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Abstract 

The main task of the thesis was a design and synthesis of new potential antimycobacterial active 

molecules. Presently, the appearance of MDR-TB strains is alarming and the development of new 

therapeutical agents is necessary. The work is divided into two parts; first one is related to 

aminopolysaccharide chitosan and its connection with appropriate antimycobacterial drugs or dyes, 

second part is concerned with modifications of current antituberculotics. 

Due to the structure and physico-chemical properties, chitosan has been found as an interesting drug 

carrier in biomedicinal chemistry. It is used in drug delivery system with control release of the drug in 

the target cells or tissues. The component of the first part of the thesis was to review molecular 

modelling of chitosan, especially its usage as a prodrug or carrier in a field of antibacterial, antitumor 

and antioxidant activity. Derivatives of chitosan linked with the first or second line antituberculotics 

were prepared for the purpose of decreasing hepatotoxicity of used drugs. Their antimycobacterial 

activity against M. tbc., M. avium and M. kansasii was 125 µg/mL for all strains. Unexpectedly, O-

carboxymethyl chitosan as an intermediate showed better MIC against M. tbc. and M. avium. It means 

that biological activity of chitosan derivatives is based on the inhibitory effect of linked antituberculotics 

and the degree of deacetylation of chitosan. All tested derivatives did not exhibit cytotoxic effect on 

PBMC and Hep G2 cells. Chitosan was able to reduce cytotoxicity of antimycobacterial drugs. 

Chitosan has been found as a convenient carrier for photoantimicrobial activity in wound healing 

treatment. Nanofibres of chitosan with rose bengal were prepared, but finally, they had not a sufficient 

quality for following usage.  

Fluorescent labelled chitosan was used for uptake studies by flow cytometer assay. Phagocytosis of 

chitosan was observed on macrophages and monocytes which are hosts for mycobacteria during a long-

time treatment and latent TB. 

The aim of the second part of the thesis was a connection of two active molecules by an easily released 

methine bridge. In first series, PAS, CPX, NFX, PZA were linked with fluorinated hydrazones of 

benzoic acid. They have shown higher activity against MDR-TB (0.5 µg/mL) than isoniazid and 

exhibited no decomposition at neutral pH and also in rat plasma more than 48 hours which could 

improve the bioavailability to target site.  

Second series of hydrazones included isoniazid connected with electron acceptor substituted anilines 

through the methine bridge showed similar biological activity as the parent compound INH. Lipophility 

of these derivatives is higher than INH, it signifies more effective transport of the molecule through 

cellular membranes.  

 



Abstrakt 

Hlavním cílem práce je design a syntéza nových antimykobakteriálně aktivních molekul. Vzhledem k 

vzrůstajícímu výskytu MDR-TB kmenů je v současné době výzkum nových léčiv proti tuberkulóze 

velmi aktuální. Předkládaná dizertační práce je rozdělena do dvou částí; první se týká 

aminopolysacharidu chitosanu a moţnosti jeho spojení s vhodnými antituberkulotiky a barvivy, druhá 

část se zabývá obměnami molekul současných antituberkulotik. 

Díky jedinečné struktuře a fyzikálně-chemickým vlastnostem má chitosan široké uplatnění. Pouţívá se 

jako nosič léčiv s kontrolovaným uvolněním aktivní látky v místě účinku. Úvodní část práce podává 

přehled molekulárních modifikací chitosanu jako proléčiva s antibakteriální, protinádorovou a 

antioxidační aktivitou. Za účelem sníţení hepatotoxicity antimykobakteriálních léčiv byly připraveny 

deriváty chitosanu ve spojení s antituberkulotiky první nebo druhé řady. Látky vykazovaly MIC 125 

µg/mL proti M. tbc., M. avium a M. kansasii, coţ je v souladu s procentem navázaného léčiva. Je 

zajímavé, ţe meziprodukt O-karboxymethyl chitosan prokázal dokonce lepší MIC proti M. tbc. a M. 

avium. Z toho lze usuzovat, ţe biologická aktivita derivátů chitosanu je zaloţena jak na inhibičním 

efektu pouţitých antituberkulotik tak na stupni deacetylace chitosanu. U všech testovaných derivátů se 

neprojevil cytotoxický účinek na PBMC krevní buňky ani na Hep G2 buněčnou linii, coţ znamená, ţe 

chitosan má schopnost sníţit cytotoxicitu antimykobakteriálních léčiv. 

Chitosan byl dále pouţit jako vhodný nosič fotosenzitivních barviv za účelem fotoantibakteriální 

aktivity při léčbě a hojení ran. Bohuţel kvalita nanovláken vyrobených z derivátu chitosanu a bengálské 

červeně nebyla dostačující pro další pouţití. 

Pomocí průtokového cytometru byla provedena studie fagocytózy fluorescenčně značeného chitosanu. 

Podle očekávání projevily fagocytární aktivitu imunitní buňky monocyty a makrofágy, které hrají 

důleţitou roli jako hostitelé mykobakterií při latentní tuberkulóze. 

Druhá část práce byla zaměřena na spojení dvou aktivních molekul snadno hydrolyzovatelným 

methinovým můstkem. Jako první série byly syntetizovány fluorované hydrazony benzoové kyseliny 

v kombinaci s PAS, CPX, NFX, PZA. Jejich antimykobakteriání aktivita proti MDR-TB (MIC = 0.5 

µg/mL) byla vyšší neţ u INH. Pomocí studie měření stability bylo zjištěno, ţe ani po 48 hodinách při 

neutrálním pH a také v krevní plasmě získané z potkanů nedocházelo k  rozkladu látek. Tento fakt můţe 

být vyuţit pro zlepšení biodostupnosti léčiva v místě účinku. 

Druhá série hydrazonů, které obsahovaly isoniazid spojený s aniliny s elektron-akceptorními 

substituenty přes methinový můstek, vykazovala podobnou biologickou aktivitu jako standard INH. 

Lipofilita těchto derivátů je vyšší neţ u isoniazidu, coţ by mohlo vést k efektivnějšímu transportu 

aktivní molekuly přes buněčné membrány. 
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1. Introduction 

1.1. Tuberculosis 

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis which has 

uncommon properties: slow-growing, hydrophobic cell wall, acid, alkali and alcoholresistance. 

Cell wall of M. tbc. is primarily composed of mycolic acids and allows the bacillus to lie 

dormant for many years. The important property of mycobacteria is intracellular parasitisation 

in macrophages of its host and the elimination of their immune system response. Other key 

features of M. tuberculosis are an easy transmission from person to person by aerosol and the 

low infective dose.
1
 The consequence of these extreme abilities is long duration of TB 

treatment, development of resistant strains for some antituberculotic drugs and latent infection. 

Due to these remarkable factors, TB still remains as one of the most dangerous and lethal 

diseases in the world. In 2008, there were estimated 9.4 million new TB cases and 1.3 million 

deaths.
2
 One-third of the world's population is primarily infected by TB and becomes potential 

reservoir of Mycobacterium tuberculosis for future. Globally, the resurgence of tuberculosis has 

been attributed to the emergence of drug-resistant strains of TB, the prevalence of co-infection 

with HIV and social and economic developments affecting access to medical care.
3
 

Twenty years ago, MDR-TB strain was defined as resistant to at least two most effective anti-

TB drugs, isoniazid and rifampicin (first-line anti-TB drugs). XDR-TB was identified as 

resistant to any fluoroquinolone and to at least one of three injectable drugs capreomycin, 

kanamycin or amikacin that are called second-line anti-TB drugs, in addition to MDR-TB. 

Nontuberculous mycobacterial strains are opportunistic pathogens with a relative resistance to a 

wide range of antibiotics.
4
 The mechanism of resistance to the first-line anti-TB drugs has been 

linked to mutations at least 10 genes
5
, followed by drug inactivating enzymes or decreased level 

of activating enzymes. 13.3 % of all TB cases showed resistance to INH and 5.3 % of all TB 

cases were indicated as MDR-TB resistant.
6
 Currently, research of novel MDR potential drugs 

is intended to main goals of the development
 
of new agents with two months or less duration 

therapy, development of new mechanism of potential agent
7
 without cross-resistance and 

improvement of treatment of latent TB.
8
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1.2. Treatment of tuberculosis 

Recommended contemporary chemotherapy of TB is an administration of a mixture at least five 

anti-TB drugs. INH, PZA, RMP and EMB present first-line agents, they are followed by 

injectable drugs as STM, kanamycin, amikacin, capreomycin and tuberactinomycin A, B, N, 

O.
9
 Fluoroquinolones (OFX, LFX, moxifloxacin and CPX) are considered as a supported 

treatment because of their accumulation in M. tbc. and good affinity for the target enzyme.
10

 

Long-duration treatment is necessary for complete sterilization of M. tbc. Ordinary cure 

contains two months of administration of INH, PZA, RMP and EMB, or INH, PZA, RMP and 

STM. Next four months INH, RIF and/or PZA should be administered due to existence of latent 

infection. Negative effect of long TB treatment leads to the serious side effects, mainly drug-

induced hepatotoxicity with prevalence of TB patients which is 3 – 11 %.
11,12

  

Alarming statistical data of the TB incidence were main motive for the establishment of rules 

supporting TB eradication. The first project of WHO named DOTS (directly observed 

treatment, short course) which was associated legislation, case detection, standardized treatment 

and monitoring of TB.
13

 In 2006, WHO decided to increase the support for TB treatment and 

established a document named The Stop TB Strategy. Its goal is dramatically reduce global 

burden of TB by 2015 by the basic rules which increase quality of diagnosis and treatment, 

protect vulnerable population from TB and support development of new tool for TB 

treatment.
14,15
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2. Aim of the thesis 

Submitted work is divided into two parts; first one is related to aminopolysaccharide chitosan 

and its connection with appropriate antimycobacterial drugs or dyes, second part is concerned 

with modifications of antimycobacterial drugs with methine bridge. The overall aim of this 

thesis was to investigate the synthesis, antimycobacterial evaluation and cytotoxicity 

determination. 

 

The specific objectives of this study were: 

 Literary review of chitosan (Paper I, II). 

 The synthesis of chitosan conjugates with antituberculotics or dyes and biological 

evaluation of the synthesized compounds (Paper III). 

 The modification of antimycobacterial drugs by connection of two active molecules 

through easily released methine bridge, structure activity relationship and biological 

evaluation of the synthesized compounds (Paper IV). 

 Biological studies of prepared compounds 
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3. Chitosan as a prodrug 

3.1. General information (Paper I) 

The interest of polymeric materials enhances every year. Chitosan is very attractive compound, 

its usage involves wide range of pharmaceutical, biomedical, industrial and agricultural fields. 

Chitosan as a main topic appears in many different scientific articles, the amount of accepted 

papers increases every year. The popularity of this polysaccharide has started from requested 

properties which are biocompatibility, biodegradability, lack of toxicity and hypoallergic 

reaction. The proper utilization depends on many factors that can be changed. Molecule weight 

(MW), degree of deacetylation (DD), degree of substitution, length and position of a substituent 

in glucosamine units of chitosan and pH of chitosan solution can play an important role on a 

final biological activity. Chitosan is a linear polysaccharide, derived from naturally abundant 

chitin, composed from D-glucosamine and N-acetyl-D-glucosamine units bonded by β-1,4-

glycosidic linkages. It is a product of alkaline deacetylation of chitin and its structure contains 

less than 50 % of N-acetylglucosamine units. Long chains of chitosan are formed of four 

crystalline polymorphic forms, three hydrated and one anhydrous.
16

 Reactivity of chitosan is 

done by three types of reactive functional groups, an amino group as well as both primary and 

secondary hydroxyl groups at the C2, C3 and C6. Numerous useful derivatives for specific 

application can be synthesized by chemical modifications of these groups. The most frequent 

chemical modifications include quaternization, acylation, tosylation, Schiff base formation, O-

carboxymethylation, N-carboxyalkylation, N-succinylation and graft copolymerization. Original 

chitosan is insoluble in neutral and alkaline pH conditions. In pH < 7, free amino groups are 

protonated and the polysaccharide becomes soluble. Chemical modification improves the 

solubility of chitosan over a wide pH range. 

Chitosan and its derivatives possess special properties for use in pharmaceutical and biomedical 

applications.
17

 Chitosan itself has antimicrobial properties and an inhibition effect depends on 

the concentration, molecular weight and kind of bacteria.
18

 Antitumor activity is resulted from a 

simple change of chemical structure, low molecular weight, water-solubility and degree of 

deacetylation.
19

 Similarly, mainly low molecular weight and degree of deacetylation, have 

influence on the antioxidant activity.
20

 Mucoadhesion and absorption-enhancing properties of 
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chitosan have been utilized for delivery of therapeutic proteins and antigen particularly via 

mucosal routes to cells, and induction of antibodies after mucosal vaccination (immunoadjuvant 

effect).
21,22

 Other facility of chitosan is support of vascularization and angiogenesis without 

secretion of inflammatory cytokines from endothelial cells. Chitosan – alginate membrane is 

compatible with endothelial cells and has no effect to their activated status.
23

 The wound 

healing has been another emphasis of chitosan–based application. Collagenase activity and the 

amount of activated fibroblasts which are important in reparations of injured tissues depend on 

MW and DD.
24

 Chitosan connected with polyphosphate and silver has exhibited acceleration of 

blood clotting, platelet adhesion and thrombin generation. The incorporation of silver was also 

effective in reducing mortality compared to standard treatment.
25

 Polyelectrolyte complexes are 

able to reduce the risk of dehydratation of wounds and make easy removing of chitosan 

modulus from the wound surface without damaging the newly regenerated tissue. Chitosan as a 

cationic polyelectrolyte and -poly (glutamic acid) as an anionic polyelectrolyte
26

 or 

poly(vinylalcohol)/water-soluble chitosan/glycerol hydrogel
27

 are novel stripped polyelectrolyte 

complexes with good mechanical properties potentially applied as a wound dressing materials. 

Further utilization is in industrial and environmental fields. Due to free amino groups, chitosan 

and its derivatives have chelating ability to bind heavy and toxic metal ions.
28

 The great 

attention is focused on non-viral gene therapy. Nucleic acid-chitosan complexes are studied for 

their high transfection efficiency and lack of toxicity. MW and stability of complexes are 

crucial factors for investigation of gene delivery.
29,30

 Chitosan and its nanoparticles have 

potential to form polyelectrolyte complex with nucleic acids, enhancing cellular uptake and 

provide effective unpacking of the complexes in the cytoplasmatic compartment. There are two 

types of the carrying system, DNA or RNA entrapping system which is advantageous for 

nucleic acid protection.
31

  

All these applications are used as various kinds of drug carriers for the controlled release. 

Common requirements for drug delivery system are optimization of drug application, 

minimization of the undesirable drug properties and improving of drug efficiency. Other 

advantages of polymeric molecules are the slow release of effective components as depot 

forms, the improving of membrane permeability and solubility. Targeting components are able 

to precisely recognize and specifically interact with receptors on the targeted tissue. Procedure 
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of the production of drug conjugates is an encapsulation into nano-sized particles that have the 

ability to reach the target size.
32

 Release of loading drugs from conjugates can be occurred by 

diffusion, chemical/environmental stimulation or enzyme-specific stimulation. The facility of 

drug loading depends on hydrophilicity and/or charges of active drugs and their carriers.
33

 

Amphiphilic derivatives are prepared for simpler drug release
34

. Nanomicelles based on glycol 

chitosan with alkyl chains exhibited higher drug-loading capacity and high drug-loading 

efficiency.
35

 Priorities as biocompatibility and sterility explain the utility of chitosan as 

potential material for various biomedical applications. 

3.2. Pharmaceutical applications of chitosan (Paper II) 

In both reviews (Paper I, II) there are summarized main physical properties important for 

design of structure and pharmaceutical applications of chitosan in three main fields of medical 

branches – antimicrobial, antitumor and antioxidant. Chitosan has low solubility in water at pH 

7, therefore, it is necessary to proceed chemical modification of its skeleton. The most common 

chitosan modification which increases water solubility and antimicrobial activity is 

quarternisation of amino group. Quarternisation by methyliodide led also to better activity 

against fungi. N,N-Diethyl-N-methylchitosan has received attention as an oral drug delivery 

vehicle. Chitosan-N-2-hydroxypropyltrimethylammonium chloride enhances biocidal activity 

on Grampositive bacteria. Guanidinylated chitosan associates with the cell surface and shows 

higher antibacterial activity of Gramnegative bacteria. Antitumor activity of chitosan depends 

on the molecular size, solubility and partial acetylation. N-Succinyl chitosan connected with 

mitomycin C was prepared for the treatment of leukemia P388 and melanom B16. 5-

Fluorouracil was conjugated with the partly acetylated O-carboxymethyl chitosan through 

tetrapeptide spacer Gly-Phe-Leu-Gly which ensure specific drug release in tumor tissue. 

Antioxidant activity of chitosan depends on molecular weight as well as on the degree of 

deacetylation. Low molecular weight partly deacetylated chitosan is possible to consider as a 

natural antioxidant. Even if the exact mechanism of activity is unknown, it is assumed that 

amino group and hydroxyl groups bonded on C2, C3 and C6 position react with unstable free 

radicals to form more stable macromolecular radicals. Both papers present data collected till 

2008. Following chapters 3.3. – 3.6. bring current findings of the last two years. 
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3.3. Antimicrobial activity 

3.3.1. Mechanism of activity 

It is known that the chitosan itself has an inhibition effect against bacteria and fungi. However, 

the exact mechanism of antibacterial activity of chitosan is not yet completely known, several 

mechanisms that may contribute to the antimicrobial action have been suggested. Process of 

antibacterial activity is caused by changes in the bacterial membrane permeability, breakdown 

of the cytoplasmatic membrane barrier or blocking the transport of nutrients, resulting cell lysis. 

Generally, the mechanism of inhibition activity differs from MW, DD, the type of bacterium, 

pH and concentration of active compound connected to chitosan as well as different substituent. 

MW: Chitosan with high MW cannot pass through the microbial membrane and hence remains 

on the cell surface, forms a film which blocks nutrients transport to the microbial cell 

membrane, while chitosan with low MW can pass through the cell wall. Owing to their small 

size and being water soluble, polysaccharide can traverse through the microbial membrane and 

regulate DNA transcription.
36

 The exposure of chitosan with different MW and concentration 

was studied on S. aureus (G
+
) and E. coli (G

-
). The antibacterial effect on gram positive 

bacteria was enhanced with the increasing concentration and increasing MW, against gram 

negative bacteria as the molecular weight decreased the effect was enhanced. The lower MW 

allows to enter the mycobacterial cell more easily and disturbs the metabolism in the cell. 100 

% Inhibition for both strains was reached with 1 % concentration of chitosan.
18

  

DD: Antibacterial activity enhances with increasing DD of chitosan. It means that the amino 

group as the active functional group was found to be essential for the antibacterial activity of 

chitosan.
37

 The phenomenon might be explicated by different amount of –NH2 groups 

contained in chitosan polymer. Amino groups can chelate divalent cations
38

 which stabilize the 

G
-
 outer membranes. 

Type of bacteria: Chitosan and its derivatives have great influence on cell wall destruction of G
-
 

bacteria (E. coli) then to G
+
 bacteria (S. aureus).

37,39
 The reason is different constitution of their 

cell wall, consequently, mechanism of the interaction is diverse for G
-
 and G

+
.  
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Cell wall of G
-
 bacteria is made up of a thin membrane of peptidoglycan. An outer 

cytoplasmatic membrane is composed from lipopolysaccharide, lipoprotein and phospholipids 

stabilized by divalent cations, such as Mg
2+

 and Ca
2+

. If chitosan is protonated and the carboxyl 

and phosphate groups of the bacterial surface are anionic, it offers potential sites for 

electrostatic binding of lower MW chitosan. The cell wall permeability is changed and the 

osmotic stability is decreased. Complex disrupted the barrier properties of the cytoplasmatic 

membrane, entered to the cell and disturbed the physiological activities of the bacteria or the 

leakage of enzymes and nucleotides from bacteria. The confirmation of this mechanism was 

performed by the observation of escaping of enzymes during the treatment of S. aureus and E. 

coli. With increasing contact time between the chitosan and both bacterial strains, the leakage 

of enzymes from the cells increased gradually and the treatment had stronger impact to G
-
 than 

to G
+
 bacteria. Polymyxin B and EDTA were used for understanding the antibacterial 

mechanism of chitosan on E. coli. Polymyxin B, cationic antibiotic, reacts with anionic 

phosphate groups in the cell membrane, thereby destroys the cell membrane structure. EDTA 

chelates Mg
2+

 and Ca
2+

 which are presented in the cell wall and affecting its permeability. The 

leakage of nucleotides from bacterial cells increased with increasing contact time and 

concentration of polymyxin B, EDTA and chitosan. The inactivation of E. coli by chitosan 

happened through a two-phase sequential mechanism, affecting the cell wall and the cell 

membrane.
37

 Other study consider also with the interaction of chitosan with E. coli cell 

membrane. Chitosan 50 kDa was the most effective in damaging of the integrity of cell 

membrane, intracellular proteins were almost fully released. The experiment with alizarin red 

documented that chitosan rapidly increased permeability of cytoplasmatic membrane, the 

presumable mechanism consist in a binding of polycationic molecule of chitosan with the 

negatively charged O-specific oligosaccharide units of lipoproteins of E. coli cytoplasmatic 

membrane. It led to the disruption of the integrity of membrane and depletion of the nutrients. 

Interaction of chitosan with phospholipid membrane was simulated by connection with 

phosphatidylcholine liposomes. IR spectra demonstrated that there were carbonyl and 

phosphoryl groups in phosphatidylcholine that participated in the interaction with amino groups 

of chitosan.
36
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G
+
 bacterium has cell wall composed mainly from peptidoglycan, which does not allow the 

formation of a surface layer. Presumable dominant mechanism for G
+
 is based on higher MW 

chitosan forming a polymer membrane on the surface of the cell which obstructs nutrients 

entering to the cell.
18

 Prodrugs can stop the entering of nutrients to the cell or leak them from 

the cells which describe principle of the first mechanism. The second mechanism is based on 

the binding of lower MW (< 5000 kDa) chitosan to DNA and inhibition of mRNA synthesis 

through penetration to the nuclei and interferes with the synthesis of mRNA and proteins.  

3.3.2. Antibacterial activity of chitosan derivatives 

Majority of experimental studies have used E. coli and S. aureus as representative bacterial 

models.  

MW of polymers plays important role in their biological properties. Low molecular weight 

chitosan (LMWC) products were prepared by chitinase, lysozyme and cellulase. Chitinase was 

the best choice for producing LMWC (13.5 – 8.5 kDa) and also inhibition of E. coli was 

efficient (50 µg/mL). Compared with it, lysozyme-catalysed LMWC was less soluble due to 

higher range of MW but more effective against E. coli (40 µg/mL). Cellulase-catalysed 

chitosan has lost its antibacterial activity due to extensive hydrolysis.
40

 Chitosan, 

carboxymethylated chitosan and chitosan sulfates were connected with 5-chloro-4-

hydroxybenzene-1,3-disulfonyl dichloride or 5-chloro-2-hydroxybenzene-1,3-disulfonyl 

dichloride (Fig. 1).
39

 All derivatives exhibited roughly the same inhibition effect to five crop-

threatening pathogenic fungi (the maximum inhibitory index was 65.98 % to 50.50 %) and S. 

aureus, Sarcina, E. coli and Pseudomonas aeruginosa (31.25 – 249.98 µg/mL). The 

antibacterial activity of derivatives enhanced with the decreasing MW. 
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Fig. 1 Structures of hydroxybenzenedisulfonamides 

Di-quaternary group can contribute to the antibacterial activity. The highest inhibition against 

G
+
 strains S. aureus and Staphylococcus pneumoniae showed chitosan derivative with N-[1-

carboxymethyl-2-(1,4,4-trimethylpiperazine-1,4-diium)] substituent which was generally more 

active at pH 7.2 than at pH 5.5 (Fig. 2).
41

  

 

Fig. 2 Chitosan substituted by piperazine moiety 

N-substituted chitosan was quaternized using N-(3-chloro-2-hydroxy-

propyl)trimethylammonium chloride (Fig. 3) for increasing water solubility. MIC was carried 

out on E. coli and S. aureus in order to explore the impact of the extent of N-substitution (ES) 

on their biological activities. If ES is higher than 20 %, MIC values were higher. Antibacterial 

activities ranged from 8 to 64 µg/ml for S. aureus and from 16 to 64 µg/mL for E. coli.
42
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Fig. 3 N-substituted chitosan quarternizated derivatives 

Other study from the same research group presents N-methylation of N-arylated chitosan 

derivatives containing N,N-dimethyl-1-aminotolyl and pyridyl substituents which produced 

quaternary ammonium salts in presence of sodium iodide and iodomethan (Fig. 4). The 

methylated products were water soluble over all range of pH and displayed antibacterial activity 

against S. aureus and E. coli. Their MIC values were in the range of 32 – 128 µg/mL against 

both bacteria.
43

  

 

Fig. 4 N-methylation of N-arylchitosan containing N,N,N-trimethylbenzenaminium and N-

methylpyridinium substituents of chitosan 

N-alkylated photo-polymerizable chitosan derivative was synthesized by Michael reaction of 

chitosan and polyethylene glycol diacrylate (PEGDA) (Fig.5). PEGDA-chitosan exhibited good 

water solubility and significant antimicrobial activity against E. coli, but inhibition was 
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appreciably weaker than activity of chitosan alone. Polymerization and solidification was 

initiated by UV iridation. Photopolymerization is used in many industrial applications, doesn´t 

need solvent and requires less energy than thermal curing.
44

  

 

Fig.5 Michael reaction of chitosan and polyethylene glycol diacrylate. 

Schiff base of chitosan was synthesized by the reaction of chitosan with citral under high-

intensity ultrasound (Fig. 6).
45

 The antimicrobial activities were investigated against E. coli (0.1 

w/v), S. aureus (0.1 w/v) and A. niger (0.5 w/v) and inhibition activities increased with 

increasing concentration of chitosan and Schiff base and are stronger than that of chitosan.  

 

Fig. 6 Schiff base of chitosan 

Hydrophobic effect of oleoyl chitosan (OC) was studied.
46

 The fluorescence experiments 

indicated that OC interacted with proteins on the cell membrane of E. coli. Scanning electron 

microscopy photographs showed E. coli adhered to the surface of the chitosan microspheres 

and provided evidences for the disruption of cells, while the bacterium conglomerated on the 

surface of the OC. The chitosan microspheres changed the permeability of membrane and 

caused cellular leakage. Antibacterial activity of OC was poorer than chitosan alone. 
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Other chemical chitosan modification was a conjugation with arginine, that gave two different 

forms of arginine functionalized chitosan (6% and 30% arginine) like more soluble forms at 

physiological pH. Interactions of polycations in outer cell membrane specifically increased the 

cell membrane permeability.
39

 6 %-Substituted chitosan-arginine was more effective than the 

30 %-substituted chitosan-arginine in inhibition of Pseudomonas fluorescence and E. coli 

growth. 30 %-Substituted chitosan-arginine, which was less viscous, appeared to be more 

effective in permeabilizing the cell membranes of both bacteria. It proves that the initial site of 

action of chitosan-arginine is the bacterial outer membrane. Cell aggregation for both bacteria 

was observed immediately after addition of the conjuagate, which might have contributed to 

growth inhibition.  

Preparation of blend chitosan films is frequent because of its ability to show good miscibility 

and homogenity. O-hydroxyethyl chitosan xanthate (HECS) was synthesised and blended with 

cellulose xanthate. 3 % HECS showed significant inhibition effect against E. coli, the moisture 

absorption and antistatic property were enhanced.
47

 The electrospun ultrathin-structured 

systems of zein/chitosan bioblends were prepared and carried out against S. aureus. Relatively 

low amount of chitosan (5 mg) in blend (100 mg) was able to provide an efficient biocide 

effect.
48

  

Using of carboxymethylated chitosan for different chemical modifications is very common. 

Carboxymethyl chitosan has been grafted by poly(N-vinyl imidazole) in aqueous solution using 

potassium persulfate as an initiator. Antimicrobial activity was enhanced by grafted products. 

The highest inhibition effect was shown by carboxymethylated copolymer against E. coli (97.6 

% inhibition), S. aureus (53.3 %), Fusarium oxysporum (63.3 %) and Aspergillus fumigatus (54 

%).
49

 O-carboxymethyl and N,O-carboxymethyl chitosan nanoparticles were synthesized by 

simple cross-linkage using sodium triphosphate.
50

 Antibacterial activity was measured against 

S. aureus by MIC method for three different concentrations. Chitosan nanoparticles showed 

less antibacterial activity compared to O-CMC and N,O-CMC. Antibacterial effect increased 

with increasing concentration. The highest concentration of O-CMC killed all bacteria and for 

N,O-CMC all three concentrations inhibited all colonies. 
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Chitosan is able to show antibacterial activity also in connection with inorganic compound. 

Chitosan-clay nanocomposites were prepared by an ion exchange reaction between chitosan 

and sodium montmorillonite with the cationic exchange capacity and exhibited inhibition effect 

against S. aureus and E. coli. The highly dispersed chitosan molecules in the nanocomposites 

through layer-by-layer stacking structure play an important role in enhancing of antimicrobial 

activity. Potential application of chitosan-clay nanocomposites could be in the development of 

natural biopolymer-based biodegradable packaging materials.
51

 Silver is well-known for its 

antimicrobial potential. Chitosan Ag-nanoparticles showed antibacterial activity against E. coli. 

Scanning electron microscope of E. coli cell detected complete lysis of cells after 4 hours.
52

 

Other silver nanoparticles dispersing in chitosan solution during γ-ray irradiation exhibited 

antimicrobial activities against E. coli and S. aureus. Antimicrobial activity of the film 

increased with increasing silver nanoparticle content. Silver nanoparticles showed stronger 

inhibitory effect against E. coli than S. aureus.
53

  

Further study has developed crosslinked chitosan coated Ag-loading nano-SiO2 composite 

(CCTS-SLS) which exhibited MIC against E. coli and S. aureus 250 µg/mL and 300 µg/mL. 

Activities were much higher than separately used chitosan or silver-loading nano SiO2.
54

 

Stronger antibacterial effect of E. coli can be explained by the structural difference between 

thicker G
+
 cellular cell wall of S. aureus than G

-
 cell wall of E. coli.  

Chitosan is usefull as biomaterial for wound care due to its biocompatibility and intrinsic 

hemostatic properties. Anionic polyphosphate polymer and silver ions were added to chitosan 

for more potent haemostatic agent. The presence of Ag had significantly faster and more potent 

bactericidal action than chitosan-polyphosphate. Chitosan-polyphosphate-Ag was effective in 

reducing mortality compared to standard gauze treatment contaminated with high levels of 

Pseudomonas aeruginosa.
55

  

Biocompatibility and antibacterial properties are very important in implant removal and 

revision surgery. Chitosan is a good candidate for usage as a scaffold for bone tissue 

engineering and as a prevention of orthopaedic implant-associated infection. Chitosan-N-2-

hydroxy-N,N,N-trimethylpropan-1-amonium chloride (HACC) was prepared with different 

degrees of substitution (Fig. 7). Antibacterial activity against S. aureus, Methiciline-resistant S. 
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aureus and Staphylococcus epidermidis of HACC 18 % and 44 % of substitution was 

significantly higher than others. HACC 18% was non-cytotoxic to L-929 cells and enhanced the 

proliferation as well as osteogenic differentiation; it had good biocompatibility with bone 

cells.
25

  

 

Fig. 7 Structure of chitosan-N-2-hydroxy-N,N,N-trimethylpropan-1-amonium chloride 

Chitosan is able to inhibit growth of different strains of fungi and yeasts. Antimicrobial activity 

of three acyl thiourea derivatives of chitosan (Fig. 8) was evaluated. In general, antibacterial 

activities of derivatives were better than that of chitosan.
56

 MIC value against E. coli was 15.62 

µg/mL and Pseudomonas aeruginosa 15.62 or 62.49 µg/mL. MIC values for two G
+
 bacteria S. 

aureus and Sarcina were 62.46 µg/mL. Antifungal activities were measured against Alternaria 

solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, 

and Phyllisticta zingiberi. Range of inhibitory values was from 31.23 % to 66.67 % at 500 

µg/mL for all fungi.  

 

Fig. 8 Acyl thiourea derivatives 

Antimicrobial effect of MW of chitosan was investigated also against fungi. Quaternized 

chitosan was synthesized in two averages of MW – LMW 7600 and HMW 700000.
57

 

Derivatives gave stronger antifungal activities than chitosan alone. LMW chitosan showed 
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stronger inhibitory index (25 %) than HMW chitosan (19.6 %) against Botrytis cinerea Pers. (B. 

cinerea pers.) and Colletotrichum lagenarium (Pass) Ell.et halst (C. lagenarium (Pass) Ell.et 

halst). Quaternized derivatives exhibit higher antifungal activity with HMW. When the 

concentration of individual target material was raised to 1000 µg/mL, the growth of both fungi 

was completely inhibited. Next experiment compared influence of MW to fungal growing. Low 

molecular weight chitosan (17 kDa) was more effective to inhibition of mycelian growth of 

Rhizopus stolonifer (Ehrenb.:Fr.) Vuill while the high molecular weight chitosan (30 kDa) 

affected spore shape, sporulation and germination.
58

  

Antibacterial properties of chitosan are used in many branches. Antimicrobial properties of 

chitosan and its derivatives are important also in textile industry. Wool fabric coated with 

chitosan - henna dye exhibited antibacterial activity against E. coli and S. aureus. Chitosan 

significantly enhanced antimicrobial activity of the dye. The positive side effect of chitosan 

application is improving the dye uptake of wool fabric and improving fastness properties of 

fabric.
59

 The second textile study, considered in jute fabric, tested chitosan-metal complex 

linked in the surface of a fabric against S. aureus and Candida albicans. For the same metal salt 

concentration (0.15 %), the antibacterial and antifungal properties follow the order: chitosan-Zn 

> chitosan-Zr > chitosan-Ag > chitosan.
60

  

Addition of chitosan can improve properties of a paper. Polysaccharide was linked with 

polyhexamethylene guanidine hydrochloride (PHGH) or PHGH in the presence of sodium 

tripolyphosphate as a crosslinking agent (PHGHE).
61

 MIC values of PHGH and PHGHE 

against E. coli were 5.2 and 10.4 μg/mL. These chitosan complexes were used as functional 

additives for papers. Papers blended with PHGH and PHGHE showed a remarkable inhibition 

effect against E. coli and S. aureus. Atomic force microscopy images indicate that the 

antimicrobial mechanism of the complexes was likely due to membrane damage.  

Antimicrobial packaging has attracted attention the food industry because of the increase in 

consumer demand for minimally processed and preservative products. Experimental 

chitosan/methyl cellulose film incorporating vanillin was applied on fresh-cut cantaloupe and 

pineapple and their effects on microbial control and fruit quality were investigated. After eight 

days of storage both fruits covered with experimental film had no colonies of E. coli and 



19 

 

significantly lower number of Saccharomyces cerevisiae than fruits without wrapping.
62

 Other 

work in food packaging was engaged in development and characterization of biological 

properties of renewable blend of chitosan with gliadin, protein isolated from gluten. The 

renewable blend indicated significant antimicrobial effect against S. aureus which increased 

with increasing concentration of the amount of chitosan in blend.
63

  

3.4. Antitumor activity 

3.4.1. Antitumor activity of nano-size particles 

The regulation of mitosis can be changed by various mechanisms. These defects are usually 

induced by mutations of genes which code signal proteins, transcription factors, or proteins 

regulating cell adhesion or apoptosis. It can lead to uncontrolled division of cells, escape from 

normal tissue, dissemination and growing in other tissues. Two main strategies of 

chemotherapy are observed for killing the tumor, one is apoptosis induction and the other is 

necrosis induction. Specific modes of apoptosis and necrosis are recognized by characteristic 

patterns of morphological and biochemical changes.
64

  

Polymeric nano-sized carriers have shown a high tumor targeting ability at tumor tissue and are 

minimally found at sites of normal tissue. Accumulation of them in tumor is explained by 

enhanced permeability and retention (EPR) effect which is caused by the disorganized 

vascularization of tumor. Nano-size drug delivery systems have outstanding advantages such as 

passing through the smallest capillary vessels because of their ultra-tiny volume, avoiding rapid 

clearance by phagocytes, penetrating cells and tissue gap to arrive at target organs. Recently, 

polymeric micelles or nanoparticles have attraction as passive targeting of drugs, with 

solubilisation of water insoluble drugs, prevention of side effects and long drug circulation 

time. Physicochemical characteristics as particle size, chemistry on the surface of nanoparticles 

or stability of nanoparticles can effectively enhanced EPR effect.
65

 Colloidal delivery systems 

can fulfil the requirements of an ideal and versatile drug carrier. Polymeric micelles are formed 

by self-assembly in an aqueous environment and possess a core-shell structure. 

Chitosan-base nanoparticles were known to be very stable due to its specific structure and 

physicochemical properties. In general, particles up to about 100 – 200 nm can be internalized 
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by receptor-mediate endocytosis, while larger particles have to be taken up by phagocythosis.
65

 

Chitosan mostly supports antitumor activities of its substituents, mechanism of anticancer effect 

depends on them. The drug-loading capacity and stability of chitosan nanoparticles are 

significantly affected by the degree of substitution. 

3.4.2. Antitumor activity of chitosan derivatives 

Carboxymethyl chitosan can be applied also in cancer therapy. Hydrogel nanoparticles were 

prepared by using linoleic acid modified carboxymethyl chitosan after the sonification (Fig. 9). 

Self-aggregated nanoparticles exhibited increasement of loading capacity and loading 

efficiency. In vitro anticancer activity of hydrogel against HeLa cells was comparable to the 

activity of free doxorubicin as standard. Free nanoparticles showed almost no effect on the 

cytotoxicity of cells.
66

  

 

Fig. 9 The structure of carboxymethyl chitosan conjugated with linoleic acid 

N-succinyl chitosan (NSCS) is well known as a drug carrier with low toxicity and a long 

circulating effect in the body.
67

 Recently N-succinyl chitosan became a main component of 

micelles or nanoparticles used for delivery system in anticancer therapy. Antitumor effect of N-

succinyl chitosan nanoparticles was investigated on K562 cells. Nanoparticles inhibited the 

prolipheration of K562 with IC50 of 14.26 µg/mL. Cytomorphology studies as TEM, 

fluorescent assay and DNA fragmentation analysis revealed characteristics of apoptosis and 

necrosis, indicating that the antitumor effect was achieved by both.
64

  

Hydrophobically modified polysaccharides are able to self-aggregate by their intra- and/or 

intermolecular hydrophobic interactions in aqueous media to form nanoparticles with 
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hydrophobic core and hydrophilic shell. This is suitable for doxorubicin and taxol.
66

 

Doxorubicin (DOX) is a member of anthracycline antitumor drugs and is widely used in 

chemotherapy for various tumors. Its mechanism of action is incorporation to DNA, including 

of inhibition of topoisomerase II and RNA polymerase. Methoxy poly(ethylene glycol)-grafted 

carboxymethyl chitosan was prepared as nanoparticles with DOX (Fig. 10) by ion complex 

formation and the particle size < 300 nm. Releasing of DOX was faster in acidic pH. 

Nanoparticles showed increasing cytotoxicity in DOX-resistant C6 glioma cells compared with 

DOX alone. Nanoparticles could penetrate into cells, it was observed by fluorescence assay, 

and can effectively inhibit cell proliferation.
68

  

 

Fig. 10 Methoxy poly(ethylene glycol)-grafted carboxymethyl chitosan with DOX 

DOX hydrochloride was loaded into oleoyl-chitosan (OCH) nanoparticles (Fig. 11) with 

different MW. Loading efficiency and DOX release rate increased with decreasing of MW. 

OCH nanoparticles alone based on low MW (5 kDa) chitosan had higher drug loading 

efficiency, release rate and antitumor activity than those based on high MW (300 kDa). The 

inhibitory effect of DOX-loaded OCH nanoparticles to human lung cancer cell line A549 was 

higher than DOX solution without chitosan.
65
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Fig. 11 Synthesis of oleoyl-chitosan 

Chitosan-DOX conjugate was connected with Pluronic [poly(ethylene glycol)-block-

poly(propylene glycol)-block-poly(ethylene glycol)], injectable depot system for clinical 

purpose, and acrylated with glycidyl methacrylate. In vitro cytotoxicity of degradable chitosan-

DOX hydrogel was comparable to free DOX in human lung adenocarcinoma cell line A549. 

Chitosan-DOX hydrogel and DOX alone showed similar incidence to in vivo test in athymic 

nude mice bearing human lung adenocarcinoma. Values of cytotoxicities were comparable and 

the tumor volume was significantly reduced. Inconvenient property of prepared hydrogel was 

able to reduce burst release, which is advantageous in anticancer therapy because it further 

increased local concentration of anticancer drugs at the injection site.
69

  

Chitosan oligosaccharide was grafted by stearic acid and DOX (size of micelles 30 – 110 nm). 

Release rate of DOX from grafted copolymer increased with decreasing pH, from 7.2 to 5.0 

which might be advantageous for the targeting delivery of antitumor drugs because of the lower 

pH of tumor tissue (pH 5 – 6). In vitro cytotoxicity was performed on human breast carcinoma 

cell line MCF-7 and MCF-7/Adr (multi-drug resistant variant). IC50 values of both cell lines 

were similar (1.27 – 7.70 µg/mL) and effectively suppressed the tumor growth.
70

  

Glycol chitosan was modified with hydrophobic 5β-cholanic acid (Fig. 12) and cisplatin was 

easily encapsulated into chitosan nanoparticles (300 – 500 nm) by dialysis method. 

Nanoparticles were successfully accumulated in tumor tissues in tumor-bearing mice because of 

the prolonged circulation and EPR effect. Encapsulated nanoparticles showed lower toxicity 

compared to free cisplatin.
71
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Fig. 12 Glycol chitosan acylated with hydrophobic cholanic acid 

Paclitaxel (PTX), clinical water insoluble anticancer drug promoting microtubulin 

polymerization, is used against a variety of cancer types, especially breast and ovarian cancer. 

To enhance its solubility, PTX was aggregated with cyclodextrin, liposomes or different 

polymeric micelles which increased EPR effect of PTX and decreased high toxicity of PTX. 

Nanomicelles based on glycol chitosan linked with alkyl chains exhibited low toxicity and high 

biocompatibility. PTX was loaded to nanomicelles by using dialysis method. Enhanced degree 

of substitution of alkyl chains increased drug-loading capacity, drug-loading efficiency and 

long-term stability in aqueous solution (5 days).
72

  

Another study containing PTX probed hydrotropic oligomer-glycol chitosan which was 

synthesized by conjugation with N,N-diethylnicotinamide-based oligomer. PTX was 

encapsulated to nanoparticles (300 nm) with high quantity of 20 wt %. Biodistribution was 

investigated by fluorescence labelled nanoparticles which showed excellent tumor specificity in 

SCC7 tumor-bearing mice, due to enhanced EPR effect.
73

  

Zhang et al.
35 

developed N-octyl-O-sulphate chitosan micelles as the delivery system for PTX. 

Micelles showed high drug-loading capacity and entrapment efficiency. Biodistribution study 

indicated that most of the PTX were distributed in liver, kidney, spleen and lung, the longest 

retention effect was observed in the lung. Antitumor effect of micelles and free PTX was 

observed at dose 10 mg/kg in in vivo antitumor mice model inoculated with sarcoma 180, 

enrich solid carcinoma, hepatoma solidity, Lewis lung cancer cells and A-549 human lung 

cancer cells.  
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Docetaxel (DTX), as well as PTX, have influence on cell mitosis and are able to induce 

apoptosis of cancer cells. DTX was covalently attached to the low MW chitosan via succinyl 

bond (Fig. 13). Half-life in blood of conjugate was 3.8 – 6.2 times higher in comparison with 

the intravenously injected DTX. The orally administered conjugate showed comparable 

antitumor effect as the same dose of DTX administered intravenously (10 mg/kg) which was 

evaluated in nude mice bearing human non-small cell lung carcinoma and glioblastoma.
74

  

 

Fig. 13 Chemical structure of chitosan-DTX conjugate 

Hydrophobical modified glycol chitosan conjugate with 5β-cholanic acid (Fig. 12) was used as 

a drug carrier for DXT. Nanoparticles formed spontaneously self-assembled aggregates (350 

nm) and showed in vivo reasonable stability in the blood stream. Nanoparticles exhibited higher 

tumor efficiency such as reduced tumor volume and increased survival rate in A549 lung cancer 

cells-bearing mice. Anticancer drug toxicity was strongly reduced, compared to that of free 

DTX in tumor-bearing mice.
75

  

Norcantharidin is a new chemotherapy agent which is effective against primary carcinoma of 

the liver as an inhibitor of protein phosphatase 1 and protein phosphatase 2A. Lactosaminated 

N-succinyl chitosan is known as a liver-specific drug carrier.
76

 Asialoglycoprotein receptor is 

located on the hepatocellular carcinoma cell membrane. It can specifically recognize ß-D-

galactose. For this reason, the asialoglycoprotein receptor can be exploited as a hepatocyte 

specific targeting marker for drug delivery. Galactosylated chitosan was prepared with 

norcantharidin as a drug carrier for anti-hepatocarcinoma medicine (Fig. 14). Nanoparticles 

demonstrated satisfactory compatibility with hepatoma cells and strong cytotoxicity against 
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hepatocellular carcinoma cells SMMC-7721 (31.44 µg/mL) and HepG2 (57.88 µg/mL). 

Nanoparticles displayed better tumor inhibition effect in in vivo mice bearing H22 liver tumor 

comparing free norcarditin.
77

  

 

Fig. 14 Scheme of galactosylated chitosan 

3.5. Antioxidant activity 

3.5.1. Reactive oxygen species and chitosan as antioxidant 

Reactive oxygen species (ROS), including superoxide anion radicals (O2
•-
), hydroxyl radicals 

(•OH), and hydrogen peroxide (H2O2) etc., are often generated as the oxidation products of 

biological reactions or exogenous factors. ROS are able to react with most biomolecules as 

lipids, proteins, amines, lipoproteins, carbohydrates, and DNA. ROS are generally unstable and 

can highly activate one or more unpaired electrons in the body. The attack of ROS against 

proteins can produce protein carbonyls and other modifications in some amino acid residues, 

resulting in impairing the function of the protein. Lipid peroxidation is known due to membrane 

lipid destruction caused by ROS. It leads to reduction of membrane fluidity, enhancing of 

membrane permeability and damage of membrane proteins. ROS are able to induce all forms of 

oxidative DNA damage, including bases modifications, base-free sites and DNA-protein cross-

link.
78

 The antioxidant activity of compounds has been attributed to various mechanisms as a 

prevention of chain initiation, a binding of transition metal ion catalysts, a decomposition of 

peroxides, reductive capacity and radical scavenging. 

Scavenging activity of chitosan is due to strong hydrogen-donating ability of chitosan. ROS can 

react with active hydrogen atoms in hydroxyl or amino groups of chitosan to form a most stable 

macromolecular radical. Chitosan has high metal bonding capacity due to free amino groups. 
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As well as in previous parts of this review, MW and concentration have influence on the 

antioxidant activity of chitosan. Low MW and higher concentration showed the most 

antioxidative effect. Conversely, higher MW was the most effective in reducing lipid oxidation. 

The antioxidant effect of different MW of chitosan is attributed to the chelation of metal ions. 

The high MW of chitosan should have lower mobility than the lower MW chitosan which can 

increase the possibility of inter- and intramolecular bonding among the high MW chitosan. This 

could be responsible for less chelation by high MW chitosan.
79,80

  

In several studies, chitosan alone was investigated as potential antioxidant agent. Scavenging of 

hydroxyl radicals by chitosan inhibited the lipid peroxidation of phosphatidylcholine and 

linoleate liposomes.
80

 Similar work realized an experiment with using linoleic acid 

peroxidation. Degradation of suitable MW of chains was made by irradiation. MW of chitosan 

decreased with increasing irradiation dose. Different MW of chitosan showed inhibition of 

linoleic acid peroxidation in the linoleic acid model system. Significant scavenging of 

superoxide radicals (74.2 %) exhibited low MW chitosan (2.1 kDa) at 0.1 mg/mL. Scavenging 

percentage of high MW chitosan (210 kDa) and low MW chitosan against hydroxyl radicals 

was 16.6 % and 63.8 %.
81

  

Yen et al.
 82

 studied antioxidant properties of chitosan from crab shells with different DD. All 

chitosans showed relatively high antioxidant activities 58.3 – 70.2 % at 1 mg/mL and 79.9. – 

85.2 % at 10 mg/mL. Scavenging activities of hydroxyl radicals were in the range of 88.7 – 

94.1 %. At 1 mg/mL, chelating abilities of all chitosans on ferrous ions were 82.9 – 96.5 %. 

Chelating abilities are important in food industry for preservation of flavor and taste of food. 

Transition metal ions can initiate lipid peroxidation, start a chain reaction and deteriorate 

quality of food. High chelating property of chitosan can be beneficial as food supplement.  

Human serum albumin (HSA) is the major target of oxidative stress in uremia and other 

vascular disorders. The result of oxidative stress is increasing levels of HSA carbonyl 

derivatives. Low MW chitosan was able to prevent formation of carbonyl and hydroperoxide 

groups in HSA exposed to peroxyl radical. It was also a potent inhibitor of conformational 

changes in protein.
20

 Treatment with chitosan for four weeks decreased the ratio of oxidized 

albumin and increased total plasma antioxidant activity.
83
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3.5.2. Antioxidant activity of chitosan derivatives 

N-carboxymethyl chitosan oligosaccharides were prepared with different degrees of 

substitution. The scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals was 

measured. The antioxidant effect decreased with increasing degree of substitution. Lower 

degree of substitution has resulted in more active amino groups that could donate more 

hydrogens to the reaction with DPPH radicals.
84

  

ROS are involved in the progression of tumor-induced angiogenesis because they can positively 

activate several kinds of matrix metalloproteinases (MMPs). MMPs significantly play a 

substantial role in the pathogenesis of various chronic diseases, because they are secreted by 

some cancer cells and other various types of cells. Especially, MMP-2 and MMP-9 degrade 

components of the basement membrane are responsible for tumor invasion and metastasis. 

Carboxymethylated chitosan was studied as an inhibitor of the expression of MMP-2 and 

MMP-9 in HT1080 human fibrosarcoma cells. In accordance with gelatin zymographic 

analysis, carboxymethylated chitosan down-regulated expession of both MMPs without any 

cytotoxic influence. Carboxymethylated chitosan showed also high inhibition of membrane 

protein oxidation and membrane lipid oxidation.
78

  

Antioxidant activities of high and low MW chitosan-N-2-hydroxy-N,N,N-trimethylpropan-1-

amonium chloride were compared (Fig. 7). Scavenging rates enhanced with increasing 

concentrations. Low MW form had stronger scavenging effect on O2
•-
 (87 % at 0.8 mg/mL) and 

•OH (45 % at 3.0 mg/mL) also reducing power was more pronounced than high MW 

quaternary chitosan. The chelating effect of ferrous ion of both molecules was not 

concentration dependent. Chelating potency increased at 0.1 mg/mL (53 %) and decreased 

afterwards with increasing concentrations (5 %).
85

  

Quaternized carboxymethyl chitosan derivatives were prepared with degree of quaternization in 

the range of 34.3 – 59.5 %. All derivatives showed better scavenging activity against hydroxyl 

radicals than chitosan. Scavenging activity increased with increasing degree of quaternization, 

it signified the influence of the positive charge on the scavenging activity against •OH.
86
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Zhong et al. 
87

 reported enhanced scavenging effect on O2
•-
 (80 - 90 % at 0.4 mg/mL) and •OH 

(55 – 75 % at 0.7 mg/mL), and also reducing power of chitosan connected with 5-chloro-4-

hydroxybenzene-1,3-disulphonyl dichloride or 5-chloro-2-hydroxybenzene-1,3-disulphonyl 

dichloride. Hydroxyl and amino groups of chitosan and hydroxyl group of disulfonamides 

reacted with hydroxyl radical to form stable macromolecular radicals.  

The same collective determined antioxidant activity of 2-phenylhydrazinecarbothioamide 

chitosan or hydrazinecarbothioamide chitosan (Fig. 15). Two different MW and two 

substituents were studied. Better scavenging effect on O2
•-
 (80 - 90 % at 0.4 mg/mL) and •OH 

(70 – 90 % at 1.4 mg/mL), and also reducing power in range 1.0 – 1.5 mg/mL were exhibited 

by both low MW products.  –NH- and C=S groups were able to react with free radicals and 

increased the antioxidant activity of chitosan.
88

  

 

Fig. 15 Structure of 2-phenylhydrazinecarbothioamide chitosan and hydrazinecarbothioamide 

chitosan 

Natural compounds with antioxidant activity obtained from plants are used for improving 

antioxidant effect of polymers. Natural phenolic antioxidant gallic acid was connected to 

chitosan in presence of N-(3-dimethylaminopropyl)-N´-ethylcarbodiimide (Fig. 16). Significant 

activities showed chitosan derivative with degree of substitution 15.62 %. The galloyl group 

could effectively transfer a hydrogen atom, forming stable semiquinone radicals, which was 

observed in electron paramagnetic resonance spectrum of chitosan gallate.
89

 DPPH scavenging 

capacity was 87.3 % at concentration 1200 µM. Scavenging activity of carbon-centered radical 

R•, which is one of the representative oxidized products in lipid membranes and lipoproteins, 

needed 200 µM for 60 %. Chitosan gallyl amide, with only a certain amount of gallate groups, 

showed antioxidant activity on •OH close to the pure gallic acid. This result could be due to 
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synergistic effect in •OH scavenging of both components of the complex chitosan gallyl 

amide.
90

  

 

Fig. 16 Structure of chitosan gallyl amide 

For their strong antioxidant effect, polyphenolic structures were tried to enhance antioxidant 

activity of chitosan. Green tea extract was incorporated to chitosan film. Green tea is a good 

source of polyphenolic compounds having strong antioxidant properties, especially the ability 

to scavenge reactive oxygen and nitrogen species. DPPH scavenging assay showed presumable 

synergistic effect of chitosan and extract which enhanced antioxidant activity of film (51 % at 

20 % of incorporated amount). Extract also improved mechanical and water vapor barrier 

properties of chitosan film.
91

  

Chitosan fibres were grafted with chemically different flavonoids – flavanols, flavonol, flavone, 

flavanone, isoflavone. Tyrosinase was used to produce reactive o-semiquinones that were 

covalently bonded to the amino group of chitosan. Generally, flavanoles exhibited the highest 

values in the range of 69 – 88 % in DPPH free radical scavenging assay, superoxide anion 

scavenging activity and also total antioxidant activity.
92

  

3.5. Chitosan connected with antituberculotics 

3.5.1. Chitosan conjugated with INH, PZA and ETA (Paper III) 

Chemical modifications of chitosan improve water solubility and inhibition effect against 

bacteria. To the best of our knowledge no studies aimed to the antimycobacterial activity of 

chitosan or chitosan derivatives against M. tbc. complex or other strains of mycobacteria have 

not been published yet. O-carboxymethyl (OCMC, 1) or N-succinyl (NSCS, 4) chitosan was 

linked with INH, PZA and ETA (3a - 3c, 6a - 6c) (Scheme 1, 2). The prepared chitosan 

derivatives were tested in vitro for antimycobacterial activity against M. tbc. 331/88 and some 
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non-TB strains such as M. avium (330/88) and M. kansasii (235/80 and 6509/96) (Table 1). 

Compounds 3a - 3c and 6a - 6c have shown the same MIC of 125 µg/mL. O-carboxymethyl 

chitosan 1 (without substitution of antituberculotic drug) showed minimum inhibitory 

concentration 62.5 µg/mL against M. tbc., 31.25 and 62.5 µg/mL against M. avium. N-succinyl 

chitosan 4 has considerably lower activity (500 µg/mL) against these strains. 4 Exhibited good 

activity against M. kansassi after 7 days (62.5 µg/mL).  

In general, it seems that there are two factors influencing the activity of compounds. Firstly, 

presence of the first or second line antituberculotic drugs (INH, PZA, ETA) which is important 

in the inhibition of mycobacteria. Although, the degree of substitution is not high, products 3a - 

3c and 6a - 6c have exhibited very good antimycobacterial activity. The second factor is 

probably an antibacterial activity of original chitosan structure which corresponds with the 

inhibition values against M. tuberculosis and M. avium of 1 and probably contribute to 

mycobacterial growth inhibition. The explication of this activity could be high degree of 

deacetylation of chitosan. It means that the amino group as the active functional group 

(chelating divalent cation) was found to be essential for the antibacterial activity of chitosan. 

MIC values of 3a - 3c and 6a - 6c are equal for all tested strains, this implies that amount of 

free amino groups in chitosan derivatives should be the same. 

Table 1. Values of antimycobacterial activity and in vitro cytotoxicity 

   MIC [µg/mL [mg/mL 

 

M. tbc 

331/88 

M. avium 

330/88 

M. kansasii 

235/80 

M. kansasii 

6509/96 
HepG2 

IC50 

PBMC 

IC50 

14 d 21 d 14 d 21 d 7 d 14 d 21 d 7 d 14 d 21 d 

OCMC 62.5 62.5 31.25 62.5 125 125 125 125 125 125 2.83 > 1.67 

NSCS >500 >500 500 >500 62.5 500 >500 250 >500 >500 > 3 NT 

3a 125 125 125 125 125 125 125 125 125 125 2.13 > 1.78 

3b 125 125 125 125 125 125 125 125 125 125 > 3 > 9.35 

3c 125 125 125 125 125 125 125 125 125 125 2.32 NT 

6a 125 125 125 125 125 125 125 125 125 125 > 3 > 3.54 

6b 125 125 125 125 125 125 125 125 125 125 2.72 > 8.86 
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6c 125 125 125 125 125 125 125 125 125 125 2.96 NT 

NT = not tested 

The conjugation of chitosan and antituberculotics was aimed to decrease of the toxic effect of 

drugs on hepatocytes. Cytotoxicity test was evaluated on human liver cell line Hep G2. 

Cytotoxicity of prepared compounds was tested also on human peripheral blood mononuclear 

cells (PBMC) which contain macrophages and monocytes. Immune system plays important role 

during a long-time treatment and latent TB. All tested compounds in examination range of 

concentrations have not exhibited obvious cytotoxic effect on PBMC (higher than 1.67 – 9.35 

mg/mL) and Hep G2 cells (Table 1). Compounds 4, 3b and 6a showed values of IC50 higher 

than 3 mg/mL. Chitosan has exhibit possibility to compensate cytotoxic effect of 

antituberculotic drugs.  

Briefly, O-carboxymethyl (OCMC) or N-succinyl (NSCS) chitosan was linked with INH, PZA 

and ETA in presence of equimolar amount of EDC at 0 - 5 °C. Water solubility of prepared 

conjugates was improved by phosphorylation (Scheme 1, Scheme 2). All prepared compounds 

were characterized by IR spectra and 
1
H NMR spectra. 

 

 

Scheme 1. Conjugation of OCMC and antituberculotic drugs 
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Scheme 2. Conjugation of NSCS and antituberculotic drugs 

DD of chitosan was found out by elemental analysis and calculation from ratio C/N. Chitosan 

had DD 20.04 %. MW was determined by measurement of viscosity and calculated according 

to the Mark – Houwink equation formula
93

 which is recommended for polymers. Original 

chitosan had MW 29972 Da, prepared intermediates and derivatives had significantly lower 

MW 13 – 17 kDa. Half values of molecule weights were probably caused by synthetic 

procedure. Degree of substitution (DS) was determined using UV spectrophotometric technique 

on the base of calibration curves. Percentages of a content of antituberculotic drugs were low, 

around 1 %.  

3.5.2. Chitosan conjugated with second line antituberculotic drugs 

Results presented in the Paper III led us to continue in the synthesis of chitosan derivatives 

linkage with some second line and quinolone antituberculotics. 

D-Cycloserin (CS) ((R)-4-aminoisoxazolidin-3-one) inhibits D-alanine racemase and D-

alanine-D-alanine synthetase. Enzymes are essential for synthesis of peptidoglycan, 

subsequently synthesis of cell wall and their maintenance. CS is more effective against G
+
 than 

against G
-
 bacteria. Toxicity of CS is associated with effective dosage; nevertheless, due to 

MDR TB strains CS is still used as a second line antituberculotic drug.
94

 Administration of high 

doses of CS (1g/day) led to the symptoms of neurotoxicity, on the other side, CS exhibits 
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anticonvulsant properties in experimental epilepsy models.
95

 In vitro activity of CS against M. 

tbc. is in wide range 1.5 - 30 µg/mL depending on the medium.
96

 

The structure of p-aminosalicylic acid (4-amino-2-hydroxybenzoic acid) (PAS) is similar to 

sulphonamides. The mechanism of action was interpreted as the competitive inhibition of p-

aminobenzoic acid which is necessary for a synthesis of dihydrofolic acid. More probable 

mechanism consists in chelation of extracellular ferric cations. Fe
2+

 and Fe
3+

 are important for a 

transport into mycobacteria, ferric cations are essential for them. Current data showed that PAS 

is able to effectively chelate manganese concentration during manganese intoxication.
97

 PAS is 

a bacteriostatic drug that is primarily active against M. tbc with MIC of 0.5 – 2 µg/mL.
96

  

Fluoroquinolones are a group of synthetic wide spread antimicrobial agents used in daily 

medicine practice. They are divided into four generations with strong inhibition effect against 

G
+
, G

-
 and some of anaerobic bacteria. Generally, main side effects are neurotoxicity and 

gastrointestinal symptoms. They are responsible for binding of prokaryotic DNA gyrase and 

bacterial topoisomerase IV, belonging to the group of II-topoisomerase enzymes. Mechanism of 

action is based on the 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acid skeleton of 

fluoroquinolones. Two coplanar carbonyl groups are bonding sites for DNA gyrase. 6-Fluoro 

and 7-piperazinyl groups are responsible for the broad spectrum of antibacterial activities. 

Chemical modifications at C7 are suitable for controlling the pharmacokinetic properties.
98

 

Resistance to quinolones is often induced by mutations of replication genes and segregation of 

chromosomal DNA. Several types of mutation are determined by region of gyrA which encodes 

the DNA gyrase subunit A. They are associated with high level of fluoroquinolones resistance 

in M. tbc.
99

  

Quinolones which were used for connection with chitosan belong to second and third 

generations. Quinolones of II. generation: 1) Norfloxacin (NFX) is effective against 

Enterobacteriacea. Efficiency to G
+
 and mycobacteria is weak. Usually NFX is prescribed to 

urinary infections. 2) Ciprofloxacin (CPX) has inhibition effect against most of G
-
, S. aureus, 

M. tbc. (4 µg/mL)
100

, Mycobacterium fortuitum and Mycobacterium kansasii. CPX is 

prescribed to urinary infections and enterocolitis. Administration of CPX is intravenous or per 

oral due to high bio-availability (85 %).
101

 3) Ofloxacin (OFX) is used in similar cases as CPX. 
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Antimicrobial activity is weaker against Pseudomonas aeruginosa. In vitro activity against M. 

tbc. is 2 µg/mL.
100

 4) Levofloxacin (LVX) is S-isomer of OFX and ten times more efficient 

than R-isomer. LFX exhibits the same properties as OFX, LFX shows significant effect against 

penicillin resistant Streptococcus pneumoniae.
102

 In vitro activity against M. tbc. is 1 µg/mL.
100

  

Quinolones of III. generation: 1) Enoxacin (ENX) has very broad spectrum on G
-
 bacteria, 

staphylococci and aminoglycoside-resistant microorganism. ENX demonstrates high 

penetration into kidney and 94.7 % long-term eradication rate against E. coli.
103

 2) 

Lomefloxacin (LMX) has been used in clinical trials and is approved in several countries for 

the treatment of infections caused by a variety of organisms, particularly G
-
 (including 

Pseudomonas spp., Klebsiella spp., E. coli , and Haemophilus influenzae).
104

 3) Sparfloxacin 

(SPX) is characterized by excellent activity against G
+
 (Streptococcus pneumoniae) and 

selected activity against anaerobes and atypical pathogens. Metal complexes of SPX (Fe
2+

–SPX 

and Cd
2+

–SPX) exhibited significantly higher antibacterial and antifungal activity than free 

SPX.
105

  

Principle of the synthesis of chitosan compounds was similar as in the Paper III. Three 

approaches of synthesis were developed. O-carboxymethyl or N-succinyl chitosan exhibited 

good water solubility and were used for the connection with second line antituberculotic drugs. 

Third possibility of linkage was a direct bond between chitosan and drugs. This synthetic way 

was utilized for fluoroquinolones. NFX, CPX, ENX, LMX and SPX have free secondary amino 

group in piperazinyl ring which was primarily protected by acetylation. Following step was 

ordinary reaction with primary amino group of free chitosan and free carboxylic group of 

protected fluoroquinolones. Phosphorylation as a final step proceeded with presence of 

methanesulfonic acid and phosphorus pentoxide. Acetylated amino group in piperazinyl ring 

was deprotected during this reaction due to low pH. Generally, phosphorylation enhanced 

solubility of aqueous solutions. 

O-carboxymethyl chitosan was connected with PAS or CS through an activation of carboxylic 

groups by EDC (Scheme 3). The reaction of PAS has two possibilities of linkage: first covalent 

bond can connect carboxylic group of OCMC and amino group of PAS; second linkage can 

exist between amino group of OCMC and carboxylic group of PAS. In the second step of 
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synthesis, derivatives were phosphorylated by methanesulfonic acid and phosphorus pentoxide. 

Finally, both compounds were dissolved in 10 % solution of NaOH. 

 

 

Scheme 3. Conjugation of OCMC and antituberculotic drugs 

Second approach of synthesis was based on the connection of N-succinyl chitosan with PAS or 

CS with activation of carboxylic groups by EDC. For increasing water solubility, derivatives 

were phosphorylated by methanesulfonic acid and phosphorus pentoxide (Scheme 4). 

Compound 6d was completely dissolved in water, compound 6e was dissolved in 10 % solution 

of NaOH. 

 

 

Scheme 4. Conjugation of NSCS and antituberculotic drugs 
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Secondary amino groups of piperazinyl ring were protected by acetylation which is common 

procedure for blocking of amino group. N-acetylation has been performed at 70 °C in the 

presence of acetyl chloride and triethylamine in solution of dimethylformamide
106

 (Scheme 5). 

Products were purified by column chromatography, as a mobile phase was used chloroform-

ethanol 8:2. Yields of acetylated quinolones were in the range of 34 – 57 %. 

 

Scheme 5. Synthesis of acetylated fluoroquinolones 

Third approach of synthesis was covalent linkage between amino group of chitosan and 

protected fluoroquinolones with activation of carboxylic groups by EDC (Scheme 6). 

Following steps are similar as in the previous procedures (Scheme 1, 2). All compound 8a-8g 

were slightly dissolved in water and showed low solubility in 10 % solution of NaOH. 
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Scheme 6. Conjugation of chitosan and antituberculotic drugs 

3.5.2.1. Determination of degree of deacetylation 

Degree of deacetylation of chitosan was calculated from ratio C/N of chitosan. Data from 

elemental analysis were used and degree of acetylation was calculated by the formula: DA = 

((C/N)-5.145)/(6.861-5.145)x100. Number 5.145 corresponds to complete N-deacetylated 

chitosan and 6.861 exhibits fully acetylated chitosan. Resulting degree of deacetylation for 

origin chitosan is 20.04% which is in accordance with the information from Sigma-Aldrich. 

3.5.2.2. Determination of molecular weight 

Molecular weight (MW) of products was calculated from viscosity measurement. As an 

aqueous solution system 0.3 M acetic acid/0.2 M sodium acetate at 25 °C was chosen. Stock 
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solutions were prepared from all synthesized compounds. The Mark – Houwink equation 

formula was used for calculation of MW: [] = K . M
a
; [] is intrinsic viscosity, M is molecular 

weight, K and a are viscometric constants depending on the degree of deacetylation of chitosan. 

Values for constants were K = 0.074 cm
3
 g

-1
 and a = 0.76. Resulting MW are summarized in 

Fig. 17. Original chitosan had MW 29972 Da but the synthetic procedure resulted in the 

significant degradation of the polymer backbone.  

 

Fig. 17 Molecular weights of chitosan and prepared compounds 

3.5.2.3. Determination of degree of substitution 

Degree of drug substitution on prepared compounds was determined by UV spectrophotometric 

technique on the base of calibration curve method. Calibration curve was expressed for CS, 

PAS and CPX. Degree of substitution was calculated as a percentage of drug from whole 

polymeric molecule of product. Calibration solutions of CS and PAS were dissolved in water, 

calibration solutions of CPX were dissolved in 1 % CH3COOH. Samples of products were 

dissolved in water (3d) or 10 % NaOH (3e, 6d, 6e, 8a-8g). Fig. 18 summarizes degree of 

substitution of each prepared compound. In general, percentage of a content of antituberculotic 

drugs was low which is in accordance with the Paper III. The highest values of substitution 
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exhibited compounds 3d (4.24 %), 6d (5.60 %) and 6e (5.95 %). The reason of high degree of 

substitution of 3d can be reaction of amino and carboxylic groups of OCMC and amino and 

carboxylic groups of PAS. Final product is double substituted. This idea is supported by half 

degree of substitution of 6d. Both CS derivatives 6d, 6e have degree of substitution higher than 

5 %. Degrees of substitution of other prepared compounds 3e, 8a-8g are between 0.5 – 2.3 %. 

 

Fig. 18 Degree of substitution of prepared compounds 

3.5.2.4. Experimental part 

All chemicals were obtained from Sigma-Aldrich Co. Melting points were determined on the 

Büchi Melting Point B-540. Elemental analyses (C, H, N) were performed with a Perkin-Elmer 

2400 CHNS/O analyzer. Infrared spectra were recorded on a Bio-Rad FTS 3000 MX 

spectrometer in ATR. NMR spectra were measured in DMSO-d6 or D2O solutions on a Bruker 

Avance 300 (300 MHz for 
1
H and 75.5 MHz for 

13
C). The chemical shifts, , are given in ppm, 

related to tetramethylsilane (TMS) as an internal standard. The coupling constants (J) are 

reported in Hz. The reactions were monitored and the purity of the products was checked by 

TLC (Fluka silica gel/TLC cards 60 PF254). The plates were visualized using UV light. Names 

of compounds were generated and structures were drawn with ChemBioDraw Ultra 11.0 and 

are formatted as ACS Document 1996. 
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General procedure of the synthesis of acetylated fluoroquinolones 

Fluoroquinolone (1 mmol) was dissolved in dimethyl formamide (60 ml) at 70 °C. One molar 

equivalent of triethylamine and one molar equivalent of acetyl chloride were added. The 

mixture was stirred at 70 °C for 2 hours. The mixture was cooled to room temperature, excess 

of solvent was evaporated in vacuum and the residue was dissolved in dichloromethane (2x25 

mL) and filtered. Column chromatography was used for cleaning the product (mobile phase: 

chloroform - ethanol 8:2). 

Data of acetylated fluoroquinolones (7a, 7b, 7e – 7g) 

General structure  

7-(4-acetylpiperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic 

acid (7a) Yield 34.54 %; mp 250-252 °C. IR (ATR): 2920, 2849, 1733, 1668 (CO-NH), 1622, 

1497, 1440, 1381 (CH3), 1337, 1246, 1213, 1143, 1025, 999, 972, 885, 831, 804, 780, 748 cm
-1

. 

1
H NMR (DMSO-d6, 300 MHz): δ 8.64 (s, 1H), 7.88 (d, J = 13.2 Hz, 1H), 7.55 (d, J = 7.4 Hz, 

1H), 3.79 (m, 1H), 3.65 (m, 4H, CH2), 3.29 (m, 4H, CH2), 2.06 (s, 3H), 1.38 (m, 2H), 1.17 (m, 

2H). 
13

C NMR (DMSO-d6, 75 MHz): 176.5, 168.6, 166.1, 161.2, 154.8, 148.2, 145.2, 139.3, 

119.0, 111.1, 106.9, 49.8, 45.5, 36.1, 21.4, 7.8. Anal. Calcd for C19H20FN3O4 (373.38): C, 

61.12; H, 5.40; N, 11.25. Found: C, 59.81; H, 5.63; N, 10.94. 

7-(4-acetylpiperazin-1-yl)-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (7b) 

Yield 49.00 %; mp 232-234 °C. IR (ATR): 2836, 1727, 1698 (CO-NH), 1626, 1479, 1458, 

1377 (CH3), 1301, 1243, 1213, 1144, 1124, 1103, 1034, 987, 932, 887, 827, 805, 749 cm
-1

. 
1
H 

NMR (DMSO-d6, 300 MHz): 8.96 (s, 1H), 7.94 (d, J = 13.2 Hz, 1H), 7.24 (d, J = 7.2 Hz, 1H), 

4.61 (q, J = 6.9 Hz, 2H), 3.53 (d, J = 4,9 Hz, 4H, CH2), 3.40 (d, J = 4,6 Hz, 4H, CH2), 2.42 

(s,3H), 1.44 (t, J = 7.0 Hz, 3H, CH3). 
13

C NMR (DMSO-d6, 75 MHz): 176.4, 166.2, 158.5, 

153.9, 152.0, 148.9, 144.6, 137.3, 120.1, 111.5, 107.3, 106.7, 49.3, 46.8, 42.8, 14.6. Anal. 



41 

 

Calcd for C18H20FN3O4 (361.37): C, 59.83; H, 5.58; N, 11.63. Found: C, 60.11; H, 5.25; N, 

11.41. 

7-(4-acetylpiperazin-1-yl)-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic 

acid (7e) Yield 57.20 %; mp 218-220 °C. IR (ATR): 2891, 2554, 1723, 1658 (CO-NH), 1626, 

1579, 1471, 1443, 1403, 1366, 1342, 1271, 1173, 1159, 1107, 1036, 942, 919, 827, 790, 731 

cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 8.97 (s, 1H), 7.97 (d, J = 6.3 Hz, 1H), 4.42 (m, 2H), 

3.68 (m, 4H, CH2), 2.82 (m, 4H, CH2), 2.43 (s, 3H), 1.38 (t, J = 7.3 Hz, 3H, CH3). 
13

C NMR 

(DMSO-d6, 75 MHz): 176.4, 166.1, 150.1, 148.1, 147.8, 146.0, 145.1, 119.4, 112.5, 108.2, 

48.5, 47.4, 45.8, 40.2, 14.9. Anal. Calcd for C17H19FN4O4 (362.36): C, 56.35; H, 5.29; N, 15.46. 

Found: C, 56.74; H, 5.46; N, 15.82. 

7-(4-acetyl-3-methylpiperazin-1-yl)-1-ethyl-6,8-difluoro-4-oxo-1,4-dihydroquinoline-3-

carboxylic acid (7f) Yield 44.80 %; mp 235-237 °C. IR (ATR): 2697, 2456, 1722, 1690 (CO-

NH), 1613, 1542, 15424, 1492, 1473, 1450, 1393 (CH3), 1329, 1300, 1254, 1206, 1115, 1042, 

1007, 979, 933, 892, 808, 757 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 9.31 (s, 1H, COOH), 8.98 

(s, 1H), 7.94 (d, J = 4.8 Hz, 1H), 4.59 (m, 2H), 3.71 (m, 4H, CH2), 3.32 (m, 4H, CH2), 2.46 (s, 

3H), 1.44 (t, J = 6.4 Hz, 3H, CH3), 1.23 (s, 3H, CH3). 
13

C NMR (DMSO-d6, 75 MHz): 176.7, 

166.1, 160.2, 152.5, 147.6, 142.9, 138.5, 120.6, 111.3, 107.1, 106.9, 49.2, 46.5, 42.9, 17.5, 

15.4. Anal. Calcd for C19H21F2N3O4 (393.38): C, 58.01; H, 5.38; N, 10.68. Found: C, 58.26; H, 

5.62; N, 10.29. 

7-((3R,5S)-4-acetyl-3,5-dimethylpiperazin-1-yl)-5-amino-1-cyclopropyl-6,8-difluoro-4-oxo-

1,4-dihydroquinoline-3-carboxylic acid (7g) Yield 54.80 %; mp 261-263 °C. IR (ATR): 2962, 

2841, 1712, 1684 (CO-NH), 1641, 1585, 1530, 1440, 1395 (CH3), 1332, 1292, 1185, 1150, 

1084, 1029, 997, 963, 911, 808, 759 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 8.50 (s, 1H), 7.30 

(s, 2H, NH2), 3.26 (m, 4H, CH2), 2.88 (s, 2H, CH), 2.49 (m, 1H, CH), 2.05 (s, 3H, CH3), 1.34 

(s, 6H, CH3), 1.03 (d, J = 5.9 Hz, 4H, CH2). 
13

C NMR (DMSO-d6, 75 MHz): 180.4, 169.0, 

165.6, 162.2, 150.4, 136.5, 134.3, 128.1, 105.7, 57.5, 55.6, 51.0, 36.0, 30.9, 21.6, 19.2, 8.6. 

Anal. Calcd for C21H24F2N4O4 (434.44): C, 58.06; H, 5.57; N, 12.90. Found: C, 57.82; H, 5.69; 

N, 13.27. 

General procedure of the synthesis of compounds 3d, 3e, 6d, 6e 
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500 mg of O-carboxymethyl (1) or N-succinyl chitosan (4) was dissolved in water and 200 mg 

of appropriate drug (CS or PAS) was added. The mixture was cooled at 0 - 5 °C. The 

carboxylic group was activated with 220 mg of N-(3-dimethylaminopropyl)-N´-

ethylcarbodiimide and the reaction mixture was stirred at 0 - 5 °C for 3 hours, then the 

temperature gradually increased to the room temperature. After 24 hours without isolation 2 ml 

of methanesulfonic acid and 300 mg of phosphorus pentoxide was added to the mixture. The 

reaction was stirred at 0 - 5 °C for 3 hours. The mixture was cooled overnight in a freezer and 

then products 3 or 6 were precipitated with acetone. 

Data of compounds 3d, 3e, 6d, 6e 

General structures ,       

GluN and GluNAc are abbreviations which occur at the interpretations of 1H NMR for units of 

chitosan D-glucosamine and N-acetyl-D-glucosamine. 

OCMC conjugated with PAS (3d) Yield 82.15 %. IR (ATR): large peak 1633 (ν (CO-NH)), 

large peak 1434 (ν (COO
-
)), sharp peak 1246 (ν (P=O)), sharp intensive peak 1198 (δ (N-H)), 

strong peak 1061 (δ (sec. OH)), 788 (δ (C-H arom. ring)) cm
-1

. 
1
H NMR (DMSO-d6, 300 

MHz): 6.65 (s, 1H, H5´), 6.13 (m, 1H, H6´), 5.42 (s, 1H, H2´), 4.60 (s, 1H, H1 (GluN)), 4.40 (s, 

1H, H1 (GluNAc)), 4.34 (s, 1H, NH), 3.15-2.80 (4H, H3, H4, H5, H6), 3.34 (s, 2H, CH2), 2.94 

(m, 1H, H2 (GluNAc)), 2.22 (s, 1H, H2 (GluN)), 1.59 (m, 3H, CH3).  

OCMC conjugated with CS (3e) Yield 87.26 %. IR (ATR): large peak 1658 (ν (CO-NH)), thin 

band 1577 (ν (CO-NH II.); δ (NH2)), thin band 1414 (δ (CH2, CH3)), sharp peak 1249 (ν 

(P=O)), sharp intensive peak 1189 (δ (N-H)), strong peak 1060 (δ (sec. OH)), 991, 788 cm
-1

. 
1
H 

NMR (DMSO-d6, 300 MHz): 6.14 (s, 1H, NH), 4.67 (s, 1H, H1 (GluN)), 4.33 (s, 1H, H1 

(GluNAc)), 3.99 (s, 1H, NH), 3.83 (m, 2H, CH2), 3.34 (m, 1H, CH), 3.26 (m, 2H, CH2), 3.10-
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2.85 (4H, H3, H4, H5, H6), 2.72 (s, 1H, H2 (GluNAc)), 2.21 (s, 1H, H2 (GluN)), 1.59 (m, 3H, 

CH3). 

NSCS conjugated with PAS (6d) Yield 91.11 %. IR (ATR): large peak 1647 (ν (CO-NH)), thin 

band 1597 (ν (CO-NH II.); δ (NH2)), thin band 1438 (δ (CH2, CH3)), sharp peak 1263 (ν 

(P=O)), sharp intensive peak 1184 (δ (N-H)), strong peak 1051 (δ (sec. OH)), 786 (δ (C-H 

arom. ring)) cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 8.34 (s, 1H, OH), 7.09 (s, 1H, H5´), 5.86 

(m, 1H, H6´), 5.82 (s, 1H, H2´), 4.98 (s, 1H, H1 (GluN)), 4.82 (s, 1H, H1 (GluNAc)), 4.71 (s, 

1H, NH), 3.58-3.25 (4H, H3, H4, H5, H6), 3.17 (s, 4H, -CH2-CH2-), 2.64 (m, 1H, H2 

(GluNAc)), 2.21 (s, 1H, H2 (GluN)), 2.02 (m, 3H, CH3). 

NSCS conjugated with CS (6e) Yield 93.20 %. IR (ATR): large peak 1659 (ν (CO-NH)), large 

peak 1642 (ν (CO-NH I.)), thin band 1549 (ν (CO-NH II.); δ (NH2)), large band 1441 (δ (CH2, 

CH3)), sharp peak 1249 (ν (P=O)), sharp intensive peak 1191 (δ (N-H)), small peak 1061 (δ 

(sec. OH)), 1012, 868, 788 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 6.14 (s, 1H, NH), 4.80 (s, 

1H, H1 (GluN)), 4.35 (s, 1H, H1 (GluNAc)), 3.92 (s, 1H, NH), 3.80 (m, 2H, CH2), 3.30 (m, 1H, 

CH), 3.16-2.75 (4H, H3, H4, H5, H6), 2.44 (s, 4H, -CH2-CH2-), 2.22 (s, 1H, H2 (GluNAc)), 

1.78 (s, 1H, H2 (GluN)), 1.59 (m, 3H, CH3). 

General procedure of the synthesis of compounds 8a – 8g 

500 mg of chitosan was dissolved in water and 100 mg of appropriate fluoroquinolones or 

acetylated forms (OFX, LFX, 7a, 7b, 7e, 7f and 7g) were added. The mixture was cooled at 0 - 

5 °C. The carboxylic group of quinolones was activated with 120 mg of N-(3-

dimethylaminopropyl)-N´-ethylcarbodiimide and the reaction mixture was stirred at 0 - 5 °C for 

3 hours, then the temperature gradually increased to the room temperature. After 24 hours 

without isolation 2 ml of methanesulfonic acid and 300 mg of phosphorus pentoxide was added 

to the mixture. The reaction was stirred at 0 - 5 °C for 3 hours. The mixture was cooled 

overnight in a freezer and then products 8a-8g were precipitated with acetone. 

Data of compounds 8a – 8g 
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General structure    

Chitosan conjugated with CPX (8a) Yield 82.97 %. IR (ATR): large peak 1665 (ν (CO-NH)), 

large peak 1619 (ν (CO-NH I.)), thin band 1581 (ν (CO-NH II.); δ (NH2)), thin band 1487 (δ 

(CH2, CH3)), sharp peak 1262 (ν (P=O)), sharp intensive peak 1107 (δ (C-N)), small peak 1063 

(δ (sec. OH)), 979 (ν (P-O-R)), 850, 750 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 7.93 (s, 1H, 

arom. H), 7.81 (s, 1H, arom. H), 6.14 (s, 1H, arom. H), 4.60 (s, 1H, H1 (GluN)), 4.34 (s, 1H, 

H1 (GluNAc)), 4.27 (s, 1H, NH), 3.35 (m, 4H, CH2), 3.33 (m, 4H, CH2), 3.06-2.83 (4H, H3, 

H4, H5, H6), 2.71 (s, 1H, H2 (GluNAc)), 2.22 (s, 1H, H2 (GluN)), 1.59 (m, 3H, CH3), 1.31 (m, 

4H, CH2). 

Chitosan conjugated with NFX (8b) Yield 91.20 %. IR (ATR): large peak 1665 (ν (CO-NH)), 

large peak 1630 (ν (CO-NH I.)), thin band 1584 (ν (CO-NH II.); δ (NH2)), thin band 1482 (δ 

(CH2, CH3)), sharp peak 1268 (ν (P=O)), sharp intensive peak 1105 (δ (C-N)), small peak 1068 

(δ (sec. OH)), 982 (ν (P-O-R)), 853, 748 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 7.86 (s, 1H, 

arom. H), 7.55 (s, 1H, arom. H), 6.23 (s, 1H, arom. H), 4.59 (s, 1H, H1 (GluN)), 4.28 (s, 1H, 

H1 (GluNAc)), 4.11 (s, 1H, NH), 3.29 (m, 4H, CH2), 3.14 (m, 4H, CH2), 3.16-2.87 (4H, H3, 

H4, H5, H6), 2.74 (s, 1H, H2 (GluNAc)), 2.21 (s, 1H, H2 (GluN)), 1.59 (m, 3H, CH3), 1.32 (m, 

2H, CH2), 0.48 (t, 3H, CH3). 

Chitosan conjugated with OFX (8c) Yield 85.42 %. IR (ATR): large peak 1659 (ν (CO-NH)), 

large peak 1626 (ν (CO-NH I.)), thin band 1581 (ν (CO-NH II.); δ (NH2)), thin band 1413 (δ 

(CH2, CH3)), sharp peak 1264 (ν (P=O)), 1192, sharp intensive peak 1107 (δ (C-N)), small peak 

1062 (δ (sec. OH)), 990 (ν (P-O-R)), 924, 788 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 6.78 (s, 

1H, arom. H), 5.00 (s, 1H, H1 (GluN)), 4.65 (s, 1H, H1 (GluNAc)), 4.53 (s, 1H, NH), 3.71 (m, 

4H, CH2), 3.66 (m, 4H, CH2), 3.46-3.29 (4H, H3, H4, H5, H6), 2.80 (s, 1H, H2 (GluNAc)), 

2.22 (s, 1H, H2 (GluN)), 2.01 (m, 3H, CH3), 1.90 (m, 3H, CH3), 1.69 (m, 3H, CH3). 

Chitosan conjugated with LFX (8d) Yield 89.36 %. IR (ATR): large peak 1668 (ν (CO-NH)), 

large peak 1619 (ν (CO-NH I.)), thin band 1580 (ν (CO-NH II.); δ (NH2)), thin band 1414 (δ 
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(CH2, CH3)), sharp peak 1262 (ν (P=O)), sharp intensive peak 1107 (δ (C-N)), 980 (ν (P-O-R)), 

890, 750 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 6.77 (s, 1H, arom. H), 5.00 (s, 1H, H1 (GluN)), 

4.65 (s, 1H, H1 (GluNAc)), 4.53 (s, 1H, NH), 3.70 (m, 4H, CH2), 3.68 (m, 4H, CH2), 3.46-3.31 

(4H, H3, H4, H5, H6), 2.80 (s, 1H, H2 (GluNAc)), 2.20 (s, 1H, H2 (GluN)), 2.01 (m, 3H, CH3), 

1.90 (m, 3H, CH3), 1.70 (m, 3H, CH3). 

Chitosan conjugated with ENX (8e) Yield 90.80 %. IR (ATR): large peak 1665 (ν (CO-NH)), 

large peak 1619 (ν (CO-NH I.)), thin band 1581 (ν (CO-NH II.); δ (NH2)), thin band 1487 (δ 

(CH2, CH3)), sharp peak 1262 (ν (P=O)), sharp intensive peak 1107 (δ (C-N)), small peak 1063 

(δ (sec. OH)), 979 (ν (P-O-R)), 850, 750 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 7.82 (s, 1H, 

arom. H), 7.41 (s, 1H, arom. H), 4.68 (s, 1H, H1 (GluN)), 4.31 (s, 1H, H1 (GluNAc)), 3.82 (s, 

1H, NH), 3.21 (m, 4H, CH2), 3.10 (m, 4H, CH2), 3.04-2.80 (4H, H3, H4, H5, H6), 2.73 (s, 1H, 

H2 (GluNAc)), 2.21 (s, 1H, H2 (GluN)), 1.59 (m, 3H, CH3), 1.33 (m, 2H, CH2), 0.45 (t, 3H, 

CH3). 

Chitosan conjugated with LMX (8f) Yield 84.36 %. IR (ATR): large peak 1659 (ν (CO-NH)), 

large peak 1619 (ν (CO-NH I.)), thin band 1580 (ν (CO-NH II.); δ (NH2)), thin band 1414 (δ 

(CH2, CH3)), sharp peak 1263 (ν (P=O)), sharp intensive peak 1108 (δ (C-N)), 979 (ν (P-O-R)), 

889, 750 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 7.85 (s, 1H, arom. H), 7.39 (s, 1H, arom. H), 

4.61 (s, 1H, H1 (GluN)), 4.38 (s, 1H, H1 (GluNAc)), 3.83 (s, 1H, NH), 3.26 (m, 4H, CH2), 3.09 

(m, 4H, CH2), 3.06-2.80 (4H, H3, H4, H5, H6), 2.70 (s, 1H, H2 (GluNAc)), 2.20 (s, 1H, H2 

(GluN)), 1.58 (m, 3H, CH3), 1.30 (m, 2H, CH2), 0.43 (t, 3H, CH3). 

Chitosan conjugated with SPX (8g) Yield 86.25 %. IR (ATR): large peak 1665 (ν (CO-NH)), 

large peak 1619 (ν (CO-NH I.)), thin band 1581 (ν (CO-NH II.); δ (NH2)), thin band 1487 (δ 

(CH2, CH3)), sharp peak 1262 (ν (P=O)), sharp intensive peak 1107 (δ (C-N)), small peak 1063 

(δ (sec. OH)), 979 (ν (P-O-R)), 850, 750 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 7.83 (s, 1H, 

arom. H), 4.67 (s, 1H, H1 (GluN)), 4.41 (s, 1H, H1 (GluNAc)), 4.09 (s, 1H, NH), 3.38 (m, 4H, 

CH2), 3.09 (m, 4H, CH2), 3.01-2.76 (4H, H3, H4, H5, H6), 2.73 (s, 1H, H2 (GluNAc)), 2.59 (m, 

2H, NH2), 2.50 (m, 1H, CH), 2.22 (s, 1H, H2 (GluN)), 1.60 (m, 3H, CH3), 1.30 (m, 4H, CH2), 

0.42 (t, 6H, CH3). 
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13
C NMR spectra were not measured because the compounds were not soluble in water. 

Antibacterial activity and evaluation of cytotoxicity are under investigation. 

3.6. Chitosan connected with dyes 

3.6.1. Chitosan connected with photosensitizer dyes 

The idea of connection of chitosan with photosensitizing agents was initiated by a co-operation 

with the Institute of Inorganic Chemistry, Academy of Science of the Czech Republic. Water 

soluble polymers containing photoactive group are studied as potential photosensitizers in 

photodynamic therapy (PDT). Lately, PDT has been studied as one of therapeutic possibilities 

in cancer, atherosclerosis, or in inactivation of bacteria
107

 and viruses. Chitosan with 

advantageous biological properties has shown considerable attention as a suitable carrier for 

photosensitizers.  

PDT combines therapeutic usage of drugs (photosensitizers) with a specific type of light which 

is able to activate them. PDT is based on photodynamic effects resulted in the oxidative damage 

of biological material by reactive forms of oxygen generated by sensitized reactions. The main 

photodynamical active species is singlet oxygen 
1
O2(

1
Δg) generated in situ by energy transfer 

from an excited sensitizer to oxygen molecule.
108

 
1
O2 is a metastable excitated state of basic 

state of molecular oxygen 
3
O2. 

In cancer therapy, the photodynamic effect is intensively studied. The sensitizer can be 

administered to the active site by intravenous injection. The high affinity of sensitizer to active 

site is given by different morphology and metabolism of fast growing tissue, where is 

accumulated and irradiated by the light with wavelength 600 - 900 nm. This light (laser, LED 

diodes) is able to excite the sensitizer. Excitated sensitizer transfers the energy to free dissolved 

oxygen in tissues. Singlet oxygen and other reactive particles can destroy tumor cells.
109

  

High amount of dyes, aromatic and heterocyclic organic compounds and metal complexes are 

used for their ability to produce singlet oxygen. Sensitizers acceptable for PDT must have 

specific requirements: maximum absorption 600 - 800 nm, minimum absorption 400 - 600 nm, 

quantum yields of 
1
O2 in a range of 0.3 - 0.8, stability against photodegradation and against 
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oxidation by 
1
O2 or other reactive oxygen species generated in situ, non-toxicity, phototoxicity, 

specific retention in the malignant tissue and solubility.
108

  

Two photosensitizers, meso-tetra(4-carboxyphenyl)porphin (TPPC4)
110

 and rose bengal 

(RB)
111

, were chosen for reactions with chitosan. Both molecules are sensitizers with type 

(π,π*), excitated electron comes from π orbital, resulting generation of 
1
O2. TPPC4 belongs to 

porphyrinoid sensitizers, which are mostly used for this purpose because of their inherent 

similarity to natural porphyrins and competent physicochemical and photochemical properties. 

Porphyrins have a strong blue absorption band. Synthetic porphyrins are often substituted in the 

meso-position and they are applied as free ligands (non-metallated). Other porphyrinoid 

sensitizers can be complexed with Al, Zn, Mg, Ga, Si, Ge or Sn as central ions. The 

approximately planar porhyrinoid sensitizers tend to form stacked dimers (aggregates) held 

together by π-π interactions of the aromatic rings and by hydrophobic interactions.
112

  

Rose bengal (4,5,6,7-tetrachloro-3´,6´-dihydroxy-2´,4´,5´,7´-tetraiodo-3H-spiro[isobenzofuran-

1,9´-xanthen]-3-one, RB) is a water soluble photosensitizing dye, its structure is related to 

xanthene. It exhibits long live triplet state in high quantum yields. RB has a tendency to 

aggregation in high concentrated solutions which is undesirable property, because it impairs 

photochemical response.
113

 RB has an affinity to the surface of the nonviable cell and after light 

exposition, membrane damage and eventual cell lysis are induced, therefore RB is used to 

evaluate ocular surface diseases.
114

 RB has minimal side effects and is used in breast and 

melanoma cancer therapy. It is able to involve the induction of cell death by death receptor-

mediated pathway and mitochondrial apoptotic pathway.
115

  

The purpose of connection of chitosan with sensitizers was photoantimicrobial activity in 

wound healing treatment.
116

 The production of nanofibres was tried from the acidic solution of 

prepared compound chitosan with RB. The solubility of compound was not complete; 

nevertheless many experiments with different setting of machine were performed. In Fig. 19, 

there are nanofibres of chitosan with RB. Unluckily, prepared nanofibres had not an appropriate 

quality. Experiments are still under investigation. 
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Fig. 19. Scanning electron microscopy image of the resulting nanofibres of chitosan connected 

with RB. 

Nanofibrous layers were produced using the Nanospider 
TM

 electrospinning technology. A 

cylindrical-shape spinning electrode connected with a high voltage source rotated in a polymer 

solution. A highly charged thin layer of the solution on the electrode surface was then 

transformed into nanofibres, which were collected on a linearly moving grounded 

polypropylene textile.
117

  

Covalent linkage between amino group of chitosan and carboxylic groups of TPPC4 or RB was 

prepared (Scheme 7). EDC was used for activation of carboxylic acid. Without further 

precipitation, phosphorylation was realized. The structure of TPPC4 allows reaction of all 

carboxylic groups and connected chains of chitosan together. Both compound 8h-8i were 

slightly dissolved in water and acidic acid. 
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Scheme 7 Conjugation of chitosan and photosensitising drugs 

3.6.1.1. Experimental part 

General procedure of the synthesis of compounds 8h and 8i 

500 mg of chitosan was dissolved in water and 100 mg of RB or TPPC4 was added. The 

mixture was cooled at 0 - 5 °C. The carboxylic groups of dyes were activated with 120 mg of 

N-(3-dimethylaminopropyl)-N´-ethylcarbodiimide and the reaction mixture was stirred at 0 - 5 

°C for 3 hours, then the temperature gradually increased to the room temperature. After 24 

hours without isolation 2 ml of methanesulfonic acid and 300 mg of phosphorus pentoxide was 

added to the mixture. The reaction was stirred at 0 - 5 °C for 3 hours. The mixture was cooled 

overnight in a freezer and then products 8h and 8i were precipitated with acetone. 

Data of compounds 8h and 8i  

Chitosan conjugated with RB (8h) Yield 62.87 %. IR (ATR): large peak 1663 (ν (CO-NH)), 

large peak 1617 (ν (CO-NH I.)), thin band 1581 (ν (CO-NH II.); δ (NH2)), thin band 1485 (δ 

(CH2, CH3)), sharp peak 1263 (ν (P=O)), sharp intensive peak 1107 (δ (C-N)), small peak 1062 

(δ (sec. OH)), 992 (ν (P-O-R)), 919, 751 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 7.85 (s, 1H, 

arom. H), 4.91 (s, 1H, CH), 4.62 (s, 1H, H1 (GluN)), 4.38 (s, 1H, H1 (GluNAc)), 3.83 (s, 1H, 

NH), 3.30 (s, 2H, NH2), 3.15-2.80 (4H, H3, H4, H5, H6), 2.74 (s, 1H, H2 (GluNAc)), 2.21 (s, 

1H, H2 (GluN)), 1.60 (m, 3H, CH3). 

Chitosan conjugated with TPPC4 (8i) Yield 53.90 %. IR (ATR): large peak 1663 (ν (CO-NH)), 

large peak 1617 (ν (CO-NH I.)), thin band 1485 (δ (CH2, CH3)), sharp peak 1264 (ν (P=O)), 
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sharp intensive peak 1195 (δ (N-H)), sharp intensive peak 1107 (δ (C-N)), small peak 1061 (δ 

(sec. OH)), 993 (ν (P-O-R)), 919, 750 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 9.58 (s, 1H, arom. 

H), 7.82 (s, 1H, arom. H), 4.62 (s, 1H, H1 (GluN)), 4.38 (s, 1H, H1 (GluNAc)), 3.81 (s, 1H, 

NH), 3.30 (s, 2H, NH2), 3.11-2.79 (4H, H3, H4, H5, H6), 2.71 (s, 1H, H2 (GluNAc)), 2.20 (s, 

1H, H2 (GluN)), 1.60 (m, 3H, CH3). 

3.6.2. Chitosan connected with fluorescein isothiocyanate 

The co-operation with Department of Pharmacology and Toxicology, Pharmaceutical faculty, 

Charles University in Prague has started determination of cytotoxicity of chitosan derivatives 

by fluorescent method. Chitosan alone was not detectable by this method (as described in Paper 

III), it was necessary to synthesize chitosan connected with fluorescent dye. Fluorescein 

isothiocyanate (3´,6´-dihydroxy-5-isothiocyanato-3H-spiro[isobenzofuran-1,9´-xanthen]-3-one, 

FITC) is fluorescent label used in wide range of applications, including flow cytometry, 

fluorescence in situ hybridisation or immunohistochemical techniques which are based on 

labeling targeted structure (antibody, receptor).  

Co-operation with Eötvös Lórand University, Research Group of Peptide Chemistry, Hungarian 

Academy of Science in Budapest led us to determine uptake studies of chitosan connected with 

FITC. Firstly, prepared compound was used under fluorescent microscope (Fig. 20a, 20b) for 

an evaluation uptake on PBMC cells. Unfortunately, the solubility of compound in media 

RPMI-1640 medium without phenol red was not high and the active time for uptake was 

probably short (3 hours). In Fig. 20a and 20b chitosan connected with FITC seems to be 

aggregated in solution but no uptake is observed. This study is still under investigation.  
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Fig. 20a Insoluble particle of chitosan connected with FITC under fluorescent microscope, no 

cellular uptake was observed 

 

Fig. 20b Insoluble particle of chitosan connected with FITC under fluorescent microscope 

Second study was the fluorescence uptake experiment evaluated on flow cytometer on the same 

sample of chitosan connected with FITC in range of concentration on PBMC cells (Fig. 21). 

Relatively high cellular uptake was observed on macrophages and monocytes due to their 

strong ability of phagocytoses. Lymphocytes showed very low uptake which is in accordance 

with their biological function. 
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Fig. 21 Fluorescence uptake experiment evaluated on flow cytometer on sample of chitosan 

connected with FITC in the range of concentration on PBMC cells 

Synthesis of chitosan connected with FITC is similar with previous procedures. EDC was used 

for activation of carboxylic group. Without further precipitation, phosphorylation was realized. 

Lactone ring of FITC was opened in water environment during the first step of synthesis, 

thereby, free carboxylic group could participate in connection. 8j was completely soluble in 10 

% NaOH solution. 

 

Scheme 8 Conjugation of chitosan and FITC 
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3.6.2.1. Experimental part 

General procedure of the synthesis of the compound 8j 

500 mg of chitosan was dissolved in water and 100 mg of FITC was added. The mixture was 

cooled at 0 - 5 °C. The carboxylic group of FITC was activated with 120 mg of N-(3-

dimethylaminopropyl)-N´-ethylcarbodiimide and the reaction mixture was stirred at 0 - 5 °C for 

3 hours, then the temperature gradually increased to the room temperature. After 24 hours 

without isolation 2 ml of methanesulfonic acid and 300 mg of phosphorus pentoxide was added 

to the mixture. The reaction was stirred at 0 - 5 °C for 3 hours. The mixture was cooled 

overnight in a freezer and then product 8j was precipitated with acetone. 

Data of compound 8j 

Chitosan conjugated with FITC (8j) Yield 71.67 %. IR (ATR): small peak 2075 (ν (N=C=S)), 

large peak 1653 (ν (CO-NH)), large peak 1617 (ν (CO-NH I.)), thin band 1588 (ν (CO-NH II.); 

δ (NH2)), thin band 1485 (δ (CH2, CH3)), sharp peak 1248 (ν (P=O)), sharp intensive peak 1197 

(δ (N-H)), sharp intensive peak 1116 (δ (C-N)), 932, 866, 788 cm
-1

. 
1
H NMR (DMSO-d6, 300 

MHz): 7.78 (s, 1H, arom. H), 4.91 (s, 1H, CH), 4.59 (s, 1H, H1 (GluN)), 4.35 (s, 1H, H1 

(GluNAc)), 3.87 (s, 1H, NH), 3.31 (s, 2H, NH2), 3.10-2.78 (4H, H3, H4, H5, H6), 2.74 (s, 1H, 

H2 (GluNAc)), 2.21 (s, 1H, H2 (GluN)), 1.60 (m, 3H, CH3). 
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3.7. Conclusion of the first part of thesis 

The outcomes of a literary search were published as two survey articles about chitosan and its 

structure, physico-chemical properties and pharmaceutical applications (Paper I, II). Chitosan 

has been found as an interesting aminopolysaccharide with manifold applications in 

biomedicinal chemistry. Low molecular weight and high degree of deacetylation of chitosan 

appear to be very important for antitumor, antioxidative and antibacterial activity. Both review 

articles summarize the findings published till 2008, the latest publications (2009 – 2010) are 

presented separately. 

Seventeen derivatives of chitosan linked with the first or second line antituberculotics were 

prepared for the purpose of decreasing cytotoxicity of used drugs. Chitosan derivatives 

connected with INH, PZA and ETA (3a-3c, 6a-6c) were tested for antimycobacterial activity 

against M. tbc., M. avium and M. kansasii, their MIC were 125 µg/mL for all strains. 

Unexpectedly, O-carboxymethyl chitosan as intermediate showed better inhibition effect 

against M. tbc., and M. avium. This fact can be explained by high degree of amino groups with 

chelating activity. Consequently, antimycobacterial activity of chitosan derivatives with 

antituberculotics depends on the presence of the first or second line antituberculotic drugs and 

the degree of deacetylation of chitosan. In addition, all tested derivatives did not exhibit 

obvious cytotoxic effect on PBMC and Hep G2 cells. It was found that chitosan is able to 

reduce cytotoxicity of antituberculotic drugs. (Paper III). Antimycobacterial activities of other 

synthetised chitosan derivatives connected with PAS, CS and fluoroquinolones (3d, 3e, 6d, 6e, 

8a-8g) are currently processed.  

Co-operations with the Institute of Inorganic Chemistry, Academy of Science of the Czech 

Republic; Department of Pharmacology and Toxicology, Pharmaceutical faculty and Eötvös 

Lórand University, Research Group of Peptide Chemistry, Hungarian Academy of Science in 

Budapest led us to synthesized derivatives of chitosan with dyes (meso-tetra(4-

carboxyphenyl)porphin, rose bengal, fluorescein isothiocyanate).  

Chitosan has been found as a convenient carrier for photosensitising therapy, in our case the 

carrier with photoantimicrobial activity in wound healing treatment. Chitosan was linked with 

photosensitizer meso-tetra(4-carboxyphenyl)porphin and rose bengal. Unfortunately, the 
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solubility of the derivative with the first dye was not appropriate. Nanofibres were prepared 

from derivative of chitosan connected with rose bengal, but finally, nanofibres had not a 

sufficient quality for following usage. 

Fluorescent labelled chitosan was used for uptake studies. Particles of chitosan connected with 

FITC were found not completely dissolved in medium under fluorescent microscope, thus no 

cellular uptake could be studied. Better results were received from the flow cytometer assay. 

Expected cellular uptake was observed on macrophages and monocytes. 
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4. Modifications of antimycobacterial drugs 

4.1. Introduction 

Connection of two active molecules is one of the common approaches in drug design that is 

used as a prodrug form which reduces an emergence of resistance. Substituted carbohydrazone 

moiety has been found as a good pharmacophore group for many antituberculotic active 

molecules. In previous study of our research group
118

, two molecules with anti-tuberculosis 

activity were connected through the methine bridge which was gradually hydrolyzed. Probable 

synergic effect of both components with prolonged release was determined. C1 fragment of 

hydrazones
119

 is useful for formation of C-N bond with appropriate amines as nucleophiles. 

4.2. Derivatives of fluorine-containing hydrazones (Paper IV) 

New derivatives containing fluorinated hydrazides of benzoic acid and first or second line 

antituberculotic drugs connected by methine bridge were prepared. Involvement of 

fluoroquinolones as second line antituberculotics to potential active molecule seems to be 

promising. Antimycobacterial activity of ciprofloxacin or norfloxacin connected with another 

drug was proved advantageous. Implementation of fluorine atoms to the molecule was found to 

increase its antimycobacterial activity as well as the lipophilicity. 

Synthesis of new potential antitubercular drugs contains two steps. Primarily hydrazide of 

substituted benzoic acid (9) was activated by diethoxymethyl acetate in acetonitrile (Scheme 9). 

Starting hydrazides were substituted by fluoro or trifluoromethyl group on benzene ring. Ethyl 

benzoylformohydrazonate (10) was condensated with N-nucleophile in the following step 

(Scheme 10). N-nucleophile was selected from the first or second lines of antituberculotics (p-

aminosalicylic acid, ciprofloxacin and norfloxacin). 

 

Scheme 9 Synthesis of ethyl benzoylformohydrazonate 
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Scheme 10 Synthesis of PAS-, CPX- and NFX-derivatives 

Slightly different approach was used for the synthesis of pyrazinecarboxamide (PZA) 

compounds. First step was the preparation of an activated molecule of PZA
118

 (12) (Scheme 

11), which reacted with molecule of appropriate hydrazide (Scheme 12) to form N-(2-

benzoylhydrazonomethyl)pyrazine-2-carboxamides (13). 

 

Schema 11 Synthesis of N-((dimethylamino)methylene)pyrazine-2-carboxamide 

 

Scheme 12 PZA-derivatives preparation 

In vitro antimycobacterial activity was evaluated against M. tuberculosis H37Rv and MDR-TB 

strain M. tuberculosis A8 241 which is resistant to isoniazid and rifampicin (Table 2), M. 

kansasii My 235/80, M. kansasii 6509/96 and M. avium 330/88 (Table 3). All evaluated 
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compounds 11a-11l have shown higher activity against MDR-TB (0.5 µg/mL). Minimal 

inhibitory concentration of compounds 11f and 11g (contained trifluoromethyl group and CPX) 

was found as the lowest against both strains of Mycobacterium kansasii as compared to other 

compounds as well as the standard INH.  

Values of selectivity index (SI) indicate the rate between IC50 of HepG2 cytotoxicity and MIC 

M. tuberculosis. Values of compound SI ≥ 10 are considered for further screening
120

. 

Selectivity index calculated for MDR-TB M. tuberculosis for compounds 11d-11i exhibit high 

values (Table 2). 

Table 2. Values of antimycobacterial activity against M. tbc. strains 

 R R1R2N 

MIC [g/mL 

SI for M. tbc.  

 

H37Rv 

SI for M. tbc. 

A8 241 

MDR-TB 

M. tbc 

H37Rv 

(ATCC:27294) 

M. tbc. 

A8 241 

MDR-TB 

11a 4-CF3 A 4 0.5 NT NT 

11b 3-CF3 A 4 0.5 NT NT 

11c 4-F A 4 0.5 NT NT 

11d 3-F A 2 0.5 148.25 592.64 

11e 2-F A 2 0.5 192.06 767.77 

11f 4-CF3 B 1 0.5 189.21 378.41 

11g 3-CF3 B 2 0.5 87.79 351.15 

11h 4-F B 1 0.5 634.29 1268.58 

11i 3-F B 1 0.5 402.38 804.76 

11j 4-CF3 C 5 5 3.98 3.98 

11k 4-F C NT NT NT NT 

11l 3-F C 6 5 31.67 38 

13a 4-CF3 D NT NT NT NT 

13b 3-F D NT NT NT NT 

INH - - 0.01 1 NT NT 
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CPX - - 0.5 NT NT NT 

NFX - - 5 NT NT NT 

NT – not tested 

Table 3. Values of antimycobacterial activity against non-tuberculous strains 

 MIC [mol/L 

 R R1R2N 

M. avium 

330/88 

M. kansasii 

235/80 

M. kansasii 

6509/96 

14 d 21 d 7 d 14 d 21 d 7 d 14 d 21 d 

11a 4-CF3 A 32 125 62.5 125 250 62.5 62,5 125 

11b 3-CF3 A 250 500 32 125 125 62.5 62.5 62.5 

11c 4-F A 32 125 32 62.5 62.5 32 32 32 

11d 3-F A 32 62.5 32 62.5 62.5 32 32 32 

11e 2-F A 32 62.5 32 32 62.5 32 62.5 62.5 

11f 4-CF3 B 32 62.5 2 2 4 1 1 2 

11g 3-CF3 B 250 250 2 2 4 1 1 2 

11h 4-F B 62.5 125 4 4 8 8 8 16 

11i 3-F B 125 250 4 4 8 4 4 4 

11j 4-CF3 C 500 500 2 4 8 2 4 8 

11k 4-F C 125 250 16 32 62.5 32 62.5 62.5 

11l 3-F C 125 250 16 32 62.5 16 16 32 

13a 4-CF3 D >1000 >1000 250 250 250 250 500 500 

13b 3-F D >500 >500 250 250 >500 250 >500 >500 

INH - - 250 250 250 250 250 2 4 4 

CPX - - 62.5 62,5 1 2 2 1 1 2 

NFX - - 125 250 8 16 16 2 8 8 

PAS - - 32 125 125 1000 >1000 32 125 500 

PZA - - 500 >1000 500 >1000 >1000 125 1000 1000 

NT – not tested 
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IC50 values in mmol/L are presented in Table 4. IC50 of tested compounds are low, in the range 

of 0,0373-1,21 mmol/L, that means they are nearly non-toxic. Cytotoxicity of the most active 

compounds was determined on human hepatocellular liver carcinoma cells HepG2, PBMC 

(Peripheral Blood Mononuclear Cells) and human SH-Sy5y neuroblastoma cells by MTT assay 

for cellular toxicity. Prepared compounds are non toxic in MIC concentrations. 

Table 4. Values of in vitro cytotoxicity 

 R R1R2N 

HepG2 IC50 PBMC IC50 Sy5y IC50 

[mmol/L 

11a 4-CF3 A NT NT NT 

11b 3-CF3 A NT NT NT 

11c 4-F A NT NT NT 

11d 3-F A 0.934 0.934 NT 

11e 2-F A 1.210 1.210 NT 

11f 4-CF3 B 0.347 0.347 NT 

11g 3-CF3 B > 0.322 > 0.322 NT 

11h 4-F B > 1.280 > 0.763 NT 

11i 3-F B > 0.812 > 0.305 NT 

11j 4-CF3 C > 0.0373 0.262 0.107 

11k 4-F C > 0.797 > 0.331 NT 

11l 3-F C > 0.393 > 0.393 > 0.430 

13a 4-CF3 D > 0.624 NT NT 

13b 3-F D > 0.130 > 0.305 NT 

INH NT NT NT NT NT 

NT – not tested 

Compound 11h showed the highest value of SI, thus was chosen for stability measurement. The 

stability was evaluated on HPLC at different pH values which are shown in the Figure 22. At 

pH 7.4, the compound was stable; no significant decomposition was observed during 48 hours 

experiment. At both acidic buffers, the concentration of 11h decreased, accompanied by a 
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proportional increase in the concentration of ciprofloxacin. No formylciprofloxacin was 

detected in the samples. There was not observed any statistically significant enzymatic 

decomposition of 11h in rat plasma.  

 

Fig. 22 Stability of 11h in aqueous buffers at pH 7.4, 5 and 3. Data are presented as means ± 

S.D, n = 3.  

4.3. Derivatives of isoniazid 

Isoniazid (isonicotinic acid hydrazide, INH) is still considered as the first line drug for 

chemotherapy of TB. INH is highly active against M. tbc. with MIC in the range of 0.02 – 0.2 

µg/mL.
121

 In the bacteria cells (Fig. 23), INH is activated by KatG protein (catalase–

peroxidase) or Mn
2+

 action with appearance of ROS.
122

 Activated INH has two possible actions. 

Firstly, INH and ROS may defect DNA, proteins and other macromolecules. Secondly, INH 

inhibits InhA (enoyl-acyl carrier protein reductase)
123

 and AcpM-KasA (mycobacterial acyl 

carrier synthase – ß-ketoacyl synthase) complex. Both enzymes are involved in the biosynthetic 

way for fatty acid production. Mycobacteria have two fatty acid synthases (FAS). Function of 

FAS I is in the synthesis of mycolic acid of the length C16 to C24/26 which are substrates for 

synthetic complex FAS II. FAS II system contains a series of independent enzymes, including 

InhA and AcpM-KasA
124

 responsible for elongation of the FAS I products.
122 

Chromosomal 

mutations of different genes, including katG, inhA, ahpC and other genes, cause resistance of 

M. tbc. to INH. Mutations of katG result in diminished or altered catalase-peroxidase activity. 

The most frequent substitution results in the replacement of the naturally-occurring serine with 



62 

 

threonine (S315T). This mutation occurs in the range between 30 and 60% of all INH resistant 

isolates.
125

 The over expression of inhA led to low level of isoniazid resistance in M. smegmatis 

and was accompanied by cross-resistance to the second line antituberculotig drug 

ethionamide.
126

  

 

Fig. 23 Mechanism of INH activation and mycobacterial fatty acid biosynthesis 

The aim of this part of research was enhanced antimycobacterial activity of INH by connection 

of electron-acceptor substituents. Potential increasing biological effect of substituents was 

calculated from QSAR studies.
122

 Isoniazid (INH) was linked with monosubstituted or 

disubstituted anilines by the CH fragment.
127

 Two similar reactions were used for the 

preparation of INH derivatives. 

The first synthetic approach of new antituberculotic drugs contains two steps. Isoniazid was 

treated with diethoxymethyl acetate to obtain isonicotinoylethoxymethylene hydrazone (14) in 

acetonitrile (Scheme 13). Its ethoxy group was substituted with appropriate aniline, as N-

nucleophile, resulted in the formation of the corresponding isonicotinoylformohydrazonamides 

(15).  
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Scheme 13 Synthesis of isonicotinoylethoxymethylene hydrazone and corresponding 

isonicotinoylformohydrazonamide 

Second approach is based on two steps. Activated substituted aniline (16) was prepared using 

diethoxymethyl acetate (Scheme 14). Ethoxy group of the compound 16 was condensed with 

INH to get products 17 N'-(iminomethyl)isonicotinoylhydrazide. 

 

Scheme 14 Synthesis of N'-(iminomethyl)isonicotinoylhydrazide 

Prepared INH derivatives 15, 17 differ in the position of double bond. Compounds 15a – 15o 

contain formohydrazonamide bond and compounds 17a – 17n have formimidohydrazide as 

middle part of molecule. Their biological activities and values of lipophilicity were compared. 

In vitro antimycobacterial activity was evaluated against Mycobacterium tuberculosis CNTC 

My 331/88, Mycobacterium kansasii CNTC My 235/80, M. kansasii 6509/96  and 

Mycobacterium avium CNTC 330/88. Results are presented in Table 5. Several synthetized 
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compounds showed similar activity as a standard INH. Compounds 15f, 15i, 17c, 17d, 17f-17h, 

17n exhibited same inhibitory effect as INH against M. tbc. In general, derivatives with 

halogenated substituents exhibited lower MIC values. Compound 17n was the most active for 

all tested strains. Paralel derivatives (with the same substituents) showed similar activities. The 

best MIC values are highlighted in Table 5. 

Table 5. Antimycobacterial evaluation of compounds 15 and 17 

 MIC [mol/L 

 R1 R2 

M. tbc 

331/88 

M. avium 

330/88 

M. kansasii 

235/80 

M. kansasii 

6509/96 

14 d 21 d 14 d 21 d 7 d 14 d 21 d 7 d 14 d 21 d 

15a 3-OH - 2 2 500 500 250 1000 >1000 16 32 32 

15b 4-OH - 8 8 500 1000 250 500 1000 62.5 62.5 62.5 

15c 3-OCH3 - 2 2 500 500 250 500 1000 16 16 16 

15d 4-OCH3 - 2 4 500 500 250 500 1000 16 16 32 

15e 4-CF3 - 2 2 500 1000 250 500 1000 32 32 32 

15f 3-F - 1 1 500 1000 250 1000 >1000 16 16 16 

15g 4-F - 2 4 1000 >1000 250 1000 >1000 32 62.5 62.5 

15h 3-Cl - 2 2 500 1000 250 1000 1000 16 32 32 

15i 3-Br - 1 1 250 500 250 1000 1000 8 8 16 

15j 4-Cl 2-OH 2 4 250 500 250 500 500 16 16 32 

15k 5-Cl 2-OH 2 2 500 500 125 250 250 8 16 32 

15l 3-Cl 4-Cl 1 2 250 250 500 >500 >500 8 16 16 

15m 3-F 4-F 4 4 250 500 250 500 1000 8 16 32 

15n 3-Cl 4-F 1 2 250 500 250 1000 >1000 16 32 32 

15o 4-Br 3-F 1 4 500 1000 250 500 1000 16 16 32 

17a 3-OH - 2 2 500 500 250 1000 1000 16 32 32 

17b 4-OH - 4 8 500 500 500 500 500 32 62.5 125 
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17c 3-CF3 - 1 1 500 1000 125 250 1000 16 16 32 

17d 3-F - 1 1 500 1000 125 1000 >1000 16 16 32 

17e 4-F - 1 2 250 500 250 1000 >1000 8 8 8 

17f 3-Cl - 1 1 1000 1000 125 500 500 16 16 16 

17g 4-Cl - 1 1 500 1000 125 250 1000 16 32 32 

17h 3-Br - 1 1 250 500 500 1000 >1000 8 8 16 

17i 4-Br - 2 4 500 500 125 250 500 32 32 32 

17j 3-NO2 - 2 2 250 500 125 250 500 8 16 16 

17k 3-Cl 4-Cl 1 2 500 500 250 500 500 16 16 32 

17l 3-F 4-F 2 2 250 250 500 1000 1000 16 32 62.5 

17m 3-Cl 4-F 2 4 1000 1000 250 500 500 16 16 32 

17n 4-Br 3-F 1 1 250 250 62.5 250 250 8 8 16 

INH - - 1 1 250 250 250 250 250 2 4 4 

 

Cytotoxicity of the most active compounds was determined on human hepatocellular liver 

carcinoma cells HepG2 and PBMC (Peripheral Blood Mononuclear Cells) by MTT assay for 

cellular toxicity. IC50 values in mmol/L are presented in Table 6 as well as selectivity index 

(SI). Values of SI indicate the rate between IC50 of HepG2 cytotoxicity and MIC M. 

tuberculosis. IC50 of tested compounds are between 0.0218 - 0.326 mmol/L. Selectivity index 

calculated for M. tuberculosis for compound 17n exhibit high value. 

Table 6. Cytotoxicity evaluation of compounds 15k and 17n 

 R1 R2 

HepG2 IC50 PBMC IC50 SI for M. tbc. 

331/88 [mmol/L 

15k 5-Cl 2-OH 0.0218 0.075 10.9 

17n 4-Br 3-F 0.162 0.326 162 
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The purity and values of lipophilicity are presented in Table 7. The purity of compounds was 

measured by HPLC and the range was 92.77 - 99.98 %. The lipophilicity, as the capacity factor 

log k, was determined by RP-HPLC and the results were compared by employing two 

commercially available programs. Values of lipophilicity of all prepared compounds were 

higher than INH, it signifies more effective transport of the molecule through cellular 

membranes. 

Table 7. Experimental and calculated values of liphophilicity factor of compounds 15 and 17 

Compound R
1
 R

2
 Purity (%) log k 

log P 

ACD/log P 

log P/Clog P 

ChemOffice 

15a 3-OH - 99.53 0.2681 1.32±0.57 0.99/0.409 

15b 4-OH - 98.90 0.2702 0.93±0.57 0.99/0.409 

15c 3-OCH3 - 99.20 0.2412 1.93±0.57 1.25/0.995 

15d 4-OCH3 - 98.19 0.2546 1.62±0.57 1.25/0.995 

15e 4-CF3 - 99.62 0.3073 2.68±0.59 2.30/1.959 

15f 3-F - 98.74 0.3041 2.16±0.61 1.53/1.219 

15g 4-F - 98.49 0.3049 2.53±0.58 1.53/1.219 

15h 3-Cl - 98.86 0.3051 2.70±0.57 1.93/1.789 

15i 3-Br - 98.49 0.3068 2.88±0.61 2.20/1.939 

15j 4-Cl 2-OH 99.75 0.3053 2.62±0.58 1.54/1.4188 

15k 5-Cl 2-OH 93.76 0.3044 2.69±0.58 1.54/1.4188 

15l 3-Cl 4-Cl 95.80 0.3134 3.57±0.58 2.49/2.382 

15m 3-F 4-F 97.73 0.3047 2.52±0.64 1.69/1.292 

15n 3-Cl 4-F 99.98 0.3058 3.06±0.62 2.09/1.932 

15o 4-Br 3-F 99.65 0.3131 3.24±0.64 2.36/2.082 

17a 3-OH - 99.72 0.2453 1.28±0.57 0.92/0.225 

17b 4-OH - 99.44 0.2477 1.09±0.57 0.92/0.225 

17c 3-CF3 - 98.86 0.3048 3.04±0.60 2.23/1.775 

17d 3-F - 97.89 0.3044 2.33±0.60 1.47/1.035 
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17e 4-F - 98.25 0.3089 2.52±0.59 1.47/1.035 

17f 3-Cl - 97.66 0.3093 2.57±0.63 1.87/1.605 

17g 4-Cl - 98.90 0.3059 2.51±0.57 1.87/1.605 

17h 3-Br - 98.67 0.3069 2.68±0.61 2.14/1.755 

17i 4-Br - 99.15 0.3078 2.69±0.60 2.14/1.755 

17j 3-NO2 - 99.75 0.2638 1.58±0.57 0.33/0.635 

17k 3-Cl 4-Cl 97.51 0.3096 3.10±0.58 2.43/2.198 

17l 3-F 4-F 97.64 0.3008 2.05±0.64 1.63/1.108 

17m 3-Cl 4-F 92.77 0.3028 2.60±0.61 2.03/1.1748 

17n 4-Br 3-F 93.28 0.3088 2.77±0.64 2.30/1.898 

INH - - - -0.668 -0.89±0.24 -0.60/-0.668 

 

4.3.1 Experimental part 

4.3.1.1. General 

All chemicals were obtained from Sigma-Aldrich Co. Melting points were determined on the 

Büchi Melting Point B-540. Elemental analyses (C, H, N) were performed with a Perkin-Elmer 

2400 CHNS/O analyzer. Infrared spectra were recorded on a Bio-Rad FTS 3000 MX 

spectrometer in KBr pellets. NMR spectra were measured in DMSO-d6 solutions on a Bruker 

Avance 300 (300 MHz for 
1
H and 75.5 MHz for 

13
C). The chemical shifts, , are given in ppm, 

related to tetramethylsilane (TMS) as an internal standard. The coupling constants (J) are 

reported in Hz. The reactions were monitored and the purity of the products was checked by 

TLC (Fluka silica gel/TLC cards 60 PF254). The plates were visualized using UV light. Names 

of compounds were generated and structures were drawn with ChemBioDraw Ultra 11.0 and 

are formatted as ACS Document 1996. 

4.3.1.2. Biological evaluation 

In vitro Antimycobacterial activity made in National Reference Laboratory 

In vitro antimycobacterial activity was evaluated against Mycobacterium tuberculosis CNTC 
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My 331/88 (dilution of strains was 10
-3

 µmol/L), Mycobacterium kansasii CNTC My 235/80 

(dilution of strains was 10
-5

 µmol/L), M. kansasii 6509/96 (dilution of strains was 10
-4

 µmol/L) 

and Mycobacterium avium CNTC 330/88 (dilution of strains was 10
-4

 µmol/L). All strains were 

obtained from Czech National Collection of Type Cultures (CNCTC) with exception of M. 

kansasii 6509/96, which is a clinical isolate. Antimycobacterial activity was measured in Sula´s 

semisynthetic medium (SEVAC, Prague) at 37 °C. Compounds were dissolved in dimethyl 

sulfoxide solution (max 5% DMSO in water) and applied into the medium in concentration 

range 250, 125, 62, 31, 16, 8, 4, 2 and 1 μmol/L. Minimal inhibitory concentration (MIC) is 

determined after incubation at 37 °C for 7, 14 and 21 days. The MIC is the lowest concentration 

of a substance at which the inhibition of the growth of mycobacterium occurs. 

In vitro Cytotoxicity of compounds by MTT assay  

HepG2 human hepatoma cells (ATCC HB-8065) and human PBMC (peripheral blood 

mononuclear cells)
128

 were cultured in RPMI-1640 medium without phenol red supplemented 

with 10% FCS, 2 mM L-glutamine and 160 g/ml gentamycin. Cell cultures were maintained at 

37 °C, 5% CO2 in water-saturated atmosphere. Cells were plated into 96-well plate with initial 

cell number of 5 x 10
3
 per well (PBMC 2.0 x 10

5
 cells/well). After 24 h of incubation at 37 °C 

prior to the experiment, cells were treated with compounds in 100 μL serum free medium 

overnight. Control cells were treated with serum free medium. Four parallel measurements 

were performed in all cases.  

After overnight incubation at 37 °C, the cell viability was determined by 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-assay.
129,130

 45 μl MTT-solution 

(2 mg/mL) was added to each well. The respiratory chain and other electron transport 

systems
131

 reduce MTT and thereby form non-water-soluble violet formazan crystals within the 

cell.
132 

The amount of these crystals can be determined spectrophotometrically and serves as an 

estimate for the number of mitochondria and hence the number of living cells in the well.
133

 

After 4 hours of incubation cells were centrifuged for 5 min (2000 rpm) and supernatant was 

removed. The obtained formazan crystals were dissolved in 50 or 100 μL DMSO and optical 

density (OD) of the samples was measured at  = 540 and 620 nm using ELISA Reader (iEMS 

Reader, Labsystems, Finland). OD620 values were subtracted from OD540 values. The percent of 
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cytotoxicity was calculated using the following equation: Cytotoxicity (%) = [1 – 

(ODtreated/ODcontrol)] x100; where ODtreated and ODcontrol correspond to the optical densities of the 

treated and the control cells, respectively. In each case two independent experiments were 

carried out with 4–8 parallel measurements. The 50% inhibitory concentration (IC50) values 

were determined from the dose-response curves. The curves were defined using MicrocalTM 

Origin1 (version 6.0) software. 

4.3.1.3. Lipophilicity determination 

The purity of compounds was checked by HPLC. The detection wavelength 210 nm was 

chosen. Peaks in the chromatogram of the solvent (blank) were deducted from peaks in the 

chromatogram of the sample solution. A purity of the individual compounds was determined 

from area peaks in the chromatogram of the sample solution. 

UV spectra (λ, nm) were determined on a Waters Photodiode Array Detector 2996 (Waters 

Corp., Milford, MA, U.S.A.) in ca 5.10
-4

 M methanolic solution. Log ε (the logarithm of molar 

absorption coefficient ε) was calculated for the absolute maximum λmax of the individual 

compounds. 

The HPLC separation module Waters Alliance 2695 XE and Waters Photodiode Array Detector 

2996 (Waters Corp., Milford, MA, U.S.A.) were used. The chromatographic column 

Symmetry
®

 C18 5 μm, 4.6250 mm, Part No. WAT054275, (Waters Corp., Milford, MA, 

U.S.A.) was used. The HPLC separation process was monitored by Millennium32
®

 

Chromatography Manager Software, Waters 2004 (Waters Corp., Milford, MA, U.S.A.). The 

mixture of MeOH p.a. (40.0%) and H2O-HPLC – Mili-Q Grade (60.0%) was used as a mobile 

phase. The total flow of the column was 0.9 mL/min, injection 30 μL, column temperature 45 

°C and sample temperature 10 °C. The detection wavelength 210 nm was chosen. The KI 

methanolic solution was used for the dead time (tD) determination. Retention times (tR) were 

measured in minutes. 

The capacity factors k were calculated using the Millennium32
®
 Chromatography Manager 

Software according to the formula k = (tR - tD) / tD, where tR is the retention time of the solute, 

whereas TD denotes the dead time obtained via an unretained analyte. Log k, calculated from 
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the capacity factor k, is used as the lipophilicity index converted to log P scale. The log k values 

of the individual compounds are shown in Table 7. 

Log P, i. e. the logarithm of the partition coefficient for n-octanol/water, was calculated using 

the programs CS ChemOffice Ultra ver. 9.0 (CambridgeSoft, Cambridge, MA, U.S.A.) and 

ACD/Log P ver. 1.0 (Advanced Chemistry Development Inc., Toronto, Canada). Clog P values 

(the logarithm of n-octanol/water partition coefficient based on established chemical 

interactions) were generated by means of CS ChemOffice Ultra ver. 7.0 (CambridgeSoft, 

Cambridge, MA, U.S.A.) software. The results are shown in Table 7. 

4.3.2. Experimental results 

General procedure of the synthesis of compounds 15a – 15o 

Diethoxymethyl acetate (15 mmol) was added to a stirred solution of isoniazid (10 mmol) in 

acetonitrile (100 mL) at 55 °C. The reaction mixture was stirred for 30 minutes at the same 

temperature. The solvent was evaporated in vacuo and the crude product was washed with 

diethyl ether (2x20 mL). The product ethyl isonicotinoylhydrazonoformate 14 was dried in the 

air, recrystallized from acetonitrile. 

A solution of substituted aniline (1 mmol) in ethanol (1 mL) was added to a stirred solution of 

ethyl isonicotinoylhydrazonoformate 14 (1 mmol) in ethanol (10 mL) at 55 °C. The mixture 

was stirred for 6 hours at the same temperature and for 20 hours at room temperature. The 

product 15 was collected by filtration and recrystallized from appropriate solvent. 

Data of compounds 15a – 15o 

General structure for NMR evaluation  

N-(3-hydroxyphenyl)-N'-isonicotinoylformohydrazonamide (15a) Yield 56.90 %; mp 190-192 

°C (ethanol). IR (KBr): 3226, 3085, 3030, 2871, 2601, 2488, 1669, 1631, 1599, 1544, 1497, 



71 

 

1445, 1414, 1366, 1306, 1247, 1164, 1062, 1003, 964, 909, 849, 764, 697, 688 cm
-1

. 
1
H NMR 

(DMSO-d6, 300 MHz): δ 11.17 (s,1H, NH(A)), 9.47 (s, 1H, NH(B)), 8.70 (d, J = 4.53 Hz, 2H, 

H2, H6), 8.45 (s, 1H, CH), 7.85 (s, 1H, OH), 7.73 (d, J = 5.51 Hz, 2H, H3, H5), 7.62 (m, 1H), 

7.54 (t, J = 7.99 Hz, 1H), 7.30 (m, 1H), 7.15 (d, J = 7.88 Hz, 1H). 
13

C NMR (DMSO-d6, 75 

MHz): 160.2, 158.4, 150.4 (2C), 147.7, 142.2, 141.5, 130.1, 121.4 (2C), 108.7, 106.9, 103.3. 

Anal. Calcd for C13H12N4O2 (256.26): C, 60.93; H, 4.72; N, 22.86. Found: C, 61.08; H, 5.02; N, 

21.98. 

N-(4-hydroxyphenyl)-N'-isonicotinoylformohydrazonamide (15b) Yield 53.75 %; mp 190-192 

°C (ethanol). IR (KBr): 3212, 3150, 3069, 2610, 1668, 1634, 1601, 1676, 1549, 1519, 1458, 

1412, 1366, 1314, 1247, 1170, 1105, 1059, 1005, 1067, 909, 826, 755, 690 cm
-1

. 
1
H NMR 

(DMSO-d6, 300 MHz): δ 11.06 (s,1H, NH(A)), 9.12 (s, 1H, NH(B)), 8.71 (d, J = 4.91 Hz, 2H, 

H2, H6), 8.26 (s, 1H, CH), 7.79 (d, J = 5.06 Hz, 2H, H3, H5), 7.45 (s, 1H, OH), 7.19 (d, J = 

7.73 Hz, 2H, H2´,H6´), 6.70 (d, J = 8.06 Hz, 2H, H3´, H5´). 
13

C NMR (DMSO-d6, 75 MHz): 

160.2, 152.3, 150.3 (2C), 148.4, 141.7, 132.9, 121.4 (2C), 118.4 (2C), 115.8 (2C). Anal. Calcd 

for C13H12N4O2 (256.26): C, 60.93; H, 4.72; N, 21.86. Found: C, 60.81; H, 5.15; N, 21.41. 

N-(3-methoxyphenyl)-N'-isonicotinoylformohydrazonamide (15c) Yield 55.38 %; mp 164-166 

°C (ethanol). IR (KBr): 3041, 2360, 1671, 1645, 1634, 1621, 1600, 1549, 1500, 1474, 1464, 

1410, 1360, 1317, 1288, 1230, 1159, 1047, 968, 907, 840, 776, 755, 689 cm
-1

. 
1
H NMR 

(DMSO-d6, 300 MHz): δ 11.16 (s,1H, NH(A)), 9.47 (s, 1H, NH(B)), 8.73 (d, J = 5.78 Hz, 2H, 

H2, H6), 8.47 (d, J = 4.91 Hz, 1H, CH), 7.77 (d, J = 5.63 Hz, 2H, H3, H5), 7.16 (t, J = 8.14 Hz, 

1H), 6.93 (s, 1H), 6.78 (d, J = 7.92 Hz, 1H), 6.49 (d, J = 8.13 Hz, 1H), 3.36 (s, CH3) . 
13

C NMR 

(DMSO-d6, 75 MHz): 160.3, 150.4 (2C), 147.5, 142.2, 141.5, 130.2, 121.9, 121.4 (2C), 108.7, 

106.7, 102.3, 55.2. Anal. Calcd for C14H14N4O2 (270.36): C, 62.21; H, 5.22; N, 20.73. Found: 

C, 62.14; H, 5.46; N, 20.92. 

N-(4-methoxyphenyl)-N'-isonicotinoylformohydrazonamide (15d) Yield 28.58 %; mp 170-172 

°C (ethanol). IR (KBr): 3421, 3208, 2836, 1667, 1620, 1549, 1535, 1515, 1466, 1365, 1319, 

1308, 1290, 1247, 1179, 1035, 828, 685, 670 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.13 

(s,1H, NH(A)), 9.27 (s, 1H, NH(B)), 8.71 (d, J = 5.65 Hz, 2H, H2, H6), 8.35 (s, 1H, CH), 7.78 

(d, J = 5.53 Hz, 2H, H3, H5), 7.29 (d, J = 7.65 Hz, 2H, H2´,H6´), 6.85 (d, J = 7.96 Hz, 2H, H3´, 
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H5´), 3.70 (s, CH3) . 
13

C NMR (DMSO-d6, 75 MHz): 160.1, 154.2, 150.4 (2C), 148.1, 141.6, 

134.3, 121.4 (2C), 118.1 (2C), 114.6 (2C). Anal. Calcd for C14H14N4O2 (270.36): C, 62.21; H, 

5.22; N, 20.73. Found: C, 62.40; H, 5.51; N, 20.82. 

N-(4-(trifluoromethyl)phenyl)-N'-isonicotinoylformohydrazonamide (15e) Yield 42.40 %; mp 

191-193 °C (acetonitrile). IR (KBr): 3424, 3234, 3051, 2360, 1651, 1635, 1615, 1549, 1530, 

1491, 1458, 1412, 1328, 1270, 1194, 1164, 1115, 1068, 1014, 834, 753, 669 cm
-1

. 
1
H NMR 

(DMSO-d6, 300 MHz): δ 11.09 (s,1H, NH(A)), 8.71 (d, J = 4.5 Hz, 3H, NH(B), H2, H6), 8.32 

(s, 1H, CH), 7.78 (m, 2H, H3, H5), 7.30 (d, J = 8.03 Hz, 2H, H2´, H6´), 6.87 (d, J = 8.19 Hz, 

2H, H3´, H5´). 
13

C NMR (DMSO-d6, 75 MHz): 160.1, 154.2 (2C), 150.3, 148.0, 141.6, 134.3, 

121.9, 121.4 (2C), 118.1 (2C), 114.6 (2C). Anal. Calcd for C14H11F3N4O (308.27): C, 54.55; H, 

3.60; N, 18.18. Found: C, 54.81; H, 3.93; N, 18.44. 

N-(3-fluorophenyl)-N'-isonicotinoylformohydrazonamide (15f) Yield 62.14 %; mp 180-182 °C 

(ethanol). IR (KBr): 3208, 1693, 1651, 1614, 1596, 1548, 1549, 1496, 1463, 1408, 1366, 1320, 

1267, 1218, 1152, 1060, 1001, 970, 908, 845, 776, 682 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 

11.22 (s,1H, NH(A)), 9.62 (s, 1H, NH(B)), 8.79 (d, J = 4.23 Hz, 2H, H2, H6), 8.42 (s, 1H, CH), 

7.73 (d, J = 5.12 Hz, 2H, H3, H5), 7.30 (m, 2H), 7.03 (d, J = 6.73 Hz, 1H), 6.71 (t, J = 5.86 Hz, 

1H) . 
13

C NMR (DMSO-d6, 75 MHz): 164.5, 160.4, 150.4 (2C), 147.1, 142.9, 141.4, 130.9, 

121.4 (2C), 112.5, 107.5 (q), 103.4 (q). Anal. Calcd for C13H11FN4O (258.25): C, 60.46; H, 

4.29; N, 21.69. Found: C, 60.29; H, 4.06; N, 21.31. 

N-(4-fluorophenyl)-N'-isonicotinoylformohydrazonamide (15g) Yield 39.48 %; mp 191-193 °C 

(ethanol). IR (KBr): 3213, 3128, 3068, 2830, 1667, 1621, 1549, 1539, 1515, 1410, 1358, 1296, 

1222, 1155, 1005, 965, 830, 754, 671 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.15 (s,1H, 

NH(A)), 9.03 (s, 1H, NH(B)), 8.69 (d, J = 4.62 Hz, 2H, H2, H6), 8.38 (s, 1H, CH), 7.76 (d, J = 

5.03 Hz, 2H, H3, H5), 7.38 (d, J = 6.43 Hz, 2H, H2´, H6´), 7.12 (d, J = 6.89 Hz, 2H, H3´, H5´). 

13
C NMR (DMSO-d6, 75 MHz): 160.3, 158.77, 150.3 (2C), 147.7, 141.5, 137.4, 121.4 (2C), 

118.2 (2C), 115.7 (q, 2C). Anal. Calcd for C13H11FN4O (258.25): C, 60.46; H, 4.29; N, 21.69. 

Found: C, 60.76; H, 4.05; N, 21.39. 

N-(3-(chlorophenyl)-N'-isonicotinoylformohydrazonamide (15h) Yield 53.96 %; mp 176-178 

°C (ethanol). IR (KBr): 3208, 1692, 1650, 1616, 1593, 1548, 1549, 1502, 1463, 1403, 1366, 
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1320, 1265, 1218, 1154, 1060, 1006, 970, 908, 845, 759, 682 cm
-1

. 
1
H NMR (DMSO-d6, 300 

MHz): δ 11.21 (s,1H, NH(A)), 9.56 (s, 1H, NH(B)), 8.77 (d, J = 5.06 Hz, 2H, H2, H6), 8.46 (s, 

1H, CH), 7.71 (d, J = 5.62 Hz, 2H, H3, H5), 7.36 (m, 2H), 7.03 (d, J = 7.09 Hz, 1H), 6.92 (m, 

1H) . 
13

C NMR (DMSO-d6, 75 MHz): 160.1, 150.2 (2C), 147.1, 142.8, 141.4, 130.9, 123.7, 

122.3, 121.4 (2C), 118.2, 115.4. Anal. Calcd for C13H11ClN4O (274.71): C, 56.84; H, 4.04; N, 

20.40. Found: C, 56.62; H, 4.36; N, 20.26. 

N-(3-(bromophenyl)-N'-isonicotinoylformohydrazonamide (15i) Yield 59.92 %; mp 178-180 °C 

(ethanol). IR (KBr): 3201, 3050, 2892, 1673, 1632, 1593, 1548, 1481, 1408, 1378, 1314, 1283, 

1219, 1070, 992, 908, 839, 763, 701, 681 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.21 (s,1H, 

NH(A)), 9.60 (s, 1H, NH(B)), 8.73 (d, J = 5.59 Hz, 2H, H2, H6), 8.43 (d, J = 6.99 Hz, 1H, CH), 

7.79 (d, J = 5.78 Hz, 2H, H3, H5), 7.60 (s, 1H), 7.42 (m, 1H), 7.21 (m, 1H), 7.07 (m, 1H) . 
13

C 

NMR (DMSO-d6, 75 MHz): 160.3, 150.4 (2C), 147.1, 142.6, 141.4, 131.2, 123.8, 122.4, 121.4 

(2C), 118.7, 115.3. Anal. Calcd for C13H11BrN4O (319.16): C, 48.92; H, 3.47; N, 17.55. Found: 

C, 49.24; H, 3.86; N, 17.91. 

N-(4-chloro-2-hydroxyphenyl)-N'-isonicotinoylformohydrazonamide (15j) Yield 30.10 %; mp 

191 °C (ethanol). IR (KBr): 3193, 1693, 1633, 1549, 1488, 1411, 1360, 1317, 1261, 1222, 

1061, 1023, 1002, 848, 682 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.02 (s,1H, NH(A)), 9.04 

(s, 1H, NH(B)), 8.73 (d, J = 2.77 Hz, 2H, H2, H6), 8.36 (s, 1H, CH), 8.14 (s, 1H), 7.94 (s, 1H, 

OH), 7.76 (d, J = 3.90 Hz, 2H, H3, H5), 7.54 (m, 1H), 6.84 (m, 1H). 
13

C NMR (DMSO-d6, 75 

MHz): 160.9, 151.6 (2C), 147.8, 143.9, 141.2, 130.2, 122.7, 121.0 (2C), 119.2, 115.4, 107.3. 

Anal. Calcd for C13H11N4O2Cl (291.72): C, 53.71; H, 3.81; N, 19.27. Found: C, 54.02; H, 4.06; 

N, 18.83. 

N-(5-chloro-2-hydroxyphenyl)-N'-isonicotinoylformohydrazonamide (15k) Yield 43.10 %; mp 

207 - 208 °C (ethanol). IR (KBr): 3219, 1695, 1635, 1587, 1542, 1515, 1413, 1389, 1324, 1285, 

1060, 1010, 848, 684 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.27 (s,1H, NH(A)), 9.03 (s, 

1H, NH(B)), 8.72 (d, J = 4.72 Hz, 2H, H2, H6), 8.31 (d, J = 17.91 Hz, 1H, CH), 8.15 (s, 1H), 

7.77 (d, J = 4.91 Hz, 2H, H3, H5), 7.59 (d, J = 5.50 Hz, 1H), 7.54 (s, 1H, OH), 6.81 (m, 1H). 

13
C NMR (DMSO-d6, 75 MHz): 160.6, 150.6 (2C), 147.8, 144.9, 141.5, 130.2, 122.9, 121.4 
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(2C), 118.2, 115.4, 108.3. Anal. Calcd for C13H11N4O2Cl (291.72): C, 53.71; H, 3.81; N, 19.27. 

Found: C, 53.39; H, 3.61; N, 19.55. 

N-(3,4-dichlorophenyl)-N'-isonicotinoylformohydrazonamide (15l) Yield 32.60 %; mp 192 °C 

(acetonitrile). IR (KBr): 3443, 2988, 1693, 1633, 1549, 1487, 1411, 1360, 1316, 1262, 1061, 

1023, 849, 684 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.02 (s,1H, NH(A)), 9.78 (s, 1H, 

NH(B)), 8.73 (d, J = 4.92 Hz, 2H, H2, H6), 8.54 (s, 1H, CH), 8.25 (s, 1H), 7.76 (s, 1H), 7.54 (d, 

J = 4.90 Hz, 2H, H3, H5), 7.02 (m, 1H). 
13

C NMR (DMSO-d6, 75 MHz): 160.5, 150.7 (2C), 

147.2, 142.3, 140.1, 131.8, 130.2, 122.9, 121.2 (2C), 116.9, 110.0. Anal. Calcd for 

C13H10N4OCl2 (309.16): C, 50.51; H, 3.26; N, 18.12. Found: C, 50.12; H, 3.66; N, 18.47. 

N-(3,4-difluorophenyl)-N'-isonicotinoylformohydrazonamide (15m) Yield 24.15 %; mp 193 °C 

(ethanol). IR (KBr): 3189, 2915, 1694, 1633, 1557, 1487, 1411, 1361, 1261, 1183, 1151, 1061, 

1023, 1003, 920, 848, 752, 682 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.09 (s,1H, NH(A)), 

9.80 (s, 1H, NH(B)), 8.73 (d, J = 5.38 Hz, 2H, H2, H6), 8.54 (s, 1H, CH), 8.36 (m, 1H), 7.76 (s, 

1H), 7.53 (d, J = 5.79 Hz, 2H, H3, H5), 7.10 (m, 1H). 
13

C NMR (DMSO-d6, 75 MHz): 161.7, 

151.2 (2C), 148.1, 141.9, 140.5, 132.2, 131.4, 122.6, 121.2 (2C), 117.9, 112.1. Anal. Calcd for 

C13H10N4OF2 (277.26): C, 56.52; H, 3.65; N, 20.28. Found: C, 56.12; H, 3.91; N, 19.89. 

N-(3-chloro-4-fluorophenyl)-N'-isonicotinoylformohydrazonamide (15n) Yield 21.60 %; mp 

193 - 195 °C (ethanol). IR (KBr): 3200, 2915, 1686, 1632, 1602, 1549, 1489, 1411, 1360, 1261, 

1222, 1062, 905, 848, 682 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.03 (s,1H, NH(A)), 9.78 

(s, 1H, NH(B)), 8.74 (d, J = 4.87 Hz, 2H, H2, H6), 8.38 (s, 1H, CH), 8.14 (m, 1H), 7.76 (s, 1H), 

7.53 (d, J = 4.94 Hz, 2H, H3, H5), 6.99 (m, 1H). 
13

C NMR (DMSO-d6, 75 MHz): 160.8, 158.1, 

150.2 (2C), 147.0, 145.7, 140.4, 133.4, 126.8, 121.5 (2C), 115.8, 110.9. Anal. Calcd for 

C13H10N4OClF (293.71): C, 53.35; H, 3.44; N, 19.14. Found: C, 53.74; H, 3.09; N, 19.46. 

N-(4-bromo-3-fluorophenyl)-N'-isonicotinoylformohydrazonamide (15o) Yield 11.60 %; mp 

193 - 195 °C (ethanol). IR (KBr): 3201, 2989, 1686, 1631, 1602, 1548, 1489, 1411, 1359, 1261, 

1222, 1062, 905, 848, 682 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.03 (s,1H, NH(A)), 9.80 

(s, 1H, NH(B)), 8.74 (d, J = 4.46 Hz, 2H, H2, H6), 8.40 (d, J = 13.19 Hz, 1H, CH), 8.15 (s, 

1H), 7.77 (d, J = 5.54 Hz, 2H, H3, H5), 7.54 (m, 1H), 7.00 (m, 1H). 
13

C NMR (DMSO-d6, 75 

MHz): 160.4, 157.4, 150.4 (2C), 146.7, 142.3, 141.1, 133.8, 121.4 (2C), 114.1, 105.0, 98.3. 
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Anal. Calcd for C13H10N4OBrF (338.17): C, 46.31; H, 2.99; N, 16.62. Found: C, 46.01; H, 3.39; 

N, 16.41. 

General procedure for the synthesis of compounds 17a – 17n 

Diethoxymethyl acetate (3 mmol) was added to a stirred solution of substituted aniline (2 

mmol) in acetonitrile (20 mL) at 40 °C. The reaction mixture was stirred for 30 minutes at the 

same temperature. The crude product 16 was filtered off and without further purification was 

used for following reaction. 

A solution of intermediate 16 (1 mmol) in acetonitrile (1 mL) was added to a stirred solution of 

isoniazid (1 mmol) in acetonitrile (10 mL) at 55 °C. The mixture was stirred for 6 hours at the 

same temperature and for 20 hours at room temperature. The precipitate was collected by 

filtration and recrystallized from appropriate solvent. 

Data of compounds 17a – 17n 

General structure for NMR evaluation  

N'-[(3-hydroxyphenylimino)methyl]isonicotinohydrazide (17a) Yield 56.90 %; mp 190-192 °C 

(methanol). IR (KBr): 3226, 3085, 3030, 2871, 2601, 2488, 1669, 1631, 1599, 1544, 1497, 

1445, 1414, 1366, 1306, 1247, 1164, 1062, 1003, 964, 909, 849, 764, 697, 688 cm
-1

. 
1
H NMR 

(DMSO-d6, 300 MHz): δ 11.15 (s,1H, NH(C)), 9.42 (s, 1H, NH(D)), 8.69 (d, J = 6.12 Hz, 2H, 

H2, H6), 8.36 (s, 1H, CH), 7.81 (s, 1H, OH), 7.75 (d, J = 4.65 Hz, 1H), 7.72 (d, J = 6.10 Hz, 

2H, H3, H5), 7.59 (m, 1H), 7.38 (m, 1H), 7.12 (t, J = 8.75 Hz, 1H). 
13

C NMR (DMSO-d6, 75 

MHz): 164.1, 160.3, 150.4 (2C), 147.7, 141.5, 140.5, 137.4, 121.4, 121.2 (2C), 118.2, 115.7. 

Anal. Calcd for C13H12N4O2 (256.26): C, 60.93; H, 4.72; N, 22.86. Found: C, 60.69; H, 5.04; N, 

21.72. 

N'-[(4-hydroxyphenylimino)methyl]isonicotinohydrazide (17b) Yield 59.25 %; mp 190-192 °C 

(ethanol). IR (KBr): 3235, 3101, 3033, 2872, 1669, 1645, 1635, 1599, 1539, 1445, 1414, 1368, 
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1306, 1247, 1164, 1062, 849, 767, 697 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.05 (s,1H, 

NH(C)), 9.88 (s, 1H, NH(D)), 8.71 (d, J = 5.88 Hz, 2H, H2, H6), 8.60 (s, 1H, CH), 7.79 (d, J = 

18.23 Hz, 2H, H3, H5), 7.48 (s, 1H, OH), 7.10 (d, J = 39.09 Hz, 2H, H2´,H6´), 6.71 (d, J = 

10.71 Hz, 2H, H3´, H5´) . 
13

C NMR (DMSO-d6, 75 MHz): 160.1, 152.9, 150.3 (2C), 148.4, 

147.2, 140.8, 121.4 (2C), 118.5 (2C), 115.7 (2C). Anal. Calcd for C13H12N4O2 (256.26): C, 

60.93; H, 4.72; N, 21.86. Found: C, 60.51; H, 4.45; N, 22.11. 

N'-[(3-trifluoromethyl)phenylimino)methyl]isonicotinohydrazide (17c) Yield 70.91 %; mp 189-

191 °C (acetonitril). IR (KBr): 3240, 3100, 3041, 1657, 1633, 1600, 1559, 1545, 1497, 1478, 

1340, 1324, 1263, 1206, 1188, 1172, 1132, 1105, 1072, 999, 901, 881, 833, 791, 710, 697, 670, 

639 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.25 (s,1H, NH(C)), 9.78 (d, J = 6.02 Hz, 1H, 

NH(D)), 8.74 (d, J = 5.83 Hz, 2H, H2, H6), 8.52 (d, J = 5.61 Hz, 1H, CH), 7.84 (d, J = 4.20 Hz, 

1H), 7.76 (d, J = 5.70 Hz, 2H, H3, H5), 7.52 (m, 2H), 7.24 (d, J = 6.87 Hz, 1H) . 
13

C NMR 

(DMSO-d6, 75 MHz): 160.3, 150.4 (2C), 147.1, 141.7, 141.3, 130.4, 130.0, 124.2 (q, J = 259.6 

Hz, CF3), 121.4 (2C), 120.1, 117.5, 112.5. Anal. Calcd for C14H11F3N4O (308.27): C, 54.55; H, 

3.60; N, 18.18. Found: C, 54.54; H, 3.25; N, 18.51. 

N'-[(3-fluorophenylimino)methyl]isonicotinohydrazide (17d) Yield 79.90 %; mp 178-180 °C 

(ethanol). IR (KBr): 3212, 1668, 1634, 1643, 1575, 1496, 1460, 1320, 1218, 1152, 845, 776, 

682 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.23 (s,1H, NH(C)), 9.61 (d, J = 5.99 Hz, 1H, 

NH(D)), 8.70 (d, J = 4.42 Hz, 2H, H2, H6), 8.44 (d, J = 5.84 Hz, 1H, CH), 7.80 (d, J = 3.55 Hz, 

1H), 7.72 (d, J = 6.02 Hz, 2H, H3, H5), 7.43 (m, 1H), 7.02 (d, J = 6.75 Hz, 1H), 6.79 (m, 1H). 

13
C NMR (DMSO-d6, 75 MHz): 160.3, 150.4 (2C), 147.1, 142.8, 141.4, 130.9, 122.8, 121.4 

(2C), 112.5, 107.5, 103.3. Anal. Calcd for C13H11N4OF (258.25): C, 60.46; H, 4.29; N, 21.69. 

Found: C, 60.16; H, 3.92; N, 21.99. 

N'-[(4-fluorophenylimino)methyl]isonicotinohydrazide (17e) Yield 60.80 %; mp 183-185 °C 

(ethanol). IR (KBr): 3220, 1676, 1631, 1586, 1548, 1491, 1313, 1258, 1075, 1004, 846, 815, 

693, 676 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.15 (s,1H, NH(C)), 9.43 (s, 1H, NH(D)), 

8.69 (d, J = 6.12 Hz, 2H, H2, H6), 8.36 (s, 1H, CH), 7.73 (d, J = 6.10 Hz, 2H, H3, H5), 7.37 (d, 

J = 4.69 Hz, 2H, H2´, H6´), 7.14 (d, J = 8.77 Hz, 2H, H3´, H5´). 
13

C NMR (DMSO-d6, 75 

MHz): 160.3, 150.4 (2C), 147.7, 141.5, 140.5 (2C), 137.4, 121.2 (2C), 118.1 (2C), 115.8 (q, J = 
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22.41 Hz, C-F). Anal. Calcd for C13H11N4OF (258.25): C, 60.46; H, 4.29; N, 21.69. Found: C, 

60.25; H, 3.96; N, 22.09. 

N'-[(3-chlorophenylimino)methyl]isonicotinohydrazide (17f) Yield 76.95 %; mp 180-182 °C 

(ethanol). IR (KBr): 3212, 1673, 1633, 1597, 1549, 1484, 1314, 1220, 1166, 1097, 994, 907, 

840, 775, 681 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.23 (s,1H, NH(C)), 9.64 (d, J = 6.29 

Hz, 1H, NH(D)), 8.73 (d, J = 4.92 Hz, 2H, H2, H6), 8.49 (d, J = 5.99 Hz, 1H, CH), 7.75 (d, J = 

6.12 Hz, 2H, H3, H5), 7.49 (s, 1H), 7.32 (m, 1H), 7.19 (d, J = 7.15 Hz, 1H), 6.95 (d, J = 7.22 

Hz, 1H). 
13

C NMR (DMSO-d6, 75 MHz): 160.3, 150.4 (2C), 147.1, 142.5, 141.4, 133.8, 130.9, 

121.4 (2C), 120.9, 116.0, 115.0. Anal. Calcd for C13H11N4OCl (274.71): C, 56.84; H, 4.04; N, 

20.40. Found: C, 56.56; H, 3.92; N, 20.76. 

N'-[(4-chlorophenylimino)methyl]isonicotinohydrazide (17g) Yield 33.60 %; mp 178-180 °C 

(ethanol). IR (KBr): 3234, 1634, 1586, 1494, 1407, 1314, 1289, 1262, 1093, 1011, 820, 675 cm
-

1
. 

1
H NMR (DMSO-d6, 300 MHz): δ 11.20 (s,1H, NH(C)), 9.57 (d, J = 6.36 Hz, 1H, NH(D)), 

8.73 (d, J = 4.44 Hz, 2H, H2, H6), 8.42 (d, J = 6.03 Hz, 1H, CH), 7.75 (d, J = 4.50 Hz, 2H, H3, 

H5), 7.34 (d, J = 4.40 Hz, 2H, H2´, H6´), 7.20 (d, J = 8,69 Hz, 2H, H3´, H5´). 
13

C NMR 

(DMSO-d6, 75 MHz): 160.3, 150.4 (2C), 147.2, 141.4, 139.9, 129.1 (2C), 124.8, 121.4 (2C), 

118.1 (2C). Anal. Calcd for C13H11N4OCl (274.71): C, 56.84; H, 4.04; N, 20.40. Found: C, 

56.90; H, 4.31; N, 20.49. 

N'-[(3-bromophenylimino)methyl]isonicotinohydrazide (17h) Yield 79.70 %; mp 188-190 °C 

(ethanol). IR (KBr): 3201, 1675, 1632, 1547, 1481, 1407, 1315, 1219, 1071, 992, 909, 838, 

763, 701, 680 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.21 (s,1H, NH(C)), 9.62 (d, J = 5.68 

Hz, 1H, NH(D)), 8.73 (d, J = 4.72 Hz, 2H, H2, H6), 8.47 (d, J = 5.44 Hz, 1H, CH), 7.82 (d, J = 

3.65 Hz, 1H), 7.71 (d, J = 6.10 Hz, 2H, H3, H5), 7.60 (s, 1H), 7.32 (d, J = 2.75 Hz, 1H), 7.09 (t, 

J = 2.03 Hz, 1H). 
13

C NMR (DMSO-d6, 75 MHz): 160.3, 150.3 (2C), 147.1, 142.6, 141.3, 

131.2, 123.8, 122.3, 121.4 (2C), 118.7, 115.3. Anal. Calcd for C13H11N4OBr (319.16): C, 48.92; 

H, 3.47; N, 17.55. Found: C, 48.56; H, 3.72; N, 17.19. 

N'-[(4-bromophenylimino)methyl]isonicotinohydrazide (17i) Yield 49.12 %; mp 186-188 °C 

(ethanol). IR (KBr): 3220, 1699, 1631, 1586, 1548, 1491, 1313, 1258, 1075, 1004, 846, 815, 

693, 676 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.21 (s,1H, NH(C)), 9.58 (d, J = 7.07 Hz, 
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1H, NH(D)), 8.72 (d, J = 6.07 Hz, 2H, H2, H6), 8.42 (d, J = 6.73 Hz, 1H, CH), 7.74 (d, J = 6.01 

Hz, 2H, H3, H5), 7.44 (d, J = 8.85 Hz, 2H, H2´, H6´), 7.29 (d, J = 8,86 Hz, 2H, H3´, H5´). 
13

C 

NMR (DMSO-d6, 75 MHz): 160.4, 150.5 (2C), 147.2, 141.5, 140.3, 132.1 (2C), 121.5 (2C), 

118.6 (2C), 112.7. Anal. Calcd for C13H11N4OBr (319.17): C, 48.92; H, 3.47; N, 17.55. Found: 

C, 49.20; H, 3.81; N, 17.89. 

N'-[(3-nitrophenylimino)methyl]isonicotinohydrazide (17j) Yield 38.91 %; mp 190-191 °C 

(ethanol). IR (KBr): 3232, 3080, 1641, 1636, 1530, 1350, 1265, 1209, 1149, 1068, 998, 840, 

736, 678 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.29 (s,1H, NH(C)), 9.93 (d, J = 7.29 Hz, 

1H, NH(D)), 8.74 (d, J = 5.96 Hz, 2H, H2, H6), 8.56 (d, J = 7.19 Hz, 1H, CH), 8.27 (s, 1H), 

7.84 (d, J = 5.27 Hz, 1H), 7.77 (d, J = 1,9 Hz, 2H, H3, H5), 7.69 (d, J = 7.59 Hz, 1H), 7.58 (m, 

1H) . 
13

C NMR (DMSO-d6, 75 MHz): 160.4, 150.4 (2C), 148.7, 146.8, 142.1, 141.3, 130.6, 

122.7, 121.4 (2C), 115.8, 110.4. Anal. Calcd for C13H11N5O3 (285.26): C, 54.74; H, 3.89; N, 

24.55. Found: C, 54.49; H, 4.12; N, 24.43. 

N'-[(3,4-dichlorophenylimino)methyl]isonicotinohydrazide (17k) Yield 32.45 %; mp 207 - 209 

°C (ethanol). IR (KBr): 3277, 3042, 1668, 1649, 1626, 1596, 1545, 1477, 1427, 1395, 1324, 

1262, 1134, 1065, 840, 687 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.25 (s,1H, NH(C)), 9.71 

(s, 1H, NH(D)), 8.85 (s, 1H, CH), 8.74 (d, J = 4.92 Hz, 2H, H2, H6), 7.75 (d, J = 5.90 Hz, 2H, 

H3, H5), 7.50 (d, J = 8.79 Hz, 1H), 7.24 (d, J = 8.81 Hz, 1H), 7.19 (m, 1H). 
13

C NMR (DMSO-

d6, 75 MHz): 160.4, 150.4 (2C), 146.8, 141.3, 141.1, 131.6, 131.0, 122.5, 121.4 (2C), 117.8, 

116.9. Anal. Calcd for C13H10N4OCl2 (309.16): C, 50.51; H, 3.26; N, 18.12. Found: C, 50.88; 

H, 3.43; N, 18.39. 

N'-[(3,4-difluorophenylimino)methyl]isonicotinohydrazide (17l) Yield 29.60 %; mp 170 - 172 

°C (ethanol). IR (KBr): 3204, 1686, 1633, 1601, 1549, 1484, 1412, 1337, 1261, 1111, 1061, 

919, 848, 682 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.03 (s,1H, NH(C)), 9.56 (s, 1H, 

NH(D)), 8.73 (d, J = 4.34 Hz, 2H, H2, H6), 8.66 (s, 1H, CH), 8.15 (m, 1H), 7.74 (d, J = 4.34 

Hz, 2H, H3, H5), 7.54 (d, J = 4.53 Hz, 1H), 7.09 (m, 1H). 
13

C NMR (DMSO-d6, 75 MHz): 

164.1, 158.2, 156.9, 150.5 (2C), 143.0, 140.3, 134.5, 133.1, 130.5, 126.4, 121.5 (2C). Anal. 

Calcd for C13H10N4OF2 (277.26): C, 56.52; H, 3.65; N, 20.28. Found: C, 56.98; H, 3.38; N, 

20.59. 
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N'-[(3-chloro-4-fluorophenylimino)methyl]isonicotinohydrazide (17m) Yield 44.90 %; mp 184 

- 185 °C (ethanol). IR (KBr): 3046, 2879, 1669, 1634, 1552, 1504, 1427, 1404, 1369, 1318, 

1263, 1222, 1065, 1001, 840, 684 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.21 (s,1H, 

NH(C)), 9.58 (s, 1H, NH(D)), 9.11 (d, J = 11.00 Hz, 1H), 8.73 (d, J = 4.25 Hz, 2H, H2, H6), 

8.37 (d, J = 4.19 Hz, 1H, CH), 8.37 (d, J = 4.19 Hz, 2H, H3, H5), 7.34 (m, 2H). 
13

C NMR 

(DMSO-d6, 75 MHz): 160.4, 152, 3, 150.5 (2C), 147.4, 141.4, 138.6, 135.0, 127.0, 121.4 (2C), 

119.4, 117.0. Anal. Calcd for C13H10N4OClF (293.71): C, 53.35; H, 3.44; N, 19.14. Found: C, 

52.94; H, 3.26; N, 19.43. 

N'-[(4-bromo-3-fluorophenylimino)methyl]isonicotinohydrazide (17n) Yield 16.60 %; mp 186 - 

187 °C (ethanol). IR (KBr): 3232, 1656, 1623, 1544, 1493, 1411, 1325, 1267, 1213, 1184, 

1145, 1060, 842, 687 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.26 (s,1H, NH(C)), 9.74 (d, J 

= 6.58 Hz, 1H, NH(D)), 8.74 (d, J = 5.19 Hz, 2H, H2, H6), 8.42 (d, J = 6.36 Hz, 1H, CH), 7.75 

(d, J = 5.21 Hz, 2H, H3, H5), 7.54 (d, J = 8.79 Hz, 1H), 7.03 (d, J = 8.74 Hz, 1H), 6.81 (m, 

1H). 
13

C NMR (DMSO-d6, 75 MHz): 160.4, 157, 1, 150.6 (2C), 146.7, 142.3, 141.3, 133.6, 

121.4 (2C), 114.3, 104.6, 98.2. Anal. Calcd for C13H10N4OBrF (338.17): C, 46.31; H, 2.99; N, 

16.62. Found: C, 46.20; H, 2.54; N, 16.92. 
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4.4. Conclusion of the second part of thesis 

Contemporary antituberculotic drugs modifications are one of the main approaches in the 

research of new antituberculotics. The connection of two active molecules by an easily released 

methine bridge was designed and synthetized. The work builds on the previous results of our 

research group.  

The preparation of fluoro-containing hydrazone derivatives have been synthetized in the 

Faculty of Chemistry and Chemical Technology, University of Ljubljana as an international 

Erasmus and Contact program. The first or second line antituberculotics (PAS, CPX, NFX, 

PZA) were linked with fluorinated hydrazones for purpose of the increasing antimycobacterial 

activity of selected drugs (11a-11l, 13a, 13b). All evaluated compounds have shown higher 

activity against MDR-TB (0.5 µg/mL) than INH. Compounds containing CPX were the most 

active against M. tbc. H37Rv and M. kansasii 235/80 and 6509/96. Hydrolysis stability 

measurement have exhibited that evaluated compound is stable at neutral pH and also in rat 

plasma, no significant decomposition was observed during 48 hours experiment. No 

formylciprofloxacin as putative metabolite was detected in the samples. It could improve the 

bioavailability to target site (Paper IV). 

Unpublished experimental data of second serie of hydrazone derivatives of INH 15a-15o, 17a-

17n (29 new compounds) are presented. The compounds with electron-acceptor substituents 

showed similar biological activity as a standard INH. In general, derivatives with halogenated 

substituents exhibited better MIC values. Several compounds exhibited the same inhibitory 

effect as INH against M. tbc. Compound 17n with substituents 4-Br and 3-F was the most 

active against all tested strains M. tbc., M. avium and M. kansasii, unluckily cytotoxicity on 

Hep G2 and PBMC of this derivative is relatively high. It is assumed that the methine bridge of 

derivatives is gradually hydrolyzed. Values of lipophilicity were higher than INH, it signifies 

more effective transport of the molecule through cellular membranes. 
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5. Biological testing of prepared compounds 

In co-operation with Eötvös Lórand University, Research Group of Peptide Chemistry, 

Hungarian Academy of Science in Budapest I have got the possibility to measure by myself the 

cytotoxicity of prepared compounds, eventually other biological assays which are suitable for 

further testing of promising compounds.  

5.1. Cytotoxicity determination by MTT assay 

MTT assay is quantitative colorimetric method which determines cell growth rate. Cell 

proliferation is controlled by growth factors that bind to cell surface receptors (integral 

transmembrane proteins). They are connected to signalling molecules. These molecules activate 

transcription factors which bind to DNA to modulate the production of proteins, resulting cell 

division. Dysfunction of any step in regulatory cascade causes abnormal cell proliferation. 

Determination of cell growth rates is widely used for the testing of drug action, cytotoxic agents 

and screening other biologically active compounds 

The MTT assay
129,130

 is based on the reduction of the yellow tetrazolium salt MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) by respiratory chain and other electron 

transport system.
131

 Non-water-soluble violet formazan crystals are formed in mitochondria of 

metabolic active cells.
132

 

 

Fig. 23 Reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

 

The formazan is then solubilised usually in dimethyl sulfoxide and the concentration 

determined by optical density (OD) at  = 540 and 620 nm using ELISA Reader. OD620 values 

were subtracted from OD540 values. The percent of cytotoxicity was calculated using the 

following equation: 

Cytotoxicity (%) = [1 – (ODtreated/ODcontrol)] x100; 
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where ODtreated and ODcontrol correspond to the optical densities of the treated and the control 

cells, respectively. 

The result is a sensitive assay with a colorimetric signal proportional to the cell number. This 

reduction occurs only when mitochondrial reductase enzymes are active, therefore conversion 

can be directly related to the number of living cells.
133

 The 50% inhibitory concentration (IC50) 

values were determined from the dose-response curves. 

MTT assay was used for cytotoxicity determination of HepG2 human hepatoma cells (ATCC 

HB-8065), human PBMC (peripheral blood mononuclear cells)
128

 and SH-SY5Y human 

neuroblastoma cell line. HepG2 and PBMC were cultured in RPMI-1640 medium without 

phenol red supplemented with 10% FCS (fetal calf serum), 2 mM L-glutamine and 160 g/ml 

gentamycin. SH-SY5Y was grown in DMEM (Dulbecco´s Modified Eagle´s Medium) medium 

without phenol red containing 10% FCS, 2 mM L-glutamine, 160 g/mL gentamycin and 1 % 

nonessential amino acids (NEAA).  

5.1.1. Antituberculosis drug-induced hepatotoxicity 

Human liver cell line Hep G2 was chosen as a model of hepatocytes. Cytotoxicity on HepG2 

was determined due to toxic metabolites of antituberculotics which can develop drug-induced 

hepatotoxicity (DIH). Antituberculosis drug-induced hepatotoxicity can be fatal when is not 

recognized at an early stage, after which the therapy should be interrupted. Development of 

DIH depends on main risk factors as age, sex, ethnic, acetylator phenotype and HIV 

infection.
134

  

Isoniazid and its metabolites are considered as the most significant activators of DIH. Twenty-

four hours of application of INH in concentrations > 26 mM led to a remarkable number of 

apoptotic cells positive for Annexin V.
135

 Hydrazine, the metabolite of INH formed by 

amidase-catalysed hydrolysis, causes significant production of endogenous hydrogen peroxide 

which initiates processes of hydroxyl radical formation, that results in lysosomal damage and 

development of inflammation.
136

 Incidence of drugs combination can have synergic hepatotoxic 

effect. It was proved that the in vitro hepatotoxicity of PZA is increased by pre-treatment of 

cells with INH.
137

 On the other hand, INH is able to increase activity of CYP2E1, the enzyme 
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responsible for metabolism of xenobiotics to production of free radicals. Simultaneously, INH 

decreases activities of glutathione S-transferases (GSTs) function responsible for the protection 

of cytoplasm against free radicals, but RIF normalizes the production of ROS by CYP2E1 and 

GSTs. It indicates that RIF has antagonistic effect.
138

  

5.1.2. Immune response to Mycobacterium tuberculosis 

Human PBMC (Peripheral blood mononuclear cells) are suitable cellular model of 

immunocompetent cells which are important for a local immune response and a destruction of 

mycobacteria.
139

 PBMC are a preparation of blood cells which contains macrophages, 

monocytes and lymphocytes. Mostly, treatment of TB is based on the cellular immunity and 

chemotherapy. Protective immune response involves a phagocytosis of Mycobacterium 

tuberculosis by alveolar macrophages which are activated by antigen-specific CD 8 T 

lymphocytes.
140

 The initial infection sets off a cascade of inflammatory molecules, including 

release of cytokines (INF-, TNF-α) and chemokines (CCL2, CCL3, CCL4, CCL5 – migration 

of macrophages to the lungs) from the infected macrophages
141

. Cells (macrophages, T and B 

cells) form a granuloma in the site of infection. Macrophages can differentiate into multinuclear 

giant cells. Necrosis can occur in granuloma. Apoptotic death of infected macrophages can be 

induced by 19 kDa glycoprotein of M. tuberculosis, TNF-α or Fas ligand.
142

  

Chemotherapy kills the majority of bacteria during few days, but subpopulation in stationary 

phase (granuloma) could persist in aerobic or anaerobic sites.
143

 Therefore, administration of 

antituberculotic drugs must be continued for at least 6 months. During this time an immune cell 

system should protect the body of patient. Therefore it is essential to find out if used drugs are 

not toxic for human PBMC which play important role in systemic immune response.  

5.2. Flow cytometry 

The basic principle of flow cytometry is to provide rapid analysis of multiple characteristics of 

single cells or particles including nuclei, microorganism, chromosome preparations and latex 

beads. They pass through a light source focused at a very small region. Usually there is an air-

cooled argon gas laser in the instrument which emit a monochromatic beam of light fixed at 

488 nm.
144

 Emitted light is given off in all directions and is collected to series of filters and 
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dichroic mirrors that isolate particular wavelength bands. The light signals are detected by 

photomultiplier tubes and digitalized for computer analysis. The resulting information is 

usually displayed in histograms or two-dimensional dot-plot formats.
145

 Generated optical 

signals represent the detection of various chemical or biological components. It is possible to 

separate particles or cells into populations. They based on statistical differences of 10 to 20 

parameters that can be measured on each particle or cell. The most common detection system in 

flow cytometry uses fluorescent molecules which are attached to the particle of interest. The 

fluorescent probe might be bounded to membrane, cytoplasm or nuclear materials. Other 

common practice is application of monoclonal and polyclonal antibodies that recognize specific 

receptors on cells. 

Fluorescent labeling of chitosan led us to try an experiment with the flow cytometry which was 

investigated to the uptake study of labeled chitosan by human PBMC (Fig. 21). Cellular uptake 

was observed on macrophages and monocytes. This ascertainment can be important for latent 

phase of TB. Chitosan connected with antituberculotics could be phagocytised by 

immunocompetent cells and destruct pathogenic mycobacteria. 
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Abstract 

Water-soluble chitosan conjugates were prepared by connection with isoniazid, pyrazinamide 

and ethionamide across the O-carboxymethyl and N-succinyl bridge followed by 

phosphorylation. Their structures were characterized by FTIR and 
1
H NMR spectroscopy. 

Degree of drug substitution and molecular weight of prepared compounds have been 

investigated. Antimycobacterial activity was determined against Mycobacterium tuberculosis 

and three non-tuberculosis strains. Chitosan derivatives showed significant MIC 125 µg/mL 

against all tested strains which can be explained by contribution of the presence of 

antituberculotic drugs and original structure of chitosan. Cytotoxicity of prepared compounds 

was evaluated in human liver cell line Hep G2 and human peripheral blood mononuclear cells 

mailto:vinsova@faf.cuni.cz
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(PBMC). Toxicity of antituberculotic drugs on Hep G2 cells were compensated by connection 

with chitosan and tested compounds have not exhibited significant cytotoxic effect on PBMC 

cells. Chitosan conjugates with antituberculotic drugs could be potentially effective in the 

non-toxic chemotherapy of tuberculosis. 

1. Introduction 

Chitosan is known as a biological active polymer having many interesting properties, low 

toxicity, biocompatibility, biodegradability and low cost (Uraganu & Tokata, 2006; Vinsova 

& Vavrikova, 2008). Chitosan is a linear polysaccharide, derived from naturally abundant 

chitin, composed from D-glucosamine and N-acetyl-D-glucosamine units bonded by β-1,4-

glycosidic linkages. Degree of deacetylation of commercially prepared chitosan is usually in 

the range between 60 – 100 % and has influence on the solubility, swelling index, wound 

dressing and antimicrobial properties (Qin et al., 2008). Potential pharmaceutical applications 

of chitosan seem to be promising. It is used as a carrier material in various drug delivery 

systems with a broad range of therapeutic application (Dodane & Vilivalam, 1998). The 

properties of chitosan make it a versatile excipient not only for controlled release applications 

but also as a bioadhesive polymer. Chitosan can act as a prodrug for targeting therapy 

composed of a polymer carrier, biodegradable covalent linkage and therapeutic agent. 

Targeting delivery of drugs improves their therapeutic efficacy and minimizes side effects. 

(Vinsova & Vavrikova, 2008) 

Chitosan alone is completely soluble in both organic and inorganic acidic solutions at pH less 

than 6.5 due to the presence of free amino groups. Chemical modifications of chitosan 

molecule can also improve water solubility. Thus, an implementation of hydrophilic groups to 

the molecule of chitosan or quarterisation of amino group of chitosan is the most widely used. 

For introduction of carboxylic group there is very useful O-carboxymethylation or N-

succinylation. Water solubility of O-carboxymethyl chitosan (OCMC) depends on reaction 

conditions of carboxymethylation, especially on reaction temperature and ratio of 

water/propan-2-ol as the reaction solvent (Chen & Park, 2003). In an attempt to improve 

antimicrobial activity of chitosan, OCMC was further quarternized. Quarternized 

carboxymethyl chitosan exhibited stronger antimicrobial activity against Gram-negative 

Escherichia coli and Gram-positive Staphylococcus aureus. (Sun et al., 2006) Graft 

copolymerization of poly(N-vinyl imidazole) onto carboxymethylchitosan has improved its 

antimicrobial activity (Sabaa et al., 2010). An inhibition effect of OCMC against fungal plant 
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pathogens was presented (Zhong et al., 2009) and against C. albicans, C. krusei and C. 

glabrata (Seyfarth et al., 2008) was documented also. In both cases, there was observed that 

antifungal activity depends on the size of molecule and polycationic character which is 

probably crucial for antifungal activity. 

N-succinyl chitosan (NSCS) is well known as a drug carrier with a long circulating effect in 

the body (Kato et al., 2000). When the degree of acetylation is low (10%), it is completely 

soluble in water. Moreover, recently N-succinyl chitosan became a main component of 

micelles or nanoparticles used for delivery system. Sui et al. (2008) reported synthesis of N-

succinyl chitosan with 2-(butoxymethyl)oxirane which decreased the surface tension and 

forms amphiphilic aggregates. Other study presented self-assembly formation of N-succinyl 

chitosan nanospheres in distilled water. Chitosan based drug matrix has a great potential in 

drug controlled release delivery. Hydrophobic domain as acetyl groups and glycosidic rings 

formed inside nanospheres which offer possibility for loading not only hydrophilic drugs but 

also hydrophobic drugs (Zhu et al., 2006). A work flowing from the previous experiment 

deals with the encapsulation of bovine serum albumin into nanoparticles of N-succinyl 

chitosan in molar ratio 30:1 by TEM technique (Zhu et al., 2007). Hence, these particles have 

a great potential to be used in controlled release delivery. Main utilisation of N-succinyl 

chitosan is in cancer therapy. A conjugate of mitomycin C (MMC) and N-succinyl chitosan 

exhibited good antitumor activities against various tumours (Kato et al., 2004). The conjugate 

had strong inhibition effect against the growing of a solid tumor Sarcoma 180 and MMC was 

gradually released over one week (Song et al., 1996). Lactosaminated N-succinyl-chitosan-

mitomycin was examined against liver metastases of M5076 cells in the early and advanced 

stages. Lactosaminated part of molecule showed high accumulation in the liver and the 

conjugate functioned effectively in the early metastatic stage (Kato et al., 2001). 

Tuberculosis (TB) is leading infection disease and serious world health problem due to which 

1.3 million people died in 2008 (Global tuberculosis control, 2009). First line antituberculotic 

drugs (isoniazid (INH), pyrazinamide (PZA), ethambutol, rifampicin (RIF), streptomycin) are 

used in combinations during the treatment of TB, administered daily or intermittently for 

several months to patients. Current anti-tuberculosis drugs INH, RIF and PZA are potentially 

hepatotoxic drugs. They are metabolized and detoxified in the liver. Toxic metabolites 

develop drug-induced hepatotoxicity (DIH). Antituberculosis drug-induced hepatotoxicity can 

be fatal when is not recognized at an early stage, after which the therapy should be 
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interrupted. Development of DIH depends on main risk factors as age, sex, ethnic, acetylator 

phenotype and HIV infection (Sharma, 2004). Twenty-four hours of application of INH in 

concentrations > 26 mM led to a remarkable number of apoptotic cells positive for Annexin V 

(Schwab & Tuschl, 2003). Hydrazine, the metabolite of INH formed by amidase-catalysed 

hydrolysis, causes significant production of endogenous hydrogen peroxide which initiates 

processes of hydroxyl radicals formation, that results in lysosomal damage and development 

of inflammation (Tafazoli et al., 2008). Incidence of drugs combination can have synergic 

hepatotoxic effect. It was proved that the in vitro hepatotoxicity of PZA is increased by pre-

treatment of cells with INH (Tostmann et al., 2008). On the other hand, INH is able to 

increase activity of CYP2E1, the enzyme responsible for metabolism of xenobiotics to 

production of free radicals. Simultaneously, INH decreases activities of glutathione S-

transferases (GSTs) function responsible for the protection of cytoplasm against free radicals, 

but RIF normalizes the production of ROS by CYP2E1 and GSTs. It indicates that RIF has 

antagonistic effect (Yue et al., 2009). Shantosh et al. (2006) presented that oral administration 

of RIF and INH significantly changed levels of diagnostic markers in serum and liver of rats. 

Co-administration of chitosan had a tendency to prevent antitubercular drug-induced 

hepatotoxicity in rats. The hepatoprotective effect of chitosan is probably due to a 

counteraction against free radicals by its antioxidant nature and/or to its ability to inhibit lipid 

accumulation due to its antilipidemic properties (Santhosh et al., 2007). 

Mostly, treatment of TB is based on the cellular immunity and chemotherapy. Protective 

immune response involves a phagocytosis of Mycobacterium tuberculosis by macrophages 

which are activated by antigen-specific T cells (Cooper  Flynn, 1995). Chemotherapy kills 

the majority of bacteria during few days, but subpopulation in stationary phase could persist 

in aerobic or anaerobic sites (Rook et al., 2001). Therefore, administration of antituberculotic 

drugs must be continued for at least 6 months. During this time immune cell system should 

protect body of patient. It is essential to find out if used drugs are not toxic for cells which 

play important role in immune response. PBMC are a preparation of blood cells which 

contains macrophages, monocytes and lymphocytes as an experimental model, PBMC may be 

used for this purpose. 

In the current investigation, we have bonded first or second line antituberculotics such as 

INH, PZA, ethionamide (ETA) on chitosan as a carrier through the short linkage by 

carboxymethyl group or succinyl-bridge with assumption of its hepatoprotective activity. The 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schwab%20CE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tuschl%20H%22%5BAuthor%5D
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water solubility of prepared conjugates was increased by phosphorylation. Synthesis, 

characterization of derivatives, determination of antimycobacterial activity and evaluation of 

cytotoxicity are reported. 

2. Experimental 

2.1 Synthesis 

Two main approaches were used. First type of reaction was based on the formation of O-

carboxymethylated chitosan (OCMC) 1. The first step was the preparation of an intermediate 

product O-carboxymethyl chitosan by the reaction of chitosan and chloroacetic acid in 

propan-2-ol (Fan et al., 2006). The intermediate was precipitated in acetone. The following 

reaction was based on the linkage of OCMC with antituberculotic drug. 500 mg of OCMC (1) 

was dissolved in water and 200 mg of appropriate drug (INH, PZA or ETA) was added. The 

mixture was cooled to 0-5 °C. The carboxylic group was activated with 220 mg of N-(3-

dimethylaminopropyl)-N´-ethylcarbodiimide (Scheme 1) and the reaction mixture was stirred 

at 0 - 5 °C for 3 hours, then the temperature was gradually increased to the room temperature. 

After 24 hours without further isolation 2 ml of methanesulfonic acid and 300 mg of 

phosphorus pentoxide was added to the mixture (Nishi et al., 1984). The reaction mixture was 

stirred at 0 - 5 °C for 3 hours. The mixture was cooled overnight in a freezer and then the 

product 3 was precipitated with acetone. 

Succinylation of amino group of chitosan was the second approach to the synthesis. Chitosan 

reacted with succinyl anhydride in dimethyl sulfoxide (Yan et al., 2006) to produce N-

succinyl chitosan 4 (Scheme 2). The intermediate was precipitated in acetone. The following 

reaction was based on the linkage of NSCS with antituberculotic drug. 500 mg of NSCS (4) 

was dissolved in water and 200 mg of appropriate drug (INH, PZA or ETA) was added. The 

mixture was cooled at 0-5 °C. The carboxylic group was activated with 220 mg of N-(3-

dimethylaminopropyl)-N´-ethylcarbodiimide and the reaction mixture was stirred at 0 - 5 °C 

for 3 hours, then the temperature gradually increased to the room temperature. After 24 hours 

without isolation 2 ml of methanesulfonic acid and 300 mg of phosphorus pentoxide was 

added to the mixture. The reaction was stirred at 0 - 5 °C for 3 hours. The mixture was cooled 

overnight in a freezer and then the product 6 was precipitated with acetone. 
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Scheme 1. Conjugation of OCMC and antituberculotic drugs 

 

 

Scheme 2. Conjugation of NSCS and antituberculotic drugs 

2.2 Characterization 
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The chemicals were obtained from Sigma-Aldrich Co. Elemental analyses (C, H, N) were 

performed with a CHNS-O CE elemental analyzer (Fisons EA 1110). Infrared spectra were 

recorded on Nicolet Impact 400 IR spectrometer in ATR. NMR spectra were measured in 

D2O on a Bruker Avance 300 (300 MHz for 
1
H). 

2.3 Determination of degree of deacetylation 

Degree of deacetylation of chitosan was found out by calculation from ratio C/N of prepared 

compounds. The formula contains ratio C/N for completely N-deacetylated chitosan and for 

chitin, fully acetylated polymer (Kasaai et al., 2003). 

2.4 Determination of molecular weight 

Molecular weight (MW) of products was calculated from viscosity measurement. As an 

aqueous solution system was chosen 0.3 M acetic acid/0.2 M sodium acetate at 25 °C. Stock 

solutions were prepared from chitosan and prepared compounds 1, 3a - 3c, 4, 6a - 6c. 

Ubbelohde viscosimeter with average of capillary 0.64 ± 0.02 mm was used for the 

measurement. 

2.5 Determination of degree of substitution 

Degree of drug substitution on prepared compounds 3a - 3c, 6a - 6c was determined by UV 

spectrophotometric technique on the base of calibration curve method. Calibration curve was 

expressed for each antituberculotic drug (INH, PZA, ETA). Degree of substitution was 

calculated as a percentage of drug from whole polymeric molecule of product. 

2.6 Antimycobacterial activity 

The prepared chitosan derivatives 1, 3a - 3c, 6a - 6c were tested in vitro for antimycobacterial 

activity in the Laboratory for TBC, Health Institute in Ostrava, against M. tuberculosis 331/88 

and some non-TB strains such as M. avium (330/88) and M. kansasii (235/80 and 6509/96). 

Antimycobacterial activity was measured in Sula´s semisynthetic medium (SEVAC, Prague) 

at 37 °C. The compounds were dissolved in the same medium. The following concentrations 

were used: 500, 250, 125, 62, 32, 16, 8, 4, 2 and 1 µg/mL. MICs values were determined after 

incubation at 37 °C for 14 and 21 days, for M. kansasii for 7, 14, and 21 days. MIC was the 

lowest concentration of a substance, at which the inhibition of the growth of mycobacterium 

occurred. 
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2.7 In vitro cytotoxicity 

2.7.1 In vitro cytotoxicity in PBMC 

Human PBMC (Jurcevic et al., 1996) were cultured in RPMI-1640 medium without phenol 

red supplemented with 10% FCS, 2 mM of L-glutamine and 160 g/ml of gentamycin. Cell 

cultures were maintained at 37 °C, 5% CO2 in water-saturated atmosphere. 

Cells were plated into 96-well plate with initial cell number of 5 x 10
3
 per well (PBMC 1.5-

2.0 x 10
5
 cells/well). After 24 h incubation at 37 °C prior to the experiment, cells were treated 

with compounds 1, 3a, 3b, 6a, 6b in 100 μL serum free medium overnight. Control cells were 

treated with serum free medium. Four parallel measurements were performed in all cases. 

After overnight incubation at 37 °C, the cell viability was determined by 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-assay (Slater et al., 1963; 

Mosmann, 1983). 45 μl MTT-solution (2 mg/mL) was added to each well. The respiratory 

chain (Slater et al., 1963) and other electron transport systems (Liu et al., 1997) reduce MTT 

and thereby form non-water-soluble violet formazan crystals within the cell (Altman, 1976).
 

The amount of these crystals can be determined spectrophotometrically and serves as an 

estimate for the number of mitochondria and hence the number of living cells in the well 

(Denizot & Lang, 1986). After 4 hrs of incubation; cells were centrifuged for 5 min (2000 

rpm) and supernatant was removed. The obtained formazan crystals were dissolved in 50 or 

100 μL of DMSO and optical density (OD) of the samples was measured at  = 540 and 620 

nm using ELISA Reader (iEMS Reader, Labsystems, Finland). OD620 values were subtracted 

from OD540 values. The percent of cytotoxicity was calculated using the following equation: 

Cytotoxicity (%) = [1 – (ODtreated/ODcontrol)] x100; where ODtreated and ODcontrol correspond to 

the optical densities of the treated and the control cells, respectively. In each case two 

independent experiments were carried out with 4–8 parallel measurements. The 50% 

inhibitory concentration (IC50) values were determined from the dose-response curves. The 

curves were defined using MicrocalTM Origin1 (version 6.0) software. 

2.7.2 In vitro cytotoxicity in HepG2 cells 

The synthesised compounds 1, 3a - 3c, 4, 6a - 6c were tested on cytotoxicity in human liver 

cell line Hep G2 (passage 26-28; ECACC, UK). A standard colorimetric method measuring a 

tetrazolium salt reduction (CellTiter 96 AQueous One Solution Cell Proliferation Assay, 
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Promega, USA) was used for evaluation. 10000 cells per well were incubated at 37°C for 3 

hours in 5% CO2 atmosphere. The chitosan derivatives were dissolved in the cell medium 

without fetal bovine serum. Each compound was tested using six increasing concentrations. 

The treated cells were incubated together with controls at 37 °C for 24 hours in 5% CO2 

atmosphere. Than solution of MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) was added according to 

recommendation of the producer of the kit. The tested plate was incubated for 2 hours at 37°C 

and 5 % CO2. The quantity of formazan formed in metabolically active cells was measured by 

the absorbance at 490 nm using a 96-well plate reader. Measured results were statistically 

evaluated in programs Microsoft Excel 2007 and GraphPad Prism 5.02. The standard 

cytotoxic parameter IC50 was determined in each tested compound. 

3. Results and discussion 

3.1 Characterization of prepared compounds 

Chitosan and its derivatives were confirmed by FT-IR ATR and 
1
H NMR spectroscopy. 

Infrared spectra of chitosan and carboxymethyl derivateives 1, 3a - 3c are compared in Fig. 1. 

and infrared spectra of chitosan and succinylated derivatives 4, 6a - 6c are compared in Fig. 2. 

Characteristic peaks for origin chitosan were 1650, 1588 and 1319 cm
-1

 assigned to amides I, 

II and III. Umbrella vibration of methyl C-H bonds was presented by peak 1374 cm
-1

. 

Assymmetrical stretching vibration of the C-O-C bridge was marked by 1149 cm
-1

 (Chen & 

Park, 2003). Peak 1023 cm
-1

 specified C-O secondary hydroxyl group stretch vibration. FTIR 

spectrum of 1 (OCMC) showed strong peak at 1436 cm
-1

 which could be assigned to the 

symmetrical stretching vibration of COO
-
 group (Sabaa et al., 2010). Its asymmetrical 

stretching vibration occurred at 1558 cm
-1

. Wide band around 1600 cm
-1

 and sharp peak at 

1506 cm
-1

 assigned NH2 group. The C-O absorption peak of the secondary hydroxyl group 

became weaker and moved to 1068 cm
-1

. Infrared spectrum of 4 (NSCS) showed 1650 cm
-1

 as 

amide I, decreasing of the amide II (1554 cm
-1

) and increasing of the amide III (1400 cm
-1

) in 

comparison with FTIR spectrum of chitosan. Peak 1432 cm
-1

 indicated COO
-
 group of 

succinyl bridge. 

FTIR spectra of prepared compounds 3a – 3c and 6a - 6c were similar. Small and wide 

absorption band between 1652 - 1620 cm
-1

 indicated amides I. Amide II was occurred at 1570 

– 1560 cm
-1

 in case 6b and 6c. Peaks 1432 – 1406 cm
-1

 assigned symmetrical stretching 
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vibration of COO
-
 group, which was in accordance with low degree of substitution of 

antitubercular drugs. Small peaks at 1248 – 1238 cm
-1

 showed P=O deformation vibration. 

Secondary amine N-H vibration was presented by absorption band at 1196 – 1184 cm
-1

 Peaks 

1061 – 1050 cm
-1

 indicated secondary hydroxyl groups in chitosan structure. The sharp peaks 

at 789 – 786 cm
-1

 presented deformation vibration of aromatic rings of connected 

antitubercular drugs. 

  

Fig. 1 FTIR spectra of chitosan, 1 and 3a – 3c 
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Fig. 2 FTIR spectra of chitosan, 4 and 6a – 6c 

1
H NMR spectrum of chitosan was measured in CF3COOD and 

1
H NMR spectra of 1, 3a - 3c, 

4, 6a - 6c were measured in D2O. An assignment of chemical shifts for proton of origin 

chitosan was ascertained in agreement with Kasaai (2010). N-acetyl glucosamine unit 

contained peak of H1 (4.68 ppm) and H2 (2.7 ppm). Glucosamine unit was presented by 

peaks H1 (4.95 ppm) and H2 (2.22 ppm). The resolution of H3, H4, H5 and H6 protons was 

low and chemical shifts occurred between 3.8 – 3.4 ppm. Methyl protons of acetyl group 

resonated at 1.92 ppm and its peak possess the highest resolution. In addition, spectrum of 1 

(OCMC) showed a signal of carboxymethyl group at 3.93 ppm. Spectrum of 4 (NSCS) 
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contained a sharp peak at 2.53 ppm assigned to the methylene protones of succinyl group (Sui 

et al., 2008). 

1
H NMR spectra of prepared products 3a - 3c and 6a - 6c contained characteristic peaks of 

chitosan, OCMC and NSCS, in addition, peaks of aromatic parts of molecules and amide 

bonds. Spectrum of compound 3a exhibits two doublets at 8.61 and 7.73 ppm corresponded to 

hydrogens of pyridine ring. Peak at 8.45 ppm corresponded to hydrogens of hydrazide bond. 

Aromatic part of compound 3b was characterized by 9.17 and 8.68 ppm of pyrazine ring, 

peak 8.68 was a multiplet, it corresponded also to amide bond of PZA. Pyridine ring of 

compound 3c was characterized by peaks 8.36 and 7.51 ppm. 8.55 ppm coresponded to amide 

bond of ETA and NSCS. 

1
H NMR spectrum of compound 6a was characterized by 8.60 and 7.73 ppm which presented 

pyridine ring. Peak 8.36 ppm was multiplet assigned of chemical shift of pyrazine ring of 

compound 6b. Compound 6c had peak of pyridine ring at 6.77 ppm and 8.50 ppm 

corresponded to amide bond of ETA and NSCS. 

3.2 Determination of degree of deacetylation 

Elemental analysis of chitosan was measured and degree of acetylation was calculated 

according the formula based on the rate carbon and nitrogen. DA = ((C/N)-5.145)/(6.861-

5.145)x100. Number 5.145 corresponds to completely N-deacetylated chitosan and 6.861 

exhibits fully acetylated chitosan. Resulting degree of deacetylation for origin chitosan is 

20.04% which is in accordance with the information of provider. 

3.3 Determination of molecular weight 

The molecular weight of original chitosan and prepared derivatives were measured using 

viscosimetry. The Mark – Houwink equation formula was used for calculation of MW, [] = 

K . M
a
; [] is intrinsic viscosity, M is molecular weight, K and a are viscometric constants 

depending on the degree of deacetylation of chitosan. Accordingly to Rinaudo et al. (2003), 

values for constants are K = 0.074 cm
3
 g

-1
 and a = 0.76. Resulting MW are summarized in 

Fig. 3. Original chitosan had MW 29972 Da but the synthetic procedure resulted in the 

significant degradation of the polymer backbone. This effect has been previously reported 

(Holappa et al., 2005; Masson et al., 2008). Prepared compounds 1, 3a - 3c, 4, 6a - 6c 

exhibited half values of MW. 
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Fig. 3 Molecular weights of chitosan and prepared compounds 

3.4 Determination of degree of substitution 

Percentage of a content of antituberculotic drugs in molecules of chitosan derivatives 3a - 3c, 

6a - 6c was determined by UV spectrophotometric technique on the base of calibration curve 

method. Calibration solutions of INH and PZA were dissolved in water, calibration solutions 

of ETA were dissolved in methanol. Samples of products were dissolved in water. Fig. 4 

summarizes degree of substitution of each prepared compound. The highest values of 

substitution exhibited compounds 3b, 6a and 6b. In general, percentage of a content of 

antituberculotic drugs was low. It was confirmed by reverse procedure of synthesis because of 

suspicion of degradation of amid bounds between antituberculotic drugs and 1 or 4 due to low 

pH during phosphorylation. The phosphorylation was made as the first step and the linkage of 

antituberculotic drugs was the following reaction. The degree of substitution was also 

between 0.6 – 1.5 %. 



14 

 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

3a 3b 3c 6a 6b 6c

%
 s

u
b

st
it

u
ti

o
n

 

Fig. 4 Degree of substitution of prepared compounds 

3.5 Antimycobacterial activity 

Table 1 Values of antimycobacterial activity and in vitro cytotoxicity 

   MIC [µg/mL [mg/mL 

 

M. tbc 

331/88 

M. avium 

330/88 

M. kansasii 

235/80 

M. kansasii 

6509/96 
HepG2 

IC50 

PBMC 

IC50 

14 d 21 d 14 d 21 d 7 d 14 d 21 d 7 d 14 d 21 d 

1 62.5 62.5 31.25 62.5 125 125 125 125 125 125 2.83 > 1.67 

4 NT NT NT NT NT NT NT NT NT NT > 3 NT 

3a 125 125 125 125 125 125 125 125 125 125 2.13 > 1.78 

3b 125 125 125 125 125 125 125 125 125 125 > 3 > 9.35 

3c 125 125 125 125 125 125 125 125 125 125 2.32 NT 

6a 125 125 125 125 125 125 125 125 125 125 > 3 > 3.54 

6b 125 125 125 125 125 125 125 125 125 125 2.72 > 8.86 

6c 125 125 125 125 125 125 125 125 125 125 2.96 NT 

NT = not tested 
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To the best of our knowledge no studies aimed to antimycobacterial activity of chitosan or 

chitosan derivatives against complex M. tuberculosis have not been published yet. The anti-

TB screening results in the compounds 1, 3a - 3c, 4, 6a - 6c are summarized in Table 1. 

Compounds 3a - 3c and 6a - 6c have the same MIC of 125 µg/mL. Even if, 1 is without 

substitution of antituberculotic drug, its MIC is lower – 62.5 µg/mL (M. tuberculosis) and 

31.25 and 62.5 µg/mL (M. avium). In general, it seems that there are two factors influencing 

the activity of compounds. Firstly, presence of first or second line antituberculotic drugs 

(INH, PZA, ETA) which is important in the inhibition of mycobacteria. Although, the degree 

of substitution is not high, products 3a - 3c and 6a - 6c have exhibited very good 

antimycobacterial activity. The second factor is probably an antibacterial activity of original 

chitosan structure which corresponds with the inhibition values against M. tuberculosis and 

M. avium of 1 and probably contributs to mycobacterial growth inhibition. The explication of 

this activity could be high degree of deacetylation of chitosan. It means that the amino group 

as the active functional group (chelating divalent cations) was found to be essential for the 

antibacterial activity of chitosan. MIC values of 3a - 3c and 6a - 6c are equal for all tested 

strains, this implies that amount of free amino groups in chitosan derivatives should be the 

same. It means that the degree of substitution of antituberculotic drugs was very similar. It is 

in agreement with the low degree of substitution of linked drugs. 

3.6 In vitro cytotoxicity 

Results of the experiments on cytotoxicity are presented as inhibitory concentration which is 

necessary to decrease viability of the cell population to 50% from the maximal viability 

(IC50). A comparison of the found cytotoxic concentrations and MIC values demonstrates that 

the prepared compounds in concentrations comparable to MICs exert very low toxicity for 

human hepatocytes and PBMC cells (Table 1). 

3.6.1 In vitro cytotoxicity in PBMC 

Current long duration treatment of TB is among others connected with immune cell system 

and its protective immune response. Using of antitubercular drugs which are toxic for 

lymphocytes can be an encumbrance. Resulting values of IC50 PBMC toxicity on chitosan 

derivatives 1, 3a, 3b, 6a, 6b were evaluated between 1.67 – 9.35 mg/mL. However, 

determined concentrations of prepared compounds were too low; toxicity curves have not 
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cross values IC50. All tested compounds in examination range of concentrations have not 

exhibited obvious cytotoxic effect on PBMC cells. 

3.6.2 In vitro cytotoxicity in HepG2 cells 

5 – 10 % prevalence of DIH led us to the idea to prepare conjugates of antibacterial drugs 

with chitosan as a carrier that has supposed hepatoprotective activity. We have expected that 

the hepatotoxicity of products should be very low. The results on HepG2 toxicity were in 

accordance with our hypothesis. Since MW of all tested compounds are very similar, IC50 

concentrations can be compared on mg/mL basis. IC50 values ranged from 2.13 to 2.96 

mg/mL. In the cases of 4, 3b and 6a, IC50 values were higher than 3 mg/mL. Toxicity curves 

did not reached values enabling calculation of IC50. 

4. Conclusions 

Our main goal was to prepare a new carrier for antimycobacterial active drugs having lower 

hepatotoxic potential than original antituberculotics which could be used as a water-soluble 

antimycobacterial prodrug with a preventive action against antitubercular drug-induced 

hepatotoxicity. Thus we have synthesized chitosan derivatives with carboxymethylated and 

succinylated linkage used for the conjugation of some anti-tuberculosis drugs. For the first 

time, chitosan and its derivatives were evaluated as potential antimycobacterial agents. The 

performed tests have demonstrated powerful inhibitory effect against one TB strain and three 

non-TB strains. It is interesting that the lowest MIC has shown O-carboxymethylated chitosan 

(compound 1). Toxicity studies showed that chitosan derivatives are toxic only in very high 

concentrations; both in case of hepatocytes and HepG2 toxicity was more pronounced and 

IC50 values were higher than 2.13 mg/mL. Chitosan and its derivatives may be a promising 

biomaterial which could be used for compensation of toxicity and for liver protection of 

hepatocytes during administration of antituberculotic drugs. 
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Abstract 

Several new fluorine-containing hydrazones were synthesized and screened for their in vitro 

antimycobacterial activity. Nine of these derivatives have shown a significant activity against 

MDR-TB strain with MIC 0.9-1.56 μmol/L and high value of selectivity index (SI). 

Compound 3h with the highest SI (1268.58) was used for stability evaluation with putative 

metabolites (ciprofloxacin and formylciprofloxacin) detection. Compound 3h was stable at 

pH 7.4 of aqueous buffer and rat plasma, at acidic buffers (pH 3 and 5) slow decomposition 

was observed. Interestingly, no formylciprofloxacin was detected in the solution, and only 

slightly increased concentration of ciprofloxacin was observed instead. Trifluoromethyl 

hydrazones 3f and 3g exhibited the best activity against two strains of Mycobacterium 

kansassi (MIC 1 - 4 μmol/L). All evaluated compounds were found to be non-cytotoxic. 
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1. Introduction 

Tuberculosis (TB) is still one of the major causes of bacterial infections and death in the 

world as 9.4 million incident cases of TB was estimated and 1.8 million of deaths from TB 

was determined in 2008.
1
 These numbers are still alarming, hence, in 2006, WHO developed 

the Global plan named “The Stop TB Strategy”. Its goal is to reduce dramatically the global 

burden of TB till 2015 by ensuring all patients. The strategy also supports the development of 

new and effective tools to prevent, detect and treat TB. Other object is to achieve universal 

access to high-quality diagnosis and patient-centred treatment or to protect poor and 

vulnerable populations from TB, TB/HIV and MDR-TB. The main target is an elimination of 

TB as a public health problem till 2050.
2
  

Modifications of first or second line antituberculotic drugs are widely applied.
3
 A connection 

of two active parts is one of the possible approaches in the drug design giving a prodrug 

form.
4,5

 It is well known that the hydrazone group plays an important role for antimicrobial 

activity.
6
 Substituted carbohydrazone moiety has been found as a good pharmacophore group 

for many antituberculosis active molecules.
7,8,9,10

 In our previous study we described the 

possibilities of synergic effect of two components.
11

 Namely, C1 fragment that originated 

from hydrazones was found useful for the formation of C-N bond with the appropriate amines 

as nucleophiles.
12

 It is assumed that the methine bridge as a linker of both parts is gradually 

hydrolyzed to release active molecule or molecules from their “depot” form. The combined 

molecule thus serves as a prodrug which can increase bioavailability, passing through the 

membrane, targeting to the active site and protecting against multidrug-resistance. 

Involvement of fluoroquinolones as second line antituberculotics to the potential active 

molecule seems to be promising. Antimycobacterial activity of ciprofloxacin (CPX) or 

norfloxacin (NFX) connected with another active partner was proven as advantageous.
4
 

Implementation of the fluorine atom to the molecule was also beneficial as it improves the 

antimycobacterial activity as well as the lipophilicity.
6
 The benzoic acid analogues of 

isoniazide was successfully applied to obtain the properly substituted 4,5-dihydro-1H-

pyrazol-3-yl]-2-methylphenol derivatives showing activity against both susceptible and INH-

resistant strains with a MIC value of 0.62 μg/mL.
13

  

Thus, we have designed and synthesised other new kind of “double” active molecule having 

fluorinated hydrazide of benzoic acid as an isoniazide isostere, connected by methine linker 

with the first or second line antituberculotic drugs. We expected possible enhanced activity 
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and slow release in the cell. All compounds were tested on mycobacterial inhibition against 

one tuberculosis strain M. tuberculosis, three non-tuberculosis strains and one MDR-TB 

strain. 

2 Results and discussion 

2.1 Chemistry 

The synthesis of new potential antitubercular drugs involves two steps. The appropriate 

hydrazide of substituted benzoic acid (1) reacted with diethoxymethyl acetate in acetonitrile 

to give ethyl benzoylhydrazonoformate (2). The later was treated with N-nucleophile to afford 

(3) (Scheme 1). p-Aminosalicylic acid (PAS, A-H),  ciprofloxain (CPX, B-H) and norfloxacin 

(NFX, C-H) were used as N-nucleophiles. 

 

Scheme 1 Synthesis of PAS-, CPX- and NFX-derivatives 

Isoniazid (INH) is not a suitable N-nucleophile for similar reactions as mentioned above. An 

attempt to substitute the ethoxy group in 2 with INH resulted in a partial transfer of the entire 

ethoxymethylene group from 2 to INH thus giving a mixture of two hydrazonoformates and 

two hydrazides. 

Slightly different approach was applied for the synthesis of pyrazinecarboxamide (PZA, D-H) 

derivatives (Scheme 2). The starting carboxamide was first transformed with N,N-

dimethylformamide dimethyl acetal to N-(dimethylaminomethylene)pyrazine-2-

carboxamide,
3
 which reacted with a molecule of the appropriate hydrazide (1) to give N-

(benzoylhydrazonomethyl)pyrazine-2-carboxamide (4). 
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Scheme 2 PZA-derivatives preparation 

2.2 Antimycobacterial evaluation 

In vitro antimycobacterial activity was evaluated against Mycobacterium tuberculosis H37Rv 

(ATCC:27294), Mycobacterium kansasii CNTC My 235/80, M. kansasii 6509/96 and 

Mycobacterium avium CNTC 330/88. Minimal inhibitory concentration (MIC) is the lowest 

concentration of a substance at which the inhibition of the growth of Mycobacterium occurs. 

Compounds 3a-3l were tested also against MDR-TB strain Mycobacterium tuberculosis 

A8 241 which is resistant to isoniazid and rifampicin (Table 1). MIC of compounds 3f and 3g 

(containing trifluoromethyl group and CPX) was found as the lowest against both strains of 

Mycobacterium kansasii in comparison to the other compounds and the standard INH (Table 

2).  

Table 1 Evaluation against M. tbc. strains 

 R R1R2N 

MIC [g/mL 

SI for M. tbc.  

 

H37Rv 

SI for M. tbc.  

A8 241  

MDR-TB 

M. tbc 

H37Rv 

ATCC:27294 

M. tbc. 

A8 241 

MDR-TB 

3a 4-CF3 A 4 0.5 NT NT 

3b 3-CF3 A 4 0.5 NT NT 

3c 4-F A 4 0.5 NT NT 

3d 3-F A 2 0.5 148.25 592.64 

3e 2-F A 2 0.5 192.06 767.77 

3f 4-CF3 B 1 0.5 189.21 378.41 

3g 3-CF3 B 2 0.5 87.79 351.15 
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3h 4-F B 1 0.5 634.29 1268.58 

3i 3-F B 1 0.5 402.38 804.76 

3j 4-CF3 C 5 5 3.98 3.98 

3k 4-F C NT NT NT NT 

3l 3-F C 6 5 31.67 38 

4a 4-CF3 D NT NT NT NT 

4b 3-F D NT NT NT NT 

INH - - 0.01 1 NT NT 

CPX - - 0.5 NT NT NT 

NFX - - 5 NT NT NT 

NT – not tested 

Table 2 Evaluation against non-tuberculous strains 

 MIC [mol/L 

 R R1R2N 

M. avium 

330/88 

M. kansasii 

235/80 

M. kansasii 

6509/96 

14 d 21 d 7 d 14 d 21 d 7 d 14 d 21 d 

3a 4-CF3 A 32 125 62.5 125 250 62.5 62,5 125 

3b 3-CF3 A 250 500 32 125 125 62.5 62.5 62.5 

3c 4-F A 32 125 32 62.5 62.5 32 32 32 

3d 3-F A 32 62.5 32 62.5 62.5 32 32 32 

3e 2-F A 32 62.5 32 32 62.5 32 62.5 62.5 

3f 4-CF3 B 32 62.5 2 2 4 1 1 2 

3g 3-CF3 B 250 250 2 2 4 1 1 2 

3h 4-F B 62.5 125 4 4 8 8 8 16 

3i 3-F B 125 250 4 4 8 4 4 4 

3j 4-CF3 C 500 500 2 4 8 2 4 8 

3k 4-F C 125 250 16 32 62.5 32 62.5 62.5 

3l 3-F C 125 250 16 32 62.5 16 16 32 

4a 4-CF3 D >1000 >1000 250 250 250 250 500 500 

4b 3-F D >500 >500 250 250 >500 250 >500 >500 

INH - - 250 250 250 250 250 2 4 4 
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CPX - - 62.5 62,5 1 2 2 1 1 2 

NFX - - 125 250 8 16 16 2 8 8 

PAS - - 32 125 125 1000 >1000 32 125 500 

PZA - - 500 >1000 500 >1000 >1000 125 1000 1000 

NT – not tested 

2.3 Cytotoxicity 

Cytotoxicity of the most active compounds was determined on human hepatocellular liver 

carcinoma cells HepG2, PBMC (Peripheral Blood Mononuclear Cells) and human SH-Sy5y 

neuroblastoma cells by MTT assay for cellular toxicity. IC50 values in mmol/L are presented 

in Table 3. Values of selectivity index (SI) indicate rate between IC50 of HepG2 cytotoxicity 

and MIC M. tuberculosis are presented in Table 2. If the values of SI ≥ 10, compounds are 

considered for further screening.
14

 IC50 of tested compounds are within the range 0.0373-1.21 

mmol/L. Selectivity index calculated for MDR-TB M. tuberculosis for compounds 3d-3i 

exhibit high values. 

Table 3 Cytotoxicity evaluation experimental data 

 R R1R2N 

HepG2 IC50 PBMC IC50 Sy5y IC50 

[mmol/L 

3a 4-CF3 A NT NT NT 

3b 3-CF3 A NT NT NT 

3c 4-F A NT NT NT 

3d 3-F A 0.934 0.934 NT 

3e 2-F A 1.210 1.210 NT 

3f 4-CF3 B 0.347 0.347 NT 

3g 3-CF3 B > 0.322 > 0.322 NT 

3h 4-F B > 1.280 > 0.763 NT 

3i 3-F B > 0.812 > 0.305 NT 

3j 4-CF3 C > 0.0373 0.262 0.107 

3k 4-F C > 0.797 > 0.331 NT 

3l 3-F C > 0.393 > 0.393 > 0.430 
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4a 4-CF3 D > 0.624 NT NT 

4b 3-F D > 0.130 > 0.305 NT 

INH NT NT NT NT NT 

NT – not tested 

2.4 Stability of 3h in aqueous buffers and rat plasma 

To get more information about the stability of compounds 3 we studied the ciprofloxacin-

containing derivative 3h as follows. First, an HPLC method for a simultaneous determination 

of 3h and its putative metabolites, ciprofloxacin and formylciprofloxacin was developed. Due 

to a high lipophilicity of 3h and its low solubility in aqueous environments, fluorescence 

detection was selected. The excitation/emission wavelengths were set according to those 

published for ciprofloxacin.
15

 Although it was possible to detect the second decomposition 

product, i.e. 4-fluorobenzoic hydrazide by simultaneous UV detection as well, the detector 

response was too low to detect it at the concentrations needed for dissolving the parent 3h in 

the aqueous buffers. Nevertheless, a simple isocratic method using simple C18 reversed phase 

silica was able to separate 3h and its putative metabolites, ciprofloxacin and 

formylciprofloxacin. To decrease the analysis time, we have used a monolithic column and a 

flow rate of 2.5 ml/min yielding retention times of 1.1, 3.8 and 4.8 min for ciprofloxacin, 3h 

and formylciprofloxacin, respectively.  

The stability of 3h at different pH values is given in Figure 1. At pH 7.4, the compound was 

stable; no significant decomposition was observed during the 48 h experiment. In both acidic 

buffers (pH 3 and 5), the concentration of 3h decreased, accompanied by a proportional 

increase in the concentration of ciprofloxacin. The half life values (with their 95% confidence 

intervals) were 2.9 (2.8 - 3.1) h and 11.8 (9.6 - 15.2) h at pH 3 and 5, respectively, and the 

plateau was reached at 0.5 (-1.1 - 2.0) % and 20.5 (14.0 – 27.1) % concentration. 

Interestingly, no formylciprofloxacin was detected in the samples. 
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Figure 1. Stability of 3h in aqueous buffers at pH 7.4, 5 and 3. Data are presented as means ± 

S.D, n = 3. Where no error bars are visible, they are smaller than the symbol.  

To be able to detect 3h, ciprofloxacin and formylciprofloxacin in plasma, gradient analysis 

had to be employed to separate the most polar analyte ciprofloxacin from the endogenous 

plasma components. For this initial experiment, we used acetonitrile precipitation for the 

preparation of the sample, because we found satisfactory recovery values (more than 95%) for 

both 3h and ciprofloxacin. For ciprofloxacin, this value is in accordance with a previous 

study.
16

 All three analytes were well separated from the endogenous plasma components with 

the retention times of ciprofloxacin, 3h and formylciprofloxacin being 4.2, 6.2 and 6.7 min, 

respectively. Blank plasma samples were analysed and no interference peaks were found at 

the retention times of the analytes of interest. We did not find any interest of developing solid 

phase extraction to get cleaner plasma samples or to find a suitable internal standard, because 

after the initial experiments, we did not see any statistically significant decomposition of 3h. 

After 48 h incubation, 87±3 % of the parent compound was still present. One experiment (in 

triplicate) was prolonged to 96 h. At this time, 82±3 % of 3h was found, together with a 

proportional increase in ciprofloxacin concentration; again formylciprofloxacin was not 

detected. This slight decomposition in concentration of 3h was not statistically different from 

that observed in the buffer at pH 7.4. Thus, no enzymatic decomposition occurs in rat plasma.  

3. Conclusion 

In this study, new fluorine-containing hydrazones with antimycobacterial properties were 

prepared and investigated. All evaluated compounds have shown higher activity against 

MDR-TB than INH. Prepared compounds are non-toxic in MIC concentrations for human 

hepatocytes, PBMC cells and human SH-Sy5y neuroblastoma cells. The highest selectivity 
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index for MDR-TB M. tuberculosis was found to be 1268.58 for 1-cyclopropyl-6-fluoro-4-

oxo-7-{4-[{[4-(trifluormethyl)benzoyl]hydrazono}methyl]piperazin-1-yl}-1,4-dihydro-

quinoline-3-carboxylic acid (3h). An evaluation of its stability towards hydrolysis has shown 

that the compound is stable at neutral pH, thus improving the bioavailability to the target site. 

Compounds 3f and 3g (having trifluoromethylbenzoyl group and CPX in the molecule) were 

found as the most active against both strains of Mycobacterium kansasii in comparison to the 

other compounds as well as the standard INH.  

4. Experimental 

4.1 Synthesis 

Chemicals were obtained from Sigma-Aldrich Co. Melting points were determined on a 

Kofler micro-hot-stage and are uncorrected. Elemental analyses (C, H, N) were performed 

with a Perkin-Elmer 2400 CHNS/O analyzer. Infrared spectra were recorded on a Bio-Rad 

FTS 3000 MX spectrometer in KBr pellets. NMR spectra were measured in CF3CO2D or 

DMSO-d6 solutions on a Bruker Avance 300 (300 MHz for 
1
H and 75.5 MHz for 

13
C). The 

chemical shifts , are given in ppm, related to tetramethylsilane (TMS) as an internal 

standard. The coupling constants (J) are reported in Hz. The reactions were monitored and the 

purity of the products was checked by TLC (Fluka silica gel/TLC cards 60 PF254). Mass 

spectra were recorded with a VG-Analytical AutospecQ instrument. 

4.1.1 General procedure for the synthesis of ethyl benzoylhydrazonoformate 2a-2e 

Diethoxymethyl acetate (243 mg, 1.5 mmol) was added at room temperature to the mixture of 

a substituted benzoic acid hydrazide 1 (1 mmol) in acetonitrile (10 mL). Reaction mixture was 

then stirred for 10 minutes at room temperature and evaporated to dryness. A crude product 

was recrystallized from the appropriate solvent. 

4.1.1.1 Ethyl [4-(trifluoromethyl)benzoyl]hydrazonoformate (2a) Yield 93%; mp 148 – 

150 °C (EtOH). IR (KBr): 3231, 1628, 1332, 1268, 1234, 1171, 1130, 1067, 976, 772 cm
-1

. 

1
H (DMSO-d6, 300 MHz): δ 11.24 (s, 1H, NH), 8.37 (s, 1H, CH), 8.02 (d, J = 8.2 Hz, 2H, H2, 

H6), 7.85 (d, J = 8.1 Hz, 2H, H3, H5), 4.18 (q, J = 14.1, 5.4 Hz, 2H, CH2), 1.29 (t, J = 7.1 

Hz, 3H, CH3). 
13

C NMR (DMSO-d6, 75 MHz): 162.3, 157.2, 138.6, 124.8 (q, J = 819.3 Hz, 

CF3), 129.5, 129.0, 126.2 (q, J = 11.2 Hz), 63.5, 15.0. MS (EI): 261 (m/z (M+H)
+
). Anal. 



10 

 

Calcd for C11H11F3N2O2 (260.21): C, 50.77; H, 4.26; N, 10.77. Found: C, 50.90; H, 4.01; N, 

10.81. 

4.1.1.2 Ethyl [3-(trifluoromethyl)benzoyl]hydrazonoformate (2b) Yield 91%; mp 127 – 

130 °C (ethyl acetate/hexane). IR (KBr): 3204, 3075, 1661, 1614, 1566, 1372, 1338, 1314, 

1267, 1165, 1109, 1073, 814 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.25 (s, 1H, NH), 8.37 

(s, 1H, CH), 8.13 (d, J = 8.1 Hz, 2H), 7.92 (d, J = 7.8 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 4.17 

(m, 2H), 1.29 (t, J = 7.1 Hz, 3H). MS (EI): 261 (m/z (M+H)
+
). HRMS Calcd for 

(C11H11F3N2O2 + H): 261.0851. Found: 261.0838. Anal. Calcd for C11H11F3N2O2 (260.21): C, 

50.77; H, 4.26; N, 10.77. Found: C, 49.90; H, 3.90; N, 12.20. 

4.1.1.3 Ethyl 4-(fluorobenzoyl)hydrazonoformate (2c) Yield 88%; mp 138 – 139 °C (ethyl 

acetate/diethyl ether). IR (KBr): 3215, 3061, 2986, 1658, 1617, 1563, 1506, 1363, 1319, 

1250, 1229, 1159, 1115, 1065, 1013, 848 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.05 (s, 

1H, NH), 8.37 (s, 1H, CH), 7.90 (m, 2H, H2, H6), 7.31 (m, 2H, H3, H5), 4.15 (q, J = 7.0 Hz, 

2H, CH2), 1.29 (t, J = 7.1 Hz, 3H, CH3). 
13

C NMR (DMSO-d6, 75 MHz): 163.8 (d, J = 248.5 

Hz), 161.6, 155.9, 130.3 (d, J = 3.0 Hz), 129.8 (d, J = 9.0 Hz), 115.3 (d, J = 21.8 Hz), 67.2, 

15.4. MS (EI): 211 (m/z (M+H)
+
). Anal. Calcd for C10H11FN2O2 (210.20): C, 57.14; H, 5.27; 

N, 13.33. Found: C, 56.88; H, 5.11; N, 13.53. 

4.1.1.4 Ethyl 3-(fluorobenzoyl)hydrazonoformate (2d) Yield 95%; mp 114 – 116 °C 

(acetonitrile). IR (KBr): 3203, 3074, 1655, 1616, 1559, 1479, 1442, 1364, 1312, 1248, 1221, 

1127, 1069, 1015, 973, 849, 820 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.10 (s, 1H, NH), 

8.36 (s, 1H, CH), 7.67 (d, J = 7.8 Hz, 1H), 7.60 (m, 1H), 7.53 (m, 1H), 7.40 (m, 1H), 4.15 (q, 

J = 7.0 Hz, 2H, CH2), 1.29 (dt, J = 7.1, 2.0 Hz, 3H, CH3). MS (EI): 211 (m/z (M+H)
+
). 

HRMS Calcd for (C10H11FN2O2 + H): 211.0883. Found: 211.0885. Anal. Calcd for 

C10H11FN2O2 (210.20): C, 57.14; H, 5.27; N, 13.33. Found: C, 56.71; H, 5.20; N, 13.85. 

4.1.1.5 Ethyl 2-(fluorobenzoyl)hydrazonoformate (2e) Yield 93%; mp 101 – 105 °C (ethyl 

acetate/hexane). IR (KBr): 3220, 3079, 1655, 1612, 1562, 1476, 1365, 1318, 1251, 1217, 

1100, 1065, 909, 753 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 10.98 (s, 1H, NH), 8.28 (s, 1H, 

CH), 7.55 (m, 2H), 7.29 (m, 2H), 4.14 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). MS (EI) 

211 (m/z (M+H)
+
). HRMS Calcd for (C10H11FN2O2 + H): 211.0883. Found: 211.0873. Anal. 

Calcd for C10H11FN2O2 (210.20): C, 57.14; H, 5.27; N, 13.33. Found: C, 56.93; H, 4.91; N, 

13.98. 



11 

 

4.1.2 General procedure for the synthesis of derivatives of 4-amino-2-hydroxybenzoic acid 

3a-3e 

4-Amino-2-hydroxybenzoic acid (1 mmol) was dissolved in acetonitrile (15 mL) at room 

temperature. Then, a solution of the corresponding ethyl benzoylhydrazonoformate (1 mmol) 

in acetonitrile (4 mL) was added. The reaction mixture was stirred at room temperature for 24 

hours. The solid material was filtered off, dried in the air, suspended in acetonitrile (10 mL), 

refluxed for 5 minutes, and the product was filtered off from a hot suspension.  

4.1.2.1 2-Hydroxy-4-[(4-trifluoromethylbenzoyl)hydrazonomethylamino]benzoic acid 

(3a) Yield 45%; mp 250 – 252 °C (acetonitrile). IR (KBr): 3214, 1657, 1616, 1562, 1328, 

1250, 1171, 1121, 1072, 1021, 907, 854 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.23 (s, 

1H, NH), 9.94 (s, 1H, OH), 8.60 (s, 1H, CH), 8.06 (d, J = 8.1 Hz, 3H, H2, H6), 7.88 (d, J = 

8.3 Hz, 3H, H3, H5), 7.69 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 1.8 Hz, 1H, OH), 6.66 (dd, J = 8.7, 

1.9 Hz, 1H, NH). 
13

C NMR (DMSO-d6, 75 MHz): 172.7, 163.7, 161.6, 148.2, 146.6, 138.7, 

132.4, 128.9, 126.3 (q, J = 10.7 Hz), 124.8 (q, J = 817.5 Hz), 123.0, 108.3, 106.2, 102.8. MS 

(EI) 368 (m/z (M+H)
+
). Anal. Calcd for C16H12F3N3O4 (367.28): C, 52.32; H, 3.29; N, 11.44. 

Found: C, 52.04; H, 3.25; N, 11.27. 

4.1.2.2 2-Hydroxy-4-[(3-trifluoromethylbenzoyl)hydrazonomethylamino]benzoic acid 

(3b) Yield 63%; mp 201 – 203 °C (acetonitrile). IR (KBr): 3415, 3216, 3069, 1638, 1583, 

1555, 1336, 1279, 1237, 1161, 1128, 1072, 972, 773 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 

11.24 (s, 1H, NH), 9.91 (s, 1H, OH), 8.60 (s, 1H, CH), 8.17 (d, J = 8.9 Hz, 3H), 7.93 (d, J = 

7.8 Hz, 1H), 7.72 (d, J = 7.7 Hz, 3H), 6.84 (d, J = 2.0 Hz, 1H), 6.66 (dd, J = 2.0, 7.8 Hz, 1H, 

NH). 
13

C NMR (DMSO-d6, 75 MHz): 172.7, 163.7, 161.3, 148.2, 146.6, 135.8, 132.3 (d, J = 

17.3 Hz), 130.7, 128.5 (q, J = 10.7 Hz), 126.7, 124.5 (q, J = 11.4 Hz), 123.1, 119.5, 108.2, 

106.3, 102.8. MS (EI) 368 (m/z (M+H)
+
). Anal. Calcd for C16H12F3N3O4 (367.28): C, 52.32; 

H, 3.29; N, 11.44. Found: C, 52.40; H, 3.18; N, 11.27. 

4.1.2.3 4-[(4-Fluorobenzoyl)hydrazonomethylamino]-2-hydroxybenzoic acid (3c) Yield 

60%; mp 194.9 – 195.5 °C (acetonitrile). IR (KBr): 3231, 3072, 1638, 1551, 1507, 1308, 

1268, 1234, 1161, 971, 776 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.04 (s, 1H, NH), 9.86 

(s, 1H, OH), 8.59 (s, 1H, CH), 7.93 (dd, J = 8.7, 5.6 Hz, 3H, H2, H6, H5´), 7.67 (d, J = 8.7 

Hz, 1H, H6´), 7.34 (t, J = 8.8 Hz, 3H, H3, H5, H2´), 6.83 (d, J = 1.7 Hz, 1H, OH), 6.65 (d, J 

= 8.7 Hz, 1H, NH). 
13

C NMR (DMSO-d6, 75 MHz): 167.3 (d, J = 673.0 Hz), 162.2, 160.9, 
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147.4, 131.5, 130.5, 129.7 (d, J = 10.6 Hz), 115.5, 115.2, 107.3, 105.2, 101.7, 100.6. MS (EI) 

318 (m/z (M+H)
+
). Anal. Calcd for C15H12FN3O4 (317.27): C, 56.78; H, 3.81; N, 13.24. 

Found: C, 56.59; H, 3.89; N, 13.04. 

4.1.2.4 4-[(3-Fluorobenzoyl)hydrazonomethylamino]-2-hydroxybenzoic acid (3d) Yield 

71%; mp 178.3 – 179.2 °C (acetonitrile). IR (KBr): 3228, 1642, 1583, 1549, 1439, 1270, 

1161, 972, 838, 774 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.09 (s, 1H, NH), 9.89 (s, 1H, 

COOH), 8.59 (s, 1H, CH), 7.63 (m, 4H, H4, H5, H6, H5´), 7.56 (d, J = 2.0 Hz, 1H, H2), 7.40 

(d, J = 2.3 Hz, 1H, H6´), 6.83 (d, J = 1.9 Hz, 1H, H2´), 6.76 (m, 1H, OH), 6.65 (d, J = 2.0 

Hz, 1H, NH). 
13

C NMR (DMSO-d6, 75 MHz): 171.8, 163.6, 162.9, 160.6, 147.4, 145.5, 

136.5, 131.5, 130.5, 123.3, 118.1, 114.1, 107.3, 105.4, 101.9. MS (EI) 318 (m/z (M+H)
+
). 

Anal. Calcd for C15H12FN3O4 (317.27): C, 56.78; H, 3.81; N, 13.24. Found: C, 56.48; H, 3.54; 

N, 12.96. 

4.1.2.5 4-[(2-Fluorobenzoyl)hydrazonomethylamino]-2-hydroxybenzoic acid (3e) Yield 

54%; mp 195-196 °C (acetonitrile). IR (KBr): 3408, 3223, 3067, 2479, 1641, 1610, 1555cm
-1

. 

1
H NMR (DMSO-d6, 300 MHz): δ 10.94 (s,1H, NH), 9.88 (m, 1H, OH), 8.51 (s, 1H, CH), 

7,67 (m, 3H), 7.55 (m, 1H), 7.32 (m, 3H), 6.87 (d, 1H, J = 1.9 Hz), 6.66 (dd, 1H, J = 8.7, 2.0 

Hz, NH) . 
13

C NMR (DMSO-d6, 75 MHz): 172.7, 163.7, 159.93, 159.91 (d, J = 248.4 Hz), 

148.2, 145.8, 133.2, 132.3, 131.0 (d, J = 3.0 Hz), 125.4 (d, J = 3.4 Hz), 124.5 (d, J = 15.2 

Hz), 117.0 (d, J = 22.2 Hz), 108.3, 106.2, 102.8. MS (EI) 318 (m/z (M+H)
+
). Anal. Calcd for 

C15H12FN3O4 (317.27): C, 56.78; H, 3.81; N, 13.24. Found: C, 56.47; H, 3.52; N, 12.82. 

4.1.3 General procedure for the synthesis of ciprofloxacin derivatives 3f-3i 

Ciprofloxacin (331 mg, 1 mmol) was dissolved in acetonitrile (15 mL) and glacial acetic acid 

(2.4 mL) at 50 °C. Then, ethyl benzoylhydrazonoformate 2 (1 mmol) was added and the 

reaction mixture was stirred at 50 °C for four hours. After this time the temperature was 

decreased to the room temperature and the reaction mixture was stirred for 30 minutes. The 

crystals were filtered off and washed with diethyl ether (20 mL). A solid material was 

refluxed in 5 mL of acetonitrile for 5 minutes and filtered off. 

4.1.3.1 1-Cyclopropyl-6-fluoro-4-oxo-7-{4-[4-(trifluormethylbenzoyl)]hydrazonomethyl]-

piperazin-1-yl}-1,4-dihydroquinoline-3-carboxylic acid (3f) Yield 19%; mp 236 – 238 °C 

(acetonitrile). IR (KBr): 3513, 3469, 1709, 1663, 1622, 1495, 1463, 1320, 1261, 1238, 1133, 

1062, 1014 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 10.95 (s, 1H, NH), 8.68 (s, 1H, CH), 8.07 
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(s, 1H, CH), 8.01 (d, J = 8.1 Hz, 2H, H2, H6), 7.95 (d, J = 13.2 Hz, 1H), 7.85 (d, J = 8.3 Hz, 

2H, H3, H5), 7.63 (d, J = 7.5 Hz, 1H), 3.85 (m, 1H), 3.55 (m, 4H, CH2), 3.40 (m, 4H, CH2), 

1.34 (m, 2H), 1.20 (m, 3H). 
13

C NMR (DMSO-d6, 75 MHz): 176.3, 165.9, 160.7, 154.6, 

153.9, 151.3, 147.9, 145.0, 139.1, 138.3, 130.9, 127.9, 126.1 (q, J = 10.9 Hz), 122.2, 118.9, 

111.1, 106.8, 49.1, 44.9, 35.9, 7.6. MS (EI) 545 (m/z (M)
+
). Anal. Calcd for C26H23F4N5O4 

(545.49): C, 57.25; H, 4.25; N, 12.84. Found: C, 55.29; H, 4.44; N, 12.30. 

C26H23F4N5O4+H2O calculated: C, 55.42; H, 4.47; N, 12.43. 

4.1.3.2 1-Cyclopropyl-6-fluoro-4-oxo-7-{4-[3-(trifluoromethylbenzoyl)hydrazono-

methyl]piperazin-1-yl}-1,4-dihydroquinoline-3-carboxylic acid (3g) Yield 51%; mp 238 – 

239 °C (acetonitrile). IR (KBr): 3268, 3063, 1728, 1676, 1628, 1467, 1333, 1260, 1237, 1120, 

1020, 937, 812, 747, 701 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 10.98 (s, 1H, NH), 8.68 (s, 

1H, CH), 8.12 (d, J = 8.9 Hz, 2H), 8.07 (s, 1H), 7.94 (d, J = 13.2 Hz, 1H), 7.89 (d, 7.9 Hz, 

1H), 7.72 (t, J = 7.7 Hz, 1H), 7.63 (d, J = 7.5 Hz, 1H), 3.85 (m, 1H), 3.54 (d, J = 5.0 Hz, 4H, 

CH2), 3.41 (d, J = 4.9 Hz, 4H, CH2), 1.33 (m, 2H), 1.21 (m, 3H). 
13

C NMR (CF3COOD, 75 

MHz): 168.3, 167.7, 160.4, 155.7, 154.4, 151.0, 146.6, 138.9, 130.1, 128.2, 127.5, 126.9, 

122.4 (q, J = 10.5 Hz), 119.0, 114.6, 110.9, 109.3, 102.6, 100.8, 49.7, 43.7, 36.0, 5.1. MS (EI) 

546 (m/z (M+H)
+
). Anal. Calcd for C26H23F4N5O4 (545.49): C, 57.25; H, 4.25; N, 12.84. 

Found: C, 57.12; H, 4.33; N, 13.13. 

4.1.3.3 1-Cyclopropyl-6-fluoro-4-oxo-7-{4-[4-(fluorobenzoyl)hydrazonomethyl]-

piperazin-1-yl}-1,4-dihydroquinoline-3-carboxylic acid (3h) Yield 52%; mp 256 – 260 °C 

(acetonitrile). IR (KBr): 3279, 3047, 1725, 1675, 1627, 1505, 1468, 1335, 1260, 1237, 1020, 

943, 848 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 10.76 (s, 1H, NH), 8.69 (s, 1H, CH), 8.05 

(s, 1H), 7.96 (d, J = 13.2, 1H), 7.88 (dd, J = 2.9,14.2, 2H, H2, H6), 7.63 (d, J = 7.6, 1H), 7.30 

(s, 2H, H3, H5), 3.85 (m, 1H), 3.53 (d, J = 4.7 Hz, 4H, CH2), 3.40 (d, J = 4.9 Hz, 4H, CH2), 

1.33 (m, 2H), 1.21 (m, 3H). 
13

C NMR (CF3COOD, 75 MHz): 172.5, 171.8, 167.7, 160.4, 

159.0, 155.6, 151.3, 150.3, 143.5, 132.6, 126.5, 119.2, 117.2, 114.1, 107.2, 105.3, 54.2, 50.7, 

40.6, 9.7. MS (EI) 496 (m/z (M+H)
+
). Anal. Calcd for C25H23F2N5O4 (495.48): C, 60.60; H, 

4.68; N, 14.13. Found: C, 60.30; H, 4.49; N, 13.97. 

4.1.3.4 1-Cyclopropyl-6-fluoro-4-oxo-7-{4-[3-(fluorobenzoylhydrazono)methyl]-

piperazin-1-yl}-1,4-dihydroquinoline-3-carboxylic acid (3i) Yield 44%; mp 235-237 °C 

(acetonitrile). IR (KBr): 3297, 3050, 2823, 1722, 1677, 1629 cm
-1

. 
1
H NMR (DMSO-d6, 300 

MHz): δ 10,82 (s, 1H, NH), 8,66 (s, 1H, CH), 8,06 (s, 1H), 7,92 (d, 1H, J = 13,2 Hz), 7,58 (m, 
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5H), 7,36 (m, 1H), 3,85 (m, 1H, CH), 3,54 (m, 4H, CH2), 3,39 (m, 4H, CH2), 1,34 (m, 2H, 

CH2), 1,21 (m, 2H, CH2). 
13

C NMR (DMSO-d6, 75 MHz): 177.2, 166.8, 164.5, 161.5, 161.2, 

154.7, 148.9, 145.9, 140.0, 137.7, 137.7 (d, J = 7.0 Hz), 133.3, 131.3 (d, J = 8.2 Hz), 124.0 

(d, J = 2.6 Hz), 114.8, 114.5, 112.1, 107.7, 50.0, 45.8, 36.8, 8.5. MS (EI) 496 (m/z (M+H)
+
). 

Anal. Calcd for C25H23F2N5O4 (495.48): C, 60.60; H, 4.68; N, 14.13. Found: C, 60.39; H, 

4.67; N, 14.05. 

4.1.4 General procedure for the synthesis of norfloxacin derivatives 3j-3l 

Norfloxacin (319 mg, 1 mmol) was dissolved in acetonitrile (12 mL) and glacial acetic acid 

(2.5 mL) at 50 °C, followed by the addition of ethyl benzoylhydrazonoformate (1 mmol). The 

reaction mixture was stirred for 5 hours at 50 °C and after this time, the temperature was 

slowly decreased to the room temperature. After stirring at room temperature for 40 minutes, 

the solid was filtered off and washed with diethyl ether (25 mL). Crystals were dried in the 

air, suspended in acetonitrile (10 mL) and refluxed for 10 minutes. The product was filtered 

off from a hot suspension. 

4.1.4.1 1-Ethyl-6-fluoro-4-oxo-7-{4-[4-(trifluoromethylbenzoyl)hydrazonomethyl]-

piperazin-1-yl}-1,4-dihydroquinoline-3-carboxylic acid (3j) Yield 56%; mp 259 – 260 °C 

(acetonitrile). IR (KBr): 3194, 1726, 1621, 1482, 1328, 1265, 1239, 1110, 1068, 1019, 860 

cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): ): δ 15.27 (s, 1H, COOH), 10.96 (s, 1H, NH), 8.96 (s, 

1H, CH), 8.08 (s, 1H, CH), 8.01 (d, J = 8.1 Hz, 2H, H2, H6), 7.94 (d, J = 13.2 Hz, 1H), 7.85 

(d, J = 8.3 Hz, 2H, H3, H5), 7.24 (d, J = 7.2 Hz, 1H), 4.61 (q, J = 6.9 Hz, 2H), 3.53 (d, J = 

4,9 Hz, 4H, CH2), 3.40 (d, J = 4,6 Hz, 4H, CH2), 1.44 (t, J = 7.0 Hz, 3H, CH3). 
13

C NMR 

(DMSO-d6, 75 MHz): 176.1, 166.1, 160.7, 154.5, 154.0, 151.3, 148.5, 145.4, 138.3, 137.1, 

130.5, 127.9, 126.1 (q, J = 10.7 Hz), 119.5, 111.4, 107.1, 106.4, 49.2, 49.1, 45.0, 14.4. MS 

(EI) 533 (m/z (M)
+
). Anal. Calcd for C25H23F4N5O4 (533.47): C, 56.29; H, 4.35; N, 13.13. 

Found: C, 54.46; H, 4.64; N, 12.63. C25H23F4N5O4+H2O calculated: C, 54.45; H, 4.57; N, 

12.70. 

4.1.4.2 1-Ethyl-6-fluoro-4-oxo-7-{4-[4-(fluorobenzoyl)hydrazonomethyl]piperazin-1-yl}-

1,4-dihydroquinoline-3-carboxylic acid (3k) Yield 44%; mp 270 – 272 °C (ethyl 

acetonitrile). IR (KBr): 3260, 3048, 1727, 1669, 1625, 1474, 1260, 1237, 1157, 1112, 1020, 

852 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 15.35 (s, 1H, COOH), 10.75 (s, 1H, NH), 8.97 

(s, 1H, CH), 8.04 (s, 1H), 7.97 (d, J = 13.1, 1H), 7.88 (q, J = 3.1, 14.3, 2H, H2, H6), 7.28 (q, J 
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= 8.6, 24.2, 3H), 4.62 (m, 2H, CH2), 3.51 (d, J = 5.3 Hz, 4H, CH2), 3.39 (d, J = 5.4 Hz, 4H, 

CH2), 1.43 (t, 3H, CH3). 
13

C NMR (CF3COOD, 75 MHz): 167.6, 164.8 (d, J = 257.4 Hz), 

163.1, 160.4, 155.8, 154.3, 150.8, 145.7, 136.8, 128.1 (d, J = 9.9 Hz), 121.9 (d, J = 3.1 Hz), 

114.2, 113.3, 109.4, 101.9, 101.1, 50.4, 49.7, 43.6, 10.5. MS (EI) 484 (m/z (M+H)
+
). Anal. 

Calcd for C24H23F2N5O4 (483.47): C, 59.62; H, 4.80; N, 14.49. Found: C, 59.37; H, 4.67; N, 

14.33. 

4.1.4.3 1-Ethyl-6-fluoro-4-oxo-7-{4-[3-(fluorobenzoyl)hydrazonomethyl]piperazin-1-yl}-

1,4-dihydroquinoline-3-carboxylic acid (3l) Yield 49%; mp 251 - 253 °C (acetonitrile). IR 

(KBr): 3267, 3055, 2875, 2817, 1724, 1670, 1628 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 

15.29 (s, 1H, COOH), 10.81 (s, 1H, NH), 8.97 (s, 1H, CH), 8.05 (s, 1H, CH), 7.69 (d, J = 13.2 

Hz, 1H), 7.57 (m, 3H), 7.36 (m, 1H), 7.25 (d, J = 7,3 Hz, 1H), 4.61 (q, J = 7,2 Hz, 2H, CH2), 

3.53 (m, 4H, CH2), 3.38 (m, 4H, CH2), 1.44 (t, J = 7,2 Hz, 3H, CH3). 
13

C NMR (CF3COOD, 

75 MHz): 168.4, 168.3, 163.2, 159.9, 156.5, 153.3 (d, J = 258.3 Hz), 146.8, 146.5 (d, J = 

10.5 Hz), 137.5, 129.5 (d, J = 8.1 Hz), 128.7 (d, J = 7.3 Hz), 121.5 (d, J = 3.2 Hz), 120.2, 

114.0, 113.0, 110.6, 102.7, 101.9, 51.2, 50.5, 44.4, 11.3. MS (EI) 484 (m/z (M+H)
+
). Anal. 

Calcd for C24H23F2N5O4 (483.47): C, 59.62; H, 4.80; N, 14.49. Found: C, 59.33; H, 4.78; N, 

14.44. 

4.1.5 N-{2-[4-(Trifluoromethyl)benzoyl]hydrazonomethyl}pyrazine-2-carboxamide (4a) 

N-[(dimethylamino)methylene]pyrazine-2-carboxamide (178 mg, 1 mmol) was dissolved in 

acetonitrile (5 mL) at room temperature followed by the addition of a solution of 4-

(trifluoromethyl)benzohydrazide 1 (204 mg, 1 mmol) in acetonitrile (5 mL). The reaction 

mixture was stirred for 4.5 hours at room temperature. The crystals were filtered off and dried 

in the air, suspended in methanol (10 mL) at room temperature, filtered off and dried in the 

air. 

Yield 17%; mp 242 – 244 °C (methanol). IR (KBr): 3267, 1679, 1627, 1556, 1501, 1329, 

1163, 1109, 1021, 921 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): 11.71 (s, 1H, NH), 11.35 (m, 

1H, NH), 9.26 (d, J = 1.3 Hz, 1H, H3´), 9.08 (d, J = 3.9 Hz, 1H, CH), 8.94 (d, J = 2.4 Hz, 

1H, H4´), 8.82 (m, 1H, H6´), 8.11 (d, J = 8.1 Hz, 2H, H2, H6), 7.91 (d, J = 8.3 Hz, 2H, H3, 

H5). 
13

C NMR (CF3COOD, 75 MHz): 165.9, 162.9, 159.5, 145.8, 144.4, 138.7, 135.4, 128.3, 

125.8, 123.8 (q, J = 11.1 Hz), 122.5, 116.6 (q, J = 878.0 Hz). MS (EI) 337 (m/z (M)
+
). Anal. 

Calcd for C14H10F3N5O2 (337.26): C, 49.86; H, 2.99; N, 20.77. Found: C, 49.72; H, 3.09; N, 

20.61. 
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4.1.6 N-{[2-(3-fluorobenzoyl)hydrazinyl]methylene}pyrazine-2-carboxamide (4b) N-

[(Dimethylamino)methylene]pyrazine-2-carboxamide (267 mg, 1.5 mmol) was dissolved in 

acetonitrile (10 mL) at room temperature. The solution was warmed up to 50 °C. The catalyst 

(pyridinium p-toluenesulphonate polymer-bound, 427 mg, 1.5 mmol) was added to the 

solution, followed by the addition of 3-fluorobenzohydrazide (231 mg, 1.5 mmol). The 

reaction mixture was stirred for 4 hours at 50 °C, then the temperature was decreased to room 

temperature and stirring was continued for 16 hours at the same temperature. Then, the solid 

was filtered off and washed with methanol (4 x 10 mL). The filtrate was evaporated to 

dryness to afford 4b. 

Yield 16%; mp 200 – 202 °C (methanol). IR (KBr): 3293, 3245, 3082, 2360, 1683, 1625, 

1552 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 11.57 (s, 1H, NH), 11.32 (d, J = 9,6 Hz, 1H, 

NH), 9.26 (d, J = 1,3 Hz, 1H), 9.06 (d, J = 9,6 Hz, 1H, CH), 8.93 (d, J = 2,4 Hz, 1H), 8.81 (m, 

1H), 7.72 (m, 2H), 7.58 (m, 1H), 7.43 (m, 1H). 
13

C NMR (DMSO-d6, 75 MHz): 163.4, 162.3 

(d, J = 244.4 Hz), 161.6, 149.1, 148.6, 144.5, 144.1, 141.4, 136.1, 131.0, 124.0 (d, J = 2.5 

Hz), 118.8 (d, J = 21.0 Hz), 114.6 (d, J = 23.0 Hz). MS (EI) 288 (m/z (M+H)
+
). Anal. Calcd 

for C13H10FN5O2 (287.25): C, 54.36; H, 3.51; N, 24.38. Found: C, 53.89; H, 3.79; N, 23.98.  

Procedure for the preparation of formylciprofloxacin  

1-Cyclopropyl-6-fluoro-7-(4-formylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-

carboxylic acid A mixture of acetic anhydride (224 mg, 2.2 mmol) and formic acid (78 mg, 

1.7 mmol) was heated at 50 °C for 20 minutes, then ciprofloxacin (351 mg, 1.1 mmol) was 

added and the mixture was heated at 80 °C for 2.5 hours. Upon cooling, a distilled water (2 

mL) was slowly dropped to the reaction mixture, and crystals were filtered off.
17

 

Yield 77%; mp 281 – 283 °C (methanol). IR (ATR): 2866, 1726, 1666, 1624, 1547, 1439, 

1264, 1235, 1009, 937, 803 cm
-1

. 
1
H NMR (DMSO-d6, 300 MHz): δ 8.92 (s, 1H), 8.23 (s, 

1H), 7.96 (d, J = 12.3 Hz, 1H), 7.56 (d, J = 9.6 Hz, 1H), 4.15 (m, 1H), 3.81 (m, 1H), 3.62 (d, J 

= 4.3 Hz, 3H), 3.18 (d, J = 2.3 Hz, 1H), 2.46 (s, 4H), 1.38 (d, J = 2.6 Hz, 2H), 1.16 (s, 2H). 

13
C NMR (DMSO-d6, 75 MHz): 176.6, 166.1, 161.2, 148.3, 145.2, 139.3, 119.3, 112.0, 107.3, 

107.0, 50.4, 49.3, 44.6, 36.1, 7.8. Anal. Calcd for C18H18FN3O4 (359.35): C, 60.16; H, 5.05; 

N, 11.69. Found: C, 60.03; H, 5.17; N, 11.74. 

4.2 Biological methods 
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4.2.1 In vitro Antimycobacterial activity against M. avium 330/88, M. kansasii 235/80 and M. 

kansasii 6509/96 strains. 

In vitro antimycobacterial activity was evaluated against Mycobacterium kansasii CNTC My 

235/80, M. kansasii 6509/96 and Mycobacterium avium CNTC 330/88. All strains were 

obtained from the Czech National Collection of Type Cultures (CNCTC) with exception of 

M. kansasii 6509/96, which is a clinical isolate. Antimycobacterial activity was measured in 

Sula´s semisynthetic medium (SEVAC, Prague) at 37 °C. Compounds were dissolved in 

dimethyl sulfoxide solution (max 5% DMSO in water) and applied into the medium in 

concentration range 250, 125, 62, 31, 16, 8, 4,2 and 1 μmol/L. Minimal inhibitory 

concentration (MIC) was determined after incubation at 37 °C for 7, 14 and 21 days. The MIC 

is the lowest concentration of a substance at which the inhibition of the growth of 

mycobacterium occurs. 

4.2.2 In vitro Antimycobacterial activity against M. tuberculosis H37Rv and MDR M. 

tuberculosis A8 241. 

In vitro antimycobacterial activity of the compound was determined on M. tuberculosis H37Rv 

and M. tuberculosis MDR A8 (INH and RIF resistant strain) in Sula´s semi-synthetic 

medium, which was prepared in-house 
18,19,20

 at pH 6.5 by serial dilution. The test compounds 

were added to the medium as DMSO solutions. Minimal inhibitory concentration (MIC) was 

determined after incubation at 37 °C for 28 days. MIC was the lowest concentration of a 

compound at which the visible inhibition of the growth of M. tuberculosis MDR A8 occurred. 

The activities of the tested compounds were confirmed using a colony forming unit (CFU) 

determination by subculturing from the Sula´s medium onto drug-free Löwenstein-Jensen 

solid medium. The samples were incubated for further 28 days.
19,21,22

 The experiments were 

repeated at least two times with similar results. 

4.2.3 In vitro Cytotoxicity of compounds by MTT assay  

HepG2 human hepatoma cells (ATCC HB-8065) and human PBMC (peripheral blood 

mononuclear cells)
23

 were cultured in RPMI-1640 medium without phenol red supplemented 

with 10% FCS, 2 mM L-glutamine and 160 g/mL gentamycin.
24,25

 SH-SY5Y human 

neuroblastoma cell line was grown in DMEM medium without phenol red containing 10% 

fetal calf serum (FCS), 2 mM L-glutamine, 160 g/mL gentamycin and 1 % nonessential 
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amino acids (NEAA).
26,27

 Cell cultures were maintained at 37 °C, 5% CO2 in water-saturated 

atmosphere. 

Cells were plated into 96-well plate with initial cell number of 5 x 10
3
 per well (in the case of 

SH-SY5Y 7.5 x 10
3
, PBMC 2.0 x 10

5
 cells/well). After 24 h incubation at 37 °C prior to the 

experiment, cells were treated with compounds in 100 μL serum free medium overnight. 

Control cells were treated with serum free medium. Four parallel measurements were 

performed in all cases. 

After overnight incubation at 37 °C, the cell viability was determined by 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-assay.
28,29

 Then 45 μL MTT-

solution (2 mg/mL) was added to each well. The respiratory chain
128

 and other electron 

transport systems
30

 reduce MTT and thereby form non-water-soluble violet formazan crystals 

within the cell.
31 

The amount of these crystals can be determined spectrophotometrically and 

serves to estimate the number of mitochondria and hence the number of living cells in the 

well.
32

 After 4 hrs of incubation, cells were centrifuged for 5 min (2000 rpm) and supernatant 

was removed. The obtained formazan crystals were dissolved in 50 or 100 μL DMSO and 

optical density (OD) of the samples was measured at  = 540 and 620 nm using ELISA 

Reader (iEMS Reader, Labsystems, Finland). OD620 values were subtracted from OD540 

values. The percent of cytotoxicity was calculated using the following equation: 

Cytotoxicity (%) = [1 – (ODtreated/ODcontrol)] x100; 

where ODtreated and ODcontrol correspond to the optical densities of the treated and the 

control cells, respectively. In each case two independent experiments were carried out with 4–

8 parallel measurements. The 50% inhibitory concentration (IC50) values were determined 

from the dose-response curves. The curves were defined using MicrocalTM Origin1 (version 

6.0) software. 

4.3 Stability of 3h in aqueous buffers and rat plasma 

The hydrolytic stability of 3h was first evaluated in aqueous buffers at pH 7.4, 5.0, and 3.0 as 

follows: 20 µL of stock solution of 3h in dimethyl sulfoxide (0.15 µmol/mL) was added to 

980 µL of 100 mM buffers (phosphate for pH 3 and 7 and acetate buffer for pH 5) yielding 3 

nmol/mL solutions. Samples of the individual solutions were analyzed for the content of 3h, 

ciprofloxacin and formylciprofloxacin at predetermined time intervals up to 48 h. The 

experiment was performed in triplicate. 
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For the determination of the stability of 3h in rat plasma, 20 µL of the above stock solution of 

3h was added to 980 µL of rat plasma, yielding 3 nmol/mL concentrations of 3h. At 

predetermined time intervals, 100 µL plasma samples were taken and precipitated by the 

addition of 100 µL acetonitrile. The sample was vortexed for 30 s and centrifuged at 10.000 

rpm for 5 min. Then, 150 µL of the supernatant was transferred into a glass insert and 

analyzed for the content of 3h, ciprofloxacin and formylciprofloxacin. The experiment was 

repeated six times (three times up to 48 h and three experiments were prolonged to 96 h). The 

recovery of the extraction procedure was determined in triplicate at the same concentrations 

as used in the experiment. 

HPLC: The stability of 3h was determined by HPLC using a Shimadzu Prominence (Kyoto, 

Japan) instrument consisting of LC-20AD pumps with DGU-20A3 degasser, SIL-20A HT 

autosampler, CTO-20AC column oven, SPD-M20A diode array detector, RF10AXL 

fluorescence detector and CBM-20A communication module. The data were analyzed using 

LC solutions 1.22 software.  

For the determination of the stability of 3h in aqueous buffers, a simple isocratic method 

using 20% acetonitrile in 50 mM phosphate buffer pH 2.0 as a mobile phase at a flow rate 2.5 

mL/min and a monolitic Chromolith Performance column (RP-18e 100-4.6 mm, Merck, 

Darmstadt, Germany) with the same precolumn (RP-18e 10-4.6 mm) maintained at 30 °C was 

employed to separate 3h from its putative metabolites ciprofloxacin and formylciprofloxacin. 

The compounds were detected by both UV at 280 nm (scanned from 230 to 350 nm) and 

fluorescence (excitation/emission set at 276/442 nm).
15

 Fluorescence was used for 

quantification. The retention times of ciprofloxacin, 3h and formylciprofloxacin were 1.1, 3.8 

and 4.8 min, respectively. The length of the analysis was 5.5 min. 

For the determination of the stability of 3h in rat plasma, a gradient method was employed. 

Solvent A was 50 mM phosphate buffer pH 2.0 and solvent B was acetonitrile. The mobile 

phase contained 11% B for 3 min, 25% B for 4 min and 11% B for 3 min with total analysis 

time of 10 min. The column and precolumn and the detection conditions were the same as 

above.  

The calibration curves were constructed by spiking the buffers or plasma with known amounts 

of the analytes at the concentration levels from 0.1 to 5 nmol/mL. Both methods were 
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validated and were within the acceptance criteria for accuracy, precision and linearity 

recommended by the FDA Guidance for Industry for Bioanalytical Method Validation (2001). 
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