
CHARLES UNIVERSITY

FACULTY OF MATHEMATICS AND PHYSICS

Doctoral Thesis

XPATH, XSLT, XQUERY: FORMAL APPROACH

PAVEL HLOUŠEK

Department of Software Engineering
Charles University

Malostranské náměstí 25
Praha, Czech Republic

2005

Declaration

This is to certify, tha t I wrote this Thesis on my own and tha t the references
include all the source of information I have exploited. I authorize Charles Uni
versity to lend this document to other institutions or individuals for the pur
pose of scholarly research.

Praha, November 17, 2005
7c l~ , .„~„ •••• • „ •• •••••••• „ •• „ „

Pavel Hloušek

1

Acknowledgements

I'd like to thank my supervisor Jaroslav Pokorný who offered the topic to
me for an interesting topic, advice, fruitful discussions and also for spotting
some errors.

A huge thanks I owe to my family. My wife Kristyna and my son Kristian
both prooved their endless patience. l'd also like to thank my parents who have
been of great support to me through my under- and postgraduate studies.

The last but not least I' d like to thank the company I work for, EXCON, for
providing me with a quiet office, a computer and an internet connection and
for allowing me so to work on my thesis.

11

Contents

1 Introduction
1.1 Contribu tions
1.2 Structure

2 Background
2.1 Historical background
2.2 W3C Standards
2.3 Related Work

3 Notation
3.1 Notation Rules .
3.2 Basic Types . . .
3.3 Sequences . . .
3.4 Tuples and Tuple Strearns
3.5 Narned Functions
3.6 Context
3.7 Abbreviations .. .
3.8 Running Example .

4 XPath
4.1 Introduction

4.1.1 XPath 1.0 .
4.1.2 XPath 2.0 .

4.2 XPath Syntax ...
4.3 XPath Formal Semantics

4.3.1 Expression to Sequence
4.3.2 Expression to Boolean Value
4.3.3 Function Call Arguments

4.4 Sorting in XPath ..
4.4.1 By Example
4.4.2 Formally . .
4.4.3 Conclusion

4.5 Quantified Expressions .
4.6 Conclusion

5 XQuery
5.1 Introduction

5.1.l Constructors
5.1.2 FLWOR Expressions
5.1.3 Functions

5.2 XQuery Syntax
5.3 XQuery Forrnal Semantics .

5.3. l FLWOR Expression .
5.3.2 Prolog
5.3.3 Semantic Functions Relationships

5.4 Sorting in XQuery
5.4.1 XQuery Care Inconsistency
5.4.2 The Idea

111

1
2
3

5
5
7
9

12
12
12
12
14
15
15
17
17

19
19
19
23
26
29
30
31
32
32
33
35
39
39
44

45
45
46
46
49
49
50
52
56
57
57
59
60

5.4.3 Formally . . .
5.4.4 By Example
5 .4.5 Concl usion

5.5 Conclusion .

6 XSLT
6.1 Introduction

6.1.1 Stylesheet and Template .
6.1.2 Applying Templates ..
6.1.3 Context
6.1.4 Built-in Template Rules
6 .1.5 Conflict Reso I u ti on .
6.1.6 Modes
6.1.7 Parameters
6.1.8 Variables
6.1.9 Named Templates
6 .1.1 O Functions
6 .1.11 Sequence Itera ti on
6.1.12 Conditional Execution
6.1.13 Constructing New Content
6.1.14 Copying
6.1.15 Sorting ..
6.1.16 Grouping
6.1.17 Keys ...
6.1.18 Stylesheet Import and Inclusion
6.1.19 Initiating a Transformation . . .

6.2 XSLT Syntax
6.2.1 XPath Expression vs. Sequence Constructor
6.2.2 Excluded XSLT Elements

6.3 XSLT Care
6.3.1 Notation ...
6.3.2 Flow Control
6.3.3 Parameters . .
6.3.4 Template Rules
6.3.5 Functions and Named Templates .
6.3.6 Sorting ..
6.3.7 Grouping
6.3.8 Keys
6.3.9 Copying ..
6.3.10 Sequences
6.3.11 The Care Syntax

6.4 XSLT Formal Semantics
6.5 Conclusion .

7 Conclusions
7.1 Future Work

lV

60
64
67
67

68
6
68
69
70
71
71
71
72
74
75
75
76
76
77
78
79
79
80
81
81
81
83
85
86
87
89
89
96

105
107
109
116
117
120
120
121
122

124
124

List of Figures

1 Relationships among selected W3C specifications. A higher drawn
specification builds on a lower drawn one. 9

2 Running example DTO . . 17
3 Running example XML . 18
4 XPath axes 20
5 XPath axes sample data 21
6 XPath Syntax, Part 1 27
7 XPath Syntax, Part 2 . . 28
8 XPath Sernantics 30
9 XPath Boolean Semantics . 32
10 XPath Argument List Semantics . . 32
11 Proof of Lemma 4.2. 39
12 Proof of Theorem 4.1: S' == S. . . 40
13 Proof of Theorem 4.1: Derivation of -<. 51. • 41
14 Proof of Lemma 4.5. 42
15 Proof of Lemma 4.6. 43
16 XQuery Example: Tuple stream 49
17 XQuery Syntax 51
18 XQuery Semantics 52
19 XQuery Tuple Semantics 53
20 XQuery Ordering Semantics 56
21 XQuery Prolog Semantics . . . 57
22 XQuery Semantic Functions Cycle 58
23 XSLT Compact Syntax 82
24 XSLT Syntax Mapping 84
25 XSLT, Procedure DistinctParams . . 91
26 XSLT, Procedure PassAllParams 92
27 XSLT, Procedure RemoveTunnelParams 95
28 XSLT, Procedure RemoveTemplateRules 99
29 XSLT, Procedure RemoveTemplateRulesWithModes 103
30 XSLT Care Syntax . . 122
31 XSLT Care Semantics 123

v

1

"In the beginning there was nothin~.
God said, 'Let there be light!' And there wa ~ li lit.

There was still nothing, but you could see it a whole lot b tt r. 11

- Ellen De GenereL

1 Introduction

This thesis formally studies properties of standard query languages for XML:
XPath, XQuery and XSLT.

XML - a buzz word, data format, technology, empty bubble, syntax, tree or
graph data representation, etc. These things pop up in minds of people when
they think about XML. It is no surprise that there are people who hate it as well
as people who love it. But personal attitudes are not important. The important
thing is whether someone finds XML useful. We can see now that XML gained
its audience and that this audience is big- ranging from industries to database
researchers - definitely big enough to take XML seriously.

Once a lot of data is stored in a particular data format, people need tools to
extract information from it, change it, restructure it. At such a moment query
languages come to play their part, as they provide basic data manipulation
tools. As XML has become popular, a great deal of XML data has started to
be stored in separate documents, native XML databases, relational or object
databases, or in various hybrid systems. So, naturally, the need for XML query
languages came out, which resulted in a number of proposals.

It is good to have standards, no doubt. Usage of many proprietary query
languages can make data maintenance tough and integration of data from dif
ferent IT vendors even infeasible. So, large industries like IBM, Microsoft or
Oracle push hard to have XML query languages standardized. This standard
iza tion process is sheltered by W3C - the World Wide Web Consortium.

Looking for a standard query language that perfectly fits the needs of ev
eryone is similar to looking for the Holy Grail. Some people want to hit the
road in one direction, some the other, and some even think that it does not
exist.

The XML audience can be roughly divided into two groups of the Holy
Grail seekers, in terms of their anticipation. We call them a database and a
document community. Whereas the database community thinks of an XML
document as of a database from which they want to extract information, the
document community, on the other hand, thinks of an XML document as of a
text document with some structural markup that makes it easy to transform a
source XML document to a specific format.

The dichotomy in understanding of what is the purpose of an XML docu
ment is reflected in the different expectations from the one and perfect XML
query language. Therefore, instead of having the one and only we have three
standard XML query languages: XSLT, XQuery and XPath.

Each of these languages is supposed to be the Grail for a different commu
nity. While XSLT is handy for transformation writers and meets the needs of
the document community, XQuery, on the other hand, is trying to be perfect
for the database community as it is suitable for data extraction or complex re
structuring tas ks. Since there is a subset of tas ks comrnon for both of these

1

1 INTRODUCTION

languages, the XPath language has been designed to be a subset of both XSLT
and XQuery. Its purpose is to identify parts of an XML document.

First, it was XPath 1.0 and XSLT 1.0 that have been recommend d in lat
nineties by W3C as the first versions of standards. Soon after tha t, W3C b -
gan its work on successor languages that incorporate strong typing ba d on
XML Schema introducing XQuery as a new language: XPath 2.0, XSLT 2.0 and
XQuery 1.0.

The database researches have studied the properties of the early versions of
XPath and to some extent of XSLT recently. However, not much work has be n
done on the new upcoming standards that work with a differen t da ta model.
Therefore, I turned my attention to them.

The initial question was: Having two Holy Grails - XSLT and XQuery -
coming from the document and database community, respectively, which one
is stronger? In other words, the topic I chose was a comparison between XSLT
and XQuery in terms of their expressive power.

But I left this question soon as digging myself into the details of the lan
guages slightly turned my attention to several difficulties on a lower level. Af
ter I studied the insides of XSLT, XQuery and XPath for some tirne, I focused
on the following problems.

• XQuery Core is broken. XQuery Core is a subset of XQuery that is sup
posed to be equally expressive. The forrnal specifica tion of XQuery Core
claims tha t sorting is not expressible in XQuery Core unless the data
model is expanded.

• XSLT has no formal semantics. There is no formal semantics for the w hole
language and so it is hard to reason about the properties of the language.

• XSLT has no core language. However, there have been some theoretical
proposals for XSLT core language, but the relation between the proposal
and XSLT stays unclear, i.e. we cannot tell whether the care language is
sernantically a strict subset of XSLT or not.

The problem of broken XQuery Core disattracted W3C's formal semantics
of XQuery for my purposes. Therefore, I decided to build my own formal
semantics that is expressive enough to capture the semantics of both XQuery
and XSLT.

The problem of missing XSLT Care with clear relation to XSLT motivated
me to look for mappings from various XSLT constructs to sirnpler ones.

My dissertation thesis addresses these two problems and I hope hasit brought
in some light.

1.1 Contributions

The following is a list of contributions of my thesis.

• XPath 2.0 is capable of sorting sequences. This is one of the main results
of my thesis, which has an impact on the following point.

• Formal semantics of XQuery sorting can be expressed in the data model
of the XQuery specification. Dueto that, we know now that XQuery Core

2

1

is not broken in terms of its ability to sort. This is a contradicti n t w h t
the authors of the forma! semantics specification thought.

• XSLT Core language. I identified a pretty small set of XSLT instruction
that can be used to simulate the others. We show that ev n t mplat
rules can be removed from the language without weakening its pres
s1ve power.

• XSLT formal sernantics. I provided the formal semantics for XSLT or
and thus for the whole language.

• Unified formal semantics framework for XPath, XQuery and XSLT. Th
formal semantics provided in this thesis for all three languages us s th
same framework.

1.2 Structure

This thesis is structured as follows.
Chapter 2 Background introduces the background of this theses. This in

cludes an overview of research on sernistructured data and early query lan
guages for XML. Description of the farnily of XML-related specifications pub
lished by W3C is also provided to rnake the relationships among not a few
W3C specifications clear. Finally, an overview of related work is given with
a focus on the expressive power of XPath, XQuery and XSLT or their formal
semantics.

Chapter 3 Notation introduces notation used throughout the thesis. We
define notation for basic types of the XML data model items, nodes and atomic
values. Further, we define there notation for sequences, tuples, tuple streams
as they are essential for the definition of forma! semantics of the languages.
Finally, we define there evaluation context and some operations that handle it.
Also the running example XML data is appended to the end of this chapter,
since it does not fit anywhere else.

Chapter 4 XPath is dedicated to the XPath language. Basically it comprises
three parts: introduction, syntax and semantics definition, and results.

We start this chapter with an informal introduction to the syntax and se
mantics of both versions of XPath in section 4.1. Whereas we explain all the fea
tures of XPath 1.0 like location steps, axes, node tests, predicates, etc. we focus
only on the main differences that distinguish XPath 2.0 from its LO predeces
sor like sequences, strong typing, new if-then-else, for-in-return and quantified
expressions, etc. The reader that is familiar with XPath 1.0 but not with XPath
2.0 can skip the introduction to XPath 1.0 and inspect only the introduction to
XPath 2.0.

We follow with the syntax of XPath 2.0 in section 4.2. We chose to define
only the syntax of Core XPath. Core XPath uses a reduced syntax of full XPath
language but every expression expressible in full XPath can be normalized to
an equivalent Core XPath expression.

The formal semantics of XPath 2.0 is defined in section 4.3. The forma!
semantics is defined for a fragment of XPath 2.0 that we need for proofs in the
following sections and chapters, which includes semantics of the for-in-return,
if-then-else, quantified expressions and function calls.

3

1 INTRODUCTI N

The results are presented in sections 4.4 and 4.5. The first pres nt n f
the main results of our work that we published in [33]. We formally prov that
XPath 2.0 is capable of sorting arbitrary sequences of items in this s ction. ln
the second one, we formally prove that quantified expressions are only syntac
tic sugaring of the language.

Finally, the conclusions are provided in section 4.6.
Chapter 5 XQuery is focused on the XQuery 1.0 language. This chapter

comprises again of three parts: an introduction to the language, syntax and
semantics, and results.

Since XQuery 1.0 is a superset of XPath 2.0 language, w e reduce the intro
ductory section 5.1 to an explanation of constructs that extend XPath: construc
tor expressions, FLWOR expressions and user-defined functions. All of them
are demonstrated on examples.

The syntax of XQuery is provided in section 5.2. Several grammar produc
tions that are not important to us are omitted like productions for constructor
expressions and all type dependent grammar productions.

Next, we define the formal semantics including sorting semantics of the
ORDER BY clause in a FLWOR expression in section 5.3. The sorting seman tics
is omitted in the official formal semantics [22]. The authors of this specifica tion
say that it is impossible to define it, because tuples and tup le streams exceed
the limits of the data model and so it is not possible to define the semantics
formally while staying in the data model. Since we do not limit ourselves to
stay within the bounds of the standard XML data modet we define the formal
semantics even for sorting.

The main result of this chapter is introduced in section 5.4. We form ally
prove that every XQuery expression can be rewritten to an equal XQuery ex
pression without an ORDER BY clause. The proof is a non-trivial extension of
the fact that XPath is capable to sort sequences that we proved in the previous
chapter on XPath. This has a surprising consequence: the semantics of sorting
is expressible within the bounds of the standard XML data model.

Finally, the conclusions are provided in section 5.5.
Chapter 6 XSLT is dedicated to the XSLT 2.0 language.
It starts with an lengthy introduction to the language in section 6.1. The

length of this introduction is caused by the huge number of instructions in
XSLT all of which have to be described.

The syntax of XSLT is given in section 6.2. Instead of using the XML syntax
of XSLT, we define our own non-XML syntax to make the following proofs clear
and concise. We alsa give a list of omitted instructions with an explanation why
an instruction is not considered.

The main result af this chapter is concentrated to section 6.3, where the Core
XSLT language is identified for the selected XSLT syntax. We formally pro ve
this language being the care of XSLT in the sense that all language constructs
can be rewritten using this care language.

The semantics of Care XSLT is provided in section 6.4 using the sarne se
mantics framework as for XPath and XQuery.

Finallf! conclusions are given in sectian 6.5 that summarize the results.
Chapter 7 Conclusions briefly summarizes the main contributions of this

thesis and makes some hints for the future work.

4

2 Background

This chapter is organized as follows. First, we give a brief overview of r arch
activities that precede nowadays standards in section 2.1. Then, w ' plain
the relationships among W3C standards for XML and XML query langu g
in section 2.2. Finally, we provide references to related work in section 2.3.

2.1 Historical background

This section gives a brief overview of research on semistructured data and non
standard or pre-standard query languages for XML.

Semistructured data. Sernistructured data is a precursor to the XML re
search in the database community. It started with a need to query data that
was incomplete or irregular in its structure [1, 13]. The main motivation for
this research field has been the idea of querying data on the web.

The works in this field include project Tsimmis [17], system Lore tog ther
with its query language Lorel [50, 2], UnQL with its calculus UnCal [14, 27],
and system Strudel with its StruQL [24] query language. There are also dornain
specific applications that dernonstrate the sernistructured approach to data li ke
MailQL [32, 34].

Project Tsimmis was targeted to data integration and is one of the first
works in the field of semistructured data. It tried to solve the problem of rep
resenting and querying heterogeneous data sources with a single query. They
presented a flexible data model that lacks a schema: Object Exchange Model
(OEM), which is a simple graph-oriented model with labeled edges and with
data stored at leaf nodes.

System Lore has been developed at Standford University since 1995. In its
beginnings it was based on OEM. The OEM data model is noticeably similar
to usual data models for XML, but in comparison to XML data models it lacks
any notion of schema or DTO. Since semistructured data do not gain as much
attention as XML today, Lore has been migrated to fully support the XML data
recently. Currently, Lore is a complete prototype DBMS that uses various in
dexing techniques and that has a query optimizer for its own query language
Lorel. Lorel is strongly based on OQL [15], which is a query language for object
databases with a navigational syntax that is typical for languages that query a
graph-oriented data model.

The UnQL language has been designed for semistructured data having in
mind besides the Tsimrnis project also system AceDB [53] for biologists. Its cal
culus called UnCal that is based on lambda calculus distinguishes UnQL from
other languages for sernistructured data, as it enables to derive optimization
rules.

Strudel has been developed at AT&T Research Labs as a web-site manage
ment system. It uses the model of wrappers that transforrn externally stored
data into a graph modet which in turn can be queried with a site-definition
query language StruQL. The result of imposing a StruQL query is a site model
that can be converted to browsable HTML pages or can be set as an input
for another StruQL query. Since StruQL is designed to query irregular graph
oriented data, it belongs to query languages for semistructured data, though
its application is not as general as Lorel's or UnQL's.

5

2 B

The MailQL query language demonstrates even more domain sp cifi lan
guage. It has been developed as a language that is suitable to query a d tab
of such irregular data structures as email messages.

XML. XML [11, 12] appeared as a successor to SGML [36] and has b n
designed specifically to meet the needs of publishers. Sine that tím , XML
has been widely adopted and nowadays it is used for many differ nt purpos
such as publication, data exchange, database management.

The XML data is usually modeled as an oriented tree or graph with data
stored in leaf nodes, which makes the XML data models very similar to data
models used for semistructured data. Though the semistructured approach to
data is more general, the huge attention paid to XML moved the attention of
database researches to the field of XML. Besides developrnent of query lan
guages for XML, the current interest of database researchers in this area ranges
over problems like storing XML data in databases, indexing XML data, defin
ing types for XML documents (schemas), etc. Since this work is focused on
query languages for XML, we briefly mention some of them.

As XML itself originated in the document community, it was the docu1n nt
community that gave birth to the first languages that operate on XML data. The
two languages that appeared together were XPath [19], XSL [3] and XSLT [18,
40].

XPath has been proposed as a language suitable to identify parts of an XML
document. It follows a navigational syntax enriched with predicates, whose
purpose is to limit the result set, and built-in functions. The intent was to ha ve
a simple language with non-XML syntax that can be used on its own or which
can be used as a part of a higher language like XSLT.

XSLT has been designed as a language suitable to transform an XML doc
ument into another (potentially non-XML) document. It is based on template
rules that are applied to a source XML document, where each template rule
defines a simple transformation and where each transformation defined in a
template rule can explicitly invoke application of template rules on a selected
part of the source XML document, recursively. XSLT can be viewed as a kind of
a rewriting system, but as a language it is not of much interest in the database
community, perhaps because it lacks formal basis and because it defines a lot
of constructs.

The languages proposed for XML by the database cornmunity are especially
XQL [51], XML-QL [21], Quilt [16], and recently XQuery [8].

XQL is a simple language that is very similar to XPath in its syntax. The
main distinction between these two languages is that XQL is able to return
newly created structures whereas XPath can return atomic values or nodesets
of the original document at most. XQL' s syntax is primitive, however, it offers
some powerful expressions that include grouping, renaming and join.

XML-QL is one of the very first efforts to design a query language for XML.
A query is composed of two parts: a pattern matching part and a construction
part. The pattern matching part is used to bind values to variables that are used
in the construction part of a query. It is possible to use regular pa th expressions
for recursive structures and joins in the pattern ma tching part. The language is
equipped with skolem functions to ease data transformation. It is also possible
to express grouping with aggregate functions. So far, we mentioned the powers
of the language, but there are also drawbacks. The main of them is that both
pattern matching and construction parts use XML syntax, so larger queries

6

tend to be long and hardly readable.
Quilt evolved directly from XML-QL. The biggest change happened to th

pattern matching part of a query that left the XML syntax of XML-QL and that
moved towards XPath expressions. Further, the pa ttern matching part was
divided to two types of clauses: FOR and LET, where each has a diff r nt way
of binding the results of an XPath expression to a variable. While the FOR
clause is used to iterate over the items in the result, bind ing items one by on
to an associated variable, the LET clauses binds all the items in the result to
a variable at once. Quilt formed a basis of nowadays W3C standard qu ry
language for XML: XQuery. In fact, Quilt has been renamed to XQuery and
further developed under its new name.

2.2 W3C Standards

The World-Wide Web Consortium (W3C) is an organization that is crea ting
standards for the web technologies. W3C creates a lot of XML-related s tan
dards. In this section, we provide a brief introduction to a family of standards
that are important to our work. We describe the standards that have been or
are being prepared and the relationships among them.

W3C defines several states of a document that is or is being prepared to be
a standard. For simplicity, we need to distinguish only two of them : a draft
and a recommendation. Whereas draft is not a finished standard and so it is
a subject to a change, a recommendation is a finished standard that does not
change. This implies that talking about drafts can be dangerous, since they can
change. However, all the drafts that we work with are drafts that ha ve already
passed the last calt so major changes are not probable.

The following is a list of the core XML-related recommendations and d rafts
published by W3C.

• Extensible Markup Language (XML) 1.0 - recommendation

• Namespaces in XML 1.0 - recommendation

• XML Information Set - recommendation

• XQuery 1.0 and XPath 2.0 Data Model- draft

• XML Path Language (XPath) 2.0 - draft

• XQuery 1.0: An XML Query Language - draft

• XQuery 1.0 and XPath 2.0 Functions and Operators - draft

• XQuery 1.0 and XPath 2.0 Formal Semantics - draft

• XSL Transformations (XSLT) 2.0 - draft

• XML Schema fa mil y

XML. XML as a language is a subset of Standard Generalized Markup Lan
guage (SGML) [36L which is a markup language that is used for text process
ing. Syntax of XML is described in XML 1.0 [11] and Namespaces in XML
1.0 [9] specifications. We assume that the reader is familiar with XML enough

7

2

and do not dig into details of writing elements, attributes and other ynta ti
constructs and terms like well-forrnedness of an XML document. B th W3
recomrnendations are followed by their 1.1 versions [12, 10] that addr
some technical issues like allowing arbitrary names in XML tags, n \V-lín on
ventions, etc.

XML Information Set. XML Information Set [20], shortly Infoset, d fin s
what information can be retrieved from an well-formed XML document. In
formation set of a well-forrned XML document consists of information item lik
document information item, where each information item has a set of associ
ated properties like children or attributes. This document primarily serv s the
purpose of providing a consistent set of definitions of informa tion in a n XML
document that can be referred to by other specifications.

XML Data Model. Once the information stored in an XML docum nt is d -
scribed, a data model for XML data can be defined that can be used for query
languages, which is done in XQuery 1.0 and XPath 2.0 Data Mod l sp cifi
cation [25]. Notice, that however the data model has in its narne XPath and
XQuery, the same data model is used even for XSLT.

The data model says that XML document consists of items, which are ei
ther nodes or atomic values. The nodes are of seven kinds: document, element,
attribute, text, comment, processing instruction, and namespace. The sp cifi
cation defines that each node has a unique identity, but no identity is assigned to
atomic values. Nodes are organized in an oriented tree with a children property
and with a reverse parent property.

Further, the specification defines document order, which is a total order on
nodes of an XML document. Informally, one node precedes another node in
the document order if both nodes are in the same XML document and the first
node's XML representation starts doser to the beginning of an XML document
then the second node's.

As the order is important, the essential data structure heavily used through
out the data model is a sequence of items - not a set. Sequences are not allowed
to be nested, so a sequence cannot contain a sequence. However, it is possi
ble to syntactically nest sequences, but the result is always flattened. The data
model makes no distinction between an item and a singleton sequence contain
ing that item.

The data model defines types of values. The typing system is that defined
by the family of XML Schema specifications [23, 54, 7]. As we are not interested
in typing, we do not go in more detail here.

XML Query Languages. We just described the specifications that define
the syntax of an XML docurnent and the information contained in it. Next
specifications cover the query languages XPath, XQuery and XSLT.

The simplest of the languages is XML Path Language (XPath) 2.0 [5], which
evolved from much sirnpler 1.0 version [19]. The authors of XPath declare that
its main purpose is to identify parts of an XML docurnent and to serve as a basis
for XQuery and XSLT. The language has a navigational non-XML syntax, with
functions and constructs for variable binding. There is a such a lot of built-in
functions that a separate specification XQuery 1.0 and XPath 2.0 Functions and
Operators [43] has been started.

XQuery 1.0: An XML Query Language specification [8], defines a superset
of XPath 2.0, so a query in XPath 2.0 is also a query in XQuery 1.0 that returns
the same result. Since the interconnection between these two languages is so

8

D

XQuery XSLT

XPath

Funcs & Opers

XML Data Model

XML Information Set

XML with Namespaces

Figure 1: Relationships among selected W3C specifications. A higher drawn
specification builds on a lower drawn one.

strong, they share the same specification that formally defines the semantics of
these two languages: XQuery I.O and XPath 2.0 Formal Semantics [22].

XSL Transformations (XSLT) 2.0 specification [40] defines a language that is
supposed to meet the needs of the document community. lt is a direct successor
to the successful I.O version [18]. It uses an XML syntax to define transformatio n
rules that are applied to an input XML document to result in a text document
that has not to be an XML document. The transformation rules are described in
terms of templates. Subset of XPath can be used to define patterns in template
rules that are matched against nodes in an input XML document and full XPath
2.0 expressions can be used inside template's bodies.

Figure 2.2 gives an overview of relationships among its selected specifica
tions. Each specification builds on specifications that are drawn below it.

2.3 Related Work

Since there is a lot of activity in the field of XML, we tried to choose only
works that study either the expressive power of standard XML query lan
guages XPath, XSLT and XQuery in all its versions or their formal semantics.
We divided the references to related work according to the language(s) that are
in focus.

XPath 1.0 Both XPath 1.0 and XSLT I.O have not been studied much by the
computational language theorists when published, but now there is a lot of
research conducted in this area, specifically on XPath. Wadler [55] has been
the first to provide formal semantics for XPath and his work has been of great
influence to us.

Properties of various dialects of XPath have been studied by Benedikt et al.
in [4] with focus on the expressive power of the dialects.

Gottlob et al. proposed Care XPath in [30, 31] as a powerful language with

9

2 BAC

linear combined complexity. This language is both syntactically and s manti
cally a subset of XPath. Their concept has been extended to Conditional XP th
by Marx in [44, 45, 46], which is a first-order complete language ov r tr still
with linear combined complexity. Conditional XPath exce ds th pr 1v

power of XPath.
XS LT 1.0 On the other hand, as XSLT is not much in the focu of th data b

community, not much formal work has been done here.
Since a formal definition of XSLT semantics is missing, ther ar a f w pa

pers that take a fragment of XSLT, for which the semantics is defined formally.
Probably the first of them is Xemantics [42] - formal sernantics fo r a fragm nt
of XSLT defined using a term rewriting approach and Wadler's semantics of
XPath.

Bex, Maneth and Neven developed a formal model for a fragm nt of XSLT
in [6]. This model has been used to examine properties of XSLT lik its xpr -
sive power compared to languages like XML-QL, k-pebble transducers [47], or
monadic second order logic. It has been proved that a pattern is not necessary
in template rules, since it can be pushed inside the body of a template rule.
However, it still is an open question whether their XSLT fragment is or is not a
strict subset of XSLT.

XQuery 1.0 A lot of attention is paid to XQuery by database researchers.
But as the formal semantics of XQuery is a W3C standard, the most of them
focus on an optima! evaluation of queries. The official formal semantics of
XQuery [22] is based on the forrner work [26] by Fernandez et a l. Its main
drawback is that it is not cornplete - the forrnal sernantics of ordering is not
defined.

Another approach to defining the forrnal sernantics of XQuery w as taken by
Yang et al in [57]. They defined it in an object-oriented semantic model using
ObjectZ [52] language. The work was focused only on the main semantic con
structs, but the ordering sernantics is defined, though in a procedura! manner
rather then declaratively.

In [28] an algebra is developed that can be used for query optimization. The
paper defines three A.-calculus based algebras: semantics, language and phys
ical algebras, so optirnization is available at three different levels. This pro
vides more fine-grained control cornpared to the forma! semantics of XQuery
by W3C, whose main purpose is to formally define only the high-level sernan
tics of the language.

Jagadish et al. presented a tree algebra for XML called TAX in [38] . This
algebra has been designed for bulk operations on tree-rnodeled data such that
database-style optimizations are possible. TAX is an extension of relational
algebra and it is complete for relational algebra with aggregation. Though
this algebra has not been designed specifically for XQuery, it is able to ex
press any non-recursive XQuery query. TAX is used for optimization in Timber
database [49].

XSLT 2.0 There has not been much research on XSLT 2.0 yet. The formal se
mantics of XSLT is not covered by a W3C standard. In [56], Yang et al. defined
the formal sernantics in ObjectZ [52]. It is nothing else but plain fo rmalization
of the informal XSLT 2.0 specification.

XQuery 1.0 and XSLT 2.0 An interesting paper [41] by Stephan Kepser
proves that both XQuery 1.0 and XSLT 2.0 are Turing-complete languages.

Fokoue et al. provide compilation from a fragment of XSLT 2.0 to XQuery

10

2 BAC

LO in (29]. This work is a contribution to an effort to compar th pr -
sive powers of XSLT and XQuery, because it shows that thet mplat ch
mechanism of XSLT is expressible in XQuery. A comparison of th pr i
powers of XSLT and XQuery has been the main motivation to u to , but w
pushed hardly to simplify XSLT first. One of our results shows th t th t m
plate choosing mechanisrn is a syntactic sugar in XSLT and so there is non d
to prove its expressibility in XQuery.

XML Schema XML Schema is a standard whose main purpose is to d fin
types for XML documents. Novak and Zamulin define formal semantic for
XML Schema in [48]. Though we do not consider typing, there is a connection
to our work. The connection lies in the way sequences are modeled : as ord r d
sets. The reader may wonder, whether this representation allows for multipl
occurrences of atomic values in a sequence. The paper does not m ntion thi
problem, but we explain why this is possible.

11

3

3 Notation

In this chapter, we define basic notation that is used throughout this th i . t
the end of this section, a running example is provided.

3.1 Notation Rules

The definitions of notation in this chapter and throughout the th s1 u th
following rules.

The syntactic types are written in italics font and with the first letter capi-
talized, Thus.

With o : T we denote that an object o is of type T.
With (01 1 ••• , on) we denote a tuple with n objects.
With T ~ T' we denote a function type with domain T and range T'. Th

symbol ~ is left-associative, so T ~ T' ~ T" is understood as (T ~ T') ~
T". We use this notation for functions with multiple parameters.

3.2 Basic Types

We stick to the standard model for XML data [25], as it was introduced in 2.2. It
defines that the basic data types are nodes and atomic values, which we denote
by Nade and Atomic. Further it defines a derived data type of an item, which is
either a node or an atomic value. We denote the type of an item with Item.

3.3 Sequences

With Set(T) we denote a type "set with objects of type T". For exarnple, Set(Jtem)
denotes a type "set of Item objects". With !Sl we denote the cardinality of S.

With Seq(T) we denote a type "sequence of objects of type T". A sequence
S is a tuple (S, -<s), where S is a set of objects and -<s C S x S is a total order
on them. We define following dereference operators for a set of items of a
sequence, and for an ordering of a sequence, respectively:

I(S,-<-s) S
L(S,-<-s) -<s

The most often used sequence type is Seq(Item). Here we have to note that
representing a sequence as an ordered set has a little technical difficulty, but
which can be handled easily. The difficulty comes frorn the fact that atomic
values have no identity in the standard model for XML data. So, in our repre
sentation it is not possible to have a sequence that contains two equal atomic
values. To fix this problem, we assign a sequence identity to all atomic values in
every sequence. We call this sort of identity a sequence identity to emphasize
that it is bound to a sequence and not to the universe of all atomic values. A
sequence identity of an atomic value can be naturally interpreted as its position
within a modeled sequence. Two atomic values from different sequences have
always a different sequence identity.

As we need to distinguish, whether we care about identity of atomic values
in a sequence or not, we write all set operators and the equality operator (such
as U, n, \, -=::., etc.) either without a subscript or with a val subscript. For

12

3

example, let (51,-< 1) and (52,-< 2) be two s quenc s, th n with 51 U 2 w
denote a union of items in 51 and S2 that is based on s qu ne id ntity f r
atomic values, while with S1 Uval S2 we denote a union of it m in 51 nd 2

that is based on values for atomic values. In both cases, th union is ba d n
node identity for nodes. Analogically == and ==val compare two at mic alu
according to their identities and according to their values, respectively.

Now, we can identity items that precede a given item in a sequ ne in a
simple way. It is handy sometimes to identify not only all preceding item
but also the given item itself. Therefore we define a partial ordering -< ~ for a
sequence (5, -<s), which is in fact a reflexi ve closure of -<s.

S {i1„ . . ,in}
-<s -< s U { (i,;, i j) IJ E { 1, . . . , n } }

In accordance with this definition we provide a new dereference operator
tha t given a sequence returns the partial order just defined.

c -(5,-<s) -<s

According to XQuery 1.0 and XPath 2.0 Data Model, we make no diff r
ence between an object of type Item and a singleton sequence with that obj ct.
Formal equivalence follows.

i : Item, S : Seq(Item)
i s iff s == ({i} I 0)

Not only logical description of sequences as sets with an order is sufficient.
To describe sequences in examples, we use XPath syntax to literally denote a
sequence with items. For example, the following represents a sequence with
items 1, 2, and 3.

(1, 2, 3)

Position of an item x in a sequence Sis defined naturally as cardinality of a
set consisting of preceding items and item x itself.

pos(x,S) i{yjyCsx} I

To finish with sequences, we define a concatenation operator o that given two
sequences (S1, -<s1) and (52, -<s2) returns a single sequence (S, -<s) with items
from the first sequence followed by items from the second sequence preserving
the order of items in both initial sequences.

5 51 u 52
-<s { (x1, x2) I x1, x2 E 51 implies x1 -<s1 x2

X1, X2 E 52 implies X1 -<s2 X2

X1 1 X2 rj_ Si implies X1 E 51, X2 E 52 }

13

3

3.4 Tuples and Tuple Streams

The XQuery 1.0 specification explains the semantics of th lan u in t rm
of tuples forming a tuple stream. However, the formal semantics p ificati n
does not formally define these terms and thus the authors think that it i n t

possible to expressing ordering semantics formally. As we ne d th manti
for the whole language defined formally we define the Tuple and Tuple typ
to represent a tuple and a tuple stream, respectively.

Leťs start informally. XQuery uses FOR and LET clauses to d fin a tupl
stream that is composed of tuples. Each tuple represents valu s bound t 11
variables from the FOR and LET clauses. This tuple stream is r duc d by th
WHERE clause, ordered by the ORDER BY clause and finally it rat d ov r
to evaluate the RETURN clause of an XQuery query. Each value bound to a
variable is generally a sequence of items.

With Tuplen we denote the type of a tuple of cardinality n. When the car
dinality is not important, we simply write Tuple without a suffix. A value in a
tuple is always a sequence of items, Seq(Item), since it represents a value bound
to a variable. Notice, that a tuple itself keeps no information about variabl
names it stores values for.

Tuple
11

==def (Seq(Item)„ .. , Seq(Item))

n

With Tuplesn we denote the type of a tuple stream. It is a sequence of tuples
with cardinality n and a sequence of distinct variable names common for all
tuples in a tuple stream. When the cardinality is not important, we simply
write Tuples without a suffix. By VarName we denote a type for variable names.

Tuplesn ==def (Seq(Tuplen) , Seq(VarName))

Notice, that both Tuple and Tuples types exceed the limits of the standard
XML data model that does not allow tuples and sequences of anything else but
items.

We write an instance of type Tuples, i.e. a tuple stream, as a triplet T ==

(T, -<T1 eT) I where T is a set of tup les, -<r is a total order on T, and er is a
sequence of variable names. We define the following dereference opera tors for
it.

I (T,-<-y,8r)

L(T,-<-r,8r)

e) (T,-<-r,8r

Variable names in a sequence Br correspond to "columns" in a tuple se
quence (T, -< T). Thus, the first variable name corresponds to the first member
of each tuple, the second variable name corresponds to the second member of
each tuple, etc. For a tuple stream 1r : Tuples 11 it is always true that n == I 8 ir I·

14

3

3.5 N amed Functions

Next, we define named functions. Each user-defined function is d fin d by
a name and a body expression. Usually, functions have named param t rs.
The Functions type describes a function that given a function nam r turn a
sequence of parameter names, and a body expression.

Functions ==def FnName ~ (Seq(VarName), Expression)

If we have a function F : Functions, then F(jn) == (efi 1, e) m ans that func
tion named fn is defined by a body expression e and that this function tak s
parameters with names in efn·

3.6 Context

To evaluate expressions correctly, we need a notion of evaluation context. Th
Context type consists of a variable binding, function definitions, context item,
context position, and context size. The set of a context item, position and size
is usually referred to as to a focus.

We start with a definition of a variable binding. We define type VarBinding
to be a function that takes a variable name and returns a sequence of items.
Notice that a variable is always evaluated to a sequence of items. Due to the
equivalence of an item and a singleton sequence of that item, it is possible to
bind variables to atomic values.

VarBinding ==def VarName ~ Seq(Item)

We define type Context to represent an evaluation context. It is a quintu
ple of a variable binding VarBinding, a set of definitions of named functions
Functions, a context item Item, and two integer numbers representing context
position and context size.

Context ==def (VarBinding, Functions, Item, lnteger, lnteger)

The extend function extends the context with a new variable binding. lt
takes a variable name VarName, a value Seq(Item) as a sequence of item.s that
should be assigned to it and a variable binding VarBinding. It returns a new
variable binding. The definition of its type follows.

extend: VarName ~ Seq(Item) ~ VarBinding ~ VarBinding

Now, we define the semantics of the extend function. With v we denote a
variable name, with Swe denote a sequence of items to be assigned to v. With
P1 we denote the original variable binding and with p2 we denote the resulting
variable binding. Recall that we represent a variable binding as a function.

extend(v, S, pi)
p2(w)

lookup(v, p)

P2
if (w == v) then S else P1
p(v)

15

3

The lookup function returns a value assigned to a variabl . lt t k
name VarName and a variable binding VarBinding and return a
items. The definition of its type follows.

lookup : VarName -t VarBinding -t Seq(Item)

Now, we define its simple semantics. To find a value of a variabl with
name v, we call the given variable binding function p.

lookup(v, p) == p(v)

To simplify notation, we will use the following to express a cont xt C
(p, F, item, pos, last) extended by a variable with name v bound to value S.

C(v -t S) (extend(v, S, p), F, item, pos, last)

It is often needed to bind a set of variables instead of a single variable.
Therefore for a sequence of variable names V, a tuple t of values to be bound,
and context C we define C(W -t t) to be a context with variable names from
W bound to their respective values in t. Formal definition follows. Let W b
a sequence of distinct variable names with items { v1, . .. , v 11 } and with order
defined by indexes of Vž. Let t == (51, ... , Sn) be a tuple.

We can notice that the order in which the variables are bound is not impor
tant when variable names are distinct.

Usually, a sequence of variable names comes from a tuple stream, so for a
tuple stream 1f we write C(8ir -t t).

Since sometimes only focus changes in a context, we define a function to
handle focus change. Function focus(C, i, S) changes current focus to an item
i E Is. Focus is not always defined, e.g. in function calls, therefore we define
function nofocus to set focus to undefined values, which we denote by an empty
set symbol.

focus
nofocus

Context -t Item ~ Seq(Item) -t Context
Context --* Context

focus((p, F, item, pos, last), i, S)
nofocus((p, F, item, pos, Zast))

16

(p,F,i,pos(i,S), IIsl)
(p, F, 0, 0, 0)

< !DOCTYPE archive[
<!ELEMENT archive
< ~ATTLIST archive

3

type CDATA #IMPLIED>

J >

<~ELEMENT cd
< !E LEMENT author
<!ELEMENT artist

(title , author* , artist , year , genre?) >
(first , last)>
(first , last)>

Figure 2: Running example DTD.

3.7 Abbreviations

To simplify formulas, we write x instead of x1, ... , Xn. Thus x does not d not
a tuple. If we want to denote a tuple in a simplified form, we write (x) . So, for
exarnple the following holds.

3.8 Running Example

Here we define sample DTD and sample XML data for a running exampl of
the thesis, given in Figure 2 and Figure 3. The XML document cd.xml describ s
a CD archive with compact discs with either music or speech. Each CD is
described by a title and a year it was published. Any CD can have an optional
list of authors and an optional list of artists performing. Also information about
genre can be attached to a CD.

17

3

<archive>
<cd type= "music " >

<title>Tubular Bells</title>
<artist><first>Mike</first><last >Oldfield</last></artis >
<year>l992</year>
<genre>rock</genre>

</cd>
<cd type= " speech " >

<title>Dasenka</title>
<author><first>Karel</first><last>Capek</last ></author>
<artist><first>Karel</first><last>Hoeger</last></artist >
<year>l984</year>

</cd>
<cd type= "music " >

<title>Hejira</title>
<author><first>Joni</first><last>Mitchel </ la st></au hor >
<artist><first>Joni</first><last>Mitchel</last ></a r tist >
<artist><first>Jaco</first><last>Pastorius </last></artis >

</cd>
<cd type= "music " >

<title>Tubular Bells II</title>
<artist><first>Mike</first><last>Oldfield</last></artist>
<year>1992</year>
<genre>rock</genre>

</cd>
</archive>

Figure 3: Running exarnple XML docurnent cd .xml.

18

4

4 XPath

XPath is the base stone of the XML querying. As uch, it i u d in b th L
and XQuery. In this thesis, we consider XPath in version 2.0, whi h wa
by extending XPath 1.0 with sorne powerful features.

This chapter is organized as follows. We first explain what XPath i m
tended to be used for and we demonstrate its features by many xampl in
section 4.1. Then, we precisely define the syntax of XPath in section 4.2 and
the formal semantics of XPath in section 4.3. Then, we show a surpri ing fa t
that XPath 2.0 is capable of sorting sequences. This is proved in s cti n 4.4.
Finally, quantified expressions are proved to be syntactic sugaring of XPath in
section 4.5.

4.1 Introduction

In this section, we first introduce all the main features of the languag XPath
in its 1.0 version like nade sets, location paths, axes, node tests, pr dicat ,
typing, and functions. All of these are explained using a lot of exampl s.

Then, we examine what has been changed and/ or added to the languag
in its 2.0 version, namely adoption of the XML Schema typing model, replace
ment of unordered nodesets with ordered sequences, and new expressions lik
if-then-else conditional expression, for-in-return iterative and variabl binding
expression, and quantified expressions some- and every-in-satisfies.

4.1.1 XPath 1.0

XPath 1.0 has been designed to easily identity or match nodes in an XML
docurnent with the intention to be used either standalone or in XSLT 1.0 and
XPointer. It is really simple to express queries like "return titles of all CDs",
"return titles of all music CDs", or "select CDs with more then two artist per
forming" in XPath.

/archive/cd/title
/archive/cd[@type = "music"]/titl e
/archive/cd[count(artist) > 2]

The result of evaluating an XPath 1.0 expression is either an atomic value
or a set oj nodes from the source XML document usually referred to as node
set. As the most complicated structure of a result is a set, there is no ordering
information about the items in the result set. The absence of order informa
tion in a result has been understood as a particular disadvantage. Specifically,
information about document order of nodes is lost in a result.

Location path, step. As one can see, XPath 1.0 uses compact, navigational,
non-XML syntax. The expressions are based on location paths. A location path
describes a traversal of an XML document that consists of steps. Each step
consists of an axis, nade test, and zero or more predicates.

axis : :node test[predicate]*

Axes. An axis specifies a relation between the current node and a node
specified by the step. For example, child axis refers to nodes that are children

19

Axis
self
child
descendant

parent
ancestor

following-sibling
p receding-sib ling
following

preceding

attribute
descendan t-or-self
ancestor-or-self

Nodes
4
8
8, 11, 12

2
1, 2

5
3
5, 8, 9, 10,
11, 12

1, 2, 3, 6, 7

4, 8, 11, 12
1, 2, 4

4

Meaning
curr nt it m
childr n of th curr nt it m
descendants of th curr nt it m , i ..
children and childr n of hil dr n , t .
parent of the curr nt it m
ancestors of the current i t m, i. . par
ent and parent of par nt t .
siblings that follow th curr nt it m
siblings that precede th curr nt it m
all nodes from the docurn nt th t r
after the current item in th do um nt
order
all nodes from the docurnent that ar
before the current item in the docu
ment
attribute nodes of the curr nt it m
union of descendant and s lf ax
union of ancestor and self ax s

Figure 4: XPath axes and their meaning. For each axis a list of nod numb r is
provided, where number represents a node that satisfies the axis. Th sampl
XML tree with numbered nodes is given in Figure 5 with current nod numb r
4.

of the current node, ar parent axis refers to a node that is a parent of th curr nt
nade.

Full list of axes is provided in Figure 4. For each axis its meaning is ex
plained and demonstrated with a nodeset for sarnple XML data from Figure 5.

Node test. A nade test filters the set of nodes given by the axis relation
according to the nade name ar node kind. The simplest node test is a name
test that is specified by a tested name, e.g. child::cd returns those child nodes
of the current node that have their name equal to cd. It is also possible to use
wildcard * to skip the name test, thus parent::* returns the parent nade of the
current nade regardless of its name.

The second type of a nade test is a test of a node kind. For each of the sev n
nade kinds there is a function that is true only if the tested nade is of that spe
cific kind, e.g. nade(), text(), attribute(). For the full list of these functions see
section 4.2. For example, child::text() returns only text children of the current
nade.

Predicates. Finally, predicates are used to filter the set of nodes that resulted
from applying an axis relation and a nade test to the current nade. For example,
[child::year > 1990] leaves in the result set only nodes that have a child nade
with name year with value greater than 1990. Usual comparison opera tors like
=, !=, <,>,etc. can be used.

A boolean expression is allowed in a predicate with usual operators not,
and, or. Complicated boolean expression can be expressed using parenthe
ses. For example, the following expression selects CDs with Mike Oldfield that

20

Figure 5: XPath axes sample XML data.
Current nade is the black nade with number 4.

were published after Tubular Bells.

/child: :archive/child: :cd
[child: : aut hor

[child :: last = "Oldfield " and child :: first
and child: :year > /descendant-or-self : : cd

[child : :title = "Tubu lar Bell s "]/year J

4 H

"Mike "]

Since such an expression like the one from the example above are rath r
unreadable, the following abbreviations are defined.

Abbreviation Meaning
no ax1s child::
@ attribute::

self::node()
parent::node()

I I I descendant-or-self::node()/

Using these abbreviations we can rewrite the example above to much read
able form.

/archi ve/cd
author[last = "Oldfield" and first = "Mik e "]
and year > //cd[title = "Tubular Bells")/year

We already know that we can use comparisons in a predicate. Leťs look
doser on their semantics depending on the types of the operands. If we com
pare two atomic values like in 2 < 3, then the atomic values are cmnpared. Jf
we compare an atomic value and a nodeset like in author /last = "Oldfield" the
situation is different. In such a case, the condition is true if there is at least one
node in a nodeset that satisfies the condition. The third case is a comparison of
two expressions both resulting in a nodeset like year > I I cd[title=" A"]/year.

21

H

Such condition is true if there e ist two nodes, on from th n t r turn :l
by an expression year and the other from the nod s t return d b n pr -
sion I /cd[title="A"]/year, that satisfy the condition. So, t manti ~ f
this expression is "there exists at least one node with nam y ar in th urr nt
item with value greater than a value of sonze node year in a CD with titl "

lt is possible to have zero or more predicates in a single st p. If m r pr d-
icates are specified after a node test then nodes in the resulting n d t h
to satisfy all of them. This means that more predic tes in a singl
meaning of a conjunction of their logical conditions.

Absolute and relative paths. So far, we explain d Jocation p th ub pr -
sion. We also said that a location path traverses an XML docum nt. What w
did not mention is where the document traversal starts.

XPath identifies two types of location paths: ab olut , and r lativ . b -
lute location paths start with a slash I, which means that an XML do um nt i
to be traversed starting from its root node. On the other hand, r lativ paths
do not start with a slash, which means they start from the curr ntly valuat d
item.

Variables. Though XPath 1.0 is not capable of defining variable , it i vari
ables aware. This means that though variables may not be defin d in XPath 1.0
expressions, they may come from outside and be referred to insid XPath 1.0
expressions. Variables can be used only in relative location paths and only in
the first step. For example, suppose that $x is a variable defined outsid to b
a nodeset of CDs, then the following expression selects titles of CDs from this
nodeset that contain some music.

$x[@type = "music"]/title

Types. XPath 1.0 uses simple typing. It distinguishes on.ly three atomic
types: boolean, number, and string. The only complex type is a nodeset. Sine
from XPath 1.0 perspective no type information is attached to an XM L doc
ument, the type has to be declared explicitly in an XPath expression or is
guessed. The guessing comes in.to place in an expression like year < 1990.
Since year is compared to a number, the XPath processor first tries to convert
the value of year to a number. If it succeeds it compares numbers otherwis
both values are compared to strings. For this system to work correctly, XPath
1.0 defines a way to compute a string value for each node kind.

Arithmetics. lt is possible to use all usual arithmetic opera tors on numbers:
+, -, mod, div. The following will return an empty set, yet it is a correct XPath
express1on.

//cd[lO mod 2 > 2 + 3]

Functions. XPath 1.0 defines some functions that can be used in expres
sions. Functions can be divided in.to several groups depending on the type of
the argument.

First group of functions represents functions that work with a nodeset like
count (ns) that returns a number of nodes in the argument node set ns, or
pos i ti on () that returns the current node position in the current context with
respect to the document order - so called context position, or 1 as t () that re
turns a number of nodes in the currently evaluated nodeset - so called context
size, or id (id) that given an id id returns a node with that id. Functions from

22

this group are the most often used XPath function . For e ampl , th f 11
expressions select "odd CDs" / and "the la st CD" from th ar hi , r

// cd[position() rnod 2 = l]
/ /cd[position() = last()]

H

Second group of functions represents functions that op rate on trin s, Jik
concat (s1,s2) 1 starts-with(s1 , s2) 1 contains (s1 , s2). The most int r
esting function is string (o) that converts the given object o to a valu fa

string type.
Third group of functions represents functions that operate on numb r ,

like ce i li ng (n), f loor (n), and round (n) . There is also a handy functi n
s um (ns) that converts each node to a number and returns their sum. Finally,
there is a function n umbe r (o) that tries to convert the given object o to a valu
of a number type.

Forth group of functions represents function that operate on boo] ans, lik
not (b), true (), and false (). Of course, there is a function b oolea n (o)

tha t tries to convert the given object o to a value of a boolean type.
Further, the expression evaluation context can know more funct ions th n

those defined in the specifications of the language and even such functions can
be called. This is in particular a way to allow XPath 1.0 to be a building block
for higher languages that are capable of defining user functions like XSLT and
XQuery. Notice, that it is not possible to define a user function in XPath itself.

Alternatives operator. Several XPath 1.0 expressions can be joined together
with an alternatives operator I. In such a case, the result is a union of nodes ts
returned by these expressions. For example, the following expression r tu rns
"all authors and artists" from the CD archive.

//author I //artist

4.1.2 XPath 2.0

The main purpose of the language is to address nodes in an XML document,
which is the same as for the 1.0 version. XPath 2.0 has been designed as a basic
language to be used in XSLT 2.0 and XQuery 1.0. It is a result of joint work of
XML Query Working Group and XSL Working Group as a part of XML Activity
of W3C.

Sequences. The primary purpose of XPath 2.0 is to address nodes in XML
trees. The main difference between XPath 1.0 and XPath 2.0 is that an XPath
2.0 expression returns a sequence of items instead of a nodeset. Thus, the items
in the returned sequence have now their order defined.

Further, its possible to define a new sequence in XPath 2.0. For exarnple,
both following expressions evaluate to sequence of 1, 2, 3 in that order.

(1, 2 , 3)
(1 to 3)

XPath 2.0 also defines new operators on sequences: union, intersect ,
and except with a straightforward meaning. Notice that these operators are
allowed only on sequences of items, so it is not allowed to compute an inter
section of sequences of atornic values.

23

H

Types. XPath 2.0 operates on a logical tructur of n XML d um nt th t
is defined in XQuery 1.0 and XPath 2.0 Data Mod 1. This m d I i tr n I
typed and is based on XML Schema type systern.

XPath 2.0 is capable of inspecting types, and typ a ting. vail bl n
tests have been greatly extended to support type inform ti n, . . th f II w
ing expression selects "elements of type xs:dat "

//e lement(xs : date)

It is also possible to test and cast to sequence types . For e ampl , th fol
lowing predicate is true if "all date elements in the insp ct d docum nt r f
type xs:date and there is at least one date element in the inspect d do m nt" .
The expression element (x s : date) + represents a sequence typ f n r
more elements of type xs:date.

//date instance of element(xs:dat e)+

A node is of a specific type if its type is the same as the sp cifi typ or it
type is derived by restriction or extension from the specific typ .

Since we do not consider type inforrnation when comparing XQu ry 1.0
and XSLT 2.0, all XPath 2.0 expressions that operate on types are omitted from
the language syntax provided later.

Node tests. XPath 2.0 provides new node tests in accordance with the n w
data model. The i tem () node test matches all nodes or atomic values, th
document-node () node test matches any document node, th eleme n t ()
node test matches any element, which is equal to using a wildcard in XPath
1.0.

If-then-else expression. Providing XPath 2.0 with the if-then-els xpr -
sion is a minor enhancement of the language in terms of its expressiv power,
because the if-then-else expression can be often rewritten using alternatives
operator and predicates. However, we admit that the if-then-else expression
can improve readability. Both following expressions return "authors, if CD
contains speech, otherwise it returns artists", thus the result is a mixture of au
thors and artists. The first XPath expression uses the if-then-else expression,
the second uses alternative operator and predicates.

//cd/if (@type= "speech")
then author
else artist

//cd[@type = "speech"]/author I //cd[@type ! = "speech "]/artist

For-in-return expression. Unlike the if-then-else expression, the for-in
return expression brings more power to the language. This expression allows
to define variables in XPath 2.0, which was not possible in the 1.0 version of
the language. The for-in-return expression has the following syntax.

for variable in expression return expression

The for-in part defines the variable bindings, a variable is one by one bound
to items from the sequence returned by the in expression. The result of the for
in-return expression is then the union of sequences that we get by evaluating
the return expression for each variable binding. Leťs make this explanation
clearer' rith an example. The following expression returns "titles of CDs where
1, 2, or 3 artists are performing, ordered by the number of performing artists".

24

H

for $x in (1 to 3)
return //cd[count(artis t) = $x] / title

Notice, tha t the sequence returned by the in pr th r-
der of variable bindings and that the ret urn expr sion is valuat d f r a h
variable binding in that order. The result sequence pr serv s that ord r a w 11,
because the items from the first evaluation of the return e pr s ion r put t
the result sequence first, then items from the second evaluation f th r turn
expression are appended to the result sequence, etc. This d mon tr t th
order preserving principle of all XPath 2.0 expressions.

Quantified expressions. The boolean XPath 1.0 e pre sion hav b n
tended with quantified expressions. In XPath 2.0, its possibl t us b th qu, n
tifiers: existential, and general. The following xampl r turn " D titl ,
where all artists and authors have first name Kar l", and '' D tit l , wh r
at least one artist or author has first name Karel".

//cd[every $a in authorlartist satisfies $a/first = " Karel " J/titl e
//cd[some $a in author lartist satisfies $a/first= " Karel "]/title

Later, in section 4.5, we prove that both types of quantified xpr sion do
not extended the expressive power of XPath 2.0.

Comparisons. The XPath 1.0 comparison opera tors =, !=, <, ... and th ir
semantics are retained in XPath 2.0, but few more opera tors have been add d:
value comparison and node comparison operators.

New ly defined value comparison operators are eq, ne , 1 t , le, gt , ge,
which stand for equal to, not equal to, less than, less than or equal to, great r
than, and greater than or equal to, respectively. These operators are applicabl
only to atomic values on both sides of the comparison, otherwise an error is
raised. Thus, the first from the following expression asking for "titles of CDs
where first name of some artist is Mike" is correct as there is always exactly
one first name for each artist. However, the second expression trying to r -
trieve "CD titles with Mike Oldfield" is not, since there are CDs with multipl
artists, for which an error will be raised.

//cd[artist /fi r st e q "Mike ")/ title
// cd[artist e q "Mike Oldfield"J/title

The node comparison operators are i s, < <, and > >. The i s operator test
whether two given nodes represent the same node. Such a test was missing in
XPath 1.0. Operators << and >> compare the document order of two nodes.
The following expression returns "titles of CDs that precede all speech CDs" .

//cd[every $cd in //cd[@type = "speech"]
satisfies . << $cd J/title

Functions and operators. The set of functions in XPath 2.0 has been ex
tended tremendously. XPath now contains over a hundred functions and al
most seventy operators. Sure, we do not introduce all of them, but only men
tion areas covered by the new function set.

There are functions for strings that now support regular expression match
ing, replacement, and tokenization. Functions on numbers are now defined on
more fine-grained types making a difference between a floating point numbers

25

and integers. There are also many n w functions that p rat n dur ti n < n
time and operators to compare valu s of th t p .

Also functions that operate on sequence inste d of n d
redefined and new have been added. They now include fun ti n t
sequences by insertion, concatenation, or selecting a ub qu n , fun
test the cardinality of a sequence, and aggreg t function to cmnput
maximum, minimum, or an average value from a equ nce of valu

As there is such a large number of them and sine they are har b

n
dif

um,

2.0 and XQuery 1.0, functions and operators wer d dicat d a p
specification called XQuery 1.0 and XPath 2.0 Functions and p r t r .
distinguish functions from opera tors, functions use namespac pr fi fn:, whil
operators use namespace prefix op:. Thus, to express "nurnb r f D " w
write the following.

fn: count (/I cd)

Specification status. As of writing this thesis, XPath 2.0 is still a W3 work
ing draft. This means that changes may appear later.

4.2 XPath Syntax

In this section, we provide the syntax of XPath 2.0. We have chos n to pro
vide only the core of the language as described in XQuery 1.0 and XPath 2.0
Forma! Semantics specification, as it has the sarne expressive power as the full
language.

The syntax is divided into two figures, Figure 6 and 7, where both are pr -
sented in the Extended Backus-Naur Forrn. Nonterrninals start with a capital
letter instead of enclosing them with angles <> . Keywords ar nclosed in
quotes "". Part of a grammar production can be enclosed in sirnple paren thesi s
(), usually to express zero or one appearance with a question mark ?, or zero or
more appearances with an asterisk *.

Figure 6 is the main syntax of the language. Figure 7 depicts axes and kind
tests.

Core vs. Full. Each expression in full XPath can be rewritten using the
care XPath. The forma! sernantics specification defines how an expression in
fuU XPath is converted to an expression in core XPath. This process is called
norma l izat ion.

The major distinction between the XPath 2.0 Core and full XPath 2.0 is in
for-in-return and quantified expressions. While the full version of the language
allows a list of variable bindings in a for-in-return expression, the core lan
guage allows only a single variable binding. Such an expression is normalized
by producing nested for-in-return expression for each variable binding. For
example, the following expressions are equivalent. The former is in full XPath
and the la tter in core XPa th.

for $x in ei , $y in e1 return e3

for $x in e1 return
for $y in e2 return

e3

26

XPath
Ex pr
ExprSingle

FLWORExpr
ForExpr
Quantífied Ex pr

IfExpr

OrExpr
AndExpr
Con1parisonExpr
Corn parisonOper
RangeExpr
Arithn1eticExpr
Ari thmeticOper
SequenceExpr
SequenceOper
UnaryExpr
GeneralComp
ValueComp
NodeComp
PathExpr

RelativePathExpr

StepExpr

Primary Expr1

Predicates
NodeTest
NameTest
Wildcard
Literal
N umeric Li teral
ParenthesizedExpr
FunctionCall

-..
-..

-..

-..

-..
-..

-..

-..
-..
-..
-..
-..
-..
-..

-..

-..
-..
-..

-..

-..

-„

-..
-..
-..
-..
-..
-..

Ex pr
ExprSingle (11

,
11 Expr)?

FLWORExpr
I QuantifiedExpr
I IfExpr
I OrExpr
ForExpr " ret urn " ExprSingle
" for $11 VarName "in" ExprSingl
(" some " I "every 11

) " $ffVarNan1e
" in ff Ex pr " s a ti s f i es 11 Ex pr ingl
" i f " " (/1 Expr 11) " 11 then 11 ExprSingle

"e l se /1 ExprSingle
AndExpr ("o r " AndExpr) ?
ComparisonExpr (/1 and" ComparisonExpr)?
RangeExpr (ComparisonOper RangeExpr) ?
ValueComp I GeneralComp I NodeComp
ArithmeticExpr ("to" ArithmeticExpr)?
SequenceExpr (ArithmeticOper SequenceExpr)*
"+"I"- " I 11*

11 I "div" I " idiv" I "moci"
UnaryExpr (SequenceOper UnaryExpr)*
11 union"I " intersect " I "except "
(" - 11 I "+")* PathExpr
"="I "! =11 I" <" I" <=" I 11 >" I " >="
"e q" 1 "n e ff I " lt " I " le ff j "gt " j "ge ff
" i s" I " << li I " >> li

"/" (RelativePathExpr)?
I "I/" RelativePathExpr
I RelativePathExpr
StepExpr
I StepExpr (/1 I ff I "I I /1

) RelativePathExpr
ForwardAxis NodeTest (Predicates)?
I ReverseAxis NodeTest (Predicates)?
I PrimaryExpr (Predicates)?
Literal I "$" VarName
I ParenthesizedExpr I FunctionCall
" [ff Expr "J " (Predica tes) ?
KindTest I NameTest
QName I Wildcard
11 *" I NCNan1e ":" "* /1 I "*" ":" NCNan1e
NumericLiteral I StringLiteral
IntegerLiteral I DecimalLiteral I DoubleLiteral
li () " I " (ff Expr li) "

QName " (/1
(ExprSingle C', /1 ExprSingle)*)? ") "

Figure 6: XPath 2.0 Syntax. Part 1.

27

ForwardAxis

ReverseAxis

KindTest

AnyKindTest .. -
DocumentTest .. -
Text Test .. -
ComrnentTest .. -
PITest .. -
AttributeTest .. -
ElementTest .. -
AttributeName .. -
ElementName .. -

11 child11 11
::"

I // lf 11 11
" se : :

I "attribute 11
" : : "

I "descendant" " : : /1

j "descendant-or -self " " : : "

1

11 f 11 ' ' bl " " " li o o wing-si ing : :
j 11 following" ":: /1

li t " li li paren : :
I /1 ancestor" 11 : : "
I 11 ancestor -o r-self" " : : "

I
ll d' 'bl" "" li prece ing-si ing : :

I
ll d ' Ill/ li prece ing : :

DocumentTest
I ElementTest
I AttributeTest
I SchemaElementTest
I SchemaAttributeTest
I PITest
I ComrnentTest
I TextTest
I Any KindTest
" node " /1

(" ")
/1

"document-node 11 /1
(" (ElementTest)? ") /1

" text"" (11
")

11

" comme nt 11
"(" ")"

4

"proces s ing - in st ruct ion " JI (" (NCName)? JI) "

"attribute " /1
(" (AttributeNarne I"* ")? ") /1

" eleme n t ""(" (ElementName I " * 11)? ") "
QName
QName

Figure 7: XPath 2.0 Syntax. Part 2.

28

4 H

Similarly, we can use multiple variable bindin in qu ntifi
which is again normalized u ing n ted qu ntifi d pr
lowing example.

some $x in e1, $y in e2 satisfies 3

some $x in e1 satisfies
some $y in e2 s at is f ies e3

Changes. The provided syntax rules are almost e act copy f th W3 '
specification grarnrnar. Here we identify the minor differences w did .

First, we striped out everything type-related, b caus w d n t n i r
the type information in the data model. Thus, we rernoved pr i n th ':l t
inspect or cast types. Also sequence types constructors w re r mov d .

Second, we rernoved all abbreviations. These include alternativ s op rat r
I, and abbreviations mentioned in a table on page 21.

Third, the order in which the grarnmar productions app ar impo
tor precedence in W3C's specification. As we do not bother so much, w
some rules together, like ArithmeticExpr, and SequenceExpr.

Further, we do not provide grammar productions for all kind s f lit ral
like NumericLiteral, QNarne, NCName, since this is not important to valuat
the expressive power of the language. It is sufficient to know that all un p ci
fied nonterminals represent literals. Among the others, we should mpha iz
QName and NCName. QNarne represents a qualified narne that compris s
namespace prefix, double-dot, and name, e.g. xsl:value-of. NCNam on th
other hand represents something like an identifier. It is a sequence of lett rs
and/ or numbers, dots, and underscores, with a letter at the first positi n.

Finally, we replaced several productions that use an asterisk *to equival nt
ones with question mark only. This is to simplify specification and improv
readability of the formal semantics of the language.

4.3 XPath Formal Semantics

In this section, we provide formal semantics of XPath 2.0. The formal semantics
used throughout this thesis is denotational semantics. It was especia1ly work
of Wadler on semantics of XPath [55] that we were inspired by.

We do not provide semantics for all syntactic constructs tha t are listed in
XPath syntax. Rather, the semantics is defined only for such constructs that w
use later in section on sorting in XPath. The formal semantics is used there to
prove that presented XPath expressions do exactly what is desired. To provid
full semantics of XPath, it would be necessary to define semantics of pa th ex
pressions with steps, axes, and predicates, further, arithrnetic expressions, and
operations on sequences.

The denotational semantics of XPath that we present here, is defined with
three semantic functions: E, W, and A. The first function E evaluates an ex
pression in a given context, the second function W returns a boolean value of
an expression, and the third function A is a helper function that evaluates a list
of argument expressions in a function call.

29

E[ExprSingle, ExprTI C

E [if e then ťt else ťj] C

E [some $v in e1 satisfies e2] C

E [every $v in e1 satisfies e2]C

[[fn (Argument List)] C

E[$v]C

[E prSingl ~ C o [E 'Pr il C

s == [e1 ~ c
== { X2 I X1 E I

C 1 := C (V · X])

X2 E I , h~C1 }

-<s == { (X I y) I X 11 y 1 E I~
S 1 == [ť2 ~ ((V X I)

S2 == [C2] c (v l/ i)
x E L 1 , y E I~ 2

x1 CsY1 or xc s y }

{
E[e1]C if W[e]C
E[e1]C otherwise

S == W[some $v in e1 satisf ies ť2 ~ C

-< == 0

S == W [every $v in e1 satisf ies e2]C
-<s == 0
E[e] nofocus(C(8111 -t t))
for F(fn) == (eft 11 e), t == A [ArgumentLi t]C

p(v)

Figure 8: XPath Semantics for context C == \p, F, item, pas, lnst).

4.3.1 Expression to Sequence

We start with the rnain semantic function [.. It takes an XPath expression and
evaluates it in the given context. The result is a sequence of items \S, ~s) .

E Expression __, Context __, Seq (I tem)

Function E is defined in Figure 8. As it can be hard to read, we describ
each definition in words.

Expression, expression. The first line in the figure de fines the seman tics for
a comma-separated list of expressions. It says that each expression in the list is
evaluated separately and the resulting sequences are concatenated to form the
result.

For-in-return. The second line defines semantics of a for-in-return expres
sion for $v in e1 return e2. WithSwedenotethesequencethatresults
from evaluating expression e1. The set of items S in the result of the for-in
return expression are such items that are in the result of evaluating expression
e2 in a context with variable v bound to some item in S. The order of items in S
preserves the order of items bound to v and within the sarne variable binding
the order of items that results from evaluation of e2 is preserved. Simply said,
result of a for-in-return expression is a concatenation of sequences that corne
from evaluation of the return expression with variable bound to iterns in Sin
their order.

Thus, e.g. expression for $i in (1 , 3) ret urn ($i , $i+ 1) returns a

30

4

sequence (1, 2, 3, 4), because first 1 is bound to variabl 1, nd th r turn
pression results in a sequence (1 , 2). Th n, 3 is bound t i to r turn qu n
(3, 4). Thus, the set of items is { t 2, 3, 4} . Th ord r t 11 tha t {1, 2} hav t
precede {3, 4} in the result and within these 1 has to pr c d 2 and 3 ha t
precede 4, because that is the order in which they w r return db th r turn
express1on.

If-then-else. The third line defines semantics of if-then- ls p r s ion i f

ethen et else e1. Itevaluatesto etifthebooleanvalueofe is tru , th r
wise it evaluates to e f .

Quantified expressions. The next two lines d fin semantic of n
and existentially quantified expressions. Both r turn the bool n va l u
sarne expression. The order is empty, because nothing l th n an a t mi
value true or false can appear in the result.

Function call. The last butone line defines semantics of a function c II. Th
result of a function call is a result of an expression that d fines th body of a
function in a context with an empty focus and variables in an argum nt li t
bound to values that we get by evaluating argument expressions.

Notice, that it is not possible to define functions in XPath, which i po sibl
only in XQuery and XSLT. Though, the semantics of a function call i d fin d
here, as it is the same for XQuery, XSLT, and also for the buil t-in fun ction f
XPath.

Variable reference. Finally, we define that a reference to a variable is val
uated to a value that is stored for that variable name in the current context.

4.3.2 Expression to Boolean Value

In Figure 9 we define semantic function W that evaluates an expression in a
given context either to true or false, computing so an effective boolean value as
defined in s pecifica ti on.

W Expression ~ Context ~ Boolean

The first line defines the effective boolean value of an expression in a giv n
context. We can see, that the effective boolean value of an expression is fals
if an expression evaluates to an empty sequence, empty string, zero, or false.
Otherwise the effective boolean value of an expression is true.

The second line defines semantics of a built-in boolean function fn:not() that
realizes nega ti on.

The next two lines define semantics of boolean opera tors and, and or.
The last butone line define semantics for existentially quantified expression

some $v in e1 satisfies e2. WithSwedenoteasequenceofitemsthat
results from evaluation of e1. The expression is true if there exists an item x
from sequence S, such that expression e2 is true in a context with variable v
bound to x.

The last line defines semantics of a generally quantified expression. The se
mantics distinguishes frorn semantics of an existentially quantified expression
only in quantifier. Thus, the expression is true if for all items x from sequence
Sexpression e2 is true in a context with variable v bound to x.

31

W [e] C Jal e

tnu

W [fn: not (e)] C -.W [e] C

W [e1 or e2] C true if W [e1 ll C or W[e2 ~
fa/se otherwis

W [e1 and e2] C true if W [e1] C nd W íl 2íl C
Jal se otherwise

W[some $v in e1 satisf ies e2] C true if for S == E [e1 Il C
3x E L : W[e2 ~ C (v x)

Jal se otherwise

W[every $v in ei satisfies e2] C { true if forS == E [e1] C
\;/X E L : W [ť2] C (V ---+ X)

Jal se otherwise

Figure 9: Boolean value of an XPath expr ssion.

A[ExprSingle, ArgumentList]C { (x,y) I x == E [ExprSingle] C
(g) == A[[ArgumentList íl C }

Figure 10: Semantics of an argument list of an XPath function.

4.3.3 Function Cali Arguments

A helper semantic function A is used to evaluate a list of argument xpr ssions
to a tuple of their respective values. This function is defined in Figur 10.

A : ArgumentList -t Tuple

An argument list is a comrna-separated list of expression, or to be pr cis of
expression single. The only line we provide in Figure 10 explains the inductiv
step. It takes a head expression from an argument list that is separated by a
cornma from the rest of an argument list. It is evaluated to a tuple, where th
first position contains a sequence returned by evaluating the first argument.
The rest is built recursively, thus there is a sequence returned by evaluating the
second argument at the second position in the resulting tuple.

Notice that the order in which the arguments are evaluated is not specified
and that all arguments are evaluated in the same context in which the function
is called.

4.4 Sorting in XPath

In this section, we introduce a surprising fact that XPath 2.0 is capable of
sorting sequences. This has several important consequences, among others a
consequence on the ability to formally express ordering semantics of XQuery,

32

which was supposed unfeasible without introducing tupl in
XPath 2.0 Formal Semantics specification of W3 . M r n thi

These are the main fea tures of our a pproach t in

• Generality. Any sequence of items can b ort d.

u r 1. n
in . ..i .

• Complex ordering. The ordering ex pr s ion can b ny P th 2.0 xpr -
sion, thus orderings like "order by last nam nd within qu 11 t n m
order by first name" are possible.

• Inefficiency. By extending XPath with for-r turn pr n , n r n
expressions of form (i to j), where i and j ar numb r pr ibl wi th n
expression, the language became capable of orting. But n t ha
to be paid: it is awfully inefficient, O(n3) wh r ni a numb
the sorted sequence. A question arises, if som form f an
pression should be added to the language to achiev b tt r p rf rmc n
of sorting.

4.4.1 By Example

Here, we present a general XPath expression that sorts items in a qu n
S. The whole expression is for clarity divided into thre s parat function
my:precedes(), my:count-less-than(), and my:sort() that can b a rnbl d to
gether to forma single XPath expression. The thre functions hav th f li w-
. .
ing mean1ng.

First, function my:precedes($x, $y) represents a 1 ss-tha n r la ti on n i t m
from S. lt returns true iff $x is less than $y, whatever to be 1 ss than m ans.
In the following, we simply use the usual comparison op rator <, but 1n r
complex expressions can be provided as shown later.

my:precedes($x, $y) {
return ($x < $y)

}

Second, function my:count-less-than($x, S) returns a numb r of nod m a
sequence S that are less than $x by means of the less-than relation d fin d by
the my:precedes() function. The for loop iterates over S creating so a sequence
of items from S that are less than $x. Function fn:count() is applied to this
sequence to count a number of items that are less than $x in S.

my:count-less-than($x,S) {
fn: count (

}

for $y in S
return

if (my:precedes ($ y , $x))
then $y
else ()

Finally, function my:sort(S) returns the sorted sequence.

33

my :sort(S) {

}

for $i in (0 to fn : count(S) - 1)
return

for $x in S
return

if ($i= my:count-less-than($x , S))
then $x
else ()

Leťs look how it works. We examine the out r loop first. ln it flr t it r -
tion, it returns each item x in S for which there xi t no it m y in u h th t

y is less than x - the minimum of S. In its second it ration, it r turn ~ " h it m
x in S for which there is exactly one node yin S that is 1 ss th an . ln it third
iteration, exactly two, etc. In its final iteration, it return ach it m in f r
which all other items in S are less than x - the maximum f S.

If there is a subset of nodes that are equal in S by m an f th -than
relation then they will all be returned in a single iteration of th out
such a case some iterations return nothing. The inn r loop guarant
initial sequence order of the equal nodes is preserv d in th r ultin

The following XPath 2.0 expression is an exampl of an a mbl
sion that returns "sorted CD titles".

for $i in (0 to count(//cd/ti tle) - 1)
return

for $x in //cd/tit le
return

if ($i= count(
for $y in //cd/titl e
return

the n $x
else ()

if ($y < $x)
then $y
else ()

Earlier we mentioned that it is possible to express more compl x sort ord r
by modifying the my:precedes() function. Since this is the only place wh r
the semantics of the less-than relation is defined, it is also the only place w r
it needs to be changed.

For example, we want to order a sequence by authors first by their last
and second by their first name. We change the my:precedes() function to the

following.

my:precedes($x, $y) {
($x/last < $y/last) or
($ x/last = $y/last and $x/first < $y/first)

}

One more example. The following XPath 2.0 expression returns "CD titles
ordered by CD authors first by their last name and second by their first name" .

34

4 XPATH

Notice, that this is a special case of the above that sorts according to informa
tion that lies outside the subtree of the sorted nodes.

for $i in (0 to count(//cd/title) - 1)
return

for $x in //cd/title
return

if ($i= fn : count(
for $y in //cd/title
return

i f (($y / pa rent: : cd/ aut hor I la st <
$x/parent: :cd/author/last

the n $x
else ()

or

then $y
else ()

($y/parent: :cd/author /last
$x/parent::cd/author/last

and
$y/parent: :cd/author/first <
$x/parent: : cd/author/first

And one more notice. Usually, the if-then-else expression in my:count-less
than() function can be replaced by a step expression with a predicate. For ex
ample, for the simple case:

$y[self : :* < $x]

And for the not-so-simple case:

$y[(last = $x/last) or
(last = $x/last and $y/first < $x/first)]

4.4.2 Formally

In this section, we formally define expression Sort and prove that it sorts each
given sequence. Notice, that we define sorting with respect to a given partial
order, which is handy later as XQuery defines its ordering semantics on the
partial order basis.

Throughout this section, we consider only such partial order relations whose
characteristic functions are expressible with some XPath expression.

First, we define equivalence eqR on items in partial order R.

Definition 4.1 Let R be a partial order. With eqR we denote a set oj all R-equal items.

x eqR y iff R(x, y)&R(y, x)

Next, we define the less-than relation with respect to a given partial order
R by removing equivalence from R. This is needed, since we do not want to
count items that are less than or equal to the current item, which is the meaning
of R, but rather we want to count items that are sharply less than the current
item.

35

4 XPATH

Definition 4.2 Let R be a partial order. With lt R we denote a total order R \ eq R.

We should note, that if a characteristic function of R is expressible with
an XPath expression then even eqR and ltR are expressible with an XPath ex
pression using boolean operators. We should also note, that the rny:precedes()
function defined in the previous section is an example of a characteristic func
tion of ltR relation.

Lemma 4.1 Let S be a set, and R C S x S be a partial order on S. Then for each
x, y E S either x eqR y, or x ltR y, ary ltR x.

Proof This comes from the relations between partial order R, equivalence eqp,.1
and total order ltR, namely R == eqR U ltR and eqR n ltR == 0. o

The following formally defines the natural notion of number of iterns in a
sequence that are less than the given item. The CLT stands for count less than.

Definition 4.3 For S a set, and R C S x S a partial order on S we define function
CLTR (x, S).

CLTR (x, S) ==def I { y E S I y ltR x } I

Next, we define the CountLessThan XPath expression with respect to the
given partial order.

Definition 4.4 Let S be a set, and R C S x S be a partial order on S. With express ion
CountLessThanR (x, S) we denote the following XPath expression.

fn:count(
for $y in S
return

i f ($y ltR X)

then $y
else ()

The following lemma says that the CountLessThan R (x, S) expression really
counts items from S that are sharply less than x in terms of R. We provide
the proof in Figure 11 on page 39, where the semantics of the CountLessThanR
expression is derived with our semantics rules.

Lemma 4.2 Let S be a set, and R C S x S be a partial order on S. Then the result oj
CountLessThanR (x, S) is equal to CLTR (x, S), number oj items in S that are less than
x in terms oj ltR.

The following lemma provides bounds to CLT R (x, S) and so also to results
of CountLessThanR (x, S).

Lemma 4.3 Let S be a nonempty set, and R C S x S be a partial order on S. Then for
each x E S the following holds.

o< CLTR(x, S) < 1s1 -1

36

4 XPATH

Proof The lower bound is equal to zero, as the cardinality of a set cannot be
less than zero.

The upper bound cannot be more than ISI, which is guaranteed by the first
condition y E S in the definition of CLTR· Moreover, it cannot be more than
I S I - 1, which is guaranteed by the second condition x ltR y, as ltR is irreflexive,
thus for each x E S at least x is not present in { y E S I y ltR x }. D

Notice, that the lower bound is reached for all minimal items in S, i.e. items
for which there is no less-than item in S, and that there can be more of them
equal to each other in terms of eqR. Conversely, the upper bound is reached
only for the maximum item in S, which has not to exist if there are multiple
maximal items. If there are multiple maximal items then they are again equal
to each other in terms of eqR.

The following lemma claims that equal items have equal counts of less-than
items.

Lemma 4.4 Let S be a set, and R C S x S be a partial order on S. Then for each
x, y E S such that x eqR y the following holds.

Proof This lemma can be rewritten as follows.

x eqR y implies \/z E S : z ltR x implies z ltR y

For contradiction, suppose that the above is not true, so suppose that such
z E S exists, for which z ltR x and not z ltR y. Combining this fact and
Lemma 4.1, we get that either i) y ltR z, or ii) z eqR y holds.

That the following inequalities are contradictions comes from the fact that
ltR is a total order, and eq R is an equivalence.

Ad i) z ltR x eqR y ltR z.
Ad ii) z eq R X eq R y ltR z. o

Next, leť s define for a sequence the property of being sorted.

Definition 4.5 Let (S, --<s) be a sequence, and R C S x S be a partial order on S.
We say that a sequence \S', -<s') is a sequence \S, -<s) sorted with R iff for each
x, y E S the following conditions hold.

i) S' == S

ii) x ltR y implies x--<s'Y

iii) x eqR y implies x--<sy implies x--<s'Y

We refer to a sequence (S / -<s) as the initial sequence and a sequence (S', -<s')
as the sorted sequence.

The first condition tells that if x is less than y in terms of partial order R,
then x has to precede y also in the sorted sequence. The second condition tells
that if two items are equal in R then the order of items x, and y in the initial
sequence has to be preserved in the sorted sequence.

Notice, that we define a sequence to be sorted with respect to an initial
sequence. Thus, a sequence has to be created prior to have been sorted. This

37

4 XPATH

definition of a sequence being sorted is based on XQuery's stable sorting that
we explain later in the chapter about XQuery.

Next, we define the XPath expression that we claim to sort a given se
quence.

Definition 4.6 Let (S, -<s) be a sequence, and R C S x S be a partial order on S.
With expression Sort R ((S, -<s)) we denote the following XPath expression.

i f (fn:ernpty(S))
then ()
else

for $i in (0 to fn:count(S) - 1)
return

for $x in (S, -<s)
return

i f ($i = CountLessThanR ($x, S))
then $x
else ()

Finally, we prove that the just defined XPath expression Sort() really sorts a
g1ven sequence.

Theorem 4.1 Let (S, --<s) be a sequence, and R C S x S be a partial order on S.
Let (S', -<s') == SortR((S, -<s)) be a sequence. Then (S', -<si) is a sequence (S, -<s)
sorted with R.

Proof If the S is empty then the result of the above expression is an empty
sequence, as guaranteed by the outermost if expression. In such a case, the
resulting sequence is trivially sorted. In the following, we assume that S is
non-empty.

First, we prove that S' == S, which is the first condition of the Definition 4.5
of a sorted sequence. Lemma 4.3 provides bounds to CountLessThanR expres
sion. Since the outer loop of SortR iterates over all values within these bounds,
then for each x E S there exists such i that i== CLTR (x, S). For such i, item x is
returned, thus S C S'. Since CLT R is a function, there exists exactly one such i
for each x E S, therefore S' ==S. Figure 12 on page 40 provides evidence using
formal semantics derivation.

Second, we prove that x ltR y implies x-<s'Y· If x ltR y holds then CLT R (x, S)
< CLTR(y,S), which is obvious from Definition 4.3 of CLTR· Since the outer
loop of Sort R() iterates over i in a growing manner, x is returned sooner than
y, which defines the order of x, and yin the resulting sequence. Thus we have
x--<. 51y.

Similarly, we prove the last condition of the definition of a sorted sequence
that x eqR y implies x-<sy implies x-< 51y. This comes directly from Lemma 4.4,
which guarantees that CLTR(x, S) == CLTR(y, S) for x eqR y. Thus x, and y are
returned in the same iteration of the outer loop of the SortR expression. Since
the inner loop iterates over S in the order defined with -<s, x is bound to $x
prior to y. Therefore x is returned sooner than y. Thus we have x--<.51y.

In Figure 13 on page 41, the resulting order -<51 is derived from the SortR
expression with aur sernantics rules. We can use the result to check that the
properties of --< 51 required for the sequence to be sorted with R are satisfied.

38

L [[fn : count(for $yin S return

IIE[for $y in S return if

l{x2I x1ES

if ($y ltR x then $y else ()}]C ==

($y ltR X then $y else ()ne I (1)

C1 == C($y ~ x1)

X2 EIE[if ($yltRx then $y else ()IlC1 }I
I { X2 I X1 E s

C1 == C($y ~ x1)

E {
IE [SyTICi if W [$y ltR x]C1

X2 0 otherwise
}I

I { X2 I X1 E s
C1 == C($y ~ X1)

X2 E IE[$y] C1

W[$y ltR x]C1 } I
I{ X1 I X1 Es

C1 == C($y ~ X1)
W[$y ltR x]C1 }I

I { X1 E s I X1 ltR X } I
CLTR(x1 S)

Figure 11: Proof of Lemma 4.2.

(2)

(3)

(4)

(5)

(6)
(7)

4 XPATH

This is in perfect concert with the two paragraphs above. Notice1 that an order
LE[i f ... then sx el s e (}]C($i~x1)($x-*x2) in equation (4) evaluates to an empty
set. This is because the if expression returns an atomic value or an empty se
quence/ for which no order is defined.

x ltR y ~ CLTR(x,S) < CLTR(y,S) ~ x1 < Y1 ~ x-<51y
x eqR y ~ CLTR(x,S) == CLTR(y,S) ~ x E 75,, y E Ic:/, x2-<sy2 ~ x-<s'Y

1 2

o

4.4.3 Conclusion

In this section, we formally proved that XPath is capable of sorting arbitrary
sequences. The only constraint we raise is that the sorting relation is a partial
order expressible in XPath.

The fact, that XPath 2.0 can sort has consequences on XQuery formal se
mantics specification, which is studied in detail in section 5.4.

4.5 Quantified Expressions

In this section, we show that quantified expressions in XPath are only a syn
tactic sugaring. First, we prove that the generally quantified expression can
be rewritten to an existentially quantified one, next we prove that an existen
tially quantified expression can be rewritten with an equal expression that is
not quantified.

As noted in the XPath introduction, we can use some-in-satisfies and every
in-satisfies quantified expressions in XPath, where the former represents an
existential quantifier, and the latter an universa! quantifier.

39

S' ==
IE[for $i in (0 to fn : count (5) - 1) return

for $x in (5, -<s) return

if ($i = CountLessThanR($x, S)) then Sx else ()]C
X1 E { O,. „ I I s I - 1 }
C1 == C($i -t xi)
X2 E IE[for $x in (5, -<s) return ... IlC1 }
X1E{O,.„,!Sl-l}
C1 == C($i -t X1)
X2 E { X4 I X3 E s

C2 == C1 ($x -t X3)

4 XPATH

{
IE[$xnc if W[$i =

X4 E JJ 1
CountLessThan R ($ x , S)] C2

0 otherwise
}

}
{ X2 I X1 E { O, „. I I s I - 1 }

C1 == C($i -t x1)
X2 E { X4 I X3 E s

C2 == C1 ($x -t x3)
X4 E IE[$xil C2
W [$i = CountLessThanR ($x, S)] C2 }

}
{ X2 I X1 E { O, ... I I s I - 1 }

X2 E { X3 I X3 E S, X1 == CLTR(X3,S)}}
s

Figure 12: Proof of Theorern 4.1: S' == S.

40

(1)

(2)

(3)

(4)

(5)

(6)

4 XPATH

-<51 ==
L[[for Si in (0 to fn : count (5) - 1) return (1)

for Sx in (S,~s) return

if ($ i = Cou ntLessThanR ($x ,S)) then Sx else () ~C

{\x,y) I x1,y1 E {O, ... , jSj- l} (2)
S1 == E[for $x in (S, -<s) return .. .] C($i __, xi)
S2 == E[for $x in \S, -<s) return ...] C($i __, y1)
x1 E Is1 , Y1 E Is2 implies x1 < y1
x1, Y1 E Is1 implies x Cs1 y }

{\x,y)I x1,y1E{O, ... ,ISl-l} (3)
Is1 == { x3 I x3 E S, x1 == CLTR (x3, S) }
Is2 == { x4 I x4 E S, Y1 == CLT R (x4, S) }
x1 < Y1 or \x,y) E Cs1 }

{\x,y) I x1,y1E{O, ... ,ISl - l} (4)
Is1 == { x3 I x3 E S, x1 == CLTR (x3, S) }
Is2 == { x4 I x4 E S, Y1 == CLT R (x4, S) }
either x1 < y1

or \x, y) E { \x', y') I x2, y2 E S
x' E Is1 == { xs I xs E S, x1 == CLTR(x2,S)}

1

y' E Is' == { x6 I x6 E S, x1 == CLTR(y2,S)}
2

x2-<sY2 or \x,y) E L[[if. „TIC ($i~x1)($x~x2) }
}

{\x,y)I x1,y1E{O, ... ,jSj-l} (5)
Is 1 == { x3 I x3 ES, x1 == CLTR(x3,S)}
Is2 == { x4 I x4 E S, Y1 == CLTR (x4, S) }
either x1 < y1

or \x,y) E { \x',y') I x2,y2 ES
x' E Is' == { xs I xs E S, x1 == CLTR(x2,S)}

1

y' E Is' == { x6 I x6 ES, x1 == CLTR(y2,S)}
2

x2-<sy2 }
}

{\x,y) I X1,y1E{O, ... ,JSj - l} (5)
Is

1
== { x3 I x3 E S, x1 == CLTR (x3, S) }

Is2 == { x4 I x4 E S, Y1 == CLTR (x4, S) }
X2,y2 ES
Is~ == { xs I xs E S, x1 == CLTR (x2, S) }

I 51 == { x6 I x6 ES, x1 == CLTR(y2,S)}
2

x1 < Y1 or \x,y) E { \x',y') I x' E I 51, y' E I 51, x2-<sy2}}
1 2

{ \x,y) I x1,y1 E { o,„ ., 1s1 -1} (6)
Is

1
== { x3 I x3 E S, x1 == CLTR (x3, S) }

Is
2

== { x4 I x4 E S, Y1 == CLT R (x4, S) }
X2,y2 ES
I 51 == { xs I xs ES, x1 == CLTR(x2,S)}

1
I 51 == { x6 I x6 ES, x1 == CLTR(y2, S)}

2
x1 < y1 or (x E I 51, y E Is', x2-<sy2)}

1 2

Figure 13: Proof of Theorem 4.1: Derivation of -<si.

41

4 XPATH

Il'[every $v in e1 satisfies e2IlC

W[every $v in ei satisfies e2] C (1)
true iff S == E [ei] C, V x E Is : W [e2] C (v -7 x) (2)
true iff S == E[ei]C, -dx E Is : -, W[e2]C(v -7 x) (3)
true iff S == E [ei] C, , 3 x E Is : W [f n : not (e2)] C (v -7 x) (4)
1 true iff S== E[e1]C, 3x E Is: W[fn: not (e2)]C(v ~ x) (5)
1 W[some $v in ei satisfies fn: not (e2)]C (6)
W[fn: not (some $v in e1 satisfies f n: not (e2))]C (7)
Il'[fn : not (some $v in e1 s ati sfi e s fn: no t (e2))]C (8)

Figure 14: Proof of Lemma 4.5.

some $cd in //cd satisfies $cd/year = 199 2
//cd[every $a in authorlartist satisfies $a/f i rst = "Karel "]

We use the Core XPath syntax of quantified expressions here. This means
that only a single variable binding can appear in front of the satisfies keyword,
while the full XPath syntax allows a list of variable bindings there. W3C's
formal semantics explains that a quantified expression with a list of variable
bindings can be rewritten to an expression with nested quantified expressions
each with a single variable binding.

First, we show how an every-in-satisfies XPath expression can be rewritten
with some-in-satisfies expression in Lemma 4.5.

Lemma 4.5 Let every $v in ei satisfies e2 beagenerally quantified XPath
expression. Then the following XPath expression has equal semantics.

fn:not(some $v in ei satisfies fn:not(e2))

Proof We prove that the expression evaluates to the same. Obviously, the result
is an atomic expression, so we need to check only if it has the same value.

The equations of the prove are presented in Figure 14. Equation (1) comes
directly from E[every ...]C, equation (2) is the result of W[every ...]C, gen
eral quantifier is replaced with existential quantifier in (3), negation is replaced
with fn:not() in (4), both sides of iff are negated in (5), the result of which is
equal to W[some ...]C, finally negation is replaced with fn:not() in (7) to reach
the evidence in (8). O

Next, we show how an some-in-satisfies expression can be rewritten using
the for-in-return expression in combination with fn:boolean() function, which
given a sequence returns false only if the sequence is empty. This is formal
ized in Lemma 4.6. We use the for-in-return expression to iterate over possible
bindings and to return true for each binding that satisfies the condition from
some-in-satisfies expression, and nothing for each binding that does not sat
isfy the condition. Thus, we get a nonempty sequence only if there is at least
one variable binding that satisfies the condition, otherwise an empty sequence
is the result of the for-in-return expression. Finally, we apply the fn:boolean()
function to the sequence returned by the for-in-return expression, which guar
antees that true is returned only if there is a variable binding that satisfies the
condition, which is the semantics of the some-in-satisfies expression.

42

4 XPATH

T E[fn :boolean (fo r $v in e1 return if(e2) then fn : true() else ())]C

= true iff IIt: [for $v in e1 ret um i f (e2) then fn : true () el se ()]CI > O(1)
true iff I { X2 I X1 E I E[ei]C (2)

C1 == C (v ~ x1)
X2 E IE[if (e2) then fn : true () else ()]C1 } I > O

true iff I { x2 I X1 E IE[ei]C (3)
C1 == C(v ~ x1)
W[e2]C1
X2 E TE[fn: t r ue () IlC1 } I >O

true iff I { X2 I X1 E IE[eiilC (4)
C1 == C(v ~ x1)

W[e2]C1
x2 E { true } } I > O

true iff I { true I X1 E IE[eiilC (5)
C1 == C(v ~ xi)
W[e2]C1 }I> O

true iff 3x1 E IE[eiTIC: W[e2]C(v ~ x1) (6)
W[some $v in e1 sat is f i es e2]C (7)
I E[some $v i n e1 satis f i e s e2]C (8)

Figure 15: Proof of Lemma 4.6.

Lemma 4.6 Let s ome $v in e1 s a ti s f i es e2 be an existentially quantified
XPath expression. Then the following XPath expression has equal semantics.

fn :boo l e an(
f or $v in e1 return

i f (e2)

then fn:true ()
el se ()

Proof Since the result of both expressions is clearly a single atomic value, we
consider only items and not the order of the result sequence.

The equations of the proof are presented in Figure 15. Equation (1) repre
sents the semantics of fn:boolean() functions on sequences, which returns true
only if the sequence is nonempty. Equation (2) unfolds the for-in-return ex
pression. Equation (3) unfolds the if-then-else expression. Notice, that this
expression returns a value only in the then branch, therefor we can rewrite in
this simple way. Equation (4) unfolds the fn:true() function, which results in
a single atomic value. Equation (5) simplifies the set expression emphasizing
that only true values can be returned. Equation (6) comes from the fact that
the set in (5) is nonempty if at least one item in IE[eiilC satisfies the condition
W [e2] C(v ~ x1). We can notice, that (6) is exactly the semantics of some-in
satisfies expression, as expressed in equation (7), and (8). o

Finally, we can conclude that the quantified expressions some-in-satisfies
and every-in-satisfies of XPath 2.0 are only syntactic sugaring.

Theorem 4.2 XPath 2.0 without quantified expressions some-in-satisfies, and every-

43

4 XPATH

in-satisfies has the same expressive power as XPath 2.0 with these quantified expres
szons.

Proof As Lemma 4.5 proves, each every-in-satisfies expression can be replaced
with an equal some-in-satisfies expression. Thus every-in-sa tisfies can be re
moved from XPath 2.0 without loss of expressive power of the language.

Further, Lemma 4.6 proves that some-in-satisfies expression can be replaced
with an equal expression that consists from fn:boolean() function, a for-in
return expression, and if-then-else expression. Therefore even some-in-satisfies
expression can be removed from XPath 2.0 without losing the expressive power.

o

To sum up, we proved in this section that quantified expressions do not
extend the expressive power of XPath 2.0.

4.6 Conclusion

We studied a query language XPath 2.0 for XML, a successor to the most rec
ognized query language for XML - XPath 1.0.

In section 4.1, we provided introduction to both versions of the XPath lan
guage. We put an emphasis on distinguishing new features of XPath 2.0 from
fea ture s of i ts predecessor.

Then, we provided formal syntax for an untyped fragment of XPath in sec
tion 4.2. For an important part of this fragment we defined formal semantics
in section 4.3 that is used in formal proofs.

A surprising fact that XPath 2.0 is so strong that it can even sort arbitrary
sequences is formally proved in section 4.4. Consequences of XPath's sorting
ability are used later in section 5.4 on sorting in XQuery.

Finally, we proved in section 4.5 that quantified expressions do not extend
expressive power of XPath 2.0.

44

5

5 XQuery

This chapter focuses on XQuery 1.0 - a query language for XML d v lap d by
W3C to become a standard query language for XML.

XQuery is strongly connected to XPath 2.0. Not only they shar a data
model, a set of functions, and a formal semantics specification, but XQuery
is in fact a superset of XPath, so every XPath expression is also an XQu ry
express1on.

Historically, XQuery developed from Quilt [16], which has its roots in XML
QL [21], XQL [51L SQL [37], and OQL [15]. Influence certainly comes besid
XML pioneer query languages also from query languages for semistructured
data, relational, and object databases.

XQuery language is distributed in several W3C's specifications. Th y ar
XQuery 1.0 [8], which defines syntax and semi-formal semantics, XQuery 1.0
and XPath 2.0 Formal Semantics [22], which defines forrnal semantics, and
XQuery 1.0 and XPath 2.0 Functions and Operators [43].

As XQuery is a language with a lot of syntactic structures, a care language
called XQuery Core is introduced in the formal semantics specification, for
which the semantics is defined.

The contribution of this chapter is twofold.

• We introduce formal semantics including sorting, which is rnissing in
the W3C's specification. This semantics is based on tuples and nicely
demonstrates XQuery sorting semantics that some people find hard to
understand.

• We explain that, unlike the authors of XQuery formal specification thought,
sorting semantics is expressible in the used data model, which we prove.
This leads to cleaner XQuery Core, which has a strange property nowa
days: the specification provides no transformation from a general FLWOR
expressions with an order by clause to XQuery Care, as it is considered
infeasible. We show that such a transformation exists.

This chapter is organized as follows. First, we introduce XQuery expres
sions that are not present in XPath in section 5.1 and illustrate them with ex
arnples. Then, syntax and formal sernantics is defined in sections 5.2 and 5.3,
respectively. Finally, we explain insufficiency of formal semantics of sorting
and provide a transformation of a general FLWOR expression to an equal guery
without an order by clause in section 5.4.

5.1 Introduction

XQuery 1.0 is a superset of XPath 2.0 both in syntax and sernantics. As such,
every XPath expression is an XQuery expression. In this section, we focus on
those parts of XQuery that distinguish it from XPath. These are constructor
expressions that create new nodes, FLWOR expressions, and last but not least
the ability to define functions.

45

s

5.1.1 Constructors

Unlike XPath, XQuery provides expressions to construct new nod onstruc
tor expressions use XML syntax. For example, the f ollowing is an Qu r n
structor that returns a singleton sequence comprising on 1 m nt n d with
name artist and with an id attribute with value 1. This element has two sub 1 -
ments with narnes first and last where each contains a text node with c nt nt
Jaco, and Pastorius respectively.

<artist id="l">
<f irst>Jaco</f irst>
<last>Pastorius</last>

</art i st>

All new ly constructed nodes get a new node identity. Document ord r i
also defined for newly constructed nodes, butone has to be careful. For som
expression XQuery defines the document order for newly constructed n des,
while for some expression the docurnent order depends on implementati n.
For example, in the exarnple above, the document order is defined for el ment
first and last, since they have a common parent.

We showed how new nodes can be constructed, but we provided only a
constant expression that is independent from the queried data. However, w
can compute the contents of new nodes in XQuery. If we want to use an
XQuery expression inside a constructor, we have to encapsulate it into curly
braces. For example, the following expression returns a singleton sequenc
comprising a new element node named all-authors that contains all authors
from a queried document.

<all-authors>{ //author }</all-authors>

It is not only element nodes with attributes XQuery has constructors for,
even processing instructions and comments can be constructed similarly using
XML syntax.

5.1.2 FLWOR Expressions

FLWOR expression is the most characteristic language construct of XQuery.
In fact, it is an extension of XPath's for-in-return expression, where a FLWOR
expression can in addition to for and return clauses contain a let, where and
order by clauses. All of them are optional.

The idea is that the for and let clauses define an ordered stream of variable
bindings. This stream is then filtered using an expression in the where clause
to be sorted according to an expression in the order by clause. The resulting
stream consists of satisfying variable bindings in the desired order. Finally, for
each tuple from this stream the return expression is evaluated.

We explain the semantics of a FLWOR expression on the following example.

for $cd in //cd
let $numAuthors := count($cd/author),

$numArtists : = count($cd/artist)
where $cd/year > 1990
order by $numAuthors, $numArtists

46

return
<cd> {

$cd/title ,

<num-authors>{ $numAuthors }</num-authors >,
<num - artists >{ $numArtists }</num-artists >

}</cd>

5

This query iterates over a sequence of CDs that are one by on bound t

$cd variable. For each CD a number of authors and a number of artist p r
forming on that CD are counted in the let clause and bound to $numAuthors
and $numArtists variables, respectively. The stream of variabl binding i in
this case a strearn of 3-tuples, where the first value is bound to variabl $cd, th
second value is bound to variable $numAuthors, and the third value is bound
to variable $numArtists.

The nurnber of tuples in the initial stream is equal to a number of CDs in a
queried document.

Now, the where clause is applied. It filters this stream to contain only such
tup les tha t ref er to a CD tha t origina ted after 1990.

Then, the order by clause is applied. It sorts the filtered stream according
to a number of authors and a number of artists.

Finally, the sorted stream is iterated. For each tuple the va lues are bound to
their respective variables and with this binding the return expression is va l
uated. In our example, each tuple refers to one CD. So for each sa tisfying CD
a return expression is evaluated, returning a new cd element with a CD's ti tle
element and with number of authors and artists.

For and Let Clause. Notice, that both for and let clauses d efine a variable
that is initialized with an expression. Since every expression evaluates to a
sequence, in both cases a variable is initialized with a sequen ce. The d ifference
is that while the for clause iterates over this sequence and b inds a variab le to
one item after another, the let clause binds a variable to the whole sequence at
once.

Multiple Variables in a For Clause. There can be more than one variable
defined in a for clause. In such a case, the query is understood as if it con
tained nested for expressions, where each for expression binds on ly one vari
able. Leťs examine the following example.

for $cd i n //cd,
$art i n $cd/art i st

ret u rn ...

The for clause defines two variables: $cd that binds one by one to all cd
elements in a document, and $artist that binds one by one to all artist within
an $cd. This query is understood as follows.

for $cd i n //cd
return

for $art in $c d / art i st
return ...

Thus, if multiple variables are defined in a for clause, the query is rewritten
with nested for expressions1 where each for expression is handled separately.

47

5

Multiple Variables in a Let Clause. Even a let clause can d fin
variables. In such a case, a let clause is understood as if th r w
let clause for each variable binding. Bu t unlike for clauses, let clau
nested. Leťs check the exarnple below.

l et $ cd : = //cd ,
$art : = $cd/art

ret u rn ...

mul tipl
in l

s r n t

The let clause defines two variables: $cd that binds to a egu ne of all cd
elements in a document, and $artist that binds to a sequence of all arti t of all
CDs. This query is understood as follows.

l e t $ c d : = //cd
let $artis t
re tu rn ...

//a r tist

Thus, if multiple variables are defined in a let clause, the query is rewritt n
to a query with rnultiple let clauses at the same level and n o nesting is don .

Sorting. Here, we want to make the semantics of the order by clause of a
FLWOR expression clear.

We already explained that it is the stream of tuples tha t is sorted according
to the contents of an order by clause.

The example query, that we present at the beginning of this section, reveals
that an order by clause can contain several expressions separated by a cornma.
These expressions are called order specifications, or orderspecs fo r short. The
order in which orderspecs appear in the order by clause is important, as the
significance of orderspecs for the resulting order decreases from left to r ight.

The resulting order of a tuple stream is defined as a condition for two tup les
that tells whether one precedes the other in the sorted stream. We start with
the first orderspec. We compute its value twice: first, with variables bound to
values frorn the first tuple and second, with variables bound to values from the
second tuple. Now, we have two computed values of the first orderspec. If the
first is less then the second, then the first tuple has to precede the second tuple
in the sorted stream, and vice versa. If the two values are equal, we take the
second orderspecs and continue likewise.

In case all computed values of all orderspecs are equal, then the tup les ap
pear in the sorted stream in the same order as in the ini tial stream.

Leťs check it on an example. Figure 16a) illustrates a tuple stream for our
example query. Each CD is represented by a number that corresponds to an
order in which that CD appears in cd.xml file. For cd.xml see Figure 3 on
page 18.

The sorted stream is depicted in Figure 16b). Since the orderspecs are direct
references to values of variables $numAuthors and $nurnArtists, the stream
is sorted first according to $numAuthors column and second to $numArtists
column.

Notice, that equal values for both orderspecs are computed for tuples with
CD number 1 and 4. Since the tuple with CD number 1 precedes the tuple with
CD number 4 in the initial stream, the tuple with CD number 1 precedes the
tuple with CD number 4 in the sorted stream as well.

48

5

$cd $numAuthors $n umArtis ts $cd $numAuthors numArtists
1 o 1 1 o 1
2 1 1 4 o 1
3 1 2 2 1
4 o 1 3 1 ~

a) initial tuple stream b) sorted tuple str m

Figure 16: Tuple stream for the example query.

5.1.3 Functions

Extending XPath with syntax for function definition really ext nds th pow r
of XQuery greatly. Functions can have arguments. A body of a function i
defined with an XQuery expression.

declare function local:CDsAuthoredBy($author) {
for $cd in //cd

} i

let $a : = $cd/author
where $a/first = $author/first and $a/last
return $cd

$author/last

The above defines a function that gets an author element and returns a se
quence of CDs authored by this author. Once defined, a function can be called
at any XQuery expression where a function call is allowed. For example, the
following query returns CDs authored by Karel Capek.

let $capek :=
<aut hor>

<f irst>Karel</first>
<last>Capek</last>

</author>
return local:CDsAuthoredBy($capek)

As we know, function calls can appear inside a path expression. One only
has to be careful. The focus, in which a function is called, is not transferred
inside the function's body. Rather, a function is evaluated with an empty focus.
See semantics of a function call in XPath semantics in section 4.3.

Functions can be called recursively in XQuery.

5.2 XQuery Syntax

The syntax for an XQuery fragment is defined in Figure 17.
An XQuery 1.0 query consists of a prolog and a query body. We separate

the syntax for query prolog from the syntax for query body with a horizontal

line.
According to the specification, the prolog is used to define narnespaces,

import schemas, declare variables and functions, and import other XQuery
modules. We can see that in aur XQuery fragment we allow only definition of
functions and variables. The removal of the other syntax elements is explained

later.

49

5 y

The query body is an expression that is represented by Expr n nt rmin l in
the grammar. An expression Expr is a possibly singleton comma- parat d li t
of simple expressions, these are referred to as ExprSingl in th gr mmar.
grammar production for ExprSingle is exactly the sam as in XPath, pr v id
it here only because it references the FLWOR expression, whi h i ri h r in
XQuery.

In concert with the tuple semantics of a FLWOR expression, th F
pression comprises a tuple stream generating expression Tupl E pr and r -
turn expression. TupleExpr consists of a block of mixed for and lete pr i n ,
followed by an optional where clause. The tuple stream can b sort d accord
ing to an optional order by clause that comes right after the wh r clau .

What is removed. It copies the XQuery 1.0 syntax but XPath yntax, c n
structors, and all type dependent expressions are removed.

As we provide the syntax with XPath extracted, we can see that there is not
much added in XQuery compared to XPath. It is only constructors, function
definitions and FLWOR expression that makes XQuery syntax mor powerful.

We do not provide XQuery constructors, as this would enlarge the listing
only and there is nothing so much interesting about it. The XQuery construc
tors are introduced informally in section 5.1.1.

As we do not bother with types, we do not bother with importing schemas
in the prolog.

Further more, we do not even consider importing modules, as the module
importing mechanism in query' s prolog is designed only to develop libraries
of functions and so ease the work of a query writer. Prom our point of view,
there is no difference between importing a module and pasting the contents of
the imported module directly into the importing module.

Moreover, we limit the syntax of prolog to a block of function declarations
followed by a block of variable declarations, though the specifications allows
function and variable declarations to be mixed up. The reason is that an expres
sion from a variable declaration can refer to any function in the prolog, even to
one that is declared after the variable declaration. By forcing the function dec
larations block precede the variable declarations block, we get a syntax that is
easier to define semantics for, while not changing the expressive power of the
language.

Not XQuery Core. We do not use the syntax of XQuery Core as the ba
sis. We take the broader syntax definition instead, because we want to define
tuple semantics of the language formally. This is good to understand the sort
ing semantics of XQuery as there is no formal definition of sorting in W3C's
s pecifica tions.

Though, as we prove in section 5.4, XQuery Care can be used and is suffi-
cient to express the sorting semantics of XQuery.

5.3 XQuery Formal Semantics

In this section, we provide formal semantics for an XQuery syntax fragment
tha t is described in the preceding section. The formal semantics we use is ba sed
on tuple semantics that is defined in two W3C specifications: XQuery 1.0 [8]
and XQuery 1.0 and XPath 2.0 Formal Semantics [22].

As we mentioned earlier, the W3C forma! semantics is not able to express
semantics of sorting. In fact, the whole document appears as if it was firstly

50

XQuery
Prolog
FunctionDefs
SimpleFnDef

Param List
VariableDefs
SimpleVarDef

Ex pr
ExprSingle

FLWORExpr
TupleExpr
WhereExpr
FLExpr
FList

LList
O List

-..
-..
-..
-..

-..
-..
-..

Prolog Expr
FunctionDefs? VariableDefs?
SimpleFnDef (FunctionDefs)?

s

11 declare funct ion" QName" (" (Param List)? ") "
11
{" Expr 11

}"

11 $"VarName (ParamList)?
SimpleVarDef (VariableDefs)?
11declare variable" 11 $"VarNan1e 11

{" Expr 11
}"

ExprSingle (11
,

11 Expr)?
FLWORExpr
I Quan tifiedExpr
I IfExpr
I OrExpr
TupleExpr 11 ret urn" ExprSingle
WhereExpr ("orde r by" OList)?
FLExpr ("where" ExprSingle)?
("for" FList I "let" LList) (FLExpr)?
"$ "VarN ame (11at 11 11 $ 11VarN an1e)? /1 in" ExprSingle
(", " FList)?
"$"VarName ": =" ExprSingle (11

,
11 LList)?

ExprSingle (11
,

11 OList)?

Figure 17: XQuery syntax - with XPath extracted.

51

[[Prolog Expr] C

E[FLWOExpr return e]C

s

[[Ex pr Il P [Prologil C

1f
s

-<s

T~FLWOE pr il C
{ x l t E 1f

X E I [ťílC(„T t) }

{ (x,y) I t1,t2 E T
X E I M C(„ir- tl)

Y E Iqť]C(8y t2)

ti C Tt2 }

Figure 18: XQuery expression evaluation semantics for cont xt C
(p, F, item, pas, last).

R

designed as formal semantics of XPath and then extended to express the s -
mantics of XQuery, which did not fit much nicely. However, th author of th
formal specification concluded that sorting is not expressible in th data mod 1
of XPath and XQuery, which we later show not to be true.

As there is no forrnal specification of tuple semantics of FLWOR expres
sions, we decided to provide one.

We define XQuery formal semantics using semantic function as in th s c
tion on XPath. The main semantic function is function [that valuates an
expression in a given context. The result of this evaluation is a sequence of
items.

[Expression ~ Context ~ Seq (I tem)

Function [is defined in Figure 18. As we omit XPath language constructs,
we omit the definition of [on XPath expressions, as well. In fact, function E
returns the same as function [that we defined in section 4.3 on XPath forrnal
sernantics.

Function [is defined for a FLWOR expression and for a whole query. W
are interested mainly in the tuple semantics of a FLWOR expression, which w
inspect in the following section. To be complete, we provide the semantics also
for the XQuery prolog in section 5.3.2.

5.3.1 FLWOR Expression

We focus on the semantics of a FLWOR expression. With 'fwe denote a tuple
stream that is generated by the FLWO part of the FLWOR expression, with S
we denote items S of the resulting sequence and with --<s we denote the order
of iterns in S.

We can see, that Sis constructed as follows. For each tuple t == (x1 , ... , Xn)

frorn T, which represents values of variables V1, . .. , Vn that are defined in the
FL part of the FLWOR expression, the return expression e is evaluated in a
context with variables v1, .. . , Vn bound to their respective values x1, ... , Xn .

The order of iterns in S is defined according to the order of tuples in the
tuple strearn. One item from S precedes another item from S if the tuple of the
former item precedes the tuple of the latter item in the tuple stream.

52

T [v :- e] C

T [v in e]C

T[LetSin1ple, LList]C

T[ForSimple, FList]C

T[LetExpr FLExpr]C

T[ForExpr FLExpr]C

T[FLExprwheree]C

T[WhereExpr order by OList]]C

T -
-<r -

Br -

T

-<r

5

{ (x) I x == [íl C }
0
({v}, 0)

{ (x) I x E IE [ť ílC }

{ (t1, ti/ I ti == (x1) E T
t2 == (x2) E T
X] C [ťílC X2 }

Br ({v}, 0)

T { (x, p) I x E I ~ [HC
p == pos(x, [e]] C) }

-<r - { (t1,t2) I ti == (x1,p1) E T
t2 == (x2, p2) E T

X1 Cqť~C X2 }
Br - ({ V1, V2}, { (V1, V2)})
[LetSimple] 0 [LList]

[ForSimple] 0 [FList]

[LetExpr] 0 [FLExpr]

[ForExpr] 0 [FLExpr]

T - T [FLExpr]C
T - {X I x E Tr -

W [e] C(Gir _, (i)) }
-<r Cir
Br - 8ir -

T T [WhereExpr]C
T Iir
-<r Oir [OList] C
Br 8ir

Figure 19: XQuery tuple semantics. Each expression evaluates to tuple stream
(T, -<.y, er), which provides variable bindings in a specified order.

Function T describes how a tuple stream is constructed. It evaluates a tuple
expression, which is the FLWO part of a FLWOR expression, within a context
and returns an ordered sequence of tuples - a tuple stream.

T : TupleExpr -t Context -7 Tuples

Function T is defined in Figure 19. Each expression evaluates to a tuple
stream that comprises a set of tuples T, an order on tuples -<r, and a variable
index ey. Recall that a variable index is a sequence of variable names where the
first variable narne corresponds with the first values of tuples in T, the second
variable narne corresponds with the second values of tuples in T, etc.

Function T is defined as follows. Firstly, it defines how 1-tuples are gener
ated from let and for clauses with a single variable. It shows how these 1-tuples
are joined using a tuple glue operator defined below. So far, the initial tuple

53

5

stream is constructed from a block of for and let clauses. Th n, n pr i n
from the where cla use is applied to filter the initial tuple tr am. nd fin 11 , a
list of expressions from the order by clause is used to sort the tupl tr m.

1-tuples. Leťs examine the creation of 1-tuples. The first lín in i ur 1
represents a variable assignrnent v : == e from a 1 t claus . W can , th t
the result is one 1-tuple that contains a value of expr ssion e. Th ord r -< T i
empty, and the variable index Br contains only variable name v.

For example, expression $a : = (1 O, 2 O) generates the followinb tupl
stream with one 1-tuple that contains sequence (10, 20). Th variabl ind ,
contains only a name of variable a .

1f (((10,20)))
8 ir (a)

The second line describes variable iteration v in e from a for claus . Now,
the tuple stream contains a 1-tuple for each item from a sequenc that r ult d
from evaluation of e, with a value of that item. The order -<T of tupl s i d -
rived from the order of items they contain. A tuple precedes anoth r tupl
if an item it contains precedes the item from the other tuple in the result of e
evaluation. The variable index contains only variable v.

For example, expression $a in (1 0 , 20) generates the following tupl
stream with two tuples with values 10 and 20, respectively. The variable index
contains only a name of variable a.

1f ((10)' (20))
elf (a)

The third line is a special case of a variable iteration from a for cla use. Ex
pression v1 at v2 in e has the same meaning as v1 in e with a positional vari
able v2 added. Positional variable v2 is bound to a position of item that is
bound to v1 in the result of e. The order -<r is the same as in the previous case,
and the variable index contains variable name v1 at the first place and variable
name v2 in the second place.

For example, expression $a at $p in (10 , 20) generates the follow
ing tuple stream with two tuples with values 10 and 20, respectively. The vari
able index contains names of variables a and pin that order.

'f ((10,1),(20,2))
8ir (a, p)

n-tuples. So far, we are done with the building blocks of a tuple stream
that generate streams of 1-tuples (or 2-tuples in case of positional variables).
These are generated by a single variable assignment in a let or for clause. If
there is more than one assignment, leť s say there are two assignments, we first
evaluate the first assignment and get an initial stream of 1-tuples. Then we
iterate this stream and for each tuple we bind its value to the first va riable and
in this context we evaluate the expression from the second assignment getting
again a stream of 1-tuples for this binding. The result is a stream of 2-tuples,
where each tuple has at the first position a value from the initial stream, and
at the second position it has a value from the stream that we get by evaluating

54

5

the second assignment with the first variable bound to th lu at th ir t
position. The resulting variable index is concatenation of th v n
of the two subexpressions.

This mechanism is formally described with a tuple glue optrntor d n t b
0 . The glue operator takes two variable binding sub xpr s ion 1, nd e2
where e2 follows ei in a query and returns a tupte strearn. We u it t lu
together tuples generated by simpler variable bindings to produc variabl
binding that holds bindings for variables both from e1 and e2 . We should r call
that e2 has to be evaluated in a context that binds variables defin d in e1 t
specific values.

The glue operator is similar to join. The result of [e1] [2 ~ == (T, -<y
1
8y) i

defined as follows. 1f 1 == T [ei] C represents variable bindings defined by e1, 1r 2
represents variable bindings defined by e2. As e2 is evaluated in a ont xt with
variables of e1 already bound, 1f 2(x) == T[e2 ~C(8ir 1 ~ (x)) is functionall y
dependent on a specific variable binding. Resulting tuples pres rv th ord r
of the tuples in 1r 1 and 1f 2 in that order.

T { (x, g; I (x) E Iir1

(y) E Iir 2 (i) }

-<y { (t1,t2) I ti == (x1,f1),t2 == (x2,f2) E T
(x})C>rr1 (Xi)
(fí) == (X2) implies (y1)Cir2 (x

1
) (y2) }

ey elr1 o 81f2(i) for any (x)

The tuple glue operator is used only to simplify definition of Tin Figure 19,
and appears at no other place in this thesis.

For example, an expression $a in (1 O, 2 O) , $b in (1 , 2) that is a
subexpression of some for expression. It is evaluated as follows. Tuple stream
of this expression is defined with a glue operator to be [$a in (1 O, 2 O)] 0
[$b in (1 , 2)], which evaluates to the following.

1f ((10,1), (10,2), (20, 1), (20,2))
8ir (a, b)

rn this example, the result is the cartesian product, as the expression of
variable $b is not functionally dependent on a value of variable $a. Another
example with functionally dependent is subexpression for $cd in
cd , $a in $cd/ author, which creates 2-tuples, where the first position in
a tuple refers to a CD, and the second position in a tuple refers to an author of
that CD.

Where Clause. When the block of initial for and let clauses is processed, we
get a stream that is filtered by an expression from a where clause as depicted
on the last but one line in Figure 19. We take each tuple and bind its values
to their respective variables. In such a context, we evaluate a boolean value of
the expression from the where clause. This is realized with semantic function
W that we defined in section 4.3 on XPath forma! semantics. If it evaluates to
true, the tuple is left in the stream, if it is false, the tuple is removed.

Order By Clause. The last line in Figure 19 defines the semantics of an
order by clause. We can see that we take the tuple stream filtered by the where
cla use and that the result contains the same tuples and the same variable index.

55

Oir [e, OList]C

s

{ (t1,t2) I f1,t2 E IT
Y1 -= [eil C(H T ~ ti)
Y2 == [Il C (... T -t t2)
Y1 :S Y2
Y1 == Y2 impli s t1 C>r t2 }

{(t1,t2) I t1,t2EIT
Y1 == E [eil C(GT ___. t1)
Y2 == [[e Il C (8T -t t 2)

Y1 < Y2
Y1 == Y2 im plies (t1, t2) E

Figure 20: XQuery ordering semantics.

The order of tuples is defined with semantic function O that is d fined in
Figure 20. 1t takes a tuple stream 1f and a comma-separa ted list of order x
pressions and evaluates it in the given context. The result is an order of tupl
in the given tuple stream 1C which we represent as a binary relation on tupl .

O OrderExpr --7 Context -t Tuplesn -t Set((Tuple 11 , Tupíc„))

The first line defines an order for two tuples t1, and t2 based on a single
order expression e. It says that first value y1 of e is computed in a context with
variables bound to values from t1, and second value y2 of e is computed in
a context with variables bound to values from t2. If Y1 is less then y2 then t1

precedes t2 in the ordered stream. If the two values are equal, then th order of
tl and t2 in the initial stream is preserved.

The second line inductively defines an order of tl, and t2 in case of multiple
order expressions. First, we compute values y1, and y2 as in the previous case.
If Y1 is less then y2 then ti precedes t2 in the ordered stream, so far the same.
But if the two values are equal, then the order is defined by the rest of the order
express1ons.

This definition ensures that if for two tup les all computed values of all order
expressions are equal, they preserve their order from the initial stream in the
ordered stream.

5.3.2 Prolog

In this section, we provide the sernantics of an XQuery query prolog. A prolog
is used to define so called static context for query evaluation. We restricted it to
contain definitions of functions and initialization of variables. See section 5.2
on XQuery syntax on what and why is removed from a general prolog.

We define the following function P that according to a prolog modifies a
given context. It uses a helper function .C that transforms a comma-separated
list of argument names to a sequence of names.

P Prolog -t Context -t Context
[, ArgList -t Seq(VarName)

56

}

P [declare variable v:== e]C p'

P [Simple VarDef VariableDefs] C C'

P [declare fn name(ArgList){e}] C
F' (n)

P[SimpleFnDef FunctionDefs]C F'

P [FunctionDefs VariableDefs]C C'

({p},0)

5

extend(v, [~ C,p)

P[VariableDefsil P íl impl VarD f~ C

(.C [ArgLi t ~ ,)
F (rz)

if 11 == 11ame
otherwis

P [FunctionDefs il P [impleFnD fíl C

P [VariableDefs íl P íl Functi nD f]]C

L [p, Arg List] .C [p] o .C [Arg List]

Figure 21: XQuery prolog semantics for context C == (p, F, itern, pas, Zast). Each
transformation results in context C' == (p', F', item, pas, Za st). We provid only
the affected parts of C'.

Function Pis defined in Figure 21. Notice, that an expression from a vari
able declaration is evaluated in the context of all previously defined functions
and variables. Also notice, that only the variable binding function p and the
function definitions F are changed in the context.

5.3.3 Semantic Functions Relationships

It is quite interesting to inspect the relations among the semantics functions
that we provide. Figure 22 depicts what semantic functions can be called by
which semantic function. A possible call is depicted by an arrow from the caller
to the callee. We can notice that each function that is calling the main semantic
function [. is also called by [, except the ordering semantic function O. This
figure clearly depicts that ordering semantics is defined on tuples.

5.4 Sorting in XQuery

In this section, we inspect sorting semantics of XQuery, explaining inconsis
tency of its definition in W3C's XQuery formal semantics [22]. We explain that
consistency can be gained again if we remove the order by clause from XQuery
Core, not affecting the expressive power of the language. This is a consequence
of the ability of XPath 2.0 to sort sequences.

To demonstrate sorting in XQuery, we use the following query in exam-
ples. It returns pairs of author and artist who do not perform on the sam.e cd
in their respective roles. Suppose, that the dist() function gets a sequence of
authors or artists and returns the same sequence with duplicates removed, so
e.g. dist(/ I author) returns each author only once.

for $auth in dist(//author),
$art in dist(//artist)

57

5

p

Figure 22: What XQuery semantic function can be called by which rnanti
function. An arrow leads from the caller to the callee.

where not($auth[parent: : */artist[last=$art/last and
first =$art/first]])

order by $auth/last, $art/last, $auth/f irst
ret u rn

<not-together>{ $auth, $art }</not - t og e t her>

The resulting pairs are ordered first by the last name of authors and for th
same last name of authors, it is sorted by the last narne of artists. If even the last
name of artists are the same, then we sort according to first name of an author.
This defines somewhat artificial sorting, but we need this kind of sorting to
demonstrate insufficiency of XQuery Core definition.

The result to this query can look like the one in the following listing.

<not - together>
<aut hor>

<first>Jaco</first>
<last>Pastorius</last>

</author>
<art i st>

<first>Joni</first>
<last>Mitchel</last>

</artist>
</not-together>

The not-together tag encapsulates a single pair of an author and an artist. If
the above pair appears in the result, it means that Joni Mitchel never performed
as an artist on a cd authored by Jaco Pastorius.

58

s

5.4.1 XQuery Core Inconsistency

Since XQuery allows a lot of syntactic sugaring, a ub t all d
has been extracted from it, on which forma} semantics ha b n d
can transform an XQuery query to an XQuery or qu ry thr u h
called normalization. The Core language is supposed to b qually
as the full language, butone can easily find out that it is not. It i
one cannot express in XQuery Core.

While the grammar of XQuery Core defines a nonterrninal f r n rd r by
cla use, there is no grammar production that refers to it. Furth r, th n rmaliz -
tion of an order by clause of an XQuery query is also omitted in th p ifi a
tion, mentioning only that a data type for a tuple would hav to b intr duc d
to define the formal semantics of sorting and since a tuple is not in th dat
model, the specification does not define the formal semantics of sorting at 11.

Leť s check it on our example. If we normalize the example FLWOR qu ry
according to the normalization rules, we end up with two n st d qu ri / on
that iterates over authors, and the other that iterates over artists. Th original
return clause is the return clause of the innermost FLWOR.

for $auth in dist(//author)
return

for $art in dist(//artist)
where ...
return

<not-together>{ $auth, $art }</not-together>

Notice, that we removed the order by clause. In fact, we have to, b caus it
cannot appear neither in the outer FLWOR nor in the inner FLWOR. It cannot
appear in the outer FLWOR expression, since the outer FLWOR expression has
no knowledge about artists bound to $art variable. Further, it cannot appear in
the inner FLWOR expression, since the inner FLWOR expression is evaluated
in the context that has an author bound to a variable $auth, so it cannot sort
among all authors.

Moreover, the order by clause cannot be split to be partly in the outer
FLWOR and partly in the inner FLWOR. This is because the only meaning
ful split, which we depict in the following listing, does not define the same
order of the result. It sorts according to the author's first name prior to sorting
according to the artisťs last name, which is not the same as we defined in the
original query.

for $auth in dist(//author)
order by $auth/last, $auth/first

return
for $art in dist(//artist)
where ...
order by $art/last
return

<not-together>{ $auth, $art }</not-together>

Summing up, we can see that the process of FLWOR normalization is not
sufficient, as the order by clause is lost. Further, it can be concluded from the
above demonstrated reasons that the order by clause has to be removed from the
normalized FLWOR expression.

59

5

5.4.2 The Idea

On the other hand, we introduced an XPath 2.0 e pression Sort 1~ in ti n .4
that can sort arbitrary sequences. The only constraint is that th r quir d r -
sulting order is defined in terms of a partial order R wi th charact ri ti functi n
expressible in XPath 2.0.

Since XPath 2.0 is a subset of XQuery with equal semantics in both l n
guages, we can use the sorting expression in XQu ry as well. Naturnlly, th
constraint for a partial order can be extended to a partial ord r with a hara -
teristic function that is expressible in XQuery.

Further, when examining the formal semantics of sorting within FLWOR
expression, we can see tha t the semantics is ba sed on partial ord r, w hi h w
prove later. To remind semantics of sorting with the order by clau
tion 5.1.2 for informal definition or section 5.3 for formal definition.

Putting these together, it seems now that it could be possibl to ort a
quence generated by a FLWR expression without the order by claus with h lp
of the SortR expression. The only question remains. Can we simulat the tu
ples? The answer is yes. XQuery provides constructor expressions to build
an XML document, so it can construct a tree. Therefore we can use it build a
simpler structure - a tuple.

5.4.3 Formally

In this section, we formally show that each FLWOR XQuery expression can b
rewritten to an equal one that contains no order by cla use.

First, we define helpful expressions that cut a FLWOR expression to pi ce .

Definition 5.1 Lete be a FLWOR expression, and let o1, ... , On be a list oj expressions
from the order by clause oje, and r be an expression in the return clause oje. Then we
define the jollowing.

i) FLW(e) denotes a FLW expression that we get by removing the order by and
return clauses from e.

ii) FLWR(e) denotes a FLWR expression that we get by removíng the order by
clause jrom e.

iii) O List(e) denotes the list o1, ... , On oj expressions jrom the order by clause oje.

iv) Return (e) denotes the expression r Jrom the return cla use oje.

Now, we handle the most important part - creation of tuples. In the follow
ing three definitions we define expression Wrap that rewrites a given FLWOR
expression to a more decorated expression using two helper expressions: Stream
and Tuples.

First, we define expression Stream, which strips the order by cla use from the
initial expression. It also extends the return clause to return a tuple that con
sists of order values in ordval tags and the initial return expression in a result
tag. Each order value represents a value of an expression from the initial order
by clause, where the order of order values in the resulting tuple corresponds
to the order of expressions from the order by clause. The modified FLWOR ex
pression is rooted with a stream tag to fix the order of tuples, otherwise there
would be no guarantee about the order.

60

5

D~finition 5.2 Let e be a FLWOR expres„ ion, and l t Li t(e) == o1, ... , 0 11 . T/1e11
wzth Stream(e) we denote the following XQuery expre sion.

<stream>
{

FLW(e)
return

<tuple>

<ordval>{ 01 }</ordval>

<ordval>{ On }</ordval>
<resul t>{ Return (e) } <I resul t >

</tuple>
}
</stream>

Next, we provide a simple expression whose only task is to strip th str am
tag and retain the order of tuples.

Definition 5.3 Let e be an XQuery expression. Then with Tup les(e) we denotc tlze
following expression.

for $t in (e)/tuple
return $t

Finally, we define the Wrap expression to be the modified FLWOR expres
sion rooted with a stream tag, as defined with Stream expression, but with the
root stream tag immediately stripped away with Tuples expression. As w
noted above, we have to provide the root stream tag because without it the
order of tuples is not defined. But as we want the result of the Wrap expres ion
to be a sequence of tuples and not a singleton sequence of the stream tag, we
strip the stream tag off.

Definition 5.4 Lete be a FLWOR expression. Then with Wrap(e) we denote an
X Query expres s ion Tup les (S trearn (e)).

In the following definition, we define expression Unwrap, which extracts
the result of the initial return expression that was previously wrapped with
Wrap.

Definition 5.5 Lete be an XQuery expression. Then with Unwrap(e) we denote the
following expression.

for $t in e
return $t/result/*

Notice, that neither Wrap nor Unwrap reorders the sequence. Thus, the or
der of the resulting sequence of the Wrap(e) expression is imposed by the order
of variable bindings in FLW(e). For the Unwrap(e) expression the order of the
resulting sequence of is imposed by the order of tuples in e.

Further, the return expression is in both initial and wrapped expressions
evaluated in the same context. Thus, the following holds.

61

5

Lemma 5.1 Lete be a FLWOR expres ion. Tlien tht folio l inc Izold„.

E[Unwrap(Wrap (e))TI C == E ~FLWR ()] C

Proof This is proved inforrnally in the text above thi I mm o

Next, we define an expression that extracts an i-th ord r v lu fr 111 I\ n
tuple.

Definition 5.6 Let x be an XQuery expression, and i be an inte er. Tlzcn z itl!
Ovali (x) we denote the following XQuery expression.

x/ ordval [i]

In the following two definitions, we define partial order Rť that w us lat r
to sort the wrapped sequence with the Sort expression. The Sort pr ion i

defined in section 4.4 on sorting in XPath.
As required, the Re relation has to be expressible in XQuery with a chara -

teristic function. Therefore, we first define characteristic function x~ a nd than
Re.

Function x~ tells whether one tuple should precede anoth r tupl in th
resulting sequence depending on the list of expressions in th ord r by claus
of the initial FLWOR expression. It is a straight formalization of I xic graphic
sorting semantics as it is defined informally in XQuery 1.0 sp cification [8].
First, we take the first expression in the expression list from the order by cla u .
If the order value of this expression for tuple x is less than the ord r valu from
tuple y, than we are finished because x precedes yin the resulting tupl str am.
lf the two values are equal, we have to check the next expression from the ord r
by clause, and so on.

Definition 5.7 Lete be a FLWOR expression with OList(e) == o1, ... , On. Let x and
y be XQuery expressions, and let i be an integer such that 1 < i < n - 1. Then with
xi (x, y) we denote the following XQuery expression that is defined recursively.

xi(x, y)
Xf°z (x, y)

==def Ovali(x) < Ovali(Y) and (Ovali(x) == Ovali(y) ---+ xj 1 (x,y))
==def Ovaln(x) < Ovaln(Y)

Definition 5.8 Let e be a FLWOR expression. Then with Rť we denotc a binary
relation with characteristic function x1.

Lemma 5.2 Let e be a FLWOR expression. Then binary relation RP is a partial order

on I E[Wrap(e)IlC-

Proof As Reis defined to be x}, we prove this lemma by decreasing induction

on i in xf: l •

Leť s take i == n for the initial step. Then X~ (x, y) is defined as Ovaln (x) <
Ovaln (y), which is obviously a partial order condition.

Suppose that xi 1 is a characteristic function of a partial order relation and
leť s check whethe/even xi defines a partial order. A relation is a partial order
if it is reflexive, antisymrnetric and transitive. We check each property sepa-

rately.

62

s

Reflexivity. Leť s check xj (x, X).

Ovali(x) < Ovali(x) and (Oval;(x) == Oial;(x)-+ j _1 (x,x))

Evaluates to the following, which is obviously tru .

true a n d (true -+ true)

Thus, xi(x, x) holds for each x and reflexivity i satisfi d.
Antisymrnetry. To prove antisyrnrnetry, we hav to how th t th f 11 w1n

holds.

xi(X, y) & xi(y, X) -+ Oval; (X) == Oval; (y)

Prom the construction of xi we can see that both xi (X, y) and xi (y, X) ar tru
only if Ovali(x) = Ovali(y) . Thus, antisymmetry is satisfied.

Transitivity. To prove transitivity, we have to show that th f 11 win i
satisfied.

xi(x,y) & xi(y,z) -+ xj(x, z)

This cornes trivially frorn the construction of xj .
Since xi represents a partial order, even x1 and so even Rť repr sent a p r-

tial order. o

Theorem 5.1 Lete be a FLWOR expression. Then the following holds.

[[Unwrap(SortRť (Wrap(e)))] C == [[e~ C

Proof. We should recall that Wrap(e) returns the same results as FLWR (e) with
the only distinction that there is more information attached to ach r suit. Th
order is the same as well.

Further, Reis a partial order relation by definition expressible with an XQuery
expression, therefore even SortRe is an XQuery expression. Since semantics of
XPath 2.0 are the same for XQuery, expression SortRť applied to a segu nce
(S, -<,s) returns this sequence sorted with Re. So, Sort Rť (Wrap (e)) retu rns a s -
quence of tuples sorted with Re.

Finally, since Unwrap expression preserves the order of results extract d
from a sequence of tuples, we end up with a same sequence of results as if w
evaluated expression e. o

Collorary 5.1 Let e be a FLWOR expression. Then e can be rewritten to an equal
expression with no order by clause.

Proof. Since none of Unwrap, SortRe' and Wrap XQuery expressions contains an
order by cla use, we can use the expression of 5.1 to get an equal expression with
no order by clause. If there is a subexpression of e that is a FLWOR expression
then the same transformation can be used. O

63

s

5.4.4 By Example

This section demonstrates the transforrnation of th ng1n I qu r intr
on page 57. So, we want to write an equivalent qu r t th f 11 in
label it e.

for $auth in dist(//author),
$art in dist(//artist)

where not($auth[parent: : */arti st(last=$art/last and

first=$art/firs]])
order by $auth/last, $art / last , $aut h /first
return

<not-together>{ $auth , $art }</not-together>

u
n .

First, we modify the query according to the Wrap ex pr s ion. Th f li w1n
is the listing of Wrap(e) = Tuples(Stream(e)). We bind th in term dí t r ult t
variable $stream, and the result of expression Wrap(e) to variabl $wrapp -
dResults. Since the where clause is not of much irnportanc to u , w irnplify
i t in the listing.

let $stream : =
<stream>{

for $auth in dist(//author),
$art in dist(//artist)

where ...
return

<tuple>

<ordval>{ $auth/last }</ordval>
<ordval>{ $art/last }</ordval>
<ordval>{ $auth/first }</ordval>
<result>{

<not-together>{ $auth, $art }</not - t o g e ther>
}</result>

</t uple >
} </stream>

let $wrappedResults .
for $t in $stream/tuple
return $t

Thus, we get a sequence of tuple elements for each variable binding defined
by the FLW part of the original FLWOR query. Each tuple element comprises a
sequence of ordval elements and a single result element. Each ordval element
contains a value for the ordering expression from the order by clause. We can
see that there are three ordval elements constructed for our exarnple query and
that their order reflects the order of the ordering expressions in the order by
clause. Last, the return expression is exactly the same as the return expression
of the original query.

Notice, that values in the ordval elements are evaluated in the sarne context
as the result element, as required by the specification.

So, we have tuples now that contain a result and all order values that are
needed to sort the resulting sequence. Next, we define the characteristic func
tion of the sorting relation R for O List(e) comprising of the following ordering
expressions in that order: $auth/last, $art/last, $auth/ first. We provide the

64

5

characteristic function for R (x, y) in th li ting b I w, a

function defined in Definition 5.7. We replac th impli
expression -ia V b.

rdin t th 1 1(x, y)

Oval1 (x) <= Oval1 (y) and (
Oval1 (x) ! = Oval1 (y) or (

Oval2(x) <= Oval2 (y) and (
Oval2(x) ! = Oval2 (y) or (

Oval3 (x) <= Oval3 (y)
))

))

ti n a b i th qu I

Next, we unfold the Ovali(x) expressions to get th following.

x/ordval[l] <= y/ordval[l] and (
x/ordval[l] != y/ordval[l] or (

x/ordval[2] <= y/ordval[2] and (
x/ordval[2] != y/ordval[2] or (

x/ordval[3] <= y/ordval[3]
))

))

Now, we can use the SortR expression, where R is the just defined partial
order, to sort the sequence of tuples.

let $sortedTuples := SortR($wrappedResults)

Prior to unfolding this expression, we present the characteristic function of
total order ltR that is used inside the Sort R sorting expression instead of partial
order R. Definition of ltR is provided in Definition 4.2 on page 36.

x/ordval[l] < y/ordval[l] or (
x/ordval[l] = y/ordval[l] and (

x/ordval[2] < y/ordval[2] or (
x/ordval[2] y/ordval[2] and (

x/ordval[3] < y/ordval[3]
))

))

Next, we present the sorting expression unfolded.

let $sortedTuples
for $i in (0 to count($wrappedResults) - 1)

return
for $x in $wrappedResults
return

if ($i= count(
for $y in $wrappedResults
return

$x/ordval[l] or (
$x/ordval[l] and (
< $x/ordval[2] or (

if ($y/ordval[l] <
$y/ordval[l] =

$y/ordval[2]
$y/ordval[2]

$y/ordval[3]
))

$x/ordval[2] and (
< $x/ordval[3]

65

then $x
else ()

))

then $y
else ()

5

Thus, variable $sortedTuples is bound to a sequ ne of tupl rt d a -
cording to the original order by clause. We need to tr ct th ont nt f
result elements from the tuples now, which is exactly what th Unwrap pr -
sion does.

for $r in $sortedTuples/tuple / r esult
return $r/*

Finally, we present the whole rewritten query in a single listing.

let $strearn :=
<strearn>{

for $auth in dist(//author),
$art in dist(//artist)
where not($auth[parent: :*/art ist[last=$art/last and

f irst=$art/first]])

return
<tuple>

<ordval>{ $auth/last }</o r d va l>
<ordval>{ $art/last }</ ordval >
<ordval>{ $auth/first }</o r dval >
<result>{

<not-together>{ $auth, $art } </not-together>

}</result>
</tuple>

}</strearn>
let $wrappedResults .

for $t in $stream/tuple
return $t

let $sortedTuples . -
for $i in (0 to count($wrappedResults) - 1)

return
for $x in $wrappedResults

return
i f ($i = coun t (

for $y in $wrappedResults

return
$x/ordval[l] o r (
$x/ordval[l] and (
< $x/ordval[2] or (

if ($y/ordval[l] <
$y/ordval[l] =

$y/ordval[2]
$y/ordval(2]

$y/ordval[3]

))

$x/ordval[2] and (
< $x/ordval[3]

))

66

then $x
else ()

then $y
else ()

for $t in $sortedTuples
return $t/*

5.4.5 Conclusion

First, we explained that XQuery Core is defined in a cumb r m wa y. It i
claimed to have the ability to express all XQuery expr ions and it pr vi
normalization rules that translate XQuery expressions to XQu ry r , but
there is no normalization rule to translate FLWOR xpr s ion with , n
by clause. Moreover, authors of the specification thought that s manti
order by clause is not expressible in the data model that is u d.

In this section, we proved that, unlike the authors of th formal mantic
specification thought, it is possible to express sorting s manti of an rd r by
cla use while not extending the data model. We made use of th fact that XPath
itself can sort sequences to prove it. Sorting capability of XPath i prov d in
the previous chapter in section 4.4.

As a result we get a cleaner XQuery Core. Our proof is in fact a sort f
normalization rule: it tells how a general FLWOR expression can b r writt n
to an equal one without an order by clause. Therefore, a grammar production
for an order by cla use can be removed from XQuery Core syntax, which mak s
the resulting core consistent.

Not only the formal proof is presented in this section, it is also an exarnpl
rewrite of an FLWOR expression to an equivalent expression without an ord r
by clause.

5.5 Conclusion

In this chapter, we focused on XQuery as an XML query language that extends
XPath. We introduced expressions that are not present in XPath and d mon
strated thern on examples.

Further, we provided forrnal semantics in a model that recognizes a tupl as
a structure. This allowed a straightforward formalization of sorting semantics
of an order by clause from a FLWOR expression, which was missing in W3C's
XQuery formal specification.

Then, we inspected sorting in XQuery. We found that we can make use of
XPath's sorting ability, which we proved in the previous chapter, to provide a
transforrnation frorn a general FLWOR expression to an equal expression with-
out an order by clause.

This result fills the gap in XQuery Core definition that misses such a trans-
formation. The interesting point is that the authors of this specification thought
it infeasible to define sorting sernantics in the data model used. We showed that
unlike the authors thought this is possible.

67

6 XSLT

This chapter inspects XSLT 2.0 - a languag d ign d t tr n f rm n
document to another XML, HTML, SVG, or any other t t d um nt.

XSLT is a declarative language that origin t d fr m n ff rt t d v
an eXtensible Stylesheet Language for XML (XSL). Th ff rt h b n t rt d
by W3C. Its goal was to design a platforrn- and m dia-ind p nd nt rm t-
ting language, based on DSSSL [35] . As the tim pas d, form r L plít int
two parts: XSL Transformation (XSLT) [18], which is simpl l n u th t
declaratively describes a transformation of an input XML do um nt, and
Formatting Objects (XSL-FO) [3], which defines an XML voc bul ry f r p i
fying formatting semantics.

XSLT 1.0 [18], since 1999 a W3C Recommendation, has b n d ign d b
James Clark and nowadays it is widely accepted by the world-wid w b and
documents oriented community. There is a huge number of XSLT pr r
that implement this specification. XSLT 1.0 heavily r lies on XPath 1.0, whi h
in fact has been developed as part of XSLT 1.0. Thes two languag h r th
same data model that is based on node sets with primitive typing.

XSLT 2.0 [40], now a W3C Last Call Working Draft, has b n d ign d by
Michael Kay and it greatly extends its predecessor. The main distinction i n
improved data model that is based on sequences of nodes and tha t ad pt th
XML Schema [23, 54, 7] typing system. The improved data .mod l, d crib d in
section 2.2 on W3C standards on page 7, is shared together with XPath 2.0 and
XQuery 1.0.

The aim of this chapter is to provide XSLT Core - a languag that u a
smallest set of instructions as possible and that has an expressive power of
XSLT. For this language we define the formal semantics.

This chapter is organized as follows. First, we provide an introduction to
XSLT in section 6.1. Our own non-XML syntax for XSLT is then defined in
section 6.2. Then, in section 6.3, we look for the core language of XSLT, for
which we define the formal semantics in section 6.4. Conclusions are given in
section 6.5.

6.1 Introduction

Here, we provide an introduction to XSLT 2.0. We choose the most of languag
constructs and explain them in detail and demonstrate on examples.

6.1.1 Stylesheet and Template

An XSLT transformation is provided as an XML document called a stylesheet, or
XSLT stylesheet. We say that a stylesheet is applied to an input XML document,
which means that the input XML docurnent is transformed according to the
stylesheet in to an output docurnent. The result of a transforma tion is generally
a text document, but usually XML documents are produced .

A stylesheet can be looked at as a set of ~ewriting rules. Each re.writin ? rule
is equipped with a patten and a body expresszon. When a stylesheet is apphed to
an input XML document, a rewriting rule is found, w~ose r;ttern ma tches ~he
root document node of the input XML document. Th1s rule s body express10n

68

de fines a transforma ti on for the root node, o th rul ' b d
evaluated to compute the output.
. In XSLT, a rewriting rule is called a template rule. p tt rn

pr n i

rul
1s an XPath 2.0 expression, but not all XP th e pr ion
ally a pa ttern is restricted to use only child and a ttribu t
that a pattern matches a node, if the sequ ne that r ult fr m v lu tin th
XPath expression of the pattern contain the nod .

A body expression of a template rule contain a sequence co1z.. tru tar, whi h
is a list of XSLT instructions. The power of XSLT inh r in th t f in tru -
tions it provides. There are instructions that valuat n XPath pr i n,
instructions that copy nodes frorn an input XML do um nt to th utput, in
structions that output new nodes, instructions that iterat o r a qu n f
nodes, grouping instructions, etc. Each instruction r turns a s qu ne fit m .
A sequence constructor is evaluated so that each its instru tion i Ju t d
and the result is a concatenation of these sequences. So, th r sult of qu n
constructor is again a sequence of items.

The following is an exarnple of a sirnple template rule.

<xsl:template match="/">
<message>This will be output for a document root . </message>

</xsl:template>

lts pattern is an XPath expression that matches the root docum nt n d . It
body expression contains only an element node labeled m s age, which will
be output, when a docurnent root node matches .

When a stylesheet consisting of only the rule above is applied to an XML
document, the result will be an XML document with a root node label d m s
sage with a text node with "This will be output for a docurnent root." t xt in
it.

Notice the syntax of a ternplate rule. A template rule is defin d with an
xsl:template element with a pattern in its match attribute. The body xpres
sion is the contents of an xsl:template element. As XSLT defines a lot of tags,
we want to distinguish XSLT elements frorn other XML element such as th
message tag in the example above that is not an XSLT instruction but rather it
constructs a new element in the output. Therefore we start every XSLT element
with an xsl namespace prefix.

XSLT elernents can be roughly divided into i) top-Zevel elements, and ii) in
structions. Top-level elements like xsl:template are allowed to be directly put
into a stylesheet body, while instructions can be used only inside some of the
top-level elements.

6.1.2 Applying Templates

It would not be much useful, if only a root node of an XML document could
be matched against a sequence of template rules. XSLT is designed to walk
through an XML document recursively. This is achieved with an instruction
xsl:apply-templates that identifies nodes, for which template rules are applied.
Leť s check the following stylesheet.

<xsl :template rnatch="/archive">

<cd-list>

69

<xsl:apply-templates / >
</cd-list>

</xsl : template>

<xsl : template match="cd" >
<cd>

<xsl :value-of select = "ti t le " />
</cd>

</xsl : template>

This stylesheet returns an XML document with a root l m nt lab l d d
list, whose contents comprises a cd element for each D in n r hiv , wh r
each cd element contains a textual node with a titl of that CD.

Notice the xsl:apply-templates instruction in th fir t t mpl
all children of the current node to be processed. In this cas , it I t 1l hil
dren of the root node, which are cd elements. For each cd 1 m nt a matching
template rule is found. Each cd element matches the s cond t mpl t rul , a
the pattern of a template rule is evaluated in the context of th curr ntly pr -
cessed element.

The xsl:value-of instruction in the body of the second templat r turn a
text node. The text it contains is deterrnined with an XPath expr ion in it
select attribute. In our example, it returns the textual valu of an l m nt nod
labeled title that is a child of the currently processed cd element.

Further, it has not to be only children of the current node that can b s -
lected for template application. The xsl:apply-templates instruction has an op
tional select attribute to identity such a sequence of nodes. For xample, th
following rule matches every cd element, where template rules ar appli d
only to authors of the matched cd element.

<xsl :template match= " cd " >
<cd>

<xsl : apply-templates select="author " />
</cd>

</xsl : template>

6.1.3 Context

The evaluation context comprises i) focus, and ii) additional variables.
The focus is the same as when XPath or XQuery query is evaluated. It

consists of i) context item, which is an item that is currently being processed,
ii) context position, which is a position of context item within the sequence of
items currently being processed, and iii) context size, which is a number of item s
within the sequence of items currently being processed.

Focus is changed with instructions like xsl:apply-templates or xsl:for-each.
The context components item, position, and size can be retrieved by XPath
expression. (dot), position(), and last(), respectively.

The additional variables in the context keep additional information about a
stylesheet currently being processed, like the current mode, the current group
and grouping key, and some not so important other variables. Additional vari
ables are discussed in detail later in section 6.3.5 on page 105.

70

6.1.4 Built-in Template Rules

It can happen that no template rule rnatch s th urr nt nt ' t it m. h
a case, built-in template rules come to play th ir p rt. built-in rul
for every node kind.

For a document or element node, a built-in t mp lat rul 11 th l: pl -
templates instruction on the children of the curr nt conte t it m.

For a text or attribute node, a built-in rule imply p1 th th nt ' t
node to the output.

Otherwise, the result of applying a built-in rul i an mpt qu n .
The built-in templates simulate a depth-first tra er al of th in ut M

document for nodes that do not match any template rul

6.1.5 Conflict Resolution

It can also happen that there is more than one t mplat rul in a tyl h t,
whose pattern matches the context item. Then, w talk ab ut a confli t. A
conflict is resolved with a complex algorithm called conflict r 1uti n. It i
quite a magie algorithm that considers generality of a pa tt rn o tha t th m r
specific pattern like cd is preferred to a more general one lik n a d e () . urth r,
template rules can be given a numeric priority with a priority attribut , whieh
is eonsidered in conflict resolution. Lastly, the order of te1npla t s is eonsid r d
thus templates at the beginning of a stylesheet have preced ne to t mp lat s at
the end of a stylesheet. The conflict resolution is the most trieky part of XSLT
and it ean take a lot of time to tune a stylesheet to work eorr ctly.

The important thing about conflict resolution is that it guarant s t s 1 ct
always a single template rule. In fact, it provides a total order on a s qu ne of
template rules and this order is defined statically. We make use of this lat r to
get rid off template rules.

There is an xsl:next-match instruction that applies a template rul for th
eontext item. The rule it applies is the rule whose pattern matches the cont xt
item and that is just behind this template rule in the total order mentioned in
the previous paragraph. This means, that the selected rule has eith r a low r
import precedence and/ or priority.

6.1.6 Modes

In a complex stylesheet, we often need to process a document several tirnes
but with different actions taken for the same node. Suppose, we want to trans
form an XML document that contains a documentation, to an HTML document
with a table of contents. In such a case, we need to go through the input doc
ument once to produce the table of contents and once to produce the HTML
decoration. Therefore we need a template rule that matches e.g. a chapter to
produce a link in a table of contents and one more rule that matches a ehapter
to produce its HTML formatted title and paragraphs.

<xsl:template match="/">

<xsl:apply-templates/>

<xsl : apply-templates mode="toc"/>

71

</xsl:template>

<xsl:template match="chapte r" >

</xsl:template>

<xsl:template match="chapter" mod e= "toc " >

</xsl:template>

We can see that xsl:template and xsl:apply-t mplate in tru ti n an b
given a mode attribute. If xsl:apply-templates instruction is call d with m d
attribute, then only ternplates with that specific mode are con id r d f r m t h
ing. Thus, both calls to xsl:apply-templates in the example abov pr hil
dren of a root node. But, only templates with no mod set ar ch ck d f r
match in the first calt while only templates with a mode set to "toc" ar ch ck d
in the second call.

Special Modes

Besides user defined modes, there are three special modes #default, #current,
and #all.

When mode #default is specified, then it has the same meaning as if no
mode was specified. This mode can be specified in xsl:apply-templat s instruc
tion and in a ternplate rule.

When mode #current is specified, then the mode in which the current tem
plate is evaluated is supplied. It is allowed to use this special mode only in
xsl:apply-templates instruction.

When mode #all is specified, w hich is possib le onl y in temp la te ru 1 s, th n
a template rule is considered for every xsl:apply-templates instruction, regard
less of a mode specified in that instruction.

6.1. 7 Parameters

It is possible to parametrize templates in XSLT. To parametrize a template, we
have to provide a list of parameters in a template rule. The parameters ar
declared with a xsl:param instruction, like in the following example.

<xsl:template match="*">
<xsl:param name="paraml"/>
<xsl:param name="param2">Default value for para m2</ x sl :param>
<xsl:param name="param3" select="//cd"/>

</xsl:template>

In this example, we declared three parameters in a template rule. The first
is named paraml and has no default value, i.e. its default value is an empty
sequence. The second parameter is named param2 and its literally defined
default value is a string "Default value for param2". The third parameter is
named param3 and its default value is computed with an XPath expression in

its select attribute.

72

The values of parameters passed to a t mpl t cíln b ith r n t nt r
comp~ted with an XSLT expression. If a param t r i d I r in t mpl t ,
~ut it is not passed, its default value is tak n . If p r m t r i pa th t

~s not d_eclared, it is ignored. Parameters ar pa d with n X'-'l:u ith-p nm11
instruchon.

<xsl:apply-templates>

<xsl:with-param name= "pa ram1 " >3</xsl : with-param>
<xsl:with-param name = "pararn2 " >

<xsl:apply-templates select= " //author " />
</xsl :with-param>

<xsl:with-param name = "para rn 3 " select= " //title " />
</xsl:apply-templates>

The first parameter paraml is passed a litera! value 3. Th nd par m-
eter param2 is passed a value that is the result of valuation f th nt in d
XSLT instruction, which applies templates for all author . Th third par m t r
param3 is passed a value computed with an XPath expre ion that look f r all
titles.

XSLT does not allow parameter names to be computed with an pr
their names have to be provided literally.

Parameters are referenced to as XPath variables. For example, th f llowing
returns the last names of authors in parameter param2.

<xsl :value-o f se lect= "$param2/last " />

Tunnel Parameters

In a complex stylesheet, one rnay want to pass a parameter from a top-1 v 1
template to some deeply called template. In such a case, a stylesh t writ r
would have to add a pararneter declaration to every template that might b
walked through and she would have to add an instruction to every xsl:apply
templates call to pass that parameter's value to the target template.

Since this would complicate the stylesheet a lot, tunnel parameters are intro
duced to ease the work of a stylesheet writer and make the resul ting stylesheet
more readable. A parameter declared as tunnel is implicitly passed in every
temp la te call.

<xsl :t emplate match= " /a " >

<xsl :apply-templates select= "b " >
' h "t " <xs l:wit -param name= param

some value
</xsl :with - param>

</xsl :apply-templates>

</xsl :template>

<xsl :template match="b">

<xsl:apply-templates select="c"/>

</xsl:template>

73

tunn e l = "yes " >

<xsl : template match="c">

<xsl : param name = " tparam" tunnel= " yes 11 />

</xsl : template>

ln this exarnple, the first template matches th r ot nad nd ppli
plates to all b children. It passes a tunnel par m t r n m d tp r m . r
ments the second ternplate is matched that appli st mplat t it hi] r n.
It does not pass any parameter explicitly, but our tunn 1 par m t r tp
implicitly passed. The third template is matched for all c l m nt an
of tparam is set to a value that was set in the first templat rul .

Notice, that a template has to declare that a param t r i tunn 1, th rwi ,
it is supposed that a parameter is a usual paramet r. If th 1 t t n1plat rul
does not declare tparam to be tunnel in the exampl abov , th n tp ram i
treated as a usual pararneter and as such, it is not assigned th valu f tunn 1
parameter tpararn. To avoid a name clash between a usual p r m t r and
tunnel parameter of the sarne name, it is required tha t all usu al and tunn
parameters have distinct names in a template or function.

6.1.8 Variables

XSLT allows to define variables and assign them any value within th data
model, which means they generally contain sequences of items. Th valu f
a variable can be defined either with an XPath expression or with a s qu ne
constructor.

<xsl :variable name = "varl " select = " //author/l ast " />
<xsl : variable name ="var2 " >

<xsl:apply-templates/>
</xs l: vari able>

This code defines two variables with names varl and var2, r sp ctiv ly.
The value of varl is defined with an XPath expression and contains a sequ ne
of last names of all authors. The value of var2 is defined with a sequence con-
structor.

Variables are referred to the same way as parameters: with an XPath vari-
able reference. The following can be used to apply templates for items in a
sequence of variable varl.

<xsl : apply-templates select="$varl"/>

Notice, that variables can be defined both locally inside a seguence con
structor, and globally as a top-level element. The difference is a scope of a
variable. A locally defined variable is valid from the point of its definition to
the end of the last following sibling of its xsl:variable instruction. A locally
defined variable is not defined in a called template or function. On the other
hand, a globally defined variable is de.fined througho~t the whole stylesh~et.
It is an error to refer to a variable that is not declared in the scope of refernng

instruction.

74

6 SL

6.1.9 Named Templates

So far, we talked only about templa te rules, but XSLT provid al o diff r
ent type of a template: a named template. A named templat diff r fr m a

template rule in that it has no pattern, it has a name inst ad. Th r for , an
XSLT processor does not look among named ternplates for a match, wh n an
xsl:apply-templates instruction is called. But, unlike a template rule, nam d
template can be called directly with an xsl:call-template instruction using its
name.

<xsl : call-template name= "tpl " />

<xsl : temp l a t e n a me= " tpl " >

</ x s l: template>

This code calls a template named tpC which evaluates the sequence con
structor in the body of tpt which is then returned.

Even named templates can be passed parameters. The declara tion of pa
rameters and passing values to parameters is the same as for template rules
and xsl:apply-templates instruction.

In fact, named templates are sornething like functions. They have a name,
a list of pararneters, and a body that is defined with a sequence constructor.

6.1.10 Functions

XSLT 2.0 provides an xsl.function instruction that can be used to define a func
tion. Such a function can than be called from within an XPath expression. A
function, like a narned template, has a name, a list of parameters, and a body
that is defined with a sequence constructor. The way of passing a parameter
follows the XPath syntax and is therefore different from calling a named tem
plate.

<xsl : v alue - of sele ct ="fn(l) " />

<xs l: f un c tion name = " f n" >
<x s l :param name = "numbe r " />

</x s l :t e mplate>

This code calls an XPath function fn with one argument, which is set to 1.
This results in evaluation of a sequence constructor in the body of fn definition,
where the argument is assigned to parameter labeled number.

Leť s mention the main differences between functions and named templates.
First, a function can be called only from within an XPath expression, while

a named template can be called from within a block of XSLT instructions - a
sequence constructor.

Second, function body is evaluated with an empty focus (context item, posi
tion, and size), which is exactly the semantics of an XPa th call. For more detail

75

6

see the chapter on XPath. On the other hand, th body of n m d t mpl t
evaluated with the current focus.

6.1.11 Sequence Iteration

The xsljor-each instruction has a mandatory select attribut that d fin s s -
quence with an XPath expression. This sequence, which i iterat d v r with
the for-each instruction, is called an initial sequence. The instruction v lu t
its body expression once for each item from the initial sequenc , each tim with
the focus set to that item in the initial sequence.

Notice, that xsl:for-each is one of the few instruction that chang s the eval
ua ti on context.

<xsl :for-each select="//author">

<xsl :value-of select= " first " />
<xsl :value-of select = " last " / >

</xsl :for-each>

The code snippet above creates a bulleted list of authors in HTML, where
each author is a separate item. Notice, that the XPath expressions in xsl:value
of instructions are evaluated in the context of each author node.

Further, the sequence can be sorted in the iteration. This is achieved by
putting xsl:sort instructions just after the xsl:for-each instruction. The following
sorts the authors according to the last names. Within authors with equal last
name, it sorts according to their first names.

<xsl:for-each select="//author" >
<xsl:sort select="last"/>
<xsl:sort select="first"/>

<xsl:value-of select="first"/>
<xsl:value-of select="last"/>

</xsl:for-each>

We refer to XPath expressions in the select attribute of xsl:sort instructions
as to order specifications.

6.1.12 Conditional Execution

The xsl:choose instruction allows to branch an XSLT transformation. It is simi
lar to a switch statement in C language. In its body it contains a list of xsl:when
instructions, where each has a mandatory test attribute with an XPath expres
sion. Optionally, it can contain an xsl:otherwise instruction.

When xsl:choose is evaluated, the processor looks for the first xsl:when,
whose test expression evaluates to true. If it finds one, its body is evaluated

76

6 LT

and returned as a result. If none is found and sl:oth rwise is pr
is evaluated and returned. Otherw ise, the resul t of sl:cho r an mpt
quence.

<xsl : for-each select= " //cd " >
<xs l: choose>

<xsl :when test= "artist and author " >
<bot h ><xsl : value-of select= " title " /></both>

</x s l :when>
<xsl :when test= "artist " >

<a rt i s t><xsl : value-of select= " title " /></artist>
</ x sl:when >
<xsl:when te s t= "author " >

<author><xs l :value-of select = " title " /></author >
</xsl:when >
<xsl:otherwise>

<none><xsl:va l u e- o f select= " title " /></n one>
</xsl:otherwis e>

</xsl:choose>
</xsl:for-each>

The code above iterates over all CDs. For each CD it evaluates th xsl:choose
instruction, which looks for the first xsl:when instruction that eva luates its test
expression to true. One by one they test for the presence of both artis ts and au
thors, at least an artist, and at least an author, respectively. If there is no author
and no artist, xsl:otherwise is evaluated. Each time the result is a CD title, but
it is enclosed inside an element with a different name: both, artist, au thor, and
none, respectively.

Further, XSLT provides one more simple instruction xsl:if for conditional
execution. It contains a test attribute with an XPath expression. If the test ex
pression evaluates to true, the body of xsl:if is executed. Otherwise, evaluation
of xsl:if results in an empty sequence. Notice, that there is no else branch.

<xsl:if test="artist and au t hor" >
<both><xsl:value-of select="tit le " </both>

</xsl:if>

This code checks whether the context item is a node that has at least one
artist and at least one author as a child node. In such a case it returns a ti
tle subnode enclosed in a tag labeled both, otherwise it returns an empty se
q uence.

6.1.13 Constructing New Content

XSLT provides two ways new content can be constructed: i) litera! result con
struction, ii) attribute value templates, and ii) constructor expressions.

The first, litera! result, is used when the newly constructed nodes are con
stant and do not depend on the input XML document. It is written with usual
XML syntax. For example, the tag labeled both in the previous section is an
example of a literal result element. The same way attributes, processing in
structions, text, etc. can be constructed.

The second, attribute value templates, is a way to compute a value of an at
tribute with an XPath expression. The attribute is written with an XML syntax

77

and if its string value contains curly braces, then th cont nt f url
is evaluated as an XPath expression, the result is stringifi d nd r pl th
expression in curly braces.

<cd title="{./tit le}" />

The code above constructs a cd element with a title attribut , who n-
tents is set to the contents of a title child of the context item.

Notice, that attribute value ternplates can be used not only in lit ral r ult
constructors, but also in a lot of attributes of XSLT instructions. But w hav
to be careful, as not all attributes of XSLT instructions allow attribut va lu
templates in them. This is not very nice feature of th languag .

The last, constructor expression1 is used when th prop rti f th n wly
constructed nodes depend on the input XML document. For exampl , w an
set an element name, conditionally set an attribute to an elem nt, tc. ch of
the seven nade kinds has its own constructor, which is an XSLT in truction that
constructs the specific nade kind.

<xsl :for-each select="//authorl//artist " >
<xsl:element name = "{narne()} " >

<xsl:attribute name = " first " select= ". /first " />
<xsl:attribute name = " last " >

<xsl:value-of select = ". /last " />
</xsl:attribute>

</author>
</xsl:for-each>

This code snippet iterates over all authors and artist. For each of them it
constructs a new element nade with equal name and with attributes lab led
first, and last with value of author's or artisťs first, and last name, respectively.
Notice, that the former is computed with an XPath expression in a select at
tribute of xsl:attribute instruction, while the latter is cornputed with a sequence
constructor.

6.1.14 Copying

To copy a value from an input XML document, XSLT provides three instruc
tions: xsl:value-of, xsl:copy, and xsl:copy-of. All of them construct new nodes,
but each is suitable for a different task.

We already mentioned xsl:value-of above. It is specific with that it always
creates a new text node. The xsl:value-of instruction accepts both select at
tribute with an XPath expression, or a sequence constructor in its body, which
in both cases evaluates to a sequence. This sequence is atomized, then each
item is converted to a string and the result is concatenated and returned.

Instruction xsl:copy creates a copy of the context item. If the context item
is an element node, neither its attributes nor children are copied. Instruction
xsl:copy accepts a sequence constructor that is called to create the contents of
the newly created nade. This expression is evaluated only for document and
element nodes.

Instruction xsl:copy-of copies a whole subtree. As well as xsl:value-of it ac-
cepts a select attribute, or a sequence constructor in its body, the result of which
is copied. The copying is deep, so for an element node all its attributes and chil
dren are copied, recursively.

78

6.1.15 Sorting

We already mentioned sorting ability of the xsl:for-eaeh in tru ti n b v J ut
XSLT provides one more instruetion that sorts a equene . It t qu n ,
and a list of order speeifieations and returns that s qu ne ort d. Thi in tru -
tion is xsl:perform-sort and as many others aeeepts a sequ ne d fin d i th r
with an XPath expression in its seleet attribute or with a s qu ne eon tru -
tor in its body. The order speeifications are defined with a sl:sort in tructi n
explained in section 6.1.11 on sequenee iteration.

<xsl:perform-sort select=" //author " >
<xsl:sort select="last"/>
<xsl:sort select="first"/>

</xsl:perform-sort>

This code results in a sequence of authors sorted aecording to last and fir t
name.

Notice, that order specifications are expressions that are evaluat d in th
eontext of each item in the initial sequence. Order specifica tions d fin usua l
lexicographic ordering on the initial sequence based on the ord r valu s of
order specifications.

6.1.16 Grouping

XSLT instruction xslfor-each-group1 described in this section, runs a sequenc
constructor for each group that is identified in a given sequence. We call th
given sequenee an initial sequence. The initial sequence is defined with an
XPath expression in a select attribute of xsl:for-each-group instruction.

Since the sequence constructor in the body of this instruction has to have a
way to reference the group it is run for, XPath function current-group() is intro
duced, which evaluates to a sequence of items of the current group.

The xsl:for-each-group instruction can group the initial sequence in four
different ways, depending on which attribute group-by, group-adjacent, group
starting-with, or group-ending-with is used.

Group-By. The group-by attribute is set to an XPath expression. This ex
pression is evaluated for each item in the initial sequence, getting so a sequence
of grouping keys. Each distinct grouping key identifies a group and an item
belongs to every group that is identified by any of its grouping keys. Notice,
that this means that an item can belong to more than one group.

There is an XPath function current-grouping-key() defined in a sequence con
structor of xsl:for-each-group instruction that has a group-by attribute. It re
turns the current grouping key.

<xsl :for-each-group select="//cd" group-by="author" >
<author>

<xsl:attribute name="last"
select="current-grouping-key()/last"/>

<xsl:attribute name="first"
select="current-grouping-key()/first"/ >

<xsl:for-each select="current-group() " >
<cd><xsl:value-of select="title"/></cd>

</xsl:for-each>

79

</author>
</xsl : for-each-group >

In this example, the CDs with the same author re gr up d t th r. r
each author, an author element is created with attribut s fir t and la t, lu
of which are set to author's first and last name, respectiv ly. For ch 111 a
group, a cd element is created whose contents is set to a titl f that O.

We should note, that this grouping variant removes du plic t from
It is defined that in a case when two items are equal, th on that app
the other in the initial sequence stays and the other is r mov d.

Group-Adjacent. The group-adjacent attribute is also t to an P th
pression. This grouping variant groups together adjacent it m fr m th initi
sequence that evaluate the XPath expression to an equal valu .

Group-Ending-With. The group-starting-with attribute is r trict d to
pattern, which is a subset of XPath as noted earlier. This grouping variant
groups together adjacent items from the initial sequence, where start of a n w
group is identified by a pattern match against an item in the initial sequence.

Group-Starting-With. The group-ending-with attribute is also restricted to
a pattern. It also groups together adjacent items from the initial sequ ne , but
in this case, it is the end of a group that is identified by a pattern match again t
an item from the initial sequence.

6.1.17 Keys

Keys are designed in XSLT to help with references. They allow to define a
named reference that is navigated by a key() function just like id() function is
used to follow a reference to elements identified with an id attribute. K ys ar
used to explicitly identify hidden references in an input XML document to eas
the navigation and provide a hint for XSLT processors to store these refer nces
efficien tl y.

A key is declared with a key-declare instruction with the following syntax.

key-declare (name, pattern, use)

The declaration defines a reference named name that returns nodes that
match the pattern. Not all matching nodes are returned with a call to key(name,
value), but only such nodes are returned, for which the value of expression use
is equal to value.

For example, leť s declare a simple key named divkey that references all div
elements using their name attribute.

key-declare ("divkey ", //div , @name)

Now, a call to key("divkey", "tab") returns all div elements that have a
name attribute equal to string tab.

We can use multiple key declarations to declare a single key reference. In
such a case, the result is the same as if we evaluated the key() function for each
declaration separately and then concatenated the resulting sequences.

80

6.1.18 Stylesheet Import and Inclusion

There are two ways one can extend her own styl sh et with c nt nt f n th r
stylesheet: inclusion and import, which are represent d with x„ l:includc nd
xsl:import top-level elements. They both take a href attribut that point t
another stylesheet with an URI reference.

An xsl:include element is interpreted the same way as if th cont nt f
the included stylesheet was pasted into the styleshe t, in whi h l:includ
called.

If a stylesheet is irnported with a xsl:import el ment, th n th
that the irnported template rules have lower import pr c d ne
template rules from the importing stylesheet. Import pr e d ne i pr p rty
of a template rule that is considered in the eonflict resolution proc s describ d
above.

Simply said, whereas included template rules have the sam preced ne a
template rules in the including stylesheet, imported templat rules hav low r
precedence then the template rules in the importing styleshe t.

Further, XSLT provides an xsl:apply-imports instruction that b hav s imilar
to xsl:next-match instruction. It chooses for the context item a templat rul
frorn a set of template rules that were imported into a stylesheet, from which
xsl:apply-imports instruetion was ealled. This provides means of ealling a tem
plate rule that is overridden by a template rule from the importing styl she t.

6.1.19 Initiating a Transformation

At the beginning of this introduction, we said that a transformation is tarted
with a root node of an input document as the current context node, for which
a template is chosen, evaluated, and the result is returned as a result of a trans
formation. But this is not the only way a transformation can be initiated.

We can also initiate a transformation with a name of a named template,
which is the first to be called. Such a template is evaluated, the result of which
is then returned as a result of the transformation. This feature is important, as
it allows us to show that template rules can be removed from XSLT, while not
losing the expressive power of the language.

6.2 XSLT Syntax

The syntax of XSLT is defined in W3C specification. XSLT is one of the lan
guages from the large XML family that uses XML as its basic syntax. As such,
even a simple transformation is by no means brief. Therefore we provide here
a more concise syntax to make the code listings shorter and easier to read.

There exists a huge number of compact non-XML syntaxes for XML, but
none of thern seerns suitable for our needs. The reason is that we do not have
to use a general syntax that would be able to express all the XML stuff like
narnespaees, tag names, attribute narnes, etc. We provide the syntax only for
the XSLT tags instead.

Figure 23 defines our syntax for the considered fragment of XSLT 2.0. Since
XSLT is a functional language, we write XSLT elements as functions.

As we provide our own syntax, a need arises to show how the original XML
syntax is mapped to it. This is given in Figure 24, in which there is always an

81

Stylesheet
Import
Include
Function
Key
ParamDecl
Tem plate
Template-Named
Template-Rule
Expression

Instruction

Constructor

Param
Sort
When

-..
-..
-..
-..

-..
-..
-..
-..
-..
-..

-..
-..
-..

stylesheet(Import* lnclude* Fw1ction* K y* ParamD cl * mplat *)
import(URI)
include(URI)
function(QName, Bool, ParamDecl*, Expr s i n)
key-declare(QName, Pattern, Expr ssion)
param-declare(QName, Expression)
Template-Named I Template-Rule
template-named(QName, PararnDecl*, Expression)
template-rule(Pattern, ParamDecl*, QNam , Expr ssion)
Expression*
I Instruction
I Constructor
I XPathExpr
apply-imports(Param *, Expression)
I apply-templates(Param*, Sort*, Expression)
I call-template(QName, Param*)
I choose(When*, Expression)
I copy(Expression)
I copy-of(Expression)
I for-each(Expression, Sort*, Expression)
I for-each-group-by(Expression, Expression, Sort*, Expressi n)
I for-each-group-adjacent(Expression, Expression, Sort*, Expr ssion)
I for-each-group-starting-with(Expression, Pattern, Sort*, Expression)
I for-each-group-ending-with(Expression, Pattern, Sort*, Expressi n)
I if(Expression, Expression)
I if-then-else(Expression, Expression, Expression)
I next-match(Param*)
I perform-sort(Sort*, Expression)
I sequence(Expression)
I value-of(Expression)
I variable(QName, Variable, Expression)
attribute(Expression, Expression, Expression)
I elernent(Expression, Expression, Expression)
I namespace(Expression, Expression)
I comment(Expression)
I processing-instruction(Expression, Expression)
I text(PCData)
I result-document(Expression)
param(QName, Expression)
sort(Expression)
when(Expression, Expression)

Figure 23: Our compact syntax for XSLT.

82

XSLT element on the left side and an corr ponding l m nt in ur m t
non-XML syntax on the right side.

One may miss some XSLT elements in the mapping. 11 lu d 1 m nt
can be found in section 6.2.2 with comments on why w d n t n id r th m .

One can also notice rnissing attributes in some of XSLT l m nt . W mit
ted all attributes connected to schema and typing, b cause typing i f n 1n
terest to us. We do not provide a complete list of excluded a ttribut .

In XSLT, alrnost every element that has a select attribut II w al f r
sequence constructor in its body. All elements that us thi ombin ti n r
restricted not to use the select attribute together with th qu ne on tru t r.

The thing is tha t while we can use XSLT instructions in the s q u ne n tru -
tar, only an XPath expression is allowed in the select attribut . An int r ting
question arises from this: are an XPath expression and a sequ ne construct r
capable of expressing the same? The positive answer is proved in s ction 6.2.1.

6.2.1 XPath Expression vs. Sequence Constructor

The XSLT syntax we provide in Figure 23, allows us to mix XSLT instruction
with XPath expressions, though originally XPath expressions are allow d only
in an select attribute of some XSLT instructions. In this section, w prav tha t
XPath expressions in XSLT are of the same expressive power as a XSLT's
quence constructor, thus we do not have to distinguish between th m.

First, we should define a sequence constructor itself.

Definition 6.1 A sequence constructor is a sequence of XSLT Instructions and/or
Constructors as defined in Figure 23.

Lemma 6.1 An XPath expression and an XSLT sequence constructor have the same
expresszve power.

Proof It is trivial to show that a sequence constructor can express any XPath
expression. Using the xsl:copy-of instruction serves the purpose. Thus, having
an XPath expression x the following sequence constructor returns the value of
X.

<xsl:copy-of select="x"/>

To prove the opposite direction, we have to use user defined functions. As
function's body is defined with a sequence constructor, an XPath expression
with functions has the power of a sequence constructor.

This seems to be enough to show, but it is not. In general, a sequence con
structor is evaluated in terms of its context, so XSLT instructions can rnake use
of variables and parameters defined in the current context. But a sequence con
structor defined as a body of function f does not have the same context as an
XSLT instruction that called the f function, because the focus is emptied for
the evaluation of f. Thus, using instructions in the body of f will not get the
same values of variables and pararneters as if using the same instructi.ons in
the calling context.

But this is not a problem. Dueto the fact that functions can ha ve parameters
in XSLT, parameters can be used to pass the necessary variables and/ or param
eters from the calling context to functions. Now, we can be sure that whatever

83

<xsl:apply-imports>
ParamList Expr< I>

<xsl:apply-templates>
ParamList SortList Expr< I>

<xsl : call-template name= "Name" >
ParamList< I>

<xsl:choose>

WhenList Otherwise< I>
<xsl :copy>Expr</>

<xsl :copy-of>Expr</>

<xsl : for-each select= "Select ">
Sort List Expr< I>

<xsl : for-each-group select= "Select "
group-by= "Group" >
SortList Expr< I>

<xsl : for-each-group select= "Select "
g roup-adj a cent=" Group" >
SortList Expr< I>

<xsl : for-each-group select="Select"
group-start ing-wi th=" Pattern" >
SortList Expr< I>

<xsl : for-each-group select="Select"
group - ending-w i th= "Pattern" >
SortList Expr< I>

< x sl : i f test = " Expr" >
Expr</>

<xsl :key name="Name" match="Pattern">
Expr</>

<xsl:next-match>
ParamList < I>

<xsl : perform-sort>
Sort List Expr< I>

<xsl : sequence select="Select" />

<xsl: value-of select="Select" />

<xs l: variable name=" Name" >Expr1 </>Exprz

<xsl : template name="Name" >
ParamDeclList Expr< I>

<xs l: template match="Pattern"
mode = " Mode"> ParamDeclList Expr< I>

apply-imports(PnmmLi t, Expr)

choose(Whe11Li t, Otherwi e)

copy(Expr)

copy-of(Expr)

for-each(Select, ortU ~t , Expr)

for-each-group-by(elect,
Gro11p, SortList, Expr)

rt List,

for-each-group-adjacent(elect,
Group, SortList, Expr)

for-each-group-starting-with(Se/ect,
Pattern, SortList, Expr)

for-each-grou p-ending-wi th(Select,
Pattern, SortList, Expr)

if(Expr, Expr)

key-declare(Name, Pattern , Expr)

next-ma tch(ParamList)

perform-sort(SortList, Expr)

sequence(Se lec t)

value-of(Select)

variable(Name, Expr1 , Expr2)

template-named(Name,
ParamDeclList, Expr)

temp la te-rule(Pattern ,
ParamDeclList, Mode, Expr)

Figure 24: Mapping W3C's original XSLT syntax to our compact syntax.

84

is expressible with a sequence constructor is pr s ibl ith n
sion. This topic is covered more deeply in s ction 6.3.5.

In this section, we proved that XPath xpr s 1 n and
have the same expressive power.

6.2.2 Excluded XSLT Elements

th
o

In this section, we provide a list of all XSLT elements that w lud d fr m
consideration. Elements are divided into several groups by th r a on that 1 d
us to omit thern.

String-oriented. The following elements were excluded b cau w think
them to be only a syntactic sugaring.

<xsl:analyze-string>
<xsl:matching-substring>
<xsl:non-matching-substring>

They allow XSLT instructions to be applied not only on sequ ne s of nod s
and other items, but allow XSLT instructions to be run on parts of a string that
either match or do not match a given regular expression. Since XQu ry 1.0 and
XPath 2.0 Functions and Operators specification provides op rations to match
strings by regular expressions, and operations to split strings, web liev th s
excluded elements to be expressible with the standard functions and op ra tors.

Schema-oriented. The following element was excluded becaus w do not
bother with the type information.

<xsl:import - schema>

This element servers the only purpose: it irnports type inforrnation from an
XML Schema document.

Evaluation-oriented. The following elements are connected to the way an
XSLT processor evaluates a stylesheet.

<xsl :fallback>
<xsl:message>

The xsl:fallback instruction is designed to recover from errors that arise from
the existence of two versions of XSLT: 1.0 and 2.0, whereas the xsl:message in
structions is designed to help debug XSLT stylesheets - it can print messages to
console while a stylesheet is evaluated. None of them influences the expressive
power of XSLT.

Output-oriented. The following elements influence only output serializa-
tion and/ or encoding.

<xsl:character-map>
<xsl:decirnal - forma t>
<xsl:number>
<xsl:output>
<xsl:output-character>
<xsl:preserve-space>
<xsl:strip-space>

85

6

Character maps, provided with xsl:charact r-map nd I: utput- h r t r l-
ements, are used to easily write styl sheets that utput an -lik but n n-
XML text. It is designed to map characters to M -confu in n . r
ample, if the dollar sign character $ is mapp d to 1 w r-th n h r t r <, th n
when the output is serialized all dollar sign charact rs ar con rt d t l r-
than characters, providing so the desired output whil not br akin th T
stylesheet.

Elements xsl:preserve-space and xsl:strip-spac driv th whit - pc 1na-
nipulation in terms of its importance in the output. Sine whit - pa n t
important in our data modet we do not consider th m.

The xsl:output element is used to specify the output m thod . lt dictat
whether certain characters should be escaped or not wh n th utput i ri 1-
ized. The process of output serialization is defined in XSLT 2.0 and XQu ry 1.0
Serialization specification of W3C. This element can also be us d to sp cify th
desired output encoding. Since features provided by this elem nt r f r to th
output serialization and not the data model, we do not consid r th m.

Literal result elements. XSLT specification says that it is poss ibl to con
struct new elements in the resulting document in two ways: either i) by u ing
an constructor instruction, or ii) by literally naming the elem nt. Our XSLT
excerption does not allow to use literal result elements as it is only yntactic
sugar, to keep the language concise.

More sugar. The following elements provide more syntactic sugaring.

<xsl:attribute-set>
<xsl:namespace-alias>

The xsl:attribute-set element is designed to ease the manipulation of sev ral
attributes together by assigning a name to a set of attributes and its va lu s.
Then, instead of typing every single attribute from the set and its value, w can
use the named set. It is clear, that this is designed to cut the text th styl sheet
programmer has to write short.

The xsl:namespace-alias element converts a namespace prefix of result el
ements to a different prefix. This is needed especially when generating XSLT
stylesheets with XSLT. Since the transformation stylesheet is written in XML, it
uses the xsl namespace prefix to distinguish its own instructions from the re
sult elements. Then, what prefix should be given to XSLT instructions that are
to become a part of the resulting document? Giving thern the same prefix xsl
would cause the XSLT processor to evaluate them, but we want them to stay
in the output text. The solution provided by the XSLT specification is to give
them a different prefix (e.g. axsl) and declare that this prefix has to be mapped
to XSLT namespace URI in the resulting document. To sum up, this feature is
needed only due to XML syntax of the XSLT language and as such does not
influence the expressive power of the language, so we do not consider it.

In this section, we listed all XSLT elements that we do not consider when
evaluating expressive power of XSLT. We also mentioned with each element
excluded the reasons that led to our decision.

6.3 XSLT Core

In this section we look for a simpler language that has the same expressive
power as the selected XSLT fragment.

86

6.3.l Notation

As we want to prove that equality of e pression within styl
by formalizing XSLT stylesheets and items th y r con truct

First/ we define patterns, which is a subset of an Path
introduce patterns in section 6.1.1.

Definition 6.2 With Pattern we denote a et oj al! pattern

Next, we formally define a stylesheet.

h t /
fr m.

'pr n.

Definition 6.3 Let S == (T, N, F, P, U1 M, T) be an XSLT stylesheet, with the jollow
ing components.

• Tis a set oj template rules including those from imported and included ~tyle„ heet ,

• Nis a set oj named templates,

• F is a set oj junctions defined in S,

• Pis a set oj all non-tunnel parameter names,

• U is a set oj all tunnel parameter names,

• M is a set oj all mode names,

• T C T x T is a template choosing order - a total order on ternplate rul es.

The template choosing order Tis used to resolve a conflict of mul tipl tem
plate rules matching the current context item. Notice, that this order exist
for every stylesheet. More on the conflict resolution process can be found in
section 6.1.5 on page 71.

As we need to identify the order of a template rule in a subset of T later,
we define function T that takes a set T' C T of template rules, and a natural
number n and returns a template rule that is n-th in T' according to template
choosing order T. Thus, crs(T', 1) returns the first template rule in templat
choosing order T 1 while crs(T1

1 /T'I) returns the last rule in template choosing
order T.

Definition 6.4 Let s == (T, NI FI P, ul Ml T) be an XSLT stylesheet. Then, crs :
2 T x N -t T is a function that takes as arguments a set oj template rules T' C T, and
a natural number n such that 1 < n < / T' / and returns a template rule jrom T'. The
function is defined inductively as follows.

cr5 (T', 1)

CT5(T11i)

minr(T')

min r (T' \ LJ cr s (T', j))
j<i

We also define an inverse function cr5 1
: 2T x T -t N that takes as argu

ments a set of template rules T' C TI and a template rule t E T' from this set
and returns a number that represent the order of t in T' according to template
choosing order T.

87

Definition 6.5 Let S == (T, N, F, P, U, M, T) be an XSLT sh;l he t, all i t E T' C T
be a template rule. Then, with cr- 1 (T', t) we denote such i, f;r wlli h t == ~ (T', i).

Since a template is a structure, we provid v ral fun ti n t m
it. First, two functions that work with a temp lat rul only.

Definition 6.6 Let S == (T, N, F, P, U, M, T) be an XSLT tyle h et, and t E T bt
a template rule. Then, junction patt(t) returns a pattern of t, and function 111od (t)
returns a mode oj t.

patt T -7 Pattern
mode T -7 M

The following definition introduces functions that work with b th t mpléit
rules and named templates, and with functions as well.

Definition 6.7 Let S == (T, N, F, P, U, M, T) be an XSLT stylesheet, t E T U N U F
be a template or junction, and p E P U U be a paranzeter name. Then, junction body(t)
returns a body expression oj t, params(t) returns a set oj parameter name ... that are
declared in t, and finally dejault(t, p) returns a dejault value expression oj parmneter
p declared in t.

body
params
dejault

(TUNUF) -7 Expr
(TUNUF) -7 P
(TUN UF) x (P U U) -7 Expr

Next, we define what we rnean with a stylesheet equivalence.

Definition 6.8 We say that two stylesheets are equivalent if they return the same
result for every input document they are applied to, with respect to aur data model.

We refer to a set of instructions that select a template rule for the current
context item as to applying instructions. If even call-ternplate instruction is to
be considered, we refer to it as to a template call.

Definition 6.9 An instruction is called applying instruction if it is either apply
templates, apply-imports, or next-match.

Every expression that is either an applying instruction, ar a call-template instruc
tion, we call a template call.

We refer to every expression that results in an evaluation of a template's or
function's body expression as to a call. We also define a function that returns
all calls from a stylesheet.

Definition 6.10 Every expression that is either an applying instruction, call-template
instruction, or an XPath junction cal!, we cal! a call expression, or simply a call. Let
S be an XSLT stylesheet, then with calls(S) we denote a set oj all calls in S.

The following function returns a set of all parameters passed by a call.

Definition 6.11 Let S == (T, N, F, P, U, M, T) be an XSLT stylesheet, and c E
calls(S) be a call expression. Then with paramsPassedBy(c) we denote a set oj pa
rameters passed by c to a template or junction.

paramsPassedBy : calls (S) -7 (P U U)

88

6

6.3.2 Flow Control

Instead of two flow control instruction ch , and if, w intr du m-
gle if-then-else instruction that is both capabl f pr in th f r t
and expressible by the former two. Thus, w simplify th t
changing its expressive power.

Further, the if-then-else instruction can be pr ss d with th
XPath expression. Therefore, even if-then-else instruction i nly a ynt ti ~
sugar.

Since instruction chaose greatly improves readability, w till u it in th
f ollowing co de listings.

6.3.3 Parameters

Parameters provide way for ternplates to behave differently und r diff r nt
circurnstances. Without pararneters, the language would lost a lot of its x
pressive power. Pararneters can be passed when calling narned t mplat s r
when one of applying instructions is used. Even a function call th t app r s
a step in an XPath expression can be equipped with paramet r .

In this section, we first note tha t we can safely add new param t r t a
stylesheet, then we show that parameter declarations can b r mov d from
templates, and finally we show that tunnel parameters can be simulat d with
non-tunnel parameters.

Adding New Parameters

Here, we show a fact that is trivial, but worth noting: we can safely add n w
parameters to a stylesheet and we do not have to care about a name conflict.

It is required that when a parameter is to be passed, its narne must be set as
a literal. A very irnportant fact can be deduced from this: i) parameter nam s
are statically known, since they neither depend on a processed document nor
can be cornputed at run-time, and ii) number of pararneters used in a stylesheet
is finite.

Lemma 6.2 Let S == (T, N, F, P, U, M, T) be an XSLT stylesheet. Then, there exists
a new parameter name p, such that p tf:_ P U U.

Proof Since both sets of parameter names P, and U are finite, independent
from the input document, and statically know, we can always create a new
name that is not in P U U. O

Oue to this lemma, we can always add a new parameter to a stylesheet
without a fear of a name conflict with one of the stylesheeť s former pararne
ters, because we can always choose a name that never appears in the former
stylesheet. From now on, when adding parameters, we suppose that the name
provided differs from all statically known parameters in the stylesheet, possi
ble conflicts can be always solved by renaming.

Parameter Declarations

In this section, we show that parameter declarations of non-tunnel parameters
can be safely rernoved from a stylesheet, which is achieved by always passing

89

all parameters. The only problem is a possibl nam cl h f p r m t r th t
define different default value expressions, which w h w n t t b r bl m .
When referring to parameters, we always talk about non-tunn 1 p t r in
this section.

XSLT specification requires template rules and nam d t mpl t
all parameters they want to accept. It is possibl to provid d
expression for each parameter. If a parameter is not plicitly pa
plate, then its default value expression is evaluat d in th urr nt nt t t
get the val ue of the parameter.

We claim that default value expressions and v n p r m t r d l r ti n
are only syntactic sugar.

Idea. The idea is to pass all parameters in P by very call xpr
to move the default value expressions from paramet r d dar ti n t
pressions. The move can be done safely only when each param t r i d cl r d
only in one template or function, because if a parameter p i d lar d in tw
templates or functions t and ť, then the default value expression in t and ť ar
generally different, so we do not know, which default value expr s ion to p
by calls. This can be solved by parameter renaming, as a scope of a param t r

is a template's or function's body and as we can add new paramet r narne
safely, which we proved in Lemma 6.2.

Then, when all parameters are passed in every call and all param t rs ar
declared with no default value expression in every template or function, w
can do without parameter declarations, as for each template or function th y
are the same.

Formally, we transform a stylesheet S == (T, N, F, P, U, u) to an equival nt
one without parameter declarations, Vt E T U N UF : params(t) == 0 , which is
done in three steps: i) we ensure that each parameter is declared only in on
template or function, ii) we modify all call expression to pass all paramet rs,
and iii) we remove parameter declarations from all templates and functions in
a stylesheet.

Distinct Parameter Names. First, we ensure that every template uses pa
rameters with names different from parameter names in other templates. This
is achieved with procedure DistinctParams depicted in Figure 25 that we de
scribe here. For each template or function t from T UN UF, if there exists a
template or function ť from T U N U F such that they share at least one pa
rameter declaration with the same name, let C :== params(t) n params(ť) f= 0
be the set of conflicting parameter names. Create C', a set of !Cl new parame
ter narnes, C' n P == 0. Now, change t by renaming the conflicting parameter
names frorn C with new parameter names from C' and add these new parame
ters to P : == P U C'. Further, in each call in S tha t pas ses a parameter p E C tha t
has been renamed to p1 E C', pass even p' and set its value to the sarne expres
sion as p. Follow, until there are no templates that share the sarne pararneter
name Vt, ť E TUN UF: params(t) n params(ť) == 0.

Lemma 6.3 Let S == (T, N, F, P, U1 M, T) be an XSLT stylesheet. Then, there exists
an XSLT stylesheet S' == (T', N', F', P', U, M, T

1
) such that S' is equivalent to S and

for each p E P' there is exactly one t E T' U N' U F' that declares p in its body.

Proof. Let S' == DistinctParams (S).
First, we check the stylesheet equivalence. Notice, that procedure Distinct-

Params affects only bodies of templates and functions in TUN UF. As we do

90

1: procedure DistinctParanzs(S == (T, , F, P, U, M, T))
2: for all t E T U N U F do
3: for all ť E T U N U F do
4: C ~ {p1, ... , Pn} == params(t) n param (ť) t> m

5: C' ~ { p~, ... , p~ } such tha t { p~, ... , p~ } n P == 0 t> . w n m
6: P ~PUC'
7:

8:

9:

10:

11:

in t, rename declaration of Pi top~, for 1 < i < n
for all c E calls(S) do

C" ~ {Ph I ••• I Pj„J == paramsPassedBy(c) n c
change c to pass pji with the same valu as PJ; ' f r 1 < i < 111

end for
12: end for
13: end for
14: return S
15: end procedure

Figure 25: Procedure DistinctPararns ensures that ach templat u
set of parameter names.

not modify an order of template rules in T nor we create or delet t mplat
rules, it is clear that template choosing order T 1 is the same as T, only it is d -
fined on the templates and functions with modified bodies. Therefor , w on ly
need to check that templates and functions behave the same in the modifi d
stylesheet S' as in the initial stylesheet S.

If there are two templates or functions t, ť E T U N UF such that they both
declare the same parameter, then the conflicting parameters are renamed to
new parameter names in t. The for all expression on lines 8 to 11 ensures that
if t is called from whatever call expression, then it is passed in the modified
stylesheet S' the same value as it was in the initial stylesheet S. Clearly, ther
is nothing changed in ť. Therefore, stylesheet S' has to return the sam r suit
as S for the same input document, so they are equivalent.

Next, we check that parameter p is declared only once in the modifi d
stylesheet S'. Leťs suppose for contradiction, that p is declared in two tem
plates or functions t, ť E TUN UF. It cannot happen that p E P' \ P is a
renamed parameter, as we assign new narnes to renamed parameters on line 5.
Thus, p E Pand params(t) n params(ť) i= 0 and such a parameter ís renamed
on line 7 to new narne p', which is a contradiction. o

Pass All Parameters. Now, we continue with a stylesheet DistinctParams(S),
whích declares each parameter only in one ternplate or function. We take ev
ery call expression and change it to pass all parameters from P, as described
by procedure PassAllParams depicted in Figure 26. It does the following. For
each parameter name p E P, if the call passes parameter p, then we leave it un
touched. If the call does not pass p, we add p to parameters passed by the call
with its value set to default(t, p), where tis the only template or function that
declares parameter p. It is the result of procedure DistinctParams that exactly
one such t exists.

Remove Parameter Declarations. Finally, we simply remove parameter
declarations from all templates and functions.

We have to ensure that a template or function that does not declare a pa-

91

1: procedure PassAllParams(S == (T, N, F, P, U, M, T))
2: for all c E calls(S) do
3: for all p E P do
4: if p rf_ paramsPassedBy (c) then
5: t +--- ť E T U N U F such th t p E parmn„ (ť)
6: change c to pass p with it valu s t t default(t, p)
7: end if
8: end for
9: end for

10: return S
11: end procedure

1: procedure RemoveParamDecls(S == (T, N, F, P, U, M, T))
2: S +--- PassAllParams(S)
3: for all t E T U N U F do
4: params(t) +--- 0
5: end for
6: end procedure

Figure 26: Procedure PassAllParams ensures that all param t rs ar p d in
every call. Procedure RemoveParamDecls removes param t r d claration fr m
all temp la tes and functions in a stylesheet.

rameter, resets its value in the beginning of a body expression, a describ d
by procedure RemoveParamDecls in Figure 26. For each template or function
t E T U NU f, we add instructions that set every undeclared param t r p E
P \ params(t) to an empty sequence at the beginning of body(t). Th n, we re
move all parameter declara tions params (t) from t.

Lemma 6.4 Let S == (T, N, F, P, U, M, r) be an XSLT stylesheet. Then, therc exi ts
an XSLTstylesheet S'== (T',N',F',P', U,M,r') such that S' is equivalent to Sand
Vt E T' U N' UF': params(t) n P == 0.

Proof Let S' == RemoveParamDecls(DistinctParams(S)).
Leť s check that we solved the problem. Since only parameters are changed

either in calls or in declarations in templates and functions, we inspect only
parameters. As we proved in Lemma 6.3, S" == DistinctParams(S) is equivalent
to Sand each parameter is declared in only one template or function.

Further, we inspect the change from S" to stylesheet S' caused by proce
dure RemoveParamDecls(S"). We check the value of a parameter in S", wh n
it is evaluated in a body of a template or function, and compare it to its cor
responding value in S' . Notice, that this evaluation is always caused by some
call expression c.

Principally, the following two situations can arise when evaluating a pa-
rameter p E P in a template or function t in stylesheet S": i) parameter p is
declared and its value is passed by c, ii) parameter p is declared but its value
is not passed by c. Notice, that if a parameter is not declared but its value is
passed by c is not interesting for us. A reference to such a parameter raises an
error, so a stylesheet that contains it is not correct and so we do not consider it.

In the first case, when p is both declared in t and passed by c, nothing

92

changes in S', as changes are done only for p r m t r th
clared or not passed by c.

In the second case, when p is declared but it i n t pa
value for p is used in S". The same behavior in S' i gu rant
PassAllParams on lines 4 to 7.

ith r und -

C,

o

In this section, we proved that pararnet r decl ration with d f
expressions are only syntactic sugaring and as such th y can b
from the language, while not weakening the xpr s iv pow r f

Tunnel Parameters

In this section, we show that tunnel parameters are only a ynta ti u ar, b
transforrning a stylesheet with tunnel pararneters to a tyl h t with ut th m.
Formally, we transform a stylesheet S == \T, N, F, P, U, M, T) t , n quival nt
stylesheet S'== \T', N', F', P', U' == 0, M, T').

Tunnel parameters allow passing parameter values through t mplat that
do not care about them to templates that do. Once a param t r is pas d a
a tunnel pararneter, it is automatically passed on by every templat c 11, v n
without explicitly saying so.

When evaluating a stylesheet, there is a set of tunnel param ters tha t i
passed on in every template call. This set can only grow, because th re is no
mechanisrn to remove a tunnel parameter from this set. Th set of tunn 1 pa
rameters is passed to templates, but not to functions.

As with usual pararneters, a declaration of a tunnel param t r in a t mp lat
can specify a default value using an expression. XSLT specification say that a
default value of a tunnel parameter is local to a template: thus, ad fault va lu
of a tunnel pararneter does not change any value in the set of tunnel param t r
that is passed on in furt.her template calls.

Unfortunately, this feature complicates the transformation to a styleshe t
without tunnel parameters, because the problern now differs greatly from th
problem with usual parameters that we described in the previous section. It is
that with usual parameters we could solve the default value problem statically.
As usual parameters have to be passed explicitly, we have a static knowledge
whether a default value should be used or whether a value is passed directly
in a call. Now, with tunnel parameters, this information is not statically known
as it depends on the computation branch the XSLT processor runs through and
so it depends on an input XML document.

In the following, we use parameter declarations again, though we proved
they are only syntactic sugar. Notice, that parameter declarations we work
with, are declarations of non-tunnel parameters that can be safely removed
from a stylesheet according to Lemma 6.4.

Idea. The trick inheres in keeping with each tunnel parameter u E U one
flag parameter u' that indicates, whether the parameter u has been set or not in
one of the preceding template calls. Then, we set a local default value in a dec
laration of u to a value passed by a call, if its flag indicates that the parameter
has not been set before.

As in the case of usual parameters, we pass all tunnel parameters with ev-
ery template call, and their respective flag parameters too . Now, of course,
none of the parameters is marked as tunnel.

93

Since functions cannot be passed tunn I p r m t r , h t
of each tunnel parameter in a function call to n mpt
to set a value of its flag parameter to indicat th t th r m t r i n t t.

To sum up, the transformation of a styl he t with tunn 1 p r m t r t
stylesheet with no tunnel parameters is done in tw t p : i) r tunn I p -
rameter is passed as a non-tunnel parameter in each c 11, and ii) d d ar ti n f
tunnel parameters are changed to declarations of non-tunn l par m t r with
modified default value expressions.

Forrnally, leťs assume that all tunnel parameters U ha nam diff r nt
from all usual parameters P, P n U == 0. We can assum thi with ut l f
generality, because as we can distinguish usual param t r from tunn l p r m
eters in a stylesheet, we can rename the conflicting on s. For a p ram t r u, l t
u' denote its new flag parameter, u' r/:. P U U. A flag param t r i lway t
either to true or false.

Pass No Tunnel Parameter. In the first step, we nsur that v ry tunn
parameter is passed in every temp la te or function call and tha t i t i pa d a
a non-tunnel pararneter. This process is described by proc dur Pas NoTumzel
Param in Figure 27, we describe it in more detail here.

For each tunnel parameter u E U, add u to every templat call' param t r
list that does not pass u and add u' to every template or function call' param
eter list. The values of the forrner tunnel parameter u and its flag param t r iť
vary depending on whether we rnodify a template call or a function call.

For a template calt if u was already in the parameter list, s t u' to true,
otherwise set u' to $u 1

- an expression evaluating to the actual valu of iť (a
value passed to a template). Set value of u to the following cod

if-then-else ($u', $u, ())

It passes on a value of u, if u has been set earlier in the cornputation, or an
empty sequence, if it has not been set before.

For a function call, set u to an empty sequence and its flag parameter to fal se
to indica te tha t the parameter u is unset.

Fix Default Value Expressions. In the second step, we fix the default value
expressions of former tunnel pararneters, so that parameter u is assigned its
default value expression default(t, u) in a template t E T U N, only if its flag
parameter u' is unset. Otherwise, we keep the value passed to u by the curren t
call. This is realized with the following code that replaces the default value
expression of u.

if-then-else ($z/, $u, default(t,u))

It returns a value of u, if u has been set earlier in the computation. Other
wise it returns the default value default(t, u). The whole process is described
by procedure RemoveTunnelParams given in Figure 27.

Lemma 6.5 Let S == (T, N, F, P, U, M, T) be an XSLT stylesheet. Then, there exists
an XS LT stylesheet S' == (T', N', F', P', U', M, T

1
) such that S' is equivalent to S and

U'== 0.

Proof Let S'== RemoveTunnelParams(S).
It is clear that stylesheet S' contains tunnel parameters neither in calls nor in

declarations. The former is due to procedure PassNoTunnelParam that changes

94

1: procedure PassNoTunnelParam(S == (T, N, F, P, U, M, T))
2: for all u E U do
3: for all c E calls(S) do
4: if c is a template call then
5: passed ~ u E paramsPassedBy(c)
6: change c to pass u' flag parameter
7: change c to pass u as a non-tunnel param t r
8: if passed then
9: set value passed by u' to true

10: else
11: set value passed by u' to $u'
12: setvaluepassed by u to if-t h e n -else ($u1

, $u, ())
13: end if
14: else t> c is a function call
15: set value passed by u' to false
16: set value passed by u to ()
17: end if
18: end for
19: end for
20: return S
21: end procedure

1: procedure RemoveTunnelParams(S == (T, N, F, P, U, M, T))
2: S ~ PassNoTunnelParam(S)
3: for all t E T U N do
4: for all u E U do
5: declare u as non-tunnel parameter in t
6: if u E params (t) then
7: default(t, u) ~ if-then-else ($u1

, $u , default(t, u))
8: end if
9: end for

10: end for
11: return S
12: end procedure

Figure 27: Procedure RemoveTunnelParams transforms a stylesheet with tunnel
parameters to an equivalent one without tunnel parameters.

95

every tunnel parameter in every call to be pa d
the latter is due to procedure RemoveTunnelParam th t h n
every tunnel parameter in every templat to b d 1 r d
rameter.

When the transforrnation is initialized, all form r tunn 1 p
unset and their flags too.

Functions are treated to be passed all tunnel p r rn t r with th ir lu
and flag parameters unset, which is correct.

Further we inspect only temp la te calls. If a form r tunn 1 p ram t r zt i
passed in some calt then u' is always set to true. Oth rwi form r valu f u
and its flag u' is passed on.

Thus, if a former tunnel parameter u is declared in a t mpl t t, th n it i
assigned a value passed by a call only if its flag u' is s t to tru , which indicat
that u has been set by some previous call. Otherwis , if u ha not b n t
by some previous call, u is assigned the default value, which is a tly th
semantics of tunnel parameters. o

In this section, we proved that tunnel parameters can b simulat d with
non-tunnel parameters.

Conclusion

Here, we put together, what we proved in this section on param t rs in XS T.
The tunnel parameters can be simulated with non-tunnel param t rs, which in
turn do not need to be declared. Therefore, the following lemma holds.

Lemma 6.6 Let S == (T, N, F, P, U, M, T) be an XSLT stylesheet. Then, there exi ts
an XSLT stylesheet S' == (T', N', F', P', U', M, T1

) such that S' is equivalent to S,
U' == 0, and Vt E T' U N' UF' : params(t) == 0.

Proof Let S' == RemoveParamDecls (DistinctParams (RemoveTu nnelParams (S))) .
S' satisfies the claimed conditions due to Lemma 6.4 and Lemma 6.5. D

6.3.4 Template Rules

Template rules are the first thing one learns when studying XSLT. Surprisingly,
they do not extend the expressive power of XSL T. In this section, we prove
that for a stylesheet with template rules we can always find an equal stylesheet
without template rules. A stylesheet without template rules cannot use the
default initiation, but it has to be initialized with a narned template. For details
on stylesheet initialization see section 6.1.19 on page 81.

First, we show how template rules and applying instructions can be re
moved to get an equivalent stylesheet for stylesheets with no rnodes in tem
plate rules, and then even with modes in template rules.

Second, we explain why stylesheet inclusion and import are only a help
ful tool for a programrner that does not improve the expressive power of the
language.

Finally, we make a note that there is no difference in rnatching a pattern, i.e.
a limited XPath expression, or an unlimited XPath expression.

96

Template Rule Choosing Mechanism

Here, we demonstrate that the template choo in m chani m i
XSLT itself, which is rather surprising. W u nl t mpl t
modes in this section.

To prove our claim, we need to remov ternplat rul
plying instructions apply-templates, apply-imports, and n
applying instructions, which we do one by one.

ibl in
ith ut

Remove Template Rules. In this step, we remov th t mpl t rul fr m
stylesheet, which we do together with removal of apply-t mpl t in tru ti n.

The idea is to replace the template choosing mechanism with n m d t m
plate that tries to match the current context item against th patt rn ft m
plate rules in the template choosing order. If the current cont t it m mat h
the pattern, it evaluates the body expression of the corr p ndin t mpl t
rule. Sure, apply-templates instruction has to be replac d with an in tructi n
that calls this named template for each item selected for template applicati n.
Further, order of selected items has to be the same as in th apply-t mpl t
instruction.

Once template rules are removed, we always have to initiate a transforma
tion with a template call. We provide a special named temp la te for this.

First, we define an expression that applies built-in template rul for th
current context item.

Definition 6.12 With Builtln (ParamList) we denote the following expression.

choose(
when(self: :document() or self: : element() ,

apply-templates (child:: *, 0, ParamList))
when (self: :text() or self: : attribute() ,

value-of(.))
otherwise (())

Notice, that this is direct reproduction of informal specification of built-in
rules, which we provided in section 6.1.4. Also notice, that expressions doc
ument(), attribute(), etc. are node tests that try to match the current context
item.

Next, we define an expression that is a replacement for the apply-templates
instruction. We do not provide a separate definition for the apply-templates
replacement expression, but rather we provide an expression BODY(t) that is
a replacement of a body body(t) of a template or function t.

Definition 6.13 Let S == (T, N, F, P, U == 0, M == 0, T) be an XSLT stylesheet, and
t E Tu NU F be a template or function. With BODY(t) we denote a sequence con
structor body(t) that has every occurrence oj instruction apply-templates(ParamList,
Sort List, Expr) replaced with the following expression.

for-each (Expr, SortList,
call-template ("apply-tpl", ParamList)

97

Notice, that ternplate apply-tpl is called in th rn nt t n
~rder as .te1:1plate rules are called with th r pl c d appl -t mpl
hon. Th1s is ensured with the for-each instruction th t ch n
context and sorts the processed sequence of it m in th d ir d .

m
m tru -

urr nt

Next, we define a named template that i a r pl c m nt f r th t mpl t
rule choosing mechanism. We use the fact, that w h v a t mpl t h in
order T, which is a total order, in which templat rul ar r h d f r t find
the one that matches. Recall that CJs(T, i) returns th i-th t mpl t rul in Tin
template choosing order T.

Definition 6.14 Let S == (T, N, F, P, U == 0, M == 0 , r) be an XSLT ty/e;;fu~ et.
Then, with ApplyTpl(S) we denote the following na med templat .

template-named("apply-tpl",
chaose(

when (some $node in patt(CJs (T, 1)) satisf ies . is $node ,
BODY(crs (T, 1)))

when (some $node in patt(CJs(T, ITI)) satisfies . is $node ,
BODY(crs(T, ITI)))

otherwise (Builtln(ParamList))

In the template choosing mechanism replacement above, we us instruction
chaose to match the patterns of former template rules in an order defin d by T.

The modified body of the former template rule, whose pattern match s first, i
evaluated. If no pattern matches, then the built-in rules are applied using our
Builtln expression.

Pattern matching is realized with some-in-satisfies XPath expr ssion. No
tice, that it directly follows the semantics of pattern matching describ d in th
introduction section. It looks for the current context item among a s quence
of nodes that are the result of evaluating the pattern XPath expr ssion of the
former template rule. First, sequence of nodes represented by the pattern is
evaluated, then variable $node is bound one by one to the nodes from this se
quence and the satisfies expression is evaluated for each such binding. The
satisfies expression here is true, if the current context item and variable $nod
refer to the same node. The some-in-satisfies expression is then true, if th
pattern matches the current context item.

Also notice, that we silently assume that apply-tpl is a name used by no
named template in N. As the set of named templates is finite and statically
known, we can always makeup a brand new name instead of apply-tpl. There
fore, this can be assumed without loss of generality.

Next, we provide a named template that is used to start the transformation
with.

Definition 6.15 With StartTpl we denote the following named template.

template-named("start-tpl",

for-each (I, 0,
call-template("apply-tpl", 0)

98

L

1: procedure RemoveTemplateRules(S == (T, / F, P, U == 0 M == 0 , T))
2: for all t E T U N U F do
3: body(t) ~ BODY(t)
4: end for
5: N ~NU {ApplyTpl(S), StartTpl}
6: T~<Z>

7: T~0

8: return S
9: end procedure

Figure 28: This procedure takes a stylesheet with t mplate rul s n no m d
and converts it to an equivalent stylesheet without t mplat rul . Th initi al
stylesheet cannot contain other applying instruction than pply- t mpl t f r
the procedure to work correctly.

It simulates the default initialization of transformation, wh nt mpla t rul
are applied to the root node of the input document. It simply s 1 cts th r t
node of the input document and calls the named templat , which w u a a
replacement of the template choosing mechanism.

We put the above definitions together in procedure RemoveTemplateRule
depicted in Figure 28. It replaces apply-templates instructi n in b di f
templates and functions in lines 2 to 4. Then, it adds the t mplat hoosing
mechanism replacement ApplyTpl(S) together with the initiating nam d t m
plate StartTpl to named templates. Finally, template rules ar r mov d and
template choosing order Tas well, as it is no longer needed when there are no
ternplate rules in the resulting stylesheet.

Lemma 6.7 Let S == (T, N, F, P, U == 0, M == 0, T) be an XSLT stylesheet with
no applying instruction other than apply-templates. Then, there exists a stylesheet
S' == (T' == 0, N', F', P, U == 0, M == 0, r' == 0 with no template rules that i
equivalent to S.

Proof. Let S' == RemoveTemplateRules(S). Clearly, it contains no template rule
and template choosing order is therefore ernpty too.

We need to check the equivalence with S, only. As we replaced app1y
templates instruction with a for-each instruction that calls a new named tem
plate apply-tpl, we need to check if it behaves the same.

As we noted earlier, the replacement of apply-templates instruction works
well, as it selects the right context in which apply-tpl template is called.

We also noted above, that apply-tpl works well, as it correctly finds the
matching pattern and as it evaluates the body expression corresponding to
the matching pattern in the right context, which is the sarne context, in which
apply-tpl template is called. The order, in which template rules are checked, is
the right one, as we choose the templates in template choosing order. Finally,
if no template rule matches the current context node, then built-in rules are
simulated with our Builtln expression. o

Remove apply-imports. The apply-imports instruction applies a ternplate
rule to the current context item, where it considers only template rules from
the stylesheets irnported to a stylesheet with the current template rule. We do

99

not go into technical details in this section, w r th r itf 11 f th
removal of apply-imports instruction and outlin th luti n.

This is not so easy, as it might look. Con id r, th t th urr nt t mpl t rul
from stylesheet S calls a named template from diff r nt t l h t '. If in thi
named template apply-irnports is called, th n th con id r d t mpl t rul r
not the template rules imported to S', but it i th t mpl t rul imp rt t
S, as the current template rule is not changed by a c 11 t . n m d t mpl t

Therefore, we need to keep an identification of th urr nt t mplc t rul
throughout the computation. Since all template rul ar t t ll ord r d with
template choosing order T, we can identify each t mplat rul with numb r
that represents the order of a template rule in T. From now n, f r a h t m-
plate rulet E T, with id of t we denote 0-5 1 (T, t), which is th ord r ft E Tin
template choosing order. Thus, we have a numerical id for v ryt mpl t rul ,
and so the id of the current template rule can be passed on throu h t mpl t
wi th a pararneter.

Then, for a stylesheet S, we can construct a named template apply-tpl-5 that
simulates apply-imports instruction called, when the curr nt t mpl te rul i
in S. It has the same structure as named template apply-tpl, but th rul it i
built from come only from the stylesheets imported to styl h t S. urth r,
each body expression is changed to pass the id of the curr nt t mpl t rul .

Next, we have to assure that an apply-instruction r plac m nt calls th
proper apply-tpl-5 template. It means that we have to provid a mapping th t

maps an id of the current template rule to the corresponding apply-tpl-S. Thi
can be easily done with a chaose instruction.

Remove next-match. The next-match instruction applies a t mplate rul
to the current context item, where it considers only template rules that succ d
the current template rule in the template choosing order.

Here, we have to work with an id of the current template rul as wh n
removing the apply-imports instruction. Recall that id of a templat rul is its
order in the template choosing order.

To replace next-match instruction, we construct a named template apply
next-tpl that has the same structure as nametl tem plate apply-tpl. It is extend d
with a test that allows only rules that succeed the current template rule in tem
plate choosing order to match. It can look like the following.

template-named("apply-next-tpl",

c hoo se (
when (some $node in patt (Cls(T, 1)) satisfies . is $node

and 1 > $CurrentTplRul eID ,

BODY(Cls (T, 1)))

when (some $node in patt (Cls(T, IT!)) satisfies . is $node

BODY(Cl5 (T, I TI)))
otherwise (Builtln(ParamList)

and ITI > $CurrentTplRul eID ,

Notice, that we extended the satisfies expression in comparison to apply-tpl
named template with a condition i > id, w~er.e i is ~d of the former template
rule, whose pattern is tried for a match, and zd is the id of the current template

100

~ule. As id of a template rule is the ord r of a t mp]at rul in t h
mg order T, the above condition ensures that only t mpl t rul th t u
the curren t temp la te rule in T can ma tch.

Sure, each instruction next-match is r pla d with ll-t mpl t in ru -
tion that calls the just defined apply-n t-tpl t mpl t .

To sum up, we showed that template rul s nd ppl in in tru ti n n
be removed from a stylesheet that has no mod , uch that w nd up ith
stylesheet that is equivalent to the initial one.

Lemma 6.8 Let S == (T, N, F, P, U == 0, M == 0, r) b an XSLT ._ tyles/J et. TIT '11,

there is an XSLT stylesheet S' == (T' == 0, N', F', P', U == 0 , M == 0, r' == 0)
without template rules that is equivalent to S.

Proof We showed that we can safely remove apply-templat with t mpl t
rules in Lemma 6.7, then we outlined how apply-import in tru ti n n b
replaced, and finally we showed how next-match instruction can b r pl d.
Thus, after applying all three transformations to S w g ta styl h t with n
template rules and no applying instruction. o

Mode s

In the previous section, we proved that we can transform a stylesheet with tem
plate rules and applying instructions to an equivalent one without th m. Th
only restriction we put, is that a stylesheet cannot use modes. In thi s tion,
we extend the transformation to work even for stylesheet that use mod .

Formally, we transform a stylesheet S == (T, N, F, P, U == 0, M, T) with
modes to S' == (T' == 0, N', F', P', U' == 0, M' == 0, T == 0) that is equival nt to
Sand that uses no ternplate rules and no modes.

The idea is to follow the transforma tion from the previous ection. W
slightly change it, such that apply-templates replacement now pass s its mod
with a new parameter $currenLmode. We split the apply-tpl named t mplat
that replaces the template choosing mechanism to several parts, where each
part contains only ternplate rules with the same mode, and replace the apply
tpl named template to chaose the proper ternplate according to the value of
$currenLmode.

We provide the transformation for apply-templates instruction only. Th
other two applying instructions can be removed accordingly.

First, we define a set of template rules that are checked when mode m is
specified in apply-templates instruction.

Definition 6.16 Let S == (T, N, F, P, U == 0, M, T) be an XSLT stylesheet, and
m E M be a mode. Then, with all (m) we denote the following set of template rul es.

all (m) { t E T I mode(t) E { m, #all } }

Next, we provide a replacement of the apply-templates instruction that con
siders its mode. Like in the previous section, we give it as a replacement of a
body of a template or function. Notice, that special mode #current is treated so
that it passes on the current value of $currenLmode parameter.

101

Definition 6.17 Let S == (T, N, F, P, U == 0, M, T) be mz LT ~ fl;ltsl1etf, a11d
t E TU NU F be a template or junction, and m == 111od (t) bt if 111 d~. Tli 11 , u it/J
B~DYMo~e(t) we denote a sequence con tructor body(t) that has t try o urr>11 t

oj znstructwn apply-templates(ParamLi t, Sort Li ... t, Expr) rep/a d witll one f tlre Jf-
lowing expressions, depending on m. · .

If modem -# #eur rent then replace it with the jollowin

f or-each (Expr, SortList,
call-template("apply-tpl ",

param ($current_mode, m) ParamList)

If modem== #eur rent then replace it with thefollowin

for - e ach (Expr, Sort List,
call-template("apply-tpl",

param ($c urrent_mode , $current_mode) ParamList)

Next, we define an expression that chooses a template rul for th curr nt
mode. It adheres to apply-tpl structure, but only template rul with th p -
ified mode or with special mode #all are included in this case.

Definition 6.18 Let S == (T, N, F, P, U == 0, M, T) be an XSLT st i;le heet, n1 E
M be a mode, and n == ja l!(m) I be the number oj template rules witlz mode nz or
with special mode #all. Then, with ApplyMode(m) we denote the following XSLT
expresswn.

choose(
when (some $node in patt(čT5(all(m),l)) satisfies . is $node ,

BODYMode(čT5 (all(m), 1)))

when (some $node in patt(čTs(all(m),n)) satisfies . is $node ,
BODYMode(čTs (all(m), n)))

otherwise (Builtln (ParamList))

Expression patt(CJs (al!(m), i)) in the above definition denotes a pattern of
template rulet, where mode(t) is either mor special mode #all and ternplat
rulet is i-th arnong such template rules in template choosing order T.

Further, we define the replacement of ApplyTpl(S) for a stylesheet without
modes with ApplyTplMode(S) for a stylesheet with modes. It chooses the et of
template rules, among which we search for a rnatch, according to the current
mode.

Definition 6.19 Let S == (T, N, F, P, U == 0, M, T) be an XSLT stylesheet, where
M == {m1, ... , mn} is a set of modes. Then, with ApplyTplMode(S) we denote the
following named template.

template-named("apply-tpl",

choose(
when($current_mode = #default,

ApplyMode(#de faul t))

102

6 XSLT

1: procedure RemoveTemplateRulesWithMode (S == (T, N, F, P, U == 0, M, T))
2: for all t E T U N U F do
3: body(t) t- BODYMode(t)
4: end for
5: N t- N U {ApplyTplMode(S), StartTplModes}
6: Pt- P U {"currenLmode"}
7: T t- 0
8: T t- 0
9: M t- 0

10: return S
11: end procedure

Figure 29: This procedure takes a stylesheet with template rules and modes
and converts it to an equivalent stylesheet without template rules and modes.
The initial stylesheet cannot contain other applying instruction than apply
templates for the procedure to work correctly.

))

when ($current_mode m1,
ApplyMode(m1))

wh e n($current_mode mn,
ApplyMode(mn))

Finally, we define the starting template StartTplModes, which is the same as
StartTpl, but it initializes $currenLmode to special mode #default.

Definition 6.20 With StartTplModes we denote the following named template.

template-named("start-tpl",
for-each (I, 0,

call-template("apply-tpl",
param($current_mode, #defau l t))

))

We put it all together in procedure RemoveTemplateRules WithModes depicted
in Figure 29. We can notice that it is exactly the same as procedure RemoveTem
plateRules depicted in Figure 28, but BODY(t) is replaced with BODYMode(t),
and ApplyTpl(S) is replaced with ApplyTplMode(t), and former initiating tem
plate StartTpl is replaced with ApplyTplMode(.) Further, the set of parameter
names is enlarged with currenLmode and finally, the set of modes is emptied
at the end of this procedure.

Lemma 6.9 Let S == (T, N, F, P, U == 0, M, T) be an XSLT stylesheet with no ap
plying instruction other than apply-templates. Then, there exists a stylesheet S' ==
(T' == 0, N', F', P, U == 0, M == 0, T 1 == 0 with no template rules and no modes
that is equivalent to S.

Proof Let S' == RemoveTemplateRulesWithModes(S). We check that it satisfies the
conditions of lemma.

Since the set of mode names M is finite and statically known, we can do
the transformation as described by the given procedure, which means that
ApplyTplMode(S) and ApplyMode(m) can be constructed, as they are finite.

103

6

It is clear from the definitions, which follow the informal definitions of
XSLT modes, that current mode is passed with all template calls with new pa
rarneter $currenLmode.

If the stylesheet S' is initialized with StartTplModes named template, then
$currenLmode is initialized to #default special mode, which is the default be
havior.

If apply-templates instruction is called in S with mode m, then only tem
plate rules with modem or with special mode #all are considered.

Special care is taken about special mode #current in apply-templates in
struction, which means that current mode is used. This is treated by passing
current value of $currenLmode parameter in apply-templates replacement.

This is how semantics on template rules with modes is defined. O

It is possible to follow the same principie when modifying transformations
for apply-imports and next-match instructions. We only have to ensure, that
these two applying instruction pass $currenLmode parameter unmodified.

In this section, we proved that template rules with modes can be removed
from XSLT without loss of the expressive power of the language.

Including, Importing

A stylesheet can be included or imported frorn another stylesheet. This is cov
ered by include and import instructions, respectively. For explanation of the
semantics of these two instructions, see section 6.1.18.

Lemma 6.10 Let S be a stylesheet. Then, there is an equivalent stylesheet without
include and import instructions.

Proof lf a stylesheet is included, the semantics is the same like if the text of
the included stylesheet was pasted into the including stylesheet. Therefore,
include instruction is replaced with the contents of an included stylesheet and
we are done.

Importing a stylesheet is already covered in two previous sections on re-
moving template rules. o

Patterns

In both XSLT 1.0 and XSLT 2.0, patterns are mainly used to chaose the right
template rule for the current context item. In both specifications, pattern is a
subset of XPath. Whereas XSLT 1.0 limits usage of XPath to forward only axis
and no predicates, XSLT 2.0 limits just to forward only axis, while predicates
are allowed.

Prom our transformation of a general stylesheet to a stylesheet without tem
plate rules, it can be clearly seen that full XPath expressions can be used when
matching the current node against the patterns.

Conclusion

In this section, we proved that a stylesheet with template rules can be replaced
with an equivalent stylesheet without template rules, which is achieved with

104

6 SLT

replacing template rules with named templates . We formalize our result in th
following theorem.

Theorem 6.1 Let S == (T, N, F, P, U == 0 , M, r) be an XSLT style heet. Then, there
is a stylesheet S' == (T' == 0, N', F', P', U' == 0, M' == 0 , r' == 0) that is equivalent
to S.

Proof We proved a removal of apply-templates instruction from a styleshe t
with modes in Lemma 6.9, and we outlined a removal of next-match and apply
imports in a rather detailed manner in section Template Rule Choosing Mech
an1sm. O

Therefore, we do not use template rules and instructions apply-templates,
next-match, apply-imports in XSLT Core.

6.3.5 Functions and Named Templates

A body of a function, as well as a body of a named template is defined with
a sequence constructor. A function, as well as a named template can be called
and passed parameters to. Where is the difference? In this section, we show
that they have the same expressive power.

As we explained in introduction to XSLT, the difference is twofold. First,
unlike named templates, functions are not passed the current context. Thus, we
do not now the current template rule, current mode, current context position,
etc. in a function. Second, functions are not passed tunnel parameters.

Lemma 6.11 Functions and named templates have the same expressive power in XSLT.

Proof First, leťs consider calls to functions and named templates. A function
can be called from within an XPath expression, while a named template can be
called from a sequence constructor. As we proved in section 6.2.1, XPath ex
pressions and sequence constructors have the same expressive power. There
fore, we can always call both a function or a named template.

Second, we study the expressiveness of functions and named templates.
Surely, named ternplates can express at least the same as functions, because
they are defined like functions with a sequence constructor and they like func
tions can be passed parameters to. Further, they have more inforrnation: con
text, and tunnel parameters.

Next, we study only if functions can express the same as named templates.
Leťs start with tunnel parameters. In Lemma 6.5 we proved that tunnel

parameters can be replaced with non-tunnel parameters. Therefore, we do not
have to take care about them as we can transform a stylesheet to an equivalent
one without tunnel parameters. In such a transformed stylesheet, we have to
bother only with context, which we inspect next.

Leťs examine the evaluation context now. According to the XSLT specifi
cation, the context consists of two parts: i) focus that keeps the currently eval
uated node and its position in a sequence being currently processed, and ii)
additional context variables.

The focus is the same as for XQuery, it consists of the following.

• Context item, which represents the current node or atomic value being
processed.

105

6 XSLT

• Context position, which represents the position of current it min th ur
rently processed sequence.

• Context size, which represents the nurnber of items in th curr ntly pro
cessed sequence.

Current item can be found out using the current() built-in function in a
function body. Other focus items cannot be addressed in a function.

Additional context variables are defined in XSLT specifica tion to b th
following. We show that every variable either does not affect th expressive
power of the language, or is not needed in XSLT Core, because a rnechanism it
refers to is removed from the core language.

• Current template refers to the current template rule being processed. This
context variable is needed only to define semantics of instructions apply
imports and next-match. Since we already proved that these instructions
can be removed in section 6.3.4, this variable is not needed anymore.

• Current mode keeps the mode of the current template. This is needed to
correctly evaluate special mode #current. Since template rules even with
modes can be removed from the language, as we proved in section 6.3.4,
the notion of current mode is not needed in the context anymore.

• Current group represents a sequence of items tha t are processed collec
tively in one iteration of the for-each-group instructions. Since grouping
instructions are proved to be only syntactic sugaring and therefore are re
moved from the core language, the notion of current group is not needed
in the context. For details see section 6.3.7.

• Current grouping key represents the key of the current group in the for
each-group-by instruction. For the same reason as current group, the
notion of current grouping key is not needed in the context.

• Current captured substrings represents a sequence of strings that result
from a match of a string against a regular expression. This context vari
able is needed only to define semantics of instruction matching-substrings,
which we omitted from consideration. Therefore, we do not need the no
tion of current captured substrings in the context for XSLT Core.

• Output state tells whether a final output or only temporary output is con
structed. This context property is not interesting from the perspective of
the expressive power of the language.

The analysis provided makes it a bit clearer. No additional context vari
ables are needed in a context for the core language. Thus, only focus has to be
considered.

We show that a function can be passed the focus. As the context position
and size are both integers, they can be passed explicitly to a function using
parameters. The context item has not to be passed, since current() function can
be used in a function to get i t.

Thus, a function can express the same as a named template, because the
only distinction between them is that a function is not passed the current focus

106

6

and we just showed that a function can be passed everything from th current
f ocus using parameters.

To sum up, functions and named templates have the same expr ssi pow r.
o

We keep functions in XSLT Care, since they allow to mix XPath xpre ions
with sequence constructors, as proved in section 6.2.1.

6.3.6 Sorting

In this section, we show that we do not need special sorting instruction and
language constructs in XSLT Core.

In XSLT 2.0, we have two instructions that use a list of order sp cifications
SortList. They are perform-sort instruction, which takes a sequence and a list of
order specifications and returns that sequence sorted, and for-each instruction,
which sorts the initial sequence prior to iterating over it.

There is also apply-templates instruction that can have a list of order speci
fications, but we already removed apply-templates instruction from XSLT Core
in section 6.3.4 and replaced it with for-each instruction. Theref ore, we do not
consider apply-templates.

We prove that language constructs for sorting are not needed in XSLT Core
in the following way. First, we prove that for-each instruction with order spec
ifications can be replaced with a for-each instruction without order specifica
tions, as we can presort the sequence iterated over with perform-sort instruc
tion. Second, we prove that perform-sort is expressible in XSLT Core. As the
semantics of order specifications in XSLT is in fact the same as in XQuery, we
use a similar method to express sorting semantics of perform-sort as we used
to express sorting semantics of order by cla use in XQuery.

Lemma 6.12 Every instruction for-each(Exprl, SortList, Expr2) can be replaced with
an equivalent for-each(Expr3, 0, Expr2) instruction without order specifications.

Proof Recall that Expr1 is the initial sequence, which is to be sorted according
to order specifications SortList. The sorted sequence is than itera ted and for
each item Expr2 is evaluated.

The lemma says that Expr3 is the initial sequence that is already sorted ac-
cording to SortList. Trivially, let Expr3 be perform-sort(Exprl, SortList). o

From now on, we can assume that a list of order specifications of a for-each
instruction is empty. We can assume this without loss of generality dueto the
above lemma.

Leť s now turn our attention to perform-sort. Recall that every order specifi
cation is an expression, which is evaluated for each item in the initial sequence
to get an order value. The list of order values of every item is used to lexico
graphically sort the initial sequence.

The idea is to sort with Sort R expression defined in Definition 4.6 on page 38.
Now, as we can mix XPath expressions with sequence constructors, we can use
XSLT instructions in it, of course.

We use the same trick as with XQuery sorting transformation. We first con
struct a stream of tuples, where each tuple contains for each item in the initial
sequence a list of order values and the item itself. Then, we sort this stream of

107

6 T

tuples with relation R that defines the same lexicographic ord ras in u ry
sorting transformation. Finally, we extrac t only the it ms th mselv from th
stream of tuples to get the sorted sequence.

Since the transformation is so sirnilar to XQuery's transformation, w only
redefine expressions Stream, which constructs the tuple stream, Tuple , whi h
extracts tuples frorn the tuple stream, and Unwrap, which extracts the item
from the sorted stream. Everything else stays the same, or th diff renc s ar
trivial.

Definition 6.21 Let e be a perform-sort(Expr, SortList) instruction, where SortList
is a sequence of e1, ... , en expressions. Then, with S tream (e) we denote the following
expresszon.

<stream>
for-each (Expr , 0 ,

<tuple>
<ordval> ei </ordval>

<o rdval> en </ordval>
<res u lt> . </result>

</ tuple>

</stream>

Notice, that a dot expression in the result tag of the just defined expression
refers to the current context item, which is always an item from the initial se
quence represented by Expr expression, as we iterate over it with a for-each
instruction.

Definition 6.22 Let e be an XSLT expression. Then, with Tuples (e) we denote the
following XSLT expression.

for-each (e, 0, . /t up le

Definition 6.23 Let e be an XSLT expression. Then, with Unwrap (e) we denote the
following XSLT expression.

for-each (e, 0, ./ r e s u l t/ *

The following theorem justifies a removal of perforrn-sort instruction to
gether with order specifications from XSLT Core.

Theorem 6.2 Lete be an perform-sort instruction. Then, there is an XSLT express ion
e' such that e is equivalent to e' and e' contains no perform- sort instruction nor an
order specification.

Proof. Let e' == U nwrap (Sort Re (Wrap (e))). The proof is the sarne as for Theo
rem 5.1 on page 63. We only have to check that tuples are constructed correctly
and that result is correctly extracted from the sorted stream, and that the char
acteristic function of a lexicographic order is expressible in XSLT.

First, each tuple is constructed in the right focus 1 as current context item is
the item put into the tuple, and context size is the size of the initial sequence,
and context position is the position of current item in the initial sequence. This

108

6 XSLT

is guaranteed by the semantics of for-each instruction that it rat v r th 1n1-

tial sequence. So, order values are the values of order specifications lu t d
in the right context.

Second, the extraction of tuples from the initial tupl str am nd tr cti n
of results from the sorted strearn is trivially correct.

Third, since lexicographic ordering represented by e pr s ion x~ in O fi
nition 5.7 on page 62 uses only XPath references to order valu and bool an
operators, it is definitely expressible in XSLT. o

6.3.7 Grouping

In this section, we demonstrate that the grouping XSLT instruction xsl:for-each
group is a syntactic sugar and so it does not belong to our XSLT Core languag .

Recalt that xsl:for-each-group instruction has four variants tha t differ in th
way in which iterns are assigned to groups, as we explained in an introduction
to grouping in section 6.1.16 on page 79. These variants are: i) group-by that
groups according to a value of an expression, ii) group-adjacent that groups to
gether adjacent iterns, whose grouping expression evaluates to the same value,
iii) group-starting-with, and iv) group-ending-with that group together adja
cent items, where start or end of a new group is identified by a match of a
grouping pattern, respectively.

For each of these four grouping variants we introduce a single instruction
in our non-XML XSLT grammar: for-each-group-by, for-each-group-adjacent,
for-each-group-starting-with, and for-each-group-ending with, respectively.

Since the first grouping variant group-by is a way different from the other
variants in that it groups together potentially non-adjacent items from the ini
tial sequence, we handle the transformation of a group-by variant separately in
a later section Ad Hoc Groups. The transformations of the other three variants
that group together adjacent items of the initial sequence are handled in the
following section.

Continuous Subsequence Groups

To provide the transformations for adjacent items grouping, we make use of the
fact that a group always consists of items that form a continuous subsequence
of the initial sequence. The idea is to replace each for-each-group instruction
with an expression that gets an initial sequence and a sequence of group start
ing positions, which is a list of positions of the first item in each group, and
returns the same as the replaced instruction. Since for each variant the start
ing position is identified differently, we define three expressions that return a
sequence of group starting positions - for each variant one.

Common Replacement Expression. Leť s start with the for-each-group re
placement expression, which iterates over a sequence of group starting posi
tions and for each starting position it defines a variable that is assigned the
items of the group. Then, the result expression is evaluated, where every ex
pression that refers to current group is replaced with an expression that refers
to that variable. Notice, that the current group can be referred to only using
current-group() function in XSLT.

First, we define a continuous group iterator that is a formalization of the
three grouping instructions that work with continuous subsequence groups.

109

6

Definition 6.24 Lete, g, and r be XSLT expression . Then, with continuou group
iterator (e, g, r) we denote any of the following expressions.

for-each-group - adjacent(e, g, r)
for-each-group-start ing-with(e , g, r)
for-each-group-ending-with(e, g, r)

Leťs look doser on the definition above. Expression e d not n initial
sequence, i.e. an initial sequence is the result of e evaluation. Expr s ion
denotes so called grouping expression. Notice, that group-starting-with and
group-ending-with variants are restricted to grouping patterns, which w g n
eralize to stronger grouping expressions, which we show to b also e pr ssibl
in XSLT Core. Expression r is a result expression that is evaluat d for ach
group.

Next, we define a replacement for the result expression of a continuou
group iterator.

Definition 6.25 Let r be an XSLT expression, and v be a variable name. Then,
with FixCurrentGroup(r, v) we denote an XSLT expression, where each occurrence
oj current-group() function in r is replaced with expression $v, excluding occurrence
in nested for-each-group instructions.

Since current-group() function can appear only at the first position of an
XPath expression, we can safely replace it in the definition above with a vari
able reference, which is restricted the same way. Thus, FixCurrentGroup(r, v) is
a correct XSLT expression.

Next, we define an expression that returns a continuous subsequence from
an initial sequence given two group starting positions.

Definition 6.26 Let e be an XSLT expression, and let i and j be two integer expres
sions. Then, with Subseq(e, i, j) we denote the following XSLT expression.

f n:subsequence(e, i, j - i)

Notice, that fn:subsequence(e, start, length) is a standard function that re
turns a continuous subsequence of a sequence represented by expression e.
The subsequence starts at position start and contains length items. On the other
hand, our Subseq expression uses an index of an item that is right next to the
last item in the initial sequence, instead of a number of items in the resulting
sequence.

Next, we define a replacement expression for a continuous group iterator.

Definition 6.27 Let (e, g, r) be a continuous group iterator, and let Indices be an
XSLT expression that represents a sequence of group starting positions. Further, let
currentGroup and pas be new variable names that do not appear in e, r, and Indices.
Then, with ContinuousGrouplterator((e, g, r), Indices) we denote the following XSLT
expres s zon.

for-each (Indices
variable(pas, fn:position(),

i f - t h e n - e 1 se ($pas = 1 ,

))))

() I

variable (currentGroup, Subseq(e,Indices[$pos - 1], lndices[$pos]) ,
FixCurrentGroup(r, currentGroup)

110

6

This expression iterates over a list of group tarting po iti n lndi e ~ nd
evaluates the result expression r of the former continuous group it r tor f r
each index and so for each group. The result e pr ssion is alu t d in th
context with variable currentGroup set to the current group of it m nd ny
reference to current-group() in r is changed to a ref r nce to vari bl current
Group. The current group is assigned to this variable as a continuou ubs -
quence of the initial sequence e, where the starting position of the subs qu ne
is the value of the preceding group starting position and the ending position is
the value of current group starting position. Variable pos stores the current in
dex of the current group starting position in Indices, so expression Indice [$pas]
represents the current group starting position.

Notice, that we expect the list of group starting positions to always start
with value 1 and to always end with the number of items in the initial s qu ne
plus 1.

Getting Group Starting Positions. Now, vve turn our attention to a way
we obtain a list of group starting positions. For each variant of continuous
group iterator for-each-group-adjacent, for-each-group-starting-with, and for
each-group-ending-with, we get the list of group starting positions in a differ
ent way, therefore we introduce here three Getlndices expressions - one expres
sion for each variant.

Prior to defining the Getlndices expressions, we define a helper expression
Eval(g, e, i) that evaluates an expression gin the context of sequence e, wher
the context item is the i-th item in e. It is used to evaluate the grouping expres
sion of a continuous group iterator.

Definition 6.28 Let g, e, and i be XSLT expressions. Then, with Eval(g, e, i) we
denote the Jollowing XSLT expression.

f or-each (e,
if-then-else (fn :position () = z,

g,
()

Notice, that we have to be careful using powerful Eva! expression, as the
position argument is evaluated in a context different from the context, from
which Eval expression is called. For example, Eval(g, e, fn: pos i t ion ()) does
not evaluate expression gin the context of an item in e that is on the current
context position. Suchan expression evaluates g for every item in e.

Now, we define Getlndices expression for each variant of a continuous group
iterator in the following three definitions. They all return a list of group start
ing positions. The first item is always 1 and the last item of the result is always
a number of items in the initial sequence plus 1, as required by Continuous
Grouplterator expression.

Definition 6.29 Let (e, g, r) be a for-each-group-adjacent(e, g, r) continuous group
iterator. Further, let pos be a new variable name that appears neither in g nor in e.
Then, with Getlndices(e) we denote the following XSLT expression.

for-each (e,
variable(pos, fn:position(),

if-then-else($pas= 1 or g ,_ Eval(g,e,$pos - 1),

111

)))

$pos ,
()

fn:count(e) + 1

6

The adjacent variant of Getlndices(e) iterates over items of th initi 1
quence e. It returns the position of the current item if it is the fir t it m in e or
if the value of grouping expression g evaluated in the current cont ti diff r
ent from the value of g evaluated in the context of the prec ding it m. This i
exactly the semantics of adjacent grouping.

Notice, that we have to store the current context position in a variabl po .
We cannot put it directly to Eval expression, as it would be evalua ted in a
wrong context, as explained above.

Definition 6.30 Let (e, g, r) be a for-each-group-starting-with(e, g, r) continuous
group iterator. Then, with Getlndices(e) we denote the following XSLT expression.

for-each (e,

))

if-then -else (fn:position()
fn:position(),
()

fn : count (e) + 1

1 or g,

The starting-with variant of Getlndices(e) also iterates over items of the ini
tial sequence e. It returns the position of the current item whenever grouping
expression g is evaluated to true and also for the first item in e. Notice, that if
g is a pattern that rnatches the current item in e, then g evaluates to true in the
if-then-else instruction.

Notice, that since we do not use Eval expression here, additional variable
pas has not to be introduced to keep the current context position, unlike in the
previous definition.

Definition 6.31 Let (e, g, r) be a for-each-group-ending-with(e, g, r) continuous
group iterator. Then, with Getlndices (e) we denote the following XSLT expression.

f or-each (e,
choose(

when(fn:position() = 1 , fn:position()
when(g, fn:position() + 1)

))

if-then-else (Eval(g,e, fn: count (e)),
() I

fn:count(e) + 1

The ending-with variant of Getlndices(e) is the most tricky one. It iterates
the initial sequence e, as well as the previous variants. It returns 1 for the first
item in e and it returns the value of the current context position plus 1 for every
other context item that satisfies grouping expression g. It has to return position
plus one, as the ending-with variant of the group iterator uses g to identify the
last item in the group, so the starting position of a new group is the current
context position plus 1 for the current context item that rnatches g.

112

For this variant, we cannot simply add number of it ms in plu 1 t th
end of the returned sequence, like we <lid in the Getlndices definition f r th
first two continuous group iterator variants, as it can h pp n th t n th
last item from e matches g and the number of items in plu 1 i lr dy in
the resulting sequence. Therefore we check with the if-th n- I in tru ti n ,
whether grouping expression g matches the last item in . If it m tch , n thing
is added to the resulting sequence, as the desir d final numb r i alr ad y th r ,
otherwise we add it to the resulting sequence.

Lemma 6.13 Let S be an XSLT stylesheet. Then, there is an equivalent XSLT style heet
S' without continuous group iterators.

Proof We get an equivalent stylesheet if we replace each occurr ne f contin
uous group iterator (e, g, r) with ContinuousGrouplterator((e, g, r), Getlndice (e)) .

We checked in the text above, that Getlndices expression returns a qu n
of group starting positions that always starts with 1 and always nds with
number of items in the initial sequence plus 1.

We also checked in the text above that if ContinuousGrouplterator expression
is given such a list of group starting positions it returns the same results as the
original continuous grouping iterator. O

So far, we proved that the adjacent, starting-with, and ending-with variants
of the xsl:for-each-group instruction are expressible with other expressions of
XSLT.

Ad Hoc Groups

Now, leť s have a look at the group-by variant. We cannot use the same idea as
before, because a group in this case is generally not a continuous subsequence
of the initial sequence. Therefore we follow a different idea. First, we gather
a sequence of grouping keys, then for each grouping key, we get a sequence
of items in a group identified by that specific grouping key. We store items of
a group in a variable, exactly as we do it in the preceding section. Finally, for
each group we evaluate a result expression.

The most tricky part is surprisingly the generation of the grouping keys.
XSLT specification requires that i) the order of grouping keys have to follow the
order of items from the initial sequence that originated the grouping keys, and
ii) no duplicates are allowed in the sequence of grouping keys so that if there
are two duplicate keys then the former is preserved and the latter is removed.

The tricky part is the removal of duplicate values. Though XQuery 1.0 and
XPath 2.0 Functions and Operators specification defines fn:distinct-values()
function, we cannot use it, because it does not guarantee, which of the dupli
cate values is erased from the list. Therefore we define our expression Uni(S)
that takes a sequence Sand returns the same sequence with all duplicates re
moved in the required way: from a sequence of items with duplicate values we
keep the one that appears first in S.

Definition 6.32 Let S be an XSLT expression. Further, let item and pas be new vari
able names that do not appear in S. Then, with Uni(S) we denote the following XSLT
expresszon.

113

for-each(S,
variable (item, self : : *,
variable(pos , fn : position() ,

6

if-then-else(S[self::* $item and fn : position() <$po ~] ,

() ,
copy-o f ($item)

)))

Expression Uni iterates over the initial sequence S. In ea h it ration, it
stores current item from S in variable item and it stores the position of the cur
rent item within S in variable pas. The if-then-else condition tests, wh th r
there is such an item in S that has a value equal to item and that app ar prior
to item in S. If true, it means we found a duplicate value, which do s not app ar
first in S, so we do not want it in the result and therefore an mpty qu ne i
returned. Otherwise, there is no other item in S with a value equal to item that
precedes item in S, so we return item. Summing up, we check each item in S
and return only items that have no preceding duplicate in S, which is exactly
what we wanted.

Next, we define an expression Groupltems that for a grouping expression, a
grouping key, and an initial sequence returns items of a group identifi d by th
grouping key.

Definition 6.33 Let g, key, and S be XSLT expressions. Then, with Groupltenisg(S, key)
we denote the following XSLT expression.

for-each (S,
i f-then-else (g = key,

copy-of(self: :*),
()

Expression Groupltemsg(S,key) is rather simple. It iterates over the initial
sequence S and if the grouping expression g is evaluated to a sequence that
contains the grouping key key, then the current context item is returned. So the
current context item belongs to a group identified by the grouping key key.

Notice, that expressions g and key generally evaluate to sequences, though
usually expression key evaluates to a singleton sequence. Thus, an expression
g == key in the definition above is true, if there is a grouping key in a sequence
returned by expression g that is equal to at least one item in sequence returned
by expression key.

Finall}j we define a replacement expression ForEachGroupBy for the group
by variant of the xsl:for-each-group instruction.

Definition 6.34 Let for-each-group-by(S, g, r) be an XSLT expression. Further, let
currentGroup be a new variable name that does not appear in S, g, and r. Then, with
ForEachGroupBy(S, g, r) we denote the following XSLT expression.

f or-each (Uni(f or-each (S, g)),
var i ab l e (key, s e l f : : * ,
variable (currentGroup, Groupltemsg(S,key),

FixCurrentGroup(r, currentGroup)
))

114

6

hit min th The inner for-each instruction genera tes grouping k y for
initial sequence. The result is a concatenation of grouping key
grouping expression generally evaluates to a s qu nce. To g t li t
keys, we use expression Uni that removes all duplicate k y in th

th

ir d way,
as checked ear lier.

Thus, the outer for-each instruction then iterates a sequ ne f di tinct group
ing keys. We store each grouping key in variable key and for ch grouping k y,
we get a sequence of items of its group and assign it to variabl currentGroup.
For each grouping key, and so for each group, the result expr s ion r i valu
ated, where each reference to current-group() is replaced with a r fer ne to a
variable currentGroup.

Lemma 6.14 Let S be an XSLT stylesheet. Then, there exists an equivalent styl heet
S' with no for-each-group-by instruction.

Proof We construct S' from S by replacing each occurrence of for-each-group
by(S, g, r) instruction with ForEachGroupBy(S, g, r) expression that does not
contain a for-each-group-by instruction.

In the text above, we carefully inspected that the semantics of every d f
inition provided matches the semantics defined for the for-each-group-by in
struction. So, the transformation is correct. O

Conclusion

In the two previous sections, we proved that all variants of xsl:for-each-group
instruction are syntactic sugaring. We formalize the result in the following
theorem.

Theorem 6.3 Let S be an XSLT stylesheet. Then, there exists an equivalent stylesheet
S' that uses no variant oj the xslfor-each-group instruction.

Proof Instruction xsl:for-each-group has four variants, which we represent
as four different instructions in our non-XML syntax. We divided these four
instructions into two groups: i) continuous group iterators: for-each-group
adjacent, for-each-group-starting-with, for-each-group-ending-with, and ii) for
each-group-by instruction.

Expressibility of continuous group iterators in XSLT Care is proved with
Lemma 6.13, while expressibility of for-each-group-by instruction in XSLT Care
is proved with Lemma 6.14. O

Due to this theorem, we can safely remove all grouping instruction from
our XSLT Care language.

Comments

We can notice that both starting-with and ending-with variants of the grouping
instruction have not to be limited to a grouping pattern, butan expression can
be used instead and still our transformation works. Thus, there is an unneces
sary constraint in these XSLT grouping instructions definition.

We should also note that the context inside the xsl:for-each-group instruc
tion is not well defined in the XSLT specification. Or better, it is not defined

115

at all and as such the context should stay unchang d from th c nt ' t ut id
the instruction call, as the specification claims in its section on cont t. W fin
this quite cumbersome and we have two following comm nt on thi .

First, checking the reference implementation of XSLT 2.0 - Sa n [39] - that
is written by the author of the XSLT specification hims lf, w di ov r d that
the grouping instructions change the context in the following wa y. Th nt t
item is set to the first item in the group, the context position i t t th p iti n
of a group currently being processed, and th conte t siz i t t z r . in
we cannot manipulate the context values manually and we ar limit d t u
only instructions like for-each, we cannot simulate such a b havior lik tting
context size to zero, specifically. Thus, this specific behavior i not quival nt
and cannot be equivalent to the behavior of our or any other transformation.

Second, what context would be most natural? In this cas , w think th t
the best context sequence would be a sequence of groups, wher ach group
is a sequence of its items. So, the context item would be th curr nt group
and context position would be its position within the groups. Th n, functi n
current-group() would not be needed, as we have the current group stor d in
the context and we can refer to it with self::* expression. But a sequenc of
sequences is inexpressible in the XML Data Model.

To sum up, the for-each-group instruction does not fit nicely into the XML
Data Model that XSLT sticks to.

6.3.8 Keys

In this section, we show that keys are only syntactic sugaring in XSLT and as
such they do not belong to our XSLT Core.

For introduction on keys see section 6.1.17 on page 80. Here, we only re
rnind that keys are named references that can be navigated with a key() func
tion. The keys are defined with a pattern and a value expression. The result
of key(name, S) function call is evaluated as follows. First, candidate items are
found, i.e. items that match the pattern that is declared for key name. For each
candidate item the value expression is evaluated in the singleton focus based
on that candidate item to get key values. If any key value is equal to any item
in S, then the candida te i tem is returned.

Notice, that singleton focus based on an item i is a focus with context item
set to i and context position and size set to 1.

First, we formally define a key declaration. Recalt that there can be several
key declarations for one key name, where each declaration is a pair of a pattern
and a value.

Definition 6.35 Let k E QName x (Pattern x Expr)n be called a n-ary key decla
ration.

Next, we define an expression Key that is a replacement for a key() function
call. It takes the same arguments as key(): a narne of a key and an expression.

Definition 6.36 Let k == (name, { (p1, ei) ... (pn, en)}) be a n-ary key declaration.
Further, let values be a new variable name that does not appear in pi, and ei for alf i.
Then, with Key(name, S) we denote the following XSLT expression.

116

variable (values , S ,
f or-each (p1 ,

for-each(self : : *,

if (e1 = $values , self ::
))

f or-each (Pn,
for-each(self : : * ,

if (en = $values, self :: *)
))

Now, we prove that Key expression is a correct replacem nt f rak y() func
tion call.

Lemma 6.15 Let S be an XSLT stylesheet. Then, there exists an equivalent „ tyle h ct
S' that contains neither key-declare instructions nor key() functions.

Proof We get stylesheet S' by removing all key-declare instructions and by
replacing every key(name, S) function call with Key(name, S) expression.

Definition 6.36 of Key(name, S) expression is a direct rewrite of th seman
tics of the key(name, S) function call. Each outer for-each instruction iterat
over items that match one of the patterns p1• These are the candidat it ms.
Each candidate item is then iterated with the inner for-each instruction to pro
vide singleton focus based on that item. The if instruction returns the candi
date item only if any value in S is equal to any value in the result of ei value
express1on.

Notice, that we store the value of expression S in variable values. This is
to protect the evaluation context of expression S. Since for-each expression
changes the context, we cannot use expression S in the sequence constructor of
the for-each expression, as it would be evaluated in a wrong context. Therefore
we compute expression S before we call for-each instruction and therefore w e
keep its computed value in variable value. o

To sum up, key-declare instruction and key() function do not belong to our
XSLT Core language.

6.3.9 Copying

As explained in section 6.1.14 on page 78, XSLT defines instructions value-of,
copy-of, and copy that allow copying of data from the source document to the
result.

Leťs briefly remind the semantics of each instruction. The value-of(Expr)
instruction executes and XPath expression Expr and returns a new text node.
The copy-of(Expr) instruction makes a deep copy of Expr. Finally, the copy(Expr)
instruction makes a shallow copy of the current context item, where Expr is
evaluated only for document and element nodes, for whom it constructs the
content.

In this section, we show that instruction copy-of is expressible with instruc
tion copy, which in turn is expressible with value-of instruction. Further, the
value-of instruction is expressible with an XPath expression, but as we need a
syntactical bridge between XPath and XSLT, we keep it in XSLT Core.

117

Deep Copy

Here, we show that deep copy, which is realiz d with copy-of pr n, n
be transformed to an expression tha t uses th copy in tructi n.

The idea is to split a deep copy of the copy-ofin truction t i) r ur i

traversal and ii) a shallow copy, where the recursiv trav rs li r liz d with
a recursive call to a named template and the shallow copy is r liz d with th
copy instruction.

First, we define a new named template that copies the curr nt cont t n d
with all its children and attributes.

Definition 6.37 Let S == (T, N, F, P, U, M, T) be an XSLT style heet, and copy
of-tpl be a name that is difjerent jrom all names oj named tenzplates N. Then, with
CopyOfTpl(S) we denote the jollowing XSLT named template.

template-named ("copy-of-tp l ", (),
copy (

))

for-each(child: :* I attribute: : * ,
call-template("copy-of-tpl ", ())

We can see, that this expression defines a named template that mak s a shal
low copy of the current context item. If the current context item is a documen t
or element node, then the contents of the copied node are the deeply copied
children and attributes of the current node. So, for a document or element
node its children and attributes are copied, recursively. Notice, that copying of
namespace nodes is handled by instruction copy itself, which we discuss lat r.

Next, we define a replacement expression for a copy-of(e) instruction.

Definition 6.38 Let e be an XSLT expression. Then, with CopyOj(e) we denote the
jollowing XSLT expression.

for-each (e,
call-template ("copy-of-tpl", ())

Finally, we state that it is possible to remove all occurrences of copy-of in
struction and still to have an equivalent stylesheet.

Lemma 6.16 Let S be an XSLT stylesheet. Then, there exists an equivalent stylesheet
S' with no copy-oj instruction.

Proof We get S' by modifying S. We add CopyOJTpl(S) named template to
a set of named templates and we replace each occurrence of copy-of(e) with
CopyOj (e).

Notice, that in CopyOj (e) expression e is evaluated first, which results in a
sequence of nodes. Then, template copy-of-tpl is called for each node with one
of the nodes set as the current context item. Template copy-of-tpl then copies
the current context item and for a docurnent or element nade it recursively
copies its children and attributes. The namespace nodes are silently copied
with copy instruction, as well. o

Thus, instruction copy-of does not belong to our XSLT Core language.

118

6

Shallow Copy

Here, we show that the copy instruction is e pressible with impl r c n tru t
of XSLT Core.

The idea is to test a nade kind of the current cont t it m with nod t t
function and to use an appropriate node constructor to mak c p of th
context item.

First, we define an expression CopyNamespaces that copi s all nam p
nodes of the current context item. We define it separately t implify th r -
placement expression for the copy instruction.

Definition 6.39 With CopyNamespaces we denote the following XSLT e pre 10n.

variable ("cur rentitem" , self:: *,
for-each(in-scope-prefixes(.),

namespace(self : : * ,

namespace-uri-for-prefix(se l f : : * , $currentltem)
))

As the namespace axis is deprecated in XPath 2.0, we cannot simply iterate
over namespace nodes of the current context item. Instead, we s tore the current
context item in a new variable currentltem and iterate over namespac pr fix s.
For each prefix, we construct a new namespace node with the same prefix and
with a URI set to the URI associated with the prefix in an input document.

Next, we define expression Copy that serves as a replacement expression for
an occurrence of the copy instruction.

Definition 6.40 Let e be an XSLT expression. Then with Copy(e) we denote the
following XSLT expression.

choose (
when(self : :document-node() ,

result-document(
CopyNamespaces
e

))

when(self: :element(),
element(name(), namespace-uri(),

Copy N amespaces
e

))

when(self: :attribute(),
attribute(local-name(), value-of(self: :*))

when(self: :text(),
value-of (self: :*

when(self : :comment(),
comment(value-of(self: :*))

when(self: :process ing-instruction() ,

processing-instruction(name(), value-of(self: :*))

othe r wise (

119

n a mespace(name() , value-of(self ::))
))

Lemma 6.17 Let S be an XSLT style heet. Then, there is an equival nt tyle lze t '
that uses no copy instruction.

Proof We get stylesheet S' by replacing each occurrenc of copy() in tyl h t
S with Copy(e).

The transformation is pretty straightforward. As we said arii r, w t t
node kind of the current context item. When we match a specific nod kind, w
use its constructor expression to create a new nade of th sam kind. Nam -
paces are copied for document and element nodes as requir d by th m nti
of the original copy instruction. If the new node is either a docum nt r l -
ment nade, then expression e is evaluated to construct its cont nt. o

N atice, that the otherwise branch of the chaose instruction can b s
only for namespace nodes, since every other nade kind is matched by orn of
the when branches.

Since copy instruction can be replaced with simpler constructs of XSLT
Core, it does not belong to XSLT Care.

XPath Bridge

In this section, we explain, why the value-of instruction stays in XSLT Care.
In section 6.2.1 on page 83, we proved that sequence constructors of XSLT

can be freely rnixed with XPath expression in aur non-XML syntax for XSLT.
If we study our arguments thoroughly, we find that when we use an XPath
expression in a place where a sequence constructor is expected, the copy-of
instruction is used in XML syntax for XSLT.

Since, we proved in the previous two sections that copy-of instruction is
expressible with copy instruction, and that copy instruction is in turn express
ible with value-of instruction, we have to keep the value-of instruction in XSLT
Care, as it provides a bridge between XPath and the XML syntax for XSLT.

The above definition of Copy explicitly uses instruction value-of to ma rk ou t
all places, where a sequence constructor is expected, but where we need to put
an XPath expression.

6.3.10 Sequences

The sequence instruction creates a sequence of nodes. It is often used to create a
sequence that consists of existing nodes, or to create a sequence with an XPath
expression like (1 to 4).

Since we can mix XPath expressions with XSLT sequence constructors in
our non-XML syntax, we can throw the sequence instruction away, because it
is not needed in XSLT Core.

6.3.11 The Core Syntax

Figure 30 provides the syntax of XSLT Core. Compare it with the syntax of the
considered fragment of XSLT 2.0 in Figure 23 on page 82 to see the amount of
syntactic sugaring in the full language.

120

In section 6.3.2, we explain the replac ment of th choo nd if in tru ti n
with a single if-then-else instruction.

In section 6.3.3, we justify removal of param ter d claration . W h w
in this section how tunnel parameter can b imulat with u u l p r

In section 6.3.4, we prove that the whol t mplat choo ing m
together with template ru les can be removed from th cor langua
proof includes stylesheet inclusion and import. Pr ing t mpl t rul r nl
syntactic sugar, we can remove from XSLT Core the following in tructi n :
template-rule, import, include, apply-temp lates, apply-import , and n t-m t h.

In section 6.3.5, we further sirnplify the language by removing nam d t m
plates. As their expressive power is the same as the expressive pow r of func
tion, we can do with functions only.

In section 6.3.6, we show that order specifications are not need d in the f r
each instruction, because a sequence iterated by the for-each instruction can b
presorted with perforrn-sort instruction. Further, as XPath is capabl of sort
ing sequences, the perform-sort instruction can be replaced with an quivalent
Sort R expression.

In section 6.3.7, we prove that all variants of grouping instruction ar x
pressible with other language constructs.

In section 6.3.8, we justify removal of keys form XSLT Core.
In section 6.3.9, we show that both copy and copy-of instruction ar x

pressible with other language constructs and so they can be remov d from
XSLT Core.

In section 6.3.10, we justify removal of the sequence instruc tion from th
core language.

Leťs inspect what has left. Each instruction has its w ell defined meaning
with the semantics completely different from the other instructions. The for
each instruction is a sequence iterator that is capable of changing the cu rrent
context. The value-of instruction provides a syntactical bridge between XPath
and XSLT in XML syntax. Finally, the variable instruction binds a variable
name to a value.

6.4 XSLT Formal Semantics

In this section, we define formal semantics for XSLT. As we cut the nurnber of
XSLT instructions down in the previous section, we provide the formal seman
tics only for XSLT Care instructions.

The main semantics function is denoted by E and is defined in Figure 31. It
takes an expression and returns a sequence of items. In the definition, we use
semantic function W that has the same semantics as in XQuery (only instead
of XQuery expressions it takes XSLT expressions).

Notice, that we do not have to define sorting semantics, as there is no sort
ing instruction in XSLT Core dueto the huge power of XPath.

Leť s describe the hard-to-read formulas of the formal semantics definition.
First, the result of for-each(e1, e2) in the given context C is a sequence of

items defined with a set of items 5 and an order relation --<s on them. Leťs

check the items first. 51 denotes a sequence that is a result of evaluati g the e1

expression in the current context C, y denotes an items from 51, C1 is a context
that is changed from the current context by setting a focus ony in 51, finally x

121

Stylesheet .. - stylesheet(Frmction* Expression)
Function .. - function(QName, Boot Param Decl*, E pr ssion)
Expression .. - Expression*

I Instruction
I Constructor
I XPathExpr

Instruction .. - for-each(Expression, Expression)
I value-of(Expression)
I variable(QName, Expression, Expressi n)

Constructor .. - attribute(Expression, Expression, Expression)
I element(Expression, Expression, Expression)
I namespace(Expression, Expression)
I comment(Expression)
I processing-instruction(Expression, Expression)
I text(PCData)
I result-document(Expression)

Param .. - param(QName, Expression)

Figure 30: XSLT Care language syntax.

denotes an item of a sequence that is a result of evaluating the e2 expression in
context C1. We say that x is generated by y.

Next, we focus on the resulting order of items in S. Symbols y1 and y2
denote ys, form which x 1 and x2 are generated, respectively. The formula says
that x 1 is to precede x2 in the resulting order, whenever y1 precedes y2 in 51.

As it can happen that x 1 and x2 are generated from the same item y == y1 == y2 1

the last line specifies that in such a case the order of x1 and x2 in [[e2~ C1 is
preserved.

The result of the value-of expression e is the result of expression e. Notice,
that this is only a syntactical bridge.

The result of the variable expression variable(v, ev, e) is the result of expres
sion e that is evaluated in the context with a variable name v bound to a value
that is the result of evaluating ev expression.

A list of expression is evaluated so that each expression is evaluated in the
same context C and the resulting sequences are concatenated together to form
the result.

We do not provide formal semantics for node constructors, as this is rather
straightforward so we do not see much sense in doing so. Also our formalism
is not powerful enough to express them.

6.5 Conclusion

XSLT is nowadays a well accepted language that is suitable for simple trans
formations of an XML document. The more the structure of an input XML
document resembles the structure of an output document, the easier is to write
the transformation with an XSLT stylesheet.

As to be handy for stylesheet writers, XSLT offers a huge number of instruc
tions. In this work, we proved many of them to be only a syntactic sugaring,

122

E [value-of (e) IlC

[[variable (v, e11 , e)] C

E[e ExpressionListTI C

s

-<

{X I 1 == ~ 1DC
y E I s1
C1 == focu s(C, y, 1)

X E I ~e2 Il C1 }

{ (x1, x2) I Y1,y2 E 1 == I [e 1 ~
C1 == focus (C, y 1, J)
C2 == focus (C, y2, 1)
X1 E I [e2TIC1

X2 E .Tqť:! TI C2
Y1 C h~CY2

6

y1 == y2 im plies x1 CfhílCi x 2 }

E [e] C

E [e]C (v ~ E[ev]C)

E [e] C o E[ExpressionList] C

Figure 31: Forrnal Semantics of XSLT Core. Each expression evaluat to a
sequence of i terns (S, -<s).

which includes e.g. instructions for sorting, copying, grouping. Further, we
proved that even the most recognized items of a stylesheet - XSLT template
rules - can be expressed with simpler constructs of the language.

The result of our work on XSLT is summarized in the following two achieve
ments.

• We identified XSLT Core that has the same expressive power as XSLT 2.0.
For a list of XSLT 2.0 features that we do not consider see section 6.2.2.

• For the XSLT Core language we defined formal semantics in the unified
semantics framework that we use also for XPath 2.0 and XQuery 1.0 in
the previous chapters.

Remarkably, we do not prove whether XSLT Core is a minima} core lan
guage for XSLT.

123

7

7 Conclusions

In this work, we formally studied properties of the upcoming t nd rd qu r
languages for XML: XPath 2.0, XQuery 1.0 and XSLT 2.0. W pr vid f rm 1
semantics framework, which we used as a unifi d tool to e pr m nti f
these three languages.

We proved a surprising fact that XPath can sort arbitrary qu n u m
general sorting criteria [33].

Further, we proved that the XPath's ability to sort s qu n c n b u d
to express sorting semantics of XQuery, thus, order by claus do s n t b I n 0

to XQuery Core and the data model has not to be expanded to pr form 1
semantics of sorting. This is a contradiction to the expectations of th a u thor
of the specification [22].

Finally, we provided XSLT Core as a core language for XSLT. W proved that
our XSLT Core is equally expressive as XSLT 2.0 by providing a transformati n
of every non-core XSLT feature to XSLT Core. We left out from consid r tion
several instructions that are identified in 6.2.2. We defined formal s mantic
for XSLT Core and thus for XSLT.

7.1 Future Work

Having the formal semantics of XQuery and XSLT expressed in a unifi d fram -
work, it should not be hard now to show that these two languages hav r ally
the same expressive power.

124

R

References

(1] Serge Abiteboul. Querying semistructur d d t . In Proceedin
ternational Conference on Databa e Theory, pages 1-1 , D lphi, r

[2] Serge Abiteboul, Dallan Quass, Jasan McHugh, J nnif r Wid m, nd
Janet L. Wiener. The Lorel query language for semistructur d d .t . !nt.].
on Digital Libraries, 1(1):68-88, 1997.

[3] Sharon Adler, Anders Berglund, Jeff Caruso, Steph n Deach, Tony ra
ham, Paul Grosso, Eduardo Gutentag, Alex Milowski, Scott P rn U,
Jeremy Richman, and Steve Zilles. Extensible stylesheet langu g (X L)
version 1.0, 1999. W3C Recommendation. http : I /www . w3 . org /TR/
xsl/.

[4] Michael Benedikt, Wenfei Pan, and Gabriel M. Kuper. Structural prap r
ties of XPath fragrnents. In ICDT '03: Proceedings oj the 9th International
Conference on Database Theory, pages 79-95, London, UK, 2003. Spring r
Verlag.

[5] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernand z,
Michael Kay, Jonathan Robie, and Jerome Simeon. XML path language
(XPath) 2.0, 2005. W3C Working Draft. http : //www . w3 . org/TR/
xpath20/.

[6] Geert Jan Bex, Sebastian Maneth, and Frank Neven. A formal model for
an expressive fragment of XSLT. Inf Syst., 27(1):21-39, 2002.

[7] Paul V. Biran and Ashok Malhotra. XML Schema part 2: Data types sec
ond edition, 2004. W3C Recommendation. http : I /www . w3 . org /TR/
xmlschema-2/.

[8] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu,
Jonathan Robie, and Jerome Simeon. XQuery 1.0: An XML query lan
guage, 2005. W3C Working Dr aft. http: I /www. w3. org I TRi xque ry I.

[9] T. Bray, O. Hollander, and A. Layrnan. Namespaces in XML 1.0. W3C
Recommendation. http: I /www. w3. org /TR/ REC-xml-names.

[10] T. Brafl D. Hollander, A. Layman, and R. Tobin. Namespaces in XML 1.1.
W3C Recornmendation. http: I /www. w3. org/TR/xml-names-11.

[11] T. Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Franois Yergeau,
and John Cowan. Extensible markup language (XML) 1.01 1998. W3C
Recommendation. http: I /www. w3. org /TR/REC- xml-19 98 O 21 O I.

[12] T. Bray Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Franois Yergeau,
and John Cowan. Extensible markup language (XML) 1.1, 2004. W3C
Recommendation. http: I /www. w3. org /TR/ xml 11 I.

[13] Peter Buneman. Sernistructured data. In Proceedings oj the Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles oj Database Systems,
pages 117-121, Tucson, Arizona, 1997.

125

R

[14] Peter Buneman, Susan Davidson, erd Hill br nd, and D n u iu.
query language and optimization techniqu s for un tru tur d t . In
SIGMOD '96: Proceedings oj the 1996 ACM SIGMOD int rnational c nfer n e
on Management oj data, pages 505-516, Montr al, Quebec, an d , 19 6.
ACM Press.

[15] R. G. G. Cattell. The Object Database Standard: ODMG-93 (Relea 1.1). Mor
gan Kaufmann, 1994.

[16] Donald Chamberlin, Jonathan Robie, and Daniela Flor scu . uilt: An
XML query language for heterogeneous data sources. In D n uciu and
Gottfried Vossen, editors, WebDB (Selected Papers), volum 1997 of Lecturc
Notes in Computer Science, pages 1-25. Springer, 2000.

[17] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonst nti
nou, J. Ullman, and J. Widom. The Tsimmis project: Int gration of h t
erogenous information sources. In Proceedings oj lOOth Anniver ary Meet
ing oj the Information Processing Society oj Japan, pages 7-18, Tokyo, Japan,
1994.

[18] James Clark. XSL transformations (XSLT) version 1.0, 1999. W3C R com
mendation. http://www. w3 . org/ TR/xs lt /.

[19] James Clark and Steve DeRose. XML path language (XPath) version 1.0,
1999. W3C Recommendation. http : I /www . w3 . org/TR/xpath20/ .

[20] John Cowan and Richard Tobin. XML information set, 2004. W3C Recom
mendation. ht t p: I /www. w3 . org / TR / xml- inf oset I .

[21] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and O. Suciu. "XML
QL: A Query Language for XML". In WWW The Query Language Workshop
(QL), Cambridge, MA, 1998.

[22] Denise Draper, Peter Fankhauser, Mary Fernandez, Ashok Malhotra, Cor
poration, Kristoffer Rose, Michael Rys, Jerome Simeon, and Philip Wadler.
XQuery 1.0 and XPath 2.0 formal sernantics, 2005. W3C Working Draft.
h ttp:/ / www.w3. org /TR /xquery-semantics/ .

[23] David C. Fallside and Priscilla Walmsley. XML Schema part O: Primer sec
ond edition, 2004. W3C Recommendation. http : I /www . w3 . org /TR/
xm l schema- 0/.

[24] Mary Fernandez, Daniela Florescu, Alan Levy, and Dan Sudu. A query
language for a web-site management system. SIGMOO Rec., 26(3):4-11,
1997.

[25] Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and
Norman Walsh. XQuery 1.0 and XPath 2.0 data model, 2005. W3C Work
ing Draft. http: I /www. w3. org/TR/xpath- d atamodel /.

[26] Mary Fernandez, Jerome Simeon, and Philip Wadler. An algebra for XML
Query. Lecture Notes in Computer Science, 1974:11, 2000.

126

[27] Mary F. Fernandez and Dan Suciu. Optimizing r gul r p th pr i n
using graph schemas. In ICDE '98: Proc din~ oj tlz Fourte nth lnterna
tional Conjerence on Data Engineering, pages 14-23, Washington, D , U
1998. IEEE Computer Society.

[28] Damien Fisher, Franky Lam, and Raymond K. Wong. Alg brai tr n for
mation and optimization for XQuery. Lecture Note in Computer Science,
3007:201-210, 2004.

[29] Achille Fokoue, Kristoffer Rose, Jerome Simeon, and Lion 1 Villard. om
piling XSLT 2.0 into XQuery 1.0. In WWW '05: Proceedin oj tlze 14th inter
national conference on World Wide Web, pages 682-691, New York, NY, USA,
2005. ACM Press.

[30] Georg Gottlob and Christoph Koch. Monadic queries ov r tr -structu r d
data. In LICS '02: Proceedings oj the 17th A nnual IEEE Symposium on Logic in
Computer Science, pages 189-202, Washington, DC, USA, 2002. IEE C m
pu ter Society.

[31] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Effici n t a lgo
rithms for processing XPath queries. In VLDB, pages 95-1 06, 2002.

[32] Pavel Hlousek. MailQL: A query language for an email message base,
2000. Master thesis. Charles University. In Czech.

[33] Pavel Hlousek. XPath 2.0: It can sort! In Daniela Florescu and Hamid Pi
rahesh, editors, Proceedings of the Second International Workshop on XQuery
Implementation, Experience and Perspectives <XIME-P/>, in cooperation with
ACM SIGMOD, Baltimore, Maryland, USA, 2005.

[34] Pavel Hlousek and Jaroslav Pokorny. Refining OEM to improve fea tures
of query languages over semistructured data. In J. Grundspenkis et al,
editor, Information Systems Development: Advances in Methodologies, Compo
nents, and Management. Kluwer Press, 2002.

[35] Joint Technical Committee ISO/IEC JTCl, Information technology
ISO/IEC 10179:1996 Information technology - Processing languages -
Document Style Semantics and Specification Language (DSSSL), 1996.

[36] ISO 8879. Information processing - Text and office systems - Standard
Generalized Markup Language (SGML), 1986.

[37] ISO/IEC: Information technology- Database languages - SQL, 1992.

[38] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava, and Keith
Thompson. TAX: A tree algebra for XML. In Giorgio Ghelli and Gasta
Grahne, editors, DBPL, volume 2397 of Lecture .Notes in Computer Science,
pages 149-164. Springer, 2001.

[39] Michael Kay. Saxon. http://saxon.s ourceforge . net/.

[40] Michael Kay. XSL transformations (XSLT) version 2.0, 2005. W3C Working
Draft.http://www.w3.org/TR/xs lt 20/.

127

REFER CES

[41] Stephan Kepser. A simple proof for the Turing-completen ss of XSLT and
XQuery. In Extreme Markup Languages, 2004.

[42] Claude Kirchner, Zhebin QIAN, Preet Kamal SINGH, and Jurg n STU
BER. Xemantics: a rewriting calculus-based semantics of XSLT, 2001.
Technical Report AOl-R-386, LORIA.

[43] Ashok Malhotra, Jim Melton, and Norman Walsh. XQuery 1.0 and XPath
2.0 functions and opera tors, 2005. W3C Working Draft. http : I I www .
w3. org /TR/xpath-functions/ .

[44] Maarten Marx. Conditional XPath, the first order complete XPath di
alect. In PODS '04: Proceedings oj the twenty-third ACM SIGMOD-S IGACT
SIGART symposium on Principles oj database systems, pages 13-22, Paris,
France, 2004. ACM Press.

[45] Maarten Marx. XPath with conditional axis relations. In Advances in
Database Technology - EDBT 2004: 9th International Conjerence on Extend
ing Database Technology, pages 477-494, Heraklion, Crete, Greece, 2004.
Springer-Verlag.

[46] Maarten Marx. First order paths in ordered trees. In Database Theory -
ICDT 2005: 10th International Conference, Edinburgh, UK,]anuary 5-7, 2005.
Proceedings, Edinburgh, UK, 2005. Springer-Verlag.

[47] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML trans
formers. In PODS '00: Proceedings oj the nineteenth ACM SIGMOD
SIGACT-SIGART symposium on principles oj database systems, pages 11-22,
Dallas, Texas, USA, 2000. ACM Press.

[48] Leonid Novak and Alexandre Zamulin. Algebraic semantics of XML
schema. Lecture Notes in Computer Science, 3631:209-222, 2005.

[49] Stelios Paparizos, Shurug Al-Khalifa, Adriane Chapman, H . V. Jagadish,
Laks V. S. Lakshmanan, Andrew Nierman, Jignesh M. Patel, Divesh Sri
vastava, Nuwee Wiwatwattana, Yuqing Wu, and Cong Yu. Timber: A
native system for querying XML. In Alon Y. Halevy, Zachary G. Ives, and
AnHai Doan, editors, SIGMOD Conference, page 672. ACM, 2003.

[50] Dallan Quass, Anand Rajaraman, Yehoshua Sagiv, Jeffrey O. Ullman, and
Jennifer Widorn. Querying semistructured heterogeneous information. In
DOOD '95: Proceedings oj the Fourth International Conference on Deductive
and Object-Oriented Databases, pages 319-344, London, UK, 1995. Springer
Verlag.

[Sl] Jonathan Robie, J. Lapp, and D. Schach. XML query language (XQL), 1998.

[52] Graeme Smith. Object-Z Specification Language. Kluwer Academie Publish
ers, 2000.

[53] Lincoln D. Stein and Jean Thierry-Mieg. AceDB: A genome database man
agement system. Comput. Sci. Eng., 1(3):44-52, 1999.

128

[54] H. S. Thompson, David Beech, Murray Maloney, and N oah M nd 1 hn.
XML Schema part 1: Structures second edition, 2004. W3C R comm n d -
tion. http : // www.w 3 . org/TR/ xmlschema-1/ .

[55] Philip Wadler. A forma! semantics of patterns in XSLT and XPath. Markup
Lang., 2(2):183-202, 2000.

[56] Hong Li Yang, Jin Song Dong, Ke Gang Hao, and Jun Gang Han. Forrnal
izing semantics of XSLT using Object-Z. Lecture Notes in Computer Science,
2642:120-131, 2003.

[57] Hong Li Yang and Ke Gang Han, Jun Gang Hao. The common semantic
constructs of XML family. Lecture Notes in Cornputer Science, 2885:416-431,
2003.

129

	Image00001
	Image00002
	Image00003
	Image00004
	Image00005
	Image00006
	Image00007
	Image00008
	Image00009
	Image00010
	Image00011
	Image00012
	Image00013
	Image00014
	Image00015
	Image00016
	Image00017
	Image00018
	Image00019
	Image00020
	Image00021
	Image00022
	Image00023
	Image00024
	Image00025
	Image00026
	Image00027
	Image00028
	Image00029
	Image00030
	Image00031
	Image00032
	Image00033
	Image00034
	Image00035
	Image00036
	Image00037
	Image00038
	Image00039
	Image00040
	Image00041
	Image00042
	Image00043
	Image00044
	Image00045
	Image00046
	Image00047
	Image00048
	Image00049
	Image00050
	Image00051
	Image00052
	Image00053
	Image00054
	Image00055
	Image00056
	Image00057
	Image00058
	Image00059
	Image00060
	Image00061
	Image00062
	Image00063
	Image00064
	Image00065
	Image00066
	Image00067
	Image00068
	Image00069
	Image00070
	Image00071
	Image00072
	Image00073
	Image00074
	Image00075
	Image00076
	Image00077
	Image00078
	Image00079
	Image00080
	Image00081
	Image00082
	Image00083
	Image00084
	Image00085
	Image00086
	Image00087
	Image00088
	Image00089
	Image00090
	Image00091
	Image00092
	Image00093
	Image00094
	Image00095
	Image00096
	Image00097
	Image00098
	Image00099
	Image00100
	Image00101
	Image00102
	Image00103
	Image00104
	Image00105
	Image00106
	Image00107
	Image00108
	Image00109
	Image00110
	Image00111
	Image00112
	Image00113
	Image00114
	Image00115
	Image00116
	Image00117
	Image00118
	Image00119
	Image00120
	Image00121
	Image00122
	Image00123
	Image00124
	Image00125
	Image00126
	Image00127
	Image00128
	Image00129
	Image00130
	Image00131
	Image00132
	Image00133
	Image00134
	Image00135

