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Chapter 1

Introduction

Invariant differential operators have a long story of importance and this is
particularly the case for operators of Laplace type. The conformally invariant
Laplacian is the basic example in conformal geometry. A family of higher
order generalizations of the conformal Laplacian with principal part a power
of the Lalacian was constructed in [9]. In CR geometry, the CR invariant
sub-Laplacian of Jerison-Lee ([10]) palys a role analogous to that of the
conformal Laplacian. In [8] generalizations of the Jerison-Lee sub-Laplacian
are defined, which are the CR analogues of the ’conformally invariant powers
of the Laplacian’.

This work was inspired by the article [7] by M. Eastwood, and the diploma
thesis [4] by Vı́t Tuček. The aim was to characterize the vector space of all
symmetries of the CR sub-Laplacian. In the paper [7] author identifies the
symmetry algebra of the Laplacian on the Euclidean space as an explicit
quotient of the universal enveloping algebra of the Lie algebra of conformal
motions and constructs analogues of these symmetries on a general conformal
manifold.

The space of smooth first order linear differential operators on ℝ
n that

preserve harmonic functions is closed under Lie bracket. For n ≥ 3, it is
finite-dimensional (of dimension (n2 +3n+4)/2). Its commutator algebra is
isomorphic to so(n+1, 1), the Lie algebra of conformal motions of ℝn. Second
order symmetries of the Laplacian on ℝ

3 were classified by Boyer, Kalnis, and
Miller in [11]. Commuting pairs of second order symmetries, as observed by
Winternitz and Frǐs in [12], correspond to separation of variables for the
Laplacian. This leads to classical coordinate systems and special functions,
see [11] and [13].
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General symmetries of the Laplacian on ℝ
n give rise to an algebra, filtered

by degree. For n ≥ 3, the filtering subspaces are finite-dimensional and
closely related to the space of conformal Killing tensors. The main result
of [7] is an explicit algebraic description of this symmetry algebra. The
motivation for [7] has come from physics, especially the theory of higher spin
fields and their symmetries.

Next four chapters are introductory. Chapter 2 defines some basic notions
we will work with, in particular the CR structures, and indicates some no-
tation. Chapter 3 is devoted to some structure and representation theory of
semisimple Lie algebras and their parabolic subalgebras. In Chapter 4 we de-
fine parabolic geometries as Cartan geometries, some underlying structures,
and establish an equivalence between the Cartan geometry and the underly-
ing structure in most cases. We also define the BGG sequences of invariant
operators for parabolic geometries. Chapter 5 describes the CR structures as
a special kind of parabolic geometry, and ilustrates the abstract phenomena
in the concrete setting of CR structures.

The core of the work are the last two chapters. In Chapter 6 we define
the ambient construction for the big cell of the CR sphere and use it to define
the CR sub-Laplacian. The advantage of the ambient construction is that
the ambient operators are much more simple then the induced operators on
the big cell. For the ambient construction for more general CR manifolds,
see [6]. The idea of the construction in our simple case is to embed the trivial
ℂ

×-principal nudle on the big cell into some complex vector space (called the
ambient space) as a null-cone of some suitable Hermitean metric. The CR
sub-Laplacian will be the restriction of the Laplace operator corresponding
to the Hermitean metric to the big cell.

Chapter 7 is then devoted to the ambient construction of symmetries of
the sub-Laplacian and characterization of vector space of the symmetries.
To do this, we start with first order symmetries. The ambient Laplace op-
erator is surely U(V)-invariant, where we denote by V the ambient space.
So the generator of the infinitesimal action of u(V), which are simply vector
fields (and hence first order differential operators) on V, commute with the
Laplacian and also with the Hermitean metric on V. So they induce first
order differential operators on the big cell and we prove that these are all
first order symmetries of the sub-Laplacian.

For higher order symmetries, we first compute the case of second order
symmetries to get some feeling about the general case. The work has three
steps. In the first step, we compute conditions on the symbol of symmetries
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of given order. They have the following structure: Let P be a symmetry of
order d. Then we can write P =

∑

i+j≤d V
a1...aib̄1...b̄j�...�∂a1 . . . ∂ai∂b̄1∂b̄j∂�∂�+

LOTS, where each term has exactly d indices, in which it is trace-free and
symmetric. Then V �...� satisfies the first BGG equation for ∘ ∘ . . . ∘ ∘

d 0 0 d
.

If V �...� = 0, then all terms with min(i, j) = 0 vanish and V a1b̄1�...� satisfies

the first BGG equation for ∘ ∘ . . . ∘ ∘
d− 2 1 1 d− 2

. . . If V a1...ak b̄1...b̄k�...� = 0
for all k < s, then all terms with min(i, j) < s vanish and V a1...asb̄1...b̄s�...�

satisfies the first BGG equation for ∘ ∘ . . . ∘ ∘
d− 2s s s d− 2s

. The second step
is the ambient construction of the symmetries in terms of composition of
generators of the u(V)-action, and the third step is the proof that we have
constructed all of them.

In all of this work we use the Penrose summation convention without
further comments.
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Chapter 2

Basic notions and notation

2.1 Complex vector spaces and vector bun-

dles

Definition 2.1.1. Let V be a complex vector space. Then we can form
another complex vector space V̄ , such that:

∙ V̄ = V as abelian group

∙ for v ∈ V̄ z ⋅ v := z̄v, where the action on the right-hand side is in V

Lemma 2.1.1. The identity Id : V → V̄ is a conjugate-linear isomorphism.

Proof. This is clear from definition.

We will write this isomorphism in the form

Id : v = viei 7→ v̄ = v īeī

where ei and eī denote the same vector, first considered in V , and then in V̄ .
It is clear that v ī = vi. We will use this notation throughout this work.

Now let us denote the complex structure on V as J and form the com-
plexification V ⊗ℝ ℂ. We also extend J to this complexification by complex
bilinearity. The eigenvalues of J on V ⊗ℝℂ are ±i, and we have a direct sum
decomposition

V ⊗ℝ ℂ = V 1,0 ⊕ V 0,1

where V 1,0 is +i-eigenspace and V 0,1 is −i-eigenspace. It is easy to see that

V 1,0 = {v − iJv, v ∈ V } V 0,1 = {v + iJv, v ∈ V }
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Lemma 2.1.2. As complex vector spaces, we have V ∼= V 1,0 and V̄ ∼= V 0,1.

Proof. For the first isomorphism consider the map ℎ : v 7→ v−iJv. It is clear
that this is an isomorphism of real vector spaces. The only thing that remains
to check is its behaviour with respect to complex structures on these spaces.
The complex structure on V is J , and that of V 1,0 is given by multiplication
by i. So we need to check that ℎ(Jv) = iℎ(v). But

ℎ(Jv) = Jv − iJ2v = Jv + iv = i(v − iJv)

For the second isomorphism it suffices to find a conjugate-linear isomorphism
conj : V 1,0 → V 0,1. The natural choice would be mapping conj : v − iJv 7→
v + iJv. This is really conjugate-linear, since

conj[i(v − iJv)] = conj(Jv − iJ2v) = Jv + iJ2v = −i(v + iJv)

That conj is an isomorphism of real vector spaces, is clear.

In the sequel, we will often identify V with V 1,0. Via this identification,
the isomorphism conj corresponds to the isomorphism Id above. So for
v ∈ V 1,0, we will write v̄ for conj(v).

The same constructions can be done for complex vector bundles on smooth
manifolds, and we will use the same notation as for complex vector spaces.

Definition 2.1.2. Let M be a smooth manifold, V be a distribution on
M (i.e. a subbundle of the tangent bundle), which is in addition a complex
vector bundle onM . We say that the complex structure J on V is integrable,
if for any two sections X, Y ∈ Γ(V ) the following expression vanishes:

N (X, Y ) := [X, Y ]− J [JX, JY ] + J([JX, Y ] + [X, JY ])

2.2 Contact geometry

Definition 2.2.1. Let M be a (2n+ 1)-dimensional manifold. We say that
M is a contact manifold, if it has a 2n-dimensional distribution HM ⊂ TM ,
s.t. the Levi bracket

ℒ : HM ×HM → TM/HM given by ℒ(X, Y ) := p([X, Y ])

where p : TM → TM/HM is the canonical projection, is nondegenerate.
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Lemma 2.2.1. Let M be a contact manifold. Then there locally exists a
1-form �, s.t. �(HM) = 0 and d�(HM ×HM) is nondegenerate.

Proof. Let’s take as � any 1-form with kernel HM (such forms always exist
locally). Then

d�(X, Y ) = −�([X, Y ]), X, Y ∈ HM

Such a 1-form as above will be called a contact form. For every contact
form there exists a unique vector field r, called the Reeb vector field, s.t.
�(r) = 1 and {rd� = 0. This induces a splitting of the tangent bundle of M .

2.3 CR structures

Definition 2.3.1. A CR manifold of CR dimension n and codimension 1 is
a (2n + 1)-dimensional manifold, s.t. there is a 2n-dimensional distribution
HM ⊂ TM carrying an integrable complex structure. The CR structure on
M is called nondegenerate, if the Levi bracket is nondegenerate, i.e. if M is
a contact manifold.

Remark 2.3.1. The integrability of the complex structure implies that the
Levi bracket is of type (1, 1) with respect to this complex structure, i.e.
ℒ(JX, JY ) = ℒ(X, Y ).

Example 2.3.1. Let M be a real hypersurface in ℂ
n+1. Then TM is a

subbundle of the complex vector bundle Tℂn+1∣M . We put HM := TM ∩
J(TM). It is an easy exercise in linear algebra that dimℂHM = n and that
this induces a CR structure onM . The integrability of the complex structure
on HM is simply integrability of the complex structure of ℂn+1. This can
be easily generalized to a real hypersurface of any complex manifold.

Since we are only interested in nondegenerate CR manifolds, we will as-
sume from now on that M is nondegenerate. We will work locally.

Let � be some contact form onM . We define a Hermitean scalar product
ℎ on HM .
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Definition 2.3.2. The CR metric on HM is defined by

ℎ(X, Y ) := id�(X − iJX, Y + iJY )

where d� is extended by complex bilinearity to HM⊗ℂ. This is a Hermitean
metric on HM and its signature is called a signature of the CR manifold M .
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Chapter 3

Parabolic subgroups and
subalgebras

3.1 Definition

Definition 3.1.1. Let g be a simple Lie algebra and k > 0 be an integer. A
∣k∣-grading on g is a decomposition

g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ ⋅ ⋅ ⋅ ⊕ gk

into a direct sum of subspaces such that

∙ [gi, gj ] ⊂ gi+j, where gi = 0 for ∣i∣ > k,

∙ the subalgebra g− = g−k ⊕ ⋅ ⋅ ⋅ ⊕ g−1 is generated as a Lie algebra by
g−1,

∙ g−k ∕= {0} and gk ∕= {0}.

By definition, if g = g−k⊕⋅ ⋅ ⋅⊕gk is a ∣k∣-grading, then p := g0⊕⋅ ⋅ ⋅⊕gk
is a subalgebra of g, and p+ := g1⊕⋅ ⋅ ⋅⊕gk is a nilpotent ideal in p. Similarly,
the subalgebra g− is nilpotent by the grading property. It is also easy to see
that g0 is a subalgebra of g. The central object of interest is, however, the
pair (g, p), while g0 is a rather auxiliary object, which is usually easier to
deal with. One source of complications is the fact that g0 = p/p+, so g0 is
naturally a quotient of p.

Since the main object is the subalgebra p, the grading of g will be of
minor importance. The important object will be the induced filtration g =
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g−k ⊃ g−k+1 ⊃ ⋅ ⋅ ⋅ ⊃ gk given by gi :=
⊕

j≥i gj. This filtration is p-invariant,

p = g0 and p+ = g1. The quotients grig := gi/gi+1 are naturally isomorphic
as g0-modules to gi-s, extended to p-modules by the trivial action of p+.

Lemma 3.1.1. Let g = g−k⊕⋅ ⋅ ⋅⊕gk be a ∣k∣-graded simple Lie algebra over
K = ℝ or ℂ and let B : g × g → K be a nondegenerate invariant bilinear
form. Then we have

1. There is a unique element E ∈ g, called the grading element, such that
[E,X] = jX for all X ∈ gj, j = −k, . . . , k. The element E lies in the
centre of the subalgebra g0 ≤ g.

2. the isomorphism g → g∗ provided by B is compatible with the filtration
and the grading of g. In particular, B induces dualities of g0-modules
between gi and g−i, and the filtration component gi is exactly the an-
nihilator (with respect to B) of g−i+1. Hence B induces a duality of
p-modules between g/g−i+1 and gi, and in particular between g/p and
p+.

3. For i < 0 we have [gi+1, g−1] = gi.

4. Let A ∈ gi with i ≥ 0 be an element such that [A,X] = 0 for all
X ∈ g−1. Then A = 0.

Proof. See [1].

We want to define subgroups corresponding to Lie algebras g0 and p:

Definition 3.1.2. Let g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ gk be a ∣k∣-graded simple Lie algebra
and let G be a Lie group with Lie algebra g.

1. A parabolic subgroup of G corresponding to the given ∣k∣-grading is a
subgroup P ⊂ G, which lies between

∩k
i=−kNG(g

i) and its connected
component of the identity.

2. Given a parabolic subgroup P ⊂ G, we define the Levi subgroup G0 ⊂ P
by

G0 := {g ∈ P : Ad(g)(gi) ⊂ gi for all i = −k, . . . , k}.

It is easy to see, that in the definition of G0 we can replace g ∈ P by
g ∈ G. Note also that P is a closed subgroup of G and G0 is a closed subgroup
of P .

14



Theorem 3.1.1. Let g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ gk be a ∣k∣-graded semisimple Lie
algebra and let G be a Lie group with Lie algebra g. Let P ⊂ G be a parabolic
subgroup for the given grading and let G0 ⊂ P be the Levi subgroup.

Then (g0, Z) 7→ g0 exp(Z) defines a diffeomorphism G0 × p+ → P , and

(g0, Z1, . . . , Zk) 7→ g0 exp(Z1) ⋅ ⋅ ⋅ exp(Zk)

is a diffeomorphism G0 × g1 × ⋅ ⋅ ⋅ × gk → P .

Proof. See [1].

3.2 Structure of p

3.2.1 Complex case

We start with complex semisimple Lie algebras. Any complex semisimple Lie
algebra is determined up to isomorphism by the associated root system. For
this we have to choose a Cartan subalgebra h ⊂ g, i.e. a maximal abelian
subalgebra such that the adjoint action ad(H) : g → g is diagonalizable
for all H ∈ h. Any two of them are conjugate by an inner automorphism
of g. Having chosen h, one gets a set of roots, i.e. the finite set Δ of
linear functionals � ∈ h∗, such that the root space g� = {A ∈ g : [H,A] =
�(H)A ∀H ∈ H} is nonzero. The Lie algebra decomposes as g = h ⊕
⊕

�∈Δ g�. The root spaces g� are one-dimensional and for �, � ∈ Δ we have
[g�, g�] = g�+� if � + � ∈ Δ and [g�, g�] = 0 if � + � /∈ Δ. From the fact
that the projections on the eigenspaces of an operator are polynomials in the
operator, one concludes that any subalgebra of g which contains the Cartan
subalgebra h is (as a vector space) automatically a direct sum of h and some
root spaces.

The subspace h0 ⊂ h on which all roots are real, is a real form of h.
Choosing an ordered basis {H1, . . . , Hr} of h0 we define a real linear func-
tional � : h0 → ℝ to be positive, if for some i = 1, . . . , r one has �(Hj) = 0
for all j < i and �(Hi) > 0. Putting � <  if and only if  − � > 0, we
have a total ordering on the space of all such linear functionals. Using this,
Δ decomposes as disjoint union of positive roots Δ+ and negative roots Δ−.

These two choices are equivalently described by a choice of a Borel sub-
algebra, i.e. a maximal solvable subalgebra b ≤ g. Having chosen h and Δ+,
the associated Borel subalgebra is b = h ⊕ n+, where n+ :=

⊕

�∈Δ+ galpℎa.
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The Lie algebra n+ is obviously nilpotent and we have [b, b] ⊂ n+. The
Borel subalgebra b is called the standard Borel subalgebra associated to h

and �+ ⊂ Δ. Any two Borel subalgebras of a complex semisimple Lie alge-
bra are conjugate by an inner automorphism of g.

Definition 3.2.1. Let g be a complex semisimple Lie algebra. A parabolic
subalgebra p of g is a Lie subalgebra that contains a Borel subalgebra.

Fixing a choice of h and Δ+ for g, we obtain the corresponding stan-
dard Borel subalgebra. Subalgebras of g containing this Borel subalgebra
are called standard parabolic subalgebras. Since all Borel subalgebras are
conjugate to each other, it suffices to deal with the standard one.

A positive root � ∈ Δ+ is called simple, if it cannot be written as a sum
of two positive roots. The set of simple roots is usually denoted by Δ0. One
may write any root � ∈ Δ uniquely as a linear combination of simple roots
with integral coefficients, which are all nonnegative for positive roots and
nonpositive for negative roots.

Proposition 3.2.1. Let g be a complex semisimple Lie algebra, h ≤ g a
Cartan subalgebra, Δ the corresponding set of roots and Δ0 the set of sim-
ple roots for some choice of a positive subsystem. Then standard parabolic
subalgebras p ≤ g are in one-to-one correspondence with subsets Σ ⊂ Δ0.

Explicitly, we associate to p the subset Σp := {� ∈ Δ0 : g−� ∕⊆ p}. Con-
versely, the standard parabolic subalgebra pΣ corresponding to a subset Σ is
the sum of the standard Borel subalgebra b and all negative root spaces corre-
sponding to roots, which can be written as a linear combination of elements
of Δ0 ∖ Σ.

Proof. See [1]

The obvious choices Σ = ∅ and Σ = Δ0 lead to the subalgebra g and the
standard Borel subalgebra, respectively. Note also that if Σ ⊂ Σ′ ⊂ Δ0, then
pΣ′ ≤ pΣ.

Suppose we have given the subset Σ ⊂ Δ0 = {�1, . . . , �r} and a root
� ∈ Δ, we define the Σ-height htΣ(�) of � as

htΣ

(

∑

i

ai�i

)

:=
∑

i:�i∈Σ

ai
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For 0 ∕= i ∈ ℤ define gi :=
⊕

�:htΣ(�)=i
g� and put g0 := h⊕

⊕

�:htΣ(�)=0
g�.

Recall that we have a total ordering on the set of roots. In particular, there
is a maximal root in this ordering, and we define k to be a Σ-height of this
root. We then have gi = 0 for ∣i∣ > k and g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ gk.

Theorem 3.2.1. Let g be a complex semisimple Lie algebra, h ≤ g a Cartan
subalgebra with corresponding roots Δ, Δ+ a set of positive roots and Δ0 ⊂
Δ+ the set of simple roots.

1. For any standard parabolic subalgebra p ≤ g corresponding to the subset
Σ ⊂ Δ0, the decomposition g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ gk according to Σ-height
makes g into a ∣k∣-graded Lie algebra such that p = g0 = g0 ⊕ ⋅ ⋅ ⋅ ⊕ gk.
Moreover, the subalgebra g0 ≤ g is reductive and the dimension of its
centre z(g0) coincides with the number of elements of Σ.

2. Conversely, for any ∣k∣-grading g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ gk, the subalgebra g0 is
parabolic, and choosing a Cartan subalgebra and positive roots in such
a way that g0 is a standard parabolic subalgebra pΣ, the grading is given
by the Σ-height.

Proof. See [1].

From this result we see that the situation between the subalgebras g−
and p+ is completely symmetric, so g− and p+ are isomorphic as Lie alge-
bras. Moreover, the filtration of g is completely determined by the parabolic
subalgebra p = g0.

Corollary 3.2.1. Let g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ gk be a ∣k∣-graded semisimple Lie
algebra over K = ℝ or ℂ, such that no simple ideal of g is contained in g0.
Then we have:

1. For i > 0 we have [gi−1, g1] = gi. In particular, the filtration component
gi is the i-th power of p+ = g1 and p+ ⊃ g2 ⊃ ⋅ ⋅ ⋅ ⊃ gk is the lower
central series of p+.

2. If for some i ≤ 0 an element X ∈ gi satisfies [X,Z] = 0 for all Z ∈ g1,
then X = 0.

3. The filtration component g1 = p+ is the nilradical of p = g0.
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4. For any Lie group G with Lie algebra g, the parabolic subgroups defined
in the previous section are exactly the subgroups, which lie between the
normalizer NG(p) and its connected component of the identity.

Proof. See [1].

Definition 3.2.2. Let g be a complex semisimple Lie algebra endowed with
a Cartan subalgebra h ≤ g and a set Δ+ of positive roots. Then we denote
the standard parabolic subalgebra pΣ ⊂ g corresponding to Σ ⊂ Δ0 as well
as the corresponding ∣k∣-grading by Σ-height by representing in the Dynkin
diagram of g the nodes corresponding to elements of Σ by a cross instead of
a dot.

We know that for any given ∣k∣-grading the subalgebra g0 ≤ g is reductive,
so it is a direct sum of a semisimple Lie algebra gss0 and the centre z(g0).

Proposition 3.2.2. Let g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ gk be a complex semisimple ∣k∣-
graded Lie algebra. Then the dimension of the centre of g0 coincides with the
number of crosses in the diagram describing the ∣k∣-grading, and the Dynkin
diagram of the semisimple part gss0 is obtained by removing all crossed nodes
and all edges connected to crossed nodes.

Proof. See [1].

3.2.2 Real case

The description of real ∣k∣-gradings proceeds via complexification. Given a
real semisimple Lie algebra g, one first chooses a Cartan involution � on g,
i.e. an involutive automorphism such that the bilinear form B�(X, Y ) :=
−B(X, �Y ) is positive definite, where B is the Killing form of g. To avoid
confusion with parabolics, we denote the -1-eigenspace of � by q, so the
Cartan decomposition reads as g = k⊕ q. Now one looks at �-stable Cartan
subalgebras h ≤ g, i.e. abelian subalgebras such that �(h) = h and the
complexification hℂ is a Cartan subalgebra of gℂ. Then h = (h∩ k)⊕ (h∩ q),
and h is called maximally noncompact, if the dimension of a := h ∩ q is
maximal among all �-stable Cartan subalgebras. Having chosen � and h, we
look at the root system Δ associated to the Cartan subalgebra hℂ ≤ gℂ. Let
� be the conjugation of gℂ with respect to the real form g. Then � induces
an involutive automorphism �∗ : Δ → Δ. A positive subsystem Δ+ ⊂ Δ is
called admissible, if for � ∈ Δ+ we either have �∗� = −� or �∗� ∈ Δ+.
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Definition 3.2.3. Let g be a real semisimple Lie algebra with a complexi-
fication gℂ, � a Cartan involution, h ≤ g a �-stable maximally non-compact
Cartan subalgebra, Δ the set of roots for hℂ ≤ gℂ, and Δ+ ⊂ Δ an admissible
positive subsystem.

A Lie subalgebra p ≤ g is called a standard parabolic subalgebra with
respect to choices of h and Δ+, if and only if the complexification pℂ is a
standard parabolic subalgebra of gℂ with respect to hℂ and Δ+.

Consider the abelian subspace a = h∩ q. For A ∈ a we have �(A) = −A,
so ad(A) : g → g is symmetric for the inner product B�. Thus the family
{ad(A) : A ∈ a} is simultaneously diagonalizable over ℝ. The correspond-
ing eigenvalues are given by linear functionals � : a → ℝ and the nonzero
eigenvalues are called the restricted roots. The set of all restricted roots is
denoted by Δr. The eigenspaces are called restricted root spaces and they
define the restricted root decomposition of g. The set Δr ⊂ a∗ is an abstract
root system, but it is not reduced in general. Still the notions of positive and
simple subsystem pose no problems for Δr.

Having given �, h ≤ g, Δ and the conjugation � as above, we define
Δc := {� : �∗� = −�} ⊂ Δ. Putting t := h ∩ k, all roots are real on
it ⊕ a ⊂ hℂ. Restricting the roots to h ⊂ hℂ, the map �∗ becomes complex
conjugation, so Δc = {� ∈ Δ : �∣a = 0}. The admissibility of a positive
subsystem Δ+ ⊂ Δ reads as �∗� ∈ Δ+ for all � ∈ Δ+ ∖Δc. Passing to the
associated system Δ0, it turns out that Δ0

c := Δ0 ∩ Δc is a simple system
for Δc and for any � ∈ Δ0 ∖ Δ0

c there is a unique �′ ∈ Δ0 ∖ Δ0
c such that

�∗� − �′ is a linear combination of compact roots. Mapping � to �′ defines
an involutive automorphism of Δ0 ∖ Δ0

c . The Satake diagram of g is then
obtained by taking the Dynkin diagram of Δ0 with elements of Δ0

c indicated
by black dots ∙ and elements of Δ0 ∖Δ0

c by white dots ∘. Moreover, for every
element � ∈ Δ0 ∖Δ0

c such that �′ ∕= �, one connects � and �′ by an arrow.
Since all roots are real on it⊕a, the restricted roots are exactly the nonzero

restrictions of roots to a ⊂ h. Thus we obtain a surjective restriction map
Δ ∖ Δc → Δr. Since for � ∈ Δ, the restrictions to a of � and �∗� are
conjugate, we see that �∗�∣a = �∣a. For an admissible choice of Δ+ ⊂ Δ,
the image of Δ+ in Δr is a positive subsystem. This easily implies that the
corresponding simple system Δ0

r for Δr is the quotient of Δ0 ∖Δ0
c obtained

by identifying each simple root � with �′.

Theorem 3.2.2. Let g be a real semisimple Lie algebra, � a Cartan invo-
lution with associated Cartan decomposition g = k ⊕ q, h = t ⊕ a ⊂ g a
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maximally noncompact �-stable Cartan subalgebra. Put Δ = Δ(gℂ, hℂ), let
�∗ be the involutive automorphism of Δ induced by the conjugation with re-
spect to g ⊂ gℂ and let Δ+ ⊂ Δ be an admissible positive subsystem. Then
we have:

1. Put m := zk(a) and let n ⊂ g be the direct sum of all positive restricted
root spaces. Then p0 := m⊕a⊕n is a subalgebra of g, and the standard
parabolic subalgebras of g are exactly the subalgebras containing p0.

2. Let Δ0 be the set of simple roots and let Δ0
r ⊂ Δr be the corresponding

set of simple restricted roots. Then subsets of Δ0
r are in bijective corre-

spondence with subsets of Δ0 that are disjoint to Δ0
c and stable under

the involution induced by �∗. On the other hand, the set of all subsets
of Δ0 with these two properties is in bijective correspondence with the
set of all standard parabolic subalgebras of g.

Explicitly, the parabolic subalgebra corresponding to Σ ⊂ Δ0 is the sum
of p0 and the restricted root spaces for those negative restricted roots,
which can be written as linear combination of the simple restricted roots,
which are outside of the image of Σ in Δ0

r.

Proof. See [1].

Proposition 3.2.3. Let g be a real semisimple Lie algebra endowed with a
Cartan involution �, a �-stable maximally noncompact Cartan subalgebra h

and an admissible positive subsystem Δ+. Then we have:

1. For a standard parabolic subalgebra p ≤ g corresponding to a subset
Σ ⊂ Δ0

r, the Σ-height determines a ∣k∣-grading of g, such that p = g0.
Here, k is the Σ-height of the maximal restricted root.

2. Given a ∣k∣-grading of g, there is an automorphism � ∈ (Int)(g) such
that �(g0) is a standard parabolic subalgebra of g. Denoting by Σ ⊂ Δ0

r

the corresponding subset, the given grading on g corresponds to the
grading given by Σ-height under �.

Proof. See [1].

Remark 3.2.1. As in the complex case, one may directly obtain information
about g0 from the Satake diagram describing the parabolic. The (real) di-
mension of the centre of g0 again equals the number of crossed nodes in the
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Satake diagram. Parallel to the complex case, one may also show that in the
real case the Satake diagram of gss0 is obtained by erasing all crossed nodes
as well as all edges and arrows connecting to these nodes from the Satake
diagram describing the parabolic subalgebra. Details can be found in [2].

To describe a standard parabolic subalgebra p ≤ g, we consider the Satake
diagram of g and denote all the simple roots corresponding to elements of
the subset Σ ⊂ Δ0 by crosses. Since Σ is disjoint to Δc, we can recover
the original Satake diagram by replacing all crosses by white dots. So the
classification of real parabolics can be rephrased in term of replacing white
dots in a Satake diagram by crosses. The only rule one has to take into
account is that two roots joined by an arrow either have to be both crossed
or both uncrossed.

3.3 Representations of p

We will consider only those representations of p, which are completely re-
ducible as representations of g0.

Proposition 3.3.1. Let g = g−k⊕⋅ ⋅ ⋅⊕gk be a ∣k∣-graded simple Lie algebra,
p = g0 the corresponding parabolic subalgebra and E ∈ z(g0) the grading
element.

1. Any finite-dimensional completely reducible representation W of p is
obtained by trivially extending a completely reducible representation of
g0 to p. Moreover, E acts by a scalar on each irreducible component of
W .

2. Let V be a finite-dimensional representation of p such that z(g0) acts
diagonalizably. Then V admits a p-invariant filtration V = V 0 ⊃ V 1 ⊃
⋅ ⋅ ⋅ ⊃ V N ⊃ V N+1 = {0} such that each of the quotients V i/V i+1 is
completely reducible.

Proof. See [1].

Assume we have chosen h and Δ+ in such a way that p is a standard
parabolic subalgebra. On any finite-dimensional complex representation V
of g, the Cartan subalgebra h acts diagonalizably. The corresponding eigen-
values � ∈ h∗ are called the weights of V and the eigenspaces are called weight
spaces. In finite-dimensional irreducible representation they are unique up to
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scale. A highest weight vector in V is an element of a weight space, which is
annihilated by the action of all elements of positive root spaces. The highest
weight of a finite-dimensional irreducible representation V is the weight of its
highest weight vectors. These weights are always dominant and algebraically
integral, i.e. for the inner product induced by the Killing form the expression
2⟨�,�⟩
⟨�,�⟩

is a nonnegative integer for each � ∈ Δ0. There is a bijective cor-
respondence between dominant integral weights and isomorphism classes of
finite-dimensional complex irreducible representations of g. The condition of
being dominant and algebraically integral can be rephrased in terms of fun-
damental weights, which are defined by

2⟨�i,�j⟩
⟨�j ,�j⟩

= �ij for �j ∈ Δ0. Any weight

can be written as a linear combination of these weights, and the weight is
dominant and algebraically integral, if all coefficients in this expansion are
nonnegative integers. The Dynkin diagram notation for weights and repre-
sentations is then obtained by writing the coefficient of �i in this expansion
over the node of the Dynkin diagram of g that corresponds to the simple root
�i.

Complex irreducible representations can be dealt with in a similar way.
These coincide with complex irreducible representations of g0, which in turn
are given by irreducible representations of gss0 and linear functionals on the
centre z(g0). Assuming that p is a standard parabolic, we obtain the corre-
sponding set Σ = {� ∈ Δ0 : g� ⊂ g1} ⊂ Δ0. We can naturally split the
Cartan subalgebra h ⊂ g as h = h′⊕h′′ with h′ := {H ∈ h : �(H) = 0 ∀� ∈
Δ0 ∖Σ} and h′′ the span of the elements H� for � ∈ Δ0 ∖Σ. Then h′ = z(g0),
while h′′ is a Cartan subalgebra for gss0 . Hence, complex irreducible repre-
sentations of g0 are in bijective correspondence with a set of functionals on
h, but the dominance and integrality conditions refer only to the restriction
to h′′. In analogy to the usual notation we define a functional � : h → ℂ

to be p-dominant, respectively, p-algebraically integral, if 2⟨�,�⟩
⟨�,�⟩

is real and

nonnegative, respectively, an integer for all � ∈ Δ0 ∖ Σ.

Corollary 3.3.1. Let p ≤ g be a standard parabolic subalgebra in a com-
plex semisimple Lie algebra. Then isomorphism classes of finite-dimensional
complex irreducible representations of p are in bijective correspondence with
weights � : h → ℂ, which are p-dominant and p-algebraically integral.

The condition of p-dominance and integrality can again be rephrased in
terms of fundamental weights as the requirement that the coefficients of all
fundamental weights corresponding to simple roots not contained in Σ must
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be nonnegative integers. In the Dynkin diagram notation this means that
the coefficients over all uncrossed nodes are nonnegative integers.

In the realm of Lie algebra representations, there is no restriction on the
coefficients over the crossed nodes. However, if one wants the representation
to integrate to at least one parabolic subgroup then the coefficients over the
crossed nodes have to be integers in the complex case. In the real case, there
are usually less (or even no) integrability conditions, since in this case it may
happen that z(g0) integrates to a subgroup isomorphic to ℝ

l.

Proposition 3.3.2. Let V be a finite-dimensional complex representation of
g and let V p+ ⊂ V be the subspace of p+-invariant elements. Then there
is a bijective correspondence between p-invariant subspaces of V p+ and g-
invariant subspaces of V . In particular, if V is the irreducible representation
of g with highest weight �, then V p+ is the irreducible p-representation with
the same highest weight.

Proof. See [1].

3.4 The Hasse diagram of p

Consider a complex simple Lie algebra g with a Cartan subalgebra h ≤ g

and an ordering on h∗, and denote by Δ, Δ+, and Δ0 the corresponding
sets of roots, positive roots and simple roots, respectively. The real subspace
h0 ⊂ h, on which all roots are real, defines a real form of h, and the Killing
form restricts to a positive definite inner product on h0. The set Δ of roots
is then a finite subset of the real dual of h0, and via the duality, the Killing
form induces a positive definite inner product on h∗0. For any � ∈ Δ we have

the root reflection s� : h∗0 → h∗0 defined by s�(�) = �− 2⟨�,�⟩
⟨�,�⟩

, which maps Δ
to itself.

The Weyl group W = Wg is then the subgroup of the orthogonal group
O(h∗0) generated by these root reflections. We may view W as a subgroup of
the permutation group of Δ, so it is a finite group. It is actually generated
by the reflections s�i

corresponding to the simple roots �i. An expression of
w ∈ W as a composition of simple root reflections is called reduced, if it has
the least possible number of factors. This number is called the length ℓ(w)
of w. The sign sgn(w) of w ∈ W is defined as the determinant of the linear
map w : h∗0 → h∗0. We have sgn(w) = (−1)ℓ.
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We have to view the Weyl group W not only as a group, but also as a
directed graph. The vertices of this graph are elements w ∈ W , and we have
a directed edge w

�
→ w′ labeled with � ∈ Δ+, if and only if ℓ(w′) = ℓ(w) + 1

and w′ = s�w. For w ∈ W define Φw := {� ∈ Δ+ : w−1(�) ∈ −Δ+},or
equivalently Φw = w(−Δ+)∩Δ+. The set Φw is saturated and its complement
Δ+ ∖ Φw is saturated, too. We define ⟨Φw⟩ :=

∑

�∈Φw
�. The lowest form

� = �g of the Lie algebra g is defined as � = 1
2

∑

�∈Δ+ � and can also be
expressed as the sum of all fundamental weights. Hence, � lies in the interior
of the dominant Weyl chamber, and since the Weyl group W acts simply
transitively on the set of all Weyl chambers, we conclude that the mapping
w 7→ w(�) is an injection from W to h∗0.

Proposition 3.4.1. Let g be a complex semisimple Lie algebra with a chosen
simple system Δ0, Weyl group W and lowest form � ∈ h∗0. Then we have:

1. w(�) = � −
〈

Φ(w)
〉

for all w ∈ W .

2. The map w 7→ Φw defines a bijection between W and the set of all
subsets Φ ⊂ Δ+ such that both Φ and Δ+ ∖ Φ are saturated.

3. ∣Φw∣ = ℓ(w) for all w ∈ W .

4. For w ∈ W and � ∈ Δ+, the element � is contained in exactly one
of the sets Φ(w) and Φs�w, and ℓ(s�w) > ℓ(w) if and only if � /∈ Φw.
In particular, if � ∈ Δ0, then ℓ(s�w) = ℓ(w) + 1 if � /∈ Φw and
ℓ(s�w) = ℓ(w)− 1 if � ∈ Φw.

5. Let w,w′ ∈ W be two elements such that ∣Φw′ ∣ = ∣Φw∣ + 1. Then for
� ∈ Δ+ we have w

�
→ w′ if and only if ⟨Φw′⟩ = ⟨Φw⟩ + k� for some

k ∈ ℤ.

Proof. See [1].

There is a unique element w0 ∈ W of maximal length ℓ(w0) = ∣Δ+∣, which
corresponds to Φw0 = Δ+. For any representation of w0 as composition of
simple root reflections, the composition in the opposite order equals w−1

0 ,
so w0 = w−1

0 . Since w0(Δ
+) = −Δ+, it must map the simple system Δ0

to a simple system for −Δ+, whence w0(Δ
0) = −Δ0. Since w0 exchanges

positive and negative roots, we see that for w ∈ W and � ∈ Δ+ we have
w0(w

−1(�)) ∈ Δ+ if and only if � ∈ Φw. Consequently, Φww0 = Δ+ ∖ Φw.
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The directed graph structure on W gives rise to a partial order on the set
W , which is called the Bruhat order. For w,w′ ∈ W we put w ≤ w′ if either
w = w′ or there is a chain

w
�1→ w1

�2→ ⋅ ⋅ ⋅
�n−1
→ wn−1

�n→ w′

for some (not necessarily different) roots �i ∈ Δ+. The identity is the small-
est element and w0 is the largest element. w ≤ w′ implies ℓw ≤ ℓw′, but not
conversely. Moreover, w ≤ w′ implies w(�) ≤ w′(�) for any dominant weight
�.

Corollary 3.4.1. Let g be a complex semisimple Lie algebra with Weyl group
W , w0 ∈ W the longest element, � a dominant integral weight and V the ir-
reducible complex finite-dimensional representation of highest weight �. Then
the highest weight of the dual representation V ∗ is −w0(�).

Proof. See [1].

Now let p ≤ g be a standard parabolic subalgebra and Σ ⊂ Δ0 the
corresponding subset. Then we obtain the ∣k∣-grading of g given by Σ-height,
and in particular, the subalgebras g0 and p+ = g1 of p. The reductive
subalgebra g0 splits as g0 = z(g0) ⊕ gss0 . The Cartan subalgebra splits as
h = h′ ⊕ h′′, where h′ = z(g0) is the common kernel of all elements of Δ0 ∖Σ,
while h′′ is spanned by the elements H� for � ∈ Δ0 ∖ Σ, so h′′ is a Cartan
subalgebra for gss0 . Let h0 ⊂ h be the subspace on which all roots are real.
By construction, the element H� for � ∈ Δ0 ∖ Σ lies in h′′ ∩ h0, so we may
identify this space with h′′0. On the other hand, h′0 := h′ ∩ h0 is a real form of
h′, so we get h0 = h′0 ⊕ h′′0. The inner product on h0 induced by the Killing
form satisfies ⟨H�, H⟩ = �(H), so h′0 and h′′0 are orthogonal. Passing to
the duals, we get an orthogonal decomposition of h∗0, and in particular, any
simple reflection s�j

with �j ∈ Δ0 ∖Σ acts as the identity on (h′0)
∗. Defining

Wp to be the Weyl group of gss0 , we see that we may naturally view tis as the
subgroup of Wg generated by the simple reflections s�j

for � ∈ Δ0 ∖ Σ.
The Hasse diagram is the set of distinguished representatives for the

set Wp∖Wg. Let us decompose Δ+ = Δ+(g0) ⊔ Δ+(p+) according to the
subalgebra containing the corresponding root space. For � ∈ Δ+ we have
� ∈ Δ+(g0) if and only if htΣ(�) = 0. Since the Σ-height is additive, both
�+(g0) and Δ+(p+) are saturated. Assume that � ∈ Δ+(g0) and � ∈ Δ+(p+).
Then s�(�) differs from � by a multiple of � and thus htΣ(s��) = htΣ�. Thus
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s� maps Δ+(p+) to itself, so the same holds fro any element w ∈ Wp. Con-
versely, if w ∈ Wg is such that Φw ⊂ Δ+(g0), then Φw is saturated. Applying
part 2 of the above Proposition to gss0 , we find an element in Wp correspond-
ing to this subset, and again by part 2 of the same Proposition we conclude
that this element coincides with w, whence w ∈ Wp. Having characterized
Wp as those elements w ∈ W for which Φw ⊂ Δ+(g0), the following definition
is natural.

Definition 3.4.1. The Hasse diagram W p of the standard parabolic sub-
algebra p ≤ g is the subset of Wg consisting of all elements w such that
Φw ⊂ Δ+(p+). We endow W p with the structure of a directed graph induced
from the structure on Wg.

There is a nice alternative characterization of W p: Recall that a weight
� ∈ (h0)

∗ is g-dominant, if ⟨�, �⟩ ≥ 0 for all � ∈ Δ0 and p-dominant if
the same holds for all � ∈ Δ0 ∖ Σ = Δ0 ∩ Δ+(g0). Equivalently, one can
require these conditions for all elements of Δ+, respectively, Δ+(g0). Since
any element w ∈ W acts as an orthogonal transformation on (h0)

∗, we get
⟨w(�), �⟩ = ⟨�,w−1(�)⟩. But this shows that w(�) is p-dominant for any
g-dominant weight � if and only if w−1(�) ∈ Δ+ for any � ∈ Δ+(g0), i.e. if
and only if w ∈ W p. Hence, w ∈ W p if and only if w(�) is p-dominant for
any g-dominant weight �.

Proposition 3.4.2. Let w ∈ W be any element. Then there are unique
elements wp ∈ Wp and wp ∈ W p such that w = wpw

p. Moreover, ℓ(w) =
ℓ(wp) + ℓ(wp).

Proof. See [1].

The existence and the uniqueness of the decomposition w = wpw
p tells us

that wp is the unique element in the right coset Wpw that lies in W p. Thus,
W p is the set of distinguished representatives for the right coset spaceWp∖Wg.
The statement about the length then tells us that these representatives are
the unique elements of minimal length in each coset.

Let us note two simple facts about the Hasse diagram. If w,w′ ∈ W p and
w

�
→ w′, then � ∈ �w′ whence � ∈ Δ+(p+). On the other hand, since both

the sets Δ+(p+) and Δ+(g0) are saturated, there is a unique longest element
wp

0 ∈ W p with Φwp
0
= Δ+(p+). Since Wp is the Weyl group of a semisimple

Lie algebra, it contains a unique longest element w0
p , and w0

pw
p
0 = w0, the

longest element in the Weyl group Wg.
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Proposition 3.4.3. Let g be a complex semisimple Lie algebra and let p ≤ g

be the standard parabolic subalgebra corresponding to a set Σ of simple roots.
Let �p be the sum of all fundamental weights corresponding to elements of Σ.
Then we have:

1. The map w 7→ w−1(�p) restricts to a bijection between W p and the orbit
of �p under Wg.

2. Suppose that w ∈ W p and � ∈ Δ0 is a simple root such that � /∈ Φw−1

and s�(w
−1(�p)) ∕= w−1(�p). Then ws� ∈ W p, w

w(�)
→ ws�, and Φws� =

Φw ∪ {w(�)}.

Proof. See [1].

Recipe for determining the Hasse diagram

(A) Determine the Dynkin diagram of the parabolic, i.e. the Dynkin dia-
gram of g with those simple roots crossed whose root spaces are con-
tained in g1.

(B) Determine the elements of W p.
Take the weight �p, i.e. the weight, which has coefficient 1 over the
crossed nodes and 0 over the uncrossed nodes. Apply simple reflections
to this weight according to the following rules, which describe the action
of the reflection corresponding to the simple root with coefficient b
(all coefficients not shown in the picture remain unchanged under this
reflection):

. . . ∘ ∘ ∘ . . .a b c
→ . . . ∘ ∘ ∘ . . .a+ b −b b+ c

We don’t write here the other cases, since we will not need them.
The resulting pattern gives all elements of the Hasse diagram and some
of the arrows. The element in the Hasse diagram corresponding to
the weight obtained by applying first s�i1

, then s�i2
and so on up to

s�iℓ
to �p is given by s�1 . . . s�ℓ

, so one has to revert the order of the
compositions. Moreover, the length of this element is ℓ.

(C) For each element w in the pattern, determine the corresponding set Φw

of roots, as well as the labels of the arrows determined so far.
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Start with the empty set for the point corresponding to �p. Having
determined the sets for elements of length < ℓ and the labels of the ar-
rows leading to these sets, consider a point corresponding to an element
of length ℓ in the original diagram determined by step (B). Choose a
sequence of arrows leading from �p to the given point, take the simple
root indicated on the last arrow in the path, and apply the simple re-
flections corresponding to the other arrows in the path going back to
�p. The resulting root has to be contained in Δ+(p+) and the set cor-
responding to the chosen point is given by adding this root to the set
corresponding to the source of the last arrow in the chosen sequence.
Now for any of the arrows determined so far, which ends in the given
element, the set corresponding to the source of the arrow has to be ob-
tained by deleting one element from the set corresponding to the target
of the arrow, and this element is the right label for the arrow.

(D) Determine the remaining arrows.
For each of the sets determined in step (C), compute the sum of all
roots contained in the set. For two sets in adjacent columns, which are
not yet joined by an arrow, check whether the difference between the
two corresponding expressions is a multiple of a root. If yes, then add
an arrow between the two sets labeled by that root.
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Chapter 4

Parabolic geometries

4.1 Definition

Definition 4.1.1. Let G be a Lie group and H ≤ G its closed subgroup. The
Cartan geometry of type (G,H) on a (dimG−dimH)-dimensional manifold
M is a principal H-bundle p : G → M together with a 1-form ! ∈ Ω1(G, g),
such that:

1. R∗
g! = Ad(g−1) ∘ ! for all g ∈ H,

2. !(A∗) = A for all A ∈ h,

3. ∀b ∈ G !b induces a linear isomorphism of TbG onto g.

One obvious example of such geometry is the homogeneous space G →
G/H with the Maurer-Cartan form of G as the Cartan connection. This is
called the homogeneous model of the geometry.

Definition 4.1.2. Let G be a Lie group, H a closed subgroup of G and
G a principal H-bundle over M , dimM = dimG/H. Let ! be a Cartan
connection on G. The curvature K of the Cartan connection ! is a 2-form
on G with values in g given by

K(X, Y ) = d!(X, Y ) + [!(X), !(Y )]

Definition 4.1.3. 1. The Cartan geometry (G → M,!) is called flat, if
its curvature vanishes identically.
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2. The Cartan geometry (G →M,!) is called torsion-free, if its curvature
has values in h.

It is easy to see that the curvature measures the failure of (G, !) to be
locally isomorphic to the homogeneous model.

Proposition 4.1.1. Let G, H, G and M be as above. Let ! be a Cartan
connection on G and Ω its curvature. Then K is horizontal in the sense that
it vanishes upon inserting one vertical vector field.

Proof. It suffices to prove it for !-constant vector fields. So assume that X
is the fundamental vector field corresponding to A ∈ h and Y = !−1(B),
B ∈ g ∖ h. We have

K(X, Y ) = −!([X, Y ]) + [!(X), !(Y )]

Let ℎt = exp(tX) be a curve in H. Then dℎt/dt = X and

[X, Y ] = lim
t→0

1

t
(Y − (Rℎt

)∗Y ) = lim
t→0

1

t
(!−1A− !−1(Ad(ℎ−1

t )B)) =

lim
t→0

1

t
!−1(A− Ad(ℎ−1

t )B) = !−1([A,B])

So we see that K(X, Y ) = 0.
Since the Cartan connection trivializes TG, any differential form on G is
determined by its values on the constant vector fields !−1(X).

Definition 4.1.4. Let G →M,! be a Cartan geometry and K its curvature
form. Then the curvature function � : G → Λ2g∗ ⊗ g is defined by

�(u)(X, Y ) = K(!−1(X)(u), !−1(Y )(u))

or, equivalently

�(u)(X, Y ) = [X, Y ]− !([!−1(X), !−1(Y )](u)).

Since we know that K is horizontal, we can view � as a function on P
with values in Λ2(g/h)∗ ⊗ g.

Definition 4.1.5. A parabolic geometry is a Cartan geometry of type (G,P ),
where G is a semisimple Lie group and P ⊂ G is a parabolic subgroup. We
will use the terminology ’parabolic geometry of type (G,P )’ in this situation.

We will assume that no simple ideal of g is contained in g0. We stay
without proof that in this case the geometry is infinitesimally effective.
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4.2 Regularity

4.2.1 Infinitesimal flag structures

Definition 4.2.1. Let G be a semisimple Lie group and P its parabolic
subgroup and G0 be the Levi subgroup of P . An infinitesimal flag structure
of type (G,P ) on a smooth manifold M is given by:

(i) A filtration TM = T−kM ⊃ ⋅ ⋅ ⋅ ⊃ T−1M of the tangent bundle of
M , such that the rank of T iM equals the dimension of gi/p for all
i = −k, . . . ,−1.

(ii) A principal G0-bundle p : E →M .

(iii) A collection � = (�−k, . . . , �−1) of smooth sections �i ∈ Γ(L(T iE, gi)),
which are G0-equivariant in the sense that R∗

g�i = Ad(g−1) ∘ �i for all
g ∈ G0, and such that for each u ∈ E and i = −k, . . . ,−1 the kernel of
�i(u) : T

i
uE → gi is T

i+1
u E ⊂ T i

uE.

Proposition 4.2.1. Let g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ gk be a ∣k∣-graded semisimple Lie
algebra, let G be a Lie group with Lie algebra g, P ⊂ G a parabolic subgroup
corresponding to the grading, and G0 ⊂ P the Levi subgroup.
An infinitesimal flag structure of type (G,P ) on a smooth manifold M is
equivalent to a filtration TM = T−kM ⊃ ⋅ ⋅ ⋅ ⊃ T−1M of the tangent bundle
of Msuch that for each i the rank of T iM equals the dimension of gi/p and a
reduction of the structure group of the associated graded bundle gr(TM) to the
structure group G0 with respect to the homomorphism Ad : G0 → GLgr(g−).

Proof. See [1].

Note, in particular, that this implies that for an infinitesimal flag structure
({T iM}, p : E → M, �) we have a natural isomorphism griTM

∼= E ×G0 gi.
Explicitly, this identification is induced by the map E×gi → griTM defined
by (u,X) 7→ [Tup⋅�], where � ∈ T i

uE is any tangent vector such that �i(�) = X
and [] denotes the class in gri(TM) = T iM/T i+1M .

Consider a parabolic geometry (p : G → M,!) of type (G,P ). We have
the reductive subgroup G0 and the nilpotent normal subgroup P+ of P ,
which decompose P as a semidirect product. Since acts freely on G, the
same is true for P+, so we can form the orbit space G0 := G/P+. The
projections p factors to a smooth map p0 : G0 → M . If U ⊂ M is open
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such that there is a principal bundle chart  : p−1(U) → U × P , then  is
equivariant for the principal right action, so it factors to a diffeomorphism
p−1
0 (U) = p−1(U)/P+ → U × (P/P+). This is equivariant for the right action
of G0, so we conclude that p0 : G0 → M is a smooth principal bundle with
structure group P/P+

∼= G0. On the other hand, the inclusion of G0 into P
leads to local smooth sections of the projection G → G0, so this is a principal
bundle with structure group P+.

Consider the filtration g = g−k ⊃ g−k+1 ⊃ ⋅ ⋅ ⋅ ⊃ gk ⊃ {0}. Since the
Cartan connection ! induces an isomorphism TG ∼= G × g, we see that for
each i = −k, . . . , k we get a smooth subbundle T iG := !−1(gi) of TG. Since
the filtration {gi} is P -invariant, equivariancy of ! implies that each of the
subbundles T iG is stable under the principal right action. Since ! reproduces
the generators of fundamental vector fields, we conclude that for i ≥ 0 the
subbundle T iG is spanned by the fundamental vector fields with generators
in gi. In particular, T 0G is the vertical bundle of G → M , while T 1G is the
vertical bundle of G → G0.

Since the filtration of TG is stable under the principal right action, it
can be pushed down to G0 and M , so we have filtrations TG0 = T−kG0 ⊃
⋅ ⋅ ⋅ ⊃ T 0G0 and TM = T−kM ⊃ ⋅ ⋅ ⋅ ⊃ T−1M by smooth subbundles. The
tangent maps to all the bundle projections are filtration preserving and T 0G0

is exactly the vertical bundle of p0 : G0 →M . Once we have a filtration of the
tangent bundle of G0, it makes sense to consider partially defined differential
forms, i.e. sections of a bundle of the form L(T iG0, V ), where V is some
finite-dimensional vector space or a vector bundle over G0.

Proposition 4.2.2. Let (p : G → M,!) be a parabolic geometry of type
(G,P ) corresponding to the ∣k∣-grading g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ gk of the Lie algebra
g of G. Let p0 : G0 →M be the underlying G0-principal bundle.
Then for each i = −k, . . . ,−1, the Cartan connection ! descends to a smooth
section !0

i of the bundle L(T iG0, gi). For each u ∈ G0 and i = −k, . . . ,−1 the
kernel of !0

i : T i
uG0 → gi is T

i+1
u G0, and each !0

i is equivariant in the sense
that for g ∈ G0 we have R∗

g!
0
i = Ad(g−1) ∘ !0

i .

Proof. See [1].

This says that any parabolic geometry (p : G →M,!) of type (G,P ) gives
rise to an underlying infinitesimal flag structure ({T iM}, p0 : G0 → M,!0)
of type (G,P ).
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4.2.2 Regularity

Let ({T iM}, p : E → M, �) be an infinitesimal flag structure of some fixed
type (G,P ). We have seen that gri(TM) ∼= E ×G0 gi, and thus gr(TM) ∼=
E ×G0 g−. Via this identification, the Lie bracket on g− (which is preserved
by the adjoint action) induces a bilinear bundle map

{ , } : gr(TM)× gr(TM) → gr(TM),

which is compatible with the grading. This makes gr(TM) into a bundle of
nilpotent graded Lie algebras modelled on g−.

Assume that the filtration {T iM} is compatible with the Lie bracket
in the sense that for each � ∈ Γ(T iM) and � ∈ Γ(T jM) the Lie bracket
[�, �] is a section of T i+jM . Then for each i = −k, . . . ,−1 let us denote by
qi : T

iM → gri(TM) the natural quotient map, and consider the operator
Γ(T iM) × Γ(T jM) → Γ(gri+j(TM)) defined by (�, �) 7→ qi+j([�, �]). This
mapping is bilinear over smooth functions, so it is induced by a bilinear
bundle map T iM × T jM → gri+j(TM). Moreover, if � ∈ T i+1M or � ∈
T j+1M , then [�, �] ∈ T i+j+1M , so it lies in the kernel of qi+j. Thus, our map
further descends to a bundle map ℒ : gri(TM) × grj(TM) → gri+j(TM),
which is compatible with the gradings. Since ℒ is induced by the Lie bracket
of vector fields, it follows immediately that it makes each fibre gr(TxM) into
a nilpotent graded Lie algebra.

Definition 4.2.2. 1. A filtered manifold is a smooth manifoldM together
with a filtration TM = T−kM ⊃ ⋅ ⋅ ⋅ ⊃ T−1M of its tangent bundle
by smooth subbundles, which is compatible with the Lie bracket in the
sense that [�, �] ∈ Γ(T i+jM) for any � ∈ Γ(T iM) and � ∈ Γ(T jM).

2. For a filtered manifold (M, {T iM}) the tensorial map

ℒ : gr(TM)× gr(TM) → gr(TM)

induced by the Lie bracket of vector fields as described above is called
the (generalized) Levi bracket. For x ∈ M , the nilpotent graded Lie
algebra (gr(TxM),ℒx) is called the symbol algebra of the filtered man-
ifold at x. The bundle (gr(TM),ℒ) of nilpotent graded Lie algebras
obtained in this way is called the bundle of symbol algebras.

3. An infinitesimal flag structure ({T iM}, E → M, �) is called regular,
if (M, {T iM}) is a filtered manifold and the algebraic bracket { , } :
gr(TM)× gr(TM) → gr(TM) coincides with the Levi bracket ℒ.
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4. A parabolic geometry is called regular, if the underlying infinitesimal
flag structure is regular.

Observation 4.2.1. A regular infinitesimal flag structure of type (G,P ) on a
smooth manifold is equivalent to:

∙ A filtration {T iM} of the tangent bundle, which makesM into a filtered
manifold such that the bundle of symbol algebras is locally trivial and
modelled on the nilpotent graded Lie algebra g−.

∙ A reduction of structure group of the natural frame bundle of gr(TM)
with respect to Ad : G0 → Autgr(g−).

Proposition 4.2.3. Let ({T iM}, p : E → M, �) be an infinitesimal flag
structure such that (M, {T iM}) is a filtered manifold. Then the structure is
regular if and only if for all i, j < 0 such that i + j ≥ −k and all sections
� ∈ Γ(T iE) and � ∈ Γ(T jM) we have

�i+j([�, �]) = [�i(�), �j(�)].

Proof. See [1].

Proposition 4.2.4. Let g = g−k⊕⋅ ⋅ ⋅⊕gk be a ∣k∣-graded semisimple Lie alge-
bra, G a Lie group with Lie algebra g, P ⊂ G a parabolic subgroup correspond-
ing to the grading, and G0 ⊂ P the Levi subgroup. Let (p : G → M,!) be a
parabolic geometry of type (G,P ) with curvature function � : G → L(Λ2g−, g),
u ∈ G any point, and put x = p(u) ∈M .
Then there is an open neighbourhood U of x ∈ M and a linear extension
operator TxM → X(U), written as � 7→ �̃, which is compatible with all struc-
tures on TM obtained from the Cartan connection ! and has the following
property: For �, � ∈ TxM let X, Y ∈ g− be the unique elements such that
Tup ⋅ !

−1
u (X) = � and Tup ⋅ !

−1
u (Y ) = �. Then

[�̃, �̃] = Tup ⋅ !
−1
u ([X, Y ]− �(u)(X, Y )).

Proof. See [1].

Corollary 4.2.1. Let (p : G → M,!) be a parabolic geometry of type
(G,P ) with curvature form K ∈ Ω2(G, g) and curvature function � : G →
L(Λ2g−, g), and let TM = T−kM ⊃ ⋅ ⋅ ⋅ ⊃ T−1M be the induced filtration of
the tangent bundle TM . Then we have:
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1. (M, {T iM}) is a filtered manifold if and only if K(T iG, T jG) ⊂ gi+j,
or equivalently �(gi, gj) ⊂ gi+j for all i, j < 0.

2. The geometry (p : G → M,!) is regular if and only if K(T iG, T jG) ⊂
gi+j+1, or equivalently �(gi, gj) ⊂ gi+j+1 for all i, j < 0.

Proof. See [1].

4.3 Normality

Let g = −k ⊕ ⋅ ⋅ ⋅ ⊕ gk be a ∣k∣-graded semisimple Lie algebra, G a Lie
group with Lie alegbra g, and let B be the Killing form of g. B induces
an isomorphism g ∼= g∗ of G-modules (and thus of P -modules), and also
an isomorphism (g/p)∗ ∼= p+ of P -modules. Consequently, we can identify
Λj(g/p)∗ ⊗ g with the dual P -module of Λjp∗+ ⊗ g = Cj(p+, g) - the Lie
algebra cohomology cochain space. The differential ∂p given by

∂�(X0, . . . , Xk) :=
k
∑

i=0

(−1)iXi ⋅ �(X0, . . . , X̂i, . . . , Xk)

+
∑

i<j

(−1)i+j�([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

where the hat indicates omission, is a P -homomorphism and ∂p ∘ ∂p = 0.
Dualizing this map, we obtain a P -homomorphism ∂∗ : Λj(g/p)∗ ⊗ g →
Λj−1(g/p)∗ ⊗ g, which satisfies ∂∗ ∘ ∂∗ = 0 and is called the Kostant codiffer-
ential.

We can easily obtain a formula for ∂∗ on decomposable elements. Taking
into account that (g/p)∗ ∼= p+, we can write a decomposable element of
Λn+1(g/p)∗ ⊗ g as Z0 ∧ ⋅ ⋅ ⋅ ∧Zn ⊗A with Zi ∈ p+ and A ∈ g. The pairing of
 ∈ Cn+1(p+, g) with that element is given by B( (Z0, . . . , Zn), A). Hence
for � ∈ Cn(p+, g), the pairing of ∂(�) with our element is given by

n
∑

i=0

(−1)iB([Zi, �(Z0, . . . , Ẑi, . . . , Zn)], A)

+
∑

i<j

(−1)i+jB(�([Zi, Zj], Z0, . . . , Ẑi, . . . , Ẑj), . . . , Zn), A)
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Using invariance of B,we may rewrite each of the summands in the first sum
as (−1)i+1B(�(Z0, . . . , Ẑi, . . . , Zn), [Zi, A]), whence we immediately see that

∂∗(Z0 ∧ ⋅ ⋅ ⋅ ∧ Zn ⊗ A) =
n
∑

i=0

(−1)i+1Z0 ∧ ⋅ ⋅ ⋅ ∧ Ẑi ∧ ⋅ ⋅ ⋅ ∧ Zn ⊗ [Zi, A]

+
∑

i<j

(−1)i+j[Zi, Zj ] ∧ Z0 ∧ ⋅ ⋅ ⋅ ∧ Ẑi ∧ ⋅ ⋅ ⋅ ∧ Ẑj ∧ ⋅ ⋅ ⋅ ∧ Zn ⊗ A

Lemma 4.3.1. Consider an element � ∈ L(Λ2(g/p), g). Interpreting � as
a bilinear map on g, which vanishes if one of its entries lies in p, we can
compute ∂∗� : g/p → g as follows. Choose elements X1, . . . , Xℓ ∈ g such that
{X1 + p, . . . , Xℓ + p} is a basis of g/p and let Z1, . . . , Zℓ be the dual basis of
p+. Then for each X ∈ g we get

∂∗�(X + p) = 2
∑

i

[Zi, �(X,Xi)]−
∑

i

�([Zi, X], Xi)

Proof. See [1].

Definition 4.3.1. A parabolic geometry (p : G → M,!) is called normal, if
its curvature function satisfies ∂∗� = 0.

Theorem 4.3.1. Let g = g−k ⊕ ⋅ ⋅ ⋅ ⊕ gk be a ∣k∣-graded semisimple Lie
algebra such that none of the simple ideals is contained in g0, and such that
H1(g−, g)

1 = 0. Suppose that G is a Lie group with Lie algebra g, and
P ⊂ G is a parabolic subgroup corresponding to the grading with Levi subgroup
G0 ⊂ P .
Then associating to a parabolic geometry the underlying infinitesimal flag
structure and to any morphism of parabolic geometries the induced morphism
of the underlying infinitesimal flag structures defines an equivalence between
the category of normal regular parabolic geometries of type (G,P ) and the
category of regular infinitesimal flag structures of type (G,P ).

Proof. See [1].

If g does not contain a simple summand isomorphic to sl(2), then we
always have H1(g−, g)

2 = 0. Moreover, H1(g−, g)
1 ∕= 0 happens only if g

contains a simple factor that belongs to one of two specific series of simple
graded Lie algebras. Geometrically, these correspond to classical projective
structures and contact projective structures, respectively.
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4.4 Weyl structures

Definition 4.4.1. A (local) Weyl structure for the parabolic geometry (p :
G → M,!) is a (local) smooth G0-equivariant section � : G0 → G of the
projection � : G → G0.

Proposition 4.4.1. For any parabolic geometry (p : G →M,!), there exists
a global Weyl structure �;G0 → G.
Fixing one Weyl structure �, there is a bijective correspondence between the
set of all Weyl structures and the space Γ(gr(T ∗M)) of smooth sections of the
associated graded of the cotangent bundle. Explicitly, this correspondence is
given by mapping Υ ∈ Γ(gr(T ∗M)) with corresponding functions Υi : G0 → gi
for i = 1, . . . , k to the Weyl structure �̂(u) := �(u) exp(Υ1(u)) ⋅ ⋅ ⋅ exp(Yk(u)).

Proof. See [1].

Given a Weyl structure � : G0 → G for a parabolic geometry (p : G →
M,!), we can consider the pullback �∗! ∈ Ω1(G0, g) of the Cartan con-
nection. Equivariancy of � implies the equivariancy of �∗!. As a G0-
module, the Lie algebra g decomposes as g = −k ⊕ ⋅ ⋅ ⋅ ⊕ gk, so decom-
posing �∗! = �∗!−k ⊕ ⋅ ⋅ ⋅ ⊕ �∗!k accordingly, each of the components is
G0-equivariant.

Proposition 4.4.2. Let � : G0 → G be a Weyl structure on a parabolic
geometry (p : G →M,!). Then we have:

1. The component �∗!0 ∈ Ω1(G0, g0) defines a principal connection on the
bundle p0 : G0 →M .

2. The components �∗!−k, . . . , �
∗!−1 can be interpreted as defining an

element of Ω1(M, gr(TM)). This form determines an isomorphism

TM → gr(TM) = T−kM/T−k+1M ⊕ ⋅ ⋅ ⋅ ⊕ T−1M

which is a splitting of the filtration of TM . This means that for each
i = −k, . . . ,−1 the subbundle T iM is mapped to

⊕

j≥i grj(TM) and

the component in gri(TM) is given by the canonical surjection T iM →
T iM/T i+1M .

3. The components �∗!1, . . . , �
∗!k can be interpreted as a one-form P ∈

Ω1(M, gr(T ∗M)).

37



Proof. See [1].

Definition 4.4.2. Let � : G0 → G be a Weyl structure for a parabolic
geometry (p : G →M,!).

1. The principal connection �∗!0 on the bundle G0 → M is called the
Weyl connection associated to the Weyl structure �.

2. The gr(TM)-valued one-form on M determined by the negative com-
ponents of �∗! is called the soldering form associated to the Weyl
structure �.

3. The one-form P ∈ Ω1(M, gr(T ∗M)) induced by the positive components
of �∗! is called the Rho tensor associated to the Weyl structure �.

Proposition 4.4.3. Let (p;G →M,!) be a parabolic geometry of some fixed
type (G,P ), and let S be a smooth manifold endowed with a smooth left P -
action. Then choosing a Weyl structure � : G0 → G induces an isomorphism
G ×P S ∼= G0 ×G0 S and thus gives rise to a connection on the natural bundle
G×PS. In the case of a natural vector bundle, this connection is automatically
linear.

Proof. See [1].

A homomorphism � : G0 → ℝ gives rise to a Lie algebra homomorphism
�′ : g0 → ℝ. This homomorphism vanishes on gss0 , so it is just a linear
functional on the centre z(g0). The Killing form B of g restricts to a nonde-
generate bilinear form on g0. The splitting of g0 into its centre and semisimple
part is orthogonal with respect to B, so he restriction of B to z(g0) still is
nondegenerate. Given a homomorphism � : G0 → ℝ, we therefore get a
unique element E� ∈ z(g0) such that �′(A) = B(E�, A).

Definition 4.4.3. 1. An element F ∈ z(g0) is called a scaling element if
and only if the restriction to p+ of the adjoint action adF : g → g is
injective.

2. A bundle of scales for parabolic geometries of type (G,P ) is a natural
principal ℝ-bundle ℒ� associated to a homomorphism � : G0 → ℝ,
such that the corresponding element E� ∈ z(g0) is a scaling element. If
� has values in ℝ

+, then we obtain an oriented bundle of scales.
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3. Having chosen a bundle ℒ� of scales, a (local) scale for a parabolic
geometry (p : G → M,!) of type (G,P ) is a (local) smooth section of
the principal ℝ+-bundle ℒ� →M .

Proposition 4.4.4. 1. For any type of parabolic geometry there exist nat-
ural oriented bundles of scales.

2. A bundle of scales admits global smooth sections if and only if it is
oriented.

Proof. See [1].

Definition 4.4.4. Let L� be a fixed bundle of scales.

1. A Weyl structure � : G0 → G is called closed, if and only if the induced
connection ∇ on L� is flat.

2. A Weyl structure � : G0 → G is called exact, if and only if the induced
connection ∇ on L� comes from a global trivialization of L�

Proposition 4.4.5. Let L� be a fixed bundle of scales. Then the space of all
Weyl structures for (p : G →M,!) is an affine space modelled on the vector
space Ω1(M) of one-forms on M . If they exist, then the space of closed
(respectively exact) Weyl structures are affine subspaces modelled on closed
(respectively exact) one-forms.

Proof. See [1].

The very flat Weyl structure
We will work on the homogeneous space (G → G/P, !). Given a parabolic
pair (G,P ), there is also the opposite parabolic subgroup P op and the Carnot
group G− with Lie algebra g−, which is a simply connected Lie group. These
group are defined in a similar way to P and P+, but with respect to the
opposite filtration to gi. For X ∈ g the vector field !−1(X) is the left
invariant vector field LX , so its flow through e is simply exp(X). Now exp :
g− → G− is a diffeomorphism from g− onto an (actually dense) open subset
of G/P called the big cell. The restriction of both the bundles G → G/P
and G/P+ → G/P to the big cell is canonically trivialized by the restrictions
of the group multiplication to maps G− × P → G, respectively, G− ×G0 →
G. Our Weyl structure is characterized by �(exp(X)P+) = exp(X) for all
X ∈ g−. Under our trivializations p−1(G−) ∼= G− × P and p−1

0 (G− × G0),
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this section is simply given by the inclusion G0 → P . In the trivialization of
p−1
0 (G−), � is given by the group multiplication viewed as a map G−×G0 →
G.

This map can be viewed as the composition of the isomorphism G− ×
G0

∼= P op and the inclusion of this subgroup into G. The pullback of the
Maurer-Cartan form of G along the inclusion of P op clearly is the Maurer-
Cartan form of P op. The induced principal connection is defined by the
g0-component of this Maurer-Cartan form. In particular, on {e} × G0, this
is the Maurer-Cartan form of G0. Via the diffeomorphism G− × G0 → P op

defined by the group multiplication, this is extended to the whole bundle, so
we exactly obtain the flat connection determined by this trivialization. hence,
the induced linear connection on any associated bundle is flat. On the other
hand, the soldering form is induced by the Maurer-Cartan form of G−, i.e.
by trivialization of TG− by left translations. Finally, for vectors tangent
to P op ⊂ G, the Maurer-Cartan form of G has values in pop = g− ⊕ g0, so
the Rho tensor of our Weyl structure vanishes identically. Finally note, that
since every bundle of scales is associated to G/P+ → G/P , our trivialization
of p−1

0 (G−) → G− gives rise to a bundle of scales, which is trivial for the
induced Weyl connection. Hence, the very flat Weyl structure is always an
exact Weyl structure.

4.5 BGG sequences

4.5.1 Invariant operators

Given a representation of P on a vector space V and a parabolic geometry
(G → M,!), we can form the associated bundle VM = G ×P V → M .
If Φ : G → G ′ is a homomorphism of principal bundles covering a local
diffeomorphism Pℎi : M → M ′, then we get the induced homomorphism of
vector bundles VM → VM ′ lying over the same map Φ and restricting to
a linear isomorphism on each fibre. In other words, we get a functor from
the category of parabolic geometries to the category of vector bundles over
manifolds of the same dimension as G/P such that the composition of the
base functor with the given functor is the base functor.

Consider next a fixed category of real parabolic geometries, and two rep-
resentations V and W of P . Let V and W be the corresponding natural
vector bundles. A natural linear operator mapping sections of V to sections
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ofW is defined to be a system of linear operatorsD(G,!) : Γ(VM) → Γ(WM),
where M is the base of G such that for any morphism Φ : (G, !) → (G ′, !′)
we have

Φ∗ ∘D(G′,!′) = D(G,!) ∘ Φ
∗

It is a classical result on Cartan connections that any flat parabolic geom-
etry is locally isomorphic to the homogeneous model G/P . So any natural
operator on the category of flat parabolic geometries is uniquely determined
by its value on the homogeneous model G/P , i.e. the parabolic geometry
(G → G/P, !). An operator on the homogeneous model extends to a nat-
ural operator on the category of flat parabolic geometries if and only if it
is natural with respect to all automorphisms of (G,!). The left multiplica-
tion by an element of G induces an automorphism of the principal bundle
G → G/P and by left invariance of the Maurer-Cartan form this actually
is an automorphism of the parabolic geometry (G,!). On the other hand,
the only smooth maps G → G, which pullback the Maurer-Cartan form to
itself, are the constant left translations. Thus G is exactly the group of all
automorphisms of (G,!). This group has a natural action on sections of all
homogeneous bundles G ×P V for some P -representation V. This action is
defined by g ⋅ [g′, v] = [gg′, v] and lifts the action of G on G/P . We see that
an operator on the homogeneous model extends to a natural operator on the
category of flat parabolic geometries if and only if it is equivariant for the
G-action just defined.

Usually, the question on more general natural operators is then posed
as the question of the existence of curved analogs of invariant operators.
An invariant operator of order r is then induced by a P -module homomor-
phism JrEo → Fo, which does not factor over Jr−1Fo. Now the kernel of
the projection JrEo → Jr−1Eo is the bundle SrT ∗M ⊗ E, so it corresponds
to the representation Srp+ ⊗ E. Thus the invariant operator gives rise to
a homomorphism Srp+ ⊗ E → F of P -modules, which in turn gives a G-
equivariant homomorphism between the corresponding homogeneous vector
bundles, which is precisely the symbol of the operator we started with. But
this P -module homomorphism induces a homomorphism of associated bun-
dles on any parabolic geometry, so for any parabolic geometry (G, !) over a
manifoldM , we get the corresponding homomorphism SrT ∗M⊗EM → FM .
Now a curved analog of an invariant operator is a natural operator such that
for each (G, !) the symbol of D(G,!) is the above homomorphism.
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4.5.2 Semiholonomic jets and strongly invariant oper-
ators

It is possible to define for each P -representation V its 1st jet prolongation
J 1(V) in such a way that J1(G ×P V) = G ×P J 1(V). As a G0-module, this
decomposes as J 1(E) ∼= E⊕ g∗− ⊗V, see [3]. J 1 can be made into a functor
on the category of P -modules.

Since we have posed no conditions on the representation V, we can iterate
the functors J1 on the associated vector bundles as well as the functors J 1 on
the P -modules. Then the r-th iteration J1 . . . J1M is an associated bundle
to G corresponding to the P -module J 1 . . .J 1

V. Let us look more carefully
at J 1J 1

V and J1J1VM . There are two obvious P -module homomorphisms
J 1J 1

V → J 1
V, the first one given by the projection pJ 1V defined on each

fist jet prolongation by projection to the first component, and the other one
obtained by the action of J 1 on pV. Thus there is the subbundle J̄ 2

V in
J 1J 1

V, on which these two projections coincide. As a vector space and
G0-module, ew have

J̄ 2
V = V⊕ (G∗

− ⊗ V)⊕ (g∗− ⊗ g∗− ⊗ V).

The two P -module homomorphisms J 1(pV) and pJ 1V give rise to vector bun-
dle homomorphisms J1J1VM → J1VM , which are just the two standard
projections on the second nonholonomic jet prolongation. So we conclude
that the second semiholonomic jet prolongation J̄2VM is naturally isomor-
phic to G ×P J̄ 2

V.
Iterating this procedure, we obtain the r-th semiholonomic jet prolonga-

tion and J 1(J̄ r
V) equipped with two natural projections onto J 1(J̄ r−1

V),
which correspond to the usual projections on the first jet prolongation of
semiholonomic jets. Their equalizer is then the subbundle J̄ r+1

V. As a
G0-module

J̄ r
V =

r
⊕

i=0

(⊗ig∗− ⊗ V)

Suppose that V and W are representations of P and suppose that Φ :
J̄ r(V) → W is a homomorphism of P -modules. Then for any parabolic geom-
etry (G, !) we can define a differential operator D(G,!) : Γ(VM) → Γ(WM)
in a canonical way, see [3]. This gives us a natural operator on the category
of all parabolic geometries of order ≤ r. The operators arising in this way
are called strongly invariant operators.
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4.5.3 Twisted covariant derivative and exterior covari-
ant derivative

Any representation V of G is a representation of P by restriction. These
representations have one interesting feature in the case of the homogeneous
model since they give rise to trivial homogeneous bundles. To see this, we
associate to any element v in a representation V of G a global nonzero section
of the associated bundle G ×P V. To do this, we just have to specify a P -
equivariant map G→ V, and we define this map simply by g 7→ g−1 ⋅ v. This
map is even G-equivariant and not only P -equivariant.

There is a simple generalization of this result. Suppose that W is any
representation of P . Then sections of W (G/P ) are in bijective correspon-
dence with P -equivariant maps G → W. Now we define a map on sections
of homogeneous bundles

Γ(W (G/P ))⊗ V → Γ(W (G/P )⊗ V (G/P ))

s⊗ v 7→ (g ∈ G 7→ s(g)⊗ g−1 ⋅ v)

This is an isomorphism of G-modules. In particular, this implies that if
W

′ is another P -representation and D : Γ(W (G/P )) → Γ(W ′(G/P )) is an
invariant differential operator, then we can pull back

D ⊗ idV : Γ(W (G/P ))⊗ V → Γ(W ′(G/P ))⊗ V

along these isomorphisms to get an invariant operator

DV : Γ(W (G/P )⊗ V (G/P )) → Γ(W ′(G/P )⊗ V (G/P )).

This operator is called the twisted invariant operator corresponding to D
and V.

Notice that the above isomorphism between the spaces of sections of the
associated bundles induces an isomorphism J̄ r(W) ⊗ V ∼= J̄ r(W ⊗ V) of
P -modules, for all P -modules W and G-modules V and all orders r. Thus,
for strongly invariant operators D, we may extend the construction of the
twisted invariant operators to natural operators DV acting on all geometries
(G, !) of type (G,P ) and the resulting operators are again strongly invariant.

The standard exterior derivatives d on the differential forms on G/P are
first order invariant operators, so we can apply the construction above to get
the twisted exterior derivatives

dV : Γ(ΛnT ∗(G/P )⊗ V (G/P )) → Γ(Λn+1T ∗(G/P )⊗ V (G/P ))
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for n =, . . . , dim(G/P ). The operators dV are strongly invariant, so we obtain
a canonical curved analog. We may obtain another curved analog as follows.
For any parabolic geometry (G, !) on M , we consider the extended bundle
G̃ = G×PG, which is a principalG-bundle overM . It is a classical observation
that the Cartan connection ! induces a principal connection !̃ on G̃. If
V is a representation of G, we can view the corresponding natural bundle
VM = G ×P V also as VM = G̃ ×G V, and thus we have the induced linear
connection on this bundle. The covariant exterior derivative with respect
to this connection gives a natural operator on VM -valued forms on M . If
s : G̃ → Λkp+ ⊗ V is the equivariant function corresponding to a k-form �
on M , then the value of the latter operator is a (k+1)-form on M , given by
the formula

d!̃s(u)(X0, . . . , Xk) =
k
∑

i=0

(−1)i∇!̃
Xi
s(u)(X0, . . . , X̂i, . . . , Xk)+

+
∑

i<j

(−1)i+js(u)([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

where X0, . . . , Xk ∈ g−, u ∈ G̃, ∇!̃
Xi
s(u) means the derivative of s in the di-

rection of the horizontal vector at u determined byXi, and there are standard
omissions of arguments in the expressions on the right-hand side.

These operators coincide with the twisted exterior derivatives on the ho-
mogeneous space but they differ in general. The explicit general comparison
is as follows:

Lemma 4.5.1. Let V be a G-module, VM the corresponding natural vector
bundle over a manifold M equipped with a parabolic geometry (G, !). The
covariant exterior derivative d!̃ on ΛkT ∗M ⊗ VM , k > 0, and the twisted
exterior derivative dV on the same space satisfy

d!̃� = dV�+ i�−�

where �− is the torsion component of the curvature of ! and i�−� is the usual
insertion operator, i.e. the alternation of �(�−(X0, X1), X2, . . . , Xk) over the
arguments.

Proof. See [3].
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4.5.4 BGG sequences

We have already defined the Lie algebra cohomology. Let V be a represen-
tation of G. Then we have the complex (Cn(g−,V), ∂) with corresponding
cohomology Hn(g−,V) and Kostant codifferential ∂∗. We define the Lapla-
cian

□ = ∂ ∘ ∂∗ + ∂∗ ∘ ∂

Then for each n this is a G0-endomorphism of Cn(g−,V). Moreover, the
adjointness implies that ker(□) = ker(∂)∩ker(∂∗) and we have a G0-invariant
splitting

Cn(g−,V) = im(∂)⊕ ker(□)⊕ im(∂∗)

This implies that the cohomology group Hn(g−,V) is isomorphic as a G0-
module to the subspace ker(□) ⊂ Cn(g−,V). Moreover, the situation be-
tween ∂ and ∂∗ is completely symmetric, so we can as well compute the co-
homology groups H∗(g−,V) as ker(∂

∗)/im(∂∗). This is more suitable, since
∂∗ is even a P -homomorphism. This also implies that (even as G0-module)
the cohomology group Hn(g−,V) is dual to Hn(p+,V

∗). Thus we have a
canonical action of P on the cohomology groups Hn(g−,V). This module is
completely reducible, see [3].

Let us put ℍn
V
:= Hn(g−,V) as a representation of P . Then it is possible

to construct a sequence of strongly invariant operators

0 → Γ(H0
V
M)

DV

→ Γ(H1
V
M)

DV

→ ⋅ ⋅ ⋅
DV

→ Γ(H
dim(G/P )
V

M) → 0

called the Bernstein-Gelfand-Gelfand sequence or the BGG sequence deter-
mined by the G-module V.

All bundles in this sequence correspond to completely reducible repre-
sentations of P , so they all split into direct sum of bundles corresponding
to irreducible representations. The construction applies to both real and
complex setting.

Theorem 4.5.1. Let (G, !) be a real parabolic geometry of type (G,P ) on a
manifold M , V be a G-module. If the twisted de Rham sequence

0 → Ω0(M ;VM)
dV→ Ω1(M ;VM)

dV→ ⋅ ⋅ ⋅
dV→ Ωdim(G/P )(M ;VM) → 0

is a complex, then also the Bernstein-Gelfand-Gelfand sequence

0 → Γ(H0
V
M)

DV

→ Γ(H1
V
M)

DV

→ ⋅ ⋅ ⋅
DV

→ Γ(H
dim(G/P )
V

M) → 0

is a complex, and they both compute the same cohomology.
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Proof. See [3].

Corollary 4.5.1. Let (G, !) be a flat real parabolic geometry. Then for any
representation V of G the BGG sequence

0 → Γ(H0
V
M)

DV

→ Γ(H1
V
M)

DV

→ ⋅ ⋅ ⋅
DV

→ Γ(H
dim(G/P )
V

M) → 0

is a complex, which computes the twisted de Rham cohomology of M with
coefficients in the bundle VM , which is defined as the cohomology of the
complex given by the covariant exterior derivative with respect to the linear
connection on VM induced by the Cartan connection !.

Proof. See [3].

We may always consider the obvious flat parabolic geometry on the trivial
P -bundle over ℝ

dim(G/P ) ∼= g− (i.e. the big cell). In this case, the twisted
de Rham cohomologies are obviously zero, so the above Corollary provides
global resolutions of the constant sheaf V in this case. Important for us is
that the kernel of the operator DVΓ(H0

V
M) → Γ(H1

V
M) is as a G-module

isomorphic to V.
It is obvious that we can complexify the bundles and the operators above

to obtain the ’complexified’ BGG resolution.

4.5.5 Relation between BGG and the Hasse graph

We know that we may consider the BGG operators acting between some ir-
reducible bundles, which correspond to some irreducible P -modules. We will
denote these representations by minus the lowest weight - i.e. the highest
weight of the dual representation. Similar notation will be used for represen-
tations of G.

Definition 4.5.1. Let w ∈ Wg and � be a weight for g. The affine action of
w on � is given by

w ⋅ � := w(�+ �)− �

Let us fix a G-module V with minus lowest weight �. Then the bun-
dles H i(g−,V) decompose as the direct sum of bundles corresponding to
irreducible representations of P with minus lowest weight w ⋅ �, w ∈ W p,
ℓ(w) = i. These weights can be computed as follows. Choose a path in the
Hasse graph from the identity to the given element w, take the weight �, start
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at w and in each step apply the reflection corresponding to root labelling the
arrow ending at the point you are, going back from w to the identity. This
recipe can be found in [5].
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Chapter 5

CR structures as parabolic
geometries

5.1 Parabolic contact structures

LetM be a (2n+1)-dimensional contact manifold. We may say that contact
manifold is a filtered manifold with TM = T−2M ⊃ T−1M with T−1M
being the contact subbundle H ⊂ TM . Its symbol algebra will be called the
Heisenberg algebra h2n+1. Let us denote Q := TM/H. We know that the
Levi bracket ℒ : H ×H → Q is nondegenerate.

Proposition 5.1.1. Let H ⊂ TM be a contact structure on a smooth
(2n + 1)-dimensional manifold M with the quotient bundle Q = TM/H.
Let p : E → M be the natural frame bundle for H ⊕ Q with structure group
Autgr(h2n+1). Let ℒ : Λ2H → Q be the Levi bracket and let Λ2

0H ⊂ Λ2H be
the kernel of ℒ.

1. Locally, there exists a contact form �, which has H as its contact sub-
bundle, and thisd form is unique up to multiplication by a nowhere
vanishing function. In particular, contact structures have no local in-
variants. There exists a global contact form � for H if and only if the
quotient bundle Q is orientable and hence trivial.

2. Any principal connection on E is completely determined by the induced
connection on H. A linear connection on H arises in this way if and
only if the induced connection on Λ2H preserves the subbundle Λ2

0H.
These connections are called contact connections.
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3. If � ∈ Ω1(M) is a contact form with contact subbundle H, then there
is a unique vector field r on M such that �(r) = 1 and ird� = 0. In
particular, � induces an isomorphism TM ∼= H ⊕Q.

4. Given � as above, there is a linear connection ∇ on TM such that ∇
preserves the subbundle H, ∇� = 0, ∇d� = 0 and ∇r = 0 and such
that the restriction to H is induced by a principal connection on E.

Proof. See [1].

Let (E, �) be a regular infinitesimal flag structure of some type (G,P )
corresponding to a contact grading. Then choosing a Weyl structure, we get
an identification TM ∼= H ⊕ Q and a contact connection ∇H on H, which
is compatible with the additional structure induced by E. This connection
determines a connection on Q via ∇ℒ = 0, and so a linear connection on
TM . Since Q may be used as a bundle of scales for any parabolic contact
geometry, we see that there is a one-to-one correspondence between exact
Weyl structures and contact forms on M .

5.2 Partially integrable almost CR structures

For p + q = n ≥ 1 we consider the real form su(p + 1, q + 1) of sl(n + 2,ℂ).
We choose the Hermitean form on ℂ

n+2, which is given by

⟨(zo, . . . , zn+1), (w0, . . . , wn+1)⟩ = z0wn+1 + zn+1w0 +

p
∑

j=1

zjwj −
n
∑

j=p+1

zjwj

Denoting by I = Ipq be the n × n-diagonal matrix with the first p entries
equal to 1 and the remaining entries equal to -1, we can represent the Lie
algebra in block form with blocks of sizes 1, n and 1 as

g =

⎧

⎨

⎩

⎛

⎝

a Z iz
X A −IZ∗

ix −X∗
I −ā

⎞

⎠ :
A ∈ un, a ∈ ℂ, X ∈ ℂ

n, Z ∈ ℂ
n∗,

x, z ∈ ℝ; a+ trA− ā = 0

⎫

⎬

⎭

The grading components are indicated by
⎛

⎝

g0 gA1 g2
gA−1 g0 gB1
g−2 gB−1 g0

⎞

⎠
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From this description it is easy to see that the Dynkin diagram of pℂ is

× . . .×

Rather then the splitting of g±1 into two irreducible pieces, we have a complex
structure on these subspaces. After complexification, the splitting into two
components is recovered as the splitting of g±1 ⊗ ℂ into holomorphic and
antiholomorphic part. The bracket g−1 × g−1 → g−2 is given by [X, Y ] =
Y ∗

IX − X∗
IY , so this is minus twice the imaginary part of the standard

Hermitean inner product of signature (p, q). Note that this is compatible
with the complex structure in the sense that [iX, iY ] = [X, Y ].

As a group with Lie algebra g, we take G = PSU(p + 1, q + 1). The
parabolic subgroup P is then the stabilizer of the isotropic complex line
generated by the first basis vector. (This automatically stabilizes its ortho-
complement, which is a hyperplane containing the given line.) The subgroup

G0 is given by block diagonal matrices, i.e. we have matrices

⎛

⎝

c 0 0
0 C 0
0 0 1/c̄

⎞

⎠

with c ∈ ℂ ∖ 0 and C ∈ U(n) such that cdet(C)/c̄ = 1. We have to identify
matrices, which are multiples of each other, which leaves the freedom by a
multiplying by a (n + 2)nd root of unity. The adjoint action is given by
(c, C) ⋅ (ix,X) = (∣c∣−2ix, c−1CX), which is complex linear on g−1 and orien-
tation preserving on g−2. There is an p-dimensional subspace in g−1 on which
X 7→ [X, iX] is nonzero with all values of the same sign and a q-dimensional
subspace, for which the same is true for the opposite sign. Hence, if p ∕= q,
then preserving the bracket and the complex structure on g−1 implies that
the orientation on g−2 is preserved. For p = q, this is an additional condition.

Conversely, assume that A : g−1 → g−1 is a complex linear isomorphism
such that [AX,AY ] = �[X, Y ] for some � > 0. Since the standard Hermitean
form of signature (p, q) is obtained as 1/2(i[X, iY ] + [X, Y ]), we conclude
that A has the same compatibility with that Hermitean form. In particular,
∣det(A)∣2 = �n. Now choose c ∈ ℂ such that ∣c∣2c−n−2 = det(A). Then we get
∣det(A)∣2 = ∣c∣−2n = �n, and since � > 0, this implies � = ∣c∣−2. Hence cA has
the property that [cAX, cAY ] = [X, Y ] and hence cA ∈ U(n). But then A is
realized as the adjoint action of (c, cA) and cdet(cA)/c̄ = cn+2∣c∣−2det(A) = 1
as required. In this procedure c is only unique up to multiplication with an
(n+ 2)nd root of unity.

A regular infinitesimal flag structure (and hence a regular normal pa-
rabolic geometry) of type (G,P ) on a smooth manifold M of dimension

50



2n+1 is equivalent to a contact structure H ⊂ TM together with a complex
structure J on H such that ℒ(J�, J�) = ℒ(�, �) for all �, � ∈ Γ(H). If this
last condition is satisfied, then identifying the fibre Qx over x ∈ M with ℝ,
the map ℒ is minus the imaginary part of a Hermitean form, and one requires
that this form has signature (p, q). If p = q, one in addition has to choose
an orientation on Q (which requires Q to be trivial). Since as a complex
vector bundle H is canonically oriented, this is equivalent to choosing an
orientation on M . For p ∕= q, this orientation is automatically chosen by
deciding between the signature (p, q) and signature (q, p).

We rephrase this in the language of CR geometry. Given a real smooth
manifold M of dimension 2n + 1, a rank n complex subbundle (H, J) in
TM is called an almost CR structure of hypersurface type. The almost CR
structure is called nondegenerate, if H defines a contact structure on M .
Next, we have the condition that ℒ(J�, J�) = ℒ(�, �) for all �, � ∈ H. This
condition is not very often used in CR geometry, since it is implied by the
integrability condition. One usual terminology for this condition is partial
integrability. Then ℒ becomes minus the imaginary part of a Hermitean
form and choosing an orientation on Q, the signature of this form is called
the signature of (M,H, J). Hence, regular normal parabolic geometries of
type (PSU(p+1, q+1), P ) are equivalent to oriented nondegenerate partially
integrable hypersurface type almost CR structures of signature (p, q).

Theorem 5.2.1. The category of oriented hypersurface type CR structures
of signature (p, q) is equivalent to a category of torsion-free regular normal
parabolic geometries of type (PSU(p+ 1, q + 1), P ).

Proof. See [1].

5.3 The CR sub-Laplacian

We have an n-dimensional complex vector bundle H1,0 ⊂ TM ⊗ ℂ and its
conjugate H0,1 ⊂ TM ⊗ ℂ. Define Λ1,0 ⊂ T ∗M ⊗ ℂ by Λ1,0 = (H0,1)⊥.
The canonical bundle K := Λn+1(Λ1,0) is a complex line bundle on M . We
will assume that K admits an (n + 2)nd root (for this we have to pass to
the group SU(p + 1, q + 1)) and we fix a bundle denoted ℰ(1, 0), which is a
−1/(n+2)-th power of K. The bundle ℰ(w1, w2) := (ℰ(1, 0))w1 ⊗ (ℰ(1, 0))w2

of (w1, w2)-densities is defined for w1, w2 ∈ ℂ satisfying w1 − w2 ∈ ℤ. If
ℰ(1, 0)∖{0} is viewed as a ℂ

×-principal bundle, then ℰ(w1, w2) is the bundle
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induced by the representation � → �−w1�̄−w2 . As a representation of P ,
this is the one-dimensional irreducible representation (and thus irreducible
representation of G0) given by �((c, C)) = c−w1 c̄−w2 . The bundle Q⊗ℂ may
be identified with ℰ(1, 1).

Assume we have given a contact form � on M . Then we can view Q
as a trivial ℝ-bundle over M . Using this identification, we may view the
Levi bracket as minus twice the imaginary part of some Hermitean form
ℎ of signature (p, q), i.e. a pseudoscalar product on H, which we can use
to upper and lower indices. We also have the corresponding exact Weyl
structure and, in particular, the corresponding Weyl connection satisfying
∇� = 0, ∇d� = 0, ∇r = 0 and ∇ℒ = 0. The last equation implies that
∇ℎ = 0. This connection preserves the splitting TM⊗ℂ = H1,0⊕H0,1⊕⟨r⟩.
Let {X�} be a basis of H1,0 and {X�̄} the corresponding basis of H0,1. We
will use indices �, �̄, 0 for components with respect to basis {X�, X�̄, r}. If
f is a (possibly density-valued) tensor field, we will denote the components
of the (tensorial) iterated covariant derivatives of f by preceding ∇-s, e.g.
∇�∇0 ⋅ ⋅ ⋅ ∇�̄f . Such indices may alternately be interpreted abstractly.

Definition 5.3.1. LetM be a (2n+1)-dimensional CR manifold with contact
subbundle H, a contact form � and the corresponding Weyl connection. Let
w1 and w2 be complex numbers such that w1 −w2 ∈ ℤ and n+w1 +w2 = 0.
Then the CR sub-Laplacian is the operator Δ : ℰ(w1, w2) → ℰ(w1−1, w2−1)
given by

Δ(f) =
1

2
[∇�∇�+∇�∇

�+i(w1−w2)∇0−
n

2(n+ 1)
R−

n(w1 − w2)
2

2(n+ 1)(n+ 2)
R](f)

where R is the scalar curvature with respect to ℎ.

Using the very flat Weyl structure on the big cell, the last two terms
vanish, since the connection is flat. This definition coincides with that in [8].

5.4 Symmetries of the sub-Laplacian

Definition 5.4.1. The symmetry operator of Δ is a differential operator P
such that

ΔP = �Δ

for some differential operator �.
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It is easy to see that any operator of type DΔ for some differential op-
erator D is a symmetry operator of Δ. But these operators act trivially on
the solution space of Δ. Ergo it is useful to introduce certain relation of
equivalence on the vector space of all symmetry operators of Δ.

Definition 5.4.2. Two symmetry operators P and P̃ of Δ are called equiv-
alent, if there exists a differential operator D such that P − P̃ = DΔ

Lemma 5.4.1. The vector space of equivalence classes of symmetry operators
forms an associative unital algebra with multiplication being the composition
of differential operators.

Proof. We need to show that the operation of composition of differential
operators preserves the vector space of symmetry operators and respects
their equivalence. If P1 and P2 are two symmetry operators, we must gind a
differential operator � such that

ΔP1P2 = �Δ (5.1)

From the definition of the symmetry operator we see that there are differential
operators �1 and �2 satisfying the relations

ΔP1 = �1Δ ΔP2 = �2Δ

Substituting these relations into 5.1

ΔP1P2 = �1ΔP2 = �1�2Δ

we see that we can put � = �1�2.
The second part states that the composition P̂1P̂2 of two symmetry op-

erators P̂1, P̂2 (equivalent to P1 and P2, respectively) is equivalent to P1P2.
In other words, we are looking for some differential operator D such that
P1P2 − P̂1P̂2 = DΔ. If we establish operators D1, D2 and �2 in an obvious
manner, we get

P1P2 − P̂1P̂2 = (D1Δ+ P̂1)P2 − P̂1(P2 −D2Δ) =

= D1ΔP2 + P̂1D2Δ =

= (D1�2 + P̂1D2)Δ

and hence we can put D = D1�2 + P̂1D2.
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5.5 BGG sequences for CR structures

We will need BGG sequences for representations of type ∘ ∘ . . . ∘ ∘
a b b a

.
This representation is dual to itself, so minus the lowest weight is simply the
highest weight. To get a feeling how the Hasse graph looks like in general,
we write it down for n = 1, 2. In the sets we only note the indices of the
roots. The order of positive roots is given form top to bottom in the matrix
representation of g.

For n = 1, we have two simple roots �1 and �2, and we number the
additional positive root by �3 = �1 + �2:

{1}
�3 //

�2

��3
33

33
33

33
33

33
33

3
{1, 3}

�2

%%JJJJJJJJJ

∅

�1

??��������

�2

��?
??

??
??

? {1, 2, 3}

{2}

�1

EE����������������
�3 // {2, 3}

�1

99ttttttttt

For n = 2, we have three simple roots �1, �2 and �3, and we number the
additional positive roots by �4 = �1+�2, �5 = �2+�3 and �6 = �1+�2+�3:

{1, 4}
�6 //

�3

��8
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88
88

88
88

88
88

88
{1, 4, 6}

�3

&&MMMMMMMMMM

{1}

�4

<<xxxxxxxx

�3

""FFFFFFFF
{1, 3, 4, 6}

�5

''PPPPPPPPPPP

∅

�1

??��������

�3

��?
??

??
??

? {1, 3}

�4

CC�����������������
�6 //

�5

��8
88

88
88

88
88

88
88

88
{1, 3, 6}

�4

88qqqqqqqqqq

�5

&&MMMMMMMMMM
{1, 3, 4, 5, 6}

{3}

�1

<<xxxxxxxx

�5

""FFFFFFFF
{1, 3, 5, 6}

�4

77nnnnnnnnnnn

{3, 5}

�1

CC�����������������
�6 // {3, 5, 6}

�1

88qqqqqqqqqq

From these two examples we see that the first operators in the complexified
BGG sequence correspond to reflections according to the two simple roots
represented by the extremal nodes of the Dynkin diagram of gℂ. Know-
ing how to compute the simple root reflections of any weight, we see that
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the beginning of the BGG sequence corresponding to the representation
∘ ∘ . . . ∘ ∘
a b b a

looks like

∘ ∘ . . . ∘ ∘
a b b a

→֒× ∘ . . . ∘ ×
a b b a ↗

× ∘ . . . ∘ ×
-a-2 a+b+1 b a

↘
× ∘ . . . ∘ ×
a b a+b+1 -a-2

The section of the bundle× ∘ . . . ∘ ×
-a-2a+b+1 b a

is (modulo weights) a tensor field
V c1...cbd̄1...d̄b from SbHM ⊗ Sb(HM∗) (HM∗ is up to weight isomorphic to
HM), which is totally trace-free. The upper operator looks like

V c1...cb)d̄1...d̄b 7→ the trace-free part of ∂(c1 . . . ∂ca+1V ca+2...ca+b+1)d̄1...d̄b

modulo curvature terms and the lower operator is the conjugate one:

V c1...cbd̄1...d̄b 7→ the trace-free part of ∂(d̄1 . . . ∂ d̄a+1V d̄a+2...d̄a+b+1)c1...cb

modulo curvature terms.
It can be easily seen from the fact, that if× ∘ . . . ∘ ×

-a-2a+b+1 b a
is an irreducible

P -representation, then it is an irreducible G0-representation, and the corre-
sponding Gss

0 -representation is given by deleting all crossed nodes and edges
connecting to them in the Dynkin diagram notation. We shall note that the
order of these operators is always a+ 1.
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Chapter 6

The ambient construction

We want to describe symmetries of the CR sub-Laplacian on the CR quadric.
We will work on the big cell with the very flat Weyl structure. Since none
of what will follow depends on the signature of the CR structure, we will
consider general signature.

Let’s consider ℂn+1(z1, . . . , zn, z∞) with Hermitean metric of the form
(

gāb 0
0 0

)

and consider a submanifold M of ℂn+1 given by
∑n

i=1 z
aza + z∞ + z̄∞ = 0.

On the manifold M we shall define a CR structure. In coordinates the
submanifold M looks like (z1, . . . , zn,−

∑n
i=1 z

aza/2 + i�). In terms of coor-
dinates on ℂ

n+1, the coordinate vector fields on M look like {∂za −
za
2
∂z∞ −

za
2
∂z∞̄}, their conjugates, and ∂� = i(∂z∞ − ∂z∞̄). The contact subbundle

HM1,0 ⊂ (Tℂn+1)1,0 has basis {∂a = ∂za − za∂z∞ , a = 1, . . . , n}, since it
has to formed by complex linear combinations of coordinate vector fields
on M , which form holomorphic vector fields on ℂ

n+1. The commutator
[∂ā, ∂b] = [∂zā − zā∂z∞̄ , ∂zb − zb∂z∞ ] = igāb∂�. This is the only nontrivial
commutator. We will work mostly with vector fields ∂ā, ∂b, the coordinate
vector fields ∂zā , ∂zb will be without use.

Definition 6.0.1. Let M be as above. The ambient space for M is ℂ
n+2

(z0, z1, . . . , zn, z∞) with non-degenerate Hermitean metric gĀB of the form
⎛

⎝

0 0 1
0 gāb 0
1 0 0

⎞

⎠
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We will denote

xA =

⎛

⎝

x0

xa

x∞

⎞

⎠

The term ambient will be used when referring to the objects defined on
some open subset of ℂn+2. The ambient Laplace operator will be distin-
guished by tilde Δ̃f = gAB̄∂A∂B̄.

Definition 6.0.2. Let
r = gAB̄x

AxB̄ (6.1)

be the quadratic form associated to the ambient metric gAB̄. The null cone
N is the zero set of r.

N =
{

x ∈ ℂ
n+2∣r(x) = 0

}

Now consider the mapping � :M → ℂ
n+2 given by

(za, i�) 7→

⎛

⎝

1
za

− zaza
2

+ i�

⎞

⎠ =: �A

The mapping � is actually a restriction to M of the embedding { : ℂn+1 →
ℂ

n+2 given by (z1, . . . , zn, z∞) 7→ (1, z1, . . . , zn, z∞). It is easily seen that
�(M) lies on the null cone and that this characterizes M in ℂ

n+1.

Definition 6.0.3. Let z0 ∈ ℂ, �, � ∈ ℝ and za ∈ ℂ
n.

XA =

⎛

⎝

z0

z0za

z0(�− zaza
2

+ i�)

⎞

⎠ Y A
b = ∂bX

A =

⎛

⎝

0b
z0�ab
−z0zb

⎞

⎠

Y A
b̄ = ∂b̄X

A = 0 ZA = −
1

n
∂bY A

b =

⎛

⎝

0
0a

z0

⎞

⎠

XĀ =

⎛

⎝

z0̄

z0̄zā

z0̄(�− zaza
2

− i�)

⎞

⎠ Y Ā
b̄ = ∂b̄X

Ā =

⎛

⎝

0b̄
z0̄�ā

b̄

−z0̄zb̄

⎞

⎠
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Y Ā
b = ∂bX

Ā = 0 ZĀ = −
1

n
∂ b̄Y Ā

b̄ =

⎛

⎝

0
0ā

z0̄

⎞

⎠

XA =

(

z0̄(�−
zaza
2

− i�), z0̄za, z
0̄

)

ZA =
(

z0̄, 0a, 0
)

YAb = 0 YAb̄ =
(

−z0̄zb̄, z
0̄gab̄, 0b̄

)

XĀ =

(

z0(�−
zaza
2

+ i�), z0zā, z
0

)

ZĀ =
(

z0, 0ā, 0
)

YĀb̄ = 0 YĀb =
(

−z0zb, z
0gāb, 0b

)

Lemma 6.0.1.

∣z0∣2�AB = (XA + �ZA)ZB + ZA(XB + �ZB) + Y A
c Y

c
B (6.2)

The mapping

Φ(z0, za, z∞) =

⎛

⎝

z0

z0za

z0(z∞ − zaza
2
)

⎞

⎠ =

⎛

⎝

y0

ya

y∞

⎞

⎠

where z∞ = � + i�, defines a change of coordinates, which, however, is
smooth, but not holomorphic. We see that �(za, i�) = Φ(1, za, i�) and the
identity (6.2) simplifies on the image of � to

�AB = XAZB + ZAXB + Y A
c Y

c
B

Similarly for �Ā
B̄
:

�ĀB̄ = XĀZB̄ + ZĀXB̄ + Y Ā
c̄ Y

c̄
B̄

Lemma 6.0.2. The operator E = xC∂C in the new coordinates is equal to

E = z0∂z0 (6.3)
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Proof. For f(yA, yĀ) ∈ C∞(ℂn+2) we have

z0∂z0f = z0(
∂f

∂y0
+ za

∂f

∂ya
+ (z∞ −

zaza
2

)
∂f

∂y∞
)

= y0(
∂f

∂y0
+
ya

y0
∂f

∂ya
+
y∞

y0
∂f

∂y∞
)

= (yA∂Af) ∘ Φ

Here are some identities we will need later:

Y A
q ∂AY

B̄
r̄ =

⎛

⎝

0q
z0�aq
−z0zq

⎞

⎠

⎛

⎝

∂z0 −
za

z0
∂za −

z∞

z0
∂z∞ − zaza

2z0
∂z∞̄

1
z0
∂za +

za
2z0
∂z∞ + za

2z0
∂z∞̄

1
z0
∂z∞

⎞

⎠

⎛

⎝

0r̄
z0̄�b̄r̄
−z0̄zr̄

⎞

⎠

=
(

∂zq +
zq
2
∂z∞̄ −

zq
2
∂z∞
)

⎛

⎝

0r̄
z0̄�b̄r̄
−z0̄zr̄

⎞

⎠

=

⎛

⎝

0
0

−z0̄gqr̄

⎞

⎠ = −gqr̄Z
B̄ (6.4)

Similarly,

Y B̄
r̄ ∂B̄Y

A
q = −gqr̄Z

A (6.5)

ZB∂B = ∂z∞ (6.6)

ZB̄∂B̄ = ∂z∞̄ (6.7)

Definition 6.0.4. Suppose that F is a smooth complex-valued function de-
fined on the neighbourhood of the origin in M . Then for any pair (w1, w2) ∈
ℂ

2, s.t. w1 − w2 ∈ ℤ

f(Φ(z0, za, i�)) = (z0)w1(z0̄)w2F (za, i�) (6.8)

defines a smooth function on a conical neighbourhood of (1, 0, 0) in the null-
cone N . Conversely, F may be recovered from f by setting z0 = 1. Hence,
for fixed (w1, w2), the functions F and f are equivalent.
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Remark 6.0.1. If we view N ∖ {x = (z0, . . . , z∞) ∈ N : z0 = 0} as a prin-
cipal ℂ×-bundle over M , then we can represent the sections of ℰ(w1, w2) as
equivariant functions on the null-cone. But these are exactly the (w1, w2)-
homogeneous functions as defined above. Having in mind that we are working
with the very flat Weyl structure onM , we can identify densities of arbitrary
weights with functions when working on M .

We want to use the ambient construction to represent differential oper-
ators on M by much simpler ambient differential operators. In order to be
able to apply ambient differential operators to f , we need to extend it from
the null-cone to the whole space or at least to some open (in ℂ

n+2) neigh-
bourhood of (1, 0, 0). There are infinitely many choices for such an extension
even if we restrict ourselves to the homogeneous ones. Nevertheless, any two
such extensions will differ by a very convenient factor.

Lemma 6.0.3. Let f and f̂ be two smooth (w1, w2)-homogeneous extensions
of F on some open neighbourhood of (1, 0, 0). Then there exists a smooth
(w1− 1, w2− 1)-homogeneous function ℎsuch that (f − f̂)(yA) = r(yA)ℎ(yA),
where r is defined by (6.1).

Proof. If we perform coordinate transformation

(y0, ya, y∞) 7→ (y0, ya, r + ip) = (y0, ya, y0y∞̄ + yaya)

we will be dealing with 2 functions equal on the real hyperplane r = 0. For
any smooth complex-valued function k on ℂ

n+2 holds

k(y0, ya, r + ip) = k(y0, ya, ip) +

∫ 1

0

d

dt
k(y0, ya, tr + ip)dt =

= k(y0, ya, ip) + r

∫ 1

0

∂k

∂(r + ip)
(y0, ya, tr + ip) +

∂k

∂(r − ip)
(y0, ya, tr + ip)dt

So if we take k as the difference of two (w1, w2)-homogeneous extensions of
F , we will have k(y0, ya, ip) = 0 and thus it follows that f − f̂ = rℎ. This ℎ
has homogeneity (w1 − 1, w2 − 1), because r has homogeneity (1, 1).

Remark 6.0.2. The classical chain rule formula gives

∂aF = ∂a(f ∘ �) = (∂a�
B∂Bf + ∂a�

B̄∂B̄f) ∘ � =

(Y B
a ∂Bf) ∘ � = (∂af) ∘ �
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∂āF = ∂ā(f ∘ �) = (∂ā�
B∂Bf + ∂ā�

B̄∂B̄f) ∘ � =

(Y B̄
ā ∂B̄f) ∘ � = (∂āf) ∘ �

∂�F = ∂�(f ∘ �) = (∂��
A∂Af + ∂��

Ā∂Āf) ∘ � =

(i∂z∞f − i∂z∞̄f) ∘ � = (∂�f) ∘ �

Lemma 6.0.4. For homogeneous function ℎ on ℂ
n+2 of bidegree (w1−1, w2−

1) holds
Δ̃(rℎ) = rΔ̃ℎ+ (n+ w1 + w2)ℎ

Proof.

Δ̃(rℎ) = gAB̄∂A∂B̄(rℎ) = gAB̄∂A(xB̄ℎ+ r∂B̄ℎ) =

= gAB̄(gAB̄ℎ+ xB̄∂Aℎ+ xA∂B̄ℎ+ r∂A∂B̄ℎ) =

= (n+ 2)ℎ+ xA∂Aℎ+ xB̄∂B̄ℎ+ rΔ̃ℎ =

= (n+ 2)ℎ+ (w1 − 1)ℎ+ (w2 − 1)ℎ+ rΔ̃ℎ =

= rΔ̃ℎ+ (n+ w1 + w2)ℎ

It immediately follows that for n+w1+w2 = 0, then Δ̃f ∣N depends only
on the restriction of f to the null-cone and hence it depends only on F . This
defines a differential operator on M .

Theorem 6.0.1. Let F be a smooth complex-valued function on some open
neighbourhood of 0 ∈ M and let f be the smooth homogeneous function of
bidegree (w1, w2) that corresponds to F via (6.8) and is defined on some open
neighbourhood of (1, 0, 0) ∈ ℂ

n+2. Then the following equality holds

(Δ̃f) ∘ � = ΔF

where Δ is the CR sub-Laplacian.

Proof. Using the equation (6.2) we obtain

(gAB̄∂A∂B̄f) ∘ � =

= [(XAZB̄ + ZAXB̄)∂A∂B̄f + gqr̄Y A
q Y

B̄
r̄ )∂A∂B̄f ] ∘ �

Now the first term gives

(XAZB̄ + ZAXB̄)∂A∂B̄ =
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−ZA(∂AX
B̄)∂B̄ + ZA∂AX

B̄∂B̄ − ZB̄(∂B̄X
A)∂A + ZB̄∂B̄X

A∂A =

ZA∂AX
B̄∂B̄ + ZB̄∂B̄X

A∂A =

ZA∂AĒ+ ZB̄∂B̄E

applied to f and evaluated on the image of �. Let us recall that ZA∂A = ∂z∞
and ZB̄∂B̄ = ∂z∞̄ . The second term is

(

gqr̄Y A
q Y

B̄
r̄ ∂A∂B̄f

)

∘ � =

=
(

gqr̄[Y A
q ∂AY

B̄
r̄ ∂B̄ − Y A

q (∂AY
B̄
r̄ )∂B̄]f

)

∘ � =

=
(

gqr̄Y A
q ∂AY

B̄
r̄ ∂B̄f +

n

2
ZB̄∂B̄f

)

∘ � =

=
(

gqr̄∂q∂r̄f +
n

2
∂z∞̄f

)

∘ �

Another way to compute the second term is
(

gqr̄Y B̄
r̄ Y

A
q ∂B̄∂Af

)

∘ � =

=
(

gqr̄[Y B̄
r̄ ∂B̄Y

A
q ∂A − Y B̄

r̄ (∂B̄Y
A
q )∂A]f

)

∘ � =

=
(

gqr̄Y B̄
r̄ ∂B̄Y

A
q ∂Af +

n

2
ZA∂Af

)

∘ � =

=
(

gqr̄∂r̄∂qf +
n

2
∂z∞f

)

∘ �

We will take as the second term one half of their sum
(

[
1

2
gqr̄(∂r̄∂q + ∂q∂r̄) +

n

2
(∂z∞̄ + ∂z∞)]f

)

∘ �

Altogether we get

(Δ̃f) ∘ � = (w1∂z∞̄f + w2∂z∞f) ∘ �+

+

(

[
gqr̄

2
(∂r̄∂q + ∂q∂r̄) +

n

2
(∂z∞̄ + ∂z∞)]f

)

∘ � =

=

(

[
gqr̄

2
(∂q∂r̄ + ∂r̄∂q) +

n+ w1 + w2

2
∂� + i

w1 − w2

2
∂�]f

)

∘ � =

=
1

2
(∂a∂a + ∂a∂

a)F +
i(w1 − w2)

2
∂�F

which completes the proof. We have only used the fact that z∞ = �+ i�.
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Chapter 7

Ambient construction of
symmetries of the
sub-Laplacian

In this chapter we first characterize the symbol of a symmetry of the sub-
Laplacian (modulo equivalence) and then we will construct ambient differen-
tial operators commuting with Δ̃, which also commute with multiplication
by r, and so inducing operators (symmetries of the sub-Laplacian) on M .
We shall prove that we can construct all of them this way. Sometimes we
will for brevity write ’symmetry’ instead of ’symmetry of the sub-Laplacian’.

7.1 First order symmetries

Lemma 7.1.1. The first order operators xĀ∂B −xB∂Ā commute with Δ̃ and
with r.

Proof.

gCD̄∂C∂D̄(xĀ∂B − xB∂Ā) =

= gCD̄∂C(xĀ∂B∂D̄ − gD̄B∂Ā − xB∂Ā∂D̄) =

= gCD̄(gĀC∂B∂D̄ + xĀ∂B∂C∂D̄ − gD̄B∂Ā∂C − xB∂Ā∂C∂D̄) =

= gCD̄(xĀ∂B − xB∂Ā)∂C∂D̄ + ∂B∂Ā − ∂Ā∂B

Similarly, using that r = xAxA = xĀxĀ,

(xĀ∂B − xB∂Ā)x
CxC =
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xĀxB + xĀx
CxC∂B − xBxĀ − xBx

CxC∂Ā

Now we know that any complex linear combination of such operators, i.e.
any operator of the form V BĀ(xĀ∂B − xB∂Ā) commutes with Δ̃ and r, and
hence induces a symmetry of the sub-Laplacian on M . For convenience, we
give a description of the real operators between them:

Lemma 7.1.2. The operator of the form D = V BĀ(xĀ∂B − xB∂Ā) is real
(D = D), if and only if the matrix V BĀ is skew-Hermitean (represents an

element of Λ1,1
ℂ

n+2), i.e. V BĀ = −V AB̄.

Proof. If we substitute for D into the equation D = D, we get

V BĀ(xA∂B̄ − xB̄∂A) = V BĀ(xĀ∂B − xB∂Ā)

After relabeling the indices, we have

V BĀ(xA∂B̄ − xB̄∂A) = V AB̄(xB̄∂A − xA∂B̄)

which completes the proof.

The vector space of first order operators we have found so far, is clearly
isomorphic to u(ℂn+2, g). The operator corresponding to the central element
is

igBĀ(xĀ∂B − xB∂Ā) = i(xB∂B − xĀ∂Ā)

which induces on M scalar multiplication by i(w1 − w2) on functions with
weight (w1, w2). Since scalar multiplication is not very interesting operator,
we will restrict ourselves to operators corresponding to su(ℂn+2, g).

Every real first order symmetry of the sub-Laplacian can be written in
the form

V c∂c + V c̄∂c̄ + V �∂� + V

where the reality condition reads as V c = V c̄, V � = V �, V = V . Composing
it with the sub-Laplacian, we get:

[
1

2
gqr̄(∂g∂r̄ + ∂r̄∂q) +

i(w1 − w2)

2
∂�, V

c∂c + V c̄∂c̄ + V �∂� + V ] =

=
1

2
gqr̄[2iV c∂qgr̄c∂� − 2iV c̄∂r̄gc̄q∂�]+
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1

2
gqr̄[(∂qV

c)∂r̄∂c + (∂r̄V
c)∂q∂c + (∂q∂r̄V

c)∂c]+

+
1

2
gqr̄[(∂r̄V

c)∂q∂c + (∂qV
c)∂r̄∂c + (∂r̄∂qV

c)∂c]+

+
1

2
gqr̄[(∂qV

c̄)∂r̄∂c̄ + (∂r̄V
c̄)∂q∂c̄ + (∂q∂r̄V

c̄)∂c̄]+

+
1

2
gqr̄[(∂r̄V

c̄)∂q∂c̄ + (∂qV
c̄)∂r̄∂c̄ + (∂r̄∂qV

c̄)∂c̄]+

+
1

2
gqr̄[(∂qV

�)∂r̄∂� + (∂r̄V
�)∂q∂� + (∂q∂r̄V

�)∂�]+

+
1

2
gqr̄[(∂r̄V

�)∂q∂� + (∂qV
�)∂r̄∂� + (∂r̄∂qV

�)∂�]+

+
1

2
gqr̄[(∂qV )∂r̄ + (∂r̄V )∂q + (∂q∂r̄V )]+

+
1

2
gqr̄[(∂r̄V )∂q + (∂qV )∂r̄ + (∂r̄∂qV )]+

+
i(w1 − w2)

2
[(∂�V

c)∂c + (∂�V
c̄)∂c̄ + (∂�V

�)∂� + (∂�V )]

The leading term of the commutator is

(∂qV c)∂q∂c + (∂ r̄V c̄)∂r̄∂c̄ +
1

2
(∂qV r̄ + ∂ r̄V q)(∂q∂r̄ + ∂r̄∂q)+ (7.1)

+(∂qV � + iV q)∂q∂� + (∂ r̄V � − iV r̄)∂r̄∂� (7.2)

Lemma 7.1.3. Let V c∂c+V
c̄∂c̄+V

�∂� be a symbol of some symmetry. Then
we have

V a = i∂aV � (7.3)

V ā = −i∂āV �

0 = ∂(aV b) = i∂(a∂b)V �

0 = ∂(āV b̄) = −i∂(ā∂ b̄)V �

Proof. This is an easy consequence of 7.1. We want the leading term be
of the form 1

2
gbā�(∂ā∂b + ∂b∂ā) for some function �. This means that the

coefficients at ∂q∂c, ∂r̄∂c̄, ∂q∂�, and ∂r̄∂� to vanish. But this is equivalent to
the statement.

Remark 7.1.1. We have

∂aV b̄ + ∂ b̄V a = i[∂ b̄, ∂a]V � = gab̄∂�V
�.
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so � = ∂�V
�.

We see that the symmetry (its symbol) is completely determined by V �.
Now we write down the operator induced by V BĀ(XĀ∂B −XB∂Ā) on M :

V BĀ(XĀ∂B −XB∂Ā) = V BĀ(XĀ�
C
B∂C −XB�

D̄
Ā∂D̄) =

= V BĀXĀ(X
CZB + ZCXB + Y C

e Y
e
B)∂C−

−V BĀXB(X
D̄ZĀ + ZD̄XĀ + Y D̄

ē Y
ē
Ā)∂D̄ =

= V BĀXĀY
e
BY

C
e ∂C − V BĀXBY

ē
ĀY

D̄
ē ∂D̄+

+V BĀXĀXB(Z
C∂C − ZD̄∂D̄)+

+V BĀXĀZBE− V BĀXBZĀĒ

If we want it to be in the form V e∂e + V ē∂ē + V �∂� + V , we shall put

V e = V BĀXĀY
e
B (7.4)

V ē = −V BĀXBY
ē
Ā

iV � = V BĀXĀXB

These functions fulfill the conditions (7.3) on the symbol of a symmetry. Here
we have used that ∂e = ∂ze −

ze
2
∂z∞ + ze

2
∂z∞̄ = Y C

e ∂C .
It may be interesting to write down the basis of first order symmetries

using the ambient construction. We write the real basis of real symmetries,
and it can of course be used as complex basis of complax symmetries. All
the symmetries are of the form V BĀ(XĀ∂B −XB∂Ā), where V

BĀ is a skew-
Hermitean matrix and

XĀ = (z0(z∞ −
zaza
2

), z0zā, z
0) = (X0̄, Xā, X∞̄)

XB = (z0̄(z∞̄ −
zaza
2

), z0̄za, z
0̄) = (X0, Xa, X∞)

Here we shall emphasis that the coordinate vector fields ∂zi are not holomor-
phic, whereas the generators of the contact subbundle ∂j = ∂zj + i

zj
2
∂� are

holomorphic. As the matrix V BĀ we will take in turn all the basis vectors of
the trace-free skew-Hermitean matrices:
Let V ∞∞̄ = i be the only nonzero entry. Then

V BĀ(XĀ∂B −XB∂Ā) =
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= i(∂z∞ − ∂z∞̄) =

= ∂�

Let V a∞̄ = −V ā∞ = 1 be the only nonzero entries. Then

V BĀ(XĀ∂B −XB∂Ā) =

∂za +
za
2
∂z∞ +

za
2
∂z∞̄ − za∂z∞̄ − zā∂z∞ + ∂zā +

zā
2
∂z∞ +

zā
2
∂z∞̄ =

= ∂za + ∂zā +
i(zā − za)

2
∂� =

= ∂a + ∂ā +
za − zā

i
∂�

Let V a∞̄ = V ā∞ = i be the only nonzero entries. Then

V BĀ(XĀ∂B −XB∂Ā) =

i∂za + i
za
2
∂z∞ + i

za
2
∂z∞̄ − iza∂z∞̄ + izā∂z∞ − i∂zā − i

zā
2
∂z∞ − i

zā
2
∂z∞̄ =

= i(∂za − ∂zā) +
za + zā

2
∂� =

= i(∂a − ∂ā) + (za + zā)∂�

Let V 0∞̄ = −V 0̄∞ = 1 be the only nonzero entries. Then

V BĀ(XĀ∂B −XB∂Ā) =

= z0∂z0 − za∂za − z∞∂z∞ −
zaza
2
∂z∞̄ − (z∞̄ −

zaza
2

)∂z∞̄ −

−(z∞ −
zaza
2

)∂z∞ + z0̄∂z0̄ − zā∂zā − z∞̄∂z∞̄ −
zaza
2
∂z∞ =

= w1 + w2 − za∂za − zā∂zā − 2�∂� =

= −za∂a − zā∂ā − 2�∂� + w1 + w2

Let V 0∞̄ = V 0̄∞ = −i and V aā = 2i for fixed a be the only nonzero entries.
Then

V BĀ(XĀ∂B −XB∂Ā) =

= −iz0∂z0 + iza∂za + iz∞∂z∞ + i
zaza
2
∂z∞̄ + i(z∞̄ −

zaza
2

)∂z∞̄ −

−i(z∞ −
zaza
2

)∂z∞ + iz0̄∂z0̄ − izā∂zā − iz∞̄∂z∞̄ − i
zaza
2
∂z∞ +
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+2izā∂za + 2izā
za
2
∂z∞ + 2izā

za
2
∂z∞̄ − 2iza∂zā − 2iza

zā
2
∂z∞ − 2iza

zā
2
∂z∞̄ =

= i(w2 − w1) + i(za + 2zā)∂za − i(zā + 2za)∂zā =

= i(za + 2zā)∂a − i(zā + 2za)∂ā + (zaza + 2zazā)∂� + i(w2 − w1)

Let V ab̄ = −V āb = 1 for fixed a < b be the only nonzero entries. Then

V BĀ(XĀ∂B −XB∂Ā) =

= zb̄∂za + zb̄
za
2
∂z∞ + zb̄

za
2
∂z∞̄ − za∂zb̄ − za

zb̄
2
∂z∞ − za

zb̄
2
∂z∞̄ −

−zā∂zb − zā
zb
2
∂z∞ − zā

zb
2
∂z∞̄ + zb∂zā + zb

zā
2
∂z∞ + zb

zā
2
∂z∞̄ =

= zb̄∂za − za∂zb̄ − zā∂zb + zb∂zā =

= zb̄∂a − za∂b̄ − zā∂b + zb∂ā + i(zāzb − zazb̄)∂�

Let V ab̄ = V āb = i for fixed a < b be the only nonzero entries. Then

V BĀ(XĀ∂B −XB∂Ā) =

= izb̄∂za + izb̄
za
2
∂z∞ + izb̄

za
2
∂z∞̄ − iza∂zb̄ − iza

zb̄
2
∂z∞ − iza

zb̄
2
∂z∞̄ +

+izā∂zb + izā
zb
2
∂z∞ + izā

zb
2
∂z∞̄ − izb∂zā − izb

zā
2
∂z∞ − izb

zā
2
∂z∞̄ =

= izb̄∂za − iza∂zb̄ + izā∂zb − izb∂zā =

= izb̄∂a − iza∂b̄ + izā∂b − izb∂ā + (zazb̄ + zāzb)∂�

Let V a0̄ = −V ā0 = 1 for fixed a be the only nonzero entries. Then

V BĀ(XĀ∂B −XB∂Ā) =

= (z∞ −
zczc
2

)∂za + (z∞ −
zczc
2

)
za
2
∂z∞ + (z∞ −

zczc
2

)
za
2
∂z∞̄ −

−zaz
0̄∂z0̄ + zāza∂zā + zaz

∞̄∂z∞̄ + za
zczc
2
∂z∞ −

−zāz
0∂z0 + zazā∂za + zāz

∞∂z∞ + zā
zczc
2
∂z∞̄ +

+(z∞̄ −
zczc
2

)∂zā + (z∞̄ −
zczc
2

)
zā
2
∂z∞ + (z∞̄ −

zczc
2

)
zā
2
∂z∞̄ =

= −zaw2 − zāw1 + (−
zczc
2

+ i�)∂za + (−
zaza
2

− i�)∂zā +

+zāz
c∂zc + zaz

c̄∂zc̄ + (�
za + zā

2
− i

zczc
2

za − zā
2

)∂� =
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= (−
zczc
2

+ i�)∂a + (−
zaza
2

− i�)∂ā + zāz
c∂c + zaz

c̄∂c̄ +

+(�(za + zā)− i
zczc
2

(zā − za))∂� − zaw2 − zāw1

Let V a0̄ = V ā0 = i for fixed a be the only nonzero entries. Then

V BĀ(XĀ∂B −XB∂Ā) =

= i(z∞ −
zczc
2

)∂za + i(z∞ −
zczc
2

)
za
2
∂z∞ + i(z∞ −

zczc
2

)
za
2
∂z∞̄ −

−izaz
0̄∂z0̄ + izāza∂zā + izaz

∞̄∂z∞̄ + iza
zczc
2
∂z∞ +

+izāz
0∂z0 − izazā∂za − izāz

∞∂z∞ − izā
zczc
2
∂z∞̄ −

−i(z∞̄ + i
zczc
2

)∂zā − i(z∞̄ + i
zczc
2

)
zā
2
∂z∞ − i(z∞̄ + i

zczc
2

)
zā
2
∂z∞̄ =

= i(zāw1 − zaw2)− (� + i
zczc
2

)∂za − izaz
c∂zc −

−(� − i
zczc
2

)∂zā + izaz
c̄∂zc̄ + (

zczc
2

za + zā
2

+ i�
za − zā

2
)∂� =

= −(� + i
zczc
2

)∂a − izaz
c∂c − (� − i

zczc
2

)∂ā + izaz
c̄∂c̄ +

+(−
zczc
2

(za + zā) + i�(za − zā))∂� + i(zāw1 − zaw2)

Let V 00̄ = i be the only nonzero entry. Then

V BĀ(XĀ∂B −XB∂Ā) =

iz0(z∞ −
zaza
2

)(∂z0 −
za

z0
∂za −

z∞

z0
∂z∞ −

zaza
2z0

∂z∞̄)−

−iz0̄(z∞̄ −
zaza
2

)(∂z0̄ −
zā

z0̄
∂zā −

z∞̄

z0̄
∂z∞̄ −

zaza
2z0̄

∂z∞) =

= −(� + i
zaza
2

)w1 − (� − i
zaza
2

)w2 − iza(−
zaza
2

+ i�)∂za +

+izā(−
zaza
2

− i�)∂zā + (�2 −
zaza
2

zaza
2

)∂� =

= −iza(−
zaza
2

+ i�)∂a + izā(−
zaza
2

− i�)∂ā +

+(�2 +
zaza
2

zaza
2

)∂� − (� + i
zaza
2

)w1 − (� − i
zaza
2

)w2
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7.2 Higher order symmetries

Composing such first order operators, we get higher order operators with the
same properties. Concretely, we may write them like this:

V B1Ā1
1 . . . V BsĀs

s (xĀ1
∂B1 − xB1∂Ā1

) . . . (xĀs
∂Bs

− xBs
∂Ās

) (7.5)

From now on, we will denote the product of Vi-s by one tensor field V
B1Ā1...BsĀs .

The rest of the expression (7.5) will be simplified and from the simplification
we get symmetries of the tensor V B1Ā1...BsĀs .

First, we compute the commutator of two first order operators. For this
purpose, we rewrite them as V B

A (xA∂B − xB∂
A), where V B

A ∈ su(ℂn+2, g):

V B1
A1
WB2

A2
(xA1∂B1 − xB1∂

A1)(xA2∂B2 − xB2∂
A2)−

−WB2
A2
V B1
A1

(xA2∂B2 − xB2∂
A2)(xA1∂B1 − xB1∂

A1) =

= V B1
A1
WB2

A2
(xA1�A2

B1
∂B2 + xA1xA2∂B1∂B2 − xA1xB2∂B1∂

A2)−

−V B1
A1
WB2

A2
(xB1x

A2∂A1∂B2 − xB1�
A1
B2
∂A2 − xB1xB2∂

A1∂A2)−

−WB2
A2
V B1
A1

(xA2�A1
B2
∂B1 + xA2xA1∂B2∂B1 − xA2xB1∂B2∂

A1)+

+WB2
A2
V B1
A1

(xB2x
A1∂A2∂B1 − xB2�

A2
B1
∂A1 − xB2xB1∂

A2∂A1) =

= V C
A1
WB2

C xA1∂B2 + V B1
C WC

A2
xB1∂

A2 −WC
A2
V B1
C xA2∂B1 −WB2

C V C
A1
xB2∂

A1 =

= (V C
A W

B
C − V B

C W
C
A )(xA∂B − xB∂

A) (7.6)

So we see that taking commutator doesn’t enlarge the vector space of symme-
tries. Therefore we can restrict ourselves to such tensors V B1Ā1...BsĀs , which
are symmetric in pairs BiĀi. We will restrict to tensors, which are totally
trace-free.

7.2.1 Second order symmetries

Any second order operator on M can be written in the form

P = V c1c2∂c1∂c2 + V c̄1c2(∂c̄1∂c2 + ∂c2∂c̄1) + V c̄1c̄2∂c̄1∂c̄2 +

+V c�∂c∂� + V c̄�∂c̄∂� + V ��∂�∂� + V c∂c + V c̄∂c̄ + V �∂� + V

Commuting it with the sub-Laplacian, we get

[gāb(∂ā∂b + ∂b∂ā) + i(w1 − w2)∂�,
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V c1c2∂c1∂c2 + V c̄1c2(∂c̄1∂c2 + ∂c2∂c̄1) + V c̄1c̄2∂c̄1∂c̄2+

+V c�∂c∂� + V c̄�∂c̄∂� + V ��∂�∂� + LOTS] =

= 2(∂bV c1c2)∂b∂c1∂c2 + 2(∂āV c̄1c̄2)∂ā∂c̄1∂c̄2+

+(∂āV c1c2 + ∂c2V āc1)∂ā∂c1∂c2 + (∂c2V āc1 + ∂c1V āc2)∂c1∂ā∂c2+

+(∂āV c1c2 + ∂c1V āc2)∂c1∂c2∂ā + (∂ c̄2V c̄1b + ∂bV c̄1c̄2)∂b∂c̄1∂c̄2+

+(∂ c̄1V c̄2b + ∂ c̄2V c̄1b)∂c̄1∂b∂c̄2 + (∂ c̄1V c̄2b + ∂bV c̄1c̄2)∂c̄1∂c̄2∂b+

+(4iV c1c2 + 2∂c1V c2�)∂c1∂c2∂� + (−4iV c̄1c̄2 + 2∂ c̄1V c̄2�)∂c̄1∂c̄2∂�+

+(∂ c̄1V c2� + ∂c2V c̄1�)∂c̄1∂c2∂� + (∂c1V c̄2� + ∂ c̄2V c1�)∂c1∂c̄2∂�+

+(2iV c� + 2∂cV ��)∂c∂�∂� + (−2iV c̄� + 2∂ c̄V ��)∂c̄∂�∂�+

+LOTS =

= 2(∂bV c1c2)∂b∂c1∂c2 + 2(∂āV c̄1c̄2)∂ā∂c̄1∂c̄2+ (7.7)

+(∂ c̄1V ac2 + ∂aV c̄1c2 + ∂c2V c̄1a)∂a(∂c̄1∂c2 + ∂c2∂c̄1)+

+(∂ c̄1V āc2 + ∂c2V āc̄1 + ∂āV c̄1c2)∂ā(∂c̄1∂c2 + ∂c2∂c̄1)+

+(4iV c1c2 + 2∂c1V c2�)∂c1∂c2∂� + (−4iV c̄1c̄2 + 2∂ c̄1V c̄2�)∂c̄1∂c̄2∂�+

+(∂ c̄1V c2� + ∂c2V c̄1�)∂�(∂c̄1∂c2 + ∂c2∂c̄1)+

+(2iV c� + 2∂cV ��)∂c∂�∂� + (−2iV c̄� + 2∂ c̄V ��)∂c̄∂�∂� + LOTS (7.8)

We may assume that V c1c2 and V c̄1c̄2 are symmetric and V c̄1c2 = V c2c̄1 is
trace-free because of equivalence.

Lemma 7.2.1. Let P be a symmetry of second order. Then we have:

1. V �� is a solution of the first BGG operator corresponding to represen-
tation ∘ ∘ . . . ∘ ∘

2 0 0 2
= S2

ℂ
n+2

⊠ S2(ℂn+2)∗ and

∂(bV c1c2) = 0 ∂(āV c̄1c̄2) = 0

(∃F a)∂ c̄1V ac2 + ∂aV c̄1c2 + ∂c2V c̄1a = gc̄1c2F a + gc̄1aF c2 (7.9)

(∃F ā)∂ c̄1V āc2 + ∂c2V āc̄1 + ∂āV c̄1c2 = gc̄1c2F ā + gāc2F c̄1

V c1c2 =
i

2
∂(c1V c2)� V c̄1c̄2 = −

i

2
∂(c̄1V c̄2)�

V c� = i∂cV �� V c̄� = −i∂ c̄V ��

2. If V �� = 0, then V c̄1c2 is a solution of the first BGG operator corre-
sponding to ∘ ∘ . . . ∘ ∘

0 1 1 0
= Λ2

ℂ
n+2

⊠ Λ2(ℂn+2)∗.
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Proof. We know that the commutator must be of the form �Δ for some first
order differential operator �. Looking at the leading term, the coefficients
at ∂b∂c1∂c2 , ∂ā∂c̄1∂c̄2 , ∂c1∂c2∂�, ∂c̄1∂c̄2∂�, ∂c∂�∂�, and ∂c̄∂�∂� have to vanish.
This is in turn equivalent to

∂(bV c1c2) = 0 ∂(āV c̄1c̄2) = 0

V c1c2 =
i

2
∂(c1V c2)� V c̄1c̄2 = −

i

2
∂(c̄1V c̄2)�

V c� = i∂cV �� V c̄� = −i∂ c̄V ��

Moreover, the coefficient at ∂a(∂c̄1∂c2 + ∂c2∂c̄1) must be of the form gac̄1F c2 +
gc2c̄1F a for some tensor F c, since the part skew-symmetric in a and c2 is of
lower order. Similarly, the coefficient at ∂ā(∂c̄1∂c2 + ∂c2∂c̄1) must be of the
form gc2c̄1F ā + gc2āF c̄1 . But these are exactly the two remaining equations.

Using the equations 1, we may express V c1c2 as V c1c2 = −1
2
∂(c1∂c2)V ��,

and similarly V c̄1c̄2 = −1
2
∂(c̄1∂ c̄2)V ��. But then we have

∂(bV c1c2) = −
1

2
∂(b∂c1∂c2)V �� = 0

∂(āV c̄1c̄2) = ∂(ā∂ c̄1∂ c̄2)V �� = 0

what is exactly the first BGG operator corresponding to ∘ ∘ . . . ∘ ∘
2 0 0 2

,
as described in section 5.5.

If V �� = 0, then the second and third equation in 1 are equivalent to

the trace-free part of ∂aV c̄1c2 + ∂c2V c̄1a = 0

the trace-free part of ∂ c̄1V āc2 + ∂āV c̄1c2 = 0

what is exactly the first BGG operator corresponding to ∘ ∘ . . . ∘ ∘
0 1 1 0

,
as described in section 5.5.

Remark 7.2.1.

∂ c̄1V c2� + ∂c2V c̄1� = i(∂ c̄1∂c2 − ∂c2∂ c̄1)V �� = −gc̄1c2∂�V
��

Now we look on the ambient construction of second-order symmetries.
We start with investigating symmetries of the form

V B1Ā1B2Ā2(xĀ1
∂B1 − xB1∂Ā1

)(xĀ2
∂B2 − xB2∂Ā2

)
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where V B1Ā1B2Ā2 is symmetric in pairs BiĀi. First, we compute

(xĀ1
∂B1 − xB1∂Ā1

)(xĀ2
∂B2 − xB2∂Ā2

) =

= xĀ1
xĀ2

∂B1∂B2 − xĀ1
xB2∂B1∂Ā2

− xB1xĀ2
∂Ā1

∂B2 + xB1xB2∂Ā1
∂Ā2

+

+xĀ1
gĀ2B1

∂B2 + xB1gĀ1B2
∂Ā2

We are only interested in that part of this product, which is symmetric in
pairs BiĀi and trace-free, i.e.

xĀ1
xĀ2

∂B1∂B2 − xĀ1
xB2∂B1∂Ā2

− xB1xĀ2
∂Ā1

∂B2 + xB1xB2∂Ā1
∂Ā2

So using the ambient construction, we have second order symmetries of the
form

V B1Ā1B2Ā2 [xĀ1
xĀ2

∂B1∂B2 − xĀ1
xB2∂B1∂Ā2

−

−xB1xĀ2
∂Ā1

∂B2 + xB1xB2∂Ā1
∂Ā2

]

Looking at the induced operator, we have

V B1Ā1B2Ā2 [XĀ1
XĀ2

∂B1∂B2 −XĀ1
XB2∂B1∂Ā2

−

−XB1XĀ2
∂Ā1

∂B2 +XB1XB2∂Ā1
∂Ā2

] =

= V B1Ā1B2Ā2 [XĀ1
XĀ2

�D1
B1
∂D1�

D2
B2
∂D2 −XĀ1

XB2�
D1
B1
∂D1�

C̄2

Ā2
∂C̄2

−

−XB1XĀ2
�C̄1

Ā1
∂C̄1

�D2
B2
∂D2 +XB1XB2�

C̄1

Ā1
∂C̄1

�C̄2

Ā2
∂C̄2

] =

= V B1Ā1B2Ā2 [XĀ1
XĀ2

(XD1ZB1 + ZD1XB1 + Y D1
c Y c

B1
)∂D1

(XD2ZB2 + ZD2XB2 + Y D2
c Y c

B2
)∂D2− (7.10)

−XĀ1
XB2(X

D1ZB1 + ZD1XB1 + Y D1
c Y c

B1
)∂D1

(X C̄2ZĀ2
+ ZC̄2XĀ2

+ Y C̄2
c̄ Y c̄

Ā2
)∂C̄2

−

−XB1XĀ2
(X C̄1ZĀ1

+ ZC̄1XĀ1
+ Y C̄1

c̄ Y c̄
Ā1
)∂C̄1

(XD2ZB2 + ZD2XB2 + Y D2
c Y c

B2
)�D2

B2
∂D2+

+XB1XB2(X
C̄1ZĀ1

+ ZC̄1XĀ1
+ Y C̄1

c̄ Y c̄
Ā1
)∂C̄1

(X C̄2ZĀ2
+ ZC̄2XĀ2

+ Y C̄2
c̄ Y c̄

Ā2
)∂C̄2

]

Using the equations

∂a = Y C
a ∂C ∂ā = Y C̄

ā ∂C̄ ∂� = i(ZC∂C − ZC̄∂C̄)
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we see that we have to put

V �� := −V B1Ā1B2Ā2XĀ1
XĀ2

XB1XB2 ∘ � (7.11)

V a� := −iV B1Ā1B2Ā2XĀ1
XĀ2

(XB1Y
a
B2

+ Y a
B1
XB2) ∘ �

V ā� := iV B1Ā1B2Ā2XB1XB2(XĀ1
Y ā
Ā2

+ Y ā
Ā1
XĀ2

) ∘ �

V ab :=
1

2
V B1Ā1B2Ā2XĀ1

XĀ2
(Y a

B1
Y b
B2

+ Y b
B1
Y a
B2
) ∘ �

V āb̄ :=
1

2
V B1Ā1B2Ā2(Y ā

Ā1
Y b̄
Ā2

+ Y b̄
Ā1
Y ā
Ā2
)XB1XB2 ∘ �

V āb := −
1

2
V B1Ā1B2Ā2(XĀ1

XB2Y
ā
Ā2
Y b
B1

+XĀ2
XB1Y

ā
Ā1
Y b
B2
) ∘ �

The functions 7.11 satisfy the equations 1.

7.2.2 General case

We first note, that the zeroth order symmetries are simply the constants,
since they have to satisfy ∂āV = 0 and ∂bV = 0 for a, b = 1, . . . , n. Now we
look at the symmetries of general order d.

Theorem 7.2.1. Let

P =
∑

k+l≤d

V a1...ak b̄1...b̄l�...�∂a1 . . . ∂ak∂b̄1 . . . ∂b̄l∂� . . . ∂� + LOTS

where each V has exactly d indices, be a symmetry of order d. Then we have:

1. V �...� is a solution of the first BGG operator corresponding to ∘ ∘ . . . ∘ ∘
d 0 0 d

and

V a1...ak�...� =
ik

k!
∂(a1 . . . ∂ak)V �...�

V b̄1...b̄k�...� =
(−i)k

k!
∂(b̄1 . . . ∂ b̄k)V �...�

2. If V �...� = 0, then V a1b̄1�...� is a solution of the first BGG operator
corresponding to ∘ ∘ . . . ∘ ∘

d− 2 1 1 d− 2
and

V a1...ak+1b̄1�...� =
ik

k!
∂(a1 . . . ∂akV ak+1)b̄1�...�

V a1b̄1...b̄k+1�...� =
(−i)k

k!
∂(b̄1 . . . ∂ b̄kV b̄k+1)a1�...�
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3. Let 2s ≤ d. If V �...� = V a1b̄1�...� = ⋅ ⋅ ⋅ = V a1...as−1b̄1...b̄s−1�...� = 0, then
V a1...asb̄1...b̄s�...� = 0 and

V a1...ak+sb̄1...b̄s�...� =
ik

k!
∂(a1 . . . ∂akV ak+1...ak+s)b̄1...b̄s�...�

V a1...asb̄1...b̄k+s�...� =
(−i)k

k!
∂(b̄1 . . . ∂ b̄kV b̄k+1...b̄k+s)a1...as�...�

Proof. Every symmetry of order d can be written as

P =
∑

k+l≤d

V a1...ak b̄1...b̄l�...�∂a1 . . . ∂ak∂b̄1 . . . ∂b̄l∂� . . . ∂� + LOTS

where each V is totally symmetric (because the commutator of two deriva-
tives gives a term of lower order), trace-free (because the trace gives some
trivial symmetry) and has exactly d indices. If we commute it with the sub-
Laplacian, the leading term of the commutator consists of terms of two types.
Every V a1...ak b̄1...b̄l�...� gives rise to a term

∂(aV a1...ak)b̄1...b̄l�...�∂a∂a1 . . . ∂ak∂b̄1 . . . ∂b̄l∂� . . . ∂�+

+∂(b̄V b̄1...b̄l)a1...ak�...�∂a1 . . . ∂ak∂b̄∂b̄1 . . . ∂b̄l∂� . . . ∂�

coming from commuting V a1...ak b̄1...b̄l�...� with derivatives of the sub-Laplacian.
Commuting the derivatives of the sub-Laplacian with the derivatives of P ,
we get

i(k − l)V a1...ak b̄1...b̄l�...�∂a1 . . . ∂ak∂b̄1 . . . ∂b̄l∂� . . . ∂�∂�

So together the leading term of the commutator is

∑

k+l=d+1

(∂(a1V a2...ak)b̄1...b̄l + ∂(b̄1V b̄2...b̄l)a1...ak)∂a1 . . . ∂ak∂b̄1 . . . ∂b̄l+

+
∑

1≤k≤d

(ikV a1...ak�...� + ∂(a1V a2...ak)�...�)∂a1 . . . ∂ak∂� . . . ∂�+

+
∑

1≤l≤d

(−ilV b̄1...b̄k�...� + ∂(b̄1V b̄2...b̄l)�...�)∂b̄1 . . . ∂b̄l∂� . . . ∂�+

+
∑

k≥1,l≥1
k+l≤d

i(k − l)V a1...ak b̄1...b̄l�...�∂a1 . . . ∂ak∂b̄1 . . . ∂b̄l∂� . . . ∂�+
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+
∑

k≥1,l≥1
k+l≤d

(∂(a1V a2...ak)b̄1...b̄l�...� + ∂(b̄1V b̄2...b̄l)a1...ak�...�)∂a1 . . . ∂ak∂b̄1 . . . ∂b̄l∂� . . . ∂�

where the second and third row are special cases of the last two rows for l = 0
and k = 0, respectively. This should be the leading term of some operator
of the form �Δ. This is only possible, if

∂(a1V a2...ak)b̄1...b̄l + ∂(b̄1V b̄2...b̄l)a1...ak = g(a1b̄1�a2...ak b̄1...b̄l) (7.12)

for some tensor � and k, l ≥ 1, k + l = d+ 1,

∂(a1V a2...ad+1) = 0 ∂(b̄1V b̄2...b̄d+1) = 0 (7.13)

ikV a1...ak�...� + ∂(a1V a2...ak)�...� = 0 (7.14)

for 1 ≤ k ≤ d,

−ilV b̄1...b̄k�...� + ∂(b̄1V b̄2...b̄l)�...� = 0 (7.15)

for 1 ≤ l ≤ d,

i(k − l)V a1...ak b̄1...b̄l�...� + ∂(a1V a2...ak)b̄1...b̄l�...� + ∂(b̄1V b̄2...b̄l)a1...ak�...� = (7.16)

= g(a1∣(b̄1�∣a2...ak)∣b̄1...b̄l)�...�

for 1 ≤ k, 1 ≤ l, k + l ≤ d and some tensor �.
We will proceed by induction. From equations 7.14, 7.15 and 7.13 we see

that

∂(a1 . . . ∂ad+1)V �...� = 0 (7.17)

∂(b̄1 . . . ∂ b̄d+1)V �...� = 0

what is exactly that V �...� lies in the kernel of first BGG operator corre-
sponding to ∘ ∘ . . . ∘ ∘

d 0 0 d
, as described in section 5.5. We also see that

the terms V a1...ak�...� and V b̄1...b̄k�...� only depend on V �...�. To compute the
dependence explicitly, we use k times the equation 7.14 and 7.15, respectively.
We get

V a1...ak�...� =
ik

k!
∂(a1 . . . ∂ak)V �...�
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V b̄1...b̄k�...� =
(−i)k

k!
∂(b̄1 . . . ∂ b̄k)V �...�

Putting V �...� = 0 (this implies V a1...ak b̄1...b̄l�...� = 0 for min(k, l) = 0), from
equations 7.16 we see that

the trace-free part of ∂(a1 . . . ∂ad−1V ad)b̄1�...� = 0 (7.18)

the trace-free part of ∂(b̄1 . . . ∂ b̄d−1V b̄d)a1�...� = 0

what is exactly that V a1b̄1�...� lies in the kernel of the first BGG operator
corresponding to ∘ ∘ . . . ∘ ∘

d− 2 1 1 d− 2
, as described in section 5.5. We also see

that the terms V a1...ak b̄1...b̄l�...� with min(k, l) = 1 only depend on V a1b̄1�...�.
To compute the dependence explicitly, we use k times equation 7.16. We get

V a1...ak+1b̄1�...� =
ik

k!
∂(a1 . . . ∂akV ak+1)b̄1�...�

V a1b̄1...b̄k+1�...� =
(−i)k

k!
∂(b̄1 . . . ∂ b̄kV b̄k+1)a1�...�

Continuing this way, we see for each s such that 0 < 2s ≤ d, that putting
V �...� = ⋅ ⋅ ⋅ = V a1...as−1b̄1...b̄s−1�...� = 0, we have V a1...ak b̄1...b̄l�...� = 0 for
min(k, l) < s. From equations 7.16 we see that

the trace-free part of ∂(a1 . . . ∂ad+1−2sV ad+2−2s...ad+1−s)b̄1...b̄s�...� = 0 (7.19)

the trace-free part of ∂(b̄1 . . . ∂ b̄d+1−2sV b̄d+2−2s...b̄d+1−sa1...as�...� = 0

what is exactly the first BGG operator corresponding to ∘ ∘ . . . ∘ ∘
d− 2s s s d− 2s

,
as described in section 5.5. We also see that the terms V a1...ak b̄1...b̄l�...� with
min(k, l) = s only depend on V a1...asb̄1...b̄s�...�. To compute the dependence
explicitly, we use k times equation 7.16. We get

V a1...ak+sb̄1...b̄s�...� =
ik

k!
∂(a1 . . . ∂akV ak+1...ak+s)b̄1...b̄s�...�

V a1...asb̄1...b̄k+s�...� =
(−i)k

k!
∂(b̄1 . . . ∂ b̄kV b̄k+1...b̄k+s)a1...as�...�

Remark 7.2.2. The representation ∘ ∘ . . . ∘ ∘
a b b a

of SU(p+1, g+1) is sim-

ply the Cartan product of ∘ ∘ . . . ∘ ∘
a b 0 0

with its dual/conjugate. The rep-

resentation ∘ ∘ . . . ∘ ∘
a b 0 0

is an irreducible subrepresentation of ⊗d
ℂ

n+2
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with symmetries given by Young tableau

. . .. . . . . .

with b columns with two boxes and a columns with one box (the total number
of boxes is d).

Theorem 7.2.2. The vector space of symmetries of the sub-Laplacian Δ is
as a SU(p+ 1, q + 1) representation isomorphic to the direct sum of

. . .. . . . . .
⊠

. . .. . . . . . ∗
(7.20)

for all possible tableaux of this shape including the empty one for symmetries
of order zero. For symmetries of order ≤ d, we only consider tableaux with
≤ d boxes.

Proof. It suffices to prove the second statement. We proceed by induction.
Assume that the statement holds for orders < d. We have proved that for
fixed order d, the vector space of possible symbols is isomorphic to 7.20
for all tableaux of this shape with d boxes. Considering two symmetries of
order d with the same symbol, we substract one from the other and we get a
symmetry of lower order, so we can use the induction hypothesis.

Now we look at the ambient construction of the symmetries. Let I, J be
ordered subsets of {1, . . . , d} such that I ∪ J = {1, . . . , d} and I ∩ J = ∅.
Composing d first order symmetries, we get

V B1Ā1...BdĀd

d
∏

i=1

(XĀi
∂Bi

−XBi
∂Āi

) =

=
∑

∣I∣=k,∣J∣=l
k+l=d

(−1)lV B1Ā1...BdĀdXĀi1
XĀik

XBj1
. . . XBjl

∂Bi1
. . . ∂Bik

∂Āj1
. . . ∂Ājl

where V B1Ā1...BdĀd is totally trace-free and symmetric in pairs BiĀi. Looking
at the induced operator, we get

∑

∣I∣=k,∣J∣=l
k+l=d

(−1)lV B1Ā1...BdĀdXĀi1
XĀik

XBj1
. . . XBjl

∂Bi1
. . . ∂Bik

∂Āj1
. . . ∂Ājl

=

=
∑

∣I∣=k,∣J∣=l
k+l=d

(−1)lV B1Ā1...BdĀdXĀi1
XĀik

XBj1
. . . XBjl

�
Di1
Bi1

∂Di1
. . . �

Dik

Bik
∂Dik

⋅
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⋅�
C̄j1

Āj1
∂C̄j1

. . . �
C̄jl

Ājl

∂C̄jl
=

∑

∣I∣=k,∣J∣=l
k+l=d

(−1)lV B1Ā1...BdĀdXĀi1
XĀik

XBj1
. . . XBjl

⋅

⋅(XDi1ZBi1
+ ZDi1XBi1

+ Y
Di1
a1 Y a1

Bi1
)∂Di1

. . . (XDikZBik
+ ZDikXBik

+ Y
Dik
ak Y ak

Bik
)∂Dik

⋅

⋅(X C̄j1ZĀj1
+ ZC̄j1XĀj1

+ Y
C̄j1

b̄1
Y b̄1
Āj1

)∂C̄j1
. . . (X C̄jlZĀjl

+ ZC̄jlXĀjl
+ Y

C̄jl

b̄l
Y b̄l
Ājl

)∂C̄jl

Knowing that Y D
a ∂D = ∂a, Y

C̄
b̄
∂C̄ = ∂b̄, X

D∂D = E, X C̄∂C̄ = Ē and ZD∂D −

ZC̄∂C̄ = −i∂�, we see we have to put

V a1...ad :=
∑

�∈Sd

1

d!
V B1Ā1...BdĀdXĀ1

. . . XĀd
Y

a�(1)

B1
. . . Y

a�(d)

Bd
∘ � (7.21)

V b̄1...b̄d :=
∑

�∈Sd

1

d!
V B1Ā1...BdĀdXB1 . . . XBd

Y
b̄�(1)

Ā1
. . . Y

b̄�(d)

Ād
∘ �

V a1...ak�...� :=

= (−i)d−k
∑

∣I∣=k

∑

�∈Sk

1

k!
V B1Ā1...BdĀdXĀ1

. . . XĀd
Y

a�(1)

Bi1
. . . Y

a�(k)

Bik
XB . . . XB ∘ �

V b̄1...b̄l�...� :=

= (−1)l(−i)d−l
∑

∣J ∣=l

∑

�∈Sl

1

l!
V B1Ā1...BdĀdXB1 . . . XBd

Y
b̄�(1)

Āj1
. . . Y

b̄�(l)

Ājl

XĀ . . . XĀ ∘ �

V �...� := (−i)dV B1Ā1...BdĀdXĀ1
. . . XĀd

XB1 . . . XBd
∘ �

V a1...ak b̄1...b̄l�...� :=

= (−1)l(−i)d−k−l
∑

∣I∣=k,∣J∣=l

I∩J=∅

∑

�∈Sk
�∈Sl

1

k!l!
V B1Ā1...BdĀdXĀi1

. . . XĀik
XBj1

. . . XBjl
XĀ . . . XĀ⋅

⋅Y
a�(1)

Bi1
. . . Y

a�(k)

Bik
Y

b̄�(1)

Āj1
. . . Y

b̄�(l)

Ājl

XB . . . XB ∘ �

where I and J are ordered subsets of {1, . . . , d} and all indices not specified
are simply the remaining indices. We will always assume this in the sequel.
These functions satisfy the conditions 7.12, 7.13, 7.14, 7.15 and 7.16.

Theorem 7.2.3. For every given symmetry P of the sub-Laplacian Δ, we
can construct a symmetry of Δ with the same symbol using the ambient con-
struction.
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Proof. We know from above that every symmetry of order d can be written
as a sum of symmetries with V a1...asb̄1...b̄s�...� ∕= 0 and V a1...ak b̄1...b̄k�...� = 0 for
all k < s and 0 ≤ 2s ≤ d. So it suffices to construct for each 0 ≤ 2s ≤ d
and each function V a1...asb̄1...b̄s�...� satisfying the first BGG equation corre-
sponding to ∘ ∘ . . . ∘ ∘

d− 2s s s d− 2s
a tensor V B1Ā1...BdĀd inducing a symmetry

with given (up to possible nonzero constant multiple) V a1...asb̄1...b̄s�...� and
such that for all k < s V a1...ak b̄1...b̄k�...� = 0. Since contracting with X-s and
Y -s is equivariant map and for each s the set of possible V a1...asb̄1...b̄s�...�-s
(with V a1...ak b̄1...b̄k�...� = 0 for all k < s) forms an irreducible representation of
SU(p+ 1, q + 1), it suffices to construct the tensor V B1Ā1...BdĀd for one such
function for each s.

For s = 0 we put V �...� = 1 and the only nontrivial component of
V B1Ā1...BdĀd will be V ∞∞̄...∞∞̄ = 1. This doesn’t depend on d (only the
constant factor does).

For s > 0, we have the mapping

V B1Ā1...BdĀd 7→ V B1Ā1...BdĀd(−1)s(−i)d−2s
∑

∣I∣=s,∣J∣=s

I∩J=∅

∑

�∈Ss
�∈Ss

1

(s!)2
XĀi1

. . . XĀis
⋅

⋅XBj1
. . . XBjs

XĀ . . . XĀY
a�(1)

Bi1
. . . Y

a�(s)

Bis
Y

b̄�(1)

Āj1
. . . Y

b̄�(s)

Ājs
XB . . . XB ∘ � =

= V a1...asb̄1...b̄s�...�

We fix some constant tensor field V a1...asb̄1...b̄s�...� and we put

V a1∞̄∞b̄1...as∞̄∞b̄s∞∞̄...∞∞̄ = V a1...asb̄1...b̄s�...�

This will be for now the only nonzero component up to symmetry in BiĀi-
s. This tensor surely satisfies the corresponding first BGG equation. It
is easy to see that the symmetry induced by using this tensor has nonzero
V a1...asb̄1...b̄s�...� (it is in fact, up to nonzero constant, our chosen one). But the
symbol parts V a1...ak b̄1...b̄k�...� = 0 for all k < s are also nonzero. In order to
make them vanish, we define some other components to be possibly nonzero.
These components will not influence the symbol part V a1...asb̄1...b̄s�...�.

Let’s fix some s > 0. We define

V a1∞̄∞b̄1...as∞̄∞b̄s∞∞̄...∞∞̄ = V a1...asb̄1...b̄s�...�

V a1∞̄∞b̄1...as−1∞̄∞b̄s−1asb̄s∞∞̄...∞∞̄ = x1V
a1...asb̄1...b̄s�...�

V a1∞̄∞b̄1...as−2∞̄∞b̄s−2as−1b̄s−1asb̄s∞∞̄...∞∞̄ = x2V
a1...asb̄1...b̄s�...�

80



⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

V a1b̄1...asb̄s∞∞̄...∞∞̄ = xsV
a1...asb̄1...b̄s�...�

These will be the only nonzero components of V B1Ā1...BdĀd up to symmetry in
BiĀi-s. We will call them ’types’-in each row is one particular representant
of one type. For brevity, we will write ’V a1...asb̄1...b̄s�...� = 1’. To make the
symbol parts V a1...ak b̄1...b̄k�...� = 0 for all k < s vanish, they have to satisfy
the following system of linear equations:

To make V a1...ak b̄1...b̄k�...� vanish, we must have
(

d

2s

)(

2s

s

)

ask+1,0 +

(

d

2s− 2

)(

2s− 2

s− 1

)(

d− 2s+ 2

1

)

ask+1,1x1+ (7.22)

+

(

d

2s− 4

)(

2s− 4

s− 2

)(

d− 2s+ 4

2

)

ask+1,2x2 + ⋅ ⋅ ⋅+

(

d

0

)(

0

0

)(

d

s

)

ask+1,s = 0

where the terms
(

d
2s−2i

)(

2s−2i
s−i

)(

d−2s+2i
i

)

express the number of components of
one type (it is always nonzero) and the numbers ask+1,i express the contribu-

tion of one component of corresponding type to the symbol part V a1...ak b̄1...b̄k�...�

modulo the greatest common divisor, which is some polynomial. It is easy
to see that

ask+1,i =

(

s− i

k

)(

s

k

)

+

(

s− i

k − 1

)(

i

1

)(

s− 1

k

)

+

+

(

s− i

k − 2

)(

i

2

)(

s− 2

k

)

+ ⋅ ⋅ ⋅+

(

s− i

k − j

)(

i

j

)(

s− j

k

)

+ ⋅ ⋅ ⋅

This expression is always finite. So we have a system of linear equations in xi-
s, and we only need to prove the existence of some solution. We don’t need the
explicit expression. To prove the existence, we prove that the matrix of this
system has nonzero determinant. First, the determinant is linear in columns,
so it is a polynomial in d times the determinant of matrix with entries ask+1,i.
We will prove that this last determinant is nonzero by induction on s.

We claim that as+1
k+2,i − as+1

k+2,i+1 = ask+1,i, where we put as0,i = 0. This
means that

∑

j≥0

(

s+ 1− i

k + 1− j

)(

i

j

)(

s+ 1− j

k + 1

)

=

=
∑

j≥0

(

s− i

k − j

)(

i

j

)(

s− j

k

)

+
k+1
∑

j=0

(

s− i

k + 1− j

)(

i+ 1

j

)(

s+ 1− j

k + 1

)
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But
(

s+ 1− i

k + 1− j

)(

i

j

)(

s+ 1− j

k + 1

)

=

=

((

s− i

k − j

)

+

(

s− i

k + 1− j

))(

i

j

)(

s+ 1− j

k + 1

)

=

=

(

s− i

k + 1− j

)(

i

j

)(

s+ 1− j

k + 1

)

+

(

s− i

k − j

)(

i

j

)(

s− j

k

)

+

+

(

s− i

k − j

)(

i

j

)(

s− j

k + 1

)

Summing over j we get

∑

j≥0

(

s+ 1− i

k + 1− j

)(

i

j

)(

s+ 1− j

k + 1

)

=

=
∑

j≥0

(

s− i

k − j

)(

i

j

)(

s− j

k

)

+
k+1
∑

j=0

(

s− i

k + 1− j

)(

i

j

)(

s+ 1− j

k + 1

)

+

+
∑

j≥1

(

s− i

k − j

)(

i

j − 1

)(

s+ 1− j

k + 1

)

=

∑

j≥0

(

s− i

k − j

)(

i

j

)(

s− j

k

)

+
k+1
∑

j=0

(

s− i

k + 1− j

)(

i+ 1

j

)(

s+ 1− j

k + 1

)

what is exactly what we claimed. Now we note that as1,i = 1 for all s and i.
Using this, we get
∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 ⋅ ⋅ ⋅ 1 1
as2,1 as2,2 ⋅ ⋅ ⋅ as2,s−1 as2,s
...

...
. . .

...
...

ass,1 as,2 ⋅ ⋅ ⋅ ass,s−1 ass,s

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 ⋅ ⋅ ⋅ 0 1
as2,1 − as2,2 as2,2 − as2,3 ⋅ ⋅ ⋅ as2,s−1 − as2,s as2,s

...
...

. . .
...

...
ass,1 − ass,2 ass,2 − ass,3 ⋅ ⋅ ⋅ ass,s−1 − ass,s ass,s

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

= (−1)s

∣

∣

∣

∣

∣

∣

∣

as−1
1,1 as−1

1,2 ⋅ ⋅ ⋅ as−1
1,s−1

...
...

. . .
...

as−1
s−1,1 as−1

s−1,2 ⋅ ⋅ ⋅ as−1
s−1,s−1

∣

∣

∣

∣

∣

∣

∣

So this determinant is nonzero for any s, if and only if it is nonzero for s = 1.
But in this case the determinant is 1, since it is the determinant of matrix
with one entry, concretely a11,1 = 1.
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Knowing this, we can construct any given symmetry as a sum of those
constructed by the ambient construction. Assume that we can construct
every symmetry of order ≤ k as a sum of symmetries constructed by the
ambient construction. This is trivial for symmetries of order zero, which
are simply the constants. First, we construct some symmetry with the same
symbol. The difference is again a symmetry, but of lower order, so we can
use the induction hypothesis to write the given symmetry as a sum of those
constructed by the ambient construction.
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Chapter 8

Conclusion

In the previous chapter we have constructed the symmetries of the sub-
Laplacian and characterized the vector space of them. Using the ambient
construction as described in [6], it should be possible to do the same in a
more general setting. The next natural aim should be, as in [7], to compute
the multiplicative structure of the algebra of symmetries. In the conformal
case, the symmetry algebra is isomorphic to the tensor algebra of so(n+1, 1)
modulo the two-sided ideal generated by irreducible pieces in the second
tensor power, which don’t occure in the description of symmetries.
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