue solving its previous task. On the contrary, permanent

22

rescheduling is an adequate reaction to unexpected changes in the environment
or game conditions.

4.3 Localization

In this place, one possible (and tested) approach to the robot localization
is presented as one of the modules of this modular system. This module is
described, because it is one of the most important robotic subsystems. The
decision-making in known or unknown environment and the driving is much
harder to do without the knowledge of the exact position, especially in case
of an autonomous robot or a robot remotely driven by human without eye
contact. This is why this module appears in almost every robot.

There are several ways how to localize a robot. Some of the possible
approaches are described in Section 1.1. The presented module implements
Monte Carlo Localization (MCL) [16] as one of the most widely used prob-
abilistic methods. This method seems as the most suitable way as it is well
extensible, and the output of MCL is not only the accurate position but also
the position as a probabilistic function. Thanks to this, the robot has infor-
mation of the possibility that is completely lost or that its position is not well
recognized in the environment. Similar output can also be provided by Markov
localization, even faster. The speed-up is achieved by splitting the area into
a grid, so the algorithm is less precise. Robotic platforms on which this sys-
tem has been deployed and tested always had hardware support for floating
point operations, thus it was possible to use the more precise MCL algorithm.
On CPU architectures missing the floating-point unit (FPU), implementing
Markov, Kalman or another type of localization algorithm is prefered.

As MCL supports different types of inputs, they can be divided into two
main categories:

e Advancing inputs
e Checking inputs

The sample system contains two interfaces for these two types of inputs.
The device or its abstraction in the Hardware Abstraction Layer implements
the corresponding interface based on the type. Hence, the MCL core can use it
as its input. The MCL core consults each device when it has new data, and the
processing of the samples is being done by each device separately. This keeps
the main code easier to read, simpler, and input independent. In addition, the
device itself knows the best, how to interpret the raw data it measures.

The level of reliability can be specified for each input device. Then, the
samples are adjusted by the devices with respect to their configured credibility.
For example: two sets of odometry encoders, one pair on driven wheels and one
pair on dedicated wheels, have different accuracy because the driven wheels
may slip on the surface when too much power is used. Then, the credibility
of the driven wheel encoders will be set lower than the credibility of the un-
driven wheel sensors. Data sampling frequency is also an important property

23

of the sensor and should be taken in consideration in the MCL calculations.
For further information see [4].

4.3.1 Advancing inputs

Inputs of this type are used to move the samples. Such input could be the
odometry for example (processing of wheel encoders). The information pro-
vided by these kind of inputs applied to samples is blurred by randomly gen-
erated noise, which simulates real sensor imperfection. After advancing the
samples, boundary conditions are checked. As a result, the probability of
samples representing impossible positions is decreased. There can be multi-
ple advancing inputs. Result advancing information is then computed as a
weighted average of all the inputs according to their reliabilities.

4.3.2 Checking inputs

Checking inputs are not affecting the position of the samples. Instead, they
are just adjusting their probability (also called sample weights). The reason
for this is that inputs of this type do not provide relative difference from the
last measurement, but absolute position information. This also does not need
to be one exact point, but an area or probabilistic function of position, which
fits the Monte Carlo Localization algorithm perfectly. All checking inputs are
processed separately; they are regulated only by setting their reliability levels.

As an example, the robot built for the Eurobot 2009 contest by MART
team used these sensors:

encoders — combined in pairs to obtain odometry

compass — checks the direction of samples

beacons — checks the distance from stationary beacons

bumpers — checks collisions with the playing field borders and other objects

range finders(infrared, ultrasonic) — checks the distance to borders and
obstacles

24

Chapter 5

Implementation

There are plenty of techniques to implement any program. Popular techniques
of agile and extreme programming are well covered both on the Internet and in
the book [17]. Contrary the fact that these techniques treat exhaustive design
as unnecessary, before the start of the implementation using these techniques,
the requirements have been analysed and the whole system was designed well
(see 4). This applies to all the bigger subsystems (e.g. driving or localizing
units), after testing the main idea with extreme programming (unclean but
fast coding which brings results instantly), a well designed version takes place
in the system.

Important decision of this project, concerning both design and implemen-
tation, was to choose the right programming language. Among the possibilities
of Assembler, C, C++, C#, Java, Python, the winning combination was C and
C++. The main arguments were — portability, optimization for non-standard
platforms and low requirements on computing power. The reasons were the fol-
lowing: the platforms used in robotics are usually small, rather non-standard
(almost obscure) devices with low power consumption, often redeemed with
reduced computing power.

A project of greater scale, like this, would definitely have a good use for
an object-oriented language. C++ object-oriented approach is much more
advantageous (compared to options of pure C) there, and it is easier to manage
the resulting code. Namespaces and class files helps to keep the code organized.

In this chapter, some implementation related decisions are described, how
the layers are implemented and how the modules in these layers look like. Some
of the used design patterns are shown and how an object-oriented wrapper is
created on top of a C library. In the end of this chapter some larger module
implementation notes are present, namely the robot-guiding module and the
localizing unit.

5.1 Design patterns
Design patterns [18] are well-described, commonly used, and time-proved so-

lutions to recurring problems concerning software design and implementation.
Some of these patterns have been recognized in this system and the design

25

patterns helped to implement the solution right. In this place the used design
patterns are described.

5.1.1 Singleton

Singleton is one of the most widely used creational design pattern. There are
several different implementations in C++. In this control system environment
the Meyers’ singleton patter is used, which is supposed to be one of the safest
implementations. The only disadvantage is that because of the disposal or-
der, it is not possible to use lazy instantiation, when the singletons use each
other. In this case, this does not cause any problems, because all the singleton
objects are needed from the beginning. All the layers have one main object,
which manages the registered objects in this layer. These are implemented
as singleton objects. Here belongs the Brain for the Smart layer, Equipment
for the abstraction layer and Scheduler for the communication layer. Another
singleton object is the configuration holder for example.

5.1.2 Observer

As described in Section 3, the pull communication model is used between
the layers. All the modules registered in the Hardware abstraction layer are
implemented with use of the observer design pattern. They pull the required
data from the modules registered in the Hardware communication layer.

5.1.3 Facade

Some of the HAL modules define a higher-level interface that makes some
subsystem easier to use. The Driver provides a robot-guiding interface to motor
subsystem. In the case of the localizing unit, there are several modules in the
localizing subsystem. These are divided into two categories — the advancing
and the position checking modules. The localizing unit itself creates a high-
level interface to query the robot position, which is calculated from all the
modules in this subsystem.

5.1.4 State

This design pattern helped us to implement the Smart layer. There are strate-
gies, which change the behavior of the Brain. In closer look, there are also
several states of the strategy, which change the behavior of the strategy itself.

5.2 The core and environment
For a huge, modular system, it is good to have some globally accessible objects

helping and easing the code in modules. To avoid global variables the single-
ton design pattern is used. All these global objects together provide some

26

useful interface to the system, the layers, configuration, logging etc. and they
together are called environment.

Code listing 1 Access singleton classes from the control system environment
Conf::inst();

Logger: :inst () ;

Scheduler &hcl = Scheduler::inst();

Equipment &hal = Equipment::inst();

Brain &brain = Brain::inst();

For all modules, it is guaranteed, that this base of the system (Core) is
instantiated. Hence, the modules can ask these objects for registration; to
get references to other modules, they want to communicate with; or any other
functions they provide. A part of the environment is also the static description
of the playing field and the configuration. For more information, see Section
5.2.6.

The disadvantage of the easy to use environment approach and the use of
singletons is, that it makes unit testing harder.

5.2.1 Threading

As mentioned in Section 4.2, threading is used to ease the scheduling of mod-
ule servicing in the layers according to the required frequency. There are sev-
eral threading frameworks to use: OpenMP, MPI, pthread and some others.
OpenMP is built into the C++ compiler, but it is optimized for calculation
parallelization, and it is not very suitable for parallel run of different tasks
(although it supports this in the new version). MPI has been created mainly
to run in a heterogeneous environment to support distributed computations.
In this case, it is a too strong tool and the effort to program in it would be
to no avail. In this project the pthread library is used, which is the POSIX
standard. It is also possible to use it on Windows via an open-source library. It
has all the needed functions and the library calls are quite easy to understand.
A small disadvantage of this library is that it has a C API. To make pthread
fit better to an object oriented C++ code, some small classes wrapping the
functionality of this library are implemented.

“Thread” class is the object-oriented approach to pthread_thread_create and
related functions. Classes derived from the Thread class can have a function,
which can run in a new thread. These classes are called thread holders. The
added value to the pthread library is thread naming, thread chaining, and
thread monitoring. It is also not necessary to have the bodies as static func-
tions, the only thing to do, is to implement the pure virtual function void
loopBody(). Thread chaining is some kind of responsibility model, which helps
to start, stop, and join the threads properly (see Code listing 2).

Each thread holder can start its own “children” (void registerChild(Thread
*child)). After receiving the signal to stop, it sends the signal to stop to all of
its “children”. After that, it joins them (void joinChildren()). When all the
“children” threads finish, it joins the “parent”.

27

Code listing 2 Thread management

bool start();
void die();
void* join();

There are two features for thread monitoring. Their main purpose is to
help the developers understand what is happening in the “difficult parallel
world”. The first one is the dead lock detection mechanism implemented as
loop counting (bool isDeadLocked()). The developer can easily ask the thread
holder if its thread is deadlocked. The second feature is frequency measurement
(double getLps()). This helps the developers to find out if the thread is running
fast enough or to estimate the speed of information propagation between layers.

Mutex (mutual exclusion) is a common synchronization primitive. The
Mutex class is a wrapper for pthread_mutex_t. It holds the mutex and it
has an interface to lock (void lock()) and unlock (woid unlock()) it. The
pthread mutex initialization (int pthread_mutex_init()) and destruction (int
pthread_mutez_destroy()) are done in the constructor and the destructor.

MutezLocker locks the mutex lock (given in constructor) on construction
and unlocks it on destruction (e.g. stack unwinding). It should be used as a
local variable (allocated on stack) to make the destructor do the work auto-
matically at the end of the block (e.g. function). The member functions are
defined as inline functions.

5.2.2 Brain and strategies

As mentioned in detail in Section 4.1.3, the robot control is designed to be as
robust as possible. It was obvious that the robot has to react to situations,
which can appear without any dependence on the state. Therefore, in addition
to the strategy (state machine in this case), several triggers are created which
are checked repeatedly by the Brain. Such problematic situations include, for
example, a possible collision with the opponent’s robot or being stuck after an
unexpected bump to the border.

In case such asynchronous situation occurs, Brain switches from the actual
state to the specific situation handler. Based on the situation character and its
handler implementation, upon the handler completion, the previously executed
state is re-started, or the state machine is set to the state specified by the
handler. To implement this mechanism, simple threading was used. The
main Brain thread controls the state switching and the special event checks
as defined in the strategy. It only performs non-blocking and fast operations.
Individual operating state actions are called in the BrainSlave thread. The
main Brain thread may stop this slave at any time and if needed, it may replace
it by a thread performing actions of a different state. In this section, the most
important methods are described, which are being used in the implemented
strategies.

The Brain is implemented as a singleton class that provides a basic frame-

28

work for all strategies, to get information about the environment and to control
the robot. It encapsulates the actual strategy, phase, state, action, and their
history. It provides logging that enables debug strategies to be implemented
easily by calling void Brain::debugMessage(string message).

The BrainSlave is an auxiliary static class designed to launch one long-
running action from the Brain. For instance, to run the action implemented as
function void SampleAction() it is enough to call the static method BrainSlave::
PerformAction(ID, SampleAction) and provide the pointer to this function and
the identifier of the action as argument.

Calling this static method is safe, which means that:

e if the currently running action has the same ID, then nothing happens,
e if the currently running action has a different ID, then it is finished and
the new action is launched.

Equally safe is to call the function BrainSlave:: TerminateAction(), which
kills the currently running action (if any). The BrainSlave only allows running
one action at a time. Furthermore, there are many other methods to check the
state of the currently running action. For instance, a method (bool isAction-
Running()) checks if there is any action running at all or how long the action
has been running (double getActionTime()). Also the ID of the currently run-
ning action also can be looked up (int getActionID()) and its progress between
zero and one hundred percent (int getActionProgress()).

The strategy itself is implemented as a class with the interface of Strategy
(see Code listing 3).

Code listing 3 Strategy interface

virtual string getStrategyName() = 0;
virtual string getStrategyDescription() = 0;
virtual void initialize() = O;

virtual void execute() = 0;

virtual void finalize() = 0;

There are two methods to identify the strategy. Methods initialize() and
finalize() are called at the beginning and at the end of the strategy. The most
important method is ezecute(), which implements the actual strategy. This
method is called in the main loop of the Smart layer thread held by the Brain.

5.2.3 Scheduler (HCL)

The Scheduler is the main class on the communication layer. As it was de-
scribed earlier, it is implemented as singleton.

It provides the registration interface (bool registerBoard(Boardld boardld,
Board* board, Loopld loopld)) for modules on this layer and it also is a glob-
ally accessible (Scheduler::inst()) entry point for getting references to these
registered modules (Board* getBoard(Boardld boardld)). Moreover, it creates
the threads for module communication groups based on priority and the com-
munication protocol.

29

5.2.4 Equipment (HAL)

Every abstraction module in HAL layer, called robot’s equipment, has to be
registered to this singleton object. This singleton is also a thread holder and its
function is to service its modules. The modules can be of two general types:
Device and Effector. The difference is described in detail in Section 5.4.2.
There are two overloaded registering functions, one for devices in general (bool
registerDevice(Deviceld deviceld, Device* device)) and one for effectors (bool
registerDevice(Deviceld deviceld, Effector® effector)).

All the active modules in the abstraction layer run in one thread. It proved
to be fast enough, thus no other threads or even prioritizing were necessary.
These modules are fast and computational only. They are not communicating
with the hardware itself, so they do not lock on any blocking I/O operations.
However on very slow platforms localization module can experience some per-
formance troubles which can be solved by using smaller probability cloud (see
Section 5.5).

5.2.5 Timers

Timer is a class providing time-related information, as countdown and stop-
watch. It is used mainly for profiling — loop speed and frequency counting.
It is also used by Brain (and strategies) for time-restricted competitions, to
schedule the tasks better and more wisely. As mentioned in Section 5.2.1, it is
used also for thread profiling (double getLps()).

For the loop frequency estimation a moving average has been implemented,
to provide more precise information about the thread speed. For algorithm or
code profiling in general, functions in Code listing 4 are used.

Code listing 4 Functions to profile algorithms and code in general.
void start();

double stop();

double meanTime() ;

5.2.6 Configuration management

Especially in projects in the field of robotics, there is a huge amount of config-
uration options. Lot of them are just describing the robot properties, others
describe the environment. To process this configuration, a good decision is to
create and parse configuration files instead of hard coding it. The configuration
has to be globally accessible and stored in only one place.

To achieve this behavior, the singleton object — Conf was created. This
object can load and save the configuration file (bool readFromF'ile(std::string
filename), bool saveToFile(std::string filename)), parse command line (in co-
operation with getopt), and return the desired values (Value get(std::string

key)).

30

As command line parser the getopt was choosen because of its simplicity.
For Windows it is possible to use the open-source XGetopt [19].

5.3 CANBus

The CAN is an industrial standard for bus communication, used mainly in au-
tomotive industry [20]. It defines the communication on the physical, transfer,
and object layers. For the application layer the widely used and free CANopen
protocol [21] is used. As the CANopen stack implementation, a library called
CAN-Festival [22] is used. Later it relieved not to be the best decision, as the
lack of good documentation, pure C implementation, and the overcomplicated
API made the CAN module development much harder and slower. As soon as
these problems were recognized, the CANBus wrapper has been created (see
5.3.1).

The CANBus class is a library wrapper to provide general CANopen func-
tions and not only to hide the C CAN-Festival library. It makes the use of
CAN communication more straightforward and easier. It would also allow us
to exchange the underlying library if needed.

CANopen as a protocol supports different states for all connected devices:
stopped, preoperational, and operational. Functions to change the state are
shown in the Code listing 5.

Code listing 5 Routines to change CANopen node state.
void setStopped(int nodeld);

void setOperational(int nodeId);

void setPreOperational(int nodeId);

There are two types of messages: SDO message and PDO message. All the
message sending, requesting and receiving functions are in Code listing 6

Code listing 6 Routines to send CANopen messages.

bool sendeoWriteMessage(int nodeld, int index, int subIndex, int data,
int dataSize);

bool sendSdoReadMessage(int nodeId, int index, int subIndex, int* data);

bool sendPdoMessage(int cobId, const char* data, int length);

static void writeSdoCallback(CO_Data *md, UNS8 nodeId);

static void readSdoCallback(CO_Data *md, UNS8 nodeld);

void sendPdoRequest(int cobId);

To receive a PDO message, the module should register itself to the CANBus
class with the function wvoid registerHclObject(...). The PDO messages from
devices are sent on request and are received asynchronously. How to use this
module is described in Section 5.4.1.

31

5.3.1 Changes to the CAN-Festival library

As mentioned earlier, some small changes to the sources of the CAN-Festival
library were necessary. These changes involve resolution of some C/C++ com-
patibility issues and adding missing functionality (e.g. making correct extern
“C” blocks around pure C code). To allow parsing the PDO messages in HCL
modules, the struct.CO_Data structure was extended with a function pointer
void (* PDO_Receiwe_Callback)(CO_Data *, Message *), which points to a
callback function to be called after receiving a PDO message. The original be-
havior was parsing the message and pasting its contents into global variables,
all automatically generated as C code by a Python tool, without any possibil-
ity of dynamic change or programmer interaction. This approach would not
allow adding, removing, or reconfiguring any HCL module with CAN without
recompiling the whole project. After the mentioned changes, the CAN-IDs
of hardware modules are stored in the configuration file and it is possible to
change them easily, and to start or stop using particular modules without the
need of recompiling the application.

5.4 Modules

For every big project that tends to be universal, modular, scalable, or highly
extendable, easy module creation and well-defined interfaces are one of the
main aspects of the robustness and overall quality. The aim was also on sim-
plicity, flexibility, and module management. The implementation allows easy
module creation, configuration, and dynamic registration of modules in layers.

In the implemented robot control system, there are many different modules,
for almost everything, on each layer and even within the layers (think about
localization). Proper terminology was needed to distinguish between these
types of modules. The Abstraction layer modules are called “devices” — as a
functional unit; and the Communication layer modules are called “boards” —
like a circuit board.

5.4.1 HCL module

The Communication layer modules are dedicated purely to communication.
These modules register into the Scheduler object (see Section 5.2.3), which
calls their service routines to communicate periodically. Due to the slow com-
munication with hardware, no data interpretation is supposed to be performed
in these modules. The only work done in the service routine is the communica-
tion via some communication protocol (CAN, I2C), message parsing, packing,
and unpacking, and some A/D conversions (e.g. voltage level to distance).
The member variables in these modules should mimic the hardware boards’
firmware variables, with which they exchange data. In this form, the board
modules in the Communication layer can be considered “drivers” for the real
hardware.

The modules in the Communication layer inherit from the “Board” class.

32

This interface is similar to the Device class for modules in the Abstraction
layer. The communication routine service() is being called periodically by the
Scheduler thread. The halt() function is used to prepare the device for power-
down. It can, for example, stop the motors or move the arm down slowly to
prevent any damage to the hardware. The getLPS() and getTimeResolution()
functions provide communication speed profiling support.

Code listing 7 Board interface on HCL

class Board {

public:
Board(std: :string name);
virtual “Board() {}

virtual bool init() = 0;
virtual void service() = 0;
virtual void halt() = 0;

std::string getName();
double getLPS();
double getTimeResolution();

The drivers for the boards communicating via the CANopen protocol have
some special requirements opposed to the I2C boards. They even need to
register to the CANBus object (see Section 5.3) to be allowed to send and
receive CAN messages corresponding to their COBID. The important part of
the interface interacting with the CANBus class is in Code listing 8.

Code listing 8 CANBoard interface on HCL
class CANBoard {
public:

CANBoard(int nodeId);

virtual ~“CANBoard();

virtual bool receivePdo(int cobId, byte* data, int length) = 0;
virtual void requestPdo();

int getNodeId();
void setNodeId(int nodeld);

5.4.2 HAL module

Modules in the Hardware abstraction layer are registered in the Equipment ob-
ject (see Section 5.2.4). As the name Equipment shows, the purpose of these

33

modules is to expose some functionality of the hardware devices mounted on
the robot. The word device is meant for a complete device, like a hand, odom-
etry, localization, or range finder. It is sometimes a combination of smaller
components that are useless alone, like small motors, servos, or buttons on
different hardware boards.

All modules in this layer inherit from the “Device” class. It guarantees
that all the modules (devices) have a name assigned and it also assures that
they implement the functions of the interface. The init() function is called
to initialize the module, e.g. getting references to other modules, reading
configuration, etc. It is called just after all the modules have been registered in
the layer (to resolve module dependencies). The halt() function is to prepare
the device for shut down, it stops sending requests or even cancels the last
requests (to the Communication layer modules). The refresh() function is
called periodically after registering the module in the layer, and its function
depends on the module itself.

Code listing 9 Device on HAL

class Device {

public:
Device(std::string name);
virtual “Device();

virtual bool init() = 0;
virtual void refresh() = 0;
virtual void halt() = 0;

std::string getName();

Devices that can move some parts of the robot may need some kind of
deactivation routine. As an example, it can be used for safety reasons, or
according to the Eurobot rules, each participating robot has to turn all the
effectors off after the match time limit (90 seconds) expires. For this purpose,
there is an Effector class, which adds the deactivate() function to the Device
interface.

Code listing 10 Effector on HAL

class Effector : public Device {
public:
Effector(std::string name);
virtual “Effector();

virtual void deactivate() = 0;

};

34

5.5 Localization

As described in Section 4.3, the localization module is considered one of the
biggest modules in the sample robot control system. The implementation
possibilities are the widest possible of any subsystem. This module itself is
modular and allows other devices to register in it, thus it is called subsys-
tem. In this chapter, some interfaces are described, the algorithm of Monte
Carlo Localization [16], and how information from the beacons contributes to
positioning.

5.5.1 Monte Carlo Localization algorithm

MCL maintains a list of robot’s possible states or positions. Each state is
weighted by its probability of correspondence to the actual state of the robot.
In the most common imprementation, the state represents the coordinates in
2D Cartesian space and the heading direction of the robot. It may of course
be easily extended to 3D space and/or contain more information depicting the
robot’s state. All these possible states compose the so-called probability cloud.

MCL algorithm consists of three phases: prediction, measurement, and
re-sampling phase.

During the prediction phase, a new value for each item of the cloud is com-
puted, resulting in a new probability cloud. To simulate various inaccuracies
that appear in real hardware, random noise is added to each position in the
prediction phase. This is very useful. For example, if the wheels were slipping
and no random noise was added, the probability cloud would travel faster than
the real hardware.

During the measurement phase, data from real sensors are processed to
adjust the probability of the positions in the cloud. The probability of samples
with lesser likelihood (according to the sensors) is lowered and vice versa. For
example, when the sensors show the robot orientation is north-ways, weights
for samples representing other orientations are lowered.

The last phase — re-sampling, manages size and correctness of the cloud.
Positions with probability lower than a given threshold are removed from the
cloud. To keep the number of positions constant, new positions are added.
These new positions are derived from and placed around the existing positions
with high probability.

As you can see, MCL as particle filter applied to the localization has a very
robust algorithm allowing great separation of localizing devices, which leads
to its modular implementation. The probability cloud size denotes its compu-
tational complexity, and thus the CPU requirements. Many old robots do not
use MCL or algorithms combining different inputs. They run on microcon-
trollers, and there is not enough power to implement and run such demanding
algorithms. Nowadays, with more and more powerful embedded platforms,
Monte Carlo Localization has become very popular in robotics.

35

5.5.2 Point and Position

To localize the robot or any other playing element in the environment, some
structures describing their position are used. There are more possibilities how
to describe this position. If it is sufficient to know just the coordinates of the
object, the Point structure is used. To have more information, the Position
structure can be used, which contains, apart from the coordinates, the orien-
tation of the object and its probability. As measuring units millimeters are
used for the coordinates and radian degrees for the angle. The probability is
set between 0.0 and 1.0 in a double.

struct Point {
double x;
double y;

};

struct Position: public Point {
double angle;
double probability;

};

To simplify the work with positions (and there is plenty of them), the C++
operator overloading features are used. With this, it is as easy to work with
points and positions as with simple types. It allows adding and subtracting
relative movement in some direction quickly, getting the distance and viewing
the angle between points or positions, work with points as with vectors, and
even convert them to other representations (e.g. OpenCV points).

Point Point::operator+(const Point point) const;
Point Point::operator-(const Point point) const;
Point operator*(double r, const Point point);

Point operator*(int n, const Point point);

Position Position::afterMove(double distance) const;
double Position::getAngleTo(const Point point);
operator CvPoint() const;

operator CvPoint2D32f() const;

5.5.3 Localization interfaces

There are many ways, how to implement the proposed design described in
Section 4.3, and many ways how to implement the MCL algorithm explained
in 5.5.1. The interaction possibilities are manifold and choosing the right
interface is very important. In this section some of the public functions —
interfaces in the tested localization subsystem are shown.

The RobotLocalizer class, which is a HAL module, has a MonteCarloLo-
calization object. It provides wrapper functions to the whole localization con-
cerning our robot. Other playing elements, obstacles, and enemy robots are

36

localized with other classes. RobotLocalizer initializes the MonteCarloLocal-
ization object and ensures that it is being refreshed when possible, while the
MonteCarloLocalization (see Code listing 11) is purely the implementation of
the algorithm itself.

Code listing 11 Monte Carlo Localization implementation
class MonteCarloLocalization {
public:

Position getPosition();

void addSampleChecker (MCLSampleChecker* sampleChecker, double weight) ;
void addSampleAffector (MCLSampleAffector* sampleAffector);

void refreshCheckers();
void refreshAffectors();

A form of a Sample checker input with definitive weight is RangeManager.
It is the description of the playing field with all information about the possible
and impossible robot positions. All the samples, and what is more important,
the final position estimation are checked in RangeManager not to return in-
correct result to the Brain or other module requesting the actual position from
RobotLocalizer.

To allow dynamic registration of the advancing and checking inputs to
MCL, an interface describing each input module was specified. The advancing
inputs have to implement the SampleAffector interface and the checking inputs
the SampleChecker interface (see Code listing 12). Both contain a function,
which is periodically called by MCL to check or to move the samples.

Code listing 12 MCLSampleAffector and MCLSampleChecker interfaces
class MCLSampleAffector {
public:

virtual void affectSample(int count, Positions& positionChanges) = 0;

};

class MCLSampleChecker {
public:
virtual std::list<double> checkSample(Positions& positions) = 0;

};

5.5.4 Beacons in MCL

The beaconing system consists of three transmitting and one receiving beacon
(see Figure 5.1). Information is being passed from the beaconing system to the
main computing unit via messages containing the beacon ID (i.e. transmit-
ter identification) and the time difference between the infrared and ultrasonic

37

B1 Y

Q\
dt,
Intersection
— dt, .B3
1
3 2
dt,

B2 \ ;

Figure 5.1: Beaconing system — transmitting beacons on the sides marked with
B1, B2, and B3 receiving beacon in the Intersection

transmissions. The hardware itself and the physical principle of this absolute
positioning subsystem are described in detail in [4].

There are two reasons why each message contains the time difference (delta)
instead of the calculated distance: computational power of the micro controller
and the degree of robustness. The main computing unit is much more powerful
than the receiving beacon, so we let the beacon do less work and we even
benefit from this decision. We considered deltas to be the perfect raw data
for our purpose — distance measurement. The computation is done in the
main computing unit, which controls all the other devices and it is highly
configurable. It means that all the parameters of the equation for the distance
calculation can be changed easily without the need of adjusting the beacons’
hardware or the firmware of the devices. It even allows us to calculate or
adjust the parameters on the fly, if distance information is provided based on
external measurement.

The configuration of the main computing unit contains not only the im-
portant constants for the equation, but also the positions of the transmitting
beacons. As we know the distance and the beacon ID, we can increase the
weights of the MCL samples in the circular belt formed by these two values
and the range constant. MCL samples far from the belt are penalized (see
Figure 5.2). This approach is much better and more robust than just waiting
for intersections and then computing the robot position using simple triangu-
lation. These intersections may not happen very often because of the time gap
between individual beacon transmissions (especially when the robot is moving
fast). At the same time, it is good to implement different weighting for the
samples on a belt, near an intersection of two belts and near the intersection
of all three belts.

38

Figure 5.2: MCL after processing one beacon input. The circular belt marks
the input from the bottom left beacon. The “pins” represent oriented MCL
samples; sample probability is proportional to their darkness.

5.5.5 Entirely lost

MCL can also determine the robot position from scratch if it has some absolute
sensors. The only change to the algorithm itself is the re-initialization of the
sample cloud. At the beginning of the localization (when the robot is lost)
samples are spread uniformly all over the playing field. The sensors providing
absolute positioning information lower the weight of misplaced samples and
new samples are placed in regions with higher probability (see Figure 5.2).
This is repeated until a sufficiently reliable position estimation of the robot is
reached.

5.6 Driver

Another important module is the “Driver” module. It is responsible for the
robot movement and will be present in every mobile robot. This section de-
scribes some possibilities and also tested solutions, how to implement mobile
robot driving in this control system environment. A complex API is demon-
strated which can be used by the Brain.

There are several ways how to guide the robot and this depends mainly on
the hardware construction. Differential steering by two powered wheels with
attached encoders providing odometry information is one of the most seen
practice. This system with this driving module has been developed and tested
on this kind of robots. The bodies of the robots were always supported by one
unpowered and uncontrolled caster.

39

100} % 200} %

50, 100

cm deg
100 50 50 100 180 90 90 180

100 200

Figure 5.3: Autopilot control curves for different robot weights: Speed to
Distance (left), Motors speed difference to Angular deviation (right)

Two driving methods are created, which use absolute and relative move-
ment, respectively.

5.6.1 Absolute movement

The absolute method drives the robot to a certain place (for example, on
the playing field); until this place is entered, using absolute coordinates. For
successful navigation with this movement method, at least estimative position
knowledge is required (provided by the Localization module). The command
for this method is void gotoX'YA(Position pos). Calling this function should
cause robot movement to the desired coordinates “XY” and turning to the
desired angle “A”.

The structure Position contains this information and provides a few helper
functions like position operator+ (const Pointéd point) for advancing the posi-
tion or double getAngleTo(Point point) for angle estimation from the old to a
new position. This structure also contains the information about probability
(variable double probability should be in range from 0.0 to 1.0). This is esti-
mated by the localization module and it can carry information whether the
robot is entirely lost or the exact position is more or less known. In a prob-
abilistic localization model like MCL, this is set according to the definition.
In another models it can be found out with additional mechanisms and can
only be set to 0.0 (lost) or 1.0 (position is known). The actual movement was
controlled by “Autopilot” in this mode, with the help of two curves (see Figure
5.3). One curve shows the dependency between the speed and the distance to
the goal, the second curve shows the dependency between the difference of
motors speeds and the angular deviation of the actual robot heading to the
desired heading. For further information see [5].

The Autopilot control functions are designed so that the robot slows down
when approaching the goal position and thus can arrive to the required position
more precisely (this applies to both the x-y placement as well as the angular
rotation of the robot). Before the movement was implemented in this way, the

40

Figure 5.4: Route re-planning after the opponent has been detected. The
robot travels from bottom left to top right position, its original route shown
as dotted line, new route as solid line (screenshot)

robot could exhibit oscillation around the desired position because of its mass
and the traction characteristics.

Both curves are defined by two parameters which should be set according to
the robot body construction and should be recalibrated when the wheel-frame
is modified or when the robot weight changes considerably.

5.6.2 Relative movement

The second driving method is a relative movement. It is used for precise
positioning of the robot. For example, this method is used to adjust the
robot position precisely if needed, when the robot is already in the “right
place”. Another use for this method was to recover it from blockage at the
border. In such case, it is quite likely that the robot does not know the
exact position. Otherwise, it would not drive itself so that it collides with the
border. Therefore, the relative movement is the only right way. Two typical
commands for this driving method are void goStraight(double distance) and
double rotateBy(double angle).

5.6.3 Advanced planning

The combination of Autopilot functions allows driving in non-trivial curves.
Using purely those functions, the motion would be limited to a simple point-
to-point navigation. However, because of the action planning, it is possible to
create a list of successive sub-goals. It would be nice to be able to create a
curve that represents the optimal path through all the sub-goals to the final
position. In case of the Eurobot 2008 contest, that could be used to collect
more balls on the table during one continuous motion and bring them to the
destination container. As we show in Figure 5.4, it can also be used for collision
avoidance by simply inserting a new sub-goal into the goal list.

41

Figure 5.5: Examples of Hermite curves (PO, P1: control points, T0, T1:
tangents)

Simple planning of the motion from one point to the next one is not feasible
as it does not guarantee smooth joints and the robot cannot physically make
instant movement changes. Therefore, more advanced algorithms had to be
found, than just simple joining of the curves and to create one segmented
curve with “nice behavior”, at least to provide continuous and smooth joins.
Hermite curves! were chosen, because these curves meet the expectations, they
are easily calculable, and on the top of it, they pass through their control points
(see Figure 5.5). To calculate one curve segment only the positions and the
tangents of its two endpoints need to be known. If more segments are combined
to create a joint curve and the tangents for the join points (the “checkpoints”)
are the same, the resulting curve meets the expectations of smooth joints. For
this purposes, it was even possible to make the tangents optional, which lets
the input to be minimal.

The tangent vectors can be sensed as analogous to the direction and speed
of the curve at that point. Reasonably good compound curve can be acquired,
when the tangents always point to the next checkpoint, while minimizing in-
puts for the calculations. The interface allows adding, removing and changing
the curve checkpoints to form a queue. After the next checkpoint in the queue
is reached , it becomes the starting point. Figure 5.6 shows an example of a
planned trajectory to collect all balls detected on the playing field surface dur-
ing the so-called “harvest” phase. The ball positions are used as checkpoints,
and as such, they define the curve segments. If a new target is detected along
the robot journey, it can be easily added to the already existing list as a new
checkpoint.

Unfortunately, this extension to the Driver module (called Maneuver) can-
not be declared as finished. It was implemented and tested in simulations, but
it has not been tested on real robots yet.

1Cubic Hermite spline (also called cspline), is a third-degree spline with each polynomial
of the spline in Hermite form. The Hermite form consists of two control points and two
control tangents for each polynomial.

42

ll-..h o
L+] e
o
e
°
'

Figure 5.6: Example of Hermite curves used for harvesting balls (screenshot)

5.7 Joystick

Joystick is considered a special device in our system. It is special because
its function is not to measure or move some parts, but mainly to control the
robot, drive it, and to reconfigure some other devices. It can be considered
as “brain functionality”, where the impulse to act is coming from the joystick
held by a human. To keep as much great ideas as possible, from the design in
the implementation, the code for the joystick is split to all three layers of our
controlling system based on the functionality of the code.

Joystick is still a hardware device connected to the control system, so it has
an object registered in the Communication layer and in the Abstraction layer.
The Communication layer object polls the joystick file (created by the Linux
kernel) and gets the user actions, button presses, and joystick axis movements.
The Abstraction layer object is a pure abstraction for the joystick functionality.
It provides interface for the upper layer to register callbacks actions on the
joystick events. These events do not need to be strictly to guide the robot.
They can trigger some other handling routines, or work like hints for the Brain
and the loaded strategy.

The controlling functions of the joystick are defined by the joysticks strat-
egy object. This strategy can be loaded into the Brain, to be executed and
all the functions will be registered as callbacks to the user action. In this
layer, it is normal to use other, strategy specific devices, so it is not necessary
to change the lower-layer code for a different robot, where other components
are connected to the main unit. This implementation decision, to follow the
design decision also in this place, supported the idea of code separation by its
functionality.

43

Chapter 6

Evaluation and future work

6.1 Real life deployment

This robot control system environment, with some additional modules (par-
tially described earlier), was developed and tested on two robots built by the
MART team.

Both robots have two traction wheels and use differential steering. Their
bodies are made of aluminum profiles and Plexiglas. The robots were designed
and used for Eurobot autonomous robot contest [2]. These robots have al-
most rectangular ground plan with maximal dimensions allowed by Eurobot
contest rules. Among others, they carry all electronics (including the main
computational unit) and lead-acid accumulators.

Eurobot 2007 and 2008

The first robot (Figure 6.1) called Logion has a simple “harvester” manipulator
designed to fulfill the objectives of Eurobot 2008 contest — collect, transport,
and deploy balls. This robot already took part in the Eurobot 2007 contest
and it has been refactored later. At first for the participation in the “outdoor”
Robotour 2007 contest, robot Logion was equipped with an alternative bogie
with bigger wheels. This robot has been presented on the Eurobot conference
and in the North Star competition in St. Petersburg (Russia) in 2008 too. Its
parameters are shown in Table 6.1.

Eurobot 2009 and 2010

The newer robot (Figure 6.2) was designed for the Eurobot 2009 contest and
it had a hand-manipulator with three degrees of freedom to gripe and hold
wooden columns and a claw to take wooden columns out of the dispenser.
Later it was rebuilt to met the Eurobot 2010 contest rules. The mechanical
solution is more robust, electronic boards are fixed by communication bus
connectors (CANON-9) to the body of robot. In addition, several professional
hardware components, e.g. Maxon motors with gearboxes or EPOS industrial
control units, are used there. Its parameters are shown in Table 6.2.

44

Main computational unit:

VIA EPIA — IA-32 (x86)

Communication bus:

I?C (via USB-I>C converter)
RS-232 (serial link)
USB

Hardware modules:

HBmotor boards (I*C device)
commutator motors, encoders, switches
MCP23016 board (I2C device)
buttons and LEDs
SRF02 (I>C device)
ultrasonic distance measuring sensor
CMPS03 (I?C device)
compass module

Localization beacons (RS-232 device)
Webcams (USB)

Contests:

Eurobot 2007
Robotour 2007
Eurobot 2008
North Star 2008

Table 6.1: The robot constructed for Eurobot 2008

Figure 6.1: The robot constructed for Eurobot 2008

45

Main computational unit: | Beagle Board — ARM (with expansion board)

Communication bus: CAN-bus (via SPI)
RS-232 (serial link)
USB
Hardware modules: Motor board (CAN device)

commutator motor, encoder
Stepper board (CAN device)

stepper motors, switches
Servo board (CAN device)

modeler servos, SHARPs, switches
EPOS (CAN device)

Maxon motor, encoder
Human interface board (CAN device)

character-LLCD, keypad
Localization beacons (RS-232 device)
Webcams (USB)

Contests: Eurobot 2009
Eurobot 2010

Table 6.2: The robot constructed for Eurobot 2009

Figure 6.2: The robot constructed for Eurobot 2009

46

6.2 Future work

The completion of a project like modular robot control system development
environment is an opportunity to think about the future direction of its de-
velopment. Although the intended targets were mostly met, there is a wide
range of other options to extend this system. The most important of them are
introduced in this chapter.

6.2.1 Portability

Because of using some platform dependent libraries, the robot control system
development environment in the current version can only run on Linux sys-
tems. A possible improvement would be to adjust the system to be platform
independent, which would increase the possibilities of usage and also devel-
opment. This involves finding or developing a proper replacement for these
libraries (CANopen stack). The source code would have to be modified too,
all direct calls to platform dependent functions would have to be replaced by
their platform independent equivalents.

6.2.2 Real-time environment

The developed control system environment is not a real-time system. By
“real-time” in the usual sense is not understood a system necessarily fast, but
a system with guaranteed response time, under all circumstances. Due to
the intended use of the control systems with this environment, it should not
be considered as a drawback. The analysis and development of a real-time
system would be far more complex and the system would probably require a
more powerful hardware to run. None of the similar solutions described in
Section 2.1 is a real-time system.

Considering the costs, the extension of the existing system to meet the
requirements for a real-time system, is not being planned. It is necessary to
realize that the control system built with this environment should not be used
in applications where it could threaten lives, health, or significant material
value, fully autonomous car driving for example.

6.2.3 Distributed environment

Control systems based on this control system environment are designed to run
on one computer, with all the modules connected to it. The only possibility
to achieve some kind of distribution is to make smarter hardware modules.
This still might not be satisfactory, if the used mainboard platform does not
support the peripheral interface of the designed hardware modules. This could
be achieved by making the environment transparently distributed on more
computing units.

From other point of view, with distributed system it would be possible
to use more, but smaller platforms as computational unit. These could have
much smaller power consumption than one powerful unit. Also the modules in

47

this modular system could be load balanced and migrated based on the needs,
e.g. memory size, processing speed, FPU!, computer vision instructions etc.

6.2.4 Runtime module loading

The control system environment loads the necessary modules to all layers based
on the configuration in the loading strategy. This is satisfactory when the
strategy is simple and all the actuators and sensors are known while loading
and the necessary modules are compiled with the project. A more flexible
approach would be dynamic - runtime loading of all modules, which could
make module changing, compiling and testing much easier and possibly event
driven.

6.2.5 Movement modules and Hermite curves

The current module for movement is able to drive robots with differential
steering. It is a popular design. The construction of these robots is relatively
simple and such robots are quite skillful. Other robot designs exist however
too, especially robots using Ackermann steering and unidirectional robots.
To control these robots we would need to add appropriate modules to the
Hardware abstraction level.

The current route planning is simple and reliable, but as described in [5],
there is a more elegant solution, for the time being, waiting for its implemen-
tation:

“Simple planning of the motion from one point to the next one is not
feasible as it does not guarantee smooth joints and the robot physically cannot
make instant movement changes. Therefore, we had to seek more advanced
algorithms than simple joining of the curves and to create one segmented curve
with “nice behavior”, at least to provide continuous and smooth joins. We
decided to use Hermite curves, because these curves meet the expectations,
are easily calculable and on the top of it, they pass through their control
points. To calculate one curve segment we need only to know the positions
and the tangents of its two endpoints. If more segments are combined to create
a joint curve and the tangents for the join points (the “check-points”) are the
same, the resulting curve meets our expectations. For our purposes, it was
even possible to make the tangents optional, which lets the input to be really
minimal.”

6.2.6 New hardware components

Although hardware is not an essential part of this work and although most
of the hardware components have been designed, there is some space for fur-
ther work in this area. It is worth to think about the development of a pro-
grammable CAN-I2C converter, which would enable use of sensors with 12C
interface (CMPS03 compass, SRF02 rangefinder, etc.). These were used on

IFloating-point unit

48

the previous robot with 12C bus. Another potential improvement could be a
new hardware component for battery voltage monitoring, current and charge
status, or an expansion of current Motor board that will be able to process
encoder data autonomously and take over some responsibilities in robot local-
ization.

6.2.7 CANopen stack

As already mentioned in Section 5.3, the experience with the CAN Festival
open-source library used in this project has not been completely positive. This
forced us to build our own abstraction over this library. For the final list of
topics for further work, it is worth to consider the development of our own
CANopen stack, which would directly meet all the requirements of the modules
and also the control system environment.

49

Chapter 7

Conclusion

The goal of this work was to design and implement an environment for mod-
ular robot control system development. The proposed environment features
many advantages over single purpose, dedicated systems designed for particu-
lar robotic hardware. Systems built for this environment are structured, the
hardware dependent code is separated from the implemented algorithms or
decision making, thus these systems are easily reusable on other robots. New
system and module creation is well documented and working examples are
supplied.

In this text the advantages of modular control system environment have
been described (1.1). Several other solutions have been consulted and their
unsuitability was shown (2.1). After the problem analysis the software design
and implementation is discussed (5). The layered design is explained (4.1),
Monte Carlo Localization algorithm implementation is proposed (5.5), and also
the usefulness of modular implementation is shown (5.4). Different approaches
to steering and robot guiding are described (5.6 and 5.7).

The software developed as part of this work was written in C++ using
object-oriented design principles including the use of several well-known design
patterns (5.1). It was tested on two different robots (6.1). These robots were
successfully used on the Eurobot autonomous robot contests and also other
competitions. In the appendix the User documentation takes place with the
installation guide. The supported platforms are introduced as well as the
communication protocols used by the robots.

20

Appendix A

User documentation

A.1 Installation guide

Hardware requirements

The control system environment does not have any special hardware require-
ments. Generally, any hardware platform, which is supported by the Linux
kernel and the particular Linux distribution, should be suitable. However, a
CPU with built-in FPU (floating-point unit) is strongly recommended as the
software heavily depends on floating-point operations. The software has been
developed on and is thus guaranteed to work on the following architectures,
which are described in detail in Section B:

e VIA EPIA — IA-32 (x86)
e Beagle Board - ARM
e High performance PC — AMDG64 (x86-64)

Any recent processor should be powerful enough to run Linux without
graphics interface smoothly. However, advanced computer vision algorithms
tend to be very demanding on resources. In this case, the hardware platform
must be chosen carefully.

The system was tested on two robots, as described in 6.1. These robots
use the following buses/protocols:

RS-232 (serial link)
I*C

CAN-bus

USB

In order to use modules, which depends on a particular hardware compo-
nent, the robot computer must provide a suitable bus to connect the device
(e.g. USB for joystick, webcam). To allow convenient package installation and
software development and deployment, it should support some kind of remote
connectivity, such as Ethernet, Wi-Fi or Bluetooth.

o1

Software requirements

The control system environment can be currently compiled and deployed on
any UNIX compatible operating system, if the required development tools are
present and the dependencies are satisfied. In this document, we present a
guide how to configure a suitable environment to successfully compile and run
our software system. GNU Linux is the particular UNIX-like system of choice,
as it is widespread, freely available, well documented, and it offers a wide range
of software packages. We do not assume any particular Linux distribution.

Although an effort has been made to keep the software as portable as pos-
sible, the Windows operating system is not officially supported yet. Hardware
dependent parts of the system (I*C & CAN-bus interface) are particularly
problematic and will have to be implemented differently. We assume that the
software will be compiled directly on the robot. Other ways, such as cross-
compilation are possible too, but it is not described in this text.

General dependencies

The following packages will be present in any packaging system employed by
the particular Linux distribution. In case a required tool or library has to be
installed, documentation for the specific packaging system should be consulted,
how to install new software on the system.

GNU tool chain

The GNU tool chain is our choice for software development in the C/C++ pro-
gramming language. We would particularly recommend Gentoo Linux, which
contains all the necessary development tools out of the box. The following
packages are required:

e GNU Compiler Collection (GCC)
e GNU make

pkg-config

pkg-config is a handy tool, which provides unified interface for querying in-
stalled libraries. This allows to avoid hard-coded include and library paths in
project’s Makefile-s.

Miscellaneous utilities

A suitable file decompression program, able to extract the .tar.gzip and .tar.bz2
archives with the project source code and libraries is necessary.

Specific dependencies

The following software packages may not be available on the particular Linux
distribution. Therefore, detailed installation instructions are being provided.

52

The installation can either be performed by a non-root user (the compiled
binaries, libraries, and header files will remain in the user’s home directory),
or the root can install the packages into the operating system directly.

These packages are needed only in case, the sample implementations of
control system are compiled. Namely, with the Eurobot prefix (see A.2).

OpenCV

The computer vision algorithms implemented on MART robots depend on
the OpenCV library (http://opencv.willowgarage.com/). The OpenCV 2
version has been used.

In order to be able to install and use OpenCV, Video4Linux support must
be enabled in the kernel configuration, together with a correct device driver for
the particular camera, connected to the actual computer. As web-cams have
become very popular, any reasonably recent Linux distribution should ship
with a kernel that supports video capture. The GTK+ windowing toolkit to
display camera input for debugging purposes was used, so the GTK+ library
may have to be installed separately.

CanFestival

Controller Area Network (CAN) support must be enabled in the kernel con-
figuration, in order to use CAN modules. The Linux kernel supports CAN
since the 2.6.25 version. As in the previous case, correct device drivers for the
particular hardware must be present. The Linux kernel development headers
must be installed on the system, version 2.6.25 at least. Older versions do not
contain the necessary CAN headers.

The CAN-bus wrapper class (see 5.3) is built around the CanFestival li-
brary (http://www.canfestival.org/), which provides a high-level interface
and a complete implementation of the CANopen stack. To achieve the de-
sired functionality and to avoid compilation errors, resulting from poor design,
the source code of the CanFestival library was modified slightly (see 5.3.1).
Therefore, it is necessary to install a custom version of CanFestival:

1. Get the source code: CanFestival-3.tar.gz can be found on the CD.

2. Extract the archive:

tar {xzf %CD%/code/CanFestival-3.tar.gz
cd CanFestival-3

3. Configure the package:

./configure --prefix=${HOME} --can=socket
4. Compile and install the package:

make && make install

33

http://opencv.willowgarage.com/
http://www.canfestival.org/

5. Add the package information to pkg-config:
export PKG_CONFIG_PATH=‘pwd‘:${PKG_CONFIG_PATH}
6. Add the local library path to the dynamic linker, if necessary:

export LD_LIBRARY_PATH=${HOME}/lib:${LD_LIBRARY_PATH}

Project compilation

The Makefile of the control system environment placed on the CD is by default
set to compile with the skeleton modules, pretending to be a control system.
These example modules (see Section A.2) are not using any additional libraries
(like OpenCV or CAN), so they can be compiled and run with no dependencies
either on software nor hardware.

1. Extract the source code from the CD:

tar {xzf %CD%/code/logion.tar.gz
cd mosyr

2. Compile the project:
make
3. Run the application:

./robot

Installation script

In order to simplify the installation process as much as possible, the presented
steps are assembled into a comprehensive installation script, which can be
found on the CD (code/install.sh). The contents of the “code” directory have
to be copied to a local user-writeable directory before executing the script.
If all the requirements stated in the General dependencies section have been
satisfied, all the specific libraries as well as the project itself should compile
automatically. In case any problems occur, consult the previous steps to isolate
the problem. The installation script installs the CanFestival library and builds
the control system environments source code.

54

A.2 Robot implementation guide

In this chapter it is explained, how to develop a new robot control system
to this system environment. More precisely said, how to extend it with new
modules to be used on a new robot. Unfortunately, to build a new robot a lot of
hardware work needs to be done and specifications for all the hardware devices
and protocols has to be read, so this guide tries to explain the functionality
on fictive robot. The advantage of this is that you can see how the system
works without the need of any special devices, all you need is just an ordinary
computer.

As an example robot implementation, we have created a module skeleton
with a bunch of example modules for all layers, example configuration file,
example StrategyLoader etc. All the functions and modules are explained in
this chapter and the files can be found in the “/modules/skelet/” directory in
the source code.

The source code structure is very simple. The core (or common) files are
in the root directory and the modules for different robots are in the modules
directory in their own folders. The doc directory contains the doxyfile, the
getopt directory the windows implementation of getopt and the OD directory
the code for CAN-Festival object dictionary. Object files are generated to the
obj directory and the logs are store to logs directory. In each robots module
directory the layers have separate folders, HCL, HAL, and SL.

Creating a new control system

By creating a new control system is meant to create a new directory in /mod-
ules/. Its name will identify the control system and its namespace should be
called the same name. The makefile placed in the new system directory can
call the main make file (see Code listing 13).

Code listing 13 Example Makefile (/modules/skelet/Makefile).

make calls the main makefile
all clean run start showdep:
$(MAKE) -C ../../ —e VERSION=$(shell basename ‘pwd‘) \
USE_OPENCV=no USE_CAN=no USE_CMP_VISION=no $@

.PHONY: all clean run start showdep

HCL module

The modules in the Communication layer inherit from the “Board” class (see
Code listing 7). To create a functional HCL module it is necessary to imple-
ment all the abstract functions from this interface. Example implementation
file is /modules/skelet/HCL /Example Board.cpp.

95

Construction

The constructor of your module should have at least one parameter, the name
of the module. It is possible to hardcode this value, but all instances of this
module will share the same name, which can cause troubles while debugging
communication, hardware, or software issues.

Initialization

In your constructor, you should have only minimal member initialization, al-
location of containers and in general code that will never be called again for
that instance. All the initialization should be placed to the init() function. Er-
ror checking is strongly advised. The init() function returns a boolean value
whether the initialization was successful or not. It is executed while registering
the module in the Scheduler. If initialization fails, the module is not added.

Servicing

After the Scheduler’s thread is started, all the registered modules are called
consequently (depending on the loop they registered to). The service() routine
should contain all the communication (data transfers in both directions) and
data parsing. No calls to upper layers are allowed here, not even in the same
layer. Communication modules have to work separately, with their hardware
counterpart only.

Stopping

The halt() function is to prepare the device for power-down. It can, for exam-
ple, stop the motors or to move the arm down slowly to prevent any damage
to the hardware.

Destruction

Destructor is called on the object disposal, which is done after unregistering
the module from Scheduler. If you do not unregister the module manually, it
is done automatically when the Scheduler’s thread is stopped.

CAN modules

The drivers for the boards communicating via the CANopen protocol have
some special requirements opposed to the I2C boards. In order to communicate
via the CAN bus, they need to implement the CANBoard interface and they
need to register to the CANBus object. After this registration is done, they can
send and receive CAN messages corresponding to their cobld. The important
part of the interface to interact with our CANBus class is in the Code listing
14.

The CANBoard interface (Code listing 8) to be implemented has only two
member functions, receivePdo() and requestPdo(). The receivePdo() function

26

Code listing 14 CANBus class APL

class CANBus {

public:
void registerHclObject(const CANBoard &hclObject, int cobId);
void unRegisterHclObject(int cobId);

bool sendSdoWriteMessage(int nodeId, int index, int subIndex, int data,
int dataSize);
bool sendeoReadMessage(int nodeld, int index, int subIndex, int* data);
bool sendPdoMessage(int cobId, const char* data, int length);
};

is abstract and it is called after receiving a PDO message on the CAN bus
with the cobld of the module (depending on the registration in the CANBus
object). The second, requestPdo() does not have to be abstract, its default is
to just request PDO transfer (RTR — Request To Receive) to 0x180 + nodeld.
This is the CANopen default!.

HAL module

Modules in the Hardware abstraction layer are registered in the Equipment
object. As the name Fquipment suggests, the purpose of these modules is to
expose some functionality of the hardware devices mounted on the robot. The
word device is meant for a complete device, like a hand, odometry, localization,
and range finder. It is sometimes a combination of smaller components that
are useless alone, like small motors, servos, or buttons on different hardware
boards. All modules in this layer inherit from the “Device” class (see Code
listing 9). It guarantees that all the modules (devices) have a name assigned
and it assures that they implement the functions of the interface. The init()
function is called to initialize the module, e.g. getting references to other
modules, reading configuration, etc. It is called just after all the modules
have been registered in the layer (to resolve module dependencies). The halt()
function is to prepare the device for shut-down, it stops sending requests or
even cancels the last requests (to the Communication layer modules). The
refresh() function is called periodically after registering the module in the layer,
and its function depends on the module itself. Implementation of these three
pure virtual functions is necessary to build a HAL module (device). Example
implementation file is /modules/skelet/HAL/ExampleDevice.cpp.

Devices that can move some parts of the robot may need some kind of
deactivation routine. As an example, it can be used for safety reasons, or
according to the Eurobot rules, each participating robot has to turn all the
effectors off after the match time limit (90 seconds) expires. For this purpose,
there is an Effector class (see Code listing 10), which adds the deactivate()
function to the Device interface.

1 This works for all our modules based on the CiA (CAN in Automation) specification.
Some devices (like EPOS controllers) use different cobld for RTR, so the virtual function
requestPdo() cannot be used in the default implementation in those modules.

o7

Construction

The constructor of your module should have at least one parameter, the name
of the module. It is possible to hardcode this value, but all instances of this
module will share the same name, which can cause troubles while debugging.

Initialization

In your constructor, you should have only minimal member initialization, al-
location of containers and in general code that will never be called again for
that instance. All the initialization should be placed to the init() function.
Error checking is strongly advised. The init() function return a boolean value
whether the initialization was successful or not. It is executed after all the
modules are registered in the Fquipment, because many modules are depen-
dent on the existence of other HAL modules. If the initialization fails (init()
returns false), the module is removed from the Equipment.

Refreshing

After the Equipment’s thread is started, all the registered modules are called
consequently in a loop. The refresh() routine should contain (or call) all the
data exchange between modules (HCL and HAL) and data processing. No
calls to the upper layer are allowed, but cooperation inside the layer may be
necessary for some modules.

Stopping

The halt() function is to prepare the device for power-down. It can, for exam-
ple, stop the motors or to move the arm down slowly to prevent any damage
to the hardware. The deactivate() function is only to stop the effectors, freeze
the robot.

Destruction

Destructor is called on the object disposal, which is done after unregistering
the module from Equipment. If you do not unregister the module manually,
it is done automatically when Equipment’s thread is stopped.

Smart Layer module

Smart Layer modules are of two types: strategies and actions. Actions are
small classes run as Brain Slaves and strategies are a definition of action ex-
ecution order, decision-making (usually a state machine) and the HCL and
HAL module instantiation (as the strategy knows the best, what modules it
needs for operation).

o8

Strategy loader

To have the correct strategy loaded it is necessary to create a factory method
(StrategyLoader::getStrategy()) returning the right strategy instance. The con-
figuration option defining the actual strategy is called “STRATEGY”. The
factory method is called from the Brain during its initialization with the pa-
rameter retrieved from the configuration. After getting the instance of the
right strategy, it is initialized, all modules are loaded, and all the layers start
their threads. Example strategy loader is /modules/skelet/StrategyLoader.h.

Strategy

Strategy in general defines the goals, how the robot should behave, and what
it should do to achieve these goals. It also contains what hardware devices
and software modules it needs to load for its operation. Strategy can be
implemented as a finite state machine, what we consider the fastest, easiest,
thus the best solution of this problem.

New strategies can be created by inheriting and implementing the abstract
functions of the “StateMachineStrategy” and “Strategy” classes. The func-
tions are to name and describe the strategy, to register all the modules, to
initialize and finalize the strategy and at last but not least the execute func-
tion which is called from the Brains main loop and should contain all the
decision-making. An example strategy implementation is /modules/skelet/S-
L/EzxampleStrategy. cpp.

Action

Action is a very small class implementing only one function from its abstract
parent (interface). This function called body() should contain all the necessary
operations to achieve the goal of the action. Example actions might be: find
something, collect something, drive somewhere, use some manipulator etc.

The purpose of this class and all the implemented actions based on this
interface is to have a bunch of actions that can be used in different strategies.
This approach helps the reusability and the speed of development. Strategies
can share actions as in fact the different state machines may have common
states.

The parent class called Action makes all its subclasses compatible with the
BrainSlaves, so all actions can be started as a BrainSlave in a separate thread.
The constructor of the action classes should contain all the pointers to the
HAL modules the action uses. This will not only save time getting all the ref-
erences, but also allows using the action from other strategies without hiding
any action dependency. Example action implementation is /modules/skelet/S-
L/ExampleAction.cpp.

Configuration

For configuration management we use the singleton Conf class. All the vari-
ables in the configuration file, the command line, and even those set from the

99

running system are always accessible via this singleton. Configuration files
are parsed before the command line, to allow the command line options to
overwrite parameters. First is the configuration file in the root directory of
the project and after that the configuration file from the module group (e.g.
modules/skelet/). The configuration files are named config.cfg. The default
value for different types is 0, 0.0, ”” (empty string) or false. The default log
file with comments if in Code listing 15.

Code listing 15 Example configuration file (/modules/skelet/config.cfy).

Example configuration file

logging

LOG_SCREEN true
LOG_FILE true
LOG_COMMUNICATION false
LOG_NETWORK false

logging verbosity
LOG_FROM_LEVEL 0

if hide by default is set to true, log filter will be applied
to show logs, otherwise the log will be empty (if no filter is set)
LOG_HIDE_BY_DEFAULT false

how often to print the statistics (loops per second of each layer)
defined in brain thread loops (0 means no statistics)
STATISTICS_PRINT_FREQUENCY 300

SL setting
STRATEGY ExampleStrategy

HCL modules
HwExampleBoard 1

HAL modules
HalExampleDevice 101

60

Appendix B

Platform support

This appendix is a brief description of used hardware platforms, hardware
components, and communication protocols. As they are not directly concern-
ing the control system environment, just the control systems based on it, this
description is present only for completeness and to introduce the testing plat-
forms.

B.1 Hardware platforms

VIA EPIA — IA-32 (x86)

VIA EPIA (Figure B.1) is an embedded computing platform from VIA Tech-
nologies Inc. A wide range of different form factors are being offered, in-
cluding Mini-ITX, Nano-ITX, Pico-ITX. VIA EPIA motherboards feature an
integrated IA-32 (x86) compatible VIA CPU, either passively (heat sink only)
or actively cooled (heat sink + fan). The only components, which have to be
provided by the user, are the system memory and power source. Small size and
low power consumption are the key features, making this platform suitable for
embedded applications such as firewalls, HTPCs (home theater PC), small file
servers, robotics, etc. However, there has been some criticism that VIA EPIA
is too expensive for the processing power it provides. The board for testing

included a 1.5 GHz VIA C3 CPU, and 512 MB of DDR II RAM.

Beagle Board - ARM

Beagle Board (Figure B.2) is a low-power, low-cost, fan-less single board com-
puter produced by Texas Instruments, collaborating with a group of volunteers,
with vast open-source development possibilities in mind. It features Texas In-
struments OMAP3530 system-on-a-chip. A 600 MHz ARM Cortex-A8 CPU
in soldered on the board. The CPU is based on the latest 7th generation of
the ARM architecture. It also includes an embedded 430 MHz digital signal
processor (DSP) and a 2D /3D graphics accelerator with OpenGL ES 2.0 sup-
port from Imagination Technologies. Beagle Board is further equipped with
256 MB of flash memory, 256 MB of RAM (we have an older model which

61

only has 128 MB of RAM), SD/MMC card slot, RS-232 serial port, JTAG
interface, USB (not functional in our revision), HDMI video output and audio
input/output. The whole board should not consume more than 2W of power.
The project’s website states that Beagle Board is suitable for a plenty of em-
bedded applications, for example low-cost Linux PCs, “kitchen” computers,
thin client terminals, set-top boxes, network sniffers & routers, robotics, etc.

t

ASSV. Rs25255"

Figure B.2: Beagle Board

62

High performance PC — AMD64 (x86-64)

There are several different 64-bit and/or multi-core processor architectures
available today. The CPU architecture of our choice was AMD64, in an Intel
Core 2 Duo processor. It is the most widely used and most affordable 64-bit
platform available in the market. The biggest disadvantages compared to em-
bedded platforms (including VIA EPIA and Beagle Board) are the heat dissi-
pation (efficient passive cooling is almost impossible) and power consumption,
which are much higher, especially in dual or more core processors. Neverthe-
less, the latest VIA Nano processor seems very promising. It is fully compatible
with AMD64 and dual-core versions are expected in the future.

64-bit architecture and especially multiple cores are expected to be used
exclusively in the future. Except for significantly larger amounts of virtual
and physical memory accessible, applications taking advantage of the 64-bit
instruction set tend to be much faster. One of the most important improve-
ments of the x86-64 extensions is the doubled amount of general purpose regis-
ters, which should help especially computationally intensive tasks such as im-
age preprocessing in computer vision. Symmetric multithreading enabled by
multi-core CPUs (multiple physical processors are possible too) allows threads
to be executed truly in parallel, leading to lower latency and better utilization.
Synchronization issues may emerge, however.

B.2 Hardware components

The hardware components are designed to work with I?C , CAN-bus or RS-
232, which is their only dependency (for example, they are not dependent on
the architecture of the particular robot, etc.). This makes them universal,
hence they can be reused in robots not driven by the presented control system
environment.

Source code of the communication modules for these hardware components
can be found in /logion/modules/Eurobot*/HCL/! directories in the projects
source code. They are not further described, as they are not directly the aim
of this work. For further information see [5] or [6].

B.3 Communication

RS-232

RS-232 is an industrial standard for serial asynchronous full-duplex communi-
cation between two devices. Although it was designed in 1969, it used to be
a typical interface for personal computers, until it was replaced by USB. RS-
232 is not a bus. Hence, it is not possible to use it to interconnect more than
two devices without additional components, such as splitters and multiplexors.

lthe * can be replaced by the year of the robot (2008, 2009, or 2010)

63

The ATmega MCUs used on robots hardware components 6.1 used for testing
have an integrated hardware peripheral with hardware-based RS-232 support.

USB

Universal Serial Bus (USB) is a specification to establish communication be-
tween devices and a host controller. An USB system has an asymmetric design,
consisting of a host, a multitude of downstream USB ports, and multiple pe-
ripheral devices connected in a tiered-star topology. USB devices are linked
in series through hubs. Additional USB hubs may be included in the tiers,
allowing branching into a tree structure with up to five tier levels. USB device
communication is based on pipes (logical channels). For more information see
[23].

On the tested robots the USB was used for connecting joystick, cameras,
and USB-to-12C converter.

12C

I2C (Inter-Integrated Circuit) is an industry standard, multi-master serial bus,
developed by the Philips Company (1992) for the purposes of short distance,
low-speed communication among multiple devices. It is typically used to inter-
connect various components of the same device, usually within the same PCB
(e.g. interconnection of EEPROMs, LCDs and button panels inside a video
recorder). In 2006, the I?C technology was relieved of licensing fees and made
free for non-commercial use (nevertheless, slave addresses allocated by NXP
are still paid). TWI (Two Wire Interface) is another name for the I?C bus.
This is because the I?C bus was relieved of patent restrictions and licensing
fees gradually. Therefore, some vendors (e.g. Atmel) used the TWI name for
the I?C bus to prevent trademark licensing issues.

The most significant features of the I?C bus are simplicity, existence of
integrated hardware peripheral with hardware-based I2C support in ATmega
MCUs and the fact that it is a very common solution (e.g., many sensors
used in robotics have an I*C interface). Moreover, of course, it is a bus, and
thus it allows multiple devices to be daisy chained or connected to one point.
Limitations experienced during testing: low speed and reliability issues when
using IC for longer distances.

CAN-bus

CAN stands for Controller Area Network, a bus designed by the Bosch Com-
pany primarily for automotive industry. CAN, thanks to its features, has also
found application in other branches. It is a very reliable, high speed and ro-
bust solution with electrical noise tolerance and a long possible distance of
connected nodes.

Devices are connected to the CAN-bus using two mutually inverted signal
wires. Eventual conflicts that may occur when multiple nodes transmit at

64

the same time are solved by CAN in a principally same way as I?C does.
Thus, the CAN-bus does not suffer from throughput collapse in case of bus
overload, contrary to the Ethernet protocol (which uses a random wait time
in case of collision). CAN-bus is a serial bus with data transmitted in frames,
usually consisting of eleven bites of an object identifier, data field up to 8
bytes, and a CRC control field. Bit stuffing is used for CAN frames having five
consecutive bits of the same polarity. CAN-bus is a professional solution with
high reliability and wide spectrum of applications. Its remarkable features
are compensated with a significantly more complex protocol and end node
computational requirements, compared to simpler solutions. However, this is
an adequate price for the CAN-bus benefits.

65

Appendix C

CD contents

./code Thesis (software) source code, additional third party libraries, instal-
lation script (see Appendix A for detailed description).

./text Thesis text in PDF.

./video Various videos demonstrating the software in action on MART robots.

66

Bibliography

[1] B. Siciliano, O. Khatib: Springer Handbook of Robotics, ISBN: 978-3-540-
30301-5, Springer, 2008.

2] Eurobot Autonomous robot contest,
http://www.eurobot.org.

[3] Jusko P., Obdrzalek D., Petrisek T.: Software-Hardware Mapping in a
Robot Design, in A. Gottscheber et al. (Eds.): Research and Education
in Robotics - EUROBOT 2008, Springer CCIS 33, pp. 19-28, 2009.

[4] Obdrzélek D., Basovnik S., Jusko P., Petrusek T., Tulac¢ek M.: Robot
Localisation in Known Environment Using Monte Carlo Localisation, in

Proceedings of the International Conference on Research and Education
in Robotics - EUROBOT 2009, Springer CCIS 82, pp. 100-111, 2009

[5] Basovnik, S., Dekar, M., Jusko, P., Mikulik, A., Obdrzalek, D., Pechal,
R., Petrusek, T., Pitak, R.: Logion — A Robot Which Collects Rocks, in
Proceedings of the International Conference on Research and Education
in Robotics - EUROBOT 2008, pp. 276-287, May 2008

(6] Petrtsek T., Mikulik A., Dekar M., Skalka M., Burda M.: Modular robot
control system, http://www.ksi.mff.cuni.cz/sw/mosyr.html.

(7] Microsoft Robotics,
http://msdn.microsoft.com/en-us/robotics/default.aspx.

[8] The Player Project,
http://playerstage.sourceforge.net.

9] LEGO Mindstorms NXT,
http://mindstorms.lego.com.

[10] Webots,
http://www.cyberbotics.com.

[11] Simbad Project,
http://simbad.sourceforge.net.

[12] The Mobile Robot Programming Toolkit (MRPT),
http://babel.isa.uma.es/mrpt/.

67

http://www.eurobot.org
http://www.ksi.mff.cuni.cz/sw/mosyr.html
http://msdn.microsoft.com/en-us/robotics/default.aspx
http://playerstage.sourceforge.net
http://mindstorms.lego.com
http://www.cyberbotics.com
http://simbad.sourceforge.net
http://babel.isa.uma.es/mrpt/

[13] CARMEN robot navigation toolkit,
http://carmen.sourceforge.net.

[14] Michael Somby: A review of robotics software platforms,
http://www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/
A-review-of-robotics-software-platforms/.

[15] Intel OpenCYV,
http://opencv.willowgarage.com.

[16] Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization
for mobile robots, in Proceedings of the IEEE International Conference
on Robotics & Automation (ICRA99), 1998.

[17] Abrahamsson P., Salo O., Ronkainen J., Warsta J.: Agile Software De-
velopment Methods: Review and Analysis. s.l.. VTT Publications 478,
2002.

[18] Andrei Alexandrescu: Modern C++ design: generic programming and
design patterns applied, ISBN: 978-0201704310, Addison-Wesley, 2001.

[19] XGetopt — A Unix-compatible getopt() for MFC and Win32,
http://www.codeproject.com/KB/cpp/xgetopt.aspx.

[20] Advanced CAN solutions for hardware, software, consulting and educa-
tion,
http://www.kvaser.com/can/protocol/.

[21] CAN in Automation (CiA),
http://www.can-cia.org.

[22] CanFestival Open Source CANopen library,
http://www.canfestival.org.

[23] Wikipedia, the free encyclopedia,
http://wikipedia.org.

68

http://carmen.sourceforge.net
http://www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/A-review-of-robotics-software-platforms/
http://www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/A-review-of-robotics-software-platforms/
http://opencv.willowgarage.com
http://www.codeproject.com/KB/cpp/xgetopt.aspx
http://www.kvaser.com/can/protocol/
http://www.can-cia.org
http://www.canfestival.org
http://wikipedia.org

	Title page
	Contents
	Abstract
	Introduction
	Motivation
	Goals
	Thesis structure

	Related work
	Existing solutions
	Microsoft Robotics Developer Studio
	Player Project
	LEGO Mindstorms NXT
	Others

	Summary

	Problem analysis
	Software design
	Layers
	Hardware abstraction layer
	Hardware communication layer
	Smart layer

	Threading
	Localization
	Advancing inputs
	Checking inputs

	Implementation
	Design patterns
	Singleton
	Observer
	Facade
	State

	The core and environment
	Threading
	Brain and strategies
	Scheduler (HCL)
	Equipment (HAL)
	Timers
	Configuration management

	CANBus
	Changes to the CAN-Festival library

	Modules
	HCL module
	HAL module

	Localization
	Monte Carlo Localization algorithm
	Point and Position
	Localization interfaces
	Beacons in MCL
	Entirely lost

	Driver
	Absolute movement
	Relative movement
	Advanced planning

	Joystick

	Evaluation and future work
	Real life deployment
	Future work
	Portability
	Real-time environment
	Distributed environment
	Runtime module loading
	Movement modules and Hermite curves
	New hardware components
	CANopen stack

	Conclusion
	User documentation
	Installation guide
	Robot implementation guide

	Platform support
	Hardware platforms
	Hardware components
	Communication

	CD contents
	Bibliography

