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Abstrat

This dissertation presents an overview of our computer simulation studies of the

conformational behaviour of amphiphilic polymers. In the studies we showed that

the polymers form a variety of self-organised structures at a single molecule level.

These include the pearl-necklace structure, spherical and cylindrical intramolecular

micelles and bundles. From the simulations we were able to obtain a deeper

insight into the behaviour of amphiphilic polymers. Some of the results were

compared to experimental or theoretical studies of similar polymers. In some cases

the simulations confirmed earlier interpretations which were based on analogy

or intuition. In other cases they revealed new phenomena which had not been

considered before.
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Abbreviations and symbols used in the text

A pre-exponential factor

α degree of dissociation / degree of charging

CG coarse-graining

DP Degree of polymerisation

e elementary charge

ǫLJ solvent quality / hydrophobicity / depth of the Lennard-Jones potential

ε0 permittivity of free space

εr relative permittivity

F force

FENE Finite-extension nonlinear elastic potential

I fluorescence intensity

kB Boltzmann constant

KFENE stiffness constant of the FENE potential

λB Bjerrum length

LJ Lennard-Jones potential

m mass of a particle

m side-chain length of a comb-like copolymer

MC Monte Carlo simulation method

MD Molecular Dynamics simulation method

~µA absorption dipole moment

~µE emission dipole moment

n spacing between the side-chains of a comb-like copolymer

N chain length (number of segments)

ν scaling exponent

NB backbone length of a comb-like polymer

PE polyelectrolyte

PMA poly(methacrylic acid)

r distance

r(t) time-resolved fluorescence anisotropy

~ri bond vector of the bond between particle i and i+ 1

r position vector

Rc cutoff radius of the LJ potential

RFENE cutoff radius of the FENE potential

Rg radius of gyration

RHC hard-core radius

t time

T temperature

U(r) pair potential

v excluded volume of the monomer unit in good solvent
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Introdution

In this work we present an overview of our simulation works concerning the

formation of self-organised structures in amphiphilic macromolecules.

This thesis presents an overview of simulation works published by the author of

the thesis which concern the formation of self-organised structures in amphiphilic

macromolecules. Some other simulation studies to which the author has con-

tributed have not been included here because they do not fit into this framework.

Most of the presented simulations deal in one way or another with the formation

of pearl-necklace structures. The understanding of the matter has gradually devel-

oped over the years and has become much deeper especially after our cooperation

with the theoreticians has become more intensive.

The large family of amphiphilic copolymers comprises a variety of otherwise

rather loosely related compounds. The word amphiphilic comes from Greek and

literally means “loving both”. In connection with polymers it refers to macro-

molecules which contain some parts which have high affinity for the solvent

(solvophilic) and others which have low affinity for the solvent (solvophobic). Since

in many cases the solvent of interest is water, in this thesis often the terms hy-

drophilic and hydrophobic will be used for the former and the latter, respectively.

Even though it is not strictly correct, at least on the semi-quantitative level the

nature of the interaction is the same whether the solvent is water or not. More

importantly, it facilitates the connection with biological sciences in which the term

hydrophobic interactions is used to describe the solvophobic interactions in aque-

ous environment. All results presented in this thesis have been obtained for generic

models of synthetic polymers. Nevertheless, a significant portion of them can be

used to explain analogous effects in biopolymers. Behaviour of a complex system,

such as an amphiphilic polymer, is determined by a number of mutually interde-

pendent factors. In such system it may be very difficult to identify which of the

factors (if any) are the most important and what are the relations between them

and the resulting behaviour. Studying a generic model system which possesses

key features of the original system may help to solve the problem. Generic models

usually contain relatively low number of parameters and it is much easier to iden-

tify the influence of each of them. Conclusions obtained for the generic models

can then be with some care extrapolated to explain the behaviour of the original

complex system. From the investigation of the generic model it may also be possi-

ble to identify which features of the behaviour are universal and which stem from

some specific interactions. In this way we have implicitly defined what we mean

by a specific interaction: any effect which cannot be observed in a generic qual-

itative model. Therefore, depending on the model we refer to, the term specific

interaction may mean slightly different things.
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Since the early years of macromolecular science the ideal chain model has been

one of the few models for which analytical solutions have been found [1]. The

success of this model was due to a fortuitous cancellation of errors coming from

different approximations. If the solvophobic attraction among the monomer units

is exactly cancelled by the steric repulsion, the polymer follows the statistics of

the ideal chain. The state of such polymer is called the theta state and serves as

the standard state in polymer science. The solvophobic interaction is temperature-

dependent and hence for a particular polymer-solvent combination, the theta state

can be realised at a certain temperature (theta temperature, theta solvent). How-

ever, for many polymer-solvent combinations the theta state cannot be realised at

all because some chemical processes prevent it. If the temperature is higher than

the theta temperature, the excluded volume interaction prevails and consequently

the size of the polymer coil is larger than that of the theta polymer. In such case

the polymer is well soluble in the solvent and hence it is referred to as good solvent

conditions. On the other hand, if the solvophobic attraction prevails, the polymer

collapses into a compact globule which on a macroscopic scale results in precipita-

tion. Such conditions are called poor solvent conditions. The spatial arrangement

of polymer chain is called conformation and the good and poor solvent conditions

are examples of how the conformation on the molecular scale is linked to the macro-

scopic properties of solution. Another example of macroscopic changes caused by

the conformational changes of individual macromolecules is the denaturation of

proteins. The behaviour of neutral homopolymers in dilute solution is nowadays

well understood, has been confirmed by a number of experimental and simulation

studies and has become an essential part of polymer sciences textbooks [1–4].

In many cases analytical expressions have not been obtained. However, it has

been possible to express many important results in the form of a power law, such

as that for the radius of gyration,

Rg = ANν ∼ Nν , (1)

where Rg is the radius of gyration of the polymer, A is the constant pre-factor, N

is the number of segments and ν is the scaling exponent. The approaches which

predict the power laws and the scaling exponents are known as scaling approaches

and over the years they have become a part of the standard toolbox of polymer

theory [5].

Specific interactions related to the detailed chemical structure of a given polymer

are reflected in the constant pre-factor while the scaling exponent is universal

for many polymers which fulfil assumptions of the model. The scaling regime is

attained for sufficiently long polymers. However, sufficiently long can mean very

different things depending on the topology of the polymer and for finite polymers
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deviations from the power law occur. For example, close to theta solvent the

power law behaviour is well obeyed for chain length N ≈ 10 while for star polymers

N ≈ 1000 is necessary [5]. In one of our publications we have shown that for comb-

like polymers, it may as well be N ≈ 104 or even more [6]. In such case the scaling

behaviour is eventually attained beyond the synthetic limit for the chain length.

Hence, for more complicated topologies, the power of the scaling predictions is

limited as they only apply to very large systems. In such a case it is desirable

to provide also the predictions for finite-size polymers. Usually such predictions

cannot be obtained using analytical expressions but still numerical methods can

provide the desired data.

It is even more complicated to make theoretical predictions for amphiphilic

polymers than in the homopolymer case. Therefore, while the conformational

behaviour of linear homopolymers is well understood, this is not the case of am-

phiphilic polymers. In amphiphilic polymers the solvophobic monomer units tend

to stick together and form clusters which is the driving force for aggregation. It

is opposed by the repulsion among the solvophilic parts of the amphiphilic poly-

mer which provides the stopping mechanism for the aggregation. The repulsion

may be of various origins as will be discussed a few lines further. Equilibrium is

attained when the attraction and the repulsion are exactly balanced. When the

force which is responsible for the attractive interaction operates on a shorter range

than the repulsive one, aggregates of defined size can be formed in equilibrium.

Such system then becomes self-organised and has considerably lower entropy than

a disorganised system such as the ideal chain. The morphology and size of the

aggregates which are formed is determined by the relative strengths of the two

counteracting forces which in turn are determined by the interaction with the sur-

rounding environment. The strength of the interactions and hence the behaviour

of the polymer can be tuned by external conditions.

In this work we present studies of several types of amphiphilic polymers which

exhibit the self-organising behaviour. All our systems are simulated in the dilute

solution limit and the self-organised structures are formed on the intramolecular

level. The driving force for the formation of aggregates in all our systems consists

in the solvophobic attraction among some of the monomer units. The stopping

mechanism is provided either by the steric repulsion among the solvophilic parts or

by the electrostatic repulsion among the charged groups contained in the polymer

or by the combination of both. Such systems may be very difficult to treat using

analytical models or scaling approaches. For some of them it has been attempted

with various degrees of success, on others it is just a work in progress.

One system for which theoretical models have successfully and correctly pre-

dicted the formation of self-organised structures are polyelectrolytes in poor sol-
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vents. Polyelectrolytes are polymers containing groups which can be charged under

certain conditions. It has been shown by Khokhlov in 1980 [7] that the spherical

shape of such polymer globule is unstable and it deforms to a cigar-like shape.

Later on, Dobrynin, Rubinstein and Obukhov [8] have shown that at certain con-

ditions also the cigar shape is unstable and it splits into several smaller spheri-

cal globules (pearls) connected by strongly stretched parts of the chain (strings),

forming the so-called pearl-necklace conformation. Their predictions have been

confirmed by a number of simulation studies, e. g. [9, 10].

In 2005 a similar behaviour has been predicted by Borisov and Zhulina for

comb-like copolymers in selective solvents [11] which has been augmented and

supported by simulation results in our recent paper [12]. Similar predictions for

yet another type of polymer – comb-like polyelectrolytes in selective solvents – have

been made by ourselves [13] on the basis of computer simulations. The formation

of pearl-necklace structures in PE stars in poor solvents has been anticipated

by Sandberg et al. but their scaling analysis as well as simulations have shown

that bundles of chains rather than pearl-necklaces are formed [14]. Our results

which are being prepared for publication have shown that the pearl-necklaces in

the stars with low number of arms while at higher number of arms, bundling is

preferred [15]. Polymorphism of the intra-molecular structures, including pearl-

necklaces has been also observed in recent Monte Carlo simulations of amphiphilic

multiblock copolymers in dilute solutions [16].

As can be seen from previous lines, similar type of self-organising behaviour

can be observed in various amphiphilic copolymers. We have been studying many

of them by computer simulations. In this thesis we present an overview of the

results and attempt to draw the reader’s attention to common features in different

systems which can be considered as universal, at least to a certain extent.
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Simulation methods and interation potentials

Molecular dynamics

Most simulations presented in this thesis were performed using the method of

Molecular Dynamics (MD). Currently it is one of the standard simulation methods

and has been described in detail in a number of textbooks [17–20]. Here we only

make a brief overview of the method and point out some specific topics which are

important for further discussion. For more details on the employed simulation

techniques we refer the reader to one of the above-mentioned textbooks.

The ultimate goal of a molecular simulation is to compute ensemble averages of

certain observables. One of the ways the averages can be obtained is to observe

how the system evolves in time. The ensemble averages can then be computed

using the ergodic theorem. It assumes that for an observable X its ensemble

average is equal to its time-average when the time interval is long enough

〈X〉 = lim
t→∞

1

t

t
∫

0

X(t) dt . (2)

In other words, in the limit of infinite time interval, the system samples all parts

of the phase space with the proper probabilities. For a finite time interval of a

real simulation, equality in equation (2) becomes only approximate. Yet if the

system is not entrapped in a metastable state, it can sample a representative part

of the phase space and hence such simulation can be used to compute the ensemble

average of the observable.

In the MD simulation method, a system is defined by a set of particles and

interaction potentials between them. For such a system, we compute its evolution

in time by numerically solving the classical Newtonian equations of motion

m
d2ri
dt2
= −∇

N
∑

j 6=i

U(rij) i = (1, 2, . . . , N) . (3)

The above equation represents a set of N parallel differential equations for N

interacting particles where U(rij) is the interaction potential between the particles

i and j. The whole simulation is usually performed in a simulation box with

periodic boundary conditions which helps to overcome the problem of simulating

a relatively small system.
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An MD simulation can start from an arbitrary initial configuration. The initial

configuration may be far from equilibrium and therefore prior to the productive

period of the simulation, an equilibration is performed, during which the system

approaches equilibrium. This is manifested by a significant time-drift of certain

(not necessarily all) observables. At the end of the equilibration period, no time-

drift in any of the observables should be observed, i. e. and all observables should

fluctuate around their equilibrium values.

Technically, the time average is computed so that after the equilibration has

been accomplished, configurations are stored at regular intervals and the ensemble

average is computed as a simple average over all stored configurations. When

computing averages of the stored data, it has to be born in mind that the MD

method yields correlated data and the correlation has to be taken into account,

e. g. using one of the methods described in the book of Frenkel and Smit [18].

It should be noted, however, that if a system ends up in a metastable state, it is

also manifested by fluctuations of all observables around a constant value. In the

limit of infinite time, the system eventually leaves the metastable state and samples

the rest of the phase space. Yet the time the simulated system needs to leave the

metastable state depends on its dynamical properties and specifically in polymer

systems this may be anything ranging from picoseconds to years. Since a typical

simulation represents up to a few microseconds of real time, in some systems it

may happen that within the time interval of the simulation only the metastable

state is simulated. Unfortunately, it is not possible to prove that a simulation has

sampled a sufficient portion of the phase space. However, it can be proved using

some physical arguments that a particular system is in an arrested state. If such

a situation is suspected for a particular system, it has to be thoroughly examined

and if the suspicion is confirmed, the simulation results have to be discarded.

MD in implicit solvent, Langevin thermostat

One way of performing simulations of molecules using the MD method is to

define chemical bonds and non-bonding interactions among all pairs of atoms. Such

models are widely used e. g. in simulations of proteins where the detailed chemical

structure is very important. On the other hand, when the system of interest is

a synthetic polymer, the situation can be simplified and an effective interaction

can be assigned to a larger group of atoms such as one or several monomer units.

Most theoretical models of polymers proceed in the same way. Such procedure

is referred to as coarse-graining (CG) and its principles are described in more

detail e. g. in the book of Binder [21] or review by Praprotnik et al. [22]. The

main advantage of the coarse-graining is significant reduction in the number of

degrees of freedom and consequently reduction of the computational complexity
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of the problem. The disadvantage is the loss of detail. Usually, a generic CG

model yields only qualitative or semi-quantitative information which, nevertheless,

may be valuable for understanding the underlying mechanisms of some processes

and/or development of theoretical models. In recent years, a lot of effort has been

devoted to developing systematic CG procedures which would also account for

specific interactions, especially in the groups of Kurt Kremer and Florian Müller-

Plathe. However, the success of the systematic CG has been so far limited to a

few well-behaving systems. For a more detailed discussion of this topic, we refer

the reader to a recent review [22].

If the a polymer in dilute solution is studied, most of the system comprises sol-

vent molecules while the actual molecule of interest is only a minor component.

Therefore a further step in coarse-graining dilute solution polymer systems is re-

moving solvent molecules. The approach employed in all simulations presented in

this thesis is coupling the system to the Langevin thermostat where the solvent

molecules are not simulated explicitly but their presence is emulated by two forces

which are added to the classical Newtonian equations of motion. The modified

equations then read

mi
d2ri
dt2
= −∇

∑

j 6=i

U(rij) + F
D
i + F

R
i , (4)

where FD
i and F

R
i are the dissipative and the random force respectively. The two

additional forces are coupled by the following relations:

FD
i = −miΓ

dri
dt

, (5)

〈FR
i (t) · F

R
j (t

′)〉 = 6ΓkBTmiδijδ(t − t′); 〈FR
i (t)〉 = 0 . (6)

Besides the fact that the two additional forces emulate the collisions with solvent

molecules, they also work as a thermostat, i. e. they keep the system at constant

temperature T . Because the coupling equations do not provide an exact definition

of the random force, certain level of arbitrariness is left in its choice. A common

but not a unique choice is to take FR from Gaussian distribution. It can be shown

that the system which follows the above-mentioned set of equations samples the

canonical ensemble [17, 19].

Although the Langevin thermostat, and implicit solvent methods in general,

are very useful simulation tools, there are several problems related to their use.
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For example, the random force acts on all particles while in reality collisions with

solvent molecules are not experienced by particles which are not in contact with the

solvent. An example might be segments inside a collapsed domain of a polymer.

There are several other unresolved methodological issues of implicit solvent models

which we will not discuss here. A more detailed discussion can be found in review

by Hünenberger [23] and references therein.

All simulations in this work were performed using the ESPResSo software [24,

25]. It is a versatile simulation package designed mainly for MD simulations of

charged soft matter systems in implicit solvent. ESPResSo is a continuously de-

veloping project, therefore it is futile to describe its contents and functionality.

We better refer the reader to its web page [24] which should describe the current

status of the project.

Interaction potentials

To correctly define a system, one has to specify the interaction potentials among

its particles. Once these are known, the properties of the system can be (at least

in principle) calculated using the methods of statistical physics. In this section, we

provide a listing of all interaction potentials which are used in various combinations

in our simulations. We remind the reader that the polymer models which we use

are generic and therefore the choice of the potentials is somewhat arbitrary. A

different set of potentials with qualitatively the same features would be expected

to yield qualitatively similar results.

The Lennard-Jones potential is our choice to describe the non-bonded Van der

Waals type of interactions. In the general form, it is described by the equation

ULJ(r) =







4ǫLJ

[

(

σLJ
r−RHC

)12

−
(

σLJ
r−RHC

)6

+ c(Rc)

]

for r ≤ Rc

0 for r ≥ Rc

, (7)

where r is the distance between two particles. The interaction is cut off at a certain

distance, Rc. In order to make the potential continuous, it is shifted by

c(Rc) = (σLJ/(Rc − RHC))
6 − (σLJ/(Rc − RHC))

12 , (8)

so that it is zero at the end of the interaction range. Other symbols are adjustable

parameters of the potential. RHC is the hard-core radius of the particle which is

in most cases set to zero. It is the distance from the origin at which the potential

diverges.
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Several typical special cases of the LJ potential are used in our simulations. If

it is not explicitly stated, in all cases we set RHC = 0 and σLJ = 1.0. Because

the repulsive part of the LJ potential is rather steep, the value of σLJ defines the

effective size of the monomer unit and it also becomes a very convenient natural

unit of length. When we need to account only for the excluded volume interaction,

we choose the cutoff radius at the minimum of the potential, i. e. Rc = 2
1/6 σLJ.

Together with the shift defined by equation equation (8) the interaction is then

purely repulsive. Moreover, it has a continuous first derivative. Such potential is

used either for simulations of polymers in athermal solvent or for the interaction

of counterions. The properties of the purely repulsive version of the LJ potential

do not depend much on the value of ǫLJ which is for convenience set to ǫLJ = 1.0.

Another very common case is when the cutoff radius is set to Rc = 2.5σLJ.

With such choice of parameters, the potential is strongly repulsive at short dis-

tances but at slightly larger distances it passes through a minimum. The exact

value of the cutoff is somewhat arbitrary and is chosen so that the potential as

well as its first derivative are sufficiently small (almost zero) at r = Rc. A typical

use of such potential is to simulate a polymer in theta solvent or in a poor solvent.

For a polymer in theta solvent, the excluded volume interactions should be com-

pensated by short-range attractive interaction among monomer units so that the

chain statistics is ideal (Gaussian). It can be found in literature that this occurs

for ǫLJ = 0.34± 0.02 [26]. In the case of a polymer in poor solvent, the attractive

part prevails, i. e. values of ǫLJ > 0.34 are used.

Rather exotic forms of the LJ potential are those when the hard-core radius

attains a non-zero value. In the simulations included in this thesis, such situation

occurs only in one case. Setting RHC ≥ 0 effectively increases the size of the

particle while keeping the same depth of the minimum as well as the steepness of

the potential walls. This is utilised in the case of central monomer of star polymers

where it is desirable to make the central particle slightly larger in order to avoid

excessive steric problems when several arms are attached to it.

Besides the Van der Waals type of interactions, chemical bonds exist among

the monomers of polymer chains. The bonds are accounted for via a combination

of the LJ potential described above with the Finite-extensible nonlinear elastic

(FENE) potential. The functional form of the potential is

UFENE(r) = −
1

2
KFENER

2
FENE ln

(

1−

(

r

RFENE

)2
)

. (9)

In combination with the LJ potential it forms an anharmonic spring potential. In

all our simulations we set KFENE = 7.0 and RFENE = 2.0 which in combination
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with our LJ parameters keeps the typical bond length close to 1.0. In contrast

to the commonly used harmonic potential, the FENE+LJ spring is stiffer and the

separation only has a finite range of allowed values because the combined potential

diverges both at RHC and RFENE.

Last but not least, if the simulated system contains charged particles, the elec-

trostatic (Coulomb) interaction is present

UCoulomb =
λB
r

, (10)

where λB is the is the Bjerrum length defined as

λB =
e2

4πε0εrkBT
. (11)

where e is the elementary charge, kB the Boltzmann constant, ε0 and ε permittivity

of free space and relative permittivity, respectively. The physical meaning of the

Bjerrum length is that it is the distance at which the interaction energy of the

Coulomb interaction between two charges is equal to kBT . Since all symbols

in equation (11) except for temperature are constants (for a particular system),

the Bjerrum length nicely fits into the system of reduced units which is used in

the simulation.

From the technical point of view, unlike all other interactions, the Coulomb in-

teraction decays very slowly and does not have a definite cutoff distance. Because

of these complications, special computational methods have to be used to calcu-

late the electrostatic interactions. These methods are described in the classical

textbooks of molecular simulation, such as [17, 18] and we are not going to repeat

it in this text. In our work, the particle-particle particle-mesh algorithm [27] for

the evaluation of the Ewald sum [28] has been used. It has been implemented in

the ESPResSo software together with some systematic procedures for setting the

parameters of the sum to achieve the desired accuracy [29, 30].

Polymer architectures

The polymers which were simulated in different parts of this work may differ in

the parameters of the interaction potentials as well as in topology. They also may

or may not contain charged groups. When speaking about polymers in general, by

default we mean neutral polymers. If they contain charged groups, they are always
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Linear polymer

Comb copolymer (graft copolymer) Star copolymer

Figure 1. Schematic illustration of various polymer architectures used in the

simulations.

referred to as polyelectrolytes. Different polymer architectures are schematically

shown in Figure 1.

The simplest case is the linear copolymer in which monomer units are arranged

in the form of one single chain without any branching points. For such polymer we

can set the solvent quality via the Lennard-Jones parameters. For the athermal

solvent we set Rc = 2
1/6σLJ and ǫLJ = 1.0. For the poor solvent conditions we set

ǫLJ ≥ 0.34 and Rc = 2.5σLJ. The solvent can be made poorer by increasing the

value of ǫLJ. As already mentioned in Introduction, we will use the term hydropho-

bicity as a synonym for solvent quality. Hence, when increasing ǫLJ, we will speak

about decreasing solvent quality for the polymer or increasing hydrophobicity of

the polymer.

In polyelectrolyte some of its monomer units are charged. To keep the sys-

tem electrically neutral, counterions with the opposite charge are present in all

polyelectrolyte systems. The counterions interact with all other particles via the

repulsive part of the LJ potential, i. e. besides the charge, they also have a finite

excluded volume. An important parameter of a polyelectrolyte is its degree of

charging, α. It is the fraction of monomer units which are charged. In our sim-

ulations charged units are uniformly distributed along the polymer chain, i. e. , if

α = 1/n, then every n-th monomer unit is charged. A special case is a weak poly-

electrolyte, i. e. a polyelectrolyte which contains charged groups whose degree of

charging may change in time upon dissociation/association. In such a case we only

set the average overall degree of charging and the actual distribution of charges

along the polymer backbone is the output of the simulation.

Several linear polymers can be joined to form more complex topologies. These

can be random or regular and of several types. In the simulations presented



18 Simulation methods and interaction potentials

here, only two regular topologies appear: star and comb-like polymers. Comb-like

polymers (also called graft polymers) consist of a backbone to which side-chains

(grafts) are attached. If the backbone is only one monomer unit long, we obtain

a star polymer. Because only a limited number of side-chains can fit around the

single monomer unit of the backbone, in our simulations we make this central

monomer unit slightly larger by setting its RHC = 3.0. This corresponds very well

to reality as star polymers are often synthesised using rather bulky initiators or

coated colloidal particles [2].

If a polymer consists of several different types of monomer units, it is called

a copolymer. On the other hand, polyelectrolytes are normally not counted as

copolymers if their monomer units only differ by the presence of charge.
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Fluoresene anisotropy deays from labelled

PE hains

The contents of this chapter are mostly based on the publication „Molecular
dynamics simulation of time-resolved fluorescence anisotropy decays from labelled
polyelectrolyte chainsÿ published in Macromolecules in 2006 [31]. However, it is
not meant to be a mere summary of the already published work. In this text it will
be put in a wider context of formation of intramolecular self-organised structures
and of our later works in this field. This chapter will also serve as an introduction
to pearl-necklace structures in amphiphilic macromolecules which will re-appear
in various systems throughout this work.

Time-resolved fluorescence anisotropy

Before discussing the actual simulations related to the topic of this chapter, we
have to give an introduction to the experimental methods of time-resolved flu-
orescence spectroscopy which is the subject of the simulations described in the
following paragraphs. Here we only provide a brief description. A more pro-
found discussion of fluorescence methods in general can be found in textbooks
such as those by Lakowicz [32, 33]. In context of polymers and their conforma-
tional properties the applications of fluorescence methods are discussed in our
original paper [31] and in the author’s diploma thesis [34] and references therein.

Some molecules, especially aromatic ones, are capable of fluorescence. In this
process, a molecule absorbs a photon which brings it to a higher excited state. One
of the possibilities is that after a certain period of time (typically on the order of
ns) a photon of similar wavelength is emitted by the molecule. The probability
of absorption of the photon depends on the mutual orientation of the polarisation
of the incident photon and the absorption dipole moment of the molecule. The
polarisation of the emission, on the other hand, depends on the orientation of the
emission dipole moment of the molecule at the time of emission. Therefore, if
polarised light is used for excitation of a sample containing fluorescent molecules
(fluorophores), the emitted fluorescence is anisotropic and its anisotropy decays in
time due to the rotational diffusion of the fluorophores. In reality, other processes
also contribute to the decay [32] but this is beyond the scope of our discussion here.
Under certain circumstances they can be neglected which is shortly discussed in
the original paper [31]. If the reorientational dynamics of the fluorescent molecule
(fluorophore) is on a similar time scale as its fluorescence lifetime, the measurement
of the fluorescence anisotropy can be used to monitor its reorientational motion.
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The fluorescence anisotropy is defined by the formula

r(t) =
I‖(t)− I⊥(t)

I‖(t) + 2I⊥(t)
, (12)

where I‖(t) and I⊥(t) are the fluorescence intensities in the direction parallel and
perpendicular to the plane of polarisation of the excitation radiation, respectively.
I‖(t) + 2I⊥(t) is the total fluorescence intensity. There are several theoretical
models which describe the fluorescence anisotropy decays of molecules of various
complex shapes. An overview of the models is provided in the author’s diploma
thesis [34] and more detailed information can be found in the book of Lakowicz [32].
Here we only mention that what many models have in common is that the decay
can be expressed as a sum of exponential terms

r(t) =
∑

i

Ai exp(−t/τi) . (13)

Here τi are individual reorientational relaxation times andAi are the corresponding
pre-exponential factors. In different models, different physical meaning has been
assigned to the individual τi and Ai values. In practise, however, it is difficult to
obtain from experimental data more than two values of the relaxation times with
reasonable accuracy. From this point of view, assigning precise physical meaning
to the individual relaxation time may be a tricky business. Instead, we can define
mean relaxation time τmean as a weighed average of the individual relaxation times

τmean =

∑

i Aiτi
∑

i Ai
=
1

r(0)

∫ ∞

0

r(t)dt . (14)

An obvious advantage is that the mean relaxation time can be computed by nu-
merically integrating the decay curve and thus the ambiguous individual relaxation
times and pre-exponential factors can be completely avoided. Comparing the mean
relaxation times in the system under different conditions provides the essential in-
formation if the reorientational dynamics is slower or faster and yet does not tempt
to try to extract more detail from the data than can really be obtained.

It was shown by Szabo [35] that for a fluorophore with a single excited state with
orientation-independent radiative rate constant and equilibrium initial orientation
distribution the fluorescence anisotropy decay can be calculated from equation:

r(t) =
2
5
〈P2[~µA(0) · ~µE(t)]〉 , (15)
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where P2 is the second-order Legendre polynomial, defined by P2(x) = 1

2
(3x2−1).

Symbols ~µA(0) and ~µE(t) refer to the orientation of the absorption dipole mo-
ment at the time of absorption and of the emission dipole moment at the time
of emission, respectively. The angular brackets denote ensemble average. This
largely simplifies the matters for the simulation because instead of simulating the
complicated process of fluorescence which is of quantum origin, to calculate the
fluorescence anisotropy decay it is sufficient to calculate the orientational autocor-
relation function of the molecule. All other factors such as fluorescence character-
istics, mutual orientation of the emission and absorption dipole moments within
the molecule, etc. enter equation (15) only as constant prefactors. Therefore they
do not interfere with the calculation of the relaxation times and hence can be
omitted without loss of generality.

If a fluorophore is chemically attached to a polymer molecule, the motion of
the fluorophore will be hindered by the presence of the polymer it is bound to.
More specifically, the motion of the fluorophore will be determined by its microen-
vironment, i. e. by the molecules in its vicinity. In the case of a polymer, one can
intuitively distinguish two extreme cases of such behaviour. The first one occurs
when the solvent is poor for the polymer which then adopts a compact globular
conformation. In such case, the microenvironment of the fluorophore attached to
the polymer strongly hinders its motion and slows down its reorientational dy-
namics. This, in turn, results in a slow decay of the fluorescence anisotropy, i. e.
long reorientational relaxation time of the fluorophore. On the other hand, if the
solvent is good for the polymer, it adopts a loose Gaussian-coil conformation which
provides much smaller hindrance for the motion of the fluorophore. In such case
the fluorescence anisotropy decay is fast, i. e. the relaxation time is short. It is also
important that the fluorescence anisotropy decay only gives us information about
the local conformation in the vicinity of the fluorescent label.

The measurement of fluorescence anisotropy decays described above provides
only indirect information about the conformational changes of the polymer.
Though it may be anticipated that the above description is correct, it remains
a hypothesis if unsupported by some independent argument. One way to pro-
vide an independent supporting evidence is to perform a molecular simulation of
such system and to analyse the data in the same way as it is done in the exper-
iment. One such experimental study has been performed in our lab by Bednář
et al. [36] about 20 years ago. They were following the change of behaviour of
poly(methacrylic acid) (PMA) upon change in pH. Since PMA is a weak poly-
acid, it was expected that it would expand upon a decrease in pH, as its degree of
charging would increase. The authors observed this change via the measurement
of fluorescence anisotropy decays from a fluorescent label attached to the polymer
chain. By that time the interpretation of the indirect fluorescence anisotropy ex-
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periments was based mainly on the authors’ intuition. Supporting evidence for
their interpretation came in 2006 in our publication [31].

Results and discussion

For the purpose of this study, we have simulated a series of linear polyelectrolytes
with a pendant fluorescent label attached as a short side-chain. They structure
of a section of such polymer and the attached fluorescent label is schematically
shown in Figure 2. A series of polymers in a range of solvent quality conditions
and degrees of charging was simulated. The parameters of the simulated polymers
are listed in Table 1.

−

−

−
Fluorophore

+
+

+

Figure 2. Schematic illustration of the polymer model used for the simulation

of fluorescence anisotropy decays.

Chain length Degree of charging ǫLJ (solvent quality)

200 0.06–0.5 1.0
200 0.06–0.5 1.3
200 0.06–0.5 1.6
200 0.06–0.5 2.0

Table 1. Parameters of the simulated polymers

The simulation results have shown that polyelectrolytes in poor solvents form
pearl-necklace conformations in a certain range of conditions. This finding was
not really new as it had been predicted by theory [8] and confirmed by computer
simulations [9, 10] before our data were published. Nevertheless, for ease of refer-
ence we show here a series of simulation snapshots which illustrate the observed
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behaviour. Figure 3 shows typical conformation of the polyelectrolyte in rather
poor solvent (ǫLJ = 1.3) for several different degrees of dissociation, α. Starting
from the left at α = 0.06 the polymer adopts globular conformation. At a slightly
higher value of α = 0.20 the polymer globule is deformed and at even higher degree
of charging, α = 0.25 it splits into two pearls. Finally, when α exceeds a certain
threshold, the pearls disappear as shown for α = 0.33. This observation is in line
with theoretical predictions [8] as well as earlier simulations by other authors [9,
10] which also contain a more detailed analysis of the structures and conditions
under which they are formed.

α=0.06 α=0.20 α=0.25 α=0.33

Figure 3. Simulation snapshots of polyelectrolyte in poor solvent (ǫLJ = 1.3)
at various degrees of charging, α as indicated in the figure.

What was new in our work in contrast with the earlier theoretical and simulation
studies, was the comparison of the simulation results with the earlier experimen-
tal data on measurements of fluorescence anisotropy decays from labelled PMA
chains [36]. In particular, we have confirmed the anticipated relation between
the mean orientational relaxation time of the fluorophore attached to the poly-
mer, τmean, and the conformational changes due to the varying degree of charging.
To establish this relation, in Figure 4 we show the comparison of the simulated
and experimentally observed variation of τmean with the degree of charging of the
polymer.

Because we were using a generic polymer model with a number of adjustable
parameters, we could not expect more than a semi-quantitative agreement. In the
experimental study which was used for comparison [36] the dependence of the re-
orientational relaxation times on pH was measured for samples of poly(methacrylic
acid). To compare the data it was necessary to convert the pH-scale to the degree
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simulation

experiment

Degree of charging of the polymer

Figure 4. Comparison of the simulated mean relaxation times and experi-

mental data as a function of the degree of dissociation of the polyelectrolyte.

The experimental data on poly(methacrylic acid) are taken from Ref. [31].

of dissociation. For this purpose we used the measured values of the effective acid-
ity constant of PMA on pH [37]. For the comparison, we chose the polymer with
ǫLJ = 1.3 because its conformational transition was in the same range of degrees
of dissociation.

The conversion of the reduced time units from the simulation into the real
units of ns was done using the mapping when one monomer unit of the generic
model would correspond to one unit of the real polymer. However, the mapping
is not uniquely defined and this choice is arbitrary to a certain extent. Hence, the
conversion is correct up to an unknown multiplicative pre-factor (presumably of
the order of 1.0–10.0). Considering the above-mentioned caveats, we can argue
that on a semi-quantitative level the two curves in Figure 4 agree. Therefore, the
simulations confirm the intuitively expected relation between the conformational
changes of the polymer and the reorientational relaxation times of the fluorescent
label attached to it.

As it often happens in research, apart from providing answers to some old unre-
solved problems, our simulation study of fluorescence anisotropy decays has open
a series of new questions. An important caveat of the whole comparison was the
fact that we used a polyelectrolyte with a pre-defined degree of dissociation and
uniform distribution of charged units along the polymer chain while in the real
experiment, PMA is a weak polyelectrolyte whose degree of dissociation is deter-
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mined by the solution pH. From some theoretical works it was known that certain
ranges of degree of dissociation might be forbidden for weak polyelectrolytes in
poor solvents [38]. Even though other simulation studies [39–42] suggested that
this may not always be the case, it was clear that it would be desirable to simulate
a weak polyelectrolyte rather than a strong one. By the time of the publication
of our simulations of the anisotropy decays [31], weak polyelectrolytes could be
simulated using the semi-grandcanonical Monte Carlo (GCMC) techniques but no
appropriate model had been developed for the MD simulation method. In the
following years we devoted a significant part of our efforts to development of such
models. This development is still in progress and some of its results are the subject
of the last chapter of this dissertation.
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Comb opolymers in seletive solvents

This chapter is based on our two publications concerning comb-like copolymers.
Both were motivated by the scaling analysis of of intramolecular conformational
transitions in comb-like copolymers in selective solvents which was published by
Borisov and Zhulina in 2005 [11].

Scaling theory of comb copolymers in selective solvents

We begin with a brief summary of the main qualitative conclusions of the above-
mentioned scaling theory with which we will compare the simulations. Borisov and
Zhulina have considered a neutral comb-like copolymer in selective solvent which
is poor for the backbone and at the same time good for the side-chains. Such
polymer is schematically depicted in Figure 5.

Nb

Graft spacing,

Backbone Length,
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Figure 5. Schematic illustration of the architecture comb-like copolymer.

Blue – backbone, red – side-chains.

Because the solvent is poor for the backbone, the backbone has tendency to col-
lapse and form a compact globular structure. On the other hand, the steric repul-
sion of the side-chains counteracts the collapse. Equilibrium is attained when the
two forces exactly counterbalance each other. This situation is in certain aspects
analogous to the formation of pearl-necklace structures in linear polyelectrolytes
which was described in the previous chapter. The important difference, however,
is that the force which brings about the expansion is of different origin and hence
controlled by other parameters than in the case of the polyelectrolytes. In other
aspects, the behaviour of this system is analogous to the block-copolymer mi-
celles, where the core composed of poorly soluble blocks is stabilised by the steric
repulsion within the corona formed by the well soluble blocks.

If the backbone is in a theta-solvent, the comb copolymer adopts a bottlebrush



28 Comb copolymers in selective solvents

structure. The steric repulsion among the side-chains causes that the bottlebrush
has an induced persistence length which is larger than that of the backbone alone.
This had already been found by Birshtein et al. [43].

For the backbone in poor solvent the scaling theory distinguishes two main
regimes according to the value of the grafting density parameter

ζ =
n3/5v1/5

m1/2
, (16)

where symbols n and m refer to the length of the side-chains and spacing between
them, respectively, as illustrated in Figure 5. Parameter v is the excluded-volume
of the monomer unit, (the second virial coefficient normalised by the cube of the
monomer unit length) and its value is of the order of unity, v ≈ 1.

The densely grafted regime is realised when ζ ≫ 1. Since v ≈ 1, this condition is
usually fulfilled when n ≫ m. The theory anticipated that in the densely grafted
regime the backbone of the comb copolymer forms a pearl-necklace structure.
Because the pearls are analogous to block copolymer micelles, they are also referred
to as intramolecular micelles with the corona formed by the side-chains. The size
of the micelles is controlled by the grafting density as well as by the quality of
solvent for the backbone (backbone hydrophobicity). According to the original
version of the theory, the pearls appear discontinuously after a certain threshold
in the solvent quality is reached. For a polymer of a given architecture, the size of
the pearls then increases with decreasing solvent quality for the backbone. Since
the total number of monomer units in the backbone, NB, is fixed, an increase in
the size of the pearls implies a decrease in their number. This continues until the
whole molecule ends up in a single intramolecular micelle.

The regime when ζ ≪ 1 is called sparsely grafted. In analogy with the previous
case, because v ≈ 1, the sparsely grafted regime is usually realised when m ≥ n.
Upon a decrease in solvent quality for the backbone, polymer in this regime was
also anticipated to go through a series of pearl-necklace conformations similar
to the previous case. However, the final state is not a spherical micelle but a
cylindrical one.

Apart from the two regimes with intramolecular micelles which were described
in the previous paragraphs, the scaling theory predicted also regimes where phase
separation may occur or where lamellar structures are formed. We will not discuss
them in detail here because due to technical limitations it was not possible to
study them using our simulation techniques. If the reader is interested in other
regimes, we refer him to the original paper by Borisov and Zhulina [11].



Simulations of neutral combs in selective solvents 29

Simulations of neutral combs in selective solvents

This part of the chapter deals with neutral copolymers in selective solvents.
The results presented here are largely contained in our publication in Macro-
molecules [12] which was produced in cooperation with Oleg Borisov and Ekaterina
Zhulina. This paper consists of two parts. The MD simulations were performed bu
ourselves and the augmented scaling theory was developed by our collaborators.
The interpretation of the results is the product of collaborative effort of the whole
team.

One might want to ask the question why it was useful to perform extensive
simulations if the matter had already been treated by a theoretical model. It is
hidden in the way this theoretical model was developed: it compared free energies
of anticipated structures and then found out which corresponds to the global
minimum of free energy. However, there is no procedure other than simulations
which could be used to obtain these structures from first principles. Instead, in the
course of development of the theory one has to rely on intuition or analogy with
known systems. Therefore it is desirable to verify that the predicted structures are
the correct ones and one of the ways to do so is to perform molecular simulations.

backbone side-chain side-chain backbone
length length spacing hydrophobicity
NB n m ǫLJ

320 40 4 0.3–2.0
320 40 8 0.3–1.4

320 5 4 0.6–1.5
320 5 6 0.6–1.5
320 5 8 0.6–1.5
500 5 6 1.2

Table 2. Architectures of simulated copolymers. The backbone length, NB,

is the same for all systems except one. Two values of side-chain length, n,

are used and for each of them a series of spacings, m. The horizontal line

separates the systems with high (top) and low (bottom) grafting densities.

The polymers we simulated consisted of a backbone for which the solvent was
poor. Side-chains for which the solvent was athermal were attached to the back-
bone. We simulated two series of polymers – densely and sparsely grafted. In each
of these regimes, we simulated a few polymers with different grafting densities and
each of these polymers was simulated in a range of solvent qualities for the back-
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bone, starting from close-to-theta and ending up in a very poor solvent. Because
the grafting density parameter is a function of both the side-chain length, n, and
spacing, m, we varied the grafting density in such a way that for each regime we
chose a fixed length of the side-chains and then we only varied the spacing between
them. The parameters of the simulated polymers are listed in Table 2.

The simulation results qualitatively confirmed the predictions of the scaling
theory concerning the types of structures which are formed in the two regimes and
the trends in the number and size of intramolecular micelles. We did not attempt to
verify the scaling exponents as this would require to perform a series of simulations
where the variables comprising the scaling parameters would differ by at least
one order of magnitude. This would require too large polymers and consequently
unacceptably long simulation times. Even some of our current simulations required
about one month of computer time.

ε=0.6 ε=0.8 ε=0.9 ε=1.1

Figure 6. Simulation snapshots of the copolymers with high grafting density

with the graft spacing m = 8. For other parameters see Table 2. For better
visibility, the side-chains are only rendered as thin lines and magnification

slightly increases from left to right.

To illustrate the qualitative agreement with the theory, we show two series of
simulation snapshots. In Figure 6 we show the simulation snapshots of a polymer
with high grafting density (m = 8) for several values of hydrophobicity of the
backbone as indicated in the figure. For ǫLJ = 0.6 (relatively close to theta state)
no significant formation of pearls is observed. Upon an increase in ǫLJ we can
observe formation of three and later two pearls and finally at ǫLJ ≥ 1.1 the system
ends up in a single spherical intramolecular micelle. In Figure 7 a similar series of
snapshots is shown for a sparsely grafted polymer (m = 6). Again we can observe
a transition from a relatively stretched conformation with no pearls through pearl-
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ε=1.0 ε=1.5ε=0.9ε=0.6 ε=0.8

Figure 7. Simulation snapshots of the copolymers with low grafting density

with the graft spacing m = 6. For other parameters see Table 2. For better
visibility, the side-chains are only rendered as thin lines and magnification

slightly increases from left to right.

necklace up to a cylindrical micelle and finally to a spherical micelle. Apart from
the very last snapshot, everything else is in agreement with the predictions of the
theory.

A more quantitative view of the conformational changes can be obtained by ex-
plicitly counting the number of pearls and calculating the corresponding averages.
The counting was performed using the algorithm developed by Limbach et al. [9].
Figure 8 shows the number of pearls in copolymers with high grafting density as
a function of hydrophobicity of the backbone for two different values of spacing
between the grafts. In both cases we can observe first a gradual growth of the
number of pearls with increasing ǫLJ. After the number of pearls passes through a
maximum, it decreases again and levels off at a constant value. For m = 8 it levels
off at one pearl while for m = 4 it levels off at two pearls. It can be noticed that
the plot of the number of pearls contains certain features which were not predicted
by the original version of the theory. Yet these features have a clear explanation
and from the explanation it can also be understood why the original theory failed
to predict them.

We begin with the gradual increase in the number of pearls in contrast with the
discontinuous increase predicted by the theory. The problem is that the scaling
theory predicted only the global free energy minimum for the limit of infinitely long
chain. In other words, this approach completely neglected fluctuations which may
be very important in finite-sized systems, especially around the transition point.
And indeed in our systems, especially on the left from maximum of the number
of pearls, fluctuations play an important role. This can be seen either from the
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Figure 8. Number of pearls as a function of solvent quality for the backbone

for the polymers with high grafting density.

size of the error bars which are much larger on the left from the maximum than
on the right, or from a simulation movie which shows that pearls appear and
disappear repeatedly during the simulation run [44]. It indicates that the free
energy landscape has several minima of comparable depth which are separated by
low barriers. Upon an increase in ǫLJ, the relative depth of the minima increases,
enthalpy wins over entropy and pearls become stable which is manifested by a
systematic decrease of the size of the error bars on the right from the maximum
of the curves in Figure 8.

Another issue is the very poor solvent limit in which some systems end up in
a state with two pearls rather than one pearl which was predicted by the theory.
It can be understood by an analogy with surfactant or block copolymer micelles.
Their aggregation number grows until a certain threshold is reached, beyond which
the hydrophobic chains are not able to fill the core effectively. This maximum size
of the micelle is, for a fixed length of the hydrophilic block, given by the length of
the hydrophobic one. The same is observed in the case of intramolecular micelles
which grow until a certain maximum size which is primarily determined by the
length of the spacer between the side-chains. If the whole backbone is smaller than
or comparable to this maximum pearl size then in very poor solvent the polymer
forms a single intramolecular micelle. On the other hand, if the backbone is much
larger than the maximum pearl size, then in the poor solvent the polymer ends up
in a pearl-necklace structure composed of pearls which have the maximum size. It
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is noteworthy that in principle, the maximum pearl size could have been predicted
by the original theory. The main reason why it was not predicted was that it was
not anticipated before it was observed in simulations.

m = 8
m = 6
m = 4

Backbone hydropbobicity, ǫLJ
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Figure 9. Number of pearls as a function of solvent quality for the backbone

for the polymers with low grafting density.

A similar problem with the maximum size appears in a slightly different perspec-
tive in the case of copolymers with low grafting density. In this case the original
theory predicted the formation of cylindrical micelles as the limiting state under
very poor solvent conditions for the backbone. From the plot of the number of
pearls in Figure 9 we can see that in this case all systems end up in a single in-
tramolecular aggregate. To analyse the shape of the aggregate, we can determine
its asphericity [45] which has the property that it is zero for a spherical object and
attains positive values for other shapes which deviate from the spherical symme-
try. From the plot of the asphericities of the backbones, Ad, shown in Figure 10
we can see that some of them become eventually spherical (Ad = 0) at high ǫLJ
while those with short spacers between the side-chains retain roughly the same as-
phericity for all values of ǫLJ. More detailed discussion of the asphericities can be
found in the original paper [12]. Here we only summarise the conclusions. While
in the case of the pearl-necklace we found the maximum pearl size, in the case of
cylindrical micelles we analogically find the maximum radius of the cylinder. If the
backbone is large enough so that the length of the cylinder is significantly larger
than its maximum radius, cylindrical micelles are formed. On the other hand, if



34 Comb copolymers in selective solvents

m = 8
m = 6
m = 4

Backbone hydrophobicity, ǫLJ

A
sp

h
er

ic
it
y,

A
d

1.61.41.210.80.6

0.2

0.15

0.1

0.05

0

Figure 10. Asphericity of conformation as a function of solvent quality for

the backbone for the polymers with low grafting density.

the backbone is not large enough and the length of the cylinder is comparable to
its width spherical micelles are formed.

The results of MD simulations of comb copolymers in selective solvents and the
augmented scaling theory can be summarised in a quasi phase diagram shown
in Figure 11. In contrast to the phase diagram published in the original paper by
Borisov and Zhulina [11] it does not contain regions which were not explored in our
simulations but within the explored part of the conformational space it contains
certain new features. In the poor solvent region close to the theta conditions for
the backbone there is a region of pearl nucleation. In this region fluctuations play
an important role and the polymer conformation cannot be represented by any
typical shape. It is noteworthy that the boundaries of the nucleation zone are not
sharp but diffuse. Further in the poor solvent there comes a region of stable pearl-
necklace conformations (intramolecular micelles). Finally, in very poor solvents
the densely grafted copolymers end up in a chain of intramolecular micelles of
maximum pearl size while the sparsely grafted copolymers end up in a single
cylindrical micelle. If the backbone of the polymer is not long enough then the
limiting state is a single spherical micelle.

Comb polyelectrolytes in selective solvents

The results presented in this section have been published in 2007 in Journal
of Physical Chemistry [13]. The simulation study of comb-like polyelectrolytes
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Figure 11. Schematic phase diagram showing different conformations of

comb copolymers in selective solvents. The horizontal line ζ = 1 separates
the polymers with high (ζ > 1) and low (ζ < 1) grafting density. The spherical
structures in the very poor solvent regime are attained only for short back-

bones. The grey region with diffuse boundaries is dominated by fluctuations.

In this region the polymer cannot be represented by a typical well-defined

structure.

was motivated by the publication of the theoretical paper on the behaviour of
neutral comb copolymers by Borisov and Zhulina [11]. We anticipated that comb-
like polyelectrolytes could exhibit behaviour similar to the one predicted for the
neutral polymers, namely the formation of the pearl-necklace structures in the
backbone. Historically these simulations were performed and published before
we started more intensive cooperation with the Russian theoreticians. Besides
summarising the simulation results which are much alike the ones from the previ-
ous section, we will point out some specific features which are more pronounced
in the polyelectrolyte case because of the long-range nature of the electrostatic
interactions.

The underlying mechanism of the formation of the intramolecular structures in
the comb-like polyelectrolytes is similar to the case of the neutral combs. However,
the principal difference is that in the polyelectrolyte case the repulsion among the
side-chains is of electrostatic origin. Therefore, apart from structural parameters,
the strength of the electrostatic interaction is important. It is determined by the
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degree of charging of the polyelectrolyte side-chains, the Bjerrum length and the
ionic strength of the solution.

The polymers we simulated in this study consist of a hydrophobic backbone
to which polyelectrolyte side-chains are attached. For the interaction among the
monomer units of the backbone we set ǫLJ = 2.0 which corresponds to very poor
solvent. For the side-chain – side-chain interaction we set ǫLJ = 0.4 which is close
to theta solvent when the side-chains are neutral. However, when they are charged,
they exhibit strong stretching. For the backbone – side-chain interaction we set
ǫLJ = 0.89 which is the geometric mean of the previous two.

number of side-chain backbone
identification side-chains length length

10× 60 10 60 240
30× 20 30 20 240
60× 10 60 10 240

Table 3. Architectures of simulated comb-like polyelectrolytes. The backbone

length, NB, is the same for all systems. The values of side-chain length, n,

and their length are chosen so that the total number of monomer units in the

side-chains is constant.

We have systematically varied the number and length of the side-chains so that
the total number of monomer units in the side-chains was kept constant. Each of
these polymers was simulated in a range of degrees of dissociation 0.125 – 0.50. The
structural parameters of the simulated comb-like polyelectrolytes are summarised
in Table 3. In further text we will refer to different polymer architectures as (num-
ber of side-chains× side-chain length) as indicated in the first column of Table 3.
We did not employ the same strategy as in the case of the neutral combs because
in the polyelectrolyte case the mere grafting density is not the key control pa-
rameter. One could possibly define some effective grafting density which would
include the degree of charging within a theoretical framework for the description
of the comb-like polyelectrolytes, however, at the time of writing this thesis, no
such theory has been formulated.

To envision the pearl-necklace structure on the backbone of the polymers, in our
study of comb-like polyelectrolytes we used the bond angles between consecutive
bonds along the backbone as the variable for local conformational analysis. We
define the average bond angle cosine, cos(θi), as the normalised scalar product of
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Figure 12. Schematic illustration of the typical values of the bond angles

for various local conformations. On the left, a stretched part of the chain is

depicted. In such conformation, the bond angle is restricted to small values

as indicated in the scheme below. In the middle, a random conformation is

shown where the bond angle can attain almost any value. On the right, a

loop in the chain is shown. In such case the bond angle attains preferentially

values larger than π/2.

consecutive bond vectors
〈cos(θi)〉 = 〈~ri · ~ri+1〉 , (17)

where ~ri is the bond vector between the i-th and (i + 1)-st monomer unit. Both
vectors are normalised to unit length. The angular brackets denote averaging over
all polymer conformations. For a part of the polymer chain which is stretched,
the bond angle θ is restricted to values close to zero, as indicated in Figure 12.
Consequently, the value of 〈cos(θi)〉 is close to 1.0. On the other hand, in a
collapsed domain, the bond angle with equal probability attains all values except
the ones close to π due to the excluded volume, resulting in 〈cos(θi)〉 ≈ 0. In an
extreme case when the chain loops back, the angle θ mostly attains values larger
than π/2 which results in negative values of 〈cos(θi)〉. All these situations are
schematically shown in Figure 12.

Plots of the average bond angle cosines are shown in Figure 13 for three different
polymer architectures and degrees of charging of the side-chains. The plots for the
10×60 architecture contain only values close to zero and are otherwise featureless
which indicates that the backbone contains one single domain. This is in agreement
with the corresponding simulation snapshots presented in Figure 14 which show
a micelle-like structure for the 10 × 60 system at all degrees of charging. For the
polymer with more grafts of shorter length, 30 × 20, the plots for higher degrees
of charging, α ≥ 0.33, have a peak in the middle which indicates that the central
part of the backbone is strongly stretched while the ends are collapses into pearls.
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Figure 13. Plots of the average cosine of the bond angles, 〈cos(θi)〉, as a
function of position in the backbone.

Again, this is in agreement with the corresponding simulation snapshots shown
in Figure 14. The situation is very similar in the 60 × 10 system shown in the
last column of both above-mentioned figures but the stretching of the central part
is even more pronounced. At α = 0.33 we can also observe a local minimum in
the middle. This is a signature of a third pearl which is smaller than the two at
the ends. The snapshots in Figure 14 once again confirm the interpretation of the
plots of the bond angles.

The plots of the bond angle cosines contain more information than discussed
above. They also show that the internal structure of the pearls is not random but
organised. To envision this organisation, in Figure 15 we show a magnification of
parts of selected plots from Figure 13. We can see that what might have seemed
as noise in Figure 13 is actually a fine structure of the plot with negative spikes
at regular intervals. The positions of the spikes correspond to the grafting points
on the backbone where side-chains are attached. The negative values of 〈cos(θi)〉
mean that at the grafting points bond angles larger than π/2 prevail, i. e. the chain
forms a loop. It can be explained when we realise that the grafting point is being
pulled out of the pearl by the polyelectrolyte side-chain. Therefore, the grafting
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Figure 14. Simulation snapshots of comb-like polyelectrolytes. For better

visibility, magnification of different snapshots slightly increases from left to

right and from bottom to top. Backbone: blue, Side-chains: red-charged,

grey-uncharged, Counterions: orange.

points are preferentially localised at the surface of the pearls while the interior is
preferentially filled by the intermediate segments of the backbone (those between
the grafting points). Knowing that the maximum size of the pearl is approximately
one half of the length of the spacer, we may argue that as the radius of the
pearl approaches this value, its internal structure becomes increasingly organised.
The stretching and alignment of the spacers increases as it becomes more and
more difficult to satisfy the constraint that the branch points want to be close to
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Figure 15. Magnification of parts of selected plots from Figure 13. Fine

structure with negative spikes at regular intervals is visible.

the surface and the intermediate segments have to fill the interior. This induced
alignment of the spacers might in a real polymer induce crystallisation within
the collapsed domains. It would be very interesting to explore this effect but
unfortunately it is beyond the abilities of the polymer model we used.

It should be noted that in principle similar plots can be obtained for the neu-
tral graft copolymers and more generally for any polymers forming pearl-necklace
structures. However, only in the case of the comb-like polyelectrolytes they have
well-defined structure and even observable fine structure. Similar plots for the
neutral combs have been published in our paper [12] but the desired features are
almost buried in the noise. To reduce the noise one would have to perform ex-
tremely long simulations lasting a couple of months on contemporary computers.
The reason why the plots of the neutral polymers are much more noisy is the
different nature and range of the repulsive interaction among the side-chains. The
steric repulsion in the corona of the neutral combs has got a range on the order
of the radius of gyration of the side-chains which means it is a local interaction.
On the other hand, the electrostatic repulsion in the corona of the comb-like poly-
electrolyte is long-ranged. Therefore, every pair of equally charged particles in the
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corona contributes to the repulsive interaction which keeps the spacers strongly
stretched and the pearls in a fixed position.

To conclude the chapter on comb-like polymers we can say that both the neutral
and polyelectrolyte combs can form self-organised intramolecular structures of the
pearl-necklace type. In both cases, the type of the structure formed is determined
by the solvent quality for the backbone and by the architectural parameters of
the polymer, such as the length of the side-chains and the spacing between them.
In addition to the architectural parameters the structure of the polyelectrolytes is
also controlled by the degree of charging of the side-chains. The long-range nature
of the electrostatic repulsion stabilises the pearl necklace structure and makes it
better-defined than in the neutral combs.





43

Star polyeletrolytes in poor solvents

Polyelectrolyte stars are interesting systems which at a first glance might seem
rather simple for theoretical description. The ease of describing the star is facili-
tated by its intrinsic spherical symmetry which enables to reduce the complicated
three dimensional problem to quasi one-dimensional. This advantage has been
used by many authors and PE stars in good solvents have been successfully mod-
elled using mean-field models. Scaling approaches [46, 47] as well as numerical
SCF modelling [48] and simulations [49] have been employed by several authors.
They have shown that a PE star in good solvent has its arms stretched which is
a consequence of the combination of the electrostatic repulsion among the arms
of the star, osmotic pressure of the counterions which are being held inside the
star volume and the steric repulsion of the arms. In the polyelectrolyte regime
the dominant contribution comes from the electrostatic repulsion. In the so-called
osmotic star the large number of counterions effectively screen the electrostatic re-
pulsion and their osmotic becomes the dominant interaction. The steric repulsion
among the arms of the star becomes dominant at very large number of arms. If
a salt is present in the solution, it screens the electrostatics and the star size is
smaller in comparison with the corresponding salt-free case.

Problems arise when one would seek a description of a PE star in a poor solvent.
To make a successful theoretical description of such system, one has to anticipate
what kind of structures will be formed. While in the good solvent case the spherical
geometry served for key simplifications, in the poor solvent case it acts as an
additional complication, as we will illustrate in the following paragraphs.

Theoretical predictions for PE stars in poor solvents

In the most naive approach one might anticipate that if a star PE is in poor
solvent, it collapses uniformly, preserving its spherical symmetry. Clearly, it is very
improbable that this hypothesis could be correct because there are several other
ways to lower the free energy of the star. For example, individual arms of the star
could respond similarly to the linear polyelectrolyte and form structures of the
pearl-necklace type. Besides other factors known from the linear polyelectrolyte
case, in the star geometry, the pearl size would also depend on the distance from
the centre of the star.

However, the arms might also prefer to stick together due to the hydrophobic
interaction and form bundles. The sticking is also favoured by counterions which
gain some entropy in this way. Again, the degree of sticking might probably depend
on the distance from the centre of the star which brings additional complications.
The bundling effects arise due to correlations between the location of the counte-
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Figure 16. Illustration of several hypothetical intermediate structures which

might occur in a collapsing PE star.

rions and the arms of the star and to make a good theoretical description of such
process, one has to abandon the mean-field approximation. The arm bundling
mechanism has been supported by the simulations and theoretical analysis of a
similar system [8]. However, both the scaling arguments and the simulations were
obtained for a model of a PE star where arms were attached to a rather large
hard-sphere colloidal particle.

Another possible mechanism of the collapse of PE stars is that some arms re-
main stretched while others collapse close to the centre of the star. Though it
might seem somewhat counter-intuitive, again this picture can be supported by
scaling arguments as well as simulations made for a similar system [8]. Analo-
gous arguments have been applied to claim that the collapse of a planar PE brush
proceeds in the same way.

The different possible mechanisms of the collapse of the star upon a decrease in
solvent quality are schematically illustrated in Figure 16. The two limiting regimes
of the osmotic star and the collapsed star are well known and understood but the
intermediate stages have not been explored yet. Though supported by physical
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arguments, most anticipated structures mentioned above are a guess based on a
combination of analogy and intuition. As we have demonstrated in the previous
chapter, even if the guess is successful, there is always a risk that the choice of
the anticipated structures is not exhaustive and there is a chance that the proper
structure is not considered at all. It should be noted that there are no tools to
obtain these structures from first principles, except for molecular simulations. New
theoretical treatment of the collapse of a PE star in poor solvent is being developed
by O.V.Borisov and collaborators. The simulation results presented here should
serve as supporting information for the initial assumptions of the theory concerning
the types of structures formed.

MD simulations of PE stars in poor solvents

The results described in this chapter have not been published yet. They are
in the state of manuscript in preparation which we expect to submit in the fall
of 2009. At the time of writing this thesis, the project has not been completely
closed. Nevertheless, we find it suitable to include at least some of the results
which nicely fit into the context of the rest of the thesis.

number arm degree of
identification of arms length charging range of ǫLJ

5× 200 5 200 0.250 0.4 – 1.4
5× 400 5 400 0.250 0.4 – 1.2
10× 200 10 200 0.250 0.4 – 1.4
20× 100 20 100 0.250 0.4 – 1.2

Table 4. Parameters of the simulated star polyelectrolytes.

In Table 4 we show the different types of PE stars which we have simulated.
Each of them we simulated in a range of solvent qualities starting close to θ solvent
and going up to a very poor solvent. The most important structural parameters
are the number of arms in the star, their length and the degree of charging. In
combination with the solvent quality, ǫLJ, they determine the conformation of the
star. We have chosen the parameter values so that we can observe trends induced
by changes in some of them while others remain fixed. At the time of writing we
have been still running simulations of some systems which are not included in this
text. Similarly to the comb PE case we will refer to different stars by (number of
arms× arm length) as indicated in the first column of Table 4.
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Before discussing the results we would like to comment on the major technical
limitation of the simulations of PE stars in poor solvents. Because the simulated
polymers are rather large (thousand or more monomer units) we found it difficult
to equilibrate them when they were close to the collapsed state. Specifically the
equilibration was not successful when one or more arms collapsed to the centre of
the polymer. In such cases the obtained conformation was largely dependent on
the initial one which means that we hit a metastable state and the system was
unable to find the global free energy minimum within the time of the simulation.
A similar situation occurred when thick bundles were formed. For selected systems
we performed a consistency check by starting the simulation with several signif-
icantly different initial conformations. We discarded those systems in which the
resultant equilibrated conformation depended on the initial one. In such case it
was clear that we were sampling a metastable state rather than the global free en-
ergy minimum. For each of the simulated polymers we were able to obtain reliable
results up to a certain maximum value of ǫLJ. Simulation results for values of ǫLJ
higher than this maximum were discarded as dubious even though they sometimes
followed the expected trends.

ε=0.8 ε=1.1 ε=1.3

Figure 17. Simulation snapshots of stars with 5 arms, each 200 segments

long (5×200) for selected values of ǫLJ. Formation of pearl-necklace structures
on individual arms with increasing ǫLJ can be observed. For better visibility,

magnification slightly increases from left to right.

In Figure 17 we show simulation snapshots of the (5× 200) stars. They confirm
one of our hypotheses, namely that pearl-necklace structures can be formed on
individual arms of the PE star. In analogy with the linear PEs, the pearl size
grows with decreasing solvent quality (increasing ǫLJ). However, in addition to
that, it also depends on the distance from the centre of the star. For ǫLJ = 1.1
pearls are only formed at arm ends while for ǫLJ = 1.3 additional pearls are
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formed on the intermediate segments of the arms, closer to the centre. The pearls
closer to the centre are much smaller than the terminal ones. Deeper in the poor
solvent regime we observed one or more arms collapsing to the centre of the star
while others still remained stretched. Even though this seems to confirm another
anticipated type of the structure and an interesting crossover from one regime to
another, the results for higher ǫLJ already belong to the dubious range.

ε=0.9 ε=1.1 ε=1.2

ε=0.8 ε=1.0 ε=1.2
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Figure 18. Simulation snapshots of stars with 10 arms, each 200 segments

long (10 × 200) and with 20 arms, each 100 segments long (20 × 100) for
selected values of ǫLJ. Formation of bundles of arms with increasing ǫLJ can

be observed as well as splitting of the bundles at a certain distance from the

centre. For better visibility, magnification slightly increases from left to right.

In Figure 18 we show simulation snapshots of the (10 × 200) and (20 × 100)
stars. The (20× 100) stars are only rendered using simple lines because they are
so dense that a quasi-3D rendering makes the images messy. In all images we can
observe the formation of pearls at arm ends. We can also observe bundling of
arms. For smaller values of ǫLJ the bundling is only realised close to the centre
and at a certain distance the bundles split, forming Y-shaped structures. It can
be well seen in the (10 × 200) star at ǫLJ = 1.1. The same structural motif
appears in the (20×100) star where one such structure is highlighted at ǫLJ = 1.0.
With increasing value of ǫLJ the typical distance at which the bundles split moves
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towards the outside of the star until the whole length of the arms is consumed
by the bundles as shown for the (20 × 100) star at ǫLJ = 1.2. Similarly to other
types of the stars, at higher values of ǫLJ we observed collapse of some arms to the
centre of the star while others remained stretched and we also observed formation
of thicker bundles. However, the similarity was retained also in the fact that these
results again had to be discarded as dubious.

ε=0.9ε=0.7

Figure 19. Average number of arms in bundles of a given thickness as a

function of the distance from the centre of the star. Data are shown fro the

(20× 100) star for ǫLJ = 0.7 and ǫLJ = 0.9.

To analyse the bundling quantitatively, we have calculated average number of
arms in bundles of particular thickness. By thickness of the bundle we mean the
number of arms it contains. The star was divided into shells of a given width.
Within each shell arms were considered as being in the same bundle if they were
closer than a certain distance. This distance was arbitrarily chosen as 2.5σLJ
which was the cutoff distance of the LJ interaction. The results were found to be
only weakly dependent on the width of the shells and on the distance criterion,
as long as they were chosen within a reasonable range. In Figure 19 we show the
plots of the average number of arms in bundles of a given thickness as a function
of the distance from the centre of the star for the (20× 100) star for two selected
values of ǫLJ = 0.7 and ǫLJ = 0.9. In the plot on the left (ǫLJ = 0.7) the peak
for the two-arm bundles is located much closer to the origin than the same peak
in the plot on the right (ǫLJ = 0.9). The same holds for the other peaks which
correspond to thicker bundles. Unfortunately we could not have gone too far in
the poor solvent regime because when thicker bundles were formed further away
from the centre, the stars had a tendency to be entrapped in metastable states.

Even though it was not possible to perform reliable simulations in which thicker
bundles would be observed, we can extrapolate our observations to say that in a
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sufficiently large PE star, the typical thickness of a bundle decreases as a function
of the distance. An idealised picture of a conformation of a PE star might thus
be some kind of dendritic structure. Starting with thick bundles close to the
centre, they gradually split and get thinner with increasing distance from the
central segment, eventually ending up with pearls at the very ends of individual
arms, provided the arms are long enough so that the branching goes up to the last
generation.

Another structure we observed in some of the simulations which were discarded
as dubious are pearls on bundles. Indeed, there is no reason why there should be no
pearls formed on bundles. Since it is known to have lower free energy in comparison
with uniform shapes, pearls on bundles are certainly one of the structures which
should be considered. Unfortunately, exploring the regime of pearls on bundles is
beyond current capabilities of our simulations.

To conclude our excursion into the realm of polyelectrolyte stars we may say
that there is no single regime which would properly describe the behaviour of the
whole star, except for the case of low number of arms with pearl-necklaces on
individual arms. For higher number of arms, based on current simulation data
we propose the formation of bundles, thickness of which decreases with increasing
distance from the centre, forming a dendritic structure with pearls at arm ends.
Moreover, the appearance of other types of structures in the simulations which we
eventually discarded suggests the possibility of crossover to other regimes which
we are currently unable to explore. Obviously in PE stars in poor solvents there
is a competition of several conformational regimes which should be investigated in
more detail in future.
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Weak polyeletrolytes in poor solvents

In the last chapter of this text we return to linear polyelectrolytes. In our very
first simulation paper [31], we have simulated strong polyelectrolytes which we
then compared to experimental data obtained for weak polyelectrolytes. By then
it showed up that it is desirable to develop a model which would enable simulations
of weak polyelectrolytes using the Molecular Dynamics (MD) simulation method.
In the following years we devoted much of our effort to the development of such
a model. The results contained in this chapter were published in Collection of
Czechoslovak Chemical Communications in 2008 [50]. Afterwards thaw work has
been continued and by now we are close to publishing another study. The new
results are not included here because they are not related to intramolecular self-
organised structures.

Specific features of weak polyelectrolytes

The terms weak polyelectrolyte and strong polyelectrolyte are often confused
with the similar-sounding terms weakly charged and strongly charged polyelec-
trolytes which are commonly used by physicists. While the latter refer to the
linear charge density of the polyelectrolytes, the former refer to the presence of
weak or strong acid or base groups in the polymer chain. In chemical literature the
term weak and strong base describes how readily the substance dissociates upon
dissolution in water. While the strong acids and bases dissociate completely, the
weak ones dissociate only to a certain extent. The extent to which the weak acids
and bases dissociate is determined by the equilibrium dissociation constants, KA
or KB, and by the external conditions, in particular pH and ionic strength of the
solution. In the following text we will speak about acids only, bearing in mind
that the behaviour of weak bases is analogous.

The dissociation and association of a weak acid is a dynamic process which takes
place on time scales ranging from nanoseconds to microseconds, depending on the
KA of the acid and external conditions [51]. The event of dissociation can only be
properly described on a quantum mechanical level. On the coarse-grained level it
can be viewed so that the dissociation produces a charged group and a counterion
out of a group which was previously uncharged. Association is the reverse process
of dissociation.

The equilibrium dissociation constant, KA, can be measured with high accuracy
for a weak acid which contains one or several dissociable groups. The value of KA



52 Weak polyelectrolytes in poor solvents

depends on the change in the Gibbs free energy upon dissociation,

KA = exp
(

−
∆Gdiss
kBT

)

. (18)

The value of ∆Gdiss of the dissociation is influenced by the presence of other
charged groups in the vicinity. For example, in the case of oxalic acid, which
contains two equivalent COOH groups, the equilibrium constant of dissociation of
the first group is three orders of magnitude higher than that of the second group.
In other words, the dissociation of the second group is strongly influenced by the
presence of the other dissociated COOH group [52]. The same holds for a polymer
containing weak acid groups but here the situation is more complicated. Again, the
dissociation of each of the groups on the polymer chain depends on the dissociation
of other groups in its vicinity. Therefore the local degree of dissociation of the
polymer can be expected to be correlated with its local conformation. In particular
this effect may be important in weak polyelectrolytes in poor solvents where upon
a decrease in solvent quality the charged groups are brought close to each other.
Experimental evidence of this effect can be found in titration experiments on
poly(methacrylic acid) where changes in the effective acidity constant, KA, have
been observed as a function of pH [37].

Recently, simulations of weak polyelectrolytes have been performed using the
Monte Carlo (MC) technique in a grand canonical ensemble [39, 40]. The results
of these works have confirmed the existence of the pearl-necklace conformations
also in the case of weak polyelectrolytes in poor solvents, at least in a certain range
of solvent quality conditions. One might wonder why it is desirable to develop an
MD simulation approach for weak PEs if they can be simulated using MC. The
reason is that the two methods are complementary to a certain extent. It may be
difficult to simulate locally collapsed structures such as pearl-necklaces using the
MC method because different types of moves would be effective for the collapsed
and for the expanded parts of the system. On the other hand, the MD method
always simulates collective motions and its efficiency depends on the characteristics
of the system in a different way. Last but not least, MD also provides information
on time-dependent quantities which cannot be obtained from MC.

Simulations of weak polyelectrolytes using a combination of
MC and MD

Because the mechanism of the dissociation/association of a weak acidic or basic
group can only be properly described using quantum mechanics, to account for it
on a coarse-grained level, we have to develop a suitable generic model which pos-
sesses the essential features of the underlying physical process. Our first attempt to
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develop such a model was a combination MD and MC simulation methods. In this
approach we had a pre-defined degree of dissociation of the polyelectrolyte which
was simulated using MD. At regular intervals, the simulation run was stopped and
a displacement of charge along the polymer was attempted in an MC fashion. In
this move the charge from a randomly chosen charged monomer unit of the poly-
mer was moved (if accepted) to a randomly chosen uncharged monomer unit. The
technical details of the procedure are described in the original article [50]. This
approach accounted for the effective mobility of the charges along the weak poly-
electrolyte chain. On the other hand, the degree of charging of the polymer had a
pre-defined value and therefore we could not study how it depends on external con-
ditions such as pH. Nevertheless, this first attempt revealed important correlations
between the local degree of charging of the polymer and its local conformation.

Figure 20. Dependence of the average degree of charging on the position

in the chain. Data for two different degrees of charging of a polymer with

ǫLJ = 1.3 are shown. Simulation snapshots illustrate typical conformations of
such polymers.

In Figure 20 we show the plots of the average degree of charging of individual
monomer units as a function of their position in the backbone. On the right, the
overall pre-defined degree of charging of the polymer, α = 0.33, is relatively high
so that it adopts stretched conformation as illustrated by the simulation snapshot
above the graph. In such a case the backbone is charged uniformly (apart from
some noise). The only deviation is observed at the very ends where the degree
of charging sharply increases. A completely different situation is observed in the
case of lower degree of charging, α = 0.10, which is shown in the left part of
the figure. At this value of α the conformation is pearl-necklace, as illustrated
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by the simulation snapshot, and the average local degree of charging is strongly
inhomogeneous. The charges are removed from the pearls and accumulate in the
strings which helps to reduce the high charge density inside the pearls. As a
consequence, the local degree of charging of the pearls is lower than the average
while that of the strings is significantly higher. Since the pearl-necklaces are formed
even if charges are not mobile, we may conclude that the mobility of charges serves
as an additional mechanism which may stabilise the pearl-necklace conformation.
Moreover, the obvious correlation between the local conformation of the polymer
and its local degree of charging can be extrapolated to the realm of proteins. In
analogy to our system, in proteins one should expect that the effective dissociation
constants of particular groups are not equal to their values for the corresponding
monomers but that they depend on the local conformation of their neighbourhood.

Even though our treatment of weak polyelectrolytes in MD has provided some
important results, still quite a number of unresolved methodological problems
remain. For example, our simple model does not allow for transfer of charges from
one polymer chain to another and therefore cannot account for the possibility of
phase separation where some polymers would have a high degree of charging and
remain in solution while others would have a low degree of charging and precipitate.
Next, it is not clear to what extent the rate at which we apply the MC steps has an
influence on the simulation. In the simulations we have performed a change in the
rate by an order of magnitude in either direction. It did not significantly influence
the obtained static quantities, but it influenced all time-dependent quantities.

To avoid the problems mentioned in the previous paragraph, we devoted further
effort to developing a generic model of a weak PE in which dissociation is treated
explicitly. In this model the weak acid and its counterion interact via a non-
bonding interaction of the Lennard-Jones type. The acidity constant is controlled
by the depth of the LJ interaction potential. When the potential is not too deep,
the monomer-counterion pairs are only loosely kept together and dissociate readily,
resulting in a high degree of dissociation. On the other hand, if the depth of
the potential is higher, the weak bond is much stronger and the probability of
dissociation is lower. In this model we set the dissociation constant and let the
system choose its degree of charging according to the external conditions. Also, pH
can be set independently and hence the dependence of various properties on pH
can be studied which is much closer to experiment. The results from the explicit
model of dissociation have not been published yet but we expect to publish them
by the end of 2009. We do not include them in the thesis because they do not deal
with the formation of intramolecular structures.
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Conluding remarks

In this thesis we have shown that amphiphilic polymers can form a whole ZOO
of conformational structures. We have studied the formation of such structures
in several types of polymers which include neutral polymers and polyelectrolytes
and several topologies, in particular linear, comb-like and star. The behaviour of
all the studied systems is controlled by the balance of two counteracting forces.
One of them is repulsive and brings about the expansion while the other one is
attractive and brings about the collapse. As a consequence the conformation of
such a polymer may contain collapsed as well as loose (expanded) domains. The
size of the two types of domains is determined by the relative strength of the two
counteracting forces. In our simulations we have obtained deeper insight into the
features of the conformational behaviour.

In our first publication we have compared [31] our simulations of linear poly-
electrolytes in poor solvents with the experimental measurements of fluorescence
anisotropy decays performed about twenty years before our study [36]. The simu-
lations have confirmed the intuitive interpretation of the experiments concerning
the relation between the fluorescence anisotropy decay times and conformational
changes in the polymer.

Our studies of comb-like polymers in selective solvents have been motivated by
the earlier theoretical paper by Borisov and Zhulina [11]. Our simulations have
qualitatively confirmed the predictions of the theory for both the neutral [12] and
polyelectrolyte [13] side-chains. Moreover, especially the simulations of the neutral
polymers revealed some non-trivial features of the behaviour which have not been
considered by the original theory. In particular we were able to observe and
explain certain effects which arise due to the finite size of the real polymers. This
resulted in a joint theoretical and simulation paper and an augmented version of
the theory [12]. Recently, comb-like polymers with poly(methylstyrene) backbone
and poly(methacrylic acid) side-chains have been synthesised by our collaborators
from the Institute of Macromolecular Chemistry of the Czech Academy of Sciences.
Their conformational behaviour has been studied in our group using scattering
methods and it shows up that on a qualitative level they agree with the theoretical
predictions. At the time of writing this thesis we have been working on detailed
interpretation of the experimental results and comparison with the simulations.

The cooperation with the theoreticians has been continued in the analysis of
star polyelectrolytes in poor solvents, behaviour of which is even more complex.
Our current simulation results have disclosed certain characteristics which were
not anticipated before. These include the formation of bundles of chains and the
fact that the thickness of the bundles depends on the distance from the centre of
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the star resulting in a dendritic type of structure. We have also shown that there
is a crossover from pearl-necklace behaviour in stars with low number of arms to
bundling at higher number of arms. At the time of writing this thesis the project
has not been completely closed.

Our simulations of the fluorescence anisotropy decays have uncovered that it
would be desirable to develop a model which would enable simulations of weak
polyelectrolytes using molecular dynamics (MD) [50]. We have dealt with this
problem using a combination of MD and Monte Carlo (MC) method. The results
have shown that the local degree of charging of a weak polyelectrolyte is correlated
with its local conformation. The charge is redistributed along the polymer chain
so as to oppose the increase in charge density caused by the formation of collapsed
domains. The project on the weak polyelectrolytes has been continued by the
development of a more sophisticated model of dissociation.

The polymers we have investigated in our simulation studies differ in many
aspects. All of them, however, contain some hydrophobic parts which collapse
upon a decrease in solvent quality. In all cases we have observed a transition from
an expanded conformation close to theta solvent conditions through the pearl-
necklace structures at poorer solvent. In the case of linear polymers the final state
was found to be a single globule. In the case of comb copolymers it has been
either a pearl necklace or cylinder, depending on the structural parameters of the
polymer. The combs also may end up in a single spherical globule but only if
the backbone is not long enough. In the case of stars we may anticipate that in
the very poor solvent limit they end up in a single globule but due to technical
limitations we were not able to simulate this situation.

In certain systems we could analyse in more detail some specific features of
the pearl-necklace structures. One such feature are the finite-size effects which
were thoroughly investigated in the case of the neutral combs. Another one is the
internal organisation of the pearls which was uncovered in the comb-like polyelec-
trolytes. In all cases we have observed that as the solvent quality is decreased,
the beginning of the pearl formation is accompanied by large fluctuations. In the
region of fluctuations it is possible to observe pearls in individual conformations
but their number fluctuates in time and the conformation of the polymer cannot
by represented by any typical structure. This was explained by the existence of
several comparably deep local minima on the free energy landscape which are sep-
arated by low barriers. Upon further decrease in solvent quality the pearls become
stable and well-defined. Although all these specific features have been discussed
in detail only in one or two special cases, they seem to be universal for any system
which forms pearl-necklace structures.

Last but not least, there is one more property of the self-organising behaviour
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analysed in our simulations which is not typical for many other self-organising
systems. Normally when speaking about self-assembly, one refers to assembling
molecules into supramolecular aggregates. The intermolecular self-assembly occurs
only above a certain threshold concentration, the so-called critical micellar con-
centration (cmc). The studies presented in this thesis all deal with intramolecular
self-organising behaviour which is supposed to occur within one macromolecule
in the dilute solution limit. The morphology of the intramolecular aggregates is
controlled by the structure of the polymer and by the external conditions such as
the solvent quality, ionic strength or pH. In this respect it is very similar to the
self-organising behaviour of proteins. Although they are much more complex than
our simple polymers, we may claim that the behaviour of proteins is governed by
the same physical principles and hence from our simulation results we can also try
to understand the behaviour of the complex biomacromolecules.
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Summary

In this thesis we have presented results of our simulation studies concerning the
intramolecular morphology of amphiphilic polymers. Amphiphilic polymers are
those which contain two or more types of monomer units with different affinity
for the solvent. Using the common terminology of polymer physics, we say that
such polymers are in the selective solvent, i. e. such that it is poor for one type of
units and good for the other type. In our definition of amphiphilic polymers we
also include polyelectrolytes in which the good solvent conditions can be induced
by the electrostatic repulsion among the charged monomer units. In our studies
we have investigated both polyelectrolytes and neutral polymers of linear as well
as branched topologies.

While the poorly soluble monomer units have the tendency to collapse into
compact globular structures, this tendency is counteracted by the excluded vol-
ume repulsion among the well-soluble units. Equilibrium is attained when the two
tendencies are balanced which often results in the so-called pearl-necklace confor-
mation consisting of both collapsed domains (pearls) and stretched ones (strings).
This behaviour has been first predicted for linear polyelectrolytes in poor solvents
by Dobrynin and coworkers [8]. Later on similar structures have been predicted
by various authors including ourselves for a whole variety of different amphiphilic
polymers. Besides pearl-necklaces, for the branched macromolecules also other
types of structures have been predicted, as we will discuss further.

In all our studies we have used Molecular Dynamics in implicit solvent as our
simulation method. Besides structural parameters of the polymers one of the
key parameters has been the solvent quality. It was controlled via the depth of
the Lennard-Jones interaction among the monomer units, ǫLJ, which was usually
varied in the range from close-to-theta conditions down to very poor solvent 0.3 ≤
ǫLJ ≤ 2.0.

Our very first study [31] dealt with the pearl-necklace structures in linear poly-
electrolytes in poor solvents. Besides the morphological study we compared our
simulation data with the experimental measurements of fluorescence anisotropy
decays [36]. On the semi-quantitative level our simulation confirmed the intuitive
interpretations of the relations between the changes in the fluorescence anisotropy
decay times and the conformational changes in the polymer.

Our studies of comb-like copolymers in selective solvents were motivated by
the publication of the scaling analysis of neutral combs in selective solvents by
Borisov and Zhulina in 2005 [11]. Their treatment predicted the formation of
pearl-necklace structures, cylindrical and spherical intramolecular micelles and
lamellar structures. We anticipated that similar behaviour should be observed
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if the side-chains are polyelectrolytes which was confirmed by simulations [13].
Afterwards we started an intensive cooperation with the theoreticians. It resulted
in a joint publication which contained both the simulations and an augmented
version of the scaling theory [12]. The results confirmed the main qualitative
trends of the original theoretical treatment but they also showed that it did not
describe properly the region where the pearl-necklace structures start to be formed
and the limit of very poor solvent.

The fruitful cooperation has been continued in the study of star polyelectrolytes
in poor solvents. In this case the simulations revealed a very complex behaviour.
At low number of arms pearl-necklace structures are formed on individual arms of
the star. When the number of arms is increased, they form bundles. The number
of arms in the bundle is highest close to the centre of the star and decreases with
increasing distance from the centre forming a dendritic structure with pearls at
the ends of individual arms.

In our fisrt study we were comparing our simulation results obtained for a poly-
electrolyte with fixed and uniform degreee of charging with experiments performed
on a weak polyelectrolyte. In a weak polyelectrolyte the degree of charging is vari-
able and is determined by the pH of the solution. We anticipated that if a weak
polyelectrolyte is found under poor solvent conditions where the pearl-necklace
structures are formed, its degree of charging need not be uniform along the whole
chain. We used a combination of molecular dynamics and Monte Carlo simula-
tion methods to simulate a polymer in which the degree of charging of individual
monomer units was allowed to vary so that the overall degree of charging of the
polymer remained constant. It showed up that if such polymer is found in the
stretched conformation, its degree of charging is almost uniform. On the other
hand, if it is found in the pearl-necklace conformation, the stretched parts of the
chain (strings) have a much higher degree of charging than the collapsed parts
(pearls). We have concluded that the mobility of charges serves as an additional
mechanism of stabilising the pearl-necklace structure.

In conclusion we may say that from our simulations we have seen that the
self-organising behaviour at the single molecule level is not only the domain of
biomacromolecules but it can also be observed in much simpler synthetic sys-
tems. We have also shown that certain physical principles which govern the self-
organising behaviour are universal. Their detailed understanding in the simple
systems can besides other things help to understand the behaviour of the more
complex biological molecules such as proteins.
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Shrnutí

Tato práce obsahuje výsledky simulačních sutdií, které se zabývají intramolekul-
ární morfologií amfifilních polymerů. Pod pojmem amfifilní se rozumí takový poly-
mer, který obsahuje dva nebo více typů monomerních jednotek s různou afinitou
vůči rozpouštědlu. V rámci polymerní fyziky pak mluvíme o tzv. selektivním
rozpuštědle, t.j. takovém, které je dobré pro jeden druh monomerních jednotek a
špatné pro druhý. V tomto textu budeme mezi amfifilní polymery zahrnovat i
polyelektrolyty, u kterých jsou podmínky dobrého rozpouštědla dosaženy nepřímo
skrze repulzi nabitých monomerních jendotek. V našich studiích jsme se zabývali
jak polyelektrolyty, tak neutrálními polymery, které měly lineární nebo větvenou
strukturu.

Špatně rozpustné monomerní jednotky mají tendenci kolabovat a tvořit kom-
paktní globulární struktury. Proti této tendenci působí repulze pocházející od
vyloučeného objemu dobře rozpustných monomerních jednotek. V rovnováze jsou
tyto dvě tendence navzájem vykompenzovány, přičemž často vznikají tzv. struk-
tury perlového náhrdelníku (anglicky pearl-necklace structures). Tyto struktury
obsahují jak kolabované domény (perličky) tak i natažené (řetízky). Tento typ
chování poprvé popsali Dobrynin a kol. [8]. Později byl vznik podobných struktur
předpovězen různými autory pro celou škálu rozmanitých amfifilních polymerů.
Pro větvené makromolekuly byly kromě perlového náhrdelníku předpovězeny ještě
jiné struktury, které budou zmíněny dále.

Ve všech našich simulačních studiích jsme používali simulační metodu molekulo-
vé dynamiky v implicitním rozpouštědle. Kromě strukturních parametrů polymerů
hrála ve všech simulacích klíčovou roli také kvalita rozpouštědla. Tu jsme v sim-
ulacích nastavovali pomocí hloubky Lennardova-Jonesova potenciálu, ǫLJ, kterým
byla popsána interakce mezi monomerními jednotkami. Hodnotu ǫLJ jsme měnili
v rozsahu od hodnot, které téměř odpovídají θ rozpouštědlu, až po velmi špatné
rozpouštědlo, 0.3 ≤ ǫLJ ≤ 2.0.

V naší první publikaci [31] jsme studovali vznik perličkových struktur u lineár-
ních polyelektrolytů ve špatných rozpoštědlech. Kromě morfologické studie jsme
srovnávali naše data ze simulací s experimenty, které byly provedeny v naší labora-
toři před cca dvaceti lety [36]. Na semikvantitativní úrovni naše simulace potvrdily
intuitivní interpretaci vztahu mezi vyhasínáním anizotropie fluorescence a konfor-
mačními změnami polymeru.

Naše studie hřebenových polymerů v selektivních rozpouštědlech byly inspiro-
vány teoretickou analýzou neutrálních hřebenových kopolymerů, kterou publiko-
vali Borisov a Zhulina v roce 2005 [11]. V této práci předpověděli vznik per-
ličkových struktur, cylindrických i sférických intramolekulárních micel a lamelár-
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ních struktur. Předpokládali jsme, že podobné chování by mohlo být pozorováno
v případě, že postranní řetězce budou tvořeny polyelektrolyty, což jsme také
potvrdili pomocí simulací [13]. V pozdější době jsme s výše zmíněnými teoretiky
začali úzce spolupracovat. Výsledkem této spolupráce je společná publikace, ve
které jsou obsaženy výsledky simulací i rozšířená verze původní teorie pro neutrální
hřebeny [12].

Úspěšná spolupráce dále pokračovala studiem hvězdicových polyelektrolytů ve
špatných rozpouštědlech. V tomto případě simulace ukázaly velmi komplexní
chování. Při nízkém počtu ramen vznikají perličkové struktury na jednotlivých
ramenech. Když je počet ramen vyšší, tvoří se svazky. Počet ramen ve svazku je
nejvyšší v blízkosti středu hvězdice a s rostoucí vzdáleností od středu klesá, čímž
vzniká dendritická struktura s perličkami na koncích jednotlivých ramen.

V naší první práci jsme srovnávali simulační data pro polyelektrolyt s pře-
dem daným stupněm disociace s experimenty provedenými na slabých polyelek-
trolytech. V případě slabého polyelektrolytu je ale stupeň disociace variabilní a
závisí na pH roztoku. Předpokládali jsme, že když se slabý polyelektrolyt nachází
ve špatném rozpouštědle za podmínek, kdy vznikají perličkové struktury, jeho
stupeň disociace nemusí být stejný po celé délce řetězce. S použitím kombinace
metod molekulové dynamiky a Monte Carlo jsme simulovali polymer, u kterého
bylo možno lokálně měnit stupeň disociace tak, že celkový stupeň disociace zůstal
konstantní. Ukázalo se, že pokud takový polymer zaujme nataženou konformaci,
stupeň disociace je téměř rovnoměrně rozložen podél řetězce. Na druhé straně,
pokud se polymer nachází v perličkové konformaci, natažené části řetězce (řetízky)
mají výrazně vyšší stupeň disociace než kolabované perličky. Z toho jsme usuzo-
vali, že pokud se náboj může pohybovat po řetězci, je to další možný způsob, jak
stabilizovat perličkovou strukturu.

Závěrem můžeme říci, ze z různých našich simulací se ukazuje, že samoorganizu-
jící chování na intramolekulární úrovni není pouze doménou biomakromolekul,
ale lze jej pozorovat i u mnohem jednodušších syntetických polymerů. Ukázali
jsme také, že některé fyzikální principy, které podmiňují samoorganizující chování,
jsou univerzální. Jejich důkladné pochopení u jednoduchých systémů může kromě
jiného pomoci také k lepšímu chápání chování složitých biomakromolekul.
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