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Abstrakt: V předložené práci studujeme identifikaci částic za pomoci náboje
deponovaného v Pixelovém detektoru (součást detektoru ATLAS), který
je schopen vyč́ıtat deponovaný náboj téměř analogově. Nejprve poṕı̌seme
závislost deponovaného náboje na jednotkovou délku na hybnosti pomoćı
řady parametr̊u, abychom sńıžili objem zpracovávaných dat. Poté použijeme
tyto parametry jakožto vstupńı data pro identifikaci částic. Vypracujeme
postup identifikace na jehož konci můžeme ve většině př́ıpad̊u rozhodnout,
zda částice prolétnuvš́ı detektorem byla pion, kaon, nebo proton. Tento
postup je snadno zopakovatelný pomoćı Athena tool, který byl pro tento
účel napsán.
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1 Introduction

Proton–proton or heavy ions collisions cover very wide range of studies and
it is impossible for a single person to cover it. I focused on issues related to
identification of particles. The identification is very useful. The particle iden-
tification will help us to suppress the background and to correctly analyze
various physical processes.

As will be shown later, the identification is possible only for particles
with momentum from 0.5 GeV to 1.5 GeV. The lower boundary comes from
detector geometry whereas the upper boundary has physical origin.

In the next section a brief description of the LHC and the ATLAS de-
tector will be provided. The Inner detector and mainly Pixel detector will
be stressed out, because the data collected in Pixel detector will be used for
particle identification.

In the section 3 we will deal with a deposited charge in the Pixel detector
and we will try to parametrize it for further easy handling.

In the main part of this thesis, in section 4, we will depict the identifica-
tion process with all consequences. In addition, we will discuss the efficiency
of the identification.

In the next section, after short introduction concerning the selection of
events and tracks, the first LHC data will be compared with Monte Carlo.

In the section 6 the description about Athena tool is given. The Athena
tool enables identification in a very comfort way.

In the end, a short conclusion will be provided.
After conclusion, several appendices are attached. They deal with various

topics that are considered to be too long to be in the main text, but too
interesting to be left out.
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2 LHC & ATLAS

2.1 LHC

LHC (Large Hadron Collider) is a huge accelerator at CERN that allows
protons or heavy ions to be accelerated. It was installed in the same tunnel
as LEP (Large Electron–Positron Collider) was. The circumference is almost
27 km and it is situated under Swiss-French border near Geneva, between
Jura mountains and Lake Geneva. Its main purpose is to search for Higgs
boson and other predicted particles (SUSY). Naturally, it will search for
unpredicted phenomena as well.

The LHC was planned since early 1980’s. The plans were affected by
the proposal of Superconducting Super Collider (SSC) with center of mass
energy 40 TeV that was planned to be built in Texas, USA. This energy was
unreachable by a hadron collider installed in LEP tunnel. However, SSC
project was canceled in 1993. LHC was approved by CERN Council at its
100th session in December 1994 [1]. Several non-member states, including
USA, were invited to participate in the LHC project. This helped to speed
up the LHC construction. [2]

After overcoming problems with funding and with several delays of the
date of commissioning, the first beam was injected on 10th September 2008
[3]. The inauguration took place on 21th October 2008 [4], despite the un-
happy incident on 19th September 2008 that resulted in serious destruction of
tens of magnets and in a helium leak into the tunnel. This incident caused
more than one year suspension of the project [5]. In November 2009, the
LHC became operating again [6]. At the beginning the energy per beam was
450 GeV. Before Christmas 2009, the LHC reached 1.18 TeV per beam [7].
From the end of March 2010 the energy is 3.5 TeV [8].

Before the particles are injected into the LHC, they need to be pre-
accelerated. First, protons are accelerated in the LINAC 2 (linear acceler-
ator). Then, they continue to the PS Booster and to the PS (Proton Syn-
chrotron). Heavy ions will be firstly accelerated in the LINAC 3, stored in
the LEIR (Low Energy Ion Ring) and then they will be injected to PS. From
PS the particles (both protons and heavy ions) continue to the SPS (Super
Proton Synchrotron). From the SPS they are finally injected in two beams
with the opposite direction into the last part of the accelerator complex -
the LHC. [9]

The designed maximum energy of protons in one beam is 7 TeV, so the
total energy in center of mass frame would be 14 TeV. Currently the maxi-
mum of

√
s is 7 TeV. [8]

Design luminosity is 1034 cm−2s−1. Current luminosity is the order of
1030 cm−2s−1 [10].
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The accelerator is also able to accelerate heavy ions, primarily lead
ions Pb82+. The designed energy per one nucleon is 2.76 TeV (

√
sNN =

5.5 TeV) with luminosity 1027 cm−2s−1 [11]. First collision of the heavy ions
are planned to the end of year 2010 with half of the energy and with lumi-
nosity 1025 cm−2s−1 [12, 13].

2.2 ATLAS

ATLAS (A Toroidal LHC ApparatuS) is one of the four big experiments of
LHC. It is a general purpose detector that allows various physical processes
to be recorded and reconstructed. It was designed for proton-proton collision
but it will be suitable for heavy ions collisions as well.

Letter of intent come in 1992, where an idea of general purpose detec-
tor was presented [14]. Several Technical design reports (e.g. [15, 16, 17])
were issued in following years. After years of construction, last piece of the
detector found its place in February 2008 [18].

The design of the ATLAS is shown on fig. 1. The outermost part of
ATLAS is made by muon chambers where momentum of muons is measured.
Under muon chambers, there are hadronic and electromagnetic calorimeters
where the particles deposit their energy. In the middle of the ATLAS, there
is Inner detector. It is used for detecting tracks of all charged particles.

Figure 1: ATLAS detector
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From the curvature of the track it is possible to determine its momentum
unless the track is too straight. Tracks are also used for finding and fitting
primary vertices of the collisions. Magnets that generate magnetic field are
an important part of the detector - magnetic field makes the particles move
on the helix according to the Lorentz force.

While combining data from all parts of the ATLAS, the precise image of
the physical event is obtained.

2.3 Inner detector

In fig. 2 there is picture of the Inner detector. It occupies region |η| < 2.5.
The main purpose of the Inner detector is to detect tracks of charged parti-
cles and to measure their momentum.

Inner detector consists of three parts:

• transition radiation tracker (TRT)

• semiconductor tracker (SCT)

• pixel detector

TRT is the outermost part of the Inner detector. It is made of almost
300 000 drift tubes (straws). In barrel, straws are 144 cm long and they are

Figure 2: Inner detector
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parallel with Z axis. In end-caps, straws are 37 cm long and they are arranged
perpendicular with Z axis. Diameter of the straws is equal to 4 mm and the
straws are filled with mixture of Xe, CO2 and O2.

SCT is located between TRT and Pixel detector. It has 4 barrel layers
and 2×9 end-cap disk layers. Silicon strip detectors are on both sides of the
layers. The stripes from the opposite sides of layers form an angle of 40 mrad
(roughly 2.3◦). [19]

2.4 Pixel detector

The requirement of the Pixel detector is to give at least 3 space points on
each track.

Pixel detector has 3 barrel layers and 3 end-caps layers on each side.
Barrel layers are numbered 0, 1 and 2. Layer 0 (the innermost) is also called
B-layer because it allows b-tagging. The layers have radius from 50.5 mm to
122.5 mm. The layers are made from staves that are installed as shingles in
a cylindrical surface, so the staves are parallel with Z axis. Number of staves
vary from 22 (layer 0) to 52 (layer 2). Each stave consist of 13 modules.

End-caps have 3 identical disk layers on each side. On each disk there
are 8 sectors (equivalent of the staves), one sector has 6 modules.

On every module there are around 46 000 pixels. The total number of
pixels is ∼ 67 ·106 in barrel and ∼ 13 ·106 in end-caps. The size of the pixels
is 50µm × 400µm, but small fraction of them has size 50µm × 600µm.
Thickness of the pixels is 250µm.

Each pixel has tunable threshold. Only pixels that exceed the threshold
are read out. Typical threshold corresponds to deposited charge 4000 e.

2.4.1 Deposited charge

In comparison with SCT, the Pixel detector has an advantage of possibility
of measuring a deposited charge in the detector. Pixel detector does not send
only digital information if there was some hit (yes - no), but it sends time
over threshold (ToT). ToT represents time when output signal is higher than
a given threshold. This time is proportional to the deposited charge. The
deposited charge can be measured in this way.

Deposited charge is used for suppressing noise and, which is more im-
portant, for improving resolution of the hit. When a particle passes through
the module, it deposits some charge. This charge could be split among sev-
eral pixels when the particle passes at an angle. The shares of the read-out
charges are given by the trajectory of the particle. The knowledge of the
shares can improve resolution of the hit, e.g. for particles with incidence
angle 10◦ from 10.1µm to 7.2µm [20].
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ToT is measured in the unit of bunch crossing clock (25 ns) while maximal
value of ToT is 255 clock cycles. One cycle corresponds to approximately 700
charges of electron (e). Average ToT is almost 30 clock cycles. [21]

A typical deposited charge is around 20 · 103 e but it strongly depends
on the kind of particle passing through the detector and on its momentum.

2.4.2 Number of hits per track

If particle traverses e.g. three layers of the detector, it will not mean at all
that the number of obtained hits will be three. We can get less hits and also
– quite surprisingly – more hits. Distribution of number of the hits per track
is in fig. 3.

We could lose some hits because a track is incorrectly fitted or a deposited
charge did not exceed the threshold.

Modules of the detector are overlapping to cover safely 2π in φ so one
track is able to pass through two or more adjacent modules in one layer.

The requirement ”at least 3 space points per track” is met in ∼90% of
cases.
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Figure 3: Number of hits per track

2.4.3 Response of layers

In further sections, an assumption that all hits are equal is adopted. Gener-
ally, one layer of the pixel detector could provide more deposited charge than
other because of the different properties. In the fig. 4 and 5 the deposited
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charge per unit length are displayed. Despite Monte Carlo still needs some
improvement, data correspond to the simulations very well. The data are
from December 2009 and it will be more discussed in sectiom 5. Qd stands
for deposited charge per unit length and it will be described in the next
section. For now, we can say that particles deposit a very similar amount
of charge in each layer of the Pixel detector, so our assumption works quit
well.
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Figure 4: Response of the layers, Monte Carlo
Positive end-cap is the one with positive Z coordinate. Positive part of the
Z axis is pointing to Geneva 1. Negative part is pointing to Saint-Genis.
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Figure 5: Response of the layers, data

1X axis is pointing to the center of the LHC ring. Y axis is pointing upward. Altogether
they form right-handed coordinate system.
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3 Deposited charge

3.1 Deposited charge

Deposited charge is strongly dependent on the type of a particle. Further-
more, some kinds of particles in any sample are frequent (e.g. pions), some
of them are less frequent (kaons or protons) and some type of particles are
rare (electrons, muons, ...).

In fig. 6 there is a number of hits for 106 Monte Carlo events as a function
of deposited charge. As you can see, pions are the most common particles in
the detector. Protons and kaons are less common but they have share very
roughly 10% each. Electrons and muons are quite rare. Other particles are
very rare. They are exotic baryons such a Ξ or Σ or particles that do not
have appropriate Monte Carlo truth particle.

Electrons, muons and exotic baryons will not be considered any more.
Their share is small and thus they will be neglected.

Q [e]
0 20 40 60 80 100 120 140

310×

N

1

10

210

310

410

510

610

pions

kaons

protons

electrons

muons

other

deposited charge

Figure 6: Distribution dN/dQ
Dashed line represents the typical threshold of the pixels ∼4000 e [22].

3.2 Deposited charge per unit length

Deposited charge is governed by the Bethe-Bloch formula (see e.g. equation
(27.1) in [23]) and it depends on momentum and on type of the particle.
Fluctuation can be roughly described by Landau distribution (see appendix
A for more information about Landau distribution), but more accurate de-
scription is provided by a convolution of the Gauss distribution with the
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Landau distribution [24].
Energy loss is mainly used for production electron–hole pair. The average

energy needed to create electron-hole pair is 3.68± 0.02 eV [22].
Deposited charge is proportional to the length of the track in the module.

Situation is sketched in fig. 7. Straight line represents a track and its blue
part means part of the track in the module. Length ` of this part depends
on incidence angle α and thickness of the module d:

` =
d

cosα
(1)

Curvature of the track in the module can be neglected because the mod-
ules are of very thin thickness.

Very useful variable is deposited charge per unit length. We choose the
thickness of the module d as the ”unit length”. The meaning of it will be
a charge that will be deposited if a particle passes throughout a module
perpendicularly. In addition, it defines the scale for threshold.

Deposited charge per unit length (Qd) is:

Qd =
Qtot

`
=
Qtot · cosα

d
, (2)

where Qtot is the total charge deposited in the module along the track.
Dimension of Qd is e/d, i.e. charge of positron over d.

Distribution of deposited charge per unit length is in fig. 8. It should be
noticed that two ”bumps” in proton distribution in fig. 6 disappear. The
”bump” on the left come from the hits in end-caps, where particles have
small θ (otherwise they could not reach end-caps) and thus the path of the
particle is short. When Qd is plotted, the difference is erased because the
material used for modules in barrel and end-caps is the same.

These two ”bumps” are not visible for distributions of other particles in
fig. 6 because the differences between the two ”bumps” were smeared due

module

trac
k

n α

d

Figure 7: Incidence angle
~n is perpendicular to the surface of the module. It is perpendicular to Z

axis for barrel layers and parallel with Z axis for end-caps.
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Figure 8: Distribution dN/dQd

to small deposited charge.
Another ”bump” for electrons appears in fig. 8 at ∼ 45 · 103 e/d. Energy

loss of electrons is roughly constant for different momenta, so this ”bump”
cannot be explained with high multiplicity of electrons with specific mo-
mentum. Unexpected number of electrons (and only electrons) has high Qd.
Origin of this phenomenon was not discovered. Fortunately, it does not bring
any error in further calculation, since electrons have not been considered any
more.

In fig. 9 there is energy loss of different types of particles. In fig. 10 there
is Qd for pions, kaons and protons. The distributions are correlated with fig.
9 and it can be seen that particles can be distinguished according to their
deposited charge, at least particles of small momentum.
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Taken from Review of Particle Physics, fig. 28.15; [23]

Figure 10: Deposited charge per unit length
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3.3 Distribution of Qd

For practical reason, it would be convenient to describe dN/dQd distribu-
tion with a function of few parameters and to determine the momentum
dependence of these parameters.

While looking for the momentum dependence of the dN/dQd distribution
we meet two conflicting requirements. We would like to have good statistics,
so there have to be enough tracks in a momentum bin. However, we would
also like to have distribution for well defined momentum, so the momen-
tum bins should be as small as possible. It is not possible to meet both
requirements at once, so the results will be the compromise between them.

The distribution of probability density ρ is showing in fig. 11. The prob-
ability that a hit will fall into a bin is:

∆ξ = ρ(Qd) ·∆Qd, (3)

where ∆ξ is the probability, Qd is deposited charge per unit length of the
hit, ρ(Qd) stands for the probability density distribution and ∆Qd is a width
of the bin.

An integral of ρ over the whole range of Qd is 1. ρ distribution can be
easily obtained from dN/dQd by normalization.

One can see the performance of the different fitting functions. The Gauss
distribution is absolutely insufficient. The Landau distribution describes the
distribution better. Convolution of the Gaussian and the Landau distribution
fits the Monte Carlo very well except the small Qd. Small Qd is deposited
when a particle passes through module at a high angle and deposited charge
in one pixel does not exceed the threshold. Then only a part of deposited
charge is recorded and it results in small Qd.

The function that describes the distribution best is the convolution of

Q
0 20 40 60 80 100 120 140
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gauss

landau
landau ⊗ gauss
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[e/d]d

different fitting function
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×10-3

Figure 11: Distribution fitted by different functions
protons; 0.70 GeV < p < 0.75 GeV
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Figure 12: Parameters of the function (4)

the Gauss distribution and the Landau distribution for higher charges. If the
value of this convolution is smaller that given value y0 and x (Qd) is small
(i.e. it is not at the distribution tail), then y0 is used as value of the function
instead of value of the convolution:

f(x) = (landau⊗ gauss)(x)

= y0

for x ≥ x0

for x < x0

(4)

where x0 is the smaller solution of

(landau⊗ gauss)(x0) = y0 (5)

The function (4) has 5 parameters - see table 1.

Table 1: Parameters of the function (4)

# name meaning
1 MPV approx. most probably value
2 σlandau width of Landau
3 A amplitude
4 σgauss width of Gauss
5 y0 pedestal

The first three parameters come from the Landau distribution. The
fourth one is from the Gauss distribution. The fifth parameter is the pedestal
used for small values of x instead of convolution. See fig. 12 for illustration.

MPV and y0 are exactly illustrated in the figure. Height and width of

the function is only proportional to A and
(
σ2

landau + σ2
gauss

)1/2
respectively.
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3.4 Momentum dependence of the parameters of the
function (4)

Introducing function (4) make handling Qd easier but the parameters of
this function probably depend on momentum. We will try to describe their
dependence on momentum by some series. This way we should be able to
handle with Qd in all region we are interested in, i.e. 500–1500 MeV.

The parameters are fitted with the series:

2∑
i=−2

ai · pi, (6)

where p is momentum in GeV and ai are constants to be determined. The
fitting shows that no more powers in the series (6) are needed. Furthermore,
we used Occam’s razor so we excluded every term of (6) that is not necessary
for description of the dependences.

The series (6) is continuous function of momentum, so the result are
expected to be more accurate than in case of fitting isolated momentum
range.

Fitted parameters of the function (4) are plotted in fig. 13–15. The pa-
rameters can be compared with each other in fig. 16.

Red point are obtained from distributions when width of the momentum
bins was 50 MeV. This means that the first red points in each graph represent
parameters of the fit when only tracks with momentum from 500 MeV to
550 MeV are used. Second red points are from fit with tracks that have
momentum from 550 MeV to 600 MeV, etc.

Black points are analogic to the red ones, only the width of the momen-
tum bins was 40 MeV.

Displayed errors of momenta (almost invisible) are RMS of the momen-
tum distribution in the momentum bin. Vertical errors are errors of the fitted
parameters.

Decreasing of the range of momentum bin ends in reducing statistics, so
the parameters would be less accurate. Extending the range would smear the
difference in deposited charge between higher and lower momentum tracks.

The goal is only to describe the dependence, there is no ambition to an-
swer questions why the dependences have these shapes or what the physical
variables are. The MPV distribution can be explained by the Bethe-Bloch
formula. While pions are at the ionization minimum, MPV is more-less
the same. Kaons and protons are heavier so the function is decreasing. Both
Landau and Gauss distribution are normalized, but the normalization is cor-
rupted by introducing pedestal y0. Thus the amplitude A is smaller than it
would be for convolution without pedestal. As pedestal grows, the amplitude
has to decrease in order to preserve the normalization of the ρ distribution.
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Figure 13: Parameters of pions
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Figure 14: Parameters of kaons
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Figure 15: Parameters of protons
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Figure 16: Parameters of pions, kaons and protons
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Table 2: Parameters of pions

parameter a−2 a−1 a0 a1 a2

MPV - 1880±50 10600±200 6400±200 -1480±60
σlandau - -230±20 2070±70 -980±70 240±30
A ·103 -2.8±0.8 - 1022±3 -38±3 -
σgauss -250±20 1400±40 - 1550±50 -360±20
y0 ·107 - -2.7±0.3 19.5±0.6 - 2.0±0.2

Table 3: Parameters of kaons

parameter a−2 a−1 a0 a1 a2

MPV 3720±10 - 14540±30 1480±20 -
σlandau 198±4 - 1110±20 -93±11 -
A ·103 - - 993±3 -13± 3 -
σgauss -3700±300 17700±1500 -26400±2400 19900±1800 -5000±470
y0 ·107 - -0.4±0.3 - 23±1 -6.3±0.8

Table 4: Parameters of protons

parameter a−2 a−1 a0 a1 a2

MPV 13970±20 - 13640±60 1690±40 -
σlandau 798±4 - 943±5 - -
A ·103 2.3±1.2 - 971±2 - -
σgauss 695±7 - 2200±10 - -
y0 ·107 -14.3±2.7 49±10 -45±11 25±4 -
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So A and y0 are associated in a reasonable way. However, the origin of y0 as
well as σlandau and σgauss distributions is not so clear.

Note that Y scale of plots in fig. 13–15 are different for each kind of the
particles. Thus discrepancy of points in σgauss in fig. 13 is comparable with
discrepancy in fig. 14 or 15 – it is around 50 MeV – despite it is much less
visible.

Parameters of the fits are in tables 2 – 4.
Finally, we have to store 75 float numbers. It is not a lot, since we consider

that at the beginning we had tens of histograms, each with 150 bins. When
the histograms were replaced by the function (4) we had the same number of
histograms but each of them was represented only by 5 float numbers (MPV,
σlandau, A, σgauss and y0). Finally, by finding dependence of these parameters
on momentum, tens sets of 5 numbers is reduced to only 75 numbers (3 types
of the particles, 5 parameters, 5 element of the series). It is possible to save
these numbers in some practical way and use it in further projects.

In fig. 17 the difference between an exact fit and the function (4) when
fitted parameters are used can be seen. The histogram is filled with pion
tracks with momentum from 900 MeV to 950 MeV. The difference can be
hardly found.

This range was not selected randomly. As you can see in fig. 13, para-
meters obtained from the fit have quite large discrepancy from fitted depen-
dence, namely for σlandau and σgauss. Compare appropriate red points with
black line in fig 13.

Note that σlandau is not comparable with σgauss. Full width at half maxi-
mum (FWHM) is roughly 4σlandau for Landau distribution, while FWHM of
the Gauss distribution is 2

√
2 ln 2σgauss ≈ 2.35σgauss.

[e/d]dQ
0 20 40 60 80 100 120 140

310×

ρ

0

0.02

0.04

0.06

0.08

0.1

-310×

exact fit

series

difference between fit and series

Figure 17: Comparison of the exact fit and the series (6)
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4 Particle identification

This section will deal with identification of particles using deposited charge.
It is hardly possible to say that a given track was a pion, but we aim at
calculating the probability that it was a pion, a probability that it was a
kaon and the probability of being a proton. No more particle species will be
considered.

4.1 Calculation of probability

The method of the identification is based on the fact that deposited charge
per unit length for given momentum p depends on the kind of the particle.

Here is an example of a simple reasoning: if the momentum is low and
deposited charge per unit length is high, it will be probably proton.

However, there should be more precise method and we will try to find
such a procedure.

We have already defined the probability density of depositing a charge
Qd in section 3.3. Consider a proton hit from the track with momentum e.g.
0.74 GeV and deposited charge per unit length e.g. 51.3 · 103 e. In fig. 18
there is the distribution of ρ in dependence of the deposited charge per unit
length.

When we assume width of bin ∆Qd = 1 e/d, the probability that our hit
falls into this bin is ξ = 0.021 · 10−3.

As we can see in fig. 3 (see section 2.4.2), only few tracks have only one
hit, so we should consider general case of a track with N hits. Let’s denote
Qd1, Qd2, ..., QdN deposited charge per unit length for the first hit, the

Qd [e/d]
20 40 60 80 100 120 140

3
10̄

ρ

0

0.01
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0
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-3

Figure 18: Probability ρ
proton, p=0.74 GeV
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second hit, ..., the N-th hit along the track. Their probabilities according to
(3) would be ξ1, ξ2, ..., ξN . The probability that we have a track with these
deposited charges per unit length is:

ξtrack = ξ1 · ξ2 · · · ξN (7)

ξtrack would be very small, but this is only the price for large spectrum of
Qd.

Now we will use the well-known theorem from the theory of probability:

P (Bτ |A) · P (A) = P (A|Bτ ) · P (Bτ ), (8)

where P(X) means probability that event X happened and P(X|Y) means
probability that event X happened with requirement that event Y had hap-
pened.

In our case the event A is ”we have measured deposited charges per unit
length Qd1, Qd2, ..., QdN” and the event Bτ is ”the particle passing through
detector was particle τ (τ ∈ { pi, K, p, })”.

When the momentum and the type of particle is known, we will have ρ
distribution analogical to fig. 18. From the probability density distribution
ξtrack,τ is obtained according to (3) and (7). Let’s consider that P(Bτ ) is 1/3
for all three particles, i.e. no type is preferred. We can use this assumption
when the particles have the same multiplicity or when the information about
their multiplicity is not known.

Right side of (8) is thus computable.
Because the hits must be made by one of the particle species, a condition

has to be met:

P (Bpi|A) + P (BK |A) + P (Bp|A) = 1 (9)

Because P(A) is independent on kind of the particle and P(Bτ ) is so far
the same for all types of particles, we can compute the probability that the
hits were made by particle τ :

pτ = P (Bτ |A) =
ξtrack,τ∑

σ=pi,k,p

ξtrack,σ
(10)

Now let’s explain the procedure to say something about the particle kind.
When the probability pτ0 is much higher than the other two, we can say that
all particles with these probabilities are of the type τ0. Naturally, this will
introduce an error to the identification, because there is a small fraction of
particles that are not of the type τ0. We will deal with these errors in section
4.3.
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The definition of ”much higher” is crucial and it is represented by number
pthreshold. When pτ0 exceed it, the track is identified as τ0. When no pτ exceed
it, the track is not identified as anything. It has no sense to set the threshold
low. The value below 1/3 is absolutely meaningless. The reasonable values
start at 1/2. In the section 4.3 this will be elaborated more on.

It is not always necessary to specify the kind of the particle. When we are
interested in e.g. distribution of particles in a jet, the assignment of the track
to the particle type is not necessary. The interesting thing is the distribution
of the particles, which is obtained from a lot of collisions and whether one
selected track was pion or kaon is not important and the probability from
(10) is enough.

Because ξtrack,τ are compared with each other, their magnitude is not
important. They can be multiplied by some constant without any conse-
quences. This is practical in Athena tool (see section 6) when ξi are very
small, the calculation would meet rounding error or even underflow and cor-
rupt whole algorithm. To eliminate this danger, every ξi is multiplied by a
high constant. This constant must be the same for all 3 kinds of particle and
that is also the only condition.

4.2 Shares of pions, kaons and protons

However multiplicity of the kinds of the particles are not the same, as you
can see on Monte Carlo sample in fig. 19. Fortunately, the extension of the
described model is straightforward. The assumption of the same multiplicity
will be omitted.

The shares of each particle P(Bτ ) = sτ will be described by series:

2∑
i=−3

bi · pi, (11)

where bi are parameters to be determined and p is the momentum of the
track. Fitted parameters are in table 5. No more powers of the parameters
are needed as was shown by fitting.

The series describe the shares of the particles very well, however a prob-
lem occurs at share of protons. The series falls below 0 at approx. 515 MeV.
This problem cannot be easily fixed because the first point is at 520 MeV.
Any improvement was accomplished by reducing the range that the points
represent and thus increasing number of points in fig. 19. The not fully satis-
factory fix of this problem is to use value of 0 instead of unphysical negative
values of (11).
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Figure 19: Shares of the particles

Table 5: Parameters of the shares of the particles

parameter a−3 a−2 a−1 a0 a1 a2

spi 0.31±0.02 -1.30±0.09 1.9±0.1 -0.28±0.08 - 0.097±0.009
sK -0.093±0.007 0.41±0.03 -0.66±0.05 0.50±0.03 - -0.034±0.004
sp -0.244±0.006 0.99±0.03 -1.42±0.04 0.85±0.02 - -0.071±0.003

Equation (10) turns into

rτ =
ξtrack,τ · sτ∑

σ=pi,k,p

ξtrack,σ · sσ
, (12)

where rτ is the probability that the hits were made by particle τ .
The identification process is done in the same way as in previous sub-

section. Since rthreshold is given and rτ0 exceed it, the track is identified as
τ0, however it is not necessary to specify the type of the particle if we are
interested only in some particle distribution in jets or so.

As in the case of ξi, also sτ can by multiplied by a constant that is the
same for all three numbers.

It is very tricky to use information about multiplicity of the particles.
On one hand, there is a fact that pions are more common than kaons or
protons, so most of the particles should be identified also as pions. However,
on the other hand, there is uncertainty of knowledge of each share. Shares
presented in fig. 19 are based on all tracks in the sample. When we are
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interested only in selected tracks (e.g. in those that are candidates to be a
product of a decay of an unstable particle), the shares could be different.

It is important to carefully decide whether we will not use information
about shares of particles and the identification will be based only on (10)
or the information will be used and the identification will be based on (12).
When the second option is chosen, the shares have to be meaningful, other-
wise much more uncertainty would be introduced to the identification.

4.3 Efficiency & contamination

The performance of the identification process is described by two variables –
efficiency ε and contamination c. In order to recognize their meaning follow
your intuition. Efficiency is the share of particles that are correctly identified
among all particles. Contamination is the share of particles that are ”fare
dodgers” among particles identified as specific kind. These variables could
be appreciated in Monte Carlo simulation and considered as fair estimates
for the real data.

More detailed description of efficiency and contamination can be found
in appendix B.

As it is obvious from fig. 9 or 10, deposited charge strongly depends on
kind of particle and also on its momentum. In fig. 20, 21 and 22 there are
distributions of ε and c for pions, kaons and protons respectively while we
assume the same share of all types of particles. Efficiency decreases with
higher momentum, while contamination has opposite trend. This can be
expected because energy loss are very similar for higher momentum and
thus particles cannot be distinguished from one another.

In fig. 23, 24 and 25 there are similar distribution as described above, but
during identification the information about relative abundance of different
particle kinds is used. Distribution of kaons (fig. 24) ends at 1.15 GeV. The
next bins have no entries.

The surprisingly low efficiency can be find in fig. 25 for momentum from
0.50 GeV to 0.55 GeV. This is consequence of the problem with share of the
protons discussed above. When sp = 0, there is no chance for a particle to
be identified as proton.

The displayed errors are statistical. More about the errors can be found
in appendix B.
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Figure 20: pions, pthreshold=0.5, formula (10) used
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Figure 21: kaons, pthreshold=0.5, formula (10) used
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Figure 22: protons, pthreshold=0.5, formula (10) used
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Figure 23: pions, rthreshold=0.5, formula (12) used
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Figure 24: kaons, rthreshold=0.5, formula (12) used
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Figure 25: protons, rthreshold=0.5, formula (12) used
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Efficiency and contamination also depend on number of hits per track. It
is clear that the higher number of hits we have, the better result we expect.
In fig. 26 there are efficiencies and contaminations for different numbers of
hits per track. The result is not surprising and it is as expected.

The probability threshold is also one of the factors that modify distri-
bution of efficiency and contamination. In fig. 27 there can be seen that
efficiency goes lower with rising threshold. With rising threshold it is more
difficult to reach this threshold and thus more particles are not identified
as anything. Because they are not identified as anything and they are not
identified wrongly, contamination is lower with higher threshold.

By setting the threshold high it is possible to get low contamination. The
price you pay is less satisfying efficiency.
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Figure 26: protons, pthreshold=0.5, formula (10) used
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Figure 27: protons, formula (10) used
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When the parameters of the momentum bins were replaced by the series
(6), one would expect better performance. The series (6) create ρ distribution
exactly for track’s momentum. When parameters of momentum bins is used,
ρ distribution would be a little bit inaccurate, because only values of the
points in fig. 13–15 would be available, in contrast to continuous spectrum
of values of the series (6).

In fig. 28 there is a distribution of efficiency. As you can see, the difference
is hardly 0.5%. There is a difference between ρ distribution of the momentum
bin and ρ distribution obtained in the (6), but this difference is usually not
big enough to caused misidentification.

Situation of contamination distribution is very similar. When probability
density ρ is computed according to (6), the performance is slightly better.
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Figure 28: protons, pthreshold=0.5, formula (10) used
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5 Monte Carlo vs. first data

The data used for the analysis are from the first runs in December 2009.
The energy was 450 GeV per beam, i.e.

√
s = 900 GeV.

5.1 Events selection

It is quite practical when analysis is run only on selected events. E.g. those
with some part of the detector switched off are not very usable. Moreover,
analyzed events should originate from proton – proton collisions and not
from proton – beam-gas collisions etc. The first problem is solved with runs
and lumiblocks, the second one with bunch crossing identifier (BCID).

Each event is marked with run number, lumiblock and BCID.
Run number is associated with status of TDAQ system (trigger, data

acquisition and detector control systems) and it specifies if the data are col-
lecting or are not due to some testing or so. Only run numbers corresponding
to the states useful for analysis were selected.

Runs are divided into lumiblocks. A lumiblock is a period of 120 s. Each
lumiblock has assigned information about the status of the detector, i.e.
which parts were on, which ones were off, about various thresholds etc.
When some part of the detector is in stand-by mode, the data are being col-
lected, but they are of low quality. Only lumiblocks with correctly operating
detector were selected.

When every bunch crossed interaction point, BCID is assigned to the
corresponding event. It is clear we are interested in ”correct” BCID only,
i.e. those assigned to bunch – bunch collision.

In table 6 there are selected events used for further analysis. The list was
taken from [25].

5.2 Tracks selection

Not all tracks that are reconstructed are really interesting. ATLAS detector
detects all particles passing through it and this turns to be problem. Cosmic
muons did a good job for alignment but they are unwelcomed background
for proton – proton (or heavy ions) collisions.

Due to malfunction, misalignment or noise, it is also possible that the
reconstruction was wrong and the reconstructed track does not belong to
any real particle. Those tracks are called fake.

It is necessary to distinguish tracks from collision from fake tracks, cosmic
muons’ tracks or tracks from beam gas events. For this purpose several cuts
are used. Overview of these cuts is in table 7. The cuts are from [26].
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Table 6: Good runs, lumiblocks and BCID

run lumiblocks BCID
141749 22–100 1, 2674
141811 126–165 1, 2674
142149 65–87 1, 2674
142154 22–35 1, 2674
142165 134–257 1, 101, 2774
142171 217–229 1, 101, 2774
142174 8–16, 18–47 1, 101, 2774
142189 140–147 1, 101, 2774
142191 7–36, 141–233 1, 101, 2774
142193 33–153 1, 101, 2774
142195 11–54 1, 101, 2774
142383 260–282 1, 101, 182, 992, 1073, 1883, 1964, 2774, 2855

Table 7: Track Cuts - 900 GeV

pT >500 MeV
|η| < 2.5
] pixel hits ≥1
] SCT hits ≥6
|d0| <1.5 mm
|z0 · sin θ| <1.5 mm

Parameters of the tracks are computed with the respect to the vertex.
In appendix C there is more information about parameters of the tracks as
well as figures illustrating the meaning of them.

These cuts have already been used in the previous sections to select
Monte Carlo tracks, despite it was not emphasized.

The impact of cuts above can be seen in fig. 29 where the distribution of
number of the tracks per one unit of pseudorapidity is presented.

The black line represents all tracks. One can see artificial peaks probably
from cosmic muons. Blue, green and red line represents distribution after
applying some cuts. Orange line represents distribution when all cuts in
table 7 are applied.

The performance of the used cuts can be seen in fig. 30. It is similar
distribution as in fig. 29, but the tracks from unpaired bunch crossing are
used. Tracks are thus from background and obviously all of them should
be removed by cuts. The orange line representing dN/dη when all cuts are
applied is a flat distribution with maximum below 0.05.
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Figure 29: Distribution of number of the tracks per one unit of η
Note that cuts are applied cumulatively, e.g. green line is the distribution

after applying d0 and z0 · sin θ cuts.
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Figure 30: Distribution of number of the tracks per one unit of η
Distribution for tracks recorded in unpaired bunch crossing. Cuts are also

applied cumulatively.
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5.3 Comparing Monte Carlo with data

In this subsection, the equation (10) is used to compute the probabilities
and the probability threshold is set to 0.5, unless otherwise stated.

In the fig. 31 and 32 there is deposited charge per unit length for all
kinds of particles together. The first one is Monte Carlo and the second one
is for data. While plotting distribution for data, the cut for pT was dropped
out to see the differences among particles more clearly. In the fig. 31 protons
could be distinguished from other particles. In the fig. 32 the difference
among particles is obvious, unfortunately only for lower momentum lower
than 0.5 GeV that is not considered during the identification process. The
difference for momentum above 0.5 GeV can be hardly seen.

In the fig. 33, 34 and 35, we can compare the distributions analogical to
fig. 10.

If the identification was always correct (i.e. efficiency 100%, contami-
nation 0%), the distribution of momentum vs. Qd would look like fig. 33.
Unfortunately this is impossible, so the Monte Carlo prediction of the dis-
tribution p vs. Qd looks like in fig. 34. Finally, in the fig. 35, there are real
data.

The most notable difference between perfect identification in fig. 33 and
real identification (based on (10) or (12)) in fig. 34 and fig. 35 is missing hits
just below the most probable Qd. When a particle has such hit, it will be
identified incorrectly. Kaons are thus identified as pion, because probability
that this Qd is deposited by pion is higher than the probability that it
is deposited by kaon. The situation is the same for protons distribution.
Protons are incorrectly identified as kaons.

Note that the single hits are plotted but for identification purpose all
hits along the track are used.
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Figure 31: Qd for all particles together, Monte Carlo

Figure 32: Qd for all particles together, data
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Figure 33: Perfect identification

Figure 34: Identification of Monte Carlo particles
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Figure 35: Identification of data

In the fig. 36 and 37 there are distributions p vs. probability obtained
during identification process. The low momentum protons are identified quite
easily which corresponds with the high probability. The identification of
pions and kaons is not so unambiguous.

Especially in the fig. 36 in distributions for protons and kaons there are
visible narrow lines. They come from tracks with only one hit. Those track
cannot be identified very well. The data distributions (fig. 37) suffer from
lower statistics but the lines are also visible, although with a bit of difficulty.

In the fig 38 and 39 there are similar distribution as described above,
only formula (12) is used to compute the probabilities. The identification of
kaons is rather unconvincing.

The line from proton tracks with one hit is visible in fig. 38. For low mo-
mentum these tracks suffer from low sp. For higher momenta the difference
in Qd between protons and other particles smears and sp relatively small
compared with spi makes the situation worse. There is only indication of
this line in fig. 39.
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Figure 36: Probability, Monte Carlo, formula (10) used

Figure 37: Probability, data, formula (10) used
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Figure 38: Probability, Monte Carlo, formula (12) used

Figure 39: Probability, data, formula (12) used
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It is also interesting to look whether the identification can restore the
shares of the particles. In fig. 19 in section 4 the shares of the particles is
shown when the identification was made by Monte Carlo truth. These shares
are used in variables sτ .

In the following paragraphs we will not identify each track, but we will
use only probability pτ or rτ as discussed bellow equation (10).

In fig. 40 and 41 we can compare Monte Carlo and data when shares sτ
are used in calculation. In data there are more pions than in Monte Carlo,
however the trends are the same.

In fig. 42 and 43 the shares based on (10) are shown. The information
about Qd of hits along a track is clearly not sufficient as the particles with
higher momenta deposit very similar charges per unit length.

p [GeV]
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

sh
ar

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
pions

kaons

protons

shares of the particles - MC

Figure 40: Shares of the particles, Monte Carlo, formula (12) used
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Figure 41: Shares of the particles, data, formula (12) used
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Figure 42: Shares of the particles, Monte Carlo, formula (10) used

p [GeV]
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

sh
ar

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
pions

kaons

protons

shares of the particles - data

Figure 43: Shares of the particles, data, formula (10) used
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6 Athena tool

Athena is a framework that is used to solve various physical problems at
ATLAS experiment. It consists of many packages while each package deal
with different task, e.g. in one package there are algorithms for finding jets,
other package is responsible for validation of vertex fitting and finding, in
another package there are defined some useful classes etc. It is also possible
to write your own package where is your analysis. By logical concatenation
of the tasks one could get desired results.

Some packages use so-called tools. Algorithms could delegate some tasks
to tools. A tool has one certain purpose, e.g. find a vertex using FastFinder
and a selected set of tracks. When you would like to use another algorithm
to find a vertex, just change the name of the tool and Athena will do the
rest.

For easy identification of the particles Athena tool has been written.
The main part is overloaded identify method. It is provided in two

version:

• Trk::ParticleHypothesis identify(const Trk::Track* track,

float* prob = 0);

• Trk::ParticleHypothesis identify(const Trk::Track* track,

std::vector<Trk::ParticleHypothesis>* partHypVec,

std::vector<float>* probVec = 0);

where track is a track we want to identify.
Both methods are returning most probable particle (Trk::pion, Trk::kaon

or Trk::proton). When some error occurs (unsuccessful allocation on a heap
etc.), the track has no pixel hits, the momentum of the track is out of range or
none of the probabilities exceed the threshold, Trk::undefined is returned.

When prob is nonzero pointer, also the probability of the particle with
the best match is saved in it. When any of the probabilities is not good
enough, the best one is saved nevertheless, despite Trk::undefined is re-
turned.

Since the information about the best matching particle is not enough,
the second version of the method come on the scene.

partHypVec has to be valid pointer to std::vector<Trk::ParticleHypothesis>
and thus this vector should be allocated in the heap before identify is
called. Instead of using pointer, it is of course also possible to pass along the
address of the object with the operator &.

In this vector all three possible particles are saved. The first position is
reserved for the particle with the best match, the third place has the less
probable one.
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When probVec is a nonzero valid pointer, the appropriate probabilities
are saved in it with the same order as in the previous vector.

If any of the probabilities is not high enough, Trk::undefined will be
returned but also the vector(s) are filled correctly. When any other problem
occurs, Trk::undefined is returned without filling any vector. You should
always check the size of the returned vector.

There are two parameters that could be set by user:

• ProbabilityThreshold

• UseShare

ProbabilityThreshold is the threshold for probability of particles. It
plays role of pthreshold and rthreshold. Only when probability of some kind
of particles exceed this threshold, the particle is identified. Otherwise
Trk::undefined is returned. If ProbabilityThreshold is too small so more
types of particles exceed it, the one with the highest probability will be
returned.

When UseShare is set to nonzero, the algorithm will use fact, that the
most of the particles are pions and the probabilities will be computed ac-
cording to (12). This option decreases efficiency for kaons and protons with
higher momentum. When UseShare is set to 0, the probability is based only
on the deposited charges per unit length and the probabilities will be based
on (10).
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7 Conclusion

In this thesis we have studied the identification of the particles, especially
the identification of pions, kaons and protons.

We have fitted the probability density ρ of deposited charge per unit
length Qd by convolution of the Gaussian with the Landau distribution,
while this convolution was modified by pedestal to describe the distribution
at low Qd. Then we find dependence of the parameters of this function on
momentum which allow as compute ρ distribution for any momentum. This
resulted in slightly better performance in further identification, but the main
motivation was to reduce amount of the processing data.

The identification method has been shown and it could handle tracks
of momentum from 0.5 GeV to 1.5 GeV. It was introduced in two similar
variations. The first of them takes into account only Qd of the hits along the
track, while the second one also uses multiplicities of the particles.

The performance of the identification has been shown in Monte Carlo.
The performance is comparable with another particle identification [27].
However the method of the identification was not clearly shown in the cited
presentation so the precise comparison is not possible.

The first data have been compared with the simulation with good agree-
ment, despite the data has lower statistics than Monte Carlo.

The identification process has been written down as Athena tool, so
further identification can be run directly in Athena.

Better performance could be accomplished by enlarging momentum range
from 0.5–1.5 GeV to 0.1–1.5 GeV. Tracks above 1.5 GeV seem not to be able
to be identified. Maybe small shift of this threshold could be done for pro-
tons, but the results will not be most likely very good. Tracks below 0.5 GeV
are accessible in new 7 TeV data, however they are not accessible in 900 GeV
data. The low momentum tracks are very promising as the differences in Qd

between the types of particles are more significant. Since the LHC should
run at 7 TeV for a long time, the identification in this range would be useful.
However the optimism is reduced by plot in [27] were the rapid decline of
the efficiency for momenta below 300 MeV is shown.
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A Landau distribution

The Landau distribution describes roughly the fluctuation of the energy loss
of particles in a thin layer of a material. It can be written as:

λ(x) =
1

π

∞∫
0

e−xy y−y sin(πy) dy (13)

and it is drawn in fig. 44 [28]. The Landau distribution has no free parame-
ters. They can be introduced by:

x −→ x−MPV

σlandau
, (14)

where MPV stands for ”most probably value”.
An integral of (13) is 1. An integral of the distribution modified with

(14) is σlandau. Naturally, the integral can be changed by an amplitude A
when (13) is multiplied by it.

A maximum of the Landau distribution is at x = −0.22278. A maximum
of the modified distribution is at x = MPV − 0.22278. MPV is thus only
approximately the most probable value, however it is introduced this way in
ROOT [29] and it would be nice to be consistent.
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Figure 44: Landau distribution
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B Efficiency & contamination

Performance of the identification can be described by two parameters –
efficiency and contamination. Efficiency is fraction of particles that are iden-
tified correctly over all MC truth particles. Contamination is fraction of
incorrectly identified particle over all identified particles.

Table 8: Efficiency and contamination

identified as → pion kaon proton don’t know
MC truth ↓
pion A B1 B2 B3

kaon C1 D11 D12 D13

proton C2 D21 D22 D23

other C3 D31 D32 D33

Consider that we are interested in identification of pions.
In the first row of table 8 there are all pions generated by Monte Carlo.

Some of them are correctly identified as pions. This amount is A. Some of
them are incorrectly identified as kaons or protons. These amounts are B1

and B2 respectively. And some of them are not identified as anything (B3).
Efficiency of pion identification is:

εpion =
A

A+B1 +B2 +B3

(15)

In the first column of table 8 there are all particles identified as pions.
Some of them are really pions (A), but some of them are kaons (C1), protons
(C2) or another particles (C3).

Contamination of pion identification is:

cpion =
C1 + C2 + C3

A+ C1 + C2 + C3

(16)

Efficiency and contamination of other particles identification are defined
in analogic way.

Statistical error of efficiency σε or contamination σc can be computed as:

σ =

√√√√∑
i

(
∂ε

∂xi
σxi

)2

, (17)

where xi stands for appropriate variables, e.g. for A, B1, B2 and B3 in case
of efficiency of pion identification. σxi

is estimated as
√
xi. The statistical

53



error of εpion is:

σεpion
=

(
A (2A+B1 +B2 +B3)

(A+B1 +B2 +B3)
3

)1/2

(18)

The statistical error of cpion is:

σcpion
=

(
(C1 + C2 + C3) (A+ 2C1 + 2C2 + 2C3)

(A+ C1 + C2 + C3)
3

)1/2

(19)

54



C Track parameters

Any track can be described by five parameters:

• d0

• z0

• φ0

• θ
• q/p

It is very important to say, that these parameters are computed with the
respect to the given point. When you change this point, some parameters
will be changed as well.

The meaning of the parameters is illustrated in fig. 45. The given point
is denoted P . Red line represents the track in the detector. It is a part of
a helix with a axis parallel to Z axis. Black bold line is the XY projection
of the track while Z position is given by Z coordinate of P . It is part of a
circle.

Point A is so-called ”point of closest approach”. This is quite confusing
because it is closest to P only in XY plane (compare point A with A′).

The difference between P and A′ (A in XY projection) is d0. Difference
between P and A in Z direction is z0. Angle between X axis and tangent
to the track projection at A is φ0. Angle between Z axis and tangent to the
track is θ. This angle is the same along the track so it does not matter at
which point the angle is measured. Parameter q/p can be obtained from ρ
(radius of the track projection) and magnetic field B while homogeneous
field along Z axis is considered:

q

p
=

1

ρB
, (20)

where q is charge of the particle and p is its momentum.
There are two usual ways how to select point P . When the vertex where

the particle was created is not known, the nominal point of interaction is
chosen. It should be geometrical center of the detector but the beam could
be shifted.

When the vertex is known, it is chosen as P . Parameters d0 and z0 are
then very small and we can use them in cuts.

Product z0 · sin (θ) is often used for cuts as well. As seen on the fig. 46,
it is the shortest distance between point A′ and the track.
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Figure 45: Track parameters
Figure is based on [30].
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