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Abstrakt: Za p°ítomnosti chirálního £inidla, m·ºe být NMR pouºita jako metoda pro ur£ení enan-
tiomerního nadbytku u chirálních molekul. V této práci jsme se za pomoci 1H-NMR spektroskopie
zabývali detekci enantiomerního nadbytku Ibuprofénu (guest) pouºitím nechirálního por�rinó-
genu DiBrBzOxP (host). Detekce enantiomerního nadbytku probíhala zásluhou tvorby host-
guest komplexu, kde host slouºil jako detektor. Tvorba komplexu se projevuje roz²t¥pením NMR
signálu pyrrolových proton· DiBrBzOxP a to lineárn¥ s enatiomerickým p°ebytkem Ibuprofénu.
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hustoty. Komplex byl nejprve podroben geometrické optimalizaci pomoci funkcionálu M06-L/6-
31G(d,p). Pro �nální struktury byli za pomoci GIAO/M06-L/6-31++G(d,p) vypo£teny NMR
chemické posuvy, které se následn¥ porovnali s experimentálními hodnotami. Singulární dekom-
pozice UV/vis a Ramanovských spekter titrovaných kyselinou tri�uoroctovou odhalila existenci
troch r·zn¥ protonovaných forem DiBrBzOxP.
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Abstract: NMR can be used as an analytical tool for determining enantiomeric excesses of chiral
molecules with use of a suitable chiral chemical shift agent. In this work we study determination
of enantiomeric excesses of Ibuprofen (guest molecule) with non-chiral porphirinogen DiBrBzOxP
(host molecule) using 1H-NMR spectroscopy, and we report the mechanism of this phenomenon.
Method is based on a formation of host-guest complex of chiral guest with achiral host signaling
chiral information. This complex formation cause splitting of DiBrBzOxP's β-proton NMR
resonances linearly with enantiomeric excess of the Ibuprofen. NMR studies also revealed that
water acts as a inhibitor for complex formation. Considering this inhibition properties of water,
association constant of DiBrBzOxP with Ibuprofen using NMR titration was determined Ka =
6.02mol/l−1. To understand the binding mechanism of complex, DFT computations have been
performed. M06-L/6-31G(d,p) revealed two stable conformers for this complex. To verify that
found structures correspond to reality, their GIAO/M06-L/6-31++G(d,p) calculated chemical
shift tensors were compared to experimental values. SVD analysis of UV/vis and Raman analysis
of DiBrBzOxP titrated with tri�uoroacetic acid revealed existence of three di�erent protonated
forms, that might have di�erent association constants for Ibuprofen complex.
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Preface

A molecule is said to be chiral if it can exist as isomers (called enantiomers) that are
nonsuperimposable mirror images of each other. Response of an organism to a particular
molecule depends on how the molecule �ts into a binding site of a receptor molecule.
Because these receptors contain chiral molecules (amino-acids, saccharides) the organ-
isms are enantioselective. They might interact with each enantiomer di�erently. This
is important in drug design, because about half of the drugs currently in use are chiral
compounds, and many of them must be administered as pure enantiomers to produce the
desired results without side e�ects. Maxwell's equations, which dictates chemical proper-
ties of matter, are invariant under inversion of parity. Therefore enantiomeric pairs have
identical chemical properties and are indistinguishable without use of a chiral auxiliary.
Chiral auxiliary methods of enantiomeric analysis include either interaction of enantiomers
with circularly polarized electromagnetic waves, or their interaction with another chiral
substance. Not all chiral molecules are optically active, and chirality detection with other
chiral molecules has many limitations and �aws. Hence there is a great need to improve
and develop new ways for determination of enantiomeric purity.



1 Nuclear magnetic resonance

1.1 Evolution of quantum state

In classical mechanics the state of a physical system is fully described by 6N parameters, where
N is a number of classical point particles. Three coordinates for each particle specify its position,
and other three specify its momentum in three dimensional space. The 6N parameters can be
represented as a coordinates in a space, where all possible states of a given physical system are
represented as a unique points1.
The time evolution of a classical system is given by three Hamiltonian equations:

∂H

∂qj
= −ṗj (1)

∂H

∂pj
= q̇j (2)

∂H

∂t
= −∂L

∂t
(3)

Hamiltonian H(q,p, t) function is:
H =

∑
i

qipi − L (4)

and Lagrangian L(q, q̇, t):
L = T (q̇, t)− V (q, t) (5)

T is kinetic energy T = 1
2

∑
i
mq̇2

i and V is a potential energy of a system, given by its interaction

with rest of the universe.
The Hamiltonian phase space canonical variables can be transformed into a new canonical
variables(qn; pn) → (Qn;Pn), in a way that the resulting Hamiltonian equations will be pre-
served, even though the Hamiltonian itself will change2. The new variables (Qn;Pn) generally
depend on any of old variables Qn = Qn(q,p, t) and Pn = Pn(q,p, t). The transformation has
the following general form:

H (q,p, t) +
∂F

∂t
= K (Q,P, t) (6)

K is the new Hamiltonian and and F is an arbitrary di�erentiable function F (q, p,Q, P, t), and
the new variables satisfy {Q,P} = 1. Because of Qn = Qn(q,p, t) and Pn = Pn(q,p, t) only 2N
of total 4N variables are independent, so F depends on 2N coordinates and time.

If we take a generating function to be F = S(q, t) =
q,t´
q0,t0

L(q, q̇; t)dt, then ∂S(q,Q,t)
∂q = ∂L(q,q̇,t)

∂q̇ =

p(t) and also ∂S(q,Q,t)
∂t = L −

∑
qipi = −H, which results in K=0. Also note that Q̇ = ∂K

∂P ,
Ṗ = −∂K

∂Q , so we now see that S is a generating function that transforms variables (qn; pn) →
(Qn;Pn) , so that the new variables remain constant in time. Using S as a generating function
for equation 6 gives Hamilton-Jacobi equation:

H

(
q,
∂S

∂q
, t

)
+
∂S

∂t
= 0 (7)

If we take S(q,t) as a solution of particular system, S(q, t0) = c de�nes a surface in a phase
space, that describes a volume as we propagate through time. We can thus construct a gradient
of a surface∇S(q, t0) = mq̇(q, t0), therefore the trajectories can be obtained as perpendiculars
to a surface S(q, t0) = c at all times of state evolution3 . Given the initial conditions, the state
of a system is given by S(q, t) and its time evolution by Hamilton-Jacobi equation.

1The coordinates that uniquely de�ne any possible state of the system, are also called generalized coordinates.
And the space spanned by generalized coordinates is called a phase space[1]

2Note that the new variables, may not have the dimensions of momentum and position, but they will represent
some other conjugate pair of canonical variables, such as energy and time

3However, this is not a case when electromagnetic �elds are present, because. This problem can be solved by
by introducing a non-euclidean metrics[2].
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The principle of least action, which is a foundation for Hamiltonian description of classical
mechanics is also a foundation for Fermat's principle, and therefore whole geometrical optics.
In geometrical optics the phase velocity of a light wave in a non-homogeneous and dispersive
medium, is given by[3]:

v =
E√

2m(E − V )
(8)

Inserting this equation together with E = ~ω into wave equation
[
∇2 − 1

v2
∂2

∂t2

]
Ψ(r, t) = 0 and

proposing general form of wave function Ψ(r, t) = ψ(r)eiωt and ∂2Ψ
∂t2

= −$2Ψ results into[
∇2 − 2m(V − E)

~2

]
ψ(r) = 0 (9)

which is a time-independent non-relativistic Schrödinger equation. Multiplying this equation
with eiωt to restore time dependence and realizing that EΨ(r, t) = −i~∂Ψ(r,t)

∂t results in time-
dependent non-relativistic Schrödinger equation:[

∇2 −
2m(V + i~ ∂

∂t)

~2

]
Ψ(r, t) = 0 (10)

This equation describes the evolution of a state in quantum mechanics, where the state of the
system is determined by a wave function Ψ(r, t).

1.2 Spin

The Schrödinger equation being a non-relativistic equation is not invariant under the Lorentz
transformation in space-time. This led Paul Dirac in 1928 to propose a relativistic version of
Schrödinger equation4.[

i~
∂

∂t
+ c

∑
q=x,y,z

αq

(
i~
∂

∂q
+ eA

)
−mc2β + V (r)

]
Ψ̄(r, t) = 0 (11)

where β and α are 4x4 matrices:

αx =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 αy =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0



αz =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


and Ψ̄(r, t) is a four-component wave-function (bispinor):

Ψ̄(r, t) =


Ψ1(r, t)
Ψ2(r, t)
Ψ3(r, t)
Ψ4(r, t)


For free particle the solution of Dirac equation leads to E± = ±

√
p2c2 +m2

0c
4 where two energies

represent particle and its twin antiparticle. Ignoring anti-particle solutions, we get two distinct
wave-function solutions for particle:

4The combination of quantum mechanics and special relativity implies that number of particles is not conserved.
Once we enter the relativistic domain we need a new formalism to treat unspeci�ed number of particles. And there
is no mechanism in non-relativistic quantum mechanics to deal with changes in particle number. Therefore any
naive attempt to relativize Schrödinger equation will result in an unphysical behavior, like negative probabilities,
in�nite amount of negative energy states or breakdown of causality. However when these ambiguities are ignored,
Dirac equation predicts existence of spin 1/2 particles.
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Ψ̄1(r, t) =


1
0
cpx

m0c2+E
c(py+ipz)
m0c2+E

 ei(
pr−Et

~ ) and Ψ̄2(r, t) =


0
1

c(py−ipz)
m0c2+E

− cpx
m0c2+E

 ei(
pr−Et

~ )

In a non relativistic limit v � c the third and fourth components can be neglected, and the
Dirac equation can be rewritten to the following form:[

i~
∂

∂t
− (σ. (−i~∇− eA))2

2m
− V (r)

]
Ψ̄(r, t) = 0 (12)

where Ψ̄(r, t) is now a spinor. This form ignores relativistic e�ects, because it is a �rst order5

approximation.
Now using identities:

[
−i~ ∂

∂qi
− eAi; − i~

∂

∂qj
− eAj

]
= −εijki~Bk

σiσj = δij + εijkσk

eq. 12 can be rewritten into:

[
i~
∂

∂t
− (−i~∇− eA)2

2m
− V (r) +

e~σ.B
2m

]
Ψ̄(r, t) = 0 (13)

this is formally called Pauli equation, and σ is a 3 component operator, with each component
acting on given component of a magnetic �eld. The components are:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
The implication of Dirac's equation is, that a relativistic description of a single particle evolution
implies multiple wave functions representing particle and its twin anti-particle, and another
degree of freedom for each, that we call spin. From Pauli equation we then see, that spin
becomes experimentally observable as energy splitting of particle's energy, when it is exposed
into magnetic �eld. This is basis for NMR.

1.3 Nuclear magnetic resonance spectroscopy

The general purpose of spectroscopy is characterization of a system by its spectrum. Nuclear
magnetic resonance (NMR) is a spectroscopic method that measures local magnetic �eld strength
at given nucleus. The spin particle acts as a measuring device. Its energy levels in a magnetic
�eld are quantized, and transition among them can be induces by electromagnetic waves. For
transition to occur, the frequency of electromagnetic waves that interact with spin particle must
match the energy di�erence of spin states. Collection of frequencies that induce transition for
given system de�nes NMR spectrum.
A traditional way to obtain a NMR spectrum, is to apply a monochromatic perturbation to the
system and to measure the response. Point to point measurements allows one to trace out the
spectrum. This traditional technique called �slow passage� or �continuous wave�, has been used
for the �rst 25 years of NMR spectroscopy.
Since 1970s pulse Fourier NMR spectroscopy has been replacing the old technique. It is based
on a fact, that short delta function pulses can be considered as a multifrequency pulses. This
pulse can simultaneously excite all resonant frequencies, and in linear systems the total response
is a superposition of all individual frequency components. The reason why continuous wave
NMR spectroscopy have been almost completely replaces by pulsed NMR, is not only the speed
advantage. The pulsed NMR also achieves higher sensitivity and resolution.

5O
(
1
c

)
in cgs units
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1.4 Single single particle in a magnetic �eld

Spin dynamics of individual spin particle, or of an ensemble of non-interacting spins can be
understood by classical description where the spin of the particle is reduced to a magnetization
vector. However when one wants to describe phenomenons that arise from inter-spin interaction
(such as J-coupling), then it is necessary to use quantum mechanical description of a system.
If the potential term in equation (13) is independent of spin, the eigenvector solution Ψ̄(r, t) can
be separated into 2 parts. 1-component wave function Ψ(r, t) on which the second and third terms
in equation (13) acts and χ(t) which represents a spin state of a particle on which the �rst and
fourth component of eq. (13) act. Because Ψ(r, t) evolves according to magnetic �eld independent
terms of Hamiltonian, it doesn't contribute to energy changes or state evolution when magnetic
�eld is applied, and will be ignored. This approximation will be implicit throughout the rest of
this work.
For spin 1/2 particle, the spin state can be represented as a vector in 2-dimensional complex
vector space. For Ŝz = ~.σ̂z

2 operator there are two orthonormal stationary states that will serve

as a basis:|↑〉 =

(
1
0

)
and |↓〉 =

(
0
1

)
. De�ning Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z , we get relationships:

Ŝq |↑〉 = ~
2 |↑〉 Ŝq |↓〉 = −~

2 |↓〉 Ŝ2 |↑〉 = 3~2
4 |↑〉 Ŝ2 |↓〉 = 3~2

4 |↓〉

and these commutation relationships as well6:[
Ŝi, Ŝj

]
= δij + iεijkŜk

[
Ŝ2, Ŝq

]
= 0 where qε {x, y, z}

S being a spin of the given particle. Now if we put a particle into a static magnetic �eld
B = B(0, 0, Bz) the equation7 (13) will look like:

i~
∂

∂t
χ(t) = −egŜz.Bz

2m
χ(t) (14)

Because Hamiltonian is time independent, the solution of equation (14) could be separated as:

χ(t) = exp(
ieg.Bz

4m
t)χ (0)

χ (0) =

(
χ1

χ2

)
is a spinor, given as a linear combination of two eigenstates, whose values are

set by initial conditions, and each eigenstate has energy given by:

−ge~Bz
4m χ1 = E1χ1

ge~Bz
4m χ2 = E2χ2

For sake of simplicity, we can de�ne ω0 = eBzg
2m~ , where

g
2 factor arises from quantum electro-

dynamics as a correction. We now see, that spin evolution in a static magnetic �eld is given
by:

χ(t) = exp(i$0.Ŝzt)χ(0) (15)

Using commutation relationship
[
Ŝi, Ŝj

]
= iεijkŜk it can be shown that following formula applies:

exp(−i$.Ŝkt).Ŝi.exp(i$.Ŝkt) = Ŝicos($t) + Ŝjsin($t) (16)

Therefore acting with exp(i$0.Ŝzt) operator on a state χ(t) transforms the state into new state,
that is rotated around z axis by angle $0t. We can now simplify the analysis of χ(t) state by
transforming whole equation from laboratory reference frame into reference frame that is rotating
around z axis with frequency −$. The state and operators viewed from rotating reference
frame will be denoted by .̃ Using generalized Pauli equation i~ ∂

∂tχ(t) = Ĥ(t)χ(t), where Ĥ(t)

denotes all operators that act on a state χ(t) from χ̃(t) = exp(−i$0.Ŝt)χ(t) we get the following

6For particles of di�erent value of spin, the formalism can be build as well. Leaving the commutation relation-
ships the same, but expanding the dimension of complex vector space to 2S+1 dimensions.

7corrected with g
2
factor, that arises as a consequence of quantum electrodynamics, and for purposes of NMR

can be de�ned experimentally
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transformation for Ĥ(t) → ˜̂
H(t): i~ ∂

∂t χ̃(t) = i~
(
∂exp(−i$.Ŝzt)

∂t .χ(t) + exp(−i$.Ŝzt).∂χ(t)
∂t

)
=

i~
(
−i$.Ŝz.χ̃(t)− exp(−i$.Ŝzt). i~Ĥ.exp(i$0.Ŝzt)χ̃(t)

)
which gives:

˜̂
H(t) = exp(−i$.Ŝzt).Ĥ.exp(i$0.Ŝt)− ~$Ŝz (17)

If we take Hamiltonian to be Ĥ = ~.$0.Ŝz + 1
2 .
eg.BRF

2m

{
cos(ωt)Ŝx + sin(ωt)Ŝy

}
where �rst term

on right hand side, refers to static magnetic �eld along z axis, and second term refers to oscillating
magnetic �eld with frequency ω8. Transforming this Hamiltonian according to eq.(17) we get:

˜̂
H = ~. ($0 −$).Ŝz +

1

2
.
eg.BRF

2m
.exp(−iϕ.Ŝzt).Ŝi.exp(iϕ.Ŝzt) (18)

now de�ning $nut = 1
2 .
eg.BRF

2m $eff =
√
$2
nut + ($0 −$)2 and θ = arctan( $nut

$0−$ )
It can be shown that, ignoring the relaxation, after we apply BRF magnetic �eld, the evolution
of a state will be:

χ̃(t) = exp(iϕ.Ŝz).exp(iθ.Ŝy).exp(i.$eff .Ŝz.t).exp(−iθ.Ŝy).exp(−iϕ.Ŝz)χ̃(0) (19)

the relationship between state viewed from laboratory frame and from rotating frame is: χ̃(t) =
exp(−i$.Ŝzt).χ(t).
We now see that if pulse is applied at a Larmour frequency, its e�ect is to rotate a spin state by
angle $eff .t perpendicular to z-axis. If pulse is applied with frequency di�erent than Larmour
frequency, the rotation will occur about a tilted axis and will be less e�ective. The pulses are
frequency selective. They rotate only spin states with the same Larmour frequency that they
oscillate. The Larmour frequency for a given particle depends on a magnetic �eld at which the
particle is situated.
This �eld can be broken into two parts:

B = B0 + Binduced (20)

where magnetic �eld B0 is generated by a magnet, and Binduced is generated by other surrounding
charged particles. Induced magnetic �eld is a consequence of externally applied magnetic �eld.
It can be expressed as Binduced = B0.δij, where δij is a 2nd rank tensor, which depends linearly
with respect to the external magnetic �eld9.
In a isotropic liquid, the shielding is equal to the isotropic shielding: δ = 1

3 (δxx + δyy + δzz). We
can now rede�ne the Larmour frequency to be:

ω0 =
eBzg

2m~
(1 + δ) (21)

Chemical shift is de�ned as the di�erence in Larmour frequency compared to a some reference
signal:

ω0 − ωstandard0

ωstandard0

(22)

ωstandard0 is a Larmour frequency of reference compound.

1.5 Ensemble of particles in a magnetic �eld

The particle is generally in a random, normalized superposition of states |↑〉 and |↓〉. The general
spin state of a particle could be any linear combination of these two eigenstates: χ = α |↑〉+β |↓〉

8This part refers to linearly polarized radio frequency pulse, generated by coil, which has form BRF(t) =
Bxcos(ωt) = 1

2
(Bxcos(ωt+ ϕ) +Bysin(ωt+ ϕ)) + 1

2
(Bxcos(ωt+ ϕ)−Bysin(ωt+ ϕ)) of which the second part

can be neglected to a good approximation.
9Linear behavior is as always in physics only an approximation. In this case it is a very good approximation

for �elds of moderate strength used in today's conventional NMR experiments.
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where {α, βεC;αα∗ + ββ∗ = 1}. For ensemble of N particles it is convenient to de�ne a statistical
operator as:

ρ̂ =
N∑
i

pi |χi〉 〈χi| =
(
ραα ραβ
ρβα ρββ

)
(23)

pi are probabilities of a system to be found in the i-th state, normalized as:

N∑
i

pi = 1

The statistical operator has also following properties

ραα + ρββ = 1 and ρβα = ρ∗αβ

The expectation value for spin operator Ŝz is〈
Ŝz

〉
=

N∑
i

〈χi| Ŝz |χi〉 = Tr
{
ρ̂Ŝz

}
(24)

And the time evolution of the statistical operator for given ensemble, is in Schrödinger represen-
tation given by Von Neumann equation as:

i~
∂ρ(t)

∂t
=
[
Ĥ, ˆρ (t)

]
(25)

The interpretation of statistical operator is that, ραα is an average contribution of each particle to
expectation value of |↑〉 state, and ρββ is average contribution to |↓〉 state. ραβ and ρβα indicate
a superposition of eigenstates |↑〉 and |↓〉, that in NMR can be interpreted as contributions to
the perpendicular spin components.
For particle in a constant magnetic �led B = B(0, 0, Bz) and in thermal equilibrium, Boltzmann's
distribution gives statistical operator:

ρ̂ =
1

exp( eBzg
2mkBT

) + exp(− eBzg
2mkBT

)

(
exp( eBzg

4mkBT
) 0

0 exp(− eBzg
4mkBT

)

)
(26)

Taking only �rst two terms of exponential power series exp( eBzg
4mkBT

) u 1+ eBzg
4mkBT

+... the statistical
operator can be approximated as:

ρ̂ u
1

2

(
1 + eBzg

4mkBT
0

0 1− eBzg
4mkBT

)
=

1

2

(
1̂ +

e~Bzg
2mkBt

Ŝz

)
(27)

The initial populations of energy levels are determined by equation above, therefore lower energy
level contains more nuclei than the higher level.
Spin density operator, viewed from rotating frame, evolves as:

ρ̃αα(t) = ρ̃αα(0) (28)

ρ̃ββ(t) = ρ̃ββ(0) (29)

ρ̃βα(t) = exp (i ($0 −$) t) ρ̃βα(0) (30)

Therefore if we ignore relaxation, the evolution of an ensemble under constant magnetic �eld is
that the population of states are constant, and coherency changes the phase, which is a quantum
analog of what we would call in classical mechanics the precession. However coherences are zero
in thermal equilibrium, so they need to be excited by radio frequency pulse. The evolution of
each individual particle under RF pulse is depicted in eq.(19), from which the density matrix
ρ̃ can be constructed, whose evolution will be known from equations (28-30). Therefore the
di�erence in population ραα − ρββ , will be transformed into coherence by RF pulse. All details
of this transformation are in eq.(19).
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Single particle Hamiltonian from equation 14 is not a whole story. For ensemble of particles
inter-spin interactions must be considered. The e�ective nuclear spin Hamiltonian10 then takes
form11:

Ĥ =
∑
i

−
egiŜiz.

(
1̂ + δij

)
B0iz

2mi
+
∑
j<k

h.Ŝj .Jjk.Ŝk (31)

Jjk is a coupling tensor, which in isotropic samples averages into scalar J̄jk = 1
3 (Jxx + Jyy + Jzz).

The additional term is called J-coupling. It holds for weak J-coupling, that is when J̄jk �
|ωj − ωk|. It arises from electron mediated interactions of nuclei. The J-coupling is independent
of the applied magnetic �eld.
J-coupling is caused by a Pauli principle. Because of that the electrons are paired in opposite spin
pairs. When two nuclei are bond together by chemical bond, the states with di�erent relative
orientation of nuclear spins have di�erent energy levels.
There are also cases when additional terms must be added. For example direct dipole-dipole
coupling, which is averaged out in isotropic liquid samples, and will not be discussed here. Or
Knight's shift, caused by coupling between electron and nuclear spin magnetic dipoles. Knight's
shift appears only in paramagnetic samples, and it's discussion will also be omitted [8].
We now turn attention on how the expectation values of nuclear spin Hamiltonian are measured.
Representing the statistical operator as a magnetization vector:

M = N.
eg

4m
[2Re {ρβα} êx + 2Im {ρβα} êy + (ραα − ρββ) êz] (32)

The coherence gives rise to transverse magnetization, rotating with Larmour frequency around
the z axis. It is the evolution of magnetization vector which is recorded in the spectrometer.
Experimentally, it was observed that even in the absence of RF �eld, the magnetization vector
vanishes. This phenomenon is called relaxation, and in phenomenological approach of Bloch,
relaxation constants T1 and T2 are introduced. Equation 29 is modi�ed into:

ρ̃βα(t) = exp

[(
i ($0 −$)− 1

T2

)
t

]
ρ̃βα(0) (33)

And equations 27-28 are modi�ed as:

ρ̃αα(t) = exp

(
−t
T1

)
.ρ̃αα(0) + ρ̃eqαα.

(
1− exp

(
−t
T1

))
(34)

ρ̃ββ(t) = exp

(
−t
T1

)
.ρ̃ββ(0) + ρ̃eqββ .

(
1− exp

(
−t
T1

))
(35)

where

ρ̃eqαα = 1
2 + eBzg

8mkBT
ρ̃eqββ = 1

2 −
eBzg

8mkBT

Now we turn attention to how the time evolution of coherence, generates the resulting NMR
signal. In spectrometer, the coil is aligned along any axis perpendicular to B0 �eld. The voltage
generated in that coil is according to Faraday's law:

∇× (E) = −∂B

∂t
(36)

induced electromotive force is:
ε =

˛
E.dl (37)

Because the magnetization vector is precessing around z axis, no information will be lost if we
record the electromotive force induced by only one component of M perpendicular to the B0

�eld.
10The e�ective spin Hamiltonian unlike true spin Hamiltonian is constructed of parametric matrices �tted to

experimental data. The latter is sum of di�erential operators determined from quantum mechanics[7].
11The factor of 2π arises because of J-coupling is traditionally given in hertz. I will use this standard notation,

even though it introduces a useless complications of some equations.
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Assuming that the observable quantity, also called free induction decay (FID) is proportional to
electromotive force, combining equations 32, 36 and 37 gives:

sFID(t) ∝
∂Re {ρβα (t)}

∂t
(38)

referring to equation 31 we obtain:

sFID(t) ∝
[
i ($0 −$)− 1

T2

]
Im {ρβα (t)} (39)

Where 1
T2
� ($0 −$), and 1

T2
is therefore omitted.

After FID is ampli�ed, it is mixed with receiver reference signal, and with π
2 shifted receiver

reference signal

sFID(t).sRRS(t) ∝ [i ($0 −$)] Im {ρβα (t)} .cos ($ref .t+ ϕref ) (40)

sFID(t).sshiftedRRS (t) ∝ [i ($0 −$)] Im {ρβα (t)} .cos
(
$ref .t+ ϕref +

π

2

)
(41)

Equations 38 and 39, under transformation into rotating frame, and removing ($0 −$) +$ref

components of oscillation by �lter, can be simpli�ed into following form:

snormal(t) ∝ i.Im {ρ̃βα (t)} sin(ϕref ) (42)

sshifted(t) ∝ Re {ρ̃βα (t)} cos(ϕref ) (43)

Now summing above two contributions, we �nally receive:

s(t) ∝ iρ̃βα (t) exp(i.ϕref ) (44)

We now see, that voltage generated by NMR coil is proportional to the coherency of spin ensem-
ble.
If we now substitute eq.(31) into equation(42) we get:

s(t) ∝ exp
[(
i ($0 −$)− 1

T2

)
t

]
(45)

To determine frequencies present in a spectrum, mathematical technique which transforms func-
tion (43), into equivalent function of frequency variable, is used. The technique is called Fourier
transformation and is de�ned as:

S (Ω) =

ˆ

R+

s(t)exp (−iΩt) dt (46)

Where Ω = $0 −$. The e�ect of this transformation, is to visualize the frequency components
of a s(t).

1.6 J-coupling

NMR spectrum contains more information than just the chemical shift. As already pointed out in
equation (31) J-coupling is another phenomenon that alters the appearance of NMR spectrum.
J-coupling is electron mediated dipole-dipole interaction of nuclei. Because it is mediated by
electrons, it occurs only between nuclei among the same molecule, and is not averaged out in
isotropic liquids. The e�ect of J-coupling is to split the NMR signals into a multiplet.
The mechanism that is responsible for the J-coupling can be described as follows. Every electron
interacts with its own nucleus's dipolar magnetic �eld. The interaction energy is proportional
to:

E ∝ gegnŜe.Ŝn (47)

There are two important facts that should be deduced from equation above. First is that anti-
parallel orientation of spins gives lower energy state. Second is that interaction is, unlike chemical
shift, independent of magnetic �eld.
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This short range interaction between electron and it's nucleus is mediated through bonding
electrons and induce inter-nuclei interactions. This happens because of Pauli exclusion principle.
Two electrons that reside in the same bonding orbital must have anti-parallel orientation of spins.
But J-coupling is observed even between nuclei that are connected through more bonds. This
occurs if atoms that mediate the connection are found in a triplet state. The orientation of the
e-th nucleus's spin interacts with spin of n-th nuclei.
Now let's assign anti-parallel orientation of electron and it's nucleus as |α〉 and parallel orientation
as |β〉. In case of two interacting nuclei we will have four orthogonal energy states: |αα〉, |αβ〉,
|βα〉, |ββ〉. These states are eigenstates of non interacting Hamiltonian.
J coupling is observed during NMR transitions. For example when|α〉→|β〉 occurs, it would
normally result in signal corresponding to shifted Larmour frequency of a given nucleus. But
now because of J-interaction the resonance frequency of e-th nucleus coupled to n-th nucleus the
frequency is perturbed.
The four states outlined above lead to four transitions observed in NMR experiment12: |αα〉 →
|αβ〉 , |αα〉 → |βα〉 , |αβ〉 → |ββ〉 , |βα〉 → |ββ〉, the �rst letter refers to e-th particle, and second
refers to the n-th particle.
Now we need to determine the energy levels of these transitions. So the Hamiltonian matrix for
these states must be constructed. We will use Hamiltonian equation 31, and introduce following
notation: ∆ = ωI −ωJ and δ = 1

2 (ωI + ωJ). Also note that J is in hertz, in contrast to all other
frequencies that are used in this work.

〈αα| Ĥ |αα〉 = ~
(
−δ + 2π

J

4

)
〈αβ| Ĥ |αβ〉 = ~

(
−∆

2
− 2π

J

4

)
〈βα| Ĥ |βα〉 = ~

(
∆

2
− 2π

J

4

)
〈ββ| Ĥ |ββ〉 = ~

(
δ + 2π

J

4

)
Anti-parallel spin arrangements are lowered in energy by J

4 and parallel are raised by same
amount.
All non-diagonal parts are zero except 〈αβ| Ĥ |βα〉 and 〈βα| Ĥ |αβ〉. To solve for them, we need
to employ:

ŜI ŜJ =
1

2

(
ŜI+ .ŜJ− + ŜI− .ŜJ+

)
+ SIzSJz

where the so-called ladder operators: ŜI(J)± = ŜI(J)x±iŜI(J)y have following e�ects: ŜI(J)+ |α (α)〉 =

|β (β)〉 and ŜI(J)− |α (α)〉 = 0 ŜI(J)+ |β (β)〉 = 0 and ŜI(J)− |β (β)〉 = |β (β)〉.
Therefore 〈αβ| Ĥ |βα〉 = 〈αβ|

(
−~ωI ŜIz + ~ωJ ŜJz

)
−h.JIJ

(
1
2

(
ŜI+ .ŜJ− + ŜI− .ŜJ+

)
+ ŜIz ŜJz

)
|βα〉,

but because the states are orthogonal, and are also eigenstates of angular momentum operator,
the equations simpli�es into:

〈αβ| Ĥ |βα〉 = 〈αβ| − h.JIJ
(
ŜI+ .ŜJ− + ŜI− .ŜJ+

)
|βα〉 = h.

J

2

Therefore:
〈αβ| Ĥ |βα〉 = h.

J

2

〈βα| Ĥ |αβ〉 = h.
J

2
Hamiltonian (equation 31) in matrix representation with basis {|αα〉 , |αβ〉 , |βα〉 , |ββ〉} is:

~
(
−δ + 2π J4

)
− E 0 0 0

0 ~
(
−∆

2 + 2π J4
)
− E h.J2 0

0 h.J2 ~
(

∆
2 + 2π J4

)
− E 0

0 0 0 ~
(
δ + 2π J4

)
− E




c1

c2

c3

c4

 = 0

12Because for a observable transition of nucleus e, the magnetic moment, and therefore also a state of nucleus
n must be unchanged.
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Energies of eigenstates 〈αα| Ĥ |αα〉 and 〈ββ| Ĥ |ββ〉 are already known, because they have no
o�-diagonal elements. The task is now do determine the other two states. This can be achieved
by solving the eigenvalue problem:(

~
(
−∆

2 + 2π J4
)
− E h.J2

h.J2 ~
(

∆
2 + 2π J4

)
− E

)(
c2

c3

)
= 0 (48)

energies of two eigenstates can be found by solving determinant:∣∣∣∣ ~ (−∆
2 + 2π J4

)
− E h.J2

h.J2 ~
(

∆
2 + 2π J4

)
− E

∣∣∣∣ = 0 (49)

which has solution E± = −hJ4 ±
1
2

√
h2J2

4 − 4
(
h2J2

16 −
h2J2

4 − ~2δ2
4

)
= −hJ4 ±

1
2

√
h2J2 + ~2∆2

and eigenvalues for E+ are c2 = sin (θ) and c3 = cos (θ) and for E− c2 = cos (θ) and c3 = −sin (θ),
where tan (2θ) = πJ

δ .
Energies of four transitions are:

E|αα〉→cos(θ)|αβ〉−sin(θ)|βα〉 = ~δ − hJ
2
− 1

2

√
h2J2 + ~2∆2 = E1

E|αα〉→sin(θ)|αβ〉+cos(θ)|βα〉 = ~δ − hJ
2

+
1

2

√
h2J2 + ~2∆2 = E2

Ecos(θ)|αβ〉−sin(θ)|βα〉→|ββ〉 = ~δ + h
J

2
+

1

2

√
h2J2 + ~2∆2 = E3

Esin(θ)|αβ〉+cos(θ)|βα〉→|ββ〉 = ~δ + h
J

2
− 1

2

√
h2J2 + ~2∆2 = E4

Frequencies of spectral lines are given by this four transition energies. The average chemical shift
δ, J-coupling constant J and di�erence in shielding between J-coupled protons ∆ can be found
by these algebraic operations:

δ =
E1 + E2 + E3 + E4

4~

∆ =

√
(E4 − E2) . (E1 − E3)

~

J =
E3 − E2

h
=
E4 − E1

h

Their corresponding intensities depend on transition probabilities and populations of initial
states. Because the transition energies are much lower than kBT , we can assume that all lev-
els are equally populated. Therefore intensities are proportional only to transition probabilities
given by:

I|αα〉→cos(θ)|αβ〉−sin(θ)|βα〉 ∝ 〈αα| ŜJx |cos (θ)αβ〉 − 〈αα| ŜIx |sin (θ)βα〉 = 1− J√
J2 + ∆2

2π

I|αα〉→sin(θ)|αβ〉+cos(θ)|βα〉 ∝ 〈αα| ŜJx |sin (θ)αβ〉+ 〈αα| ŜIx |cos (θ)βα〉 = 1 +
J√

J2 + ∆2

2π

Icos(θ)|αβ〉−sin(θ)|βα〉→|ββ〉 ∝ 〈ββ| ŜJx |cos (θ)αβ〉 − 〈αα| ŜIx |sin (θ)βα〉 = 1− J√
J2 + ∆2

2π

Isin(θ)|αβ〉+cos(θ)|βα〉→|ββ〉 ∝ 〈ββ| ŜJx |sin (θ)αβ〉+ 〈αα| ŜIx |cos (θ)βα〉 = 1 +
J√

J2 + ∆2

2π

It is now obvious that for ∆ 6= 0 a spectrum looks like a pair of roo�ng doublets.
Equations discussed above were taken from [6], [7], [8].
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2 Quantum chemistry

2.1 Density Functional Theory

�We can judge of the perfection to which a science has come by the facility, more or less great,
with which it may be approached by calculation.� [9]
Adolphe Quetelet

At a molecular level13, Schrödinger equation (10) describes most of the fundamental properties of
matter14. The problem is, that solutions of Schrödinger equation is a wave-function of 3N spacial
coordinates 15, which means that solving it for molecules is computationally very demanding.
But for purposes of �nding accurate description of a quantum system an alternative approach
can be used. It is a density functional theory (DFT), that do not operates with wave-function,
but uses a ground state electron density function instead [10]:

ρ(r) =

N∑
i

ˆ
...

ˆ
|Ψ (r1, r2, ...rN)|2

N∏
j6=i

drj (50)

But because the wave-function is anti-symmetric under particle interchange, this equation can
be simpli�ed into:

ρ(r) = N

ˆ
...

ˆ
|Ψ (r, r2, ...rN)|2

N∏
i=2

dri (51)

Also the number of electrons is
N =

ˆ
ρ(r)dr (52)

The Hohenberg�Kohn theorem says that for a system of interacting elementary particles, a
bijective projection from a ground state electronic density function to a Hamiltonian of a given
system exists. Because Hamiltonian determines the wave-function and energy of a given system,
a functional of ground state electron density that gives us energy of a system also exists[11].
We now see, that the quantity of physical interest, is a probability of �nding an electron within
in�nitesimal volume element (dx,dy,dz). But how energy of a system can be extracted from this
electron density function?
The idea is based on Schrödinger equation (10). Hamiltonian for N-electron system could be
written in a following form:

Ĥ = T̂ + V̂ + Û (53)

T̂ is part describing kinetic energy of electrons T̂ = −
N∑
i

~2
2me
∇2
i , Û describes electrostatic electron-

electron repulsion Û = 1
2

N∑
i 6=j

e′2

|ri−rj | and V̂ is a term describing electrostatic interaction of electrons

with protonsV̂ = −
N∑
i

∑
α

e′2Zα
|ri−rα| where Zα is the charge of α− th nucleus and e′2 = e2

4πε0
.

Because the V̂ does not contain any derivatives, we may take the wave-function and its conjugate
under a conjugate square:

〈Ψ (r1,r2, ...rN)| V̂ |Ψ (r1,r2, ...rN)〉 = −
N∑
i

∑
α

ˆ
e′2Zα
|ri − rα|

|Ψ (r1,r2, ...rN)|2
N∏

i=1

dri (54)

13By molecular level, I mean an approximation, where electrons, protons and neutrons are considered as ele-
mentary particles.

14One very important property of particles, their spin, is absent in Schrödinger equation. This leads to violation
of Pauli's exclusion principle. Expressing the wave-function as a Slater determinant introduces the required anti-
symmetry (the wave-function should be anti-symmetric under particle exchange) and consequently also satis�es
the Pauli's exclusion principle.

15where N is a number of elementary particles in a system
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in each i-th term, we can separate ri variable from others:

〈Ψ (r1,r2, ...rN)| V̂ |Ψ (r1,r2, ...rN)〉 = −
N∑
i

∑
α

ˆ
e′2Zα
|ri − rα|

dri

ˆ
...

ˆ
|Ψ (r1, r2, ...rN)|2

N∏
j 6=i

drj

(55)
On the right side, we recognize, the electron density function. Summing the equation under i-th
index, we get:

〈Ψ (r1,r2, ...rN)| V̂ |Ψ (r1,r2, ...rN)〉 = −
∑
α

ˆ
ρ (r)

e′2Zα
|r− rα|

dr = −
ˆ
ρ (r) v (r) dr (56)

v (r) =
∑
α

e′2Zα
|r−rα|

However, the expectation value of Û operator, can not be written as a functional of single particle
density. Because of this, we are forced to make an approximation:

〈Ψ (r1,r2, ...rN)| Û |Ψ (r1,r2, ...rN)〉 =
1

2

ˆ ˆ
ρ (r′) ρ (r′)

|r− r′|
drdr′ + Eee[ρ (r)] (57)

the �rst part, is the energy of electrostatic electron-electron interaction as if all electrons were
completely uncorrelated, and the correlation term Eee[ρ (r)] is unknown functional of electron
density.
Value of T̂ is even bigger problem. Since the operator includes second derivatives, there is no way
how can this be rewritten into functional of electron density function. We therefore express this
term in terms of Kohn-Sham orbital functions as sum of a non-interacting system of electrons
and unknown term ET [ρ (r)]:

〈Ψ (r1,r2, ...rN)| T̂ |Ψ (r1,r2, ...rN)〉 = − ~2

2me

N∑
i

〈
ΨKS
i (r)

∣∣∇2
i

∣∣ΨKS
i (r)

〉
+ ET [ρ (r)] (58)

Kohn-Sham orbital functions are eigenfunctions of a �ctitious system of non-interacting electrons
and ET [ρ (r)] is kinetic energy di�erence between non-interacting system and real one. Kohn-
Sham orbital functions can be obtained from:[

− ~2

2me
∇2
i + vs (r)− εi

]
ΨKS
i (r) = 0 (59)

εi is the eigenvalue, and vs (r) is a potential chosen in a way, as to make a probability density

ρs(r) =
N∑
i

∣∣ΨKS
i (r)

∣∣2 equals to ρ(r).

De�ning the exchange correlation functional by Exc[ρ (r)] = ET [ρ (r)] + Eee[ρ (r)] we have:

E[ρ (r)] = − ~2

2me

N∑
i

〈
ΨKS
i (r)

∣∣∇2
i

∣∣ΨKS
i (r)

〉
+

1

2

ˆ ˆ
ρ (r′) ρ (r′)

|r− r′|
drdr′−

ˆ
ρ (r) v (r) dr+Exc[ρ (r)]

(60)
The total energy also includes the electrostatic repulsion between the protons, whose positions
are parameters in a DFT problem, therefore are unimportant in procedure of �nding the electron
density function:

Etot = E[ρ (r)] +
∑
α 6=β

e′2ZαZβ
|rα − rβ|

(61)

Another theorem, proven by Hohenberg and Kohn states, that any trial positive electron density
function ρtr(r), satisfying equation (52) plugged into equation (60) satis�es following inequality
[12]:

E[ρ (r)] 5 E[ρtr (r)] (62)

In order to vary density function to �nd lowest possible energy, there are two things that need
to be determined:
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1. a functional Exc[ρ (r)]
2. a potential vs (r)
Eventually we can vary Kohn-Sham orbitals16, which determine density function, when proper
form of potential vs (ri) is chosen. It can be shown that the proper form is [13]:

vs (r) = −
∑
α

e′2Z2
α

|r − rα|
+

ˆ
e′2ρ (r′)

|r − r′|
dr′ +

δExc[ρ (r)]

δρ (r)
(63)

Problem now is, that to solve Kohn-Sham equation we need to know electron density function.
But the electron density function could be calculated from Kohn-Sham orbital functions which
are given by Kohn-Sham equation. To break this circle, the problem can be solved by an iterative
process.
This process is based on idea, that equation (63) is true only for ground state density function.
We can guess the density function, insert it into eq. (63), and from Kohn-Sham orbitals we can
construct another density function. Comparing constructed function, with our initial guess we
can analyze how close to ground state our guess was. This is a crucial fact, that allows us to
design iterative process, that �nds ground state density function.
So equations (63) and (61) could in principle be used to �nd an exact density function, as would
be found by solving Schrödinger equation (10). The problem is that we do not know the precise
form of the exchange�correlation functional17. Therefore we must rely on empirical forms of this
functional. This is what makes DFT an empirical theory, in contrast with Hartree-Fock and post
Hartree-Fock methods. It has been said that [14] �while solutions to the HF equations may be
viewed as exact solutions to an approximate description, the KS equations are approximations
to an exact description."

2.2 Calculation of NMR parameters

Experimental spectra of simple molecules, can be interpreted empirically, but in more di�cult
cases, the theoretical computations can be very helpful. And not only they are helpful, but they
also provide a direct link between observed NMR spectra and electronic structure of a measured
system.
The computations are done using spin Hamiltonian. As noted earlier in this work, while e�ective
spin Hamiltonian is experimentally parametrized, the true spin Hamiltonian arises from quantum
mechanics. The aim of quantum mechanical computations is to create a link between them[15].
Magnetic shielding tensor is de�ned as:

δij = −B
induced
i

Bj
(64)

Because a magnetic �eld calculated by the Biot�Savart law will always satisfy Gauss's law for
magnetism and Ampere's law, Binduced is given as:

Binduced (r) =
µ0

4π

ˆ
j (r′ − r)× (r′ − r)

|r′ − r|3
dr′ (65)

To calculate the j (r′) we have to perform a calculation in presence of the external magnetic �eld
B0. This can be done, by augmenting the Hamiltonian by magnetic potential, which within a
Coulomb gauge looks:

A (r) =
1

2
B (r)× (r−R) (66)

R is a gauge origin and can be chosen arbitrarily.
Therefore Hamiltonian of equation (53) will be transformed into following augmented form:

Ĥ = Ĥ0 −
ie~
4m

[(r−R)×∇] B0 +
e2

16m
[B× (r−R)]2 (67)

16Their orthonormality must be conserved
17This statement applies to year 2010.
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The current density for closed shell systems is given by the electronic wave-function:18

j (r) =
i~
m

∑
i

∇Ψ∗i (r) Ψi (r)−∇Ψi (r) Ψ∗i (r)− 2A
∑
i

Ψ∗i (r) Ψi (r) (68)

Because in NMR the induced current density is linear in the strength of the �eld, we are justi�ed
to perform calculations in the limit B→0, and also only terms in �rst order of B are needed.
Hamiltonian and its orbitals are thus expanded into following series:

Ĥ = Ĥ(0) +
ie~
4m

[(r−R)×∇] B0 +O
(
B2
)

(69)

Ψ = Ψ(0) + iΨ(1) +O
(
B2
)

(70)

So the current density can be thus expanded in a similar way:

j = j0 + ij1 +O
(
B2
)

(71)

Where the 0-th terms are terms if magnetic �eld vanishes, and 1-th terms are linear responses.
For current density, j0 vanishes in the absence of a magnetic �eld and its linear response is [16]:

j1 (r) =
~
m

∑
i

∇Ψ
(1)
i (r) Ψ

(0)
i (r)−∇Ψ

(0)
i (r) Ψ

(1)
i (r)− 2A

∑
i

Ψ
(0)
i (r) Ψ

(0)
i (r) (72)

When the �rst order current density is considered in Biot-Savard's law, one obtains the following
equation for shielding tensor [17]:19

δij =

〈
Ψ(0)

∣∣∣∣∣ ∂2Ĥ

∂Bi.∂mj

∣∣∣∣∣Ψ(0)

〉
+
∑
I

〈
Ψ(0)

∣∣∣ ∂Ĥ∂Bi ∣∣∣Ψ(0)
I

〉〈
Ψ(0)

∣∣∣ ∂Ĥ∂mj ∣∣∣Ψ(0)
I

〉
E0 − EI

(73)

m is a magnetic moment of a given nucleus.
The above mechanism for ab-initio NMR calculation, can be extended for DFT using SOS-
DFPT (Sum-Over-States Density Functional Perturbed Theory) [18]. In this theory, the original
sum-over-states equation is given by an approximated equation:

ΨKS = ΨKS(0) + iB
∑
I

βIΨ
KS
I +O

(
B2
)

(74)

βI = −1

2

〈
Ψ(0)

∣∣∣ ∂Ĥ∂Bi ∣∣∣Ψ(0)
I

〉
ε− εI −4Exc

Index �I� goes over unoccupied states, ε is a Kohn-Sham energy and 4Exc is the exchange corre-
lation energy di�erence between occupied and unoccupied states. However, as have been pointed
out by Bieger [19], the calculation of the nuclear magnetic shielding cannot be mathematically
justi�ed within DFT framework. Because in presence of magnetic �elds, the bijective projection
between ground state electron density and wave-function is lost.
Even though the Hamiltonian of eq. (61) depends on the choice of gauge origin, the current
density is gauge invariant. The calculated shielding tensor is independent of gauge origin, as long
as equations are solved exactly. This would require using in�nite basis set. However because in
practice, the orbitals are usually approximated by �nite number of Gaussian functions, gauge
dependence arises. So one has to consistently choose gauge origin for calculation. For single atom,
position of it's nucleus can be chosen, but there is no proper gauge origin for molecules. Gauge
dependence problem can be tackled by introducing gauge origin distributed over the molecule.
The most popular methods are GIAO (gauge-including orbitals) [20] and IGLO (individual gauge
for localized orbitals) [21]. It is however beyond the scope of this work to derive equations for
the IGLO and GIAO methods.

18in closed shell systems index goes over all doubly occupied degenerate states
19summation index I goes over excited states of unperturbed Hamiltonian
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3 Thermodynamics of chemical equilibrium

3.1 Thermodynamic state

Classical thermodynamics describes macroscopic systems in equilibrium. In this discipline, equi-
librium is de�ned as a state of interacting systems, where their thermodynamic parameters are
constant. The assumption that all systems at a constant volume will eventually reach equilibrium
state is sometimes referred to as a "minus �rst law of thermodynamics."
The �rst law of thermodynamics de�nes the internal energy of a macroscopic system. It says,
that internal energy of some arbitrary isolated system is constant, and that can be exchanged
with other systems by work done by the system, or heat exchanged. For reversible process the
law is stated as follows20:

dU = T.dS − P.dV (75)

Where U is energy, T is temperature, P is pressure, V is a volume and S is a entropy of a
system. For experiments that involve chemical reactions this de�nition is not very convenient.
First it de�nes the change of internal energy through volume and entropy. There is no direct
experimental way to measure entropy change, and changes of volume due to chemical reactions
are sometimes hard to measure. The remedy for this problem is to introduce state function, that
will use di�erent variables. For description of chemical reactions the Gibbs free energy is a good
choice. It is de�ned as

G = U + PV − TS (76)

So it's di�erential for a reversible process is

dG = V dP − SdT (77)

So the Gibbs free energy is a state function of temperature and pressure, the two variables that
are much easier controlled in a chemistry lab. It will be shown in a next chapter, how this
property can be related to a chemical reactions, and also how can be experimentally measured.

3.2 Chemical equilibrium

Chemical equilibrium is a state in which concentrations of all compounds present in a system
are constant. If the reaction occurs in �uid state, chemical equilibrium is a result of all chemical
reactions being canceled by their reversed reactions. This case is also called dynamic equilib-
rium[22].
For 1:1 stoichiometry complex formation, the following reaction occurs:

H +G
 HG (78)

Where H ="host" , G ="guest" and HG ="host-guest complex".
The association constant Ka is de�ned as follows:

Ka =
[HG]

[H].[G]
(79)

Where the [X] means a concentration of compound �X� at chemical equilibrium.

3.3 Host-guest chemistry

The simple form of Gibbs free energy as was stated in previous chapter applies only to systems
of constant number of particles. For systems consisting of more types particles whose numbers
change, we need to de�ne one very important property. It is called a chemical potential, and it
is de�ned as a partial molar Gibbs free energy of a given particle type.

G =
∑
i

µini (80)

20This is true only if particle numbers are constant, thus we are ignoring any chemical or nuclear processes.
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When numbers of particles of a given system are changed under constant temperature and
pressure, the chemical potential is equal to:(

∂G

∂ni

)
p,T

= µi (81)

because the total di�erential of Gibbs free energy in terms of it's partial molar chemical potential
components is:

dG =
∑
i

dµini +
∑
i

µidni (82)

These two equations implies, that if chemical potential of i-th component of a system changes,
the other chemical potential components must response to ful�ll this relation21:

dµi = −
∑
j

nj
ni
dµj (83)

Now when we have de�ned Gibbs free energy in terms of chemical reactions, we can also restate
our de�nition of chemical equilibrium.
Chemical reaction shown in equation (78) will be in equilibrium, when −d[HG]

dt = d[G]
dt = d[H]

dt .
But we need to relate this microscopic property to some thermodynamic property. We can say,
that energy change is a driving force for a reaction to happen22. So for a reaction to be in
equilibrium, the change of a Gibbs free energy must be constant. It can be elegantly expressed
by: (

∂G

∂ξ

)
p,T

= 0 (84)

ξ is a reaction coordinate de�ned as dξ = dni
vi

where vi is a stoichiometric coe�cient of an i-th
component.
But because of: (

∂G

∂ξ

)
p,T

=
∑
i

µivi (85)

we now see, that knowing the stoichiometric coe�cients of a reaction, we can relate chemical
potentials of a species once the reaction reaches the equilibrium.∑

i

µivi = 0 (86)

How the association constant Ka, can be used to estimate the Gibbs free energy change of a
reaction?
At elementary level, one very crude approximation needs to be done. It is assumed that all
reactants and products of a reaction behave as a ideal gas. And now we need to �nd a link
between equilibrium concentrations of a reaction components and their chemical potential. This
can be done by expressing chemical potential from a partition function.
In statistical physics, probability for a particle to be in a state with energy Ei with particle count
Nj is:

pij =
exp

(−Ei+Njµ)
kBT

Ξ
(87)

Where Ξ is a grand canonical partition function, obtained by summing over all possible states
and particle counts.

Ξ (T, V, µ) =
∑
ij

exp

[
−
(
Ei +Njµ

kBT

)]
(88)

21This of course only applies if pressure and temperature during the process is constant.
22Actually a force is not very appropriate analogy, because a change in Gibbs free energy do determine the

kinetics of a reaction. Thermodynamics says nothing about reaction rates. In general it rather determines whether
a given process is possible or not.
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Denoting internal energy of a given reaction component by:

U =
∑
ij

Ei.pij = kB.T
2

(
∂lnΞ

∂T

)
V,µ

(89)

The above expression can be exploited when we note that chemical potential can be also expressed
as a partial di�erential of a Helmholtz energy.(

∂A

∂ni

)
T,V

= µi (90)

We can exploit this because there exists a simple expression for Helmholtz energy in terms of a
partition function23.

A = U − TS = −kBT.ln (Ξ) (91)

The grand partition function for non interacting indistinguishable particles can be written
through partition functions, that can be then expanded through single particle partition func-
tions.

Ξ (T, V, µ) =
∑
j

e
Njµ

kBT Z (T, V,Nj) =
∑
j

1

Nj !
e
Njµ

kBT Z (T, V, 1)Nj (92)

factor 1/N! arises from indistinguishability of particles.
Chemical potential can be expressed using Stirling approximation as

µi = −kBT.ln
(
Z (T, V, 1)

N

)
(93)

The single particle canonical partition function for an ideal gas changes linearly with volume
Z (T, V, 1) = Z (T, 0, 1)+O (V), and we are working in an ideal gas approximation P.V = NkBT .
Therefore a chemical potential for individual reactants in a reaction is:

µ = µ◦ + kBT.ln (p) (94)

p is a partial pressure of a given reactant in a solution, and µ0 is a chemical potential of a free
substance. The key is, that partial molar pressures in a ideal gas approximation can be related
to a concentrations. Determining equilibrium concentrations of all reaction components, can be
related to the change of it's Gibbs energy.
Because in chemical equilibrium

(
∂G
∂ξ

)
p,T

=
∑
i
µivi = 0 therefore

∑
i=products

viµi =
∑

j=reactants
vjµj .

So the molar Gibbs energy change for that reaction is:

4Gp = Gp −G◦p =
∑

ς=components

vςµ
◦
ς = −RT.ln

(∏ pproducts
p◦∏ preactants
p

)
(95)

G◦ is the standard Gibbs function of formation, which is a change of Gibbs energy caused by
formation of 1 mole of substance in its standard state (1 bar of pressure and 298.15 K) and
p◦ = 1bar . This state is a reference state for Gibbs energy change in (eq. 95).
But we are not able to measure partial molar pressures using NMR spectroscopy. So we will
de�ne standard state di�erently. Because in ideal gas approximation, pressure is proportional to
concentration if volume and temperature are unchanged, we de�ne standard state of guest and
host molecule as c◦ = 1mol.dm−3. Therefore

4Gc = Gc−G◦c =
∑

ς=components

vςµ
◦
ς = −RT.ln

( ∏ cproducts
c◦ .γproducts∏ creactants
c◦ .γreactants

)
= −RT.ln (Kγ .Ka) (96)

γ are activity coe�cients and they arise as deviations from an ideal gas behavior. For dilute
solutions activity coe�cients are approximated as unity, so:

4Gc = −RT.ln (Ka) (97)
23The entropy is in statistical physics de�ned as a S = kBln(Ω). Because Ω is the number of micro-states, for

indistinguishable particles using Stirling approximation it can be expressed as:

S = kBln(
∏
i

g
ni
i
ni!

)=kB + U
T

+ kBln (Ξ), where gi is the degeneracy of i-th state and ni is the number o particles

in that state.
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3.4 Calculation of thermodynamic properties

The equations that will be outlined below are again going to assume non-interacting particles. It
will be also assumed that the �rst and higher electronic excited states are entirely inaccessible,
which is a reasonable approximation for systems with non negligible HOMO-LUMO gap.
The starting point is a partition function, from which we can determine internal energy (eq. 89)
and entropy (footnote 23). Once we know this two quantities, Gibbs free energy can be easily
calculated.

G = U − TS + kBT (98)

Remember that we are working with an ideal gas approximation.
The task is now to determine the partition function. For clarity we can broke it into 4 parts:
translational, vibrational, rotational and electronic.
Translational partition function of an ideal gas has the form:

Ztrans (T, V, 1) =
kBT

P

(
2πmkBT

h2

) 3
2

(99)

Because the excited states are assumed to be inaccessible at any temperature and the energy of
the ground state is set to be zero, electronic partition function takes the form:

Zelec (T, V, 1) = (2S + 1) e
− Eg
kBT (100)

S is a spin multiplicity and Eg is a ground state electronic energy.
Rotational partition function for a nonlinear polyatomic molecule is

Zrot (T, V, 1) =

√
2IxIyIz

σ

(
2kBT

~2

) 3
2

(101)

I are principal moments of inertia, and σ is the number of rotations that will turn the molecule
into itself.
The contributions to partition function from vibrational motion of the molecule, is given as a
product of each normal vibrational mode:

Zvib (T, V, 1) =
3N−6∏
i

e
− ~$i

2kBT

1− e−
~$i
kBT

(102)

And partition function is now simply obtained as a product of all its constituents

Z = Zelec.Ztrans.Zrot.Zvib

Equations discussed above can be found in �Molecular Thermodynamics" by McQuarrie and
Simon, chapter 17 [23].

4 Chirality sensing with NMR

4.1 Stereoisomerism and Chirality

Stereoisomers are molecules with identical molecular formulas, identical molecular sequences but
di�erent spatial orientations of their constituent atoms in space. If two stereoisomers are mirror
images of each other, we call them enantiomers. The ability of molecule to have enantiomers is
called chirality, and is usually result of a tetrahedral atom with four di�erent groups attached to
it, also called a chiral center. Of special interest are molecules with only one chiral center, because
in this case a pair of enantiomers is related to one another with parity operation. Chemical
properties of matter are dictated by electromagnetic interactions. Because Maxwell's equations
are invariant under parity operation, the two enantiomers have identical chemical properties24,

24Because weak interactions unlike gravitation, strong interactions and electromagnetism break parity conser-
vation, the two enantiomers do not have identical chemical properties. However their e�ect on chemical properties
is small, and have not been yet veri�ed experimentally.
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except for the direction in which they rotate polarized light and how they interact with other
chiral molecules. If enantiomers are optically active, they rotate polarized light in opposite
direction. However because rotation of polarized light is additive, the experimentally determined
value depends on enantiomeric purity. But even enantiomeric purity can't be straightforwardly
determined, because optical purity and enantiomeric purity are not necessarily equivalent and
can exhibit non linear dependence[24].
However because amino-acids, carbohydrates, hormones and many other biomolecules are chiral,
biological systems with enormous amounts of homochiral compounds is very sensitive to chirality.
Interaction between some enantiomer molecule and receptor could be chiral dependent. It is a lock
and key mechanism. Thus each enantiomer could be metabolized by di�erent pathway, resulting
in a di�erent reaction kinetics or even di�erent products, therefore di�erent pharmacological
activity. In pharmaceutical industries, 56% of the drugs currently in use are chiral and 88% of
those are marketed as racemates[25].

4.2 Using chiral reagents as a chirality sensors

Besides traditional chiroptical methods there also exist other methods to determine enantiomeric
excess. They are based on a interaction with some other chiral substances. Chromatography
using chiral stationary phase is a one way to promote chiral separation.
Even though in NMR spectroscopy respective enantiomers can't be distinguished in an achiral
medium. When their interaction with some chiral molecule is promoted, and enantiomers are
thus complexed into a diastereoisomers, the resulting spectroscopic properties of diastereomeric
complexes are di�erent. There are two basic types of chiral agents used. Chiral derivatizing
agents that react with the analyzed enantiomers through covalent bonds[26] and chiral solvating
agents interacting through noncovalent, intermolecular forces[27].

4.3 Achiral sensors of chirality

4.3.1 Porphirinogens

Porphirine is a tetrapyrrole molecule. It is composed of four pyrrole rings, connected by sp2

hybridized carbon atoms. Because of sp2 carbons, the core is planar, which results to following
fully conjugated structure (�gure 1).

Figure 1: conjugated structure of tetrapyrrole macrocycle

The nitrogen atoms are within the inner core, and are able to complex with metal ions[28]. The
carbons that connect pyrrole molecules are called meso atoms, and outer pyrrole carbons are
called β carbons.
There are many structural modi�cations of porphirine macrocycle. The porphirines, where the
modi�cation is done by attaching substituents on meso carbon are called porphirinogens. In
most porphirinogens, the conjugation is also modi�ed. This results into modi�cation of the por-
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phyrin skeleton, and planarity is lost. One interesting porphirinogen of this type, reported �rst
by Milgrom and his coworkers[29] is oxo-cyclohexadienylidene porphyrinogen, where the meso
substituents are oxocyclohexadiensalkylates with tert-butyles for better solubility on non-polar
solvents. The resulting molecule is meso-tetrakis 3,5-di-tert-butyl-4-oxo-2,5-cyclohexadienylidene
porphyrinogen (OxP) (�gure 2). This modi�cations also increases their potential a binding
agents to non-metallic compounds[30]. Milgrom and his coworkers also found, that N-alkylation
of tetrapyrrole ring is a useful way of stabilizing the structure of the compounds against proto-
nation[31]. Also the redox and spectral properties of the compounds are tunable by altering N-
substituents[32]. The molecule that we studied, had two brombenzene N-substituents at adjacent
pyrroles. The structure of N21,N23-Di-brombenzene-3,5-di-tert-butyl-4-oxo-2,5-cyclohexadienylidene
porphyrinogen (DiBrBzOxP) is shown below (�gure 2).

Figure 2: Structure of meso-tetrakis 3,5-di-tert-butyl-4-oxo-2,5-cyclohexadienylidene porphyrino-
gen (OxP) on the left. And on the right side it's N-brombenzenated form.

Also the crystallization of OxP is mediated by water molecules. There is a H-bonding between
tetrapyrrole N-H and the water oxygen atom. This leads to formation of a layered crystallic
structure. Crystal packing of the N-alkylated porphyrinogens isn't mediated by any hydrogen-
bonds interactions. Because there are no short contact distances, the hydrogen bonding or other
short range forces are not apparent[33]. The absence of layered crystalic structure also leads to
faster solvation.

4.3.2 NMR sensing of chirality with porphirinogens

Until recently NMR spectroscopic detection of guest chirality using an achiral host was not
possible. It is because NMR is based on either chiral discrimination by the host or diastereomeric
host guest complex. For both methods chiral sensor is necessary[34]. However recently the �rst
instance of chiral information detection, by signaling from an achiral host, in NMR spectroscopy
was reported[35]. Oxoporphyrinogen (�gure 2) have been used as a host, because it can bind
guests with pyrrolic NH groups. As a guest a chiral mandelic acid have been used.
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Figure 3: 1H-NMR titration of OxP with R-mandelic acid performed in CD2Cl2 at 25 �C. [33]

Addition of racemic mandelic acid resulted in 1H-NMR down�eld shifts of quinonoid protons,
tert-butylic protons, pyrrolic β-protons and NH protons (�gure 3). The shifts were increasing
gradually with the amount of guest added. This changes in 1H-NMR spectra of OxP can be as-
sociates with a formation of host-guest complex with fast chemical exchange between complexed
host-guest state and a standalone OxP state. For pure enantiomer, quinonoid protons and β-
protons on pyrrole signals also split into two peaks each. But the rest of the spectra remains the
same. When racemic and nonracemic mixtures of mandelic acid were used in this system, peak
separations changed linearly with enantiomeric excess (�gure 4).

Figure 4: Partial 1H NMR spectra of OxP in the presence of mandelic acid with various enan-
tiomeric excess values, % ee (left). Correlation between di�erences in chemical shielding of
quinonoid proton peaks and the enantiomeric excess values (right) [33].

They have also con�rmed the complexation of OxP with mandelic acid by UV/vis titration.
During the addition of mandelic acid into the solution of OxP, graduate increase of absorption
band at 789 nm accompanied with intensity decrease of Soret-type band at blue part of visible
spectra, with isosbestic points at 357 and 643 nm (�gure 5). From UV/vis titration, Job's plot
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was also constructed, and formation of a 1:2 complex25 was concluded. The UV/vis titration
gives identical results with racemat or enantiomeric mandelic acid.
Adding methanesulfonic acid into a CH2Cl2 solution of OxP, resulted into similar UV/vis spectra
changes. In low temperature 1H-NMR spectra of CD2Cl2 solution of OxP with mandelic acid
the tert-butyl peak gradually split into two peaks and a new peak appeared at 6.49 ppm (�gure
6). And also in FT-IR spectroscopy OH band at 3602 cm−1 appeared during titration. These
changes suggest a protonation of OxP.

Figure 5: UV/vis spectral changes observed during titration of OxP with R-mandelic acid per-
formed in CD2Cl2 at 25 �C [33]

Figure 6: 1H-NMR spectra of OxP in the presence of 5.3 equivalents of racemic mandelic acid
with various temperatures (in CD2Cl2)[33].

For our experiment, we have chosen brom-benzylated version of OxP (�gure 2), that should have
better solubility in organic solvents and be more resistant against protonation. We also predicted
that stoichiometry should be 1:1, that will simplify the complex formation and allow clearer
interpretations. Better stability against protonation will allow us to study e�ect of porphirinogen
protonation to guest-complex formation. For a guest molecule we have chosen ibuprofen (�gure
7), because it is a chiral carboxylic acid with chirality dependent metabolic properties in humans.
Determination of it's enantiomeric excess thus could serve for studies of its metabolism. The
complex will be also studied from a computational perspective, in order to better understand its
physical aspects.

25host:guest
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Figure 7: S-Ibuprofen

5 Determination of association constant

Very important property for any non-covalent complex is it's association constant, as by knowing
the association constant, one can solve for the Gibbs free energy of the reaction. Because we
are dealing with reactions that occur at constant pressure and temperature, Gibbs free energy is
the property that quantitatively describes formation of a complex. It can be determined using
a number of experimental methods. The most widely used is NMR titration, in which variation
of some NMR parameter against molar ratio change of reaction components is determined and
analyzed.

5.1 NMR titration

The NMR spectra for a given concentration of host and guest molecules, depend on association
constant and the rate at which formation of complex occurs. For fast chemical exchange26, any
observed chemical shift δobserved is a weighted average of shifts in free δH and complexed δHG
molecule.

δobserved =
[G]δH + [HG]δHG

([G] + [HG])
(103)

If the complex formation is fast enough to adhese signals at δG and δHG, but not su�ciently fast
to fully average them, equation (103) is not valid anymore. δobserved can be shifted towards the
position of the signal corresponding to more populated form, which then leads to lower values of
association constant and Gibbs free energy of complex formation[36].

5.2 Graphical methods

One of the most widely used techniques for measuring association constants is NMR spectroscopy.
NMR spectroscopy can also provide structural information about studied complexes. One way,
how to use a relationship (103) to determine the association constant for 1:1 stoichiometry are
linearization methods. These methods always try to �nd an approximate linear relationship
between observed chemical shift and concentrations of compounds. Because of approximations
they require measurements in the presence of a large excess of one of the reagents, which is
sometimes di�cult to achieve. A further limitation is, that they are extrapolated to a regions
of high host concentrations, which introduces an error for weak complexes. Their advantage is
simplicity, that can be interpreted graphically. The most common methods are double reciprocal,
Scatchard or Rose-Drago method[37].

5.3 Curve �tting methods

Nonlinear curve �tting methods require no approximations and are not limited to 1:1 stoichiom-
etry. Using modern computers they have became routine today. We will �rst derive the equation
that relates observed chemical shift to the titrated amount of guest.

26Noncovalent bonds in �uid phase are not stable, they are constantly created and destroyed. If the exchange
rate is larger than the Larmor angular frequency di�erence of the observed resonances in two states, then the fast
chemical exchange occurs.
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Assigning the total concentrations of [H] and [G] as [H]t and [G]t respectively:

[H]t = [H] + [HG] (104)

[G]t = [G] + [HG] (105)

we are looking for equation in following form:

δobserved =
[H]

[H]t
δH +

(
1− [H]

[H]t

)
δHG = f ([G]t) (106)

Titration is usually done that host concentration is unchanged, while the total concentration of
guest is varied. So we need to express [H] as a function of [G]t and some variables that will be
constant during titration. To achieve this some algebra needs to be done. Equations (79,104
and 105) are set of 3 linear equations with 6 variables. We can thus eliminate this set into one
equation of 4 variables. [H]t is known and Ka is what needs to be determined, and will therefore
serve as a parameter during curve �tting. So we have chosen to eliminate [HG] and [G] from the
equations. This can be done by following straightforward procedure.
First equation (79) is rearranged to de�ne [HG] and then used to substitute for [HG] into equation
(104), which is then rearranged into:

[G] =
[G]t

(1 +Ka.[H])
(107)

Equation (107) is now plugged into equation (79)

Ka =
[HG]. (1 +Ka.[H])

[G]t.[H]
(108)

Now we substitute for [HG] with eq. (105)

Ka =
([H]t − [H]) . (1 +Ka.[H])

[G]t.[H]
(109)

[G] can be expressed as a argument of second order polynomial equation.

Ka.[H]2 + (1 +Ka. ([G]t − [H]t)) [H]− [H]t = 0 (110)

And �nally expressing root of eq. (110), will de�ne [G] through parameter Ka and measurable
values [H]t and [G]t

[H] =
−1−Ka. ([G]t − [H]t) +

√
(1 +Ka. ([G]t − [H]t))

2 + 4.Ka.[H]t

2.Ka
(111)

[G]twill serve as a argument of a titration �t. δH will be determined experimentally by measuring
the 1H-NMR spectra of pure host molecule. [H]t will be measured, by weighting the amount of
host dissolved in a solvent. δH and Ka will serve as a parameters for a titration.

6 Experiment

6.1 Chemicals and apparatus

Crystallic form of di-brombenzene-oxo-porphyrinogen (DiBrBzOxP) was supplied by National In-
stitute for Materials Science, Tsukuba, Japan. Deuterochloroform with 0.03% volume of tetram-
ethylsilane stabilized by silver foil and tri�uoroacetic acid were purchased from Sigma-Aldrich
Co. S-ibuprofen from TCI Co. Ltd. and racemic ibuprofen from TCI Co. Ltd. DiBrBzOxP and
ibuprofen were dehydrated in low pressure dryer for 24 hours at 0.1atm and 50◦C. Deuterochlo-

roform was dehydrated with 4
◦
A pore size molecular sieves. 1H-NMR spectrum were obtained

with Bruker Avance 500MHZ spectrometer using TBI probe. A single pulse acquisition followed
by acquisition of the spectra was used. Length of π

2 pulse was 0.0115 ms, and the delay that
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allowed magnetization to return to its equilibrium state was 5 s. Sequence was repeated 32
times, until desired signal to noise ratio was obtained. The resulting FID was then transformed
using Fast Fourier Transform algorithm from time to frequency domain, and phases of all spectra
were corrected manually. TMS (Tetramethylsilane) signal was set to be 0 ppm. NMR tempera-
ture calibration was performed using a standard sample of 100% methanol and the calibration
equation[38].
Raman spectra presented were excited with the 532 nm laser (5mw on the sample) and collected
in the 90◦ scattering geometry using spectrograph (Jobin Yvon�Spex 270 M) equipped with a
notch �lter to reject Rayleigh scattering and CCD detector with 1340 pixels in spectral axis.
The samples were placed into 1cm quartz cell and resulting signal was obtained under 6x10 sec.
exposures.
UV/vis spectra were recorded on Perkin-Elmer spectrometer where light was generated with
high-pressure deuterium discharge tube and halogen lamp. Transmitted light was recorded in
1nm steps. Because spectra were recorded simultaneously with Raman spectra, same 1cm quartz
cell was used. Detailed description of SVD (singular value decomposition) that was performed
can be found in[39].

6.2 Results

6.2.1 Guest NMR titration

Chemical shifts of all NMR signals were obtained by Lorentz-curve least-square iterative �tting
with Origin 8.1 using Levenberg�Marquardt algorithm. Second order J-coupled signals of β-
protons were �tted according to results obtained in section 1.6. I will keep already proposed
letter convention, where ∆(ppm) is di�erence in chemical shielding of J-coupled β-protons and
δ(ppm) is their average chemical shift (�gure 9). Binding isotherms were �tted by least-squares
iterative analysis using an in-house written FORTRAN routine based on simplex algorithm,
where real root of cubic polynomial was found using bisection method (�gures 14 and 15).
For the experiment the solution of DiBrBzOxP in deuterochloroform with concentration 1g/mol
or 0.00068mol/l was prepared. To ensure complete dissolution of DiBrBzOxP, the sample was
heated to 50◦C and placed into ultrasound chamber for 2 minutes27. For titration we made
another sample with same DiBrBzOxP concentration, but with addition of 1612 molar equivalents
of S-Ibuprofen. The molar equivalent of S-Ibuprofen was determined by integration of non
overlapping 1H signals (4.42ppm peak of DiBrBzOxP with CH-quartet proton of S-Ibuprofen at
3.70-3.75ppm). During the titration 1H-NMR spectrum every di�erent mixture of DiBrBzOxP
with S-Ibuprofen were recorded. The spectrum of pure DiBrBzOxP is shown on �gure 8.

27This procedure was used for all measurements in this work.
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Figure 8: 1H-NMR spectrum of DiBrBzOxP (0.00068mol/l, CDCl3, 25◦C). All signals were
assigned with COSY NMR sequence.

The addition of S-Ibuprofen resulted in up�eld28 shift of pyrrole β-protons (�gure 10). Because
original signal disappears, and the position of new signal changes gradually with S-Ibuprofen
added, we concluded a fast chemical exchange between complexed and non-complexed host.
For R-enantiomer signal also gradually splits indicating a characteristic scalar J-coupling, which
means that the β-protons on a same pyrrole ring loose their magnetic equivalence if a complex
is formed. This indicates that the two β-protons on a same pyrrole ring, which are equivalent
in DiBrBzOxP molecule are asymmetrically shielded in complex. If a racemic form of ibuprofen
is added, the up�eld shift persist but the scalar J-coupling disappears. So we concluded that
S-enantiomer shields the β-protons in opposite order and fast chemical exchange average out the
arising asymmetry. This dynamics allows for determination of enantiomer abundance, because
if concentration of guest is unchanged, and di�erent ratios of R:S of guest are used, observed
chemical shift di�erence of the β-protons depends linearly on enantiomeric excess (�gure 11).

28Term up�eld refers to low ppm values and vice versa.
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Figure 9: Partial 1H NMR spectra of DiBrBzOxP (0.00068mol/l, CDCl3, 25
◦C) in the presence

of 250 molar equivalents of ibuprofen and corresponding Lorentz-curve with parameters 4 =
0.12ppm, J=3.8Hz and δ = 6.37ppm. Coe�cient of determination is 0.997

Figure 10: Partial1H-NMR spectrum of DiBrBzOxP with di�erent amounts of S or racemic
Ibuprofen added (0.00068mol/l, CDCl3, 25

◦C). Molar equivalents are referred to DiBrBzOxP.
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Figure 11: Partial 1H NMR spectra of DiBrBzOxP (0.00068mol/l, CDCl3, 25
◦C) in the presence

of 250 molar equivalents of ibuprofen having various enantiomeric excess values, % ee (left).
Linearly �tted correlation between di�erence in chemical shift of β-protons and enantiomeric
excess (right).

6.2.2 Competitive inhibition by water

There is one more change in DiBrBzOxP spectrum that was observed due to titration29. NH
protons also shift gradually to higher ppm (�gure 12). This means that complex formation
involves NH protons. Our suggestion was that carboxyl group of ibuprofen binds to NH groups
of DiBrBzOxP with hydrogen bonds. However the behavior of NH protons shift does not correlate
with changes on β-protons.This can be explained by complexation with another molecule, most
probably water.

Figure 12: Partial1H-NMR spectrum of DiBrBzOxP with di�erent amounts of S or racemic
Ibuprofen added (0.00068mol/l, CDCl3, 25

◦C).

29Other signals either remain unchanged due to complex formation, or overlap with ibuprofen peaks.
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The complexation with water, would also cause competitive inhibition to complex of DiBrBzOxP
with ibuprofen. To con�rm this hypothesis, we titrated solution of DiBrBzOxP with S-Ibuprofen
using deionized water (�gure 13). When water was added the NH signals are shifted down�eld,
and β-proton signals are also shifted down�eld and their di�erence in shielding is reduced. This
clearly con�rms the hypothesis, that water molecules bind to NH protons of DiBrBzOxP and
cause competitive inhibition to ibuprofen complex.

Figure 13: Partial 1H NMR spectra of DiBrBzOxP (0.00068mol/l, CDCl3, 25
◦C) in the presence

of 160 molar equivalents of S-Ibuprofen with di�erent amounts of water added.

To correctly calculate association constant the competitive inhibition of water must have been
considered. The method described in section 5.1.3 is modi�ed to take water inhibition into
account. Equation 78 now has the form

HG

KG
+G


−G

H

KW
+W


−W

HW (112)

If the tedious but straightforward procedure outlined in section 5.3 for above reaction is repeated,
the host concentration can be expressed as a solution of this cubic equation30:

KGKW [H]3+[KG+KG+KGKW ([W ]t+[G]t−[H]t)][H]2+[1+KG([G]t−[H]t)+KW ([W ]t−[H]t)][H]=[H]t (113)

The concentration of water can be easily found by integrating respective signal in 1H-NMR
spectrum, and its equilibrium constant need to be determined. The equilibrium constant KW

was determined by titration of DiBrBzOxP with water. 1:1 binding isotherm was constructed
by least-square three parameter �t. We �t chemical shift of NH protons as a function of molar
water equivalents (section 5.1.3).

30Because closed solution for cubic equation is complicated, during the curve �tting process the free host
concentration was determined iteratively using bisection method.
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Figure 14: 1:1 �tted binding isotherm of 1H-NMR spectrum of DiBrBzOxP titrated by water
(0.00044mol/l, CDCl3, 25

◦C)

The coe�cient of determination is good enough to con�rm that water binds at 1:1 stoichiometry.
And also down�eld shift due to complex formation agrees with earlier titrations (�gure 13).
This binding constant was used for DiBrBzOxP-water complex KW = 255. The amount of water
in solution of DiBrBzOxP in deuterochloroform was 7 molar equivalents. We were not able to
determine amount of water after S-Ibuprofen was added, because the 1H-NMR signal of water
was covered with signal from S-Ibuprofen. So it was assumed that amount of water in solution
remained constant after addition of S-Ibuprofen. Because β-proton 1H-NMR shift remained
constant, the binding isotherm for S-Ibuprofen titration has the same form as one proposed in
section 5.1.3. Only di�erence is that equation 105 must be substituted with equation 108.

Figure 15: 1:1 �tted binding isotherms of averaged 1H-NMR β-pyrrole shifts δ (left) and of chem-
ical shift di�erence ∆ (right), for DiBrBzOxP titrated by S-Ibuprofen (0.00068mol/l, CDCl3,
25◦C)

Binding isotherms of β-pyrrole shifts δ and their chemical shift di�erence ∆ against S-Ibuprofen
concentration gave both very similar values for association constants (�gure 15). Coe�cient of
determination for β-pyrrole shifts δ �t is not very good (0.98), and most distant points from
�tted curve are points that have been measured due to end of experiment. We therefore con-
cluded, that there must be some other process that was omitted in our analysis. The most crude
approximation was, that water concentration remained constant. In �gure 16 there is plot of
1H-NMR NH signals for same titration. NH protons signals, unlike β-pyrrole protons signals
sense DiBrBzOxP-water complex. Because NH signals, that also have di�erent chemical shift
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in complex, do not follow the same trend as β-pyrrole signals, we concluded that amount of
water varied during titration. On �gure 16 we see, that as 1612 eq. solution was diluted with 0
eq. solution the NH signals were not following the same trend as β-pyrroles, and to the end of
titration they even shifted in a opposite direction, indicating that amount of DiBrBzOxP-water
complex was increasing. Note that lower eq. solutions were measured later in time. The source
of water was probably vapor that entered the sample during manipulation with solutions. This
introduced an error into determination of association constant.
Using KG = 6.02(mol/l)−1 and (equation 97) we have determined Gibbs free energy of com-
plex formation. The value is ∆G = 4.44kj/mol. The real value is probably higher because
our model assumes lower amounts of water during titration, therefore competitive inhibition is
underestimated.

Figure 16: 1:1 �tted binding isotherm of 1H-NMR NH signal of DiBrBzOxP titrated by S-
Ibuprofen (0.00068mol/l, CDCl3, 25

◦C)

6.2.3 Variable temperature

On �gure 17 it is shown that low temperatures cause down�eld shift of β−protons and also
decrease the di�erence in shielding. However because low temperatures slow down exchange rate
and equation (106) is not valid anymore. No exact facts can be concluded from this measurement
until the rate of exchange is determined.
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Figure 17: Variable temperature partial 1H NMR spectra of DiBrBzOxP (0.00068mol/l, CDCl3)in
the presence of 344 molar equivalents of S-Ibuprofen.

6.2.4 Optical spectroscopy

The presence of cyclohexadienylidene groups on tetrapyrrole macrocycle have an important in-
�uence on its conjugation and conformation. This part of work is concerned with conformational
changes induced by their conversion into hydroxyphenyl groups. Protonation of cyclohexadi-
enylidene converts it into a hydroxyphenyl. Because these protonated species undergo conforma-
tional changes, guest acidity can in�uence strength, conformation and dynamics of a complex.
To explore e�ect of protonation on a complex conformation, we decided to study protonation of
uncomplexed DiBrBzOxP alone at �rst. Since these processes are fast on the NMR time scale,
we have chosen optical spectroscopy methods.
29 consecutive UV/vis and Raman spectra of 6.10−6mol/l DiBrBzOxP solution in deuterochlo-
roform with various amount of tri�uoroacetic acid added were measured (25◦C, 0-8888 molar
equivalents). All Raman spectra were normalized to deuterochloroform signal which was then
subtracted.
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Figure 18: Solvent corrected Raman spectra of 6.10−6mol/l DiBrBzOxP solution (CDCl3, 25◦C)
with various amounts of tri�uoroacetic acid added

Figure 19: Absorption UV-vis spectra of 6.10−6mol/l DiBrBzOxP solution (CD3CL, 25◦C) with
various amounts of tri�uoroacetic acid added

From UV-vis titration can be concluded, that addition of tri�uoroacetic acid causes disturbance
of electronic structure of DiBrBzOxP. This can be ascribed to protonation of a molecule. UV-vis
absorption spectra follow similar trend as OxP followed with addition of mandelic acid (inten-
si�cation of a new absorption band at 789 nm together with absorption decrease of Soret band,
�gure 5). But we have used stronger acid, and titrated further to higher molar equivalents.
Therefore more protonated forms of DiBrBzOxP might be present in a solution. To con�rm this,
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Figure 20: Singular values (right) and residual errors (left) of each decomposed subspectrum in
UV-vis titration.

quantitative analysis of di�erent forms was performed using SVD.
Each titration spectrum (Yi (ν)) was decomposed into a set of orthonormal subspectra Sj (ν)
(equation 114). Where Wj are statistical weights (called singular values) of j-th subspectra and
the elements Vij present spectral contributions of Sj (ν) to Yi (ν). Each i-th titration spectrum
can be therefore expressed as

Yi (ν) =
∑
j

WjVijSj (ν) (114)

SVD for both Raman and UV-vis titrations revealed �ve signi�cant linearly independent sub-
spectra Sj (ν) that contribute to original spectra other than noise and baseline deviations (�gures
20 and 21).
These 5 subspectra were used to construct pure spectra of the �ve spectral forms (in our case
di�erently protonated forms of DiBrBzOxP). The idea is based on an assumption that each
experimental spectrum can be also expressed as

Yi (ν) =
5∑

k=1

cikZk (ν) (115)

cik is a relative molar concentration of k-th spectral form from i-th measured spectrum, and
Zk (ν) is a pure spectrum on k-th form. Each Zk (ν) can be also expressed as a combination of
subspectra Sj (ν)

Zk (ν) =

5∑
j=1

RkjSj (ν) (116)

Rkj is a rotation matrix that was determined minimizing the expression∑
i,j,k

(cikRkj −WjVij)
2 (117)

Therefore in principle pure spectral forms Zk (ν) and their relative concentrations cik can be
determined.
Because minimizing the equation 117 lead to an in�nite number of solutions, two additional
constraints were imposed. No negative intensities in spectra of pure forms can be obtained, and
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Figure 21: Singular values (right) and residual errors (left) of each decomposed subspectrum in
Raman titration.

concentration of each individual form should follow acid-base transition:

[c]k =

j=0∏
j=k

Kj

[T ]j


1

t−1∑
j=0

t−1∏
j=0

Kj

[T ]j

 (118)

[c]k is a relative concentration of k-protonated form of DiBrBzOxP, [T ] is a molar equivalent of
tri�uoroacetic acid, Kj is an equilibrium constant (expressed in molar fractions) between j-th a
(j-1)-th protonated form and t indicates total number of protonated forms.
Using this constraints we were not able to minimize equation 117 for all �ve forms. From �gures
25 and 26 it is clear, that 4-th and higher subspectra (Sj (ν) , j ≥ 4) contribute only after 17-th
spectrum (Yi (ν) , i > 17). So we used only �rst three subspectra (Sj (ν) , j = 1, 2, 3) constructed
from restricted range of spectra (Yi (ν) , i ≤ 17), to �nd three spectral forms (Zk (ν) , k = 1, 2, 3).
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Figure 22: Relative concentrations (up) and spectra (down) of individual spectral forms from
SVD of UV-vis spectra of DiBrBzOxP ((6.10−6mol/l, CDCl3, 25

◦C)) with di�erent amounts of
tri�uoroacetic acid added.
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Figure 23: Relative concentrations (up) and spectra (down) of individual spectral forms from
SVD of Raman spectra of DiBrBzOxP ((6.10−6mol/l, CDCl3, 25

◦C)) with di�erent amounts of
tri�uoroacetic acid added.

Figure 24: UV-vis spectrum of DiBrBzOxP ((6.10−6mol/l, CDCl3, 25
◦C)) with 30 eq. of ibupro-

fen added.
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Figure 25: Vij coe�cients with their corresponding subspectral contributions Sj (ν) from singular
value decomposition of the dataset consisting of Raman spectra of DiBrBzOxP ((6.10−6mol/l,
CDCl3, 25

◦C)) with di�erent amounts of tri�uoroacetic acid added.
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Figure 26: Vij coe�cients with their corresponding subspectral contributions Sj (ν) from singular
value decomposition of the dataset consisting of UV-vis spectra of DiBrBzOxP ((6.10−6mol/l,
CDCl3, 25

◦C)) with di�erent amounts of tri�uoroacetic acid added.

We see that decomposition to individual spectral components of UV-vis and Raman spectra
both resulted in a very similar concentration curves (�gures 22 and 23). equilibrium constants
obtained from SVD are K1 = 3.23 and K2 = 378 from UV-vis spectra and K1 = 3.17 and
K2 = 397 from Raman spectra. We have demonstrated the existence of two protonated forms
of DiBrBzOxP and found their UV-vis and Raman spectra. These protonations take place
at carbonyl groups converting oxocyclohexadien groups to hydroxyphenyl groups, thus altering
conjugation of tetrapyrrole skelet.
The reason why other two spectral forms did not �t into our model could be caused by two as-
sumptions that we have made. First it was assumed that activity of tri�uoroacetic acid remained
constant. It is well known fact that at higher concentrations the activity of acid decreases. An-
other reason is, that those two spectral forms might not be higher protonated forms, but some
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non-reversible reaction might be happening. As can be seen from �gure 24, no signs of pro-
tonation were observed when 30 eq. of Ibuprofen were added into a chloroform solution of
DiBrBzOxP.

7 Computations

DiBrBzOxP-Ibuprofen complex contains 884 electrons (602 of which were valence), therefore post
Hartree-Fock methods were out of question. Hartree-Fock and it's semiempirical versions (like
INDO, AM1, PM3) can not give NMR spectra with desired accuracy. So we decided to model
our complex using DFT, which is well known for its excellent performance-to-cost ratio. Because
complex is entirely non-covalent, we were careful about a choice of particular functional. Standard
and most popular DFT functional B3LYP[40] underestimates bonding energy of hydrogen bonds
and overestimates their length[41-43], cannot successfully describe p-hydrogen bonding[44] and
also fails completely for dispersion interactions. In 1995, Hobza and coworkers stated that
�DFT methods with currently available functionals failed completely for London-type clusters
for which no minimum was found�[45]. Since then a new family of functionals, called meta
functionals were introduced. This meta functionals include kinetic energy density, which involves
second derivatives of occupied Kohn-Sham orbitals. Kinetic energy density term improves their
prediction of dispersion forces[46].
For this work we have chosen M-GGA31 non-hybrid functional M06-L[47], which in many studies
performed well for a range of systems, like zeolites [48], magnetic properties [49], water clusters
[50] and non-covalent interactions [51]. It also performed best from my own benchmark on
GIAO calculated 1H-NMR shifts32 for oxoporphirinogen molecule. M06-L is computationally
less expensive than the meta-hybrid functionals, which allowed us to use polarized basis set for
our relatively large system.

7.1 Methods

To fully capture the conformational behavior of DiBrBzOxP+S-Ibuprofen complex, we calculated
NMR spectra and Gibbs free energies of formation and compared them with experimental data.
All calculations were performed in gas phase using GAUSSIAN 09[52]. Two-electron integrals
and their derivatives were calculated using a pruned (99,590) grid[53]. Geometries of the complex
were fully optimized using M06-L density functional with Pople's 6-31G(d,p) basis set[54]. To
ensure that calculated structures are local minima on a potential energy surface, frequency
calculations were performed and no negative vibrational frequencies of nuclei were found.
Gibbs energies were obtained from counterpoise (CP) corrected[55] interaction energies by adding
Gibbs corrections obtained from harmonic vibrational analysis as described in section 3.4 of this
work. The Gibbs correction is equal to the sum of the Gibbs corrections of the complex obtained
from DFT calculations minus the sum of the Gibbs corrections of R-Ibuprofen and DiBrBzOxP
obtained at same level of theory. Interaction energy is DFT energy of complex molecule minus
energy of DiBrBzOxP and R-Ibuprofen.
Isotropically averaged nuclear magnetic shielding tensors for hydrogen atoms were calculated at
the optimized geometries using the GIAO/M06-L/6-31++G(d,p) method. To obtain chemical
shift, shielding tensor values were subtracted from shielding tensor values of TMS, that was
optimized and calculated at same level of theory. The conversion of calculated shielding tensors
into chemical shifts using calculated TMS values improves the results because of systematic error
cancellation.
In order to reduce computational cost and to account for scalar relativistic e�ects, Stuttgart
e�ective core potential (ECP) for core electrons and its corresponding valence basis sets for
valence electrons [56] were used for bromine atoms in all calculations. SDD valence basis set was
augmented with d functions (exponent 0.389), to account for polarization functions in Pople's
basis set.

31meta-generalized-gradient-approximation
32Benchmark was performed on OxP molecule, which was gas phase optimized with B3LYP/6-31G(d,p). In

order to minimize the error from �nite basis set and determine the performance of given functional, NMR shielding
was calculated with Pople's 6-311++G(2d,2p).
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7.2 Results

We have found two stable conformers (�gure 27). They were both created by hydrogen bonding
of carboxyl group at R-Ibuprofen with two NH groups peeping out of tetrapyrrole macrocycle.
Their geometry was adjusted by interaction between benzene ring of R-Ibuprofen and β protons,
and possibly π−π interaction between benzene ring of R-Ibuprofen and quinoid of DiBrBzOxP.

Figure 27: Two gas phase M06-L/6-31G(d,p) optimized conformers of DiBrBzOxP+R-Ibuprofen
complex HG1 (left) and HG2 (right). Hydrogen bond (yellow dotted line) between Ibuprofen's
carboxyl group and DiBrBzOxP NH protons responsible for complex formation is visible.

Interaction energies with and without Gibbs free energy corrections at 298.15 K and 1 atm. can
be found in table 1. Even though gas phase Gibbs free energies may not be directly correlated
with experimentally determined Gibbs free energies in solution, the gas phase values found are
appropriate for relative comparison of the two conformers.

interaction energy CP corrected Gibbs298.15K and CP corrected conformer population

(kJ/mol) orbital energy (kJ/mol) orbital energy (kJ/mol) (%)

HG1 -131,34 -107,09 -32,44 10.25

HG2 -131,25 -107,04 -37,81 89.75

Table 1: Thermodynamic parameters of two stable conformers (�gure 27) obtained from M06-
L/6-31G(d,p) level of theory

Relative populations of two conformers (i=1,2) were obtained from Maxwell�Boltzmann distri-
bution using calculated Gibbs energies:

[HGi] ≈ exp

(
4G298,15K

i

kBT

)

Table 2 shows correlation between the experimental and calculated 1H chemical shifts for Di-
BrBzOxP. Mean absolute error for calculated shifts compared with experimental values (�gure
8) was 0.25ppm. This satisfactory result for uncomplexed DiBrBzOxP indicates, that chosen
level of theory should be su�cient for description of complex. Also note that we are looking
for di�erence in shielding of β-protons in complex, therefore cancellation of errors will further
decrease computational error.
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NH quinon brombenzen quinon pyrrole brombenzen pyrrol CH2 tert-butyl tert-butyl

(yellow) (purple) (dark blue) (green) (brown) (blue) (red) (black) (gray)

exp. shift 7.77 7.58 7.27 6.98 6.91 6.66 6.57 4.42 1.36 1.23

calc. shift 7.96 7.58 7 6.82 7.21 7.56 6.84 4.5 1.54 1.38

abs. error 0.19 0 0.27 0.16 0.3 0.9 0.27 0.08 0.18 0.15

Table 2: 1H-NMR shifts of DiBrBzOxP calculated at GIAO/M06-L/6-31++G(d,p) for gas phase
structures (�gure 27), compared to experimental data (�gure 8). In this �gure color legend for
individual signals can also be found. All values are in ppm units.

DiBrBzOxP has C2 symmetry axis that coincides with oxygen atom involved in hydrogen bond
(�gure 28). Therefore complex conformation is invariant under 180◦ rotation of Ibuprofen
molecule around this axis. So β-1-proton is twined with β-3-proton and β-2-proton with β-
4-proton. This two conformations are equivalent, so they have same energy of formation. Also
because of fast exchange between them, it is not possible to detect these conformations. Only
an averaged signal from each pair of twinned protons is detected. This explains why β-proton
singlet peak (�gure 8) splits into two signals, each being a doublet, when complex is formed33

(�gure 9).
In order to relate calculated data with experiment, the chemical shifts values were averaged
according to chemical exchanges. Arithmetic average chemical shift values for twined protons
were used, and because complex exists in two di�erent conformations, the weighted average of
their chemical shift values were used (table 3). Relative population of the two conformers can
be found in table 1.

Figure 28: Schematic illustration of two conformations (and their equivalent versions) for
DiBrBzOxP+R-Ibuprofen complex. Chiral R-Ibuprofen induces non-equivalency between adja-
cent pyrrolic protons, which causes anisochronicity of their resonant frequencies(∆ 6= 0 ).

33The doublet structure arises from J-coupling between adjacent protons.
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DiBrBzOxP HG1 HG2 weighted HG1 and HG2
β-1 and β-3

proton
6.84 5.68 6.47 6.39

β-2 and β-4
proton

6.84 6.62 6.02 6.08

∆ 0 -0.94 0.45 0.31

δ 6.84 6.15 6.24 6.23

∆ δ

experimental values 0.28 6.15

computed values 0.31 6.23

Table 3: Summary of computed chemical shift values for β-protons obtained from GIAO/M06-
L/6-31++G(d,p) (up). Comparison with experimental values obtained from extrapolation of
titration curves (�gure 15) (down). All values are in ppm units.

In table 3 we see that after all averaging is performed, the comparison of calculated NMR
parameters agrees well with experimental data. This is a strong evidence that conformations we
have obtained correspond to reality. The calculated Gibbs energies of formation are much higher
than experimentally obtained values (−32, 44kJ/mol for HG1 and −37.81kJ/mol for HG2 vs.
−4.44kJ/mol for experimental value). But this is normal, because Gibbs energies measured in
liquid solution can not be related to gas phase calculated values.
Binding of S-Ibuprofen shields the adjacent β-protons in opposite direction as R-Ibuprofen does
(�gure 29). This explains why experimentally determined chemical shift di�erence ∆ exhibit
linear dependence on %ee in fast exchange regime (�gure 11).

Figure 29: R/S-Ibuprofen environment induces opposite shielding e�ects for adjacent protons
(β−1 with β−2 or β−3 with β−4) as schematically shown for given conformation. Because of
fast chemical exchange, reducing the %ee causes isochronicity (∆ = 0 ppm for 0 %ee in limiting
case) as a result of averaging.

8 Conclusions and remarks

8.1 NMR

We have demonstrated that achiral DiBrBzOxP can be used as a host for detection of chiral
information of Ibuprofen in 1H-NMR spectroscopy. In particular, enantiomeric excess can be
determined from β-proton chemical shift di�erence ∆ of DiBrBzOxP. It must be stressed that
because host is achiral, the complex itself doesn't provide any information about chirality of
Ibuprofen. The R-Ibuprofen and S-Ibuprofen complexes with DiBrBzOxP are equivalent in NMR
spectroscopy. It is the dynamics of complex formation and fast exchange of molecules on binding
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site, that only provides information about an excess of one enantiomer over the other. Thus only
an absolute value, but not the sign of enantiomeric excess can be obtained. Unknown sign can
be determined, if one has Ibuprofen of known %ee. Adding a portion of known enantiomeric
mixture into unknown sample, and recording the change of %ee that this addition induced, the
%ee sign of an unknown sample can be determined.
Chemical shift di�erence ∆ depends not only on %ee, but also on the ratio of complexed to
uncomplexed DiBrBzOxP. In order to obtain linear relationship between %ee and ∆, ratio of
complexed to uncomplexed DiBrBzOxP must be kept constant. This ratio depends on relative
amount of Ibuprofen to DiBrBzOxP in a given solution (�gure 10), and because of competitive
inhibition caused by water also strongly depends on water concentration in solution (�gure 13).
This is a problem, because we have shown that even small variation of water concentration
(order of mmol/l), changes ∆ value (�gure 13). This high sensitivity to water happens because
association constant of water complex is much higher that that of R-Ibuprofen complex (Kwater =
255mol/l−1, KIbuprofen = 6mol/l−1). Therefore if one wants to determine %ee of an unknown
sample using hypothetical34 tabulated value of ∆, he has to make sure that not only concentration
of Ibuprofen molecule is same as for tabulated value, but also concentration of water must be
same. This is especially hard for guest molecules (Ibuprofen also) whose 1H-NMR signals overlap
with water signals. In that case, amount of water can not be determined from 1H-NMR signals
integration and other analytical method must be used. Alternatively water concentration could
be guessed by measuring concentration of water in pure DiBrBzOxP solution, and assuming that
water present in guess molecule is either negligible or constant. But we have shown that even
for dried Ibuprofen this assumption caused an error, which resulted into a badly �tted binding
isotherm and underestimated association constant (�gure 15).
Points that are outside �tted curve are those, that have been measured very last during the
titration experiment. Water that disturbed the behavior of spectral peaks most probably didn't
originated from Ibuprofen, but came from water vapor due to manipulation of sample and its
exposure to air. So in order to make this experiment reproducible, it must be performed in
water-absent environment.
In variable temperature NMR measurements, we attempted to slow down the chemical exchange
to see separate signals from uncomplexed DiBrBzOxP and both complex conformers (�gure
17). The lowest temperature that we were able to achieve was not enough to slow down the
exchange. It was also observed that decreasing the temperature causes chemical shift di�erence
∆ to decrease and β-1-proton signals were shifted down�eld. This can be interpreted, that
decreasing the temperature stabilizes the water complex more than Ibuprofen complex. It is
only a hypothesis, that can be con�rmed or disproved by repeating the temperature varied
experiment with samples of di�erent water concentrations. If the observed e�ect will be stronger
for higher water concentrations samples, the hypothesis will be proven.
Alternatively water inhibition can be reduced using a host molecule with higher binding constant
to chiral guest. In similar experiment[35], where OxP had been used as a host and mandelic acid
as a guest molecule, the binding constant was higher. Because the bonding mechanism between
the molecules was same, but the authors detected electronic absorption spectral changes in OxP
due to addition of mandelic acid (�gure 5). We speculated that increase in binding constant
could have been caused by protonation of a host molecule.

8.2 SVD

In order to investigate protonation of DiBrBzOxP molecule, its titration with TFA in chloroform
solution was performed, during which successive Raman and UV/vis spectra were recorded. SVD
decomposition of Raman and UV/vis spectra revealed �ve spectral forms during the titration.
Three of them have been identi�ed as neutral, single and double protonated DiBrBzOxP (�gure
22), and other two remained unidenti�ed. From this analysis, we are now able to determine
concentrations of all three protonated forms for given acidity of solution. We intended to study
complex of di�erently protonated forms independently with NMR. But this showed to be impos-
sible, because presence of TFA blocks the binding site of DiBrBzOxP, preventing the complex
formation. Therefore to complete this study, an acid that will not block the binding site must

34Because there are no tabulated values yet.
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be found. Our suggestion is to use carboranes, cage shaped organometallic molecules, known
for their high acidity. Carborane acid anion might have much lower a�nity to binding site of
DiBrBzOxP, which will allow to induce protonation of DiBrBzOxP without blocking the binding
site. Also because carboranes are solid at room temperature, they contain less water compared
to liquid acids.
From SVD analysis of Raman and UV/vis titration we also obtained pure spectra of protonated
forms. Because Raman spectra of these forms di�er signi�cantly (�gure 18), they are not suitable
for determination of abundance of protonated forms. However UV/vis spectra show intensi�-
cation of new absorption band at 760 nm for protonated DiBrBzOxP, which is moved to 720
nm for doubly protonated DiBrBzOxP (�gure 19). This process is accompanied with intensity
decrease and splitting of the original absorption band at 505 nm. This distinct changes in UV/vis
absorption spectra can be used for straightforward detection of individual protic forms, which de-
termines whether given host causes protonation of DiBrBzOxP molecule. This was immediately
performed for Ibuprofen , and we found that Ibuprofen doesn't protonate DiBrBzOxP (�gure
24), and we also con�rmed that our complex has no ionic bonds.
Interpretation of remaining two forms that appeared when decomposition of all 29 spectra was
performed is an open question. We were not able to minimize equation 117 for all 5 forms in a
way that will also satisfy equation 118. Equation 118 includes two assumptions:

� It includes only a concentration of TFA, therefore assumes that the activity coe�cient
of TFA remains constant. This might not be valid for higher concentrations where ionic
strength of medium might decrease activity coe�cient. To correct this, activity of TFA
needs to be used instead of concentration in equation 118.

� It assumes that all forms undergoes reversible acid-base transitions.

If the �rst assumption is a problem, then replacing concentration of TFA its activity will cor-
rectly describe all �ve spectral forms of DiBrBzOxP. Another interpretation is, that those two
forms aren't triple and quadruple protonated forms, but the represent brom-hydrolyzed forms of
DiBrBzOxP. Because hydrolysis would be, unlike protonation, an irreversible reaction, it would
explain why our model failed. Because those forms appeare only for high concentrations of TFA
(more than 1000 molar equivalents), they are not relevant for experiments with single and double
protonated forms of DiBrBzOxP.

8.3 DFT

DFT studies revealed two complex conformers (HG1 and HG2). To verify that they agree with
reality, we calculated their 1H-NMR chemical shifts and because two conformations undergo fast
exchange on NMR scale, calculated shifts were weight-averaged. Where relative populations
obtained from calculated Gibbs energies of formation for this conformers were used as weight
factors. The Gibbs corrections were too big (74,65kJ/mol for HG1 and 69,23kJ/mol). This is
because the molecule has many low frequency modes, some of which may be internal rotations,
and so may need to be treated separately. Another problem with low frequency modes is that
harmonic approximation might not be valid for them and so ignored anharmonic contributions
might be signi�cant.
Because there were deviations even among high frequency modes between those two conformers,
we concluded that di�erence in calculated Gibbs corrections for two conformers might be a real
e�ect. And because for determination of relative populations, only a di�erence of Gibbs energies
is needed, we used those values.
Using calculated relative populations (10.25% for HG1 and 89,75% for HG2) we achieved excellent
agreement for chemical shift values (table 3). Because all calculation were performed in gas phase,
using moderate basis set and empirical DFT methods, the excellent agreement most probably
arouse from fortuitous error cancellation.

8.4 What needs to be done

In summary, we have studied complex from NMR and computational perspective, and proto-
nation from optical spectroscopy perspective. We have found that complex exist in two con-
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formations that are not visible in NMR, because they are averaged by fast chemical exchange.
NMR spectroscopy revealed that water acts as a inhibitor for complex formation. Optical spec-
troscopy revealed three di�erent protonated forms, which might have di�erent binding energies
with Ibuprofen.

� To minimize inhibition e�ects of water a more hydrophobic solvent should be used instead
of chloroform. The host and guest molecules must be soluble in that solvent, which will be
a critical selection rule for solvent.

� Protonation of DiBrBzOxP must be induced with di�erent acid, which won't block its
binding site, and protonated complex will be made and studied.

� Solvation model must be included into DFT calculations, for more realistic calculations to
be performed.

� Overestimated Gibbs energy correction of DFT calculation must be analyzed, so the relative
populations of conformers obtained from those energies will be more credible.

� Variable temperature NMR experiment must be repeated for di�erent water concentrations,
so temperature induced spectral changes can be interpreted.

� The interpretation of two unknown spectral forms that appeared during TFA titration
needs to be found.
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