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Abstrakt: M-strom je dnes již klasická indexačńı metoda použ́ıvaná pro
efektivńı podobnostńı vyhledáváńı v metrických prostorech. Ačkoliv M-
strom již nepatř́ı mezi nejnověǰśı metody, věř́ıme, že stále nab́ıźı zat́ım neob-
jevený potenciál. V této práci se proto zaměřujeme na zp̊usoby, jak vylepšit
jeho p̊uvodńı algoritmy a strukturu. Abychom umožnili rychleǰśı zpracováńı
dotaz̊u pomoćı M-stromu, navrhli jsme několik nových metod jeho konstrukce
(i paralelńıch), které vedou k vytvářeńı kompaktněǰśıch metrických hierar-
chíı a přitom nejsou extrémně drahé. Dále jsme ukázali snadný zp̊usob,
jak rozš́ı̌rit M-strom na novou indexačńı metodu NM-strom, která slouž́ı
k efektivńımu nemetrickému podobnostńımu vyhledáváńı za pomoćı algo-
ritmu TriGen. Všechna tato experimentálně ověřená vylepšeńı prokazuj́ı,
že můžeme M-strom stále ještě považovat za d̊uležitou dynamickou met-
rickou př́ıstupovou metodu vhodnou pro správu rozsáhlých kolekćı nestruk-
turovaných dat. Všechna prezentovaná vylepšeńı mohou být nav́ıc implemen-
tována do následńık̊u M-stromu (např. do PM-stromu), což otev́ırá dveře pro
daľśı výzkum v této oblasti.
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Abstract: The M-tree is a well-known indexing method enabling efficient
similarity search in metric spaces. Although the M-tree is an aging method
nowadays, we believe it still offers an undiscovered potential. We present sev-
eral approaches and directions that show how the original M-tree algorithms
and structure can be improved. To allow more efficient query processing by
the M-tree, we propose several new methods of (parallel) M-tree construction
that achieve more compact M-tree hierarchies and preserve acceptable con-
struction cost. We also demonstrate that the M-tree can be simply extended
to a new indexing method – the NM-tree, which allows efficient nonmetric
similarity search by use of the TriGen algorithm. All these experimentally
verified improvements show that the M-tree can still be regarded as an im-
portant dynamic metric access method suitable for management of large
collections of unstructured data. Moreover, all the improvements can be fur-
ther adopted by M-tree descendants (e.g. the PM-tree), so that the results
presented in this thesis open the door for future research in this area.
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Preface

During the last two decades, devices for capturing digital data have become
cheap and widely available. In connection with the practically ”unlimited”
available storage capacity, the popularity of such devices led to an expo-
nential growth of the volume of produced digital data. For example, the
International Data Corporation predicts over a thousand exabytes of digital
data will be generated in 2010 [Gantz, 2008]. Moreover, there is no doubt
the trend will continue and that more complex devices will soon infiltrate all
domains of human activities. Even now, there are a lot of devices owned by
nearly every person that produce diverse digital data. For example, very pop-
ular ”all-in-one” devices, like smart-phones, can capture and record photos,
videos, sounds, trip paths consisting of GPS coordinates, and allow to publish
media immediately on the Internet. Besides devices usually used for enter-
tainment, there emerge many machines, analyzers and meters in all spheres
of industry, business, health service, science, etc., producing enormous col-
lections of unstructured digital data1 stored in specific data repositories. The
most requested ability of such repositories is to allow efficient data manage-
ment, analysis and searching. Unfortunately, digital data like photos, videos,
sounds, time series, are usually large and complex objects with very poor or
completely missing content structure. Here, the classical data management
approaches, like relational databases or text-based retrieval systems, cannot
be employed, since they are primarily designed for well-structured or textual
data. Hence, some other retrieval models have to be employed for unstruc-
tured data.

One possible retrieval model is to equip unstructured data by keyword an-
notation, and thus create a bridge between unstructured data and text-based
retrieval systems [Baeza-Yates and Ribeiro-Neto, 1999], [Aggarwal and Yu,

1For example, the Large Hadron Collider at CERN generates 40 terabytes of data every
second [CERN, 2010].
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2000]. For example, medicine doctors usually add keywords to EEG curves
or x-ray pictures, to highlight some important anomalies used for diagnostics.
However, the annotation approach has several weak points. It is possible to
annotate just a small fraction of the captured digital data, because it is usu-
ally highly qualified work and the number of domain experts is limited. The
annotation is also usually very subjective, so that the search results cannot
satisfy all users. Hence, a highly qualified human annotation is restricted
to domain-specific catalogs with a limited number of records. An automatic
machine-based annotation of multimedia content used by Internet giants like
Google or Yahoo, is a different concept of keywords assignment (determined
from URL and the embedding web page). However, an automatic annotation
is very imprecise in guessing the semantics from the surrounding text and
thus it cannot be always used for effective multimedia search.

Searching by Similarity

The content-based retrieval [Deb, 2004], [Blanken et al., 2007], [Datta et al.,
2008], where data object itself serves as a query (the query-by example
paradigm), is a more suitable approach to the retrieval of raw unstructured
data. It also happens that objects we are searching for are not present in
the requested database, so that exact matching makes no sense. The similar-
ity search concept is a more appropriate search paradigm for content-based
retrieval systems.

As for annotation, the domain experts are essential also for the similarity
search, however, they are necessary only to specify the model space (i.e.,
defining data descriptors and the similarity function working with them).
This concept is more profitable, since a particular feature extraction and
a similarity function are reusable algorithms that can be employed for an
arbitrary number of processed objects. Thus, the experts can primarily focus
on modeling of complex similarity functions that satisfy user expectations.

In this work, we have focused on the metric space approach, since it is
a model general enough to be applicable for various kinds of data, yet spe-
cific enough to be useful for efficient (fast) retrieval. In the metric model,
objects can be represented by black-box feature descriptors, for which a sim-
ilarity measure (actually, dissimilarity, or distance) satisfying metric axioms
is defined.

The usage of the general metric space model may also lead to a perfor-
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mance loss in case there is a domain-specific database solution designed for
a specific application. However, there is a strong argument justifying the
general metric space model – solving a problem in the metric model is more
reusable for other data types. Moreover, the metric model is often the only
available solution for complex and unstructured data. Hence, we rather focus
on finding general algorithms in metric spaces, which can be later adopted
in various domains employing content-based retrieval, classification, machine
learning, pattern recognition, statistical analysis, data mining, where simi-
larity between objects is considered.

We also address the nonmetric similarity search, which becomes very re-
quested new approach, since metric postulates often constitute an obstacle
for domain experts designing a similarity measure. On the other hand, get-
ting rid of the metric postulates brings problems to the database experts.
Especially the triangle inequality, which is the most criticized postulate, is
the crucial property for efficient database indexing. If we break this strong
postulate, then all metric access methods become only approximate meth-
ods. Nevertheless, approximate searching can be in some cases very efficient
and effective enough. Moreover, since the amount of triangle inequality can
be tuned by a domain expert, as was recently proposed in [Skopal, 2006] and
[Skopal, 2007], we can employ nonmetric searching as a scheme for approxi-
mate search. Therefore, we have also focused on methods allowing tunable
approximate similarity searching (both metric and nonmetric) using some
well-known metric access methods.

Summary of Contributions

In this thesis we focus on M-tree, that is a hierarchical, balanced and paged
indexing structure suitable for efficient similarity search in very large metric
databases. We present three new construction methods in Part I and an
extension of M-tree for nonmetric spaces, called NM-tree, in Part II. The
contribution of Chapter 7 is a follow-up of the TriGen algorithm, a previ-
ously proposed approach to efficient nonmetric similarity search. All these
contributions are summarized as follows:

• We propose a new method of M-tree construction (published in [Lokoč
and Skopal, 2008] and [Skopal and Lokoč, 2009]) based on the well-
known principle of forced reinsertions. This method improves the qual-
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ity of an M-tree hierarchy and thus higher search efficiency is achieved.
Moreover, we also use forced reinsertions as a tool guaranteeing a user-
defined average leaf node utilization.

• We have also revisited the leaf selection strategies in the M-tree and
proposed new hybrid-way leaf selection strategy (published in [Skopal
and Lokoč, 2009]). This tunable method enables a user to choose a
trade-off between indexing costs and query efficiency. We also proposed
the multi-way leaf selection strategy in connection with forced reinser-
tions, that outperforms the other state-of-the-art M-tree construction
techniques both in construction and query costs.

• As a contribution to fast M-tree construction, we propose the paral-
lel batch loading method (published in [Lokoč, 2009]). This method
employs simultaneous insertions and guarantees a significant speedup.
To avoid synchronization problems, we utilize postponed reinsertions,
which results in the construction of more compact M-tree hierarchies.

• In the last contribution we present a new indexing structure called
NM-tree (published in [Skopal and Lokoč, 2008]) that combines the M-
tree and the TriGen algorithm [Skopal, 2006]. The NM-tree natively
supports both metric and nonmetric search without re-indexing. This
is a very important feature, because user can decide at the query time,
whether to perform approximate (faster) or exact (slower) search.

Structure of the Thesis

Apart from the first and the last chapter (introduction and conclusion), the
thesis is organized into two parts. In the first part we focus on the efficient
metric similarity search by M-tree, while in the second part we address the
nonmetric search problems and introduce our new nonmetric access method,
the NM-tree. For better transparency, description of individual chapters
follows.

Chapter 1 remembers the fundamental principles of the content-based
similarity search in the metric space model. We describe the motivation and
the main approaches for efficient indexing and mention several state-of-the-
art metric access methods.
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Since our work is mainly based on the M-tree structure, we remember this
metric access method in detail in Chaper 2. We also describe the related work
dealing with various methods of M-tree construction, because the following
chapters contribute to this topic.

In Chapter 3, we introduce the forced reinsertions and the hybrid-way
leaf selection strategy as the new approaches for relatively cheap and efficient
dynamic M-tree construction. In series of experiments, we present that these
two techniques can improve the compactness of the M-tree hierarchy, while
the indexing costs can still remain acceptable.

Since the parallel processing has become an important trend in algorithm
design, we also introduce our new parallel dynamic batch loading method of
M-tree construction in Chapter 4. The method provides significant speedup
as shown in experiments.

We also address the nonmetric similarity search which is discussed in
Chapter 5. Since we follow the approach utilizing dissimilarity modifications
and reusing metric access methods for nonmetric search, we also show how
to simply turn any nonmetric to a semimetric. Further, we define and prove
several important formal rules necessary for adding the triangle inequality
into any semimetric, making it metric.

In Chapter 6, we mention the TriGen algorithm, which is a tool for find-
ing optimal dissimilarity modifiers. We also remember the T-error model
expressing the behavior of metric access methods under a semimetric mea-
sure.

Our contributions to the M-tree are not restricted just to the metric
model. In Chapter 7, we introduce a new M-tree based nonmetric access
method, the NM-tree, utilizing the TriGen algorithm. The NM-tree allows
both exact and approximate search in nonmetric spaces, while its perfor-
mance remains similar as that for the M-tree.

Chapter 8 concludes the thesis and gives an outlook for the future re-
search, based on the ideas and methods presented in this thesis.
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Chapter 1

The Fundamentals of Similarity
Search in Metric Spaces

During the last two decades, similarity searching in metric spaces has become
intensively investigated research area, as documented in several excellent
monographs and surveys [Chávez et al., 2001], [Zezula et al., 2005], [Samet,
2006]. In the next paragraphs, we will shortly summarize basic fields of
the content-based similarity searching using metric space model. For more
details, see one of the referred publications.

1.1 Examples of Problem Domains

The most important goal of any approach is its applicability. Hence, we
start with several examples of problem domains, where the content-based
similarity search is the mostly requested search operation.

• Multimedia – images, videos, sounds, XML documents, are the most
expanding data collections [Gantz, 2008]. Such an expansion is caused
mainly by the enormous popularity of the Internet and social networks
like Facebook, where it is really very easy to upload and share multime-
dia content. Searching this flood of multimedia data becomes harder
and harder, which brings opportunity for undesirable phenomena like
plagiarism or identity theft. Retrieval systems, supporting queries like
“Return all publications similar to these papers.” or “Return all photos
with somebody’s face published in the Internet.”, can help to fight these
problems. The popularity of the multimedia retrieval (especially the

1



image retrieval) is confirmed by the growth of the number of published
articles in this area [Datta et al., 2008].

• Biometric identification – a tool for solving immediate identity prob-
lems, where unique biometric characteristics like fingerprint, face shape,
iris, voice, are used for the person identification [Brunelli and Poggio,
1993], [Moghaddam and Pentland, 1999]. Here, the similarity search is
a way how to identify a person, since it cannot be guaranteed that the
actually scanned biometric characteristics of a person are exactly the
same as the characteristics stored in the database of persons.

• Spatial models – the problem of 2D and 3D shape matching [Hutten-
locher et al., 1993], [Bartolini et al., 2005], [Bustos et al., 2005], [Keogh
et al., 2009] arises in various domains including CAD/CAM systems,
virtual reality, molecular biology, GIS systems. An efficient retrieval of
the most similar shapes is crucial for the performance of such systems.

• Time series – the similarity search in areas like seismology [Angeles-
Yreta et al., 2004], stock exchange [Fu et al., 2007], medicine (EEG,
ECG), voice recognition, works with large sequences of numbers and
massive databases [Shieh and Keogh, 2009]. Finding similar subse-
quences [Faloutsos et al., 1994] or trends in time series is very important
task in various predictive techniques like earthquake detection, stock
behavior extrapolation, network load prediction, future sales forecast-
ing, to name a few.

1.2 Content-Based Similarity Search

One of the key problems occurring in the content-based similarity retrieval
is to understand and describe what people consider as similar in a specific
domain. The psychological background of similarity is concerned in many
publications like [Tversky, 1977], [Ashby and Perrin, 1988], [Ashby, 1992],
[Santini and Jain, 1999]. However, it is impossible to write a universal algo-
rithm that will excellently supply human perception of similarity. The reason
is that the process of similarity evaluation, which happens in our brain is of-
ten too complex and individual. Nevertheless, it is possible to computerize
this process for the price of some acceptable error rate. Similarity is usually

2



modeled by a similarity function σ, that accepts a pair of objects and returns
a real number, where the higher number means the higher similarity.

However, it is impossible to design a similarity measure σ for very complex
and unstructured objects from a database collection C. Hence, a simplified
feature space U, consisting only from significant extracted features, is derived
from the original space C by an extraction function e : C 7→ U.

Definition 1. Let U be a feature space derived from C and σ be a total
function defined as U × U 7→ R, then σ is called the pairwise similarity
function and the couple (U, σ) is called the similarity space.

The similarity measure is often modeled by a dissimilarity (or distance)
measure δ, which adopts an inverse view of similarity, that is, a higher dis-
tance stands for a lower similarity score, and vice versa. A trivial conversion
between bounded similarity and dissimilarity spaces can be realized by for-
mula δ = σmax − σ.

Definition 2. Let U be a feature space derived from C and δ be a total
function defined as U×U 7→ R, then δ is called the pairwise distance function
and the couple (U, δ) is called the distance space.

For example, in the content-based image retrieval, the original collection
C of images is usually transformed to the feature space U consisting of color
and edge histograms, shapes, etc., extracted from the original images. The
Euclidean or the Hausdorff distance (for definition see Section 1.4.1) is then
often applied to compare two objects from U.

Since a feature extraction should capture all important properties of the
modeled objects, which may result in a nontrivial (non-vectorial) data rep-
resentation, a very general mathematical model is needed, to formalize and
prove basic concepts of similarity searching. Metric spaces [Kelley, 1975]
proved to be a very suitable model, because it puts minimal constraints both
on the data representation and the distance function. On the other side, the
metric postulates still allow efficient indexing and query processing, which is
the essential condition for a successful management of very large databases.

Preferences of Similarity Search

A suitability of the employed retrieval model is usually measured by its ef-
fectiveness and efficiency, where the effectiveness means the quality of the
query results and the efficiency means how quick the query processing is. The
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effectiveness in the content-based similarity search is tightly bound to the em-
ployed similarity measure. Usually, the more effective search is required, the
more complex and expensive similarity measure has to be employed. We
distinguish two orthogonal preferences of the similarity search as follows:

• Topological preferences. The complex similarity measures usually relax
some important topological properties and are modeled by nonmetrics.
On the other hand, topological properties like metric postulates are
necessary for indexing and efficient retrieval. Hence, we have to choose
whether to prefer metric or nonmetric measures.

• Precision preferences. Although in some applications the precision is
the essential property of the employed similarity measure (e.g., biomet-
ric identification), in most areas the similarity measuring and retrieval
is inherently imprecise, subjective and changing over time (e.g., image
retrieval). Hence, a user may prefer faster but approximate search,
where an acceptable number of false hits and false dismissals may ap-
pear.

In this thesis, we focus both on the exact and approximate similarity
search, both metric and nonmetric. In Part I, we address methods allowing
more efficient exact similarity search, while in Part II, we propose a new
access method allowing tunable approximate similarity search.

1.3 Similarity Queries

The task of similarity search in an unstructured database S ⊆ U is usually
accomplished by “single-example” queries, where only one query object q ∈ U
and a proximity criterion is used to describe the expected result set X. The
expressive power of these “single-example” queries may fail in cases, when the
user’s delicate query intent is not available as a single example. Thus, there
also emerged several new query types, so-called “multi-example” queries,
considering more objects forming a query. In the next two Sections, we will
recall some basic “single-example” and “multi-example” query types used in
the content-based retrieval.
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1.3.1 Single-example Queries

The portfolio of available similarity query types consists of mostly single-
example queries, where only one query object is considered. As a result,
such objects are returned, which satisfy a proximity condition specified by
the query object and the query type.

Range Query

The similarity range query R(q, rq) is the simplest type of similarity queries.
The query parameters are a query object q (need not exist in the database)
and a user-defined query radius rq constituting a query ball (see Figure 1.1a).

Definition 3. Let q ∈ U, S ⊆ U, rq ∈ R+
0 and (U, δ) be a distance space,

then R(q, rq) = {X ⊆ S,∀x ∈ X : δ(q, x) 6 rq}

Objects in the result are usually ranked according to their similarity to
the query object. The special case of the range query, where the radius is set
to zero R(q, 0), is called the point query or the exact match query.

k Nearest Neighbor Query

The most noticeable problem of the range query is the necessity of a query
radius. A setting of too low or too large radius may result in an undesired
result set size. In most cases, a user requests just the k most similar objects,
thus here the k nearest neighbor queries kNN(q) are more suitable (see
Figure 1.1b).

Definition 4. Let q ∈ U, S ⊆ U, k ∈ N, k > 0 and (U, δ) be a distance space,
then kNN(q) = {X ⊆ S, |X| = k ∧ ∀x ∈ X,∀y ∈ S− X : δ(q, x) 6 δ(q, y)}

q

rq

q

k = 2

(a) (b)

Figure 1.1: (a) Range query ball with radius rq (b) 2NN query
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The shape of the kNN query is (again) the range query ball with radius
equal to the distance to the k-th nearest neighbor of the query object. How-
ever, the radius is initially unknown and thus heuristics for its fast estimation
are employed when searching. The radius is usually set to ∞ and decreased
using the nearest neighbors candidates array and the priority queue.

k Farthest Neighbor Query

The k farthest neighbor query is the opposite to the k nearest neighbor query,
that is, the query returns the k most distant objects to the query object.

Definition 5. Let q ∈ U, S ⊆ U, k ∈ N, k > 0 and (U, δ) be a distance space,
then kFN(q) = {X ⊆ S, |X| = k ∧ ∀x ∈ X,∀y ∈ S− X : δ(q, x) > δ(q, y)}

k Reverse Nearest Neighbor Query

The k reverse nearest neighbor query kRNN(q) [Korn and Muthukrishnan,
2000] detects how a query object is perceived by other objects in the database.
In other words, it selects objects that view the query object q as their near
neighbor (see Figure 1.2a).

Definition 6. Let q ∈ U, S ⊆ U, k ∈ N, k > 0 and (U, δ) be a distance space,
then kRNN(q) = {X ⊆ S, ∀x ∈ X, q ∈ kNN(x)∧∀y ∈ S−X : q /∈ kNN(y)}

k Distinct Nearest Neighbor Query

The k distinct nearest neighbor query kDNN [Skopal et al., 2009], which
excludes all objects that are too similar to any of the already reported ob-

q q

(a) (b)

ϵ

Figure 1.2: (a) 1RNN query (b) 2DNN query (returned objects are the centers
of two smaller balls)
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jects, have become a new query type for very large databases, filtering near-
duplicates from the result set (see Figure 1.2b).

Definition 7. Let q ∈ U, δ be a distance function, ϵ ∈ R+
0 , k ∈ N, k > 0

and (U, δ) be a distance space, then kDNN(q, ϵ) = {X ⊆ S, |X| = k∧∀x, z ∈
X, y ∈ S− X : δ(x, z) > ϵ ∧ δ(q, x) 6 δ(q, y) ∨ ∃w ∈ X : δ(y, w) < ϵ}

1.3.2 Multi-example Queries

Although the single-example queries are frequently used nowadays, their ex-
pressive power may become unsatisfactory in the future due to increasing
complexity and quantity of available data. The acquirement of an example
query object is the user’s “ad-hoc” responsibility. However, when just a sin-
gle query example should represent the user’s delicate intent on the subject
of retrieval, finding an appropriate example could be a hard task. Such a
scenario is likely to occur when a large data collection is available, and so
the query specification has to be fine-grained. Hence, instead of querying
by a single example, an easier way for the user could be a specification of
several query examples which jointly describe the query intent. Such a multi-
example approach allows the user to set the number of query examples and to
weigh the contribution of individual examples. Moreover, obtaining multiple
examples, where each example corresponds to a partial query intent, is much
easier task than finding a single “holy-grail” example.

The practical class of retrieval techniques, where multi-example queries
have been successfully implanted, is the content-based image retrieval. There
are several studies considering query effectiveness using multiple query im-
ages, for more details see [Tahaghoghi et al., 2001] and [Tahaghoghi et al.,
2002]. Other techniques, using the relevance feedback to improve the quality
of the result (using positive and negative examples), can be found in [Porkaew
et al., 1999]. Very recently, a novel probabilistic framework to process multi-
ple sample queries in the content-based image retrieval has been introduced
in [Arevalillo-Herráez et al., 2010].

As for existing solutions to multi-example query types, there are three
main directions. First, there exist many model-specific techniques based on
an aggregation or unification of the multiple examples, e.g., querying by a
centroid in case of vectors, or by a union, intersection or other composition
of features of the query examples [Tang and Acton, 2003].

Second, a popular approach to multi-query example is issuing multiple
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single-example queries, while the resulting multiple ranked lists are aggre-
gated by means of a top-k operator [Fagin, 1999]. The advantage of this
approach is the employment of an arbitrary aggregation function which pro-
vides an important add-on to the expressive power of querying. Similarity
joins [Jacox and Samet, 2008], joining pairs of objects (from one or more
databases) based on their proximity, can be also included to this group,
although they can be regarded as an operator consisting of series of single-
example queries, rather than a regular multi-example query type.

Third, there are also complex approaches, where all the query objects are
necessary during each step of query processing. For example, the algorithms
for efficient processing of the skyline operator in vector [Papadias et al., 2003]
and metric spaces fall into this category [Chen and Lian, 2009], [Skopal and
Lokoč, 2010].

1.3.3 Motivation for Efficient Similarity Search

All the presented similarity queries are generally formulated, and can be em-
ployed in an arbitrary distance space. The examples of such spaces could be
– 2D points (representing coordinates of gas stations, hotels, etc.) measured
by the Euclidean metric, collection of biometric descriptors measured by the
Hausdorff distance, collection of strings measured by the Edit distance or col-
lection of image color histograms measured by the Quadratic form distance1.
The last three examples show that the employed dissimilarity measure could
be computationally expensive (> O(n2), n being the descriptor size), hence,
the sequential processing is often unacceptable for larger collections. There-
fore, it is necessary to utilize a model providing rules for safe discarding of
irrelevant objects (or sets of objects). In the following section, we will re-
member the metric space model, that is often employed for the similarity
search over unstructured raw data.

1.4 The Metric Space Model

In this section, we will describe some fundamentals of metric spaces – the
definition of metric space and the way it can be utilized for indexing and effi-
cient searching. We will also present several frequently used metric distance
functions.

1All the mentioned distances are described later in the Section 1.4.1.

8



Definition 8. The metric space is a pair M = (U, δ), where (U, δ) is a
distance space and δ satisfies the following conditions for all objects x, y, z ∈
U:

δ(x, y) = 0 ⇔ x = y identity
δ(x, y) > 0 non-negativity
δ(x, y) = δ(y, x) symmetry

δ(x, y) + δ(y, z) > δ(x, z) triangle inequality

The distance function δ is also referred to as the metric distance function.

By removing or restricting some of the postulates, we get particular non-
metric spaces (for more details see Part II). Several examples of nonmetric
spaces are summarized as follows:

• The pseudometric space – by restricting the identity property to the
weaker reflexivity property (∀x : δ(x, x) = 0).

• The quasimetric space – by removing the symmetry property.

• The semimetric space – by removing the triangle inequality property.

For more variants and properties of metric spaces see [Watson, 1999] or
[Zezula et al., 2005].

1.4.1 Metric Distance Measures

Distance functions are used to quantify the closeness of objects in various
domains. It is up to domain experts to choose (and eventually parameterize)
a suitable distance function that will mostly correspond to user expectations.
In the following, we will recall several popular metric distances used for
various kind of data represented in vector or metric spaces. The examples of
several popular metric distances are depicted in Figure 1.3a-g. An example
of a metric defined by the combination of two metrics is depicted in Figure
1.3h. The border region balls show the objects in a given fixed distance from
q.

Minkowski Metrics

The Minkowski metrics (or Lp metrics) are the most popular dissimilarity
measures used in various applications. However, the metrics are restricted
just to vector spaces, where a distance between two vectors (points) is com-
puted.
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Figure 1.3: Region balls of various metric distances

Definition 9. Let V be an n-dimensional vector space and x, y ∈ V, then an
Lp metric is defined as:

Lp(x, y) = (
n∑

i=1

|x[i]− y[i]|p)
1
p (p > 1)

In the Figure 1.3a-d, there are several examples of Lp metrics depicted,
among them the L1 distance (see Figure 1.3a) known as the Manhattan dis-
tance, the L2 metric (see Figure 1.3b) well-known as the Euclidean distance
and the L∞ (see Figure 1.3d) called the Chessboard distance. The condition
p > 1 is important, otherwise the distance would not be a metric – for p < 1 it
does not satisfy the triangle inequality (see Figure 1.4). The time complexity
of the distance evaluation is O(n), hence Lp metrics are considered as cheap
dissimilarity measures. The Lp metrics are suitable to model a dissimilarity
in vector spaces with independent dimensions.

There exist also cases, where it is profitable to prefer more significant
coordinates and to suppress the less significant ones. For such cases, the
weighted Lp metric can be used as a generalized variant of the original Lp

metric (see Figure 1.3e).
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Figure 1.4: Nonmetric L0.5 space, where δ(x, y) + δ(y, z) < δ(x, z)

Quadratic Form Distance

The quadratic form distance [Seidl and Kriegel, 1997], also called the Ma-
halanobis distance, is a generalization of the weighted Euclidean metric.
Quadratic form distance uses a geometric transformation matrix M, which
expresses a correlation between vector coordinates, and thus the distance
could better fit user expectations (see Figure 1.3f). Its typical application is
histogram similarity, etc.

Definition 10. Let V be an n dimensional vector space, x, y ∈ V and M
be an n × n square positive semi-definite matrix, then the Quadratic form
distance is defined as:

LQF (x, y) =
√
(x− y)M(x− y)T

Angle Distance

The angle between two vectors (see Figure 1.3g) is also a metric that can
be viewed as an L2-distance along the surface of origin-centered unitary L2-
ball. The angle distance, in a form of non-metric cosine measure (see section
5.1), is widely used in Information Retrieval [Baeza-Yates and Ribeiro-Neto,
1999].

Levenshtein Metric

Levenshtein metric [Levenshtein, 1965], also called the edit distance, mea-
sures the proximity of two strings x, y, which can be expressed as the minimal
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number of three basic edit operations (insert, delete and replace a character)
used to transform string x into string y. An efficient evaluation of the edit
distance is accomplished by the dynamic programming techniques. However,
for two strings of length n and m, the time complexity of the distance eval-
uation is still high – O(nm). Thus, for two long strings the edit distance
becomes an expensive operation.

Tree Edit Distance

The similarity of two linear structures can be computed by the edit distance.
For tree structures, there was a more sophisticated (and also more expensive)
method developed – the tree edit distance. The tree edit distance is used for
tree pattern matching [Zhang and Shasha, 1997] and is defined as the minimal
number of tree edit operations like insertion or deletion of a node. The time
complexity of the tree edit distance has a worst-case time complexity of
O(n4), where n is the number of tree nodes.

Jaccard’s Distance

In some applications, a data object is formed by a set. For example, a
user behavior in the Internet can be represented as the set of visited web
pages. To compare the behavior of two users, sets containing visited URLs are
compared. A proximity of the two sets is usually measured by the Jaccard’s
distance, that measures a normed overlap distance between two sets.

Definition 11. Assuming two sets X and Y , the Jaccard’s distance is defined
as:

δJD(X, Y ) = 1− |X
∩

Y |
|X

∪
Y |

Hausdorff Distance

The Hausdorff distance [Huttenlocher et al., 1993] is another way how to
measure the proximity of two sets. The Hausdorff distance does not use
just match/mismatch between elements of two sets, it employs an arbitrary
metric subdistance δ′ to compute nearest neighbors between all elements of
the sets. This approach is usually applied for matching two sets consisting
of geometric shapes, e.g., to compare two fingerprints represented by 2D
points. The computation of the Hausdorff distance has a time complexity
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Figure 1.5: The Hausdorff distance between two sets of 2D points.

O(nm)O(δ′) for sets of sizes n and m. An example of the Hausdorff distance,
used to measure two sets of 2D points by L2 metric, is depicted in the Figure
1.5.

Definition 12. Assuming two sets X, Y , and a metric function δ′, the
Hausdorff distance is defined as:

δHausdorff (X,Y ) = max{h(X, Y ), h(Y,X)}

h(X, Y ) = max
i=1...|X|

{ min
j=1...|Y |

{δ′(xi, yj)}}

where xi means the i-th element of the set X.

Earth Mover’s Distance

The Earth mover’s distance (EMD) [Rubner et al., 1998] is used in content-
based image retrieval as a metric between two distributions. The distance is
based on the minimal cost, that must be paid to transform one distribution
into the other, that is, to solve the transportation problem. A theoretical
analysis of the time complexity of the transportation problem shows that the
problem depends exponentially on the input size (in worst case). However,
in practice, a good initial solution is available which drastically decrease
the number of iterations needed, thus for smaller instances of the problem
it is possible to evaluate the distance efficiently. Moreover, if both feature
vectors have the same number of dimensions, the EMD can be computed in
O(n3 log n) time [Rubner and Tomasi, 2001].
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1.4.2 Pivots

As mentioned in Section 1.3.3, sequential search of a database is often un-
acceptable and thus it is necessary to construct an index. Since the only
“exploitable” information in a metric space are the values produced by the
distance function δ, the employed indexing methods can utilize only distances
between objects. Basically, all the metric indexing methods utilize a subset
P ⊂ S of specially selected objects, so-called pivots pi (also referred to as
vantage points or reference points). A relationship (e.g., in the form of pre-
computed distances) between pivots and the remaining database objects is
later used for pruning and filtering during the search.

For example, one of the most fundamental rule employed in the metric
search is the lower/upper bound distance estimation. Let p, q, x ∈ S and d1 =
δ(p, x), d2 = δ(p, q), then from the triangle inequality we can estimate the
lower/upper bound of distance δ(x, q) ∈ ⟨|d1− d2|, d1+ d2⟩. These estimated
distances can be employed during the search for safe filtering of irrelevant
objects (described in the following Sections).

From the previous example, it follows that we need a set of pivots which
will provide a good estimation of unknown distances. If all the database
objects were used as pivots, we could obtain excellent distance estimations.
However, the number of pivots should be as low as possible to reduce the
index size and initial query costs2. Hence, to propose good and “cheap” dis-
tance estimations, a proper minimal set of pivots has to be selected. During
the last decade, there arose several pivot selection techniques, considering
the quality of the selected set of pivots. For more details, see [Bustos et al.,
2003] or [Bustos et al., 2008].

1.4.3 Partitioning Principles

Partitioning is one of the most fundamental principles of any data access
method. Objects from the database S ⊆ U are divided into sub-groups
according to their proximity, so that for a particular query, only several
sub-groups have to be searched. Partitioning in metric spaces is more com-
plicated, because there does not exist geometrical borders as in (Euclidean)
vector spaces. The specially selected pivots pi are used to break the database
S into subsets containing objects similar by close pivots. Later, during the

2The distances between the query object and all the pivots are usually evaluated.
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search, the pivots are used as the representatives of classes containing simi-
lar objects, and may be utilized in filtering rules. We distinguish two basic
partitioning principles and several extensions combining them.

Ball partitioning

Ball partitioning [Uhlmann, 1991] uses only one pivot p to break the space
S into two subgroups S1 and S2. Let r be a user-defined radius of a ball
centered in p, then S1 and S2 are defined as:

• S1 = {oi|d(oi, p) 6 r}

• S2 = {oi|d(oi, p) > r}

To obtain a balanced partitioning, we can set r to distance dm equal to
the median from all the distances d(oi, p). If there are more objects with
the median distance from p, the objects are distributed arbitrarily between
S1 and S2, preserving the balanced fashion. An example of 2D vector space,
divided into two parts by the ball partitioning, is depicted in the Figure 1.6a.

Generalized hyperplane partitioning

Generalized hyperplane partitioning also breaks the space S into two sub-
groups S1 and S2. In contrast to the ball partitioning, it uses two pivots p1
and p2 to divide objects into two subgroups according to their distance from
the pivots. The sets S1 and S2 are defined as follows:

• S1 = {oi|d(p1, oi) 6 d(p2, oi)}

• S2 = {oi|d(p1, oi) > d(p2, oi)}

The generalized hyperplane partitioning does not guarantee a balanced
split, hence a nontrivial effort should be spent to properly select the two piv-
ots. An example of 2D vector space, divided into two parts by the generalized
hyperplane partitioning, is depicted in the Figure 1.6b.

Extensions

In the previous two paragraphs, we have mentioned two basic partitioning
principles used in metric spaces to organize data into groups of similar ob-
jects. These two principles can be further extended for particular applications
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Figure 1.6: (a) The Ball and (b) the Hyperplane partitioning.

to gain more suitable partitions. For example, the excluded middle partition-
ing [Yianilos, 1999], equipping the ball partitioning with the excluded middle
ring around median distance dm, divides the space into three subsets as fol-
lows:

• S1 = {oi|d(oi, p) 6 dm − ρ}

• S2 = {oi|d(oi, p) > dm + ρ}

• S3 = {oi|d(oi, p) > dm − ρ ∧ d(oi, p) 6 dm + ρ}

The excluded middle partitioning has been motivated by similarity queries
represented by small ball regions. For such queries and a sufficiently large ρ,
the search always prunes at least one of the subsets.

Other possible extensions are summarized as follows:

• Utilizing more pivots or more threshold values to create more partitions
in one step.

• Recursive splitting of previously created groups and forming a hierarchy
of partitions.

1.4.4 Principles of Filtering

In the previous section, we have shown basic methods of metric space par-
titioning into equivalence classes of similar objects. All the objects from an
equivalence class are bounded by its metric region defined by one or several
pivots. The metric regions are then used during the search to avoid exhaus-
tive sequential processing. Hence, correct and effective filtering mechanisms
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for metric regions are necessary. Based on the metric postulates, several low-
level filtering principles can be defined for each type of metric regions and
the most common query shape – the ball region.

Filtering of ball-shaped regions

Having a query ball (q, rq) and a ball-shaped data region (p, rp), the data
region can be excluded (filtered) from the search if the two balls do not
overlap, that is, in case that predicate

δ(q, p) > rq + rp

is true (see Figure 1.7a). Note that this simple predicate applies also on
filtering database objects themselves (rather than regions), considering just
database object p, i.e., rp = 0.

Some metric indexes combine two balls to form a ring, which is a pair of
two concentric balls, where the smaller one is regarded as a hole in the bigger.
In order to determine an overlap with query ball, the previous predicate alone
cannot be used to determine that a query ball is entirely inside the hole.
Hence, we use another predicate

δ(q, p) < rp − rq

to determine whether the query ball is entirely inside the hole (see Figure
1.7b). A query ball is not overlapped by a ring region in case the first
predicate is true for the bigger ball or the latter predicate is true for the
smaller ball (hole).

Filtering of half-space regions

Several metric indexes partition the metric space by use of a border composed
of ”hyperplanes“3. Given m pivot objects, the border is formed by all such
points of the universe, which are equally distant to the two closest pivots out
of all the pivot objects. A region assigned to pivot object p does not overlap
a query region (q, rq) if the following predicate is true

∀pi : δ(q, p)− rq > δ(q, pi) + rq

where ∀pi are the remaining pivot objects (see Figure 1.7c).

3This is just an intuition taken from the L2 space, because borders do not exist in
metric spaces.
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Figure 1.7: Filtering of (a), (b) ball-shaped and (c) half-space regions.

Distance estimation

All the mentioned filtering rules determine regions that can be safely dis-
carded during the search. However, all the filtering rules assume evaluation
of distance δ between the query object and the pivots. Although the filtering
rules save some cost, the search can be still too expensive due to the need
of explicit δ evaluation. Hence, the filtering rules are usually split into two
steps. First, the lower or upper bound of the distance δ is estimated and used
in a filtering rule. If the rule is fulfilled, the region can be filtered without
any distance evaluation. Otherwise, as the second step, the real distance δ
is evaluated and used in the filtering rule second time.

A distance δ(q, x) between the query object q and the database object x
can be estimated using a pivot p, to which distances δ(q, p) and δ(x, p) have
already been evaluated (and stored). Generally, there exist three cases, where
such precomputed distances useful for bound determination are available,
summarized as follows:

• Several objects are stated as global pivots and the distance matrix
between all database objects and pivots is computed. Before a query
processing the distances between pivots and the query object must be
evaluated as well.

• In a metric index, there are usually stored precomputed distances be-
tween database objects and some local pivots, while the distance be-
tween the query object and a local pivot has been evaluated during the
previous steps of a search algorithm.
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• The distance cache is used – for more details about distance caching in
metric spaces see [Skopal and Bustos, 2009].

1.4.5 Indicators of Indexability

The topological properties of employed distance measure are necessary but
not sufficient for design of a successful access method. Hence, other informa-
tion based on some kind of statistical analysis over a particular database is
needed. Let us mention two important indicators of indexability.
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Figure 1.8: Histograms with (a) high and (b) low intrinsic dimensionality

Intrinsic Dimensionality

The distance distribution inside the database S can reveal whether there
appear clusters of objects and how tight they may be. The intrinsic di-
mensionality [Chávez et al., 2001; Chávez and Navarro, 2001] can indicate
efficiency limits of any access method and is defined as follows:

ρ(S, δ) =
µ2

2σ2

Basically, the intrinsic dimensionality of the data space is a global charac-
teristic related to the mean µ and variance σ computed on the set of pairwise
distances within the data space. A high intrinsic dimensionality of the data
leads to poor partitioning/indexing by any access method (resulting in slower
searching), and vice versa. The examples of distance distribution histograms
with high and low intrinsic dimensionality are depicted in Figure 1.8. The
problem of high intrinsic dimensionality can be considered as a generaliza-
tion of the well-known curse of dimensionality [Böhm et al., 2001] into metric
spaces.
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Ball-Overlap Factor

The ball-overlap factor (BOF) [Skopal, 2007] captures an information about
real relationships between data clusters described by particular regions in the
distance space. The BOF is defined as:

BOFk(S, δ) =
2

|S∗| ∗ (|S∗| − 1)

∑
∀oi,oj∈S∗,i>j

sgn(|(oi, δ(oi, kNN(oi)))∩̄

∩̄(oj, δ(oj, kNN(oj)))|)

where δ(oi, kNN(oi)) is the distance to oi’s k-th nearest neighbor in S∗ ⊂ S
and (oi, δ(oi, kNN(oi))) is thus the ball in metric space centered in oi of
radius δ(oi, kNN(oi)). The statement sgn((·, ·)∩̄(·, ·)) returns 1 if the two
balls overlap 4 and 0 if they do not. The ball overlap condition is defined
as δ(oi, kNN(oi)) + δ(oj, kNN(oj)) > δ(oi, oj). The BOF can serve us as an
appropriate efficiency indicator for access methods based on the ball parti-
tioning.

1.5 Metric Access Methods

Among general techniques to efficient similarity search, the metric access
methods (MAMs) are suitable in situations where the similarity measure δ is
a metric distance. The metric postulates allow us to organize the database
S within equivalence classes, embedded in a data structure which is stored
in an index file.

The index is later used to quickly answer typical similarity queries - either
a k nearest neighbors (kNN) query like ”return the 5 most similar images
to my image of a dog“, or a range query like ”return all voices more similar
than 90% to the voice coming from a treetop“. In particular, when issued
a similarity query, the MAMs exclude many non-relevant equivalence classes
from the search (based on metric properties of δ), so only several candidate
classes of objects have to be exhaustively (sequentially) searched, see Figure
1.9. In consequence, searching a small number of candidate classes turns out
in reduced computation cost of the query.

The efficiency of similarity queries in metric indexes depends on mini-
mization of the computation cost and I/O cost. A semantically complex

4In geometric-based, not data-based, meaning.
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Figure 1.9: Metric access methods.

and sophisticated similarity function is often computed by an expensive al-
gorithm (see the Earth Mover’s distance in Section 1.4.1) This is the reason
why MAMs focus mainly on the reduction of distance computations and why
even the traditional database measure like I/O cost may become negligible.
However, when using cheap metric distances, like L2, we must take multiple
types of cost into account.

In the next few Sections, we will mention several orthogonal methods of
the metric space organization and pruning. For more details and for other
structures, see the monographs [Zezula et al., 2005] and [Samet, 2006].

1.5.1 Sequential File

The sequential file is simply the original database, where any query involves
a sequential scan over all the database objects. For a query object q and
every database object oi a distance δ(q, oi) must be computed (regardless
of query selectivity). Although this kind of “MAM” is not very smart, it
does not require any index (i.e., no indexing), which can be useful in many
situation. Moreover, it can be simply extended to the D-file structure [Skopal
and Bustos, 2009], which has proved to be a competitive index-free metric
access method.

1.5.2 D-File

The D-file [Skopal and Bustos, 2009; Skopal et al., 2010] is based on sequential
scan and a main-memory structure – the D-cache. The D-cache stores the
distances evaluated during previously processed queries. Given a stream of
queries q1, .., qn, the earlier queries can serve as dynamic pivots for the later
ones – their distances to database objects are stored in the D-cache. Hence,
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Figure 1.10: (a) The metric space and (b) the “pivot space”.

if we evaluate distances between the actually issued query q and the previous
queries, we can estimate lower/upper bound distances between q and the
database objects.

1.5.3 Pivot Tables

A simple but efficient solution to similarity search under expensive δ represent
methods called pivot tables (or distance matrix methods). In general, a set
of k pivots is selected from the database, while for every database object
a k-dimensional vector of distances to the pivots is created. The vectors
belonging to the database objects then form a distance matrix - the pivot
table. An example of a metric space and the corresponding “pivot space” is
depicted in the Figure 1.10a,b.

When performing a range query (q, r), a distance vector for the query
object q is determined the same way as for a database object. From the query
vector and the query radius r a k-dimensional hyper-cube is created, centered
in the query vector (query point, actually) and with edges of length 2r. Then,
the range query is processed on the pivot table such that database object
vectors which do not fall into the query cube are filtered out from further
processing. The database objects the vectors of which were not filtered by the
query cube have to be subsequently checked by the usual sequential search.

There have been many MAMs developed based on pivot tables. The
AESA [Vidal, 1994] treats all the database objects as pivots, so the result-
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ing distance matrix has quadratic size with respect to the database size.
Also, the search algorithms of AESA is different, otherwise the determina-
tion of the distance vector of the query would turn out in a sequential scan of
the entire database. The advantage of AESA is empirical average constant
complexity of nearest neighbor search, the drawback is the quadratic space
complexity and also quadratic time complexity of indexing (creating the ma-
trix) and of the external CPU cost (loading the matrix when querying). The
LAESA [Micó, 1992] is a linear variant of AESA, where the number of pivots
is assumed far less than the size of the database (so that query vector deter-
mination is not a large overhead). The concept of LAESA was implemented
many times under different conditions, we name, e.g., TLAESA [Micó et al.,
1996] (pivot table indexed by GH-tree-like structure), Spaghettis [Chávez
et al., 1999] (pivot table indexed by multiple sorted arrays), OMNI fam-
ily [Traina et al., 2007] (pivot table indexed by R-tree) and PM-tree [Skopal,
2004] (hybrid approach combining M-tree and pivot tables) described further
in the next chapter.

1.5.4 GNAT

The Geometric Near-Neighbor Access Tree (GNAT) [Brin, 1995] is a met-
ric access method that extends the Generalized-Hyperplane Tree [Uhlmann,
1991]. The main idea behind GNAT is to partition the space into subgroups,
so-called zones, that contain close objects.

The root node of the tree contains m objects selected from the space,
the so-called split points (pivots). The rest of the objects is assigned to
their closest split point. The construction algorithm selects with a greedy
algorithm the split points, such that they are far away from each other.

Each zone defined by the selected split points is partitioned recursively
in the same way (possibly using a different value for m), thus forming a
search hierarchy. At each node of the tree, an O(m2) table stores the range
(minimum and maximum distance) from each split point to each zone defined
by the other split points. That is,

range[i, j]o∈zone(spj) = [min δ(spi, o),max δ(spi, o)]

where spi denotes the ith split point and zone(spj) denotes the zone defined
by split point spj.

The original GNAT structure has been further extended to EGNAT [Uribe
et al., 2006] by storing the distances from each split point to the split point
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Figure 1.11: GNAT node with m = 4 split points (o1, o3, o4, o5).

of the parent node/zone, similarly as in M-tree. This straightforward im-
provement can speedup the query performance several times. Besides other
enhancements, we name the deletion algorithm utilizing so-called ghost hy-
perplanes, or special leaf node type “bucket” that stores only the distances
to parent which results in smaller index size.

The GNAT performs recursively a range query (q, r) as follows. Starting
at the root node, the search algorithm selects one of the split points spi from
the node. It computes δ(spi, q), and if this distance is equal or smaller than
r, it adds spi to the result. For all the other split points spj, i ̸= j, the search
algorithm computes the intersection between [δ(sp, q) − r, δ(sp, q) + r] and
range [i, j]. If the intersection is empty, the zone of spj can be safely discarded
as it cannot contain any relevant object (this can be proved using the triangle
inequality property of δ). The search algorithm repeats the process with all
the split points. Finally, the algorithm searches recursively on all zones that
could not be discarded.

1.5.5 M-tree

The M-tree [Ciaccia et al., 1997] is a dynamic index structure that provides
good performance in secondary memory (i.e., in database environments).
The M-tree index is a hierarchical structure, where some of the data objects
are selected as centers (local pivots) of ball-shaped regions, and the remain-
ing objects are partitioned among the regions in order to build up a balanced
and compact hierarchy of data regions. Each region (subtree) is indexed re-
cursively in a B-tree-like (bottom-up) way of construction. For more details,
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see the following chapter.

1.5.6 D-index

The D-index [Dohnal et al., 2003] is based on the excluded middle ball par-
titioning (as in case of VP-forest [Yianilos, 1999]) and the idea of similarity
hashing [Gennaro et al., 2001]. The D-index uses the partitioning to define an
external metric hash function, employing ball partitioning ρ-split functions
bps1,ρ,j(oi) returning:

• 0 if δ(oi, pj) 6 δm − ρ

• 1 if δ(oi, pj) > δm + ρ

• 2 otherwise

where pj is the pivot assigned to the function bps1,ρ,j, dm is a median distance
and ρ determines the thickness of the middle partition.
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For k pivots, k such functions are used to form a complex hashing func-
tion, that assign a sequence of k digits (from the set {0, 1, 2}) to each object
from the database. Each sequence determines one partition (bucket). If a se-
quence contains digit 2, the object is inserted to the exclusion set. The hash
function partitions the database into up to 2k buckets and one exclusion set.
Since the exclusion set may contain many objects, a new set of pivots can be
selected and used to organize objects from the exclusion set into new level of
buckets, employing new ρ-split functions. This process may repeat in several
iterations until the size of the exclusion set in the last level is sufficiently
small. As a result, the multi-level hash table is created, each level using
its own set of ball-partitioning ρ-split functions and pivots. The number of
pivots may vary for each level. An example of the first-level partitioning (the
top part) and the two-level D-index structure (the bottom part) is depicted
in Figure 1.12.

When issuing a range query, the distances between the query object and
all the pivots used in the first level has to be evaluated, to determine all
buckets intersecting the query region. The intersecting buckets have to be
sequentially searched, while the remaining buckets can be filtered out. If
the query intersects the exclusion set, the next level of the index has to be
entered and processed in the same way as the previous level. The authors
report very good performance of the D-index in I/O cost and for queries
having rq 6 ρ.

1.5.7 M-index

A recently introduced MAM, the M-index [Novak and Batko, 2009], em-
ploys practically all known principles of metric space pruning and filtering.
Inspired by iDistance [Jagadish et al., 2005] (designed for high-dimensional
vector spaces), objects from the universe U are mapped into the real domain,
which can be effectively managed by B+-tree or distributed to more nodes,
as shown in the M-chord index [Novak and Zezula, 2006]. Assuming a nor-
malized metric distance δ, the mapping function uses the set of global pivots
p0, ..., pn−1 and the Voronoi partitioning. More specifically, each object is
assigned a real number key, consisting of the object’s distance to the closest
pivot (the fractional part of the key) and the index of an assigned Voronoi
partition (the integer part of the key). An example of such mapping is de-
picted in Figure 1.13a. To obtain more partitions using the same number of
pivots, repetitive Voronoi partitioning can be used, resulting in multi-level
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M-index structure (see Figure 1.13b). The key is computed as:

keyl(o) = δ(p(0)o , o) +
l−1∑
i=1

(i)on
l−1−i

where (.)o : {0, ..., n − 1} 7→ {0, ..., n − 1} is a permutation of indexes such
that δ(p(0)o , o) 6 δ(p(1)o , o) 6 ... 6 δ(p(n−1)o , o), l determines the l-prefix of
the pivot permutation, 1 6 l 6 n (the size of the key domain is nl).

The authors also proposed the dynamic variant of the mapping where
the tree of repetitively generated partitions is not balanced – see Figure
1.13, where only the cluster C2 assigned to pivot p2 is further expanded to
two clusters C20 and C21. The dynamic variant better fits the distribution of
objects in a database. The modified key function for dynamic M-index is:

keyl(o) = δ(p(0)o , o) +
l−1∑
i=1

(i)on
lmax−1−i

where the size of the l-prefix of the pivot permutation is bounded by lmax

value.
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Figure 1.13: (a) Mapping to the key domain (b) repetitive Voronoi partition-
ing (c) minimal and maximal distance to the closest pivot.
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A query processing in the M-index starts with mapping of the query object
to the pivot space. Due to the repetitive Voronoi partitioning, filtering of half-
space regions can be applied up to l-times. Since the ring defined by distances
min∀o∈Ci

{δ(p, o)} and max∀o∈Ci
{δ(p, o)} is stored in the structure for each

leaf cluster Ci (see Figure 1.13c), filtering of ball-shaped regions can be also
employed. If none of the previously mentioned rules filters out a processed
cluster, an interval of the searched key domain has to be determined and
inspected. Finally, because of storing distances from each object to all global
pivots (determined during indexing), the efficient pivot space filtering can be
employed. The authors have also proposed efficient and effective approximate
search algorithm, that outperforms the state-of-the-art approximate search
methods.

1.5.8 Other Methods

Among MAMs, there have appeared also methods that are not based on basic
pivot filtering principles (in contrast to previous methods). In the following,
we will shortly recall two interesting methods.

Permutation Based Algorithm

The permutation-based algorithm [Chávez et al., 2005] is based on the fact,
that a selected set of pivots forms neighborhood for objects in the database.
A neighborhood of an object o can be represented as a permutation of pivot
indexes (.)o : {0, ..., n − 1} 7→ {0, ..., n − 1} where δ(p(0)o , o) 6 δ(p(1)o , o) 6
... 6 δ(p(n−1)o , o). For theoretical results of how many distinct distance per-
mutations may occur in various metric spaces, see [Skala, 2008]. Since similar
objects have similar view of their neighborhood (encoded by permutations),
we can use permutations as representatives of the original objects. In other
words, objects from the database are mapped to the “permutation space”,
where usually Spearman Rho Sρ metric is used to evaluate the similarity of
two permutations and thus estimate the relative proximity of the original
objects. The estimated value is then used in preprocessing heuristics before
query processing.

The permutation based algorithm selects a set of pivots and creates index
storing permutation (.)oi for each database object oi. When issuing a range
query (q, r), permutation (.)q for query object q is computed and Sρ((.)q, (.)oi)
is evaluated for each stored permutation (.)oi . The original objects are then
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sorted in the ascending order (using their estimated proximity to the query
object) and processed sequentially evaluating δ(q, oi), until some threshold
value is reached and the search is stopped. Although the algorithm performs
well in cases, where the order induced by Sρ is close to the order induced
by δ, it is just approximative method, because Sρ((.)q, (.)oi) < Sρ((.)q, (.)oj)
does not guarantee δ(q, oi) < δ(q, oj). The algorithm has been later ex-
tended by indexing of the permutations by arbitrary MAM, resulting in more
efficient query processing [Figueroa and Frediksson, 2009], because not all
Sρ((.)q, (.)oi) have to be evaluated.

Spatial Approximation Tree

The spatial approximation tree (SAT) [Navarro, 1999, 2002] tries to approxi-
mate the structure of the Delaunay graph (that is a representation of relations
in the Voronoi diagram). Having such structure, “spatial” approximation
heuristics can be applied during query processing. The graph is constructed
in the following manner: an object o is selected as the root and connected
to such objects oi ∈ S, that are closer to o more than to any other object
connected to o. More formally, let N(o) be the set of objects connected to o,
then oi ∈ N(o) ⇔ ∀oj ∈ N(o)− {oi} : δ(o, oi) < δ(oi, oj). The fully dynamic
variant of the structure has been proposed in [Navarro and Reyes, 2002].

The range query (q, r) initially selects an arbitrary root object o and
tries to subsequently mount to the closest objects using a “spatial” heuristic,
which follows a neighbor oi ∈ N(o) that is the closest to the query object q.
For more details see the referred literature.

1.5.9 M-tree versus other MAMs

Although the M-tree becomes an aging method, which has been outperformed
in several aspects (e.g., in distance computations by pivot tables), it still
offers an unrevealed potential. Let us mention several arguments why we
have revisited the M-tree, summarized as follows:

• The M-tree performs well in the secondary memory. This property
is necessary in cases where the employed distance is cheap (e.g., Lp

metrics) and the database is large.

• We can create more compact M-tree hierarchies by use of more sophis-
ticated methods of M-tree construction (see Part I), resulting in more
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efficient query processing.

• All the M-tree improvements can be utilized by other members of the
M-tree family, especially by the PM-tree.

• The M-tree can be employed not only for searching, but also for other
purposes – for example, as a hierarchical clustering method for general
metric spaces.

To illustrate the impact of more sophisticated M-tree construction, we
show our very recent comparison of several MAMs in Figure 1.14. We have
compared four different MAMs – D-file using limited distance cache size
(20MB of main memory), pivot table using 10 pivots (denoted as PT 10),
GNAT (node degree was set to 10) and M-tree (the node degree was 25 in leaf
nodes and 24 in inner nodes). We have used two M-tree variants described
in Chapter 3. We may observe, that an M-tree constructed by sophisticated
methods may become very efficient.
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Part I

Revisiting M-tree Construction
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Chapter 2

M-tree

Based on properties well-tried in B+-tree and R∗-tree [Beckmann et al., 1990],
the M-tree [Ciaccia et al., 1997] is a dynamic metric access method suitable
for indexing large metric databases. The structure of M-tree represents a
hierarchy of nested ball regions, where data is stored in leaves, see Figure 2.1a.
Every node has a capacity of m entries and a minimal occupation mmin; only
the root node is allowed to be underflowed below mmin. The inner nodes
consist of routing entries rout(y):

rout(y) = [y, ptr(T (y)), ry, δ(y, Par(y))],

where y ∈ U is a routing object, ptr(T (y)) is a pointer to the subtree T (y),
ry is a covering radius, and the last component is a distance to the parent
routing object Par(y) (so-called to-parent distance1) denoted as δ(y, Par(y)).
In order to correctly bound the data in T (y)’s leaves, the routing entry must
satisfy the nesting condition: ∀oi ∈ T (y), ry > δ(y, oi). The routing entry
can be viewed as a ball region in the metric space, having its center in the
routing object y and radius ry. A leaf (ground) entry has a format:

grnd(z) = [z, oid(z), δ(z, Par(z))],

where z ∈ S and δ(z, Par(z)) are similar as in the routing entry, and oid(z)
is an external identifier of the original object (z is just an object descriptor).

1The to-parent distance is not defined for entries in the root.
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Figure 2.1: (a) An M-tree hierarchy (b) Basic filtering (c) Parent filtering

2.1 Similarity Queries in M-tree

Similarly like the data regions described by routing entries, also the two most
common similarity queries (range and kNN query, defined in Section 1.3.1)
are described by ball-shaped regions.

The queries are implemented by traversing the tree, starting from the
root2. Those nodes are accessed, the parent regions of which are overlapped
by the query ball. The check for region-and-query overlap requires an ex-
plicit distance computation δ(y, q) (called basic filtering), see Figure 2.1b.
In particular, if δ(y, q) 6 rq + ry, the data ball (y, ry) overlaps the query ball
(q, rq), thus the child node has to be accessed. If not, the respective subtree
is filtered from further processing. Moreover, each node in the tree contains
the distances from the routing/ground entries to the center of its parent rout-
ing entry (the to-parent distances). Hence, some of the non-relevant M-tree
branches can be filtered without the need of a distance computation (called
parent filtering, see Figure 2.1c), thus avoiding the “more expensive” basic
overlap check. In particular, if |δ(x, q)− δ(x, y)| > rq + ry, the data ball y
cannot overlap the query ball, thus the child node has not to be re-checked
by basic filtering. Note δ(x, q) was computed in the previous (unsuccessful)
parent’s basic filtering.

To improve the query search efficiency (for the price of precision), tech-

2We outline just the principles, for details see the original M-tree algorithms
[Ciaccia et al., 1997; Skopal et al., 2003].
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niques for the approximate kNN search by M-tree have been also introduced
[Zezula et al., 1998]. The techniques utilize three main ideas how to give up
the query result precision, summarized as:

• Utilization of a user-defined relative distance error ϵ > 0, saying the
distance between q and an approximation of k-th nearest neighbor must
be no more than (1+ ϵ) times further than the real k-th nearest neigh-
bor.

• A usage of the distance distribution for estimation of the best approx-
imations of kNN, and for early termination stop conditions.

• Stopping the kNN algorithm processing as soon as the intermediate
results change only slowly.

2.2 Compactness of M-tree Hierarchy

Since the ball metric regions described by routing entries are restricted just by
the nesting condition, the M-tree hierarchy is very loosely defined, while for a
single database we can obtain many correct M-tree hierarchies. However, not
every M-tree hierarchy built on a database is compact enough. In more detail,
when the ball regions are either too large and/or highly overlap “sibling”
regions, the query processing is not efficient because routing entries of many
nodes overlap the query ball. In consequence, large portion of the M-tree
hierarchy must be traversed, and so many query-to-object distances have to
be computed (resulting in high query costs).

Even if we use always the same construction method, the resulting M-
tree hierarchy will still heavily depend on the order in which data objects
are inserted (in case of dynamic insertions). A maximally compact M-tree
hierarchy(ies) surely exist(s), however, such a construction would require
static indexing, and, above all, an exponential construction time. Hence,
we would rather prefer an efficient sub-optimal dynamic construction, yet
producing sufficiently compact hierarchies.

During the last decade, many methods have been developed to challenge
the problem of compact M-tree hierarchies. Besides the original M-tree con-
struction (see Section 2.3), we overview some recent M-tree enhancements in
Section 2.4 and present our contributing methods in Sections 3.1 and 3.2.
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Figure 2.2: (a) Single-way leaf selection (b) Multi-way leaf selection

2.3 Building the M-tree

An M-tree is built in the bottom-up fashion (like B-tree or R-tree), so the
data objects are inserted into the leaf nodes. When a leaf overflows, a split
is performed – a new leaf is created and some objects are moved from the
original leaf into the new one. Two new routing entries are created, one for
the original updated leaf and one for the new leaf, and inserted into the parent
node (entry for the original leaf is just replaced). All to-parent distances to
the new routing objects are computed and replaced in the new leaves’ entries.
Because of inserting new routing entries, the parent node might overflow as
well. In such case a split is performed in a similar way, recursively. If the
root node is split, the M-tree grows by one level.

When building an M-tree by dynamic insertions, two main problems have
to be solved – the leaf selection and the node splitting.

2.3.1 Leaf Selection

In the original M-tree, a process similar to a point query is performed, in
order to find an appropriate leaf for object placement. However, in contrast
to a point query, only one vertical path of the tree is passed. This approach
is also referred to as the single-way (or deterministic) insertion, see Figure
2.2a. When navigating the tree, the next node in the path is chosen such that
the inserted object fits the appropriate region best (for details see [Ciaccia
et al., 1997; Skopal et al., 2003]).

2.3.2 Node Splitting

The node splitting policy is a significant factor of the M-tree building process.
When a node is split, two new routing entries have to be created, representing
new ball regions. To guarantee a compact M-tree hierarchy, the splitting
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Figure 2.3: Leaf split using (a) CLASSIC and (b) SAMPLING heuristics

process must ensure the new regions are separated as much as possible, they
overlap as least as possible, and they are of minimum volumes (radii).

To best fit these requirements, all the objects in the node are candidates
to the routing objects. For each pair of candidate routing objects, the re-
sulting nodes are temporarily created and radius of the greater region is
determined. Such pair of candidate routing objects is finally chosen, which
has the smallest radius of the greater region (so-called mM Rad choice). This
CLASSIC approach exhibits O(m2) complexity, where m is the capacity of
the node. To avoid the quadratic complexity, there were alternative heuris-
tics developed:

– The RANDOM approach directly selects two new routing objects at ran-
dom, which cuts the complexity down to O(m).
– Instead of considering all objects in the node as candidate routing objects,
the SAMPLING approach selects randomly just s candidates (s < m). Then
the complexity of node splitting is O(ms).

In Figure 2.3 see the result of leaf splitting, comparing the CLASSIC and
SAMPLING heuristics. A splitting of non-leaf nodes is similar, though it
must take also the radii of the redistributed routing entries into account.

2.4 Related Work

The success of M-tree can be supported by the existence of its many descen-
dants that have appeared during the past decade. We could chronologically
name the Slim-tree [Traina Jr. et al., 2000] (discussed in Section 2.4.1),
and the M+-tree [Zhou et al., 2003] which employs further partitioning of
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the node by a hyper-plane (i.e., an approach limited to Euclidean spaces).
Furthermore, let us mention the PM-tree [Skopal, 2004; Skopal et al., 2005]
which combines the M-tree with pivot-based techniques (described in Section
2.5), the M2-tree [Ciaccia and Patella, 2000] and M3-tree [Bustos and Skopal,
2006] which uses an aggregation of multiple metrics. As the most recent ones
we point out to M∗-tree [Skopal and Hoksza, 2007], where each node is addi-
tionally equipped by a nearest-neighbor graph, and the NM-tree [Skopal and
Lokoč, 2008] which allows also nonmetric distances. In the rest of the chapter
we consider the original structural properties of M-tree [Ciaccia et al., 1997]
(i.e., we consider modified algorithms, not the structure).

The effectiveness of query processing in M-tree heavily depends on the
M-tree compactness, hence, on the construction algorithm used. Intuitively,
to improve the search performance, the construction should be more ex-
pensive, and vice versa. For example, if we use the RANDOM node split
heuristic, we obtain low construction costs, but the region volumes/overlaps
will increase, and so the query costs will rapidly increase as well. In the
following we present three approaches of compact M-tree construction.

2.4.1 Slim-down Algorithm

The authors of Slim-tree [Traina Jr. et al., 2000] proposed two new M-tree
construction techniques. First, a node splitting policy was introduced, based
on minimum spanning tree. Instead of choosing many candidate pairs to
new routing entries and then temporarily partitioning the node entries for
each candidate pair, in Slim-tree the complete distance graph between node
entries is used to construct the minimum spanning tree (MST). Then, the
longest edge in MST is removed in order to obtain two separate sets of en-
tries – these sets directly constitute the two new nodes. Although the MST
splitting still needs O(m2) distance computations due to the complete dis-
tance graph, there are O(m) external CPU costs saved, otherwise used for
the temporary partitioning. Second, the slim-down algorithm was presented,
a post-processing method trying to redistribute ground entries into more
suitable leaves. This technique produces very compact M-tree/Slim-tree hi-
erarchies, however, it is also very expensive – up to linear with database size
for a single ground entry redistribution.

The slim-down algorithm was later generalized in order to redistribute
also routing entries at higher M-tree levels [Skopal et al., 2003], which leads
to even more compact hierarchies (see Figure 2.4).
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Figure 2.4: An M-tree before (a) and after (b) generalized slim-down algo-
rithm run

2.4.2 Multi-way Leaf Selection

Another way of improving M-tree compactness is an employment of more
sophisticated selection of target leaf wherein a new object will be inserted.
In [Skopal et al., 2003] the multi-way (non-deterministic) leaf selection was
proposed. The target leaf is found such that a point query (i.e., range query
with rq = 0) is issued having the new inserted object in the role of q. All the
“touched” and non-full leaves serve as candidates to the target leaf. Among
the touched non-full leaves the one is chosen which has its parent routing
object closest to the inserted object (see Figure 2.2b).

The multi-way leaf selection has positive impact on the M-tree compact-
ness, though not as large as the generalized slim-down algorithm. On the
other hand, the insertion employing multi-way leaf selection is by far less ex-
pensive than the generalized slim-down algorithm, though still up to linearly
expensive with database size for a single insertion.

2.4.3 Bulk Loading

The basic idea of bulk loading is to statically create the index from scratch
but knowing beforehand the database. Then some optimizations may be
performed to obtain a “good” index for that database. Usually, the pro-
posed bulk loading techniques are designed for specific index structures, but
there have been proposals for more general algorithms. For example, in
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[den Bercken and Seeger, 2001] the authors propose two generic algorithms
for bulk loading, which were tested with different index structures like the
R-tree and the Slim-tree. Note that the efficiency of the index may degrade
if new objects are inserted after its construction. Specific bulk loading tech-
niques for M-tree were introduced in [Ciaccia and Patella, 1998; Sexton and
Swinbank, 2004], the latter one furthermore introduces, for the first time, dy-
namic deletions on M-tree (renamed to SM-tree here). Another bulk loading
algorithm for Slim-tree was recently proposed in [Vespa et al., 2007].

Sometimes the bulk loading is viewed as a technique for fast index con-
struction, rather than a tool for building a compact index hierarchy.

2.5 PM-tree

The idea of PM-tree [Skopal, 2004; Skopal et al., 2005] is to enhance the
hierarchy of M-tree by an information related to a static set of k global pivots
pi ∈ P ⊂ U. In a PM-tree’s routing entry, the original M-tree-inherited ball
region is further cut off by a set of rings (centered in the global pivots), so the
region volume becomes more compact. Similarly, the PM-tree ground entries
are enhanced by distances to the pivots, which are interpreted as rings as
well. Each ring stored in a routing/ground entry represents a distance range
(bounding the underlying data) with respect to a particular pivot.

A routing entry in PM-tree inner node is defined as:

routPM(y) = [y, ry, δ(y,Par(y)), ptr(T (y)),HR],

where the new HR attribute is an array of khr intervals (khr 6 k), where
the t-th interval HRpt is the smallest interval covering distances between the
pivot pt and each of the objects stored in leaves of T (y), i.e., HRpt = ⟨HRmin

pt ,
HRmax

pt ⟩, HRmin
pt = min{δ(oj, pt)}, HRmax

pt = max{δ(oj, pt)}, ∀oj ∈ T (y). The
interval HRpt together with pivot pt define a ring region (pt,HRpt); a ball
region (pt,HR

max
pt ) reduced by a ”hole” (pt,HR

min
pt ).

A ground entry in PM-tree leaf is defined as:

grndPM(z) = [z, id(z), δ(z,Par(z)),PD],

where the new PD attribute stands for an array of ppd pivot distances (ppd 6
p) where the t-th distance PDpt = δ(y, pt).
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Figure 2.5: (a) PM-tree employing 2 pivots (p1, p2). (b) Projection of PM-
tree into the “pivot space”.

The combination of all the k entry’s ranges produces a k-dimensional
minimum bounding rectangle (MBR), hence, the global pivots actually map
the metric regions/data into a “pivot space” of dimensionality k (see Figure
2.5b). The number of pivots can be defined separately for routing and ground
entries – we typically choose less pivots for ground entries to reduce storage
costs (i.e., k = khr > kpd).

When issuing a range or kNN query, the query object is mapped into the
pivot space – this requires p extra distance computations δ(q, pi), ∀pi ∈ P .
The mapped query ball (q, rq) forms a hyper-cube ⟨δ(q, p1) − rq, δ(q, p1) +
rq⟩ × · · · × ⟨δ(q, pk) − rq, δ(q, pk) + rq⟩ in the pivot space that is repeatedly
utilized to check for an overlap with routing/ground entry’s MBRs (see Fig-
ures 2.5a,b). If they do not overlap, the entry is filtered out without any
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distance computation, otherwise, the M-tree’s filtering steps (parent & basic
filtering) are applied. Actually, the MBRs overlap check can be also under-
stood as L∞ filtering, that is, if the L∞ distance3 from a PM-tree region to
the query object q is greater than rq, the region is not overlapped by the
query.

Note the MBRs overlap check does not require an explicit distance compu-
tation, so the PM-tree usually achieves significantly lower query costs when
compared with M-tree – for more details, see [Skopal, 2004, 2007; Skopal
et al., 2005].

3The maximum difference of two vectors’ coordinate values.
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Chapter 3

Forced Reinsertions and
Hybrid Way Leaf Selection

In this chapter, we have focused on new methods of the dynamic M-tree
construction improving the quality of the M-tree hierarchy, and which try to
keep the construction costs acceptable.

3.1 Forced Reinsertions

The first contribution we propose in this thesis is an adaptation of forced
reinsertions into the process of dynamic insertions in M-tree. The forced
reinsertions is a technique well-known from the R*-tree [Beckmann et al.,
1990]. The idea is based on an easy principle. Some objects are removed
from a leaf to avoid a split operation and then inserted in a common way un-
der a hope that the reinserted objects will arrive into more “suitable” leaves.
There are two basic motivations to consider forced reinsertion as beneficial,
considering any B-tree-based spatial/metric index structure. The straight-
forward (but also weaker) motivation is better node occupancy, hence, forced
reinsertions lead to fuller nodes. Second, due to unavoidable node splitting
over the time, the compactness of spatial/metric region hierarchy deterio-
rates – the region volumes and overlaps grow because of spatial aggregations
mixing old and new objects/regions. Here the forced reinsertions could serve
as an opportunity to move some “bad” (volume- or overlap-inflating) objects
from the leaf.

In M-tree, we have to face some specific issues when implementing forced
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Figure 3.1: (a) Before reinsertions (b) Decreased overlaps/volumes after 3
reinsertions

reinsertions. Basically, when a new object is inserted into a leaf that is now
about to split, some suitable objects from the leaf must be selected and rein-
serted. The crucial goal is to propose a method aiming to decrease the cov-
ering radius of the reinserted leaf as much as possible, while simultaneously
aiming to enlarge the radii of leaves accepting the reinserted objects as little
as possible. Here we have to take also the induced leaf splits/reinsertions
into account, that is, a forced reinsertion attempt could raise a chain of
reinsertions terminated by regular splits “after a while”.

As a fundamental assumption, we expect objects located close to the re-
gion’s “border” have higher probability to be suitably reinserted than the
more “centered” ones. Since in an M-tree node the entries are ordered ac-
cording to their distances to the parent routing object (region’s center), we
can select the furthest ones (close to the border) easily.1 In Figure 3.1 see
a motivation example – situation just before a leaf split, and how the split
is avoided after a series of induced reinsertions, denoted as FR#1, FR#2,
FR#3. We can see that not only the split was prevented, but the M-tree

1Remember the precomputed distances to the routing entry (the to-parent distances)
are stored in all entries except those in the root node.
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compactness was improved, too.

We propose two variants using forced reinsertions for M-tree – the full
reinsertions and conservative reinsertions.

3.1.1 Full Reinsertions

As mentioned before, we assume the most suitable entries for reinserting are
the furthest ones from the parent routing object. To avoid an overfull leaf
split, some of its furthest entries are removed from the leaf and pushed onto
a temporary main memory stack S. The covering radius of the leaf’s parent
routing entry is then immediately reduced to the distance of the routing
object to the new furthest entry in the leaf (and so the covering radii of all
ancestors). Then, the current entry on the top of S is reinserted in a standard
way as it would be a regular new object to be inserted. Naturally, a forced
reinsertion could possibly induce further reinsertion attempts (i.e., the top
of the stack grows). The reinsertions are repeated until the stack becomes
empty.

Recursion Depth

Since a single reinsertion attempt could generally raise a long chain of subse-
quent reinsertions (the stack is inflating instead of emptying), we would like
to limit the number of forced reinsertion attempts to keep the construction
costs reasonable and scalable. We denote the limit as a user-defined recursion
depth parameter. When the limit of reinsertion attempts is reached, the re-
maining entries on the stack are popped and reinserted such that only regular
splits are allowed from now on (i.e., the stack does not grow anymore).

Entries Removing

As to the entries removing mentioned before, we remove at most k furthest
entries from the leaf in the direction from closer to further ones (where k is
user-defined). However, if the newly inserted object is within the k entries,
we remove just the more distant of the k entries (i.e., we do not remove the
new one and all closer). We called such a removing of entries as the reverse
pessimistic entries removing, see Figure 3.2.
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Figure 3.2: Reverse pessimistic entries removing

As a motivation for the reverse pessimistic removing, we suppose that the
reinsertion of an object being just newly inserted (and all closer ones) would
cause insertion back to the same leaf (the pessimistic assumption). As to
the direction of entries removing, being “reverse” due to starting from the
leaf’s “middle”, we assume the furthest entries (being the outlying “losers”)
should be reinserted first. This heuristics aims to increase the likelihood
of finding a suitable non-full leaf, being otherwise possibly occupied by the
other removed “sibling” entries on the stack. Although we tried also other
variants of entries removing than the reverse pessimistic (as described and
evaluated in [Lokoč and Skopal, 2008]), they performed worse, so we do not
consider them anymore in this thesis.

To provide a comprehensive description, in Listing 1 see the pseudocode
of dynamic insertion enhanced by full forced reinsertions.
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Listing 1. (insertion with full forced reinsertions)

let maxRemoved be maximal number of removed entries (user-defined) // denoted k in Section 3.1.1
let recursionDepth be the maximal depth of recursion (user-defined)

method Insert(onew) {
find leaf L for onew // “either-way” leaf selection
insert onew into L

if L is not overfull then return
let E be the portion of L with maxRemoved furthest entries (sorted ASC)
exclude grnd(onew,...) and all closer entries from E

if |E| > 0 and recursionDepth > 0 then {
for (j = 0; j < |E|; j++) { // remove furthest entries from leaf
S.Push(E.GetEntry(1))
E.DeleteEntry(1)

}
decrease radius of L (and possibly of its ancestors)

while (S is not empty) { // reinsert removed entries
recursionDepth = recursionDepth − 1
Insert(S.Pop())

}
} else {
perform regular split of L (and possibly of its ancestors)

}
}

3.1.2 Conservative Reinsertions

As observed in [Lokoč and Skopal, 2008] and as shown in experiments, the full
forced reinsertion variant is effective in producing compact M-tree hierarchy,
though it is still quite expensive in terms of M-tree construction costs. The
reverse pessimistic strategy ensures the newly inserted entry and all closer
entries will not be reinserted (probably back to the same leaf). However,
there can still occur reinsertions of more distant entries into the same leaf,
being thus ineffective. In this section, therefore, we introduce an improve-
ment of full forced reinsertions, called the conservative forced reinsertions,
better avoiding reinsertions of entries back into the same leaf (see also Listing
2 for pseudocode).

The improvement requires a slight extension of the M-tree’s ground entry
format, as grnd(z) = [z, oid(z), δ(z, Par(z)), SplitNumber]. The SplitNumber
is the number of node splits occurred before (re)inserting this entry into the
current leaf. In fact, the SplitNumber represents a logical time related to
the amount of structural changes in M-tree during its construction.
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The way of removing of entries onto the stack S is the same as used in
the full forced reinsertion variant (i.e., using the reverse pessimistic strategy).
The difference is in the processing of popped entries from stack, and in the
structure of a stack entry. Instead of storing pure objects oi ∈ S on the stack,
now we store the entire ground entry grnd(oi) and, additionally, a pair of co-
identifiers determining wherefrom the entry came. The first identifier is an id
of the source leaf, while the second one is the id of the source leaf’s routing
entry (see an example in Figure 3.3 right). The reason for two identifiers
of a leaf is that we want to distinguish leaves whose node id remained the
same but they obtained a different parent routing entry (caused by a possible
split).

The Stack Processing

After the entries are removed onto the stack, the top entry is popped and
reinserted in the usual way. We check whether it falls back to the leaf it
came from, that is, whether the leaf+parent entry co-identifiers are equal
to that of the entry popped from stack. If so, the top of stack is checked
for a contiguous block of entries. In such a contiguous block all entries
must become also from the same leaf as the first reinserted entry, and all
must be “younger” (their SplitNumber is higher). If such a block exists,
its entries are popped and directly moved to the respective leaf, following
the first reinserted entry. Actually, they are returned to their original leaf
for free; no regular insertion is performed for them (no distance has to be
computed). Otherwise, if such a contiguous block of entries does not exist
(or its processing was finished), the entries on the top of stack are reinserted
in the usual way.

For an example, in Figure 3.3 the top entry on the stack was reinserted
into a leaf 34, however, the next one arrived into the same leaf 23 as it came
from. Therefore, a single-entry block on the stack was identified, fulfilling
the block conditions (i.e., originating also from leaf 23 and being younger by
3 splits), and moved back to the leaf. The next entry on the stack also came
from leaf 23 but was older, so for this entry there is a greater probability
that during its longer “sitting” in leaf 23 there appeared better leaves in the
M-tree, so this one is properly reinserted to the leaf 16.

The motivation for the above described optimization is a conservative
assumption, that if a set of entries was removed onto the stack from the same
node at the same time, and one of them was reinserted back into the same
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leaf, then also some other entries in this set would be probably reinserted
into the same leaf as well. Hence, instead of ineffective costly reinsertions we
rather “give up” and move the entries directly back.

Listing 2. (insertion with conservative forced reinsertions)

let maxRemoved be maximal number of removed entries (user-defined) // denoted k in Section 3.1.1
let recursionDepth be the maximal depth of recursion (user-defined)

method Insert(onew, SplitCount) {
find leaf L for onew // “either-way” leaf selection
insert onew into L
let rout(op) be L’s parent routing entry

while (S is not empty and S.TopEntry.NodeId = L.NodeId and
S.TopEntry.GroundEntry.RoutId = L.RoutId and S.TopEntry.GroundEntry.SplitCount > SplitCount) {

L.Insert(S.Pop().GroundEntry) // move the entries back to the original leaf
if (L is overfull) then {
perform regular split of L (and possibly of its ancestors)
return

}
}
if L is not overfull then return
let E be the portion of L with maxRemoved furthest entries (sorted ASC)
exclude grnd(onew,...) and all closer entries from E

if |E| > 0 and recursionDepth > 0 then {
for (j = 0; j < |E|; j++) { // remove furthest entries from leaf
S.Push(⟨E.GetEntry(1), L.id, rout(op).id⟩)
E.DeleteEntry(1)

}
decrease radius of L (and possibly of its ancestors)

while (S is not empty) { // reinsert removed entries
recursionDepth = recursionDepth − 1
let entry = S.Pop().GroundEntry
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Insert(entry.object, entry.SplitCount)
}

} else {
perform regular split of L (and possibly of its ancestors)

}
}

Additional Notes

• The to-parent distance stored in a moved ground entry is still valid.
Actually, this is another reason why we use additionally the parent
routing entry identifier to co-identify the source leaf.

• When a ground entry is reinserted, its SplitNumber is updated only
in case it has not been reinserted/moved back into the same leaf.

• Due to the reverse pessimistic strategy, the moved entries are always
closer to the parent routing entry than the entry reinserted to the same
leaf as first. Hence, the leaf’s covering radius cannot be inflated due to
entries moving. However, the covering radii of its ancestor inner nodes
(from the leaf to the root) should be inflated and so the radii have to
be re-checked.

3.1.3 Construction vs. Query Efficiency

The rationale for forced reinsertions is two-fold. First, reinsertions could
clearly improve the compactness of M-tree (thus the query performance) at
the cost of (a bit) more expensive construction. The second reason consid-
ers the trade-off between indexing and querying performance. In contrast
to the first reason (speeding up querying), sometimes we would like to de-
crease construction costs but simultaneously keep the query costs as low as
if used more expensive construction. With forced reinsertions this goal could
be carried out. For example, the CLASSIC splitting of M-tree node is ex-
pensive but brings faster queries, while the SAMPLING splitting is cheaper
but also leads to slower queries. Since the CLASSIC splitting could pro-
duce M-tree which is compact enough, at some scenarios the employment of
forced reinsertions could not bring any further improvement – so only the
construction costs grow, but the retrieval performance is not improved. In
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such case we might rather employ the forced reinsertions together with the
SAMPLING splitting. This way we could achieve retrieval costs similar to
that of CLASSIC splitting, however, for cheaper construction – somewhere
between SAMPLING and CLASSIC without forced reinsertions. In other
words, forced reinsertions might cheaply fix the bad data partitioning caused
by SAMPLING splitting.

Finally, we have to emphasize that when combined with the single-way
leaf selection (or the hybrid-way leaf selection, see next section), the asymp-
totic complexity of a single insertion is still logarithmic with database size.
In more detail, the number of reinsertion attempts is limited by a constant
(recursion depth), the maximal number of entries in a leaf is constant, while
the single/hybrid-way leaf selection is of logarithmic complexity.

3.1.4 Average Leaf Node Utilization

We also propose a new method which utilizes reinsertions to guarantee a user-
defined average leaf node utilization. This method has not been published
yet.

The leaf selection strategies and reinsertions affect average leaf node uti-
lization in M-tree. Moreover, we expect that using the multi-way leaf selec-
tion for a reinserted object leads to higher leaf node utilization ϵMW , because
more paths are examined to find the best fitting non-full leaf node. On the
other hand, using the single-way leaf selection during reinsertions results in
lower leaf node utilization ϵSW , because less information can be employed
during the reinsertion of an object. We can use these observations to con-
trol (to some extent) an average leaf node utilization by employing both
single-way and multi-way leaf selection strategies for reinserted objects.

In Listing 3, we present a modification of the forced reinsertions schema,
that guarantees a user-defined average leaf node utilization ϵ, which can
reach values from the interval ⟨ϵSW , ϵMW ⟩. We may also observe, that a
larger/smaller value of ϵ leads to more/less multi-way leaf selections and
thus to more/less expensive indexing.
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Listing 3. (insertion guaranteeing average leaf node utilization)

let maxRemoved be maximal number of removed entries (user-defined) // denoted k in Section 3.1.1
let recursionDepth be the maximal depth of recursion (user-defined)
let epsilon be the requested average leaf node utilization (user-defined)

method Insert(onew, SplitCount, LeafSelection) {
find leaf L for onew using LeafSelection strategy
insert onew into L
let rout(op) be L’s parent routing entry

while (S is not empty and S.TopEntry.NodeId = L.NodeId and
S.TopEntry.GroundEntry.RoutId = L.RoutId and S.TopEntry.GroundEntry.SplitCount > SplitCount) {

L.Insert(S.Pop().GroundEntry) // move the entries back to the original leaf
if (L is overfull) then {
perform regular split of L (and possibly of its ancestors)
return

}
}
if L is not overfull then return
let E be the portion of L with maxRemoved furthest entries (sorted ASC)
exclude grnd(onew,...) and all closer entries from E

if |E| > 0 and recursionDepth > 0 then {
for (j = 0; j < |E|; j++) { // remove furthest entries from leaf
S.Push(⟨E.GetEntry(1), L.id, rout(op).id⟩)
E.DeleteEntry(1)

}
decrease radius of L (and possibly of its ancestors)

while (S is not empty) { // reinsert removed entries
recursionDepth = recursionDepth − 1
let entry = S.Pop().GroundEntry
if epsilon > GetAverageLeafNodeUtilization()
Insert(entry.object, entry.SplitCount, ’Multi-Way’)

else
Insert(entry.object, entry.SplitCount, ’Single-Way’)

}
} else {
perform regular split of L (and possibly of its ancestors)

}
}

3.2 Hybrid-way Leaf Selection

As the second contribution, we introduce so-called hybrid-way leaf selection.
The rationale for this effort was the performance gap between single-way and
multi-way leaf selection (see Sections 2.3.1 and 2.4.2). On the first hand, the
single-way selection is very cheap (logarithmic with database size) but often
selects a leaf that is not optimal, thus the resulting M-tree compactness
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is not very good. On the other hand, the multi-way technique selects an
optimal leaf (though only a non-full one), but it is expensive, up to linear
with database size.

Instead of the multi-way’s expensive traversal to all leaves whose regions
could cover the new object, the hybrid-way technique selects only a limited
number of the “best” candidate nodes at each level. Such nodes become the
candidates, the regions of which cover the newly inserted object and their
routing objects are as close to the new object as possible. All covering child
nodes of the selected candidate nodes are then followed down to the next M-
tree level, while, again, only a limited number of the best ones are selected
as the candidate nodes, and so on. After the pre-leaf level is reached, the
candidate pre-leaves are checked for the best routing entry and the respective
leaf is returned as the finally selected leaf. In the rather unlikely situation
when no candidate nodes are selected at a level (i.e., the new object is not
covered by any node’s ball), the hybrid-way technique gives up and selects
the leaf by single-way selection. The limits of candidates at all levels are
described by so-called branching vector. The branching vector determines
how many paths in M-tree the hybrid-way selection traverses, see an example
in Figure 3.4.

The hybrid-way solution represents a scalable technique, actually gener-
alizing both the single- and multi-way selections. If the branching vector
contains only 1s, we obtain a single-way-like behavior, though not the same
– the single-way always selects a node at any level, the hybrid-way does not
have to. If the branching vector contains only ∞s, we obtain a multi-way-
like behavior (though the original multi-way selects only non-full leaves). If
all the numbers in the vector are equal, we can talk just about a branching
factor f ∈ ⟨1,∞). In Listing 4 see the hybrid-way leaf selection. Note the

Figure 3.4: Hybrid-way leaf selection
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algorithm uses the parent filtering (Section 2.1) to efficiently filter out the
non-covering nodes. Because the number of traversed paths is limited by the
branching vector (consisting of constants), the hybrid-way selection is still of
logarithmic complexity, though more expensive than the single-way selection
by a constant factor.

Listing 4. (hybrid-way leaf selection)

method FindLeafHybridWay(onew, branching vector v) {
let nodeCandidates = {⟨root; 0⟩} // the 1st value in ⟨·, ·⟩ is denoted .Node, the 2nd .ObjectToParentDistance
let targetLeaf = ∅
let minDistance = ∞

for (level = 0; level < treeHeight; level++) {
let levelCandidates = ∅
for each can in nodeCandidates {
for each entry in can.Node {
if |can.ObjectToParentDistance − entry.RoutingToParentDistance| 6 entry.radius then { // parent filt.
compute δ(entry.object, onew)
if δ(entry.object, onew) < entry.radius then { // basic filtering
if level = treeHeight − 1 then { // at pre-leaf level select the winning leaf
if δ(entry.object, onew) < minDistance then {
minDistance = δ(entry.object, onew)
targetLeaf = entry.childNode

}
} else { // at higher levels follow the child nodes
read entry.childNode
add ⟨entry.childNode; δ(entry.object, onew)⟩ to levelCandidates

} /* end if level */
}

}
} /* for each entry */

} /* for each can */
if level = treeHeight − 1 {
if targetLeaf is ∅ then return FindLeafSingleWay(onew) else return targetLeaf

}
sort levelCandidates by .ObjectToParentDistance ASC
let nodeCandidates = levelCandidates[0..v[level]−1] // pick the best node candidates

} /* for each level */
}

3.3 Experimental Evaluation

We performed an extensive experimentation with the two new techniques and
their combination. We compared them against the original M-tree dynamic
construction and also against the previously proposed techniques including
multi-way leaf selection and generalized slim-down algorithm. Only the dis-
tance computation costs are included in the experiments. Since the I/O costs
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correlate with the computation costs, their inclusion would be redundant.

3.3.1 Databases

We have used two databases, a subset of the CoPhIR database [Falchi et al.,
2008] of MPEG7 image features extracted from images downloaded from
flickr.com, and a synthetic database of polygons. The CoPhIR subset
consisted of 1,000,000 feature vectors formed by two MPEG7 features (12-
dimensional color layout and 64-dimensional color structure, i.e., total 76
dimensions). As a distance function the Euclidean (L2) distance has been
employed. The Polygons database was a synthetic randomly generated set
of 250,000 2D polygons, each polygon consisting of 5–15 vertices. The Poly-
gons should serve as a non-vectorial analogy to uniformly distributed points.
The first vertex of a polygon was generated at random. The next one was
generated randomly, but the distance from the preceding vertex was limited
to 10% of max. distance. We used the Hausdorff distance for measuring two
polygons (where the order of vertices does not matter), so here a polygon
could be interpreted as a cloud of points.

3.3.2 Experiment Settings

The query costs were always averaged over 200 query objects, while the
queries followed the distribution of database objects. We did not perform an
inter-MAM comparison; we focused just on various configurations of M-tree
– with or without forced reinsertions under single-, multi-, or hybrid-way
leaf selection. As the parameters we observed various data dimensionalities,
database sizes, M-tree node capacities, hybrid-way branching factor, as well
as various forced reinsertion settings. The M-tree node capacities ranged from
20 to 80, the index sizes took 1–138 MB, the M-tree heights were 2–5 (3–6
levels). The minimal M-tree node utilization was set to 20% of node capacity.
On average, the methods utilizing forced reinsertions achieved 80% leaf uti-
lization (87% in case of multi-way leaf selection), while the “non-reinserting”
ones got to 70% (75% for multi-way selection). The index size is connected
with the leaf utilization, so the forced reinsertions produced indexes smaller
by 15%. Unless otherwise stated, the database size in experiments was set
to 250,000 objects.
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stage of insertion label description

Single single-way leaf selection (default)
Multi multi-way LS

leaf selection Hybrid(b) hybrid-way LS, b stands for the branching factor
Hybrid(b).Nonfull hybrid-way LS, restricted to select only non-full leaves,

i.e., Hybrid(∞).Nonfull = Multi
Classic classic mM Rad node splitting (default)

node splitting Sampling sampling mM Rad (10% of node’s entries in sample)
Full RI full FR, recursion depth = 10, removed entries = 4

Cons RI(x,y) conservative FR, x is recursion depth, y is number
forced reinsertions of removed entries – if not specified, x = 10, y = 4

Cons RI(x,y).NoHistory moving of entries is not affected by SplitCount
(nothing specified) FR not used (default)

generalized GeneralizedSlimDown generalized slim-down algorithm used on M-tree
slim-down algorithm built using Single.Classic

Table 3.1: Description of labels in the figures’ legends

Because of the many tested M-tree construction variants, we have formed
a set of labels denoting certain alternatives within each stage of the insertion
process (leaf selection, node splitting, forced reinsertions), see Table 1. A
combination of labels belonging to each stage of construction constitutes a
complete variant of insertion, these composed labels are used in the following
figure legends. Within each stage a default value is marked, which applies in
case that no of the respective stage’s possibilities is specified in the composed
label. Hence, the very original M-tree dynamic insertion methods [Ciaccia
et al., 1997] are denoted as Single.Classic and Single.Sampling.

3.3.3 The Results

In the first experiment (see Figure 3.5) we have observed varying branch-
ing factor b applied to hybrid-way leaf selection. The greater the b, the
better the query performance of Hybrid(b) variants but also the slower con-
struction. For example, Hybrid(∞).Cons RI is 35% faster in querying than
Multi, but slower in construction in a similar proportion. Nevertheless, Hy-
brid(50).Cons RI beatsMulti andMulti.Cons RI in both construction and query
performance. The results for Multi.Cons RI and Hybrid(∞).Cons RI differ be-
cause the multi-way selects only non-full leaves, while hybrid-way selects also
the full ones.

In the second experiment we have examined varying database dimension-
alities, ranging from 8 to 64 (see Figure 3.6). We can observe that with
increasing dimensionality the queries become less efficient – almost exponen-
tially with the dimension. Hence, we experience the effects of dimensionality
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Figure 3.5: Hybrid-way branching factor: (a) Construction costs (b) 10NN
query costs

curse. However, note the construction costs of all methods except Gener-
alizedSlimDown and Hybrid(∞).Cons RI are almost constant. This observa-
tion is a nice evidence of the logarithmic construction complexity of hybrid-
way leaf selection and forced reinsertions, which is further supported by the
worse results of GeneralizedSlimDown and Hybrid(∞).Cons RI (being super-
logarithmic methods). Moreover, note that for dimension 64 the method Hy-
brid(10).Cons RI is 1.3× slower in query processing than GeneralizedSlimDown
and Hybrid(∞).Cons RI, but 20× (10×, respectively) faster in construction.

COPHIR constructions costs, size 500,000, dim 12, node 40
Generalized Hybrid(∞) Hybrid(10) Classic Classic Sampling Sampling
SlimDown .Cons RI .Cons RI .Cons RI .Cons RI

3,981,370,880 2,182,645,760 371,376,416 52,274,784 66,667,772 55,477,300 36,678,464
POLYGONS constructions costs, size 250,000, dim 30, node 40

Generalized Hybrid(10) Hybrid(10) Classic Classic Sampling Sampling
SlimDown .Cons RI .Cons RI .Cons RI

103,621,584 59,779,960 87,028,288 22,256,964 28,538,876 22,451,152 15,371,245

Table 3.2: Construction costs for Figure 3.7

The third experiment was focused on varying query selectivity – in Fig-
ure 3.7 see the results for kNN and range queries (for the construction costs
see Table 2). Note that for Hybrid(∞).Cons RI in case of COPHIR database
the achieved query costs are exactly the same as for GeneralizedSlimDown, but
the construction is almost 50% cheaper. Also note that in case of COPHIR
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Figure 3.6: Varying dimensionality: (a) Construction costs (b) Range query
costs

the Single.Sampling.Cons RI is significantly faster in query processing than
Single.Classic, while having almost the same construction costs.

In the fourth experiment we have observed the impact of database size on
indexing (see Figure 3.8). In the upper part the construction/query costs for
the Single.* variants are presented relatively to the baseline Classic method.
We can see that the improvement over the baseline is quite stable with in-
creasing database size in terms of construction costs, however, the query
performance improves a bit faster with increasing database size. Also note
the Single.Cons RI(10,4) (proposed in the Section 3.1.2) clearly beats the Sin-
gle.Full RI (proposed in the Section 3.1.1) in both construction and query
costs. In the bottom part of Figure 3.8 the construction/query costs are
presented in absolute numbers but now for the Hybrid.*, *.Sampling.* and
GeneralizedSlimDown variants.

The fifth experiment (Figure 3.9) inspected the impact of the maximal
number of reinserted entries (ground entries removed onto the stack, respec-
tively) on the conservative forced reinsertion strategy. We considered various
node capacities (20–60), while the results show that a reasonable value is
around 3 or 4. Higher values slightly increase construction costs but do not
bring a clear improvement in querying (there is cca 0.5% variance in query
costs).
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costs Hybrid(∞) Multi Classic Sampling Classic Sampling
.Cons RI .Cons RI .Cons RI

construction 3,535,264,768 2,990,771,968 106,378,144 93,059,856 74,684,496 57,775,288
10NN query 31,132 39,540 81,019 80,749 94,081 102,898

Table 3.3: Results for COPHIR, one million objects, dim 12, node size 20

In Table 3 see the results of the sixth experiment, considering the largest
COPHIR database in the testbed – one million objects, indexed within 6-level
M-trees, node capacity 20. We can observe the queries on Hybrid(∞).Cons RI
performed 3× faster than those on Classic, however, for 47× higher construc-
tion costs. Nevertheless, the Sampling.Cons RI achieved 15% reduction in
query costs with respect to Classic for just 125% of Classic’s construction
costs.

In the following experiment we have tested the impact of various M-
tree node capacities, see Figure 3.10. An interesting observation is that
the expensive techniques improve the construction costs with growing node
capacity, while, on the other hand, the less expensive techniques slightly
improve the query performance with growing node capacity.

The Figure 3.11 is maybe the most important outcome of the experimental
results. Here the graphs from Figure 3.10 are aggregated into one, in order
to show the construction vs. query performance trade-off. The closer to the
bottom-left origin a technique is, the better the overall performance trade-
off is. Hence, we can see the Single.Sampling.Cons RI is clearly better than
Single.Classic, and that Hybrid(∞).Classic.Cons RI is much better than the
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Figure 3.8: Varying database size: (a) Construction costs (b) 10NN query
costs

GeneralizedSlimDown. All the other techniques lie on a sort of skyline, hence,
they represent meaningful trade-off choices applicable to various scenarios.

In the last experiment we have tested the modification of the reinserting
algorithm guaranteeing average leaf node utilization (ALNU). The results
are presented in the Table 3.4. We may observe, that the requested average
leaf node utilization corresponds with the real average leaf node utilization.
It is also obvious that “multi-way” reinsertions, used to increase leaf node
utilization, make the indexing more expensive and lead to more compact
M-tree hierarchies.
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Figure 3.10: Varying node capacity (a) Construction costs (b) 10NN query
costs

3.3.4 Summary

The conservative forced reinsertions proved their usability when combined
with “either-way” leaf selection. The query performance is always higher
than that of techniques without forced reinsertions, while the construction is
usually a few tens of percent more expensive. The conservative forced rein-
sertions also showed better results in both querying and construction when
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Figure 3.11: Construction vs. query costs – aggregate results

requested ALNU real ALNU construction costs query costs
65.0% 65.9% 7 569 751 43 357
70.0% 70.0% 30 661 166 42 771
75.0% 75.1% 48 093 457 41 910
80.0% 80.0% 65 098 265 40 880
85.0% 85.0% 86 540 299 40 560
90.0% 89.9% 110 449 493 39 730

Table 3.4: Indexing based on average leaf node utilization

compared to the full forced reinsertions (as proposed in [Lokoč and Skopal,
2008]). When used with single-way leaf selection, the conservative reinser-
tions are suitable also for indexing large and high-dimensional databases,
where the feasibility of index construction is the crucial task. The hybrid-
way leaf selection is beneficial for its scalability, while when used with un-
limited branching factor and conservative forced reinsertions, it becomes a
clear winner over the generalized slim-down algorithm, being much cheaper
in construction and comparable or better in query costs.

3.4 Discussion

In this chapter we have proposed two new techniques improving dynamic in-
sertions in M-tree – the forced reinsertions and the hybrid-way leaf selection.
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Both of the techniques preserve logarithmic complexity of a single insertion,
while they aim to produce more compact M-tree hierarchies. The proposed
techniques experimentally proved their benefits. The experiments have also
shown the problem of constructing compact M-trees cannot be solved by a
simple solution or by a brute force. The increasing complexity of M-tree-
related techniques developed over the last decade indicates it is worth to
continue in designing even more complex algorithms within the realm of M-
tree. Moreover, the techniques can be simply adopted by other members of
the M-tree family, especially by the PM-tree.
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Chapter 4

Parallel Dynamic Batch
Loading

Although metric access methods (see section 1.5) proved their capabilities
when performing efficient similarity search, their further performance im-
provement is needed due to extreme growth of data volumes. Since multi-core
processors become widely available, it is justified to employ parallelism for in-
dexing. However, taking into account the Gustafson’s law [Gustafson, 1988],
it is necessary to find tasks suitable for parallelization. Such a task could be
M-tree construction. Unfortunately, parallelism during an object insertion
in hierarchical index structures is limited by a node capacity. It is much
less restrictive to run several independent insertions in parallel. However,
synchronization problems occur whenever a node is about to split. In this
chapter we present our new technique of M-tree construction. The technique
postpones splitting of overfull nodes and thus allows simple parallelization of
M-tree construction. Our experiments confirm the new technique guarantees
significant speedup of M-tree construction and also improves the quality of
the index.

4.1 Parallel Processing in MAMs

New approaches like distributed computing or parallelism have been success-
fully implanted to MAMs. Let us remember several approaches based on
hierarchical metric structures.

In [Batko et al., 2005], distributed index GHT* was presented, consisting
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of nodes located on multiple computers. The authors use a structure called
address search tree (AST) to minimize the network traffic and to prune non-
relevant data. The AST is distributed over all nodes and used to find nodes
where requested data may be located or new objects should be inserted.
When a local node is split, the AST is modified, such that only necessary
changes of the AST are distributed to other nodes. A local node can utilize an
arbitrary MAM (e.g., LAESA, M-tree, PM-tree, etc.) to store data. Several
different distributed indexes have been developed since GHT* introduction.
For their comparison, see [Batko et al., 2006].

Since multi-core architectures have become standard, parallelization on
a local machine can be employed, resulting in significant performance boost.
In [Zezula et al., 1998] authors provide simple extensions of basic M-tree
algorithms (inserting and querying) employing parallelism and discuss their
limitations. The authors propose a pre-fetch strategy selecting data from
different disks and propose four de-clustering algorithms allocating data to
disks. For CPU parallelism the authors provide algorithms using just single
parallel distance evaluation in one node, since the algorithms have to decide
which node should be visited consecutively. However, parallel processing of
a node is limited by its capacity m, so that any further speedup cannot be
achieved using more than m cores (Amdahl’s law [Amdahl, 1967]).

4.2 Parallel Opportunities in the M-tree Con-

struction

The original M-tree construction consists of subtasks for which a parallel
implementation is limited. During a leaf node selection, a node cannot be
processed until the routing item of its parent node is selected. Therefore, a
parallelism during a leaf node selection is restricted just to node processing.
This is the reason why we prefer parallel batch loading utilizing multiple
concurrent leaf node selections. Parallelism during a node splitting is less
limited – distance matrix evaluation and promotion is limited by one half of
square of a node capacity m, and thus much more cores can be used.

In the following text, ’task’ denotes a procedure which can be assigned to
a physical thread. In this section we review node access synchronization (nec-
essary for our new method), parallel distance matrix evaluation and parallel
promotion of new routing entries.
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4.2.1 Node Locking

In the M-tree, access to a node must be synchronized to guarantee correct
results. In case a task only reads a node (e.g., querying), it is suitable to
utilize shared locks. Thus, more than one task can access the node for read-
ing. However, in the case a task modifies a node, the task has to exclusively
lock the node, so that no task can access the node until the exclusive lock is
released. In some cases it is advantageous to exclusively lock just an entry
in a node, thus other tasks can access the rest of the node.

4.2.2 Parallel Distance Matrix Evaluation

To promote two new routing entries during a node splitting, distances be-
tween all objects have to be evaluated and stored as a distance matrix1. The
computation of a distance matrix can be effectively parallelized. Each cell
of a distance matrix determines two objects which distance has to be evalu-
ated. Our algorithm divides the matrix to distinct parts (sets of cells) and
distributes them to tasks. Each task determines two objects from an as-
signed cell, evaluates their distance and stores the result in the cell. Hence,
no synchronization is needed during execution since each task works in its
unique part of the matrix.

To achieve the maximal speedup, it is usually advantageous to divide the
matrix to nontrivial (more than one cell) parts of the same size2. Since the
matrix is symmetric with nulls on the main diagonal, only the upper triangle
has to be evaluated. It might be difficult to divide the triangle to arbitrary
number of parts of the same size. Therefore, we utilize the one-dimensional
interval [0, l) for partitioning of the upper triangle. The interval’s length l is
set to the number of cells in the upper triangle – l can be computed using
the node capacity m (l = m × (m − 1)/2). Then, the interval is split to
a desired number of parts of the same size. Finally, a mapping is used to
assign values from the interval to cells from the upper triangle. And thus
the perfect partitioning of the upper triangle is achieved. An example of a
mapping is illustrated in Figure 4.1.

1We do not consider SAMPLING heuristics (see section 2.3.2).
2In cases where distance evaluation costs are nearly the same for each pair of objects.
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Figure 4.1: Partitioning of the upper triangle among three tasks

4.2.3 Parallel Promotion

After a distance matrix is evaluated, all pairs of routing entries are tested
against some criterion and the most fitting pair is promoted. For each tested
pair there exists a corresponding cell in the ’upper triangle’. Effective paral-
lelization of promotion is also based on the partitioning of the upper triangle
using the one-dimensional interval. Each promotion test has assigned a value
v from the interval. Thus, it is possible to effectively distribute promotion
tests to several tasks and run them in parallel. After all tasks finish their
local promotions, the global best pair of candidates is selected. If more than
one best pair exists, the pair with the lowest v is promoted, so the promotion
is deterministic, i.e., produces the same results regardless of parallel or serial3

processing.

4.3 Parallel Dynamic Batch Loading

The dynamic batch loading introduced in [Chen et al., 1998] is a technique
used for faster R-tree [Guttman, 1984] construction. Several new objects
are organized to small trees and then appended to the R-tree as whole sub
trees. The method is called STLT (small-tree-large-tree). The indexing using
dynamic batch loading is much faster and thus it is possible to upload larger
data collections runtime. However, this kind of dynamic batch loading leads
to a deterioration of the index quality, that is, more overlaps occur between
index regions. In this section, we introduce a completely different approach
of batch loading suitable for MAMs. The approach is based on parallelism
and improves the quality of an index. Moreover, the approach is not limited

3“Serial” stands for the single-thread nonparallel processing.
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by a node capacity, and is designed for expensive distance functions. In the
following text we describe dynamic parallel batch loading in the M-tree.

The basic idea is simple. Batches of objects are inserted to the M-tree
in consecutive iterations, where each iteration consists of three basic steps.
First, a limited number of new objects is collected in a set. Then, as the
second step, objects from the set are inserted in parallel to the M-tree. How-
ever, there have to be restrictions imposed to obtain correct M-tree hierarchy.
In particular, traditional inserting and split handling cannot be used during
parallel insertions. Not all objects have to be inserted to the M-tree during
the step two. Moreover, some objects may be removed from the M-tree and
inserted later. In the third step, objects, not inserted or removed during the
step two, are handled. Some of them are inserted to the M-tree in the tradi-
tional manner. The remaining objects are processed during the second step
of the next iteration. All steps are discussed in the following paragraphs.

4.3.1 Iteration Steps

Gathering

New objects are collected in the set until their number reaches a user-defined
value (size of the batch). Since users may perform queries during the first
step, algorithms evaluating queries have to search also in the set used for
gathering. To avoid a sequential scan in the set for large size of the batch,
the LAESA or another simple MAM can be employed. However, a simple
list can be utilized for small size of the batch (see Figure 4.2a).

Parallel Inserting

After a desired number of objects is accumulated, the iteration switches to
the second step (see Figure 4.2b). Objects are distributed to several tasks
which try to insert them into leaf nodes. Here, a synchronization must be
utilized in a case when multiple tasks concurrently access the same leaf node.

An insertion of a new object by one task consists of two steps. The first
step is a leaf node selection. During this step, other tasks can access the
same node to determine the best fitting routing entry. Only shared node
locks are applied to maximize the parallel throughput during the routing
entry selection. However, before the best fitting routing entry is updated (in
case its radius has to be enlarged), the routing entry has to by exclusively
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Figure 4.2: (a) Gathering, (b) parallel inserting and (c) traditional inserting.

locked. In the second step of the insertion, the selected leaf node is modified
and thus the exclusive lock is necessary. All other tasks requiring the node
are blocked until the first task releases the lock. Since each task exclusively
locks just one node at once, no deadlocks are possible.

During parallel inserting, the algorithm postpones splits to reduce syn-
chronization. Otherwise, exclusive locks would be necessary for changes in
the parent node and also in the grand-parent node. Thus, split postpone-
ment increases throughput of parallel insertions. Moreover, the quality of the
index can be improved analogously as in section 3.1 (the reinsertions). To
avoid the split, we use a similar heuristic – if a leaf node is about to split, the
most distant ground entry (from the parent routing entry) is removed from
the leaf node and stored in the temporary memory list. Since the removed
objects are not inserted immediately (though later during the next step or
even the next iteration), we denote this technique as postponed reinsertions.
Note that all objects, not stored in the second step, have been removed from
an overfull leaf node. Let us denote these objects as RO (remaining objects).

Traditional Inserting

Although the parallel inserting during the second step is very scalable, the
splits cannot be postponed interminably. Sooner or later, the filled leaf nodes
will become overfull and thus we need to “create” space for new objects by
allowing several splits. Hence, several objects from the temporary memory
list have to be inserted in the traditional (non-scalable) manner. Moreover,
we would like to select such objects the insertion of which will cause the split.

In the third step of the iteration, remaining objects from RO are divided
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into two sets P and S. Objects from the first set P will be inserted in par-
allel during the second step of the next iteration. Objects from the second
set S are inserted to the M-tree in the traditional manner (see Figure 4.2c,
where four not inserted or removed objects are divided into two groups S
and P ). Since a lot of splits is supposed to occur, the third step could be
denoted as a split generating or tree reorganizing step. The objects from
S are inserted one by one, and thus no synchronization during splitting is
needed. Moreover, as mentioned in section 4, split can be effectively paral-
lelized. Hence, splits-causing serial insertions do not slow the parallel M-tree
construction much. Parallelism during a node processing can be also em-
ployed to speedup traditional object insertion. To divide objects from RO
into two sets we propose two heuristics – random and minDistance.

• The random heuristic is very simple – it arbitrarily moves some objects
(e.g. 10%) from RO to S. The remaining objects are moved to P .

• The minDistance heuristic tries to select objects that will probably
cause split. The heuristic divides objects from RO into groups. Each
group GN consists of objects that were assigned to the same leaf node
N during the previous step. For each object from GN the distance
to the parent object or (from the routing entry pointing to N) was
evaluated during the previous step and can be utilized. From each
group GNi

, an object oi with the lowest δ(oi, ori) is moved to S. The
object is supposed to be probably re-inserted to the same leaf node
and thus can cause the split. Remaining objects are moved to P . An
example of the minDistance heuristic is depicted in Figure 4.3, where
filled objects outside the two balls are moved to S and the remaining
objects (marked by ellipses) are moved to P .

4.3.2 Scalability Notes

To estimate scalability of our new method, three parts of our algorithm
have to be analyzed – the parallel batch inserting, the traditional single-way
inserting and the splitting of a node (the last two also limit the original
parallel algorithm [Zezula et al., 1998]). Parallelism during the splitting is
limited quadratically with the node size – up to m × (m − 1) cores can be
used to speed-up the splitting. As mentioned before, parallelism during the
single-way leaf selection is limited by the node capacity m. Scalability of
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Moved to S

Moved to P

Figure 4.3: The minDistance heuristic for objects from RO (outside of the
two balls).

the parallel batch inserting is limited by the batch size. However, there is
another limiting factor for the batch size. There are more objects re-inserted
for a bigger size of the batch, because more leaf nodes become overfull4 and
also more objects become assigned to the same leaf node. Thus, most of
the processed objects are inserted again in the next iteration. Moreover, the
behavior probably depends also on the node size and on the number of leaf
nodes which makes the estimation more complicated. Therefore, we have
to prove that the parallel batch loading (which is not directly limited by
the node size) is more scalable than the original method. A model for the
scalability estimation is one of the topics of our future research.

To provide clear summary, in Listing 5 see the pseudo code of dynamic
batch loading algorithm.

Listing 5. (parallel dynamic batch loading)
let

A, P and S be sets of objects
let RO be a thread-safe set of objects
let Insert(obj, taskCount) be a traditional insertion
let Ti be a task representing method InsertWithoutSplit()

method BatchInsert(onew, batchSize, tasksCount, doublePI) {
insert onew into A

if A.Count is lower than batchSize then
return

split A to taskCount subsets Ai

4Leaf nodes are just filled with new objects during the parallel batch inserting step
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for (i = 1; i 6 taskCount; i++)
assign Ai to Ti

//parallel batch inserting with suppressed splitting
run tasks Ti in parallel

split RO to S and P

for each obj in S
//traditional inserting, splits may occur
Insert(obj, taskCount)

move objects from P to A
}

method InsertWithoutSplit() {
for each obj in Ai

let leafNode be a leaf node found for obj using single-way strategy

exclusively lock leafNode

insert obj to leafNode
if leafNode is overfull
let remObj be the furthest object in leafNode
insert remObj to RO

release exclusive lock from leafNode
}

4.4 Experimental Evaluation

In our experiments we have focused on the time spent during the M-tree
construction. The parallel batch loading algorithm consists of several sig-
nificant parts – parallel batch inserting (PBI), traditional inserting causing
split (ICS), traditional inserting not causing split (INCS) and remaining oper-
ations (Residue)5. Each part has been measured separately, thus parallelism
bottlenecks can be highlighted. All parts together form an M-tree construc-
tion time, while all presented times are in seconds. We do not present the
time spent by the Residue part since the time is insignificant. The reader can
simply derive the time from the overall time and remaining presented times.
The batch size used by the batch loading algorithm was set in all tests to
200 (for higher values there was no speed improvement). Since parallelism
leads to a nondeterministic M-tree construction, we have built M-tree five

5Residue includes reading new objects from a source file, writing nodes to the disk and
secondary CPU costs.
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times for parallel batch loading methods using more than one core. To min-
imize the construction time for tests parametrized with more cores we have
employed the parallel node splitting and the parallel routing item selection
during the traditional inserting. We have also performed several query tests
to check the index quality, i.e., the number of distance computations spent
during query processing. Each query test consisted of 200 randomly selected
query objects from a database.

We have performed our tests on 64bit Windows Vista and using processor
Intel Core 2 Quad Q9550 2.83GHz. We have also performed several tests on
the linux platform, using 16 core cluster, each CPU 2.83Ghz, to detect the
“real” speedup potential of our method. We have used our own C++ M-
tree implementation compiled for x64 processors, utilizing Intel Threading
Building Blocks 2.1.

4.4.1 Databases

We have used the same two databases as in the previous chapter (see Section
3.3.1). As a distance measure for CoPhIR [Falchi et al., 2008] database,
the Lp metric has been employed. We have arbitrarily set p to 5.123456 to
simulate an expensive distance function6. Note that since we are concerned
with database tasks, the particular semantics of a similarity is not relevant
for our experiments. For polygons database, we have used the Hausdorff
distance.

4.4.2 M-tree Settings

For both databases we have selected two node sizes determining inner and
leaf node capacities, summarized in Table 4.1. The minimal M-tree node
utilization was set to 20% of node capacity, as a promotion criterion was used
the mM Rad choice7.

4.4.3 S Generating Heuristics

In the first set of tests we have created two variants of M-tree using the
parallel batch loading method and four cores. We have focused on heuristics

6The fractional power is an expensive operation.
7Such pair of candidate routing objects is chosen, which has the smallest radius of the

greater region.
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database node size node cap. height
POLYGONS 4kB 30/28 4
POLYGONS 6kB 46/42 3
CoPhIR 8kB 25/24 5
CoPhIR 12kB 38/37 4

Table 4.1: M-tree configurations and corresponding reached height

that fill S with objects from RO. We have tested our proposed heuristics
– random and minDistance (denoted as RAND and minD). The amount of
randomly selected objects from RO in random heuristic was set to 10%.
In Table 4.2, overall time of M-tree construction (CTime), the number of
inserted batches (iterations), insertions causing split (ICS) and not causing
split (INCS), and the number of objects moved from RO to P (RO2P) are
presented. The minDistance heuristic results in the less number of objects
moved to P , i.e., less number of iterations (= less time).

POLYGONS, node size 4kB
heuristic CTime iterations ICS INCS RO2P
RAND 30.6 1 371 12 802 15 146 24 271
minD 29.7 1 279 12 893 15 029 5 028

CoPhIR, node size 12kB
heuristic CTime iterations ICS INCS RO2P
RAND 274.9 5 254 44 782 60 357 50 877
minD 266.6 5 139 45 029 57 019 24 291

Table 4.2: Number of serial insertions causing and not causing split

The variant minD reached the lowest times in all tests as presented in
Table 4.2, and thus it has been used in the rest of our experiments.

4.4.4 Parallel Batch Loading Speedup

The speedup is an important feature of parallel algorithms. Our algorithm
consists of three parts employing parallelism and one serial part (Residue).
Construction times spent by parallel parts are presented in Table 4.4. We
also present overall time which is the sum of all parts. We may observe that
the parallel bulk inserting and split generating insertions consume most of
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POLYGONS, node size 6kB
heuristic CTime PBI time ICS time INCS time
RAND 35.8 14.2 14.7 1.2
minD 35.5 13.5 15.1 1.2

CoPhIR, node size 8kB
heuristic CTime PBI time ICS time INCS time
RAND 256.2 155.6 62.3 10.7
minD 222.4 121.9 62.5 10.3

Table 4.3: Time spent during parallel insertions and insertions (not) causing
split

the overall time. The speedup of the parallel batch inserting (PBI) using four
cores is greater than 3.47 in all tests. The speedup of insertions causing split
(ICS) depends on a node size – lower node size leads to lower speedup, but
also to lower impact on the overall time. The overall speedup is greater than
2.95 in all tests and reached 3.33 for CoPhIR and node size 12 288.

4.4.5 Comparison with the Original Algorithm

We also show the comparison with the original M-tree building method (de-
noted as CLASSIC numberOfCores) utilizing parallel splitting, promotion and
node processing (routing item selection). Our new technique (denoted as
BATCH numberOfCores) also utilizes parallel splitting, promotion and node
processing for the traditional inserting. Table 4.5 summarizes overall index
construction times. As you can observe, our new technique using one core
does not slow down construction time significantly (in comparison with the
original M-tree method) and guarantees significant speedup. Moreover, for
four cores our method is faster in all cases.

We have also checked quality of all the created indexes. We have used
range queries with radii set to 75 for CoPhIR database and 15 for POLY-
GONS. The average cardinality of the answer was 74 objects for CoPhIR and
47 objects for POLYGONS. As we can see from the results presented in Ta-
ble 4.6, the quality of an index built by our parallel batch loading technique
slightly increases.

Finally, we have also performed several tests on the linux platform, using
16 core cluster, to detect the “real” speedup potential of our method. We
have indexed 1 million 76-dimensional vectors from the CoPhIR database
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POLYGONS, node size 4kB
proc. PBI ICS INCS CTime speedup
cores time time time
1 46.4 33.2 2.7 88.1 1.00
2 23.9 17.6 1.8 49.2 1.79
4 12.6 10.2 1.2 29.8 2.95

POLYGONS, node size 6kB
proc. PBI ICS INCS CTime speedup
cores time time time
1 49.0 53.0 2.5 110.9 1.00
2 25.9 28.3 1.6 61.5 1.80
4 14.1 15.1 1.1 36.1 3.07

CoPhIR, node size 8kB
proc. PBI ICS INCS CTime speedup
cores time time time
1 452.4 194.3 29.6 703.3 1.00
2 227.7 106.3 16.0 377.1 1.87
4 124.4 62.7 10.9 225.0 3.13

CoPhIR, node size 12kB
proc. PBI ICS INCS CTime speedup
cores time time time
1 537.2 284.2 29.8 877.8 1.00
2 281.4 148.9 16.8 474.9 1.84
4 143.5 83.2 9.4 263.6 3.33

Table 4.4: Time of parallel batch insert construction using 1, 2 and 4 cores

using both methods, and compared results in the table 4.7. See that although
BATCH 1 is slower than CLASSIC 1 when using single core, the scalability of
the BATCH method brings BATCH 16 is nearly 2x faster than CLASSIC 16.

The scalability of the BATCH method is determined by the very scalable
second step of a parallel batch loading iteration. See column PBI time in the
table 4.8, where originally dominant time 675 seconds is reduced just to 48
seconds. We may also observe, that traditional insertions causing and not
causing split cannot efficiently use more than 8 cores (for this experiment),
which is the reason, why the CLASSIC 16 (using just ICS and INCS) lags
behind the BATCH 16.
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POLYGONS CoPhIR
node size 4kB 6kB 8kB 12kB
CLASSIC 1 83.4 111.6 648.7 837.5
CLASSIC 2 54.2 70.2 374.8 476.4
CLASSIC 4 35.6 43.1 246.6 302.8
BATCH 1 88.1 110.9 703.3 877.8
BATCH 2 49.2 61.5 377.1 474.9
BATCH 4 29.8 36.1 225.0 263.6

Table 4.5: Index construction time

POLYGONS CoPhIR
node size 4kB 6kB 8kB 12kB
CLASSIC 2 013 2 035 314 074 293 110
BATCH 1 1 900 1 869 303 833 275 848
BATCH 2 1 958 1 819 297 074 285 677
BATCH 4 1 935 1 837 303 490 276 090

Table 4.6: Number of distance computations spent by range queries

4.5 Discussion

In this chapter, we have proposed a new M-tree building method which uti-
lizes the power of multiple processor cores and the re-inserting idea. This
approach provides significant speedup of M-tree construction and more com-
pact M-tree hierarchies, resulting in better query performance. The approach
is not limited by a node capacity and thus can be applied in multiproces-
sor architectures with quite high number of cores. This allows fast dynamic
index construction of very large data collections with expensive similarity
function even on a single machine.
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CTime speedup
CLASSIC 1 938 1.00
CLASSIC 16 179 5.24
BATCH 1 1013 1.00
BATCH 2 594 1.71
BATCH 4 304 3.33
BATCH 8 157 6.45
BATCH 16 104 9.74

Table 4.7: Index construction time and speedup

PBI time ICS time INCS time
BATCH 1 675 284 46
BATCH 2 383 174 29
BATCH 4 186 93 17
BATCH 8 91 48 11
BATCH 16 48 39 10

Table 4.8: Index construction time in detail
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Part II

Beyond the Metric Space
Model
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Chapter 5

Nonmetric Similarity Search

The contribution of this part of the thesis is a follow-up of indexing based on
the TriGen algorithm, a previously proposed approach to efficient nonmetric
similarity search.

5.1 Motivation for Nonmetric Search

Nowadays, the research in many scientific domains leans to digitization of
physical phenomena and data processing. A perfect example here is the
shift from molecular biology to bioinformatics, where a part of the biologi-
cal research moved from “wet lab” to computerized analysis of protein/DNA
models [Bourne and Weissig, 2003]. Hence, there are continuously emerging
new extremely complex data types which cannot be easily modeled in “flat”
Euclidean or Lp spaces. Simultaneously, the metric similarity functions be-
came way too restrictive for the domain experts, as they do not allow robust
and local behavior. Thus, the long-ago more or less theoretical objections
against the metric postulates introduced by various psychological theories
appear as strong arguments in many real-world applications nowadays.

In particular, the theories have refuted non-negativity (δ(x, y) > 0) and
identity (δ(x, y) = 0 ⇔ x = y) by claiming that different objects could be
differently self-similar [Tversky, 1977], [Krumhansl, 1978]. For instance, in
Figure 5.1a, the image of a leaf on a trunk can be viewed as positively self-
dissimilar if we consider a similarity which measures the less similar parts of
the objects (here the trunk and the leaf). Or, alternatively, in Figure 5.1b the
leaf-on-trunk and leaf could be treated as identical if we consider the most
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Figure 5.1: Arguments against metric properties (a) reflexivity (b) nonneg-
ativity (c) symmetry (d) triangle inequality.

similar parts of the objects (the leaves). The symmetry (δ(x, y) = δ(y, x))
was questioned by showing that a prototypical object can be less similar to an
indistinct one than vice versa [Rothkopf, 1957], [Rosch, 1975]. In Figure 5.1c,
the more prototypical “Great Britain and Ireland” image is more distant to
the “Ireland alone” image than vice versa (i.e., a subset is included in its
superset but not vice versa). The triangle inequality (δ(x, y) + δ(y, z) >
δ(x, z)) is the most attacked property. Some theories point out that similarity
has not to be transitive [Tversky and Gati, 1982], [Ashby and Perrin, 1988]
as shown by the well-known example: a man is similar to a centaur, the
centaur is similar to a horse, but the man is completely dis-similar to the
horse (see Figure 5.1d).

In real-world applications, the lack of metric postulates could increase
the richness of similarity modeling. In particular, a similarity measure that
is nonmetric allows to model the following crucial properties:

• Robustness. A robust function is resistant to outliers (noise or deformed
objects), that would otherwise distort the similarity distribution within
a given set of objects [Donahue et al., 1996], [Howarth and Ruger, 2005].
In general, having objects x and y and a robust function δ, then an
extreme change in a small part of x’s descriptor should not imply an
extreme change of δ(x, y).

• Locality. A locally sensitive function is able to ignore some portions of
the compared objects. As illustrated in Figure 5.1a,b, we could model
a “smart” similarity function that decides which portions of object x
are relevant when evaluating its similarity with object y. This property
leads not only to potential violation of non-negativity, but also to the
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violation of triangle inequality. For example, consider the centaur and
the man (see Figure 5.1d); here we perform such a locally sensitive
matching - we compare either the human-like or horse-like parts of the
two images. The locality is usually used to privilege similarity before
dissimilarity, hence, we rather search for similar parts in two objects
than for dissimilar parts [Smith and Waterman, 1981], [Robinson et al.,
2000]. As in real world, highly similar objects are not very common
when compared at a global scale. An ”augmentation” of similarity by
locally sensitive functions provides a way how to distinctly separate
similar and dissimilar objects.

In the following paragraphs, we will recall several popular nonmetric dis-
tances used to model robust dissimilarity measures. Examples of nonmetric
distances and their combinations are depicted in Figure 5.2a-d.

Fractional Lp Distances

The fractional Lp distances [Aggarwal et al., 2001] extend the Minkowski
metrics (see Section 1.4.1) for 0 < p < 1, however, such Lp distances are only
semimetrics (see Figure 1.4). The fractional Lp distances are employed in
such cases, where it is desirable to inhibit extreme differences in coordinate
values. The fractional Lp distances have been employed for robust image
matching [Donahue et al., 1996] and retrieval [Howarth and Ruger, 2005].

Cosine Measure

The cosine measure, defined as

σcos(x, y) =

∑n
i=1 xi, yi√∑n

i=1 x
2
i

∑n
i=1 y

2
i

is very popular in the vector model of text retrieval [Baeza-Yates and Ribeiro-
Neto, 1999]. To obtain an equivalent semimetric distance, a simple transfor-
mation δcos = 1− σcos can be used.

K-median Distances

The k-median distances, measuring the kth most similar portions of the
compared objects, are usually employed to provide the robust behavior. The
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Figure 5.2: (a-d) Region balls of some nonmetric distances, (e) DTW distance
and (f) COSIMIR model.

k-median distances can be utilized in cases, where a requested distance mea-
sure δ employs partial distances di(., .) considering ith portions of compared
objects. The k-median distances can be used for example in connection with
the Hausdorff distance in order to measure the kth most similar elements of
two compared sets [Huttenlocher et al., 1993].

Dynamic Time Warping Distance

The dynamic time warping distance (DTW) is very popular in the area of
sequence matching, because it is quite resistant to the sampling frequency
or a time shift (see Figure 5.2e). The DTW is based on the minimization
of the sum of distances between aligned elements, which can be efficiently
computed by dynamic programming. The DTW has been used in time series
retrieval [Yi et al., 1998] and even in shape retrieval [Bartolini et al., 2005].
To eliminate some undesired alignments, there were also developed various
constraints on DTW [Keogh and Ratanamahatana, 2005].

COSIMIR Model

An employed distance measure can be also a nontrivial and complex algo-
rithm, where a “manual” enforcement of metric properties is nearly impossi-
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ble. The COSIMIR model [Mandl, 1998] is based on a three-layer backpropa-
gation neural network, that can be trained to model an arbitrary user-defined
similarity measure (see Figure 5.2f). However, in such general model, it is
very hard to train a metric distance.

5.2 Similarity Search in Nonmetric Spaces

In this section, we will review several basic approaches for nonmetric sim-
ilarity search. For more details, see a survey [Skopal and Bustos, 2010]
summarizing the motivation and the state-of-the-art techniques for efficient
nonmetric search. The techniques, so called nonmetric access methods (or
shortly NAMs), can be divided into three groups, as follows:

• Mapping methods. Search problems in nonmetric spaces can be trans-
formed into metric or vector spaces, where sufficient tools (metric or
spatial access methods [Samet, 2006]) have already been developed.
However, mapping methods are usually expensive and bring inaccu-
racy to the retrieval. A mapping from a nonmetric to a metric space is
accomplished by turning the employed semimetric into a metric. Hence,
the task for such mapping, is enforcing the triangle inequality. Among
several approaches solving this problem, we name the constant shift-
ing embedding [Roth et al., 2002] and the TriGen algorithm described
in Chapter 6. A mapping to the vector spaces brings two-fold bene-
ficial effect – first, a cheap metric can be utilized in the target vector
space and second, the mapping may serve as a dimensionality reduction
tool when mapping from a high-dimensional Lp space. The nonmetric
multidimensional scaling and the query sensitive embeddings [Athitsos
et al., 2007] are two examples of transforming the nonmetric space to
the vector space.

• General NAMs. Although general NAMs reuse mapping techniques
from the first group, they consider more complex scenarios (e.g. index-
ing, querying). The local constant embedding [Chen and Lian, 2008], the
QIC-M-tree [Ciaccia and Patella, 2002] and our contribution, the NM-
tree [Skopal and Lokoč, 2008] described in Chapter 7, belong among
these general methods.

• Specific NAMs. A very efficient search model can be established by con-
sidering specific properties of a particular dissimilarity measure. How-
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ever, these domain-specific models are not reusable as general methods
for arbitrary nonmetric spaces. A typical example of a specific non-
metric method is the inverted file, used for implementation of vector
model in the text retrieval under the cosine measure [Berry and Browne,
1999]. Since a typical query consists of only a few terms, there must
be only a small part of the database processed. The inverted file is an
excellent example that a NAM (cosine measure) could be more effective
than a MAM (angle distance), even for the same application.

5.3 Distance modifications

An approach to efficient nonmetric similarity search is the utilization of a
dissimilarity-to-dissimilarity transformation f , that is, a transformation of
the original dissimilarity δ into a modified (nearly) metric δf . The motivation
for such a transformation is utilization of MAMs also for efficient nonmetric
search. We also show that the concept of turning nonmetric into metric for
the purpose of similarity search does not harm the robust nonmetric behavior
mentioned in section 5.1. In this chapter, we will remember the basic defini-
tions, lemmas and theorems, which are necessary for the framework proposed
in [Skopal, 2007]. Our contribution presented in Chapter 7 is a follow-up to
the previously proposed TriGen algorithm and indexing by MAMs.

We will also assume, that δ is a semimetric, that is, it satisfies only
the identity, non-negativity and symmetry. The first two properties can be
achieved easily – the non-negativity is satisfied by a constant shift, while for
the identity property it is required that every two non-identical objects are
at least d−-distant. The lower-bound and upper-bound distances d−, d+ can
be provided either by the structure of the input universe U, or by sampling
a number of distances δ(oi, oj), oi, oj ∈ S. The sampling may result only in
approximate lower-/upper-bound distances d−, d+, hence, outlier distances
d < d− or d > d+ are usually represented directly by d− or d+. During the
search, the possibly relevant objects involved in distances d−, d+ are treated
individually. The upper bound d+ can be further used to normalize the
original semimetric δ such that it produces distances from ⟨0, 1⟩.

Finally, we show how to satisfy the symmetry property. If an original
measure d is asymmetric, the search can be partially provided by a symmet-
ric measure δ, e.g., δ(oi, oj) = min{d(oi, oj), d(oj, oi)}. After the modified
measure δ filters out some non-relevant objects, the original measure d is
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used to rank the remaining non-filtered objects.
The hard task is enforcing the triangle inequality. We will summarize

necessary formalism for a transformation of dissimilarity δ in the following
sections.

5.3.1 Similarity-Preserving Modifiers

A transformation function f could substantially change the original space,
hence it is necessary to formally specify constraints for such transformation,
in order to preserve some properties of the original space. Especially, the
relations between objects should be preserved, that is, each object should
see the same neighborhood both in the original space and in the modified
space. In the following two definitions, the similarity neighborhood of an
object and a suitable transformation are formalized.

Definition 13. We define SimOrderδ : U 7→ 2U×U, ∀oi, oj, ok ∈ U as ⟨oi, oj⟩ ∈
SimOrderδ(ok) ⇔ δ(ok, oi) < δ(ok, oj), i.e., SimOrderδ orders objects by their
distances to ok.

Definition 14. Given a dissimilarity measure δ, we call δf (oi, oj) = f(δ(oi, oj))
a similarity-preserving modification of δ (or SP-modification), where f , called
the similarity-preserving modifier (SP-modifier), is a strictly increasing func-
tion for which f(0) = 0. For clarity reasons we assume f is bounded, i.e.,
f : ⟨0, 1⟩ 7→ ⟨0, 1⟩.

The utilization of similarity preserving modifiers does not change the
similarity retrieval model, as shown in the following lemma.

Lemma 1.

Given a dissimilarity δ and any δf , SimOrderδ(q) = SimOrderδf (q),∀q ∈ U.
Proof: As f is increasing, then ∀q, oi, oj ∈ U it follows that
δ(q, oi) > δ(q, oj) ⇔ f(δ(q, oi)) > f(δ(q, oj)). �

Hence, it does not matter whether we use for a sequential query processing
either δ or δf , because both induce the same similarity ordering. Naturally, if
δf is used for a range query processing, the query radius rq must be modified
to f(rq).

In the following two Sections, we will recall two important types of simi-
larity preserving modifiers – the triangle-generating and the triangle-violating
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modifiers, or simply T-modifiers. The T-modifiers can be utilized to partially
enforce the triangle inequality in a finite database, which may be further em-
ployed for an efficient indexing. The following definition helps us to formally
describe the amount of the triangle inequality fulfillment.

Definition 15. A triplet of distances (a, b, c) is triangle triplet
if a+ b > c, b+ c > a, a+ c > b. If a 6 b 6 c, we call a triangle triplet the
ordered triangle triplet.

The triangle triplets can be viewed as witnesses of triangle inequality of a
distance δ – if all triplets (δ(oi, oj), δ(oj, ok), δ(oi, ok)) on all possible objects
oi, oj, ok ∈ S are triangle triplets, then δ satisfies the triangle inequality in
the database S. For the sake of simplicity, we can view a triplet (a, b, c) as
ordered triplet by permutation of distances a 6 b 6 c, where only inequality
a+ b > c has to be checked.

5.3.2 Triangle-Generating Modifiers

The class of triangle-generating modifiers is a special subclass of so-called
metric-preserving functions [Corazza, 1999]. Within the class of metric-
preserving functions, some are simultaneously SP-modifiers, as follows:

Definition 16. An SP-modifier f is metric-preserving if for every metric
δ the SP-modification δf preserves the triangle inequality, i.e., δf is also
metric.1

In the following lemma, two interesting properties of SP-modifiers are
shown.

Lemma 2.

(a) Every concave SP-modifier f is metric-preserving.
(b) Let (a, b, c) be a triangle triplet and f be a metric-preserving SP-modifier,
then (f(a), f(b), f(c)) is a triangle triplet as well.

Proof: For the proof and for more about general metric-preserving functions
(not only the continuous/monotonous ones) we refer to [Corazza, 1999]. �

Definition 17. Let a strictly concave SP-modifier f be called a triangle-
generating modifier (or TG-modifier). Having a TG-modifier f , let a δf be
called a TG-modification.

1Such an SP-modifier is additionally subadditive (f(x) + f(y) > f(x+ y),∀x, y ∈ R+
0 ).
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Figure 5.3: Several T-modifiers: (a) TG-modifiers (b) TV-modifiers

By applying a TG-modifier on a metric δ, the metric access methods
can be still employed to perform efficient exact search. Moreover, if δ is
a semimetric, we can employ TG-modifiers to increase the amount of the
triangle inequality fulfillment or even to turn the original semimetric δ into
a full metric δf (see Theorem 1). Several examples of TG-modifiers are
depicted in the Figure 5.3a.

Lemma 3.

Let f be an increasing concave function, such that f(0) = 0. Let us have
a, c ∈ R+ such that a < c. Then

f(a)

f(c)
>

a

c

Proof: Consider a linear function

g(x) =
f(c)

c
x (5.1)

According to this function, we get g(a) which divides the interval ⟨0, f(c)⟩
in the same proportion as a divides the interval ⟨0, c⟩ (this is a direct conse-
quence of g(x)’s linearity, for illustration see figure 5.4a). By substitution of
x = a in (5.1) we get

g(a)

f(c)
=

a

c
(5.2)
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Because f(x) is concave, g(x) < f(x), ∀x ∈ (0, c) (by definition of concave
functions), hence,

g(a) < f(a) (5.3)

Finally, by (5.2) and (5.3), it follows that

f(a)

f(c)
>

a

c

�

Figure 5.4: (a) Concave and (b) convex function

Theorem 1.

Given a semimetric δ, then there always exists a TG-modifier f , such that
the SP-modification δf is a metric.

Proof: We show that every ordered triplet (a, b, c) generated by δ can be
turned by a single TG-modifier f into an ordered triangle triplet.

1. As every semimetric is reflexive and non-negative, it generates ordered
triplets just of forms (0, 0, 0), (0, c, c), and (a, b, c), where a, b, c > 0. Among
these, just the triplets (a, b, c), 0 < a 6 b < c, can be non-triangular. Hence,
it is sufficient to show how to turn such triplets by a TG-modifier into trian-
gular ones.

2. Suppose an arbitrary TG-modifier f1. From TG-modifiers’ properties
it follows that f1(a)

f1(c)
> a

c
, f1(b)

f1(c)
> b

c
, hence f1(a)+f1(b)

f1(c)
> a+b

c
(application of
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Lemma 3). If (f1(a) + f1(b))/f1(c) > 1, the triplet (f1(a), f1(b), f1(c)) be-
comes triangular (i.e., f1(a) + f1(b) > f1(c) is true). In case there still exist
triplets which have not become triangular after application of f1, we take
another TG-modifier f2 and compose f1 and f2 into f ∗(x) = f2(f1(x)). The
compositions (or nestings) f ∗(x) = fi(. . . f2(f1(x)) . . . ) are repeated until f ∗

turns all triplets generated by δ into triangular ones – then f∗ is the single
TG-modifier f we are looking for. �

As was shown in the proof, the more concave TG-modifier is applied,
the more triplets become triangular, however, the more the objects form-
ing a triplet become also equidistant. Unfortunately, these two important
properties of a modified space go against each other. On one hand, more tri-
angle inequality fulfillment can be employed for exact metric indexing. On
the other hand, equidistant objects do not form separated clusters and thus
filtering rules during search usually fail.

To visualize triangular triplets and the effect of a transformation, consider
a space ⟨0, 1⟩ × ⟨0, 1⟩ × ⟨0, 1⟩ of all possible distance triplets. Dimensions in
the space are represented by distance values a,b,c. Each point in the space
represents one triplet and sets of (non-)triangular triplets form 3D regions.
In Figures 5.5a,b see examples of region2 Ω of all triangular triplets (depicted
as the dotted-line-bounded area). The super-region Ωf (depicted as the solid-
line-bounded area) represents all the triplets which become (or remain) tri-

angular after the application of TG-modifier f(x) = x
3
4 and f(x) = sin(π

2
x).

By application of TG-modifications, the distances are larger and more
equidistant which implies the mean of distances increases and the variance
decreases. Hence the intrinsic dimensionality of TG-modified distance δf is
always greater than that of δ. In Figure 5.6b see an example of distance
distribution of TG-modified L2 distance (for the not modified L2 distance
distribution see Figure 5.6a). Let us denote, that the same behavior ap-
pears also in vector spaces3, where the higher dimensionality leads to more
equidistant vectors.

5.3.3 Triangle-Violating Modifiers

The triangle-violating modifiers and modifications can be seen as “inverse”
transformations to the triangle-generating modifiers and modifications.

2The 2D representations of Ω and Ωf regions are c-cuts of the real 3D regions.
3The curse of dimensionality problem [Böhm et al., 2001].
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Definition 18. Let a strictly convex SP-modifier f be called a triangle-
violating modifier (or TV-modifier). Having a TV-modifier f , let a δf be
called a TV-modification.

By application of the TV-modifiers (see Figure 5.3b) some triangular
triplets may become non-triangular, which turns an original metric to a semi-
metric. In the following, we will recall a lemma used in Theorem 2.

Lemma 4.

Let f be an increasing convex function, such that f(0) = 0. Let’s have
a, c ∈ R+ such that a < c. Then

f(a)

f(c)
<

a

c
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Proof: Consider a linear function

g(x) =
f(c)

c
x (5.4)

According to this function, we get g(a) which divides the interval ⟨0, f(c)⟩
in the same proportion as a divides the interval ⟨0, c⟩ (this is a direct conse-
quence of g(x)’s linearity, for illustration see figure 5.4b). By substitution of
x = a in (5.4) we get

g(a)

f(c)
=

a

c
(5.5)

Because f(x) is convex, g(x) > f(x),∀x ∈ (0, c) (by definition of convex
functions), hence,

g(a) > f(a) (5.6)

Finally, by (5.5) and (5.6), it follows that

f(a)

f(c)
<

a

c

�

Theorem 2.

Given a metric δ, then there always exists a TV-modifier f , such that the
SP-modification δf is a semimetric.

Proof: The proof is exactly the opposite to that of Theorem 1. Let f1 be an
arbitrary TV-modifier. From TV-modifiers’ properties it follows that f1(a)

f1(c)
<

a
c
, f1(b)

f1(c)
< b

c
, hence f1(a)+f1(b)

f1(c)
< a+b

c
(application of Lemma 4). If (f1(a) +

f1(b))/f1(c) < 1, the triplet (f1(a), f1(b), f1(c)) becomes non-triangular (i.e.,
f1(a) + f1(b) < f1(c) is true). By composing TV-modifiers we increase the
variance among distances within distance triplets, so that some of them
sooner or later become NOT triangular triplets (we omit the exotic case
where all the objects in U are equidistant). �
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In consequence, the properties of TG-modifiers discussed in the previous
section hold inversely for TV-modifiers. In Figure 5.5c see examples of re-
gion Ω of all triangular triplets. The region Ωf represents all the triplets
which remain triangular after the application of TV-modifier f(x) = x5.
Furthermore, every (strictly convex) TV-modification exhibits lower intrin-
sic dimensionality than the original (semi)metric δ (with respect to S), see
the distance distribution in Figure 5.6c (compare to Figure 5.6a).

5.4 Discussion

In this chapter, we have summarized motivation for the nonmetric search
and presented several examples of popular nonmetric measures. In nonmetric
spaces a dissimilarity measure δ is not constrained by any properties, so we
have no clue for indexing. Hence, we have discussed the way how to turn
any nonmetric to a semimetric. Furthermore, we have also discussed TV-
/TG-modifiers which can either increase or decrease the amount of triangle
inequality of a particular dissimilarity measure. An automatic tool for finding
suitable modifiers is presented in the following chapter.
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Chapter 6

TriGen Algorithm

In this chapter, we will remember the TriGen algorithm [Skopal, 2006, 2007]
that can put more or less of the triangle inequality into any semimetric δ.
Thus, any semimetric distance can be turned into an equivalent full metric,
or to a semimetric which satisfies the triangle inequality to some user-defined
extent. Conversely, TriGen can also turn any full metric into a semimetric
which preserves the triangle inequality only partially; this is useful for faster
but only approximate search. For its functionality the TriGen needs a (small)
sample S∗ ⊂ S of the database objects.

6.1 T-error

Using MAMs in combination with a TV-/TG-modification of δ affects both
the retrieval efficiency and the retrieval error. Hence, some measure is needed,
providing an estimation of how MAMs will behave when using a modified
distance. The T-error (proposed in [Skopal, 2007]) represents such a mea-
sure - it is a degree of triangle inequality violation in a particular database
equipped by a semimetric δ. The T-error is computed as the proportion of
non-triangle triplets in all examined distance triplets, i.e.,

ϵδ,S =
mnt

m

where m is the total number of sampled distance triplets and mnt is the
number of non-triangular triples.

In order to decrease a T-error evaluation time, a small sample of the dis-
tance triplets is needed. Without sampling, all possible triplets have to be
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checked, resulting in exhaustive processing n × (n − 1) distance computa-
tions and

(
n
3

)
triplet checks (n = |S|). On the other hand, the total number

of triplets m sampled from a database sample S∗ ⊂ S affects the precision
of T-error. Ideally, we would like to obtain ϵδ,S∗ = ϵδ,S = ϵδ,U. Hence, rather
than simple random techniques, a suitable sampling technique minimizing
discrepancy between ϵδ,S∗ and ϵδ,U must be incorporated. Since the simple
random techniques could miss some anomalous ordered triplets (a, b, c) where
the ratio a+b

c
is extremely low, the zero T-error does not have to guarantee

that the modified dissimilarity measure is metric. Hence, to guarantee ex-
act search for a modified semimetric with zero T-error, also the anomalous
triplets should be considered and sampled in addition to the randomly sam-
pled ones. For more details and for anomalous triplets sampling heuristic,
see [Skopal, 2007].

The T-error is expected to be correlated with the real retrieval error
exhibited by any MAM when used with a semimetric distance. The real
retrieval error can be defined as a kind of Jaccard distance, the normed
overlap distance ENO. Let QRMAM be the query result returned by a MAM
and QRSEQ be the query result obtained by sequential search of the database,
then the retrieval error ENO is defined as:

ENO = 1− |QRMAM ∩QRSEQ|
max(|QRMAM |, |QRSEQ|)

Let θ be a user-defined threshold value for T-error. For our retrieval
task, we would like to find such TV-/TG-modifier f of δ, that ϵδf ,S 6 θ.
To automatically find such modifiers, we can utilize the TriGen algorithm.
However, before we remember the TriGen algorithm, we have to show its
cornerstone – the T-bases.

6.2 T-bases

The principle behind TriGen is a usage of triangle triplets and T-bases, which
generate a subset of TV-/TG-modifiers.

Definition 19. Let f : ⟨0, 1⟩ × R 7→ R+
0 such that f(x, 0) = x, f(x,w) is

a TG-modifier for w > 0 and it is a TV-modifier for w < 0, where w is
called the concavity-convexity weight (CC-weight). Furthermore, if w1, w2 >
0 ∧ w1 > w2, then f(x,w1) > f(x,w2),∀x ∈ (0, 1). Conversely, if w1, w2 <
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0 ∧ w1 < w2, then f(x,w1) < f(x,w2),∀x ∈ (0, 1). We also require f is
continuous in sense limw1→w2f(x,w1) = f(x,w2), ∀x ∈ ⟨0, 1⟩. Then we call
f a base of T-modifiers (or T-base).

A T-base f(x,w) is an increasing function (where f(0, w) = 0 & f(1, w) =
1) which turns a value x ∈ ⟨0, 1⟩ of an input (semi)metric δ into a value of a
target (semi) metric δf , i.e., δf (·, ·) = f(δ(·, ·), w). Besides the input distance
value x, the T-base is parameterized also by a fixed weight w ∈ ⟨−∞,∞⟩
which determines how concave or convex f should be. The higher w > 0, the
more concave f , which means also the lower T-error of any δf . Conversely,
the lower w < 0, the more convex f and the higher T-error of any δf (w = 0
means f is identity).

For example, in Figure 6.1 see two T-bases, the fractional power T-base
(FP-base) defined as:

FP(x,w) =

{
x

1
1+w for w > 0

x1−w for w 6 0

and one of the rational Bézier quadratic T-bases (RBQ-bases), defined
as:

RBQ(a,b)(x,w) =

{
rbq(x,w, a, b) for w > 0
rbq(x,−w, b, a) for w 6 0

where rbq(x,w, a, b) =

−(Ψ− x+ wx− aw) · (−2bwx+ 2bw2x− 2abw2 + 2bw − x+ wx− aw +Ψ(1− 2bw))

(−1 + 2aw − 4awx− 4a2w2 + 2aw2 + 4aw2x+ 2wx− 2w2x+ 2Ψ(1− w))

and Ψ =
√
−x2 + x2w2 − 2aw2x+ a2w2 + x.

The fractional power T-base is an example of a modifier with the global
control of concavity/convexity (controlled just by w), while the rational
Bézier quadratic T-bases are furthermore locally adjustable by the second
point of the Bézier quadratic curve1.

1The three Bézier points are specified as P1(0, 0), P2(a, b) and P3(1, 1).
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Figure 6.1: T-bases: (a) FP-base (b) RBQ(a,b)-base

6.2.1 Indexability

When choosing very high w (i.e., very concave f), we could turn virtually
any semimetric δ into a full metric δf . However, such a modification is not
very useful from the indexability point of view. The more concave f , the
higher intrinsic dimensionality of the data space (for definition see Section
1.4.5), which leads to poor partitioning/indexing by any MAM. On the other
hand, the more convex f , the lower intrinsic dimensionality of the data space
but also the higher the T-error – this results in fast but only approximate
searching, because now the MAMs’ assumption on fully preserved triangle
inequality is incorrect. Hence, we have to make a trade-off choice – whether
to search quickly but only approximately using a dissimilarity measure with
higher T-error, or to search slowly but more precisely.

6.3 TriGen algorithm

Given a user-defined T-error tolerance θ, a sample S∗ of the database, and
an input (semi)metric δ, the TriGen’s job is to find a modifier f so that the
T-error of δf is kept below θ and the intrinsic dimensionality of (S∗, δf ) is
minimized2. For each of the predefined T-bases the minimal w is found (by
halving the weight interval), so that the weight w cannot be further decreased

2As shown in [Skopal, 2007, 2006], the real retrieval error of a MAM using δf is well
estimated by the T-error of δf , hence, θ can be directly used as a retrieval precision
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without T-error exceeding θ. Among all the processed T-bases and their final
weights, the one is chosen which exhibits the lowest intrinsic dimensionality,
and returned by TriGen as the winning T-modifier (for details of TriGen see
[Skopal, 2007]). In Listing 6, see the TriGen algorithm which seeks for the
optimal TV-/TG-modifier.

Listing 6. (the generalized TriGen algorithm)

Input: (semi)metric δ, pool F of T-bases, sample S∗, T-error tolerance threshold θ,
iteration limit iterLimit, number of sampled triplets m

Output: optimal f , w

f = w = null; maxIndexability = −∞

T = SampleTriplets(m, S∗, δ)

for each f∗ in F
w∗ = 0; iter = 0
error = TriangleError(f∗, w∗, T ) // compute the initial error of non-modified δ, i.e., w∗ = 0
if error < θ then // TV-modifiers will be used

wLB = 0; wUB = −∞; wbest = 0
errbest = error; w∗ = -1

else // TG-modifiers will be used
wLB = 0; wUB = ∞; errbest = 0
wbest = -1; w∗ = 1

end if

while (iter < iterLimit) // the main algorithm – halving/doubling the weight w∗

error = TriangleError(f∗, w∗, T )
if wUB > 0 then

if error 6 θ then
wUB = wbest = w∗

errbest = error;
w∗ = (wLB + wUB) / 2

else
wLB = w∗

if wUB ̸= ∞ then
w∗ = (wLB + wUB) / 2

else
w∗ = 2 * w∗

end if
end if

else
if error 6 θ then

wLB = wbest = w∗

errbest = error;
if wUB ̸= −∞ then

w∗ = (wLB + wUB) / 2
else

w∗ = 2 * w∗

end if
else

threshold.
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wUB = w∗

w∗ = (wLB + wUB) / 2
end if

end if
iter++

end while

if (wUB > 0 and wbest > -1) or (wUB < 0 and wbest < 1) then // store the best (f ,w) found
w∗ = wbest

indexability = ComputeIndexability(f∗, w∗, T )
if indexability > maxIndexability then

f = f∗; w = wbest

maxIndexability = indexability
end if

end if
end for each

6.3.1 Experimental Results

Let us summarize the results presented in [Skopal, 2007]. The author has
examined 26 dissimilarity “black-box” measures on four different datasets.
Both semimetrics and metrics have been considered for exact (T-error θ = 0)
and approximate search (T-error θ > 0). All the distances have been normed
to return values from ⟨0, 1⟩. As T-bases, the FP-base and 115 RBQ-bases
have been employed. The sampled triplets consisted from randomly selected
triplets and also from anomalous triplets. As the optimality criterion for the
best T-bases, the intrinsic dimensionality (iDim) and the ball overlap factor
(BOF) have been utilized. The results can be summarized as follows:

• The modified distances (for θ > 0) indicate lower iDim and BOF than
their metric variants. The iDim was in some cases even 32 times lower.
It can be caused also by the fact, that preserving fully metric behavior
for some semimetrics can dramatically increase the iDim. On the other
hand, there appeared distances, that satisfied θ = 0 even after TV-
modifications, so they did not harm their metric behavior.

• In contrast to iDim-driven TriGen, the BOF-driven TriGen produces
TV-/TG-modifications, which perform better in M-tree based indexes,
however, with higher retrieval errors.

• The increasing k in kNN queries does not considerably change the re-
trieval error, hence, we can expect stable behavior under various query
selectivities.
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• The distance modifications can be successfully applied also on high-
dimensional data. For example, although the time series are hard to
index for zero retrieval error, for T-error tolerance 6 0.01 the per-
formance improves quite significantly and the retrieval error is still
reasonably small.

• The size of the database sample used for triplets sampling has impact
both on the performance and the retrieval error. Nevertheless, for
sample consisting of 7% of the database size, the behavior is stable in
all tested databases. The limited size of the sample has also an impact
on the required ratio of anomalous triplets, which are used to stabilize
the retrieval error. Hence, applications where a strictly guaranteed
level of retrieval error is required have to use larger sizes of the sample
and larger anomalous triplets sets.

The TriGen is a general and useful framework, that can connect well es-
tablished MAMs with the nonmetric search problems. Moreover, the TriGen
can be used to tune the performance of the existing applications, where slight
modifications of distance measures improve the retrieval efficiency and do not
harm the requested effectiveness.

6.3.2 Discussion

The winning T-modifier could be subsequently employed by any MAM to
index and query the database using δf . However, at this moment a MAM’s
index built using δf is not usable if we want to change the approximation
level (the T-error of δf ), that is, to use another f . This is because MAMs
accept the distance δf as a black box; they do not know it is a composition
of δ and f . In such case we have to throw the index away and reindex the
database by a δf2 .

In the following chapter we propose the NM-tree, a NAM based on M-tree
natively utilizing TriGen. In NM-tree, any of the precomputed T-modifiers fi
can be flexibly chosen at query time, allowing the user to trade performance
for precision.
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Chapter 7

NM-tree

In the following, we will present the NM-tree which is a combination of M-
tree and the TriGen algorithm. Basically, the NM-tree is an extension of
M-tree in terms of algorithms, while the data structure itself is unchanged.
The difference in indexing relies in encapsulating the M-tree insertion algo-
rithm by the more general NM-tree insertion (see Section 7.1). The query
algorithms have to be slightly redesigned (see Section 7.2).

7.1 Indexing

The distance values (to-parent distances and covering radii) stored in NM-
tree are all metric, that is, we construct a regular M-tree using a full metric.
Since the NM-tree’s input distance δ is generally a semimetric, the TriGen al-
gorithm must be applied before indexing, in order to turn δ into a metric δfM

(i.e., searching for a T-modifier fM under T-error θ = 0). However, because
at the beginning of indexing the NM-tree is empty, there is no database sam-
ple available for TriGen. Therefore, we distinguish two phases of indexing
and querying on NM-tree.

For the whole picture of indexing in NM-tree, see Listing 7. The first
phase just gathers database objects until we get a sufficiently large set of
database objects. In this phase a possible query is solved sequentially, but
this is not a problem because the indexed database is still small. When the
database size reaches a certain volume (say, ≈ 104 objects, for example),
the TriGen algorithm is used to compute fM using the database obtained
so far. At this moment we run the TriGen also for other, user-defined θi
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values, so that alternative T-modifiers will be available for future usage (for
approximate querying). Finally, the first phase is terminated by indexing the
gathered database using a series of the original M-tree insertions under the
metric δfM (instead of δ). In the second phase the NM-tree simply forwards
the insertions to the underlying M-tree.

Listing 7. (dynamic insertion into NM-tree)

method InsertObject(onew) {
if database size < smallDBlimit then
store onew into sequential file

else
insert onew into NM-tree (using original M-tree insertion algorithm under δfM )

endif
if database size = smallDBlimit then
run TriGen algorithm on the database, having θM = 0, θ1, θ2, ..., θk > 0 ⇒
obtaining T-bases fM , fe1 , fe2 , ..., fek with weights wM , we1 , we2 , ..., wek

for each object oi in the sequential file
insert oi into NM-tree (using original M-tree insertion algorithm under δfM )

empty the sequential file
end if }

In contrast to the original TriGen [Skopal, 2007], in NM-tree we require
the T-bases fi to be additionally inversely symmetric, defined as:

Definition 20. A T-base fi is called inversely symmetric if fi(fi(x,w),−w) = x.

In other words, when knowing a T-base fi with some weight w, we know
also the inverse f−1

i (·, w), which is determined by the same T-base and −w.

Lemma 5.

The FP-base and all RBQ-bases (see Section 6.2) are inversely symmetric.

Proof: 1. Let us start with the FP-base, defined as:

FP(x,w) =

{
x

1
1+w for w > 0

x1−w for w 6 0

For w = 0, the FP-base is the identity, hence, FP (FP (x, 0), 0) = x is satis-
fied.

For w ̸= 0 we have to prove, that the composition of x
1

1+w (for w > 0)
and x1−w (for w < 0) is also the identity.
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For w > 0 we get x
1

1+w = x
1

1+|w| and for w < 0 we get x1−w = x1+|w|. Then,

by composition of FP (x,w) and FP (x,−w) we always obtain
(
x

1
1+|w|

)1+|w|
=

x
1+|w|
1+|w| , which is the identity.

2. We will also show, that RBQ-bases are inversely symmetric, however,
there exist some values of x, where the RBQ-bases are undefined.

For w = 0, rbq(x, 0, a, b) = − (Ψ−x)2

2Ψ−1
= x(1−2Ψ)

1−2Ψ
, Ψ =

√
x− x2, a RBQ-base

does not depend on values a, b and is the identity, which is not defined only
for x = 0.5.

For w ̸= 0 we have to prove, that the composition of rbq(x,w, a, b) and
rbq(x,−w, b, a) is also the identity. Nevertheless, the definitions of functions
RBQ are already based on symmetric use of rbq, so the proof is trivial. �

To keep not total RBQ-bases evaluation correct ∀x ∈ ⟨0, 1⟩, a possible
division by zero or Ψ2 < 0 have to be prevented by slight shift of a or w.

7.2 Query processing

When querying, we distinguish two cases – exact search and approximate
search.

7.2.1 Exact search.

The exact case is simple, when the user issues a query with zero desired
retrieval error, the NM-tree is searched by the original M-tree algorithms,
because of employing δfM for searching, which is the full metric used also for
indexing. The original user-specified radius rq of a range query (q, rq) must
be modified to fM(rq) before searching. After the query result is obtained,
the distances of the query object q to the query result objects oi must be
modified inversely, that is, to f−1

M (δfM (q, oi)) (regardless of range or kNN
query).

7.2.2 Approximate search.

The approximate case is more difficult, while here the main qualitative contri-
bution of NM-tree takes its place. Consider a query that has to be processed
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with a retrieval error ei ∈ ⟨0, 1⟩, where for ei = 0 the answer has to be pre-
cise (with respect to the sequential search) and for 0 > ei > 1 the answer
may be more or less approximate. The ei value must be one of the T-error
tolerances θi predefined before indexing (we suppose the T-error models the
actual retrieval error, i.e., ei = θi).

An intuitive solution for approximate search would be a modification
of the required δfM -based distances/radii stored in NM-tree into δfei -based
distances/radii. In such case we would actually get an M-tree indexed by δfei ,
as used in [Skopal, 2007], however, a dynamic one – a single NM-tree index
would be interpreted as multiple M-trees indexed by various δfei distances.
Unfortunately, this “online interpretation” is not possible, because NM-tree
(M-tree, actually) stores not only direct distances between two objects (the
to-parent distances) but also radii, which consist of aggregations. In other
words, except for the two deepest levels (leaf and pre-leaf level), the radii
stored in routing entries are composed from two or more direct distances
(a consequence of node splitting). To correctly re-modify a radius into the
correct one, we need to know all the components in the radius, but these are
not available in the routing entry.

Instead of “emulating” multiple semimetric M-trees as mentioned above,
we propose a technique performing the exact metric search at higher levels
and approximate search just at the leaf and pre-leaf level. In Figure 7.1 see all
the distances/radii which are modified to semimetric ones during the search,
while the modification is provided by T-bases associated with their user-
defined retrieval errors. Besides the to-parent distances, we also consider the
query radius and covering radii at the pre-leaf level, because these radii actu-
ally represent real distances to a furthest object in the respective query/data
region. The query radius and entry-to-query distances (computed as δ(·, ·))
are not stored in NM-tree, so these are modified simply by fei (where fei is
a T-base modifier obtained for retrieval error ei). The remaining distances
stored in NM-tree (δfM (·, ·)-based to-parent distances and covering radii),
have to be modified back to the original ones and then re-modified using fei ,
that is, fei(f

−1
M (δfM (·, ·))).

In Listing 8 see the modified range query algorithm. In the pseudocode
the “metrized” distances/radii stored in the index are denoted as δfM (·, ·),
rfMoi , while an “online” distance/radius modification is denoted as fek(·),
f−1
M (·). If removed fM , f−1

M , fek from the pseudocode, we would obtain the
original M-tree range query, consisting of parent and basic filtering steps (see
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Section 2.1).

Listing 8. (NM-tree range query)

RangeQuery(Node N , RQuery (q, rq), retrieval error ek) {
let op be the parent routing object of N // if N is root then δ(oi, op)=δ(op, q)=0

if N is not a leaf then {
if N is at pre-leaf level then { // pre-leaf level
for each rout(oi) in N do {
if |fek (δ(op, q))− fek (f

−1
M (δfM (oi, op)))| 6 fek (rq) + fek (f

−1
M (r

fM
oi )) then { // (parent filt.)

compute δ(oi, q)

if fek (δ(oi, q)) 6 fek (rq) + fek (f
−1
M (r

fM
oi )) then // (basic filtering)

RangeQuery(ptr(T (oi)), (q, rq), ek)
}

} // for each ...

} else { // higher levels
for each rout(oi) in N do {
if |fM (δ(op, q))− δfM (oi, op)| 6 fM (rq) + r

fM
oi then { // (parent filtering)

compute δ(oi, q)

if fM (δ(oi, q)) 6 fM (rq) + r
fM
oi then // (basic filtering)

RangeQuery(ptr(T (oi)), (q, rq), ek)
}

} // for each ...

}
} else { // leaf level
for each grnd(oi) in N do {
if |fek (δ(op, q))− fek (f

−1
M (δfM (oi, op)))| 6 fek (rq) then { // (parent filtering)

compute δ(oi, q)
if δ(oi, q) 6 rq then
add oi to the query result

}
} // for each ...

}

In Figure 7.2 see a visualization of exact and approximate search in NM-
tree. In the exact case, the data space is inflated into a (nearly) metric space,
so the regions tend to be huge and overlap each other. On the other hand,
for approximate search the leaf regions (and the query region) become much
tighter, the overlaps are less frequent, so the query processing becomes more
efficient.

7.3 Experimental Results

To examine the NM-tree capabilities, we performed experiments with respect
to the efficiency and retrieval error, when compared with multiple M-trees
– each M-tree constructed using a fixed modification of δ, related to a user-
defined T-error tolerance. We have focused just on the querying, since the
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Figure 7.1: Dynamically modified distances when searching approximately

NM-tree’s efficiency of indexing is the same as that of M-tree. The query
costs were measured as the number of δ computations needed to answer a
query. Each query was issued 200 times for different query objects and the
results were averaged. The precision of approximate search was measured as
the real retrieval error (instead of just T-error); the normed overlap distance
ENO between the query result QRNMT returned by the NM-tree (or M-tree)
and the correct query result QRSEQ obtained by sequential search of the

database, i.e., ENO = 1− |QRNMT∩QRSEQ|
max(|QRNMT |,|QRSEQ|) .

7.3.1 Databases

We have examined 4 dissimilarity measures on two databases (images, poly-
gons), while the measures δ were considered as black-box semimetrics. All
the distances were normed to ⟨0, 1⟩. The database of images consisted of
68,040 32-dimensional Corel features [Hettich and Bay, 1999] (the color his-
tograms were used). We have tested one semimetric and one metric on the
images: the L 3

4
distance (denoted L0.75), and the Euclidean distance (L2).

As the second, we created a synthetic database of 250,000 2D polygons, each
consisting of 5 to 15 vertices. We have tested one semimetric and one met-
ric on the polygons: the dynamic time warping distance with the L2 inner
distance on vertices [Skopal, 2007] (denoted DTW) and the Hausdorff dis-
tance, again with the L2 inner distance on vertices [Skopal, 2007] (denoted
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Figure 7.2: (a) Exact (metric) search (b) Approximate search

Hausdorff).

The TriGen inside NM-tree was configured as follows: the T-base pool
consisting of the FP-base and 115 RBQ-bases (as in [Skopal, 2007]), sample
size 5% of Corel, 1% of Polygons. The NM-tree construction included cre-
ation of 4 · 10 = 40 T-modifiers by TriGen (concerning all the dissimilarity
measures used), defined by T-error tolerances [0, 0.0025, 0.005, 0.01, 0.015,
0.02, 0.04, 0.08, 0.16, 0.32] used by querying. The node capacity of (N)M-tree
was set to 30 entries per node (32 per leaf); the construction method was set
to Single.Classic. The (N)M-trees had 4 levels (leaf + pre-leaf + 2 higher)
on both Corel and Polygons databases. The leaf/inner nodes were filled up
to 65%/69% (on average).

7.3.2 Querying

In the first experiment we have examined query costs and retrieval error of
range queries on Polygons under DTW, where the range query selectivity
(RQS) ranged from 0.05% to 0.5% of the database size (i.e., 125–1250 ob-
jects), see Figure 7.3. We can see that a single NM-tree index can perform as
good as multiple M-tree indexes (each M-tree specifically created for a user-
defined retrieval error). In most cases the NM-tree is even slightly better in
both observed measurements – query costs and retrieval error.

Note that here the NM-tree is an order of magnitude faster than sequen-
tial file when performing exact (nonmetric!) search, and even two orders of
magnitude faster in case of approximate search (while keeping the retrieval
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Figure 7.3: Range queries on Polygons under DTW

error below 1%). The Figure 7.3 also shows that if the user allows a retrieval
error as little as 0.5–1%, the NM-tree can search the Polygons an order of
magnitude faster, when compared to the exact (N)M-tree search.
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Figure 7.4: kNN queries on Corel under L 3
4

In the second experiment we have observed the query costs and retrieval
error for kNN queries on the Corel database under nonmetric L 3

4
(see Fig-

ure 7.4). The results are very similar to the previous experiment. We can
also notice (as in the first experiment) that with increasing query result the
retrieval error decreases.
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Figure 7.5: 10NN queries on varying size of Polygons under Hausdorff

Third, we have observed 10NN queries on Polygons under Hausdorff, with
respect to the growing database size, see Figure 7.5. The query costs growth
is slightly sub-linear for all indexes, while the retrieval errors remain stable.
Note the T-error tolerance levels (attached to the labels in legends) specified
as an estimation of the maximal acceptable retrieval error are apparently a
very good model for the retrieval error.
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Figure 7.6: Aggregated performance of 10NN queries for Polygons and Corel

In the last experiment (see Figure 7.6) we have examined the aggregated
performance of 10NN queries for both Polygons and Corel and all the dis-
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similarity measures. These summarizing results show the trade-off between
query costs and retrieval error achievable by an NM-tree (and the respective
M-trees).

7.4 Discussion

We have introduced the NM-tree, an M-tree-based access method for exact
and approximate search in metric and nonmetric spaces, which incorporates
the TriGen algorithm to provide nonmetric and/or approximate search. The
main feature on NM-tree is its flexibility in approximate search, where the
user can specify the approximation level (acceptable retrieval error) at query
time. The experiments have shown that a single NM-tree index can search
as fast as if used multiple M-tree indexes (each built for a certain approxi-
mation level). From the general point of view, the NM-tree, as the only ac-
cess method for flexible exact/approximate nonmetric similarity search can
achieve up to two orders of magnitude faster performance, when compared
to the sequential search.
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Chapter 8

Conclusions

In this thesis, we have focused on the hierarchical indexing in metric and
nonmetric spaces by the M-tree [Ciaccia et al., 1997]. We have proposed sev-
eral novel methods of dynamic M-tree construction and we have also shown
a way how to extend the M-tree to a nonmetric access method NM-tree.
All the presented improvements were aiming at more effective and efficient
content-based similarity search in very large collections of unstructured data.

The contributions of the thesis can be summarized as follows:

• Cheap construction of more compact M-tree hierarchies. The compact-
ness of the metric regions’ hierarchy in the M-tree heavily depends on
the order of new objects insertions. This fact has been utilized earlier
just by the bulk loading algorithm (static method) and by the post-
processing slim-down algorithm (static and very expensive method).
Hence, we have focused on a new method of dynamic M-tree construc-
tion, that performs local redistribution of previously inserted objects,
which can better fit some of the newly created regions. These rear-
rangements decrease unnecessarily big “volumes” and overlaps between
regions, which decrease also the probability of their intersection with
a query region, and which result in more efficient search. As shown in
the experiments, our new method utilizing forced reinserting improves
M-tree hierarchy and keeps the construction costs acceptable.

The quality of the M-tree hierarchy depends also on the leaf selec-
tion strategy. Since the cheap single-way leaf selection selects often a
nonoptimal leaf and the multi-way leaf selection finding optimal leaf
is conversely too expensive, we have introduced the hybrid-way leaf
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selection strategy to fill the performance gap between the former two
strategies. In the hybrid-way leaf selection, only a limited number of
branches (determined by the user-defined branching vector) are visited
during the search for a suboptimal leaf node. We have also shown, that
forced reinserting and leaf selection strategies can be further combined
to control the average leaf node utilization and thus we can control the
index size.

• Scalable M-tree construction method. The multicore processors become
widely available and thus parallel processing can be utilized to signif-
icantly speedup M-tree construction. However, parallel processing of
hierarchical structures is generally a big problem, because algorithms
in such structures consist of consecutive steps, that are usually de-
termined by the previous ones. Hence, the parallelism in tree-based
indexes is often limited just to a processing of one tree node. In spite
of it, we have found a way how to overcome this limitation in an M-tree
construction algorithm and proved, that our new algorithm guarantees
significant speedup. We assume that fast indexing is needed, because
more than one object has to be indexed at the moment. This assump-
tion justifies utilization of very scalable concurrent insertions. We have
also introduced a postponed reinsertions to avoid synchronization prob-
lems. Such a scalable algorithm schema is an important step forward,
because, with a growing number of available cores, we can quickly (re-
)index large collections and we can also employ more sophisticated (and
expensive) leaf selection strategies.

• Efficient nonmetric search. The metric search model has been intro-
duced as a very general concept for the similarity search. However, as
we have discussed in Section 5.1, for some applications the metric space
model is still not general enough. For example, in the image retrieval,
the requested similarity measures are supposed to be robust and lo-
cally sensitive. Such measures are often nonmetrics or (after a simple
transformation) just semimetrics. To enable efficient (non-sequential)
search for such applications, we have employed a distance transforma-
tion approach [Skopal, 2007], that can turn an arbitrary semimetric
measure into another semimetric, satisfying triangle inequality to some
user-defined extent. Using such a transformation, we can reuse MAMs
(applying mainly the triangle inequality) for searching in nonmetric
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spaces. The MAMs can be reused either for the exact search or for the
approximate search with a user-controlled approximation level (degree
of triangle inequality violation). However, MAM’s indexes are fixed to
the employed dissimilarity measure which is supplied as a “black-box”
algorithm. Even if we want to change just the approximation level of
the same measure, we have to throw the index away and reindex the
database. Hence, we have proposed the NM-tree which overcomes this
limitation and allows to specify the approximation level at query time.
The NM-tree accepts the original semimetric measure and by use of
the TriGen algorithm it evaluates the set of transformation functions,
each for a user-defined approximation level. Moreover, we have shown
a way how to provide the exact nonmetric search by the NM-tree for an
arbitrary input semimetric measure. Thus, a user can decide at query
time, whether to trade fast approximate search for a slower but exact
one, or vice versa.

8.1 Outlook

In the future, we would like to continue in the research presented in this
thesis. We would like to focus not only on direct extensions of the presented
work, but we would also like to investigate the related areas, as follows:

• A tight M-tree hierarchy, built using the hybrid-way leaf selection and
forced reinserting, is very efficient for similarity search, however, still
very expensive to construct. Hence, we would like to employ a suitable
combination of presented dynamic strategies of M-tree construction
and parallelism to reach acceptable costs. Moreover, we would like
to adopt presented algorithms into the PM-tree, that is the successful
descendant of the M-tree.

• The effectiveness and efficiency of the NM-tree depends on the selected
space transformation. Finding more suitable transformation functions
may improve the performance of the NM-tree. We would also like to
reuse other MAMs for similarity search in the nonmetric model.

• The D-file employing distance caching proved to be an effective index-
free MAM. Hence, we have investigated the impact of the distance
caching on the other metric access methods and verified, that distance
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caching can improve the query performance in various MAMs (includ-
ing M-tree) [Skopal et al., 2010].

• Furthermore, we would like to employ the M-tree as a dynamic clus-
tering technique in general metric spaces and compare it with other
clustering techniques designed for metric spaces.
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Chávez, E., Figueroa, K., and Navarro, G. 2005. Proximity Searching
in High Dimensional Spaces with a Proximity Preserving Order. InMICAI.
405–414.
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