
Univerzita Karlova v Praze
Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

Radoslav Zápotocký

Shlukování textových dokumentů a jejich částí
Clustering of text documents and their parts

Katedra softwarového inženýrství

Vedoucí diplomové práce: RNDr. Michal Kopecký, Ph.D.

Studijní program: informatika
Studijní obor: softwarové systémy

Praha 2011

Velké poděkování patří hlavně vedoucímu diplomové práce RNDr. Michalovi
Kopeckému, Ph.D. za nápomocnou ruku a přínosné konzultace při psaní diplomové
práce.

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně a výhradně
s použitím citovaných pramenů, literatury a dalších odborných zdrojů. Souhlasím se
zapůjčováním práce.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající
ze zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost,
že Univerzita Karlova v Praze má právo na uzavření licenční smlouvy o užití této
práce jako školního díla podle § 60 odst. 1 autorského zákona.

V Praze dne 15. 4. 2011 Radoslav Zápotocký

3

Název práce: Shlukování textových dokumentů a jejich částí
Autor: Radoslav Zápotocký
Katedra (ústav): Katedra softwarového inženýrství
Vedoucí diplomové práce: RNDr. Michal Kopecký, Ph.D.

Abstrakt: Práce analyzuje možnosti použití vektorového modelu a shlukování
aplikované na jednotlivé části dokumentu – kapitoly, odstavce a věty. Součásti práce
je rovněž simulační aplikace (SimDIS), napsaná v jazyce C#, která takto upravený
model implementuje a nabízí nástroje pro vizualizaci vektorů a shluků.

Klíčová slova: vektorový model, shlukování, zpracování textu, C#

Title: Clustering of text documents and their parts
Author: Radoslav Zápotocký
Department: Department of Software Engineering
Supervisor: RNDr. Michal Kopecký, Ph.D.

Abstract: This thesis analyses use of vector-space model and data clustering
approaches on parts of single document – on chapters, paragraphs and sentences. A
simulation application (SimDIS), written in C# programming language is also part of
this thesis. The application implements the adjusted model and provides tools for
visualization of vectors and clusters.

Keywords: vector-space model, clustering, text processing, C#

Table of contents

1. Introduction...8

2. Analysis...9
2.1. Vector space and clustering concepts...9

2.1.1. Document vocabulary and terms...9
2.1.2. Document vector and indexing..10
2.1.3. Document clustering..11
2.1.4. Spherical K-means clustering algorithm...12
2.1.5. Hierarchical agglomerative clustering algorithm....................................13

2.2. Application of the theory to a single document..14
2.2.1. Term, vocabulary and indexing of single document...............................15
2.2.2. Example usage of vector model on single document..............................16
2.2.3. Example usage of clustering on single document...................................16

2.3. Generating document summary using clustering..17

3. Implementation...18
3.1. Design and main decisions..18
3.2. Development tools..19
3.3. Data structures...19
3.4. Application architecture..20

3.4.1. Windows forms...20
3.4.2. Plugin manager..20
3.4.3. Processors..21
3.4.4. Projects..21

3.5. Plugin interfaces..22
3.6. Implemented plugins...25

3.6.1. Term normalizers...25
3.6.2. Clustering algorithms..26
3.6.3. Document visualizers..26
3.6.4. Cluster visualizers...27

4. Usage example analysis..28
4.1. Non-clustering visualizations..28
4.2. Visualization with use of clustering..29

5. Conclusion..30
5.1. Project contribution...30
5.2. Visualization results..30
5.3. Possible future work..30

6. User documentation..32
6.1. System requirements...32
6.2. Installation...32
6.3. Properties...32
6.4. Working with the application..33

6.4.1. Starting a project..33

6.4.2. Document list...33
6.4.3. Document window...34
6.4.4. Chapter, paragraph and sentence similarity...35
6.4.5. Words and terms visualization..36
6.4.6. Working with clusters..37
6.4.7. Generating text summary..38

7. Programmer documentation..39
7.1. System requirements...39
7.2. Compiling the whole application..39
7.3. Custom plugin creation...39

 Bibliography..42

 CD contents..43

 List of tables...44

Appendix A: Generated summaries from K-means algorithm...................................45

Appendix B: Generated summaries from centroid HAC algorithm...........................46

7

1. Introduction

The number of documents in electronic form is growing rapidly with increased
number of people with access to computer and Internet. With massive number of
documents it is impossible for users to read them all to find the information the want.
Therefore, a number of techniques were invented to search within the collection of
documents and new approaches are still under research. Most of this techniques are
used mainly on collections of documents and take each document as one entity.

Some of problems appearing on document collections could be seen also on
document level. For example, many documents like technical manuals are often very
long, not entirely well structured and with limited search or navigation ability. Those
problems could be even more visible in case the documents are to be read on
electronic book readers. Reading the document at whole could be also time
consuming and in case the document does not contain the relevant information it
could be helpful to know approximate summary of the document without any need to
read it completely.

This work focuses on possibilities of applying text retrieval techniques on
individual parts of a single document for addressing above mentioned issues. We will
use vector-space model to look at the document as a hierarchy of vectors, and
provide tool for document content analysis.

The goal of this thesis is to create a prototype application that will allow indexing
parts of the document in different levels of granularity, processing them using
various text retrieval approaches and clustering them according to mutual similarity
by different clustering algorithms. The application should also visualize obtained
data and make them available for further analysis. Never the less, it should be
designed with respect to requirement on adding new extensions and features in the
future.

The rest of this thesis is structured as follows:
The second chapter provides general introduction into text retrieval topic based on

vector representation of documents that allows various needed computations known
from linear algebra. Later it describes transformation of classical approach to
indexing and processing document parts. Following third chapter takes closer look at
implementation of visualization application. The fourth chapter describes an example
visualizations. The following fifth chapter contains conclusion and future remarks.
The user documentation and programmer documentation are located in sixth and
seventh chapter.

8

2. Analysis

This chapter contains a short introduction into vector representation of documents
and document clustering. Based on this representation it then describes the
possibilities of algorithms for usage on single document and its parts.

2.1. Vector space and clustering concepts
Vector space model is a form of ranked information retrieval. The term

information retrieval or information search in this context usually means finding the
document(s) from a collection of documents, which satisfies needed information
(based on definition in [1]). The result documents of the search are usually identified
with respect to search query, a query that user formulated to express his information
needs. In ranked information retrieval the search algorithm computes for each
document the rank, how much does it satisfy the search query, and then – using this
rank – it decides which documents are to be returned as a search result and in what
particular order.

There exist more document models allowing ranked query that differs from each
other by document representation and/or by the used search algorithm. In Vector
space model, each document has assigned a representing document vector. This
vector then represents the document content for the search algorithm. More detailed
description of document vector could be found in section 2.1.2..

The clustering (or data clustering) is a process of grouping documents into
clusters, where documents in one cluster should be as mutually similar as possible
while documents taken from different clusters should be as different as possible from
each other. In general, the clustering is not limited to documents, but can be used for
various different types of data (images, music and other [2]). In this work we concern
on clustering of document parts, such as chapters, paragraphs or sentences. More
about it could be found in section 2.1.3..

2.1.1. Document vocabulary and terms
To create representing vector from a document, we first need to get information

about its content. The common way of looking at document content, is considering it
as a bag of words. This allows us to transform document text into vocabulary of
terms and theirs frequencies (numbers of term occurrences inside individual
documents). The first step is this process is a tokenization – a process of parsing the
document text and splitting it into words (tokens). The term in this document
represents a token in its normalized form. There are many normalization steps, which
could use more or less complex computer linguistic approaches like lemmatization,

9

disambiguation, named entity identification etc [1]. The steps mentioned below do
not require such sophisticated approaches while still provide sufficient processing for
the purpose of this work. The normalization usually uses several steps:

• Diacritics – Many languages (including Czech and Slovak ones) are using
diacritics in their official form. However, in many cases the text is not written
with correct diacritics or is written without any diacritics at all. This is mostly
common on the internet, where many users don't use diacritics because of
laziness, software limitations or habits. To solve this problems, the text could
be stripped of diacritics and converted to 7-bit ASCII characters. The
disadvantage of this approach is merging possibly different words into one
common term.

• Case-folding – The words are converted to lower case. This allows to handle
word with different case as the same. As a drawback, some abbreviations as
“IT” could be converted to common terms.

• Stemming – Many different word occurrences in text could represent the same
term, but differs in inflexion – prefixes or suffixes (for example car vs. cars).
Stemming is a heuristic process that is an alternative to more complex
lemmatization. It removes prefixes and suffixes from word and leaves only its
base, called stem. For example, words transporting, transported and
transports should be all considered as forms of common term transport.

• Stop words filtering – Stop words are usually referred as words, which occurs
in language very often and usually don't have any essential meaning of their
own. In English the typical words, that could be considered as stop words are
a, the, an, can or have etc. By removing stop words, we could significantly
decrease the space dimensionality – the number of different terms in index –
and thus reduce process time and space required for indexes (according to
Rule of 301. During the text processing the stop words are usually predefined
in stop list. The opposite approach could use whitelist of allowed terms in
index instead of blacklist (stop list).

2.1.2. Document vector and indexing
In Vector space model the document d is represented by n-dimensional vector

v d , where each dimension represents weight wd ,ti of term t i . In other words, the
document vector is defined:

vd=〈wd ,t 1
,wd ,t2

,... ,wd , tn
〉

The simplest way of computing term weights wd ,ti is to assign number of

1 Rule of 30 states that the 30 most common words account for 30% of all terms in written text
(Chapter 5 of [1]).

10

occurrences of term t i in document. This is value called term frequency tf d ,ti .
The term frequency is not optimal, because it considers all terms equally

important. On the other hand, when we take documents about insurance companies,
the term insurance would be probably very often in all of them, so it has almost none
discriminating power. To reflect this, the tf-idf weighting could be used instead,
which – according to [3] – produces better results in data clustering.

The tf-idf weight is defined as follows:

• Document frequency df ti – is defined as the number of documents
containing the term t i .

• Inverse document frequency idf ti – for term t i is defined as:

idf ti
=log N

df ti

, where N is total number of documents.

The term weight wd ,ti now can be defined using tf-idf weight as:
wd ,ti

=tf-idf d , ti
=tf d ,ti

⋅idf t i

Looking at the documents as vectors allows us to use standard vector operators
and calculate lengths, or distances. Furthermore we can easily compute similarity of
two documents, where two documents are similar when their document vectors are
directionally close to each other. The commonly used measure for this purpose is the
cosine similarity, which if for two documents d 1 and d 2 in [1] defined as

sim d 1, d 2=
vd 1
⋅v d 2

∣ vd 1∣⋅∣ vd 2∣
This cosine similarity allows us to compare relative distribution of terms in

document independently of the document length.

2.1.3. Document clustering
Using clustering documents could be divided into clusters, where document pairs

taken from the same cluster should be as similar as possible and documents in one
cluster should be as dissimilar as possible from those in any other cluster.

Based on the organization of clusters, we can distinct two basic types of
clustering:

• Flat clustering – the set of clusters is defined without any explicit
organization between individual clusters.

• Hierarchical clustering – created clusters are organized in hierarchical
structure.

Another important distinction of clustering is based on document assignment.
From this point of views we can talk about:

11

• Hard clustering – where each document is assigned to exactly one cluster.

• Soft clustering – where document could be assigned to more clusters. In case
the assignment is weighted, we are talking about so-called Fuzzy clustering.

The clustering of document collections is commonly used in web search, to speed
up finding documents or pages matching the user's query. For example, when the
user enters query “apple”, he or she may want to find information about the fruit,
about the music recording company or about the computer manufacturer. But the
search engine doesn't know which one the user wants, so by showing documents
from different clusters in the first page, it is probable that the user will find some
relevant document sooner.

Another example use of clustering is creating a summary of document collection.
This is done by grouping similar documents into clusters and then replacing all
documents in each cluster with surrogate piece of text, which represents them.

2.1.4. Spherical K-means clustering algorithm
K-means or its modification for information retrieval – spherical k-means – is one

of the most important flat clustering algorithms, with hard assignment of documents.
The algorithm starts by creating k random clusters, also known as seeds. Then it tries
to optimize document assignment to clusters based on similarity of documents vector
to their cluster centroid, computed as mean vector of assigned documents. The value
of k is needed as a parameter. The algorithm could be formally describe as it is
shown belows in Algorithm 1:

With each iteration in the while cycle, the algorithm reassigns document to the
closest centroid and then recomputes the centroids. This way the centroids move
around vector space to find their optimal assignments.

The k-means algorithm provides following advantages:

12

K-means (k, { v d1
, ... , vd n

})
begin
 create k initial random seed clusters
 recompute clusters centroids
 while not clusters are stable
 begin
 for each document
 begin
 reassign document to cluster with closest centroid
 end
 recompute clusters centroids
 end
 return k clusters
end

Algorithm 1: K-means

• It is one of the most used clustering algorithm, because it is relatively quick
on large data sets. Its complexity is linearly proportional to the number of
documents.

• Works well on numerical data.

On the other hand, it has several disadvantages:

• Result clusters have convex shapes only.

• The value of parameter k needs to be defined in advance.

• It provides only local optimization and could find assignment, which is
suboptimal in global scale.

• Its performance depends on initial random selection of k clusters.

• Performs poorly on high-dimensional data (such as textual documents, [4]).

2.1.5. Hierarchical agglomerative clustering algorithm
Hierarchical agglomerative clustering (HAC) represents one of the basic

hierarchical clustering algorithms. The algorithm starts with separate cluster for each
document and in each step it creates new cluster, linking two most similar clusters
(Algorithm 2).

The algorithm usually stops when all clusters have been linked and only one –
forming the root of the cluster tree – is left. The algorithm could be enhanced with a
stop condition, to stop when the similarity of clusters reaches some threshold, but in
general it is hard to tell the proper value of the threshold.

Based on the way the similarity between two clusters is computed, HAC creates a
whole class of algorithms. For example:

• single link – the similarity between two clusters is computed as the similarity
of their most similar members

• complete link – the similarity between two clusters is computed as the
similarity of their most dissimilar members

• centroid – the similarity between two clusters is computed from their centroid
vectors

The HAC algorithm provides hierarchy of clusters representing the topic
hierarchy of documents and it is considered as one to provide the best clustering
results. However, it is not very usable on large data sets, because it is very slow.

13

As an opposition to HAC there is also hierarchical divisive clustering, which
starts with only one cluster and iteratively splits largest clusters until individual
documents or small enough clusters are reached.

2.2. Application of the theory to a single document
A single document could be viewed as a hierarchy of text fragments – chapters,

paragraphs and sentences. Depending on a level of granularity, it could be also
viewed as an ordered collection of chapters, ordered collection of paragraphs or as an
ordered collection of sentences. This way it is possible to use any of algorithms
originally invented for work on documents on these collections with only minor
changes. The key differences are:

• Instead of single collection of separate documents, three parallel collections
of chapters, paragraphs and sentences are used.

• Chapters, paragraphs and sentences are ordered and text fragments in them
form a hierarchy. This structure is defined by the document itself. We could
consider this hierarchy as a special type of hierarchical clustering where the
similarity is derived from proximity.

• The vector in vector space model would represent not only whole document
as in case of standard approach, but could also represent every single chapter,
every single paragraph or even every single sentence, depending on currently
working level of granularity.

The modified view on the document is shown in Figure 1. For the simplification,
only one chapter level is considered. Possible sub-chapters are ignored and their text
is taken as a content of top most chapter. For each node d of the hierarchy we can
define:

• Predecessor of d – the closest previous text part on the same level of
hierarchy.

14

HAC ({ v d1
, ... , vd n

})
begin
 create separate cluster for each document
 while count(clusters) > 1
 begin
 find two most similar clusters
 replace them with one new cluster, which is linked to them
 end
 return clusters
end

Algorithm 2: Hierarchical agglomerative clustering

• Successor of d – the closest next text part on the same level of hierarchy.

• Parent of d – the text part one level of hierarchy higher, which contains the
node d.

• Children of d – ordered collection of text parts one level lower, which are
contained by the node d.

Each node has assigned its own vector of term frequencies and representing vector
of heights. The node representing a document part on different levels in the hierarchy
would be referred as document, chapter, paragraph or sentence and the corresponding
representing vector would be referred as document, chapter, paragraph or sentence
vector.

Because of each inner node d of the hierarchy consists of a concatenation of its
children, it holds that the document vector would be the vector sum of vectors of its
paragraph children etc up to the paragraph vector would be the vector sum of vectors
of its sentence children.

Using clustering on document chapters, paragraphs or sentences, we will get
parallel hierarchies of clusters, organized by the real similarity of their content.

2.2.1. Term, vocabulary and indexing of single document
Because we are looking at the single document as a hierarchy, we need to slightly

adjust the theory used in standard approaches, described in section 2.1..
All vectors of all granularity levels must be compatible – have the same

dimension, because they will be used together in computations. Therefore, we would
need a global vocabulary for all parts. On the other hand, each document part –
chapter, paragraph or a sentence – would need to know its term occurrences to
compute its vector.

The vector of document part could be define similar as document vector vd , with
a d representing document part – chapter, paragraph or sentence. The difference
would be in computing term weights using tf-idf weight. The idf would be derived

15

Figure 1: Overview of document hierarchy

Document

Chapter

Par

SS S S

Par

SS S S

Chapter

Par

SS S S

Par

SS S S

Chapter

Par

SS S S

Par

SS S S

from the number of paragraphs within the document and number of paragraphs
containing given term. This idf computation would be used globally for all parts on
all levels of hierarchy to get compatible numbers.

2.2.2. Example usage of vector model on single document
The document is converted to hierarchy of vectors that represents its content, and

enables further processing and content analysis, such as:

• Computing similarity between chapters, paragraphs or sentences, discovering
similar or the same parts that are spread across the document. This could be
used for better orientation in documents, when the user would be provided
with information about similar document parts, located in other chapters. For
example, the user could get links to most similar chapters or link(s) to the
closest chapter(s), with similarity bigger than defined threshold(s).

• Analyzing consistency of document flow. For example, if consecutive
paragraphs in one chapter or consecutive chapters in the document are most
similar to each other or not.

• Finding parts, which represents their parents the best. For example, finding a
paragraph, which represents best the content of its chapter.

2.2.3. Example usage of clustering on single document
The use of clustering algorithms would group together similar content of the

document. This would allow to:

• Identify the topics of the document and the parts which talks about them.

• Create summary of the document, by extracting topics from the document
content. The topics could be represented by clusters, where each cluster
would represent one topic. Summary would be created by taking part of
document (few sentences) for each cluster.

• Extract keywords of the document in similar way, how summary could be
created.

• Provide parallel navigation in the document by categorizing document parts
into groups similar by content.

• Analyze consistency of document parts. For example, how much computed
sets of clusters correspond to their positions in the document.

16

2.3. Generating document summary using clustering
As mentioned in previous section, clustering could be used to create document

summary. The method described here is based on [5] with a difference in computing
local and global similarities.

The summary of documents would be generated by selecting sentences from the
text of the document. For each cluster, the sentence with maximal score is selected.
The score of each sentence is computed as a weighted sum of following factors:

• Local similarity – It is computed as similarity between sentence and centroid
of containing cluster. The more similar sentence to centroid, it is probable
that it could best reflect the contents of the cluster.

• Global similarity – The similarity between sentence and the document, which
ensures that the global context is reflected in selection.

• Sentence length – The length of summary could often be limited. This factors
adds penalization for too short or too long sentences. The sentence length
factor is defined as follows:

factor length=
1

e∣length sentence −lengthrequired∣

17

3. Implementation

This chapter describes implementation of simulation application SimDIS. It
contains application design, describes used data structures and necessary interfaces.

3.1. Design and main decisions
The application should serve as a visualization and experimental tools with

presumed rich interaction with the user. Therefore, the application with graphical
user interface (GUI) is preferable to the console application.

Expected typical use case example usage of the application would be:

1. Opening of desired document.
2. Splitting document to its parts and computation of representing vectors.
3. Analyzing mutual similarities of objects at given level of granularity.
4. Computation of clusters of objects using selected clustering algorithm.
5. In many cases the user would probably like to visualize the data in some

understandable way.
6. Explore the results and/or export them for further processing outside the

application.

Because the user will probably work with one document more times in different
scenarios, the application should import it locally. So the user would not have to
search for the document in file system over and over.

Because the user may want to work on more documents, the application should
allow to store more documents at the same time. To allow better management or
moving between computers, the application should save documents grouped within
projects, which are closely described later in 3.4.4..

To allow easy importation of documents, the application would support
documents in HTML [6] file format. It is easy to analyze it and many third-party
tools could be used to convert documents in almost any other format to it. It should
be also possible to add support of more file formats later. Internally the document
should be stored in custom format, best suiting the application needs for fast loading
and processing. Import of document in any external format then should provide
necessary conversion. The document list with document meta-data would be stored
separately from the documents themselves for better performance. Used data
structures are described in section 3.3..

As complex technical manuals could contain thousands and more documents
parts, the application should support caching of already computed data to avoid
repeating of time-consuming computations, like clusters and/or similarity matrices

18

evaluation etc. Caches are closely described within project in section 3.4.4..
The application should be also easy to expand implemented features and to add

new ones, because there exist more than one ways of text processing and
visualization and it would be impossible to implement them all at once. The
expandability of the application is discussed closely later in section 3.5..

3.2. Development tools
SimDIS is a GUI application written in C# language for Microsoft .Net

Framework [7] with minimal required version 2.0. The application is targeted to run
under Microsoft Windows [8] operating system. This platform was chosen mainly
because it is most widely.

Some of the data are stored in SQLite database [9] using System.Data.SQLite
library [10]. This database is small, doesn't require user to install any additional
software and data can be stored within a single file.

The application was developed under Microsoft Visual Studio development
environment [11] and for better source code management, Subversion [12] was used.

3.3. Data structures
The application uses several data structures for storing parsed document tree,

vectors, terms and clusters. Almost all of them needs to be accessible from plugins to
be able to normalize terms, to run data visualizations or to create clusters. This is the
reason, why they are stored in SimDIS.PluginInterface.

The most notable data structures provided are:

• Document – the root of document hierarchy, consisting of Chapters,
Paragraphs and Sentences. All of them are derived from ADocumentPart, an
abstract class for document part.

• DocumentVector – vector representation of document part.

• DocumentTerms – the hierarchy parallel to Document, containing a set of
Terms for each document part.

• Term – containing information about normalized term, its frequency and also
list of original words used in document .

• Cluster – the hierarchy of clusters, created by clustering algorithm. Clusters
contain the set of sub clusters in case of an internal node and a set of
document parts in case of the leaves.

Detailed documentation of data classes with descriptions of methods and
properties could be found in Code documentation on attached CD.

19

3.4. Application architecture
The Figure 2 bellow illustrates the architecture of the application from the logical

view. Parts of the application are described in following sections.

3.4.1. Windows forms
In the center of the application are Windows Forms, the GUI windows, which are

responsible for interaction with the user. The most notable forms are:

• MainWindow – Displays list of documents stored in current project and
allows document import and export. The list of documents is loaded from
SQLite database and displayed using standard DataGridView component
of .Net Framework.

• DocumentWindow – Represents one opened document and allows to further
work it. The document is displayed as a HTML using WebBrowser
component. The window also shows a list of visualizers, loaded from plugins,
as a tool buttons to run visualization.

There are several other forms used in programs, mostly using standard
components of .Net Framework.

Visualization plugins also contains window forms to visualize data to the user.
They use their own forms, which are not limited or predefined by core application.
This provides unlimited potential for data visualization.

3.4.2. Plugin manager
PluginManager is a static class, which takes care of all types of plugins. It loads

all available plugins at the application startup, holds lists of them and also provides
some useful methods to work with them. Plugins are more described in section 3.5..

20

Figure 2: Overview of SimDIS core application

Windows Forms

Projects

Documents
SQLite

PluginManager

TextProcessor

VectorProcessor

ClusterProcessor

Processors

3.4.3. Processors
In this application the processors are static classes in SimDIS.Processors

namespace, which encapsulate text processing and creation of terms and document
vectors. There are following processors:

• TextProcessor – is used for parsing document text and creating hierarchy of
terms for document parts. The main methods is
createDocumentTerms(Document), which takes the document as parameter
and walks through its parts and extracts words from them. From the words,
the normalized terms are created, using active normalization plugins. If the
normalization would result in and empty string, the word is considered as a
stop word. At the end, the DocumentTerms object is created.

• VectorProcessor – is used for creating document vector hierarchy from
already prepared hierarchy of document terms – the DocumentTerms object.
The createDocumentVectors(Document, DocumentTerms) walks through
document parts and from prepared terms it creates and assigns instances of
DocumentVector to them.

• ClusterProcessor – is used for creating labels and titles of clusters. The
clusters themselves are created using clustering algorithm plugins. The labels
are chosen from terms in centroid vector of the cluster using their
frequencies. The titles are selected as a sentences most similar to centroid of
each cluster.

3.4.4. Projects
The projects are used as a container for storing documents and user work. They

also allow to easy transfer the work from one computer to another and to have
multiple parallel projects saved in application at the same time.

Physically each project is saved as a separate sub-directory of projects directory
located under the application directory. It contains:

• XML file project.xml with basic description of the project (for example,
name of the project). It is used only to quickly identify the project. The
example of the file is presented in Figure 3.

• SQLite database in file storage.sq3, where for example list of documents is

21

<?xml version="1.0" encoding="utf-8"?>
<project>

<project-name value="The name of project" />
</project>

Figure 3: Example of project.xml file

stored. SQL provides better and faster access to data collections or changing
data than XML.

• Saved documents and computation cache as separate files, using serialization
of .Net Framework. The serialization has been used because it is much faster
than SQLite, when storing lots of textual data and object hierarchy. The name
of each cache file is derived from the document to which it belongs, cache
name and “.cache” extension. For example:
document_3_SimilarityParagraphs.cache

The list of projects is accessed through static class SimDIS.Project.
ProjectManager, which could check the projects directory and get the list of all
projects by calling getProjectList().

Once opened, the project is represented by Project class in SimDIS.Project
namespace and is partially defined in more files to increase readability of the code.
The Project class provides functionality regarding the project and its documents,
such as:

• Loading and saving the project itself – this is done automatically in its
constructors, where from the parameters it knows whether is should load
from directory or a new project is being created.

• Managing SQLite database – the database is accessible by the
DocumentStorage property, which returns DbConnection. By accessing the
property, database connection is automatically initialized. When it is accessed
for the first time and the database file doesn't exist, the file is automatically
created including SQL schema. This is done by initializeDb() and
createDbSchema() methods.

• Saving document to project using saveDocument(), loading using
getDocument() and deleting using deleteDocument(). Title and name of the
document is saved into database and the document it selves is stored into
separate file using serialization of .Net Framework.

Getting the list of authors and titles of stored documents using
getDocumentTitles(). The list is loaded from database.

3.5. Plugin interfaces
To meet the requirements for a tool for testing, visualizing and analyzing impact

of vector model and clustering used on document and its parts – The SimDIS
application implements several tools for loading documents, parsing them, indexing
their sub-parts, analyzing their mutual similarities, clustering them and visualizing
the results. For better extensibility and easier maintenance in the future the

22

application uses plugins for individual visualization tools, implemented clustering
algorithms etc. All plugins are loaded at the start of the application from external
dynamic-link libraries (DLL's). This allows adding new features without the need for
source code of core application and its recompilation.
The features which may be desirable to be added or modified later are:

• More supported file formats – the file types for importing and exporting
documents to/from the application. For example, it would be suitable to allow
processing documents in some of e-book format as epub or another XML
based format.

• Term normalization – the application should allow to add more complex
filtering steps within the term normalization process (2.1.1.).

• Clustering algorithms – there are many various algorithms, which vary in
way the clusters are computed.

• Clustering and non-clustering visualizations – would allow to add different
ways to look at document and its content.

Figure 4: Basic concept of plugin implemetation

Figure 4 shows the concept of plugin implementation, where the left box
represents the application core part, which links the SimDIS.PluginInterface library
depicted by box at the top of the picture, which makes accessible all necessary
interfaces plugins trough their respective and maintains data, needed by plugins to
work with document. Boxes at the right side enclosed in dashed box represent the
implementations of interfaces via plugins in application context.

The plugin could be one of following type:

• IFilePlugin – implements support for new file types to importing and

23

IClusterVisualizerPlugin
implementation

IVisualizerPlugin
implementation

SimDIS
core application

SimDIS.PluginInterface

IFilePlugin
implementation

IAlgorithmPlugin
implementation

IWordNormalizerPlugin
implementation

exporting documents.

• IWordNormalizerPlugin – implements one step in term normalization
process, like case-folding, stemming or stop words filtering, etc.
Normalization steps are closely described in section 2.1.1..

• IAlgorithmPlugin – the implementation of clustering algorithms.

• IVisualizerPlugin – the non-cluster visualization, visualizing mainly chapter
vectors, paragraph vectors, sentence vectors or document terms. To this
category fits almost anything else, for example, plugin that displays similarity
matrix of paragraphs or plugin that shows table of processed document terms.

• IClusterVisualizerPlugin – for the visualization of clusters. For example,
plugin that displays clustered document parts as a browseable tree.

Each plugin is represented by one or more classes, where each one implements
one or more of previous interfaces. Class(es) implementation is packed in DLL,
which must be located in plugins directory and could contain more than one plugin
class.

The plugin directory is scanned at the startup of application and found plugins are
loaded and registered automatically. This is done by SimDIS.Plugins.PluginManager
using System.Reflection.Assembly and System.Activator of .Net framework. In
loading process, each class from each DLL is checked, whether it implements some
of the plugin interfaces mentioned above and if so, it is registered as plugin – added
to appropriate list within the PluginManager. Later in application those lists are used
to generate menu items, get supported file type or normalize words. This lists are
accessible as following properties:

• Files – list of file active IFilePlugin plugins.

• WordNormalizers – list of active IWordNormalizerPlugin plugins.

• Algorithms – list of active IAlgorithmPlugin plugins.

• DocumentVisualizers – list of active IVisualizerPlugin plugins.

• ClusterVisualizers – list of active IClusterVisualizerPlugin plugins.

The PluginManager also provides methods to process some of the plugin
functionality:

• getNormalizedWord() – takes word, applies all active normalization plugins
to it and returns the result

• openDocument() – reads document from file, using appropriate file plugin

24

• saveDocument() – saves document to an external file, using appropriate file
plugin

To allow DLL to contain more than just plugin classes and for better orientation in
files and classes, a naming convention is enforced:

• The name of plugin DLL must end with “Plugin” (for example,
BasicFilePlugin.dll) to be loaded by application.

• The name of plugin class must end with one of: “Visualizer”,
“VisualizerCluster”, “File”, “Algorithm” or “Normalizer”. Otherwise the
class will not be loaded.

3.6. Implemented plugins
As a part of this application, various plugins were implemented as a normalizers,

visualizers and clustering algorithms. This section describes some of them.

3.6.1. Term normalizers
The normalization is used for grouping together words with similar meaning, but

different written form. It is part of document processing, which is described in
section 2.1.1..

Term normalizers are implementations of IWordNormalizerPlugin with
normalize(string) being the main method. The method takes word as a parameter and
applies one step of normalization on it.

The execution of normalizers is piped in order concluded by default from their
getPriority() value. The explicit order could be forced by the user by setting of
SimDIS.Plugin.NormalizersOrder property, which is closely described in user
documentation in section 6.3..

Following normalizers were implemented and are invoked in following order:

• ToAsciiNormalizer – removes diacritics.

• ToLowerNormalizer – converts all characters to lower-case.

• TrivialStemmerNormalizer – represents a trivial implementation of word
stemming. It tries to remove English, Slovak and Czech prefixes and suffixes
to get their stems. It uses regular expressions to find first suitable prefix and
suffix to remove. Because it mixes multiple languages, it cannot guarantee
that the stem would be generated always correctly. On the other hand, this
cannot be guaranteed even by more complex stemmers.

• StopWordsNormalizer – compares word against stop list located in stoplist.txt
file. If given word is a stop word, it results and empty string. The stop list

25

contains stop words from English, Slovak and Czech language in lowercase
7-bit ASCII form and their stems created by the TrivialStemmerNormalizer.

3.6.2. Clustering algorithms
Clustering algorithms are implementations of IAlgorithmPlugin and their main

purpose it to create clustering from set of document parts (ADocumentPart) in
method computeCluster().

There are two basic groups of clustering algorithms implemented:

• Flat clustering – represented by KMeansAlgorithm, the implementation of K-
Means clustering algorithm.

• Hierarchical clustering – representation by CentroidHACAlgorithm, the
implementation of hierarchical agglomerative clustering using centroid
vectors.

The result of clustering algorithm is a hierarchy of Cluster objects. In flat
algorithms the hierarchy consists of one level under fictional cluster root.

3.6.3. Document visualizers
Document visualizers, the implementations of IVisualizerPlugin, are used for non-

cluster visualization. Some of the visualizations, that were implemented:

• WordsHtmlVisualizer – allows to explore results of document processing, by
showing tables of terms for each document part embedded in text. The output
is displayed using combination of HTML and JavaScript in WebBrowser
component.

• DocumentTermsVisualizer – shows the document term vocabulary table using
DataGridView.

• ChapterSimilarityVisualizer, ParagraphSimilarityVisualizer – display a
similarity matrix between chapters or paragraphs. The output is displayed in
SimilarityWindow form using DataGridView component or alternatively as
image, where each pixel represents one value of similarity matrix in gray
scale. The pixel is the brighter the bigger the similarity is. While grid view
provide exact information about similarities, the image viewer allows
obtaining quick overall insight into similarity distribution.

• ChapterConsistencyVisualizer, ParagraphConsistencyVisualizer and
SentenceConsistencyVisualizer – compute similarity of document part with
its predecessor, successor and with its parent. The output is displayed in
GridWindow form.

26

Many of above mentioned visualizers also provides ability to export data for
further analysis. The formats of exported files could vary with visualized data. For
example, the similarity matrix is possible to export as HTML, CSV and even PNG
file.

3.6.4. Cluster visualizers
Cluster visualizers are implementations of IClusterVisualizerPlugin. Their

purpose it to provide visualization of document parts clustering. Examples of
implemented cluster visualization:

• SentenceTreeVisualizerCluster – displays clustering of sentences in
browsable tree.

• ParagraphTreeVisualizerCluster – displays clustering of paragraphs in
browsable tree.

• ChapterTreeVisualizerCluster – displays clustering of chapters in browsable
tree.

• ChapterSummaryVisualizerCluster, ParagraphSummaryVisualizerCluster
and SentenceSummaryVisualizerCluster – using the method described in
section 2.3. this visualizer allow to generate text summary. The summary is
generated from clusters of corresponding document parts – clusters of
chapters, paragraphs of sentences.

Cluster visualizers allows to set the threshold for cutting the cluster hierarchy
when using hierarchical clustering. For example, the threshold of 0.4 will cut the
cluster hierarchy, where clusters with similarities of their siblings bigger than 0.4
will be left as whole and those with smaller will be split.

27

4. Usage example analysis

This section provides an example of application usage and compares some of the
visualization results with respect to granularity level. The example is made on book
The Underground City from Jules Verne, which consists of 19 chapters, 1043
paragraphs and 2330 sentences.

4.1. Non-clustering visualizations
After importing the document into application and generating document terms and

vectors, using DocumentTermsVisualizer we could see, that document contained
44051 words, which resulted in 4010 terms in document term table. As could be seen
in Table 1, which shows first 12 terms ordered by their word count, the first 11 are
stop words and the first non stop term is on twelve position. The total number of stop
word terms was 536 and they stopped 25526 word occurrences.

Id Term Word count Stop word Inverse frequency
22 the 3010 True 0,1183334
32 of 1544 True 0,2369451
20 to 1197 True 0,2681921
125 and 900 True 0,31455
30 a 746 True 0,3626023
61 was 629 True 0,4528527
105 in 628 True 0,4243079
158 that 480 True 0,4923612
150 it 423 True 0,559308
112 his 389 True 0,6330943
93 had 377 True 0,6439521
47 harry 354 False 0,5162734

Table 1: First 12 terms in document ordered by word count

With use of ChapterConsistencyVisualizer, ParagraphConsistencyVisualizer and
ChapterConsistencyVisualizer we could get similarity of document part with its
parents. The average values are presented in Table 2 and this values confirms that the
document contains a lot of short paragraphs with 2.23 sentences in average, because
the sentences are very similar to theirs paragraphs.

28

Similarity with paragraph Similarity with chapter Similarity with document

Characters x x 0,5614398

Paragraphs x 0,1919763 0,1199073

Sentences 0,6228683 0,1346669 0,0840155

Table 2: Similarity of document parts with theirs parents

4.2. Visualization with use of clustering
Clustering could be used on chapters, paragraphs or sentences, which gives us

three parallel cluster structures of the document content. Therefore it may be
interesting to compare them.

The application so far implements two clustering algorithms mentioned before in
section 2.1. and Table 3 shows the time in seconds spent on their computation. It is
clear that with deeper granularity the computing time raises rapidly and with
Centroid HAC even more. The values are measured on common desktop PC with
1.66 GHz dual core processor.

Algorithm used On chapters On paragraphs On sentences

K-means, k=10 0,9375 sec. 5,984375 sec. 13,82813 sec.

Centroid HAC 1,25 sec. 32,79688 sec. 131,375 sec.

Table 3: Time spent on computation of clusters in seconds

Clusters are used in automated generating of document summary, introduced in
section 2.3., by cluster visualizers ChapterSummaryVisualizerCluster,
ParagraphSummaryVisualizerCluster and SentenceTreeVisualizerCluster. In Table 4
we can see, that the algorithms spent both above the same time on generating
summary from clusters over different granularity. The required sentence length was
set to 70 characters.

Algorithm Chapters Paragraphs Sentences

K-means, k=10 0,515625 sec. 0,59375 sec. 0,546875 sec.

Centroid HAC 0,84375 sec. 0,75 sec. 0,75 sec.

Table 4: Time spent on generating document summaries

The summary generated using K-means is enclosed in Appendix A: Generated
summaries from K-means algorithm. The results are pretty solid and for paragraphs
and sentences very similar, but for chapters the quality is noticeable lower.

The summary generated using Centroid HAC in comparison with previous from
K-means on the other hand performs poorly. The results are enclosed in Appendix B:
Generated summaries from centroid HAC algorithm.

29

5. Conclusion

5.1. Project contribution
This work took a closer look at a possibilities of applying vector-space model and

clustering techniques on individual parts within a single document. This application
of vector model and clustering is not an usual approach and there hasn't been much
research in it. The analysis has shown, that a transformation from document
collection to intra-document analysis needs only a minor adjustment and the theory
and algorithms could be transformed.

Implemented application with already built-in visualizing tools provides and easy
way for testing and analyzing the content of documents in interactive form. This
could help to measure the suitability of used techniques. The data could be analyzed
within the application itself or could be exported for further processing.

5.2. Visualization results
Using list of terms, it was possible to verify the document indexation and by the

frequencies of the terms, to identify possible candidates for addition to stop list.
The image presentations of similarity matrices show that real documents contain

often similar areas located far away each from other and so the easy navigation
between them would be helpful. The same visualization could be used as a hint for
document structuring to describe similar topics closer together.

Comparing K-mean and HAC algorithms, the HAC was able to detect parts which
are dissimilar from the rest of the content and so it could better detect the topics of
the document. However, when generating summary the K-mean was giving better
results, because it was able to select more relevant sentences, which were better
reflecting the overall content of document.

Generated summaries showed, that for longer texts the summaries from sentence
level clusters and paragraph level clusters were very similar in quality. The number
of paragraphs in lower than the number of sentences and therefore the clustering of
paragraphs would take significantly less time.

5.3. Possible future work
The possible ways of visualization are practically unlimited. Therefore, it is

probable that more of them would be added in future. It could be also suitable to
implement more clustering algorithms.

The implemented plugins for word stemming provides only basic approach. To
improve the token normalization, some lemmatizers dependent on document

30

language could be involved into the process.
The supported HTML format proven itself as sufficient for testing purposes.

There are a lot of tools, which allows to convert other types of documents to it. On
the other hand, there are a lot of free electronic books available targeted for
electronic book readers. So it could be handy to add native support for some of them.

The possible improvements mentioned so far are mainly related to plugins.
However there are possible improvements also within the core application. For
example, it may be interesting to add support for different similarity measures and
their comparison.

31

6. User documentation

6.1. System requirements
This application designed to run under Microsoft Windows XP SP3, Windows

Vista SP1 and Windows 7 in 32bit version.
To run the application, Microsoft .Net Framework 2.0 or later is required to be

installed.

6.2. Installation
The application needs to be installed on writable drive in a folder, where the

application would be allowed to read and write files. The installation could be done
via provided setup.exe wizard or simply by extracting SimDIS.zip package. Both
files could be found on attached CD.

No other steps are required to run the application.

6.3. Properties
Some of application parameters could be configured in application.properties file

in application directory. In this file, they will be used globally for the whole
application. The properties could be overloaded in project.properties files, located in
directory of each project.

The parameter is defined in form PARAMETER_NAME=VALUE. The character #
at the beginning of line is taken as a row comment and so the row is skipped.

Available parameters and their values could be found in Table 5. The parameter
names are case-sensitive, but there could be white spaces before and after it.

Parameter name Description Values

SimDIS.Plugin.NormalizersOrder Defines which plugins should be used for
normalization and their order. If empty, all
are used in default order. One plugin could
occur multiple times.

Plugin1|Plugin2|
Plugin3

KMeansAlgorithm.K The K value of K-Means algorithm – the
number of clusters to create. If 0 or empty, it
tries to determine the number automatically.

integer

SimilarityWindow.MaxZoomLevel Maximal level for zooming the image in
similarity window. Default value is 10.

integer

StopWordsNormalizer.StopListFile Allows to define custom file name of stop
list. By default stoplist.txt is used.

string

Table 5: Configurable parameters in properties

32

6.4. Working with the application
The application is started by executing SimDIS.exe file.

6.4.1. Starting a project
At the application startup, the welcome screen is shown to user (Figure 5). On this

screen, the user can create and start a new project or to load (Figure 6) data from
existing projects. The projects are represented as a directories in projects directory.

When creating the project, the name of directory is generated automatically from
the project name. In could be later renamed or copied using common tools for
browsing file system in Windows.

6.4.2. Document list
After the project is loaded, the main window with list of documents is shown

(Figure 7). The list contains author and title of documents and also number of
chapters, paragraphs and sentences.

Here it is possible to manage documents, stored within the project:

• Open selected document – opens the first document that is selected in list.

• Import document – opens file dialog and imports one or more documents.

• Delete selected document – deletes all documents selected in list.

33

Figure 5: Welcome screen

Figure 6: Project loading selection

Under section Tools in menu, the user could find following:

• Clear project cache – deletes all cache files withing the project.

• Edit properties – opens a window with project properties for editation. This is
changing only property file located within the project and not the global one.
After save the properties are automatically reloaded.

• Test normalizers – opens a window, which allows to load file containing
words – each on single line – and then by use of selected normalizer it saves
the result to output file. For example, loading a stop words file, applying
stemmer on it and saving the result into new stop words file.

• About SimDIS – information about the application.

6.4.3. Document window
By opening document from document list, the Document window is shown

(Figure 8). It shows full text of the document and allows to run visualization on it.
Document window offers following actions in top menu:

• Export document – opens save file dialog and then exports current document
into selected place.

• Clear document cache – deletes all cache files, which belongs to current
document.

• Go to – it is possible to enter the number of chapter and paragraph and by
clicking on Go to button, the document text would be scrolled to this
document part.

34

Figure 7: Document list window illustration

The visualizers plugins are automatically registered and are offered to user in side
menu, from which he can execute them. When visualization is executed, it usually
opens its own specific window.

The visualizations of clusters are related for currently selected clustering
algorithm.

6.4.4. Chapter, paragraph and sentence similarity
All three visualizers use the same window, which display the similarity as table,

as in Figure 9, or as and image, as in Figure 10.

35

Figure 8: Document window illustration

Figure 9: Similarity window showing grid view

The user could play with it and event export it into CSV, HTML or PNG for
further processing in external programs.

6.4.5. Words and terms visualization
There are two direct visualizations for showing term vocabulary. First – Visualize

words – shows whole text in a HTML window (Figure 11) and adds hidden “+” to
every document part. After clicking on it, the term table and vector of corresponding
document part is shown. The “+” changes to “–” and when clicked, it hides back the
table.

By selecting in top menu, the user could affect to which parts the “+” are
displayed.

The second visualization just shows global dictionary and allows to export it.

36

Figure 10: Similarity window showing image

Figure 11: HTML word visualization window

6.4.6. Working with clusters
The clustering algorithm, which is to be used for creating clusters could be

selected in menu in document window as shown on Figure 12.

Then the cluster could be seen clicking on Chapter tree, Sentence tree or
Summary tree visualizers. The cluster tree window would be opened (Figure 13).

In this window, user could browse through the clusters. Each node represents one
cluster, where first is the similarity of its sub-clusters or 1 in for leaf and then its
label. The leaf cluster contains member document parts, where the first number
represents their location in document.

37

Figure 12: Selecting clustering algorithm

Figure 13: Cluster tree visualizer window

By hovering on document part, a title with full text is shown.
The user could also specify the threshold value in top menu, which is used to cut

through the hierarchical clusters.

6.4.7. Generating text summary
For automated generating of text summary, there are three possibilities accessible

from the document window:

• Summary from chapters – clusters on chapter level are used

• Summary from paragraphs – clusters on paragraph level are used

• Summary from sentences – clusters on sentence level are used

Figure 14 shows example of summary window. After pressing Generate button on
top, it generates the text and also displays time spent of computation. The time spent
on creating clusters shows the time spent on getting the clusters and in case of
loading from cache, it could be significantly lower, than real time needed to compute
them.

On this window, the user could set threshold and sentence length value. The
threshold is used to cut through the hierarchical clusters. The ideal sentence length is
used as a parameter for text generating, which is closely described in 2.3..

38

Figure 14: Summary generating window

7. Programmer documentation

7.1. System requirements
The application requires Microsoft .Net Framework [7] in version 2.0 or later to

be installed and Microsoft Visual Studio [11] 2008 or later to open the project
solution.

For compiling the application, the System.Data.SQLite library [10] and
Subversion [12] are required. The Subversion is used to automatically generate
assembly version and it could be omitted by removing subwcrev command from pre-
build events of SimDIS project.

For creating and compiling custom plugins it is not required to have the source
and compile the whole application.

7.2. Compiling the whole application
The source code of application is contained within SimDIS solution of Microsoft

Visual Studio. To open it, run SimDIS.sln in root of the solution.
The solution consists of several projects, of which the main are SimDIS and

SimDIS.PluginInterface. Other projects are containers for plugins.
The whole application could be build by choosing Build > Build solution from the

top menu.

7.3. Custom plugin creation
The types of plugins are described in section 3.5.. This section describes creation

of custom plugin without the need of the whole application using Microsoft Visual
Studio 2008.

At first, the project (and solution) must be created. It is a Class library project and
its name must end with Plugin. Then the reference to SimDIS.PluginInterface class
library must be added as shown on Figure 15 and set the Copy Local property to
false. Usually the System.Windows.Forms is also required to show visualization.

Next step it to rename Class1 to more suitable name, for example
MyCustomVisualizer. It is important, that it ends correctly as described in section
3.5.. In this example I have chosen visualizer plugin, so the class must implement
SimDIS.PluginInterface.IVisualizerPlugin interface.

The IVisualizerPlugin interface consists of getPluginName() method, which
simply returns name of the plugin and visualize() method, which receives
information about document and runs visualization.

39

A simple implementation of visualization is in Figure 16, where it shows the
author and the title of provided document in System.Windows.Forms.MessageBox.

40

Figure 15: Adding SimDIS.PluginInterface

namespace MyCustomPlugin
{

public class MyCustomVisualizer : IVisualizerPlugin
{

#region IVisualizerPlugin Members

public string getPluginName()
{

return "My custom";
}

public void visualize(IDocumentInfo documentInfo,
IWin32Window owner)

{
MessageBox.Show(documentInfo.getDocument().Author

+ ": " + documentInfo.getDocument().Title);
}

#endregion
}

}

Figure 16: Implementation of simple visualization plugin

When building the plugin, it is important to chose right target platform. The
SimDIS application is by default compiled for x86, so the plugins should be
compiled also for x86 or Any CPU.

To add and run compiled DLL of plugin, it is only needed to copy in plugins
directory of SimDIS application. The application will automatically detect and
register the plugin.

41

Bibliography

[1] Manning Ch. D., Raghavan P., Schütze H.: An Introduction to Information
Retrieval, Cambridge University Press, Cambridge, England, 2009
[2] Gan Guojun, Chaoqun Ma, Jianhong Wu: Data Clustering: Theory,
Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied
Probability, SIAM, Philadelphia, ASA, Alexandria, VA, 2007
[3] Aone Ch., Larsen B.: Fast and Effective Text Mining Using Linear-time
Document Clustering, KDD-99 San Diego CA USA, 1999
[4] Hinneburg A., Keim D.: Optimal grid-clustering: Towards breaking the curse
ofdimensionality in high-dimensional clustering., In Proceedings of the 25th
internationalconference on very large data bases (VLDB ’99), San Francisco, 1999
[5] Bossard A.: Generating Update Summaries : Using an Unsupervized
Clustering Algorithm to Cluster Sentences, Laboratoire d'Informatique de Paris-
Nord, 2011
[6] World Wide Web Consortium (W3C): W3C HTML, http://www.w3.org/html/
[7] Microsoft Corporation: Microsoft .Net Framework, http://www.microsoft.com/
net/
[8] Microsoft Corporation: Windows Homepage, http://windows.microsoft.com/
[9] SQLite development team: SQLite Home Page, http://www.sqlite.org/
[10] Simpson R., SQLite development team: System.Data.SQLite,
http://sqlite.phxsoftware.com/
[11] Microsoft Corporation: Microsoft Visual Studio,
http://www.microsoft.com/visualstudio/
[12] Apache Software Foundation: Subversion, http://subversion.apache.org/

42

CD contents

Enclosed CD contains:
• dp.pdf – A PDF version of this diploma thesis.
• Binary – Compiled version of the application
• Documentation – Generated documentation of the application
• Source – Source code of the application
• TestDocuments – A sample documents compatible with SimDIS application

43

List of tables

Table 1: First 12 terms in document ordered by word count......................................28
Table 2: Similarity of document parts with theirs parents..29
Table 3: Time spent on computation of clusters in seconds.......................................29
Table 4: Time spent on generating document summaries..29
Table 5: Configurable parameters in properties..32

44

Appendix A: Generated summaries from K-
means algorithm

K = 10 ; Required sentence length = 70

Automatically generated from chapter clusters:
Then, continuing, "And can you tell me what you father wants with me?"
"Are you still determined to explore this abyss?" whispered Jack Ryan.
The Rob Roy, still half a mile from land, experienced a violent shock.
"Decidedly, I have not your legs, my lad," said the engineer, panting.
"Harry," said Simon Ford, turning to his son, "light our safety lamps."
"Did not these fires cause any explosion?" asked the engineer quickly.
James Starr fully entered into it; but he let Ford rave for them both.
"Superb! Mr. Starr, superb!" answered Ford; "just look at it yourself!"
The inhabitants of Irvine would not have taken them there at any price.
THREE years after the events which have just been related, the guide–books recommended as a

"great attraction," to the numerous tourists who roam over the county of Stirling, a visit of a few hours
to the mines of New Aberfoyle.

Automatically generated from paragraph clusters:
"Was it your father who wrote telling me to come to the Yarrow shaft?"
Then, continuing, "And can you tell me what you father wants with me?"
"Are you still determined to explore this abyss?" whispered Jack Ryan.
They frequently met, either at the cottage or at the works in the pit.
"With my father’s consent she shall be my wife without further delay."
Woe betide you! Woe betide you all! Woe betide New Aberfoyle!—SILFAX."
"Did not these fires cause any explosion?" asked the engineer quickly.
But I, ten years older, often saw the last 'monk' working in the mine.
James Starr fully entered into it; but he let Ford rave for them both.
The old overman stepped forward, and himself felt the schistous rock.

Automatically generated from sentence clusters:
Then, continuing, "And can you tell me what you father wants with me?"
"Are you still determined to explore this abyss?" whispered Jack Ryan.
It was like the sound of a mighty cataract rushing down into the mine.
They perceived at once that the waters of Loch Malcolm were rising.
Woe betide you! Woe betide you all! Woe betide New Aberfoyle!—SILFAX."
But I am talking too much about myself: the great thing is about you."
From the bottom of the Yarrow shaft radiated numerous empty galleries.
"Yes, indeed! I have the whole plan of the old pit still in my head."
"Did not these fires cause any explosion?" asked the engineer quickly.
James Starr fully entered into it; but he let Ford rave for them both.

45

Appendix B: Generated summaries from
centroid HAC algorithm

Required sentence length = 70

Automatically generated from chapter clusters:
threshold = 0,51

"It’s a long way off, is Edinburgh!" answered the man shaking his head.
"Was it your father who wrote telling me to come to the Yarrow shaft?"
They frequently met, either at the cottage or at the works in the pit.
Westward rose many hill–tops, soon to be illuminated by tips of fire.
The Rob Roy, still half a mile from land, experienced a violent shock.
Silfax, gazing upwards with wild and contracted features, appeared to become aware that the gas,

lighter than the lower atmosphere, was accumulating far up under the dome; and at a sign from him
the owl, seizing in its claw the lighted match, soared upwards to the vaulted roof, towards which the
madman pointed with outstretched arm.

As to Simon Ford, the ex–overman of New Aberfoyle, he began to talk of celebrating his golden
wedding, after fifty years of marriage with good old Madge, who liked the idea immensely herself.

If Jack Ryan and the other superstitious fellows in the mine had seen these lights, they would,
without fail, have called them supernatural, but Harry did not dream of doing so, nor did his father.

"Did not these fires cause any explosion?" asked the engineer quickly.
James Starr fully entered into it; but he let Ford rave for them both.
THREE years after the events which have just been related, the guide–books recommended as a

"great attraction," to the numerous tourists who roam over the county of Stirling, a visit of a few hours
to the mines of New Aberfoyle.

Automatically generated from paragraph clusters:
threshold = 0,06

No signature.
Thus also shells, zoophytes, star–fish, polypi, spirifores, even fish and lizards brought by the

water, left on the yet soft coal their exact likeness, "admirably taken off."
"Hullo, Jack! Where are you?"
A soft, transparent film of vapor lay along the horizon; the first sunbeam would dissipate it; to the

maiden it exhibited that aspect of the sea which seems to blend it with the sky.
On this memorable occasion, Jack Ryan, in his favorite character of piper, and in all the glory of

full dress, blew up his chanter, and astonished the company by the unheard of achievement of playing,
singing, and dancing all at once.

"No doubt there would, Harry; it must be acknowledged, however, that nature has shown more
forethought by forming our sphere principally of sandstone, limestone, and granite, which fire cannot
consume."

"Some neighbor, then?"

46

But I, ten years older, often saw the last 'monk' working in the mine.
"Do they want to run ashore?" said another.

Automatically generated from sentence clusters:
threshold = 0,02

No signature.
He also wrote to excuse himself from two or three engagements which he had made for the week.
An obstacle speedily arrested his progress.
It was enchanting.
It was by this time three o’clock in the afternoon.
But, unluckily, this dog was lively, and barked.
"Some neighbor, then?"
It was the same with the "cockyleeky," a cock stewed with leeks, which merited high praise.
He was par excellence the type of a miner whose whole existence is indissolubly connected with

that of his mine.
But I, ten years older, often saw the last 'monk' working in the mine.
It might be called a hive with numberless ranges of cells, capriciously arranged, but a hive on a

vast scale, and which, instead of bees, might have lodged all the ichthyosauri, megatheriums, and
pterodactyles of the geological epoch.

This vault served as a basement to Dumbarton.

47

