Charles University, Prague, Czech Republic
Faculty of Mathematics and Physics

MASTER THESIS

Jakub Lehotsky

Incomplete Search Techniques

Department of Theoretical Computer Science and Mathematical Logic
Supervisor: Doc. RNDr. Roman Bartak, Ph.D.
Study program: Computer Science, Theoretical Computer Science






Prohlasuji, Ze jsem svou diplomovou praci napsal samostatné a vyhradné s
pouzitim citovanych pramentu. Souhlasim se zaptjcovanim prace.

I hereby declare that I have elaborated this master thesis on my own and
listed all used references. I agree with making this thesis publicly available.

In Prague on 10" April 2011 Jakub Lehotsky



Contents

1 Introduction
1.1 Constraint Satisfaction Problems . . . . .. .. ... .. ...
1.2 Incomplete Search Algorithms . . . . . . ... ... ... ...
1.3 Goal of the thesis . . . . . . ... ... ... ... .......
1.4 Structure of the text . . . . . .. .. ... ..
2 Formal definitions
3 CSP Solving
3.1 Imference algorithms . . . . . ... .. .. ... ... ... ..
3.2 Search algorithms . . . . . . .. ...
3.21 Backtrack . . .. ... o
3.2.2  Combining search and inference . . . . . . ... .. ..
3.2.3 Local search algorithms . . . . ... .. ... .. ...
4 General incomplete DFS algorithms
4.1 Depth bounded backtrack search (DBS) . .. ... ... ...
4.2 Credit search (CS) . . . . ... ... ... o
4.3 Tterative broadening (IB) . . . . . . ... ... ... ... ...
4.4  Limited assignment number search (LAN) . . ... ... ...
5 Discrepancy based search algorithms
5.1 Limited discrepancy search (LDS) . . . . .. ... ... .. ..
5.2 Improved Limited Discrepancy Search (ILDS) . ... ... ..
5.3 Depth-bounded Discrepancy search (DDS) . . . .. ... ...
5.4  Other Discrepancy-based Search algorithms . . . . . ... ..
5.5 Discrepancy-based sliced neighborhood search (SNS) . . . ..
6 Evaluation and future work
References



Abstract

Nazev prace: Netplné vyhledavaci algoritmy

Autor: Jakub Lehotsky

Katedra: Katedra teoretické informatiky a matematické logiky
Vedouci diplomové prace: Doc. RNDr. Roman Bartak, Ph.D.
e-mail vedouciho: bartak@ktiml.mff.cuni.cz

Abstrakt:Problémy s omezujicimi podminkami jsou mnozinou diskrétnich
optimaliza¢nich problému, které fesi mnoho problému ze skuteé¢ného
zivota. Jsou feSeny inferen¢nimi a vyhleddvacimi algoritmy. Ve
vétsiné piipadu uplné vyhleddvaci algoritmy dokdZzou najit feSeni,
existuji ale problémy, kterych zlozitost je piilis vysoka na to, aby
byl prostor feseni prozkouman kompletné. V tychto piipadech
musime zavést omezeni, které ofezou velikost stavového prostoru
pro vyhledavéani.  Algoritmy zalozené na diskrepancich omezuji
pocet piipadi, kde se algoritmus rozhodne proti dané heuristice.
Netplné vyhledavaci algoritmy negarantuji nalezeni feSeni. Mnoho
vyhledavacich algoritmt mé vlastnost any-time, kterd nam poskytuje
néjaké teSeni optimalizacniho problému v liboviny casovy okamih, i
kdyz TeSeni jesté neni optimalni.

Klicova slova: CSP, neuplné vyhleddvani, vyhleddvdni s diskrep-
ancemi

Title:Incomplete Search Techniques

Author: Jakub Lehotsky

Department: Department of Theoretical Computer Science and
Mathematical Logic

Supervisor: Doc. RNDr. Roman Bartdk, Ph.D.

Supervisor’s email address: bartak@ktiml.mff.cuni.cz
Abstract:The constraint satisfaction problems is set of discrete
combinatorial problems which address to solve many of the real
life problems. They are commonly solved by inference and search
algorithms. In most cases the complete search algorithm can find a
solution to a problem, but in many cases, search space is too large to
be explored completely. In these case the limitation of search space is
necessary in a way which gives us some way to still find a solution
without having to search whole search space. Discrepancy-based
search algorithms limit the search space by limiting the number where
search decisions go against the heuristic in given search. Incomplete
algorithms don’t guarantee finding a solution. Many incomplete
algorithms have any-time property useful in optimization problems,
where algorithm provides some solution at any time even if it is not
an optimal one.

Keywords: CSP, incomplete search, discrepancy search



1 Introduction

1.1 Constraint Satisfaction Problems

Every day we encounter lot of problems which are defined in the terms
of restriction and constraints. These constraints leave us with a space of
possible combinations which deem a solution of a problem. Most of the tasks
human brain performs every day can be described in terms of constraints.
Typical tasks solved by humans are building a monthly budget, planning a
schedule to drive children to school and get to work on time within certain
time frames, arrangement of seating of guests at family celebration where
we need to consider the constraints on who can sit next or opposite to
other persons. These tasks can be quite often solved by simple human
reasoning. When it comes to more complicated problems such as creating
timetable for university, planning a plane production or army operation
logistic strategies, the complexity of tasks rises to very high level and we
need advanced computer power to get the solution.

Similarly as we would solve these every day tasks of real life, there are two
basic methods of solving constrained problems. First method is inference.
We keep deducing new constraints from the already existing ones up to the
point where the solution can come immediately or we come to the conclusion
that there isn’t any solution. The second approach is simple trial and error.
This is basis of search algorithms which systematically keep trying to fill in
values and simply check if they match the defined constraints until a solution
is found.

Both inference and search form an extensive groups of algorithms which has
been in focus of research in artificial intelligence for decades. Very often, both
of these approaches are combined in the algorithms giving better results than
if used separately.

1.2 Incomplete Search Algorithms

In this work we will briefly mention inference algorithm and focus on search
algorithms. The real-world problems to be solved are often very large, in
fact we can see that CSP problems are NP-complete in general (for example
k-colorability, SAT among others can be modeled as a CSP), which leave
us with very large search spaces. In order to be able to have some feasible
algorithms that give us possibly a result in a reasonable time, we need to
restrict the search space, which leads us to incomplete search algorithms.

There are some differences between basic ideas between complete and



incomplete algorithms. Complete algorithm try to search state space
systematically. In systematic search, in each step of algorithm, next
generated and tested state is very close to the previous one. Incomplete
algorithms try to spread the effort over the search space more evenly. Most
of incomplete algorithms are designed in a way that they can be restarted and
they search larger portion of search space in each iteration. If the extension
of a search space in each restart is systematic, these incomplete algorithms
can be turned into complete ones if arbitrary amount of time is provided.

There is a specific subclass of incomplete algorithms which are designed to
be used together with heuristics. Heuristic is a helping function which guides
the search towards the solution. It is defined over the search states (partial
assignments for CSPs) and it provides the next state in search state. In order
for heuristic to be useful the probability that it leads toward a solution must
be greater than 0.5. We need to address the situation where the heuristic
does not lead directly to the solution. We assume that the solution is close
to the heuristic recommendations. Discrepancy based incomplete algorithms
try to limit the number of times when we decide to search the branch against
the heuristic decision. These decision in states where the algorithm doesn’t
follow heuristic are called discrepancies.

Another quite widely spread group is local search algorithms. Instead of
systematically trying to assign values to a variables and see if they match
defined constraints, these algorithms randomly assign all the variables and
they try to modify these assignments in each step trying to satisfy more
constraints in each step eventually getting the solution. Focus of this thesis
is on depth-first search algorithms, so local search mehotds are mentioned
just briefly.

1.3 Goal of the thesis

The goal of this thesis is to provide survey of currently existing incomplete
search algorithms that are in use and have been published. Then design a
new algorithm or an improvement of some of already existing algorithm in
some real-life applications. Theoretical comparison is possible and has been
done for some general incomplete search algorithms, however most of specific
real-life problems and their heuristics are modelled in a way, where empirical
research is more appropriate than theoretical calculations.

Various frameworks were considered for empirical comparison. The prolog
language has advantage of natural definition of the problem itself but
has disadvantage that many data structures needed for certain algorithms
cannot be simply implemented and many walk-arounds are used. C-++



and Java frameworks share common drawbacks of procedural language.
Algorithms have to be written explicitly and not in a declarative way, but
the implementation of all the data structure is direct. Due to vast experience
with implementation of Java, I have chosen this language.

1.4 Structure of the text

In the Section 2, we put all the formal definitions which form the basis of
future explanations. Section 3 contains introduction of search algorithms
and short summary of other methods, as they are often used to improve
search algorithms. Section 4 contains introduction to search algorithms and
description of general incomplete search algorithms based on limiting the
search space according to various criteria. Section 5 contains description
of discrepancy based search algorithms which take advantage of heuristics.
Section 6 provides possible future work.

2 Formal definitions

We define a Constraint Satisfaction problem (CSP):

Definition 1. C'SP is a triple (X, D, C') where:

X is a set of finite variables X = {x1,..,x,}

D is a set of domains of variables {Dy, ..., D,,} such that z; € D; and D; is
a set of variables for each 1 =1,..,n

C'is a set of constraints {C1, ..., C;}. Constraint C; is a subset of Cartesian
relation R; defined on a subset of variables S;, S; C X. The relation denotes
the variables’ simultaneous legal value assignment.

Definition 2. A solution of CSP is such an instation of a problem, where
each variable x; has assigned its value a; and a; € D; for each ¢ and all
constraints are satisfied:

Vie{l,. t}H(a,...,a,) € C}

Definition 3. Two CSPs are equivalent if they have same solution.
Definition 4. Partial solution

Definition 5. ”subproblem” /” consistent subproblem”

3 CSP Solving

We have defined constraint satisfaction problems (CSP) and a solution of a
CSP. The first class of CSP solving algorithms described in this chapter is

7



inference. Inference algorithms are based on the notion that from a given set
of constraints, new constraints are deduced and these new constraints further
reduce the domain of variables or possible combination of values assigned to
a given variable.

3.1 Inference algorithms

Inference algorithms try to crate a new constraints based on the existing
ones, these constraints are logically deduced so that we get the CSP that
is equivalent with the previous one. In this way we want to introduce
consistency on a level where each partial solution can be extended further.
For formal background, see [1].

We define arc-consistency as a level of consistency, where any consistent
assignment can be extended.

Definition 6. Variable z; is arc—consistent relative to z; iff for each a; € D;
there exist a value a; € D; such that no constraints are broken.

CSP problem is arc — consistent iff for all 4, j € {1,..,n} variables z; and x;
are arc-consistent.

The algorithm which forces arc consistency is filtering domains of variables
so that

Example 1. We define a CSP (X, D,C) where:

X = (.Tl,l’g)
D, =1{1,2,3}
D,, =1{1,2,3}

C = {(z1,22) |21 < 22}

Arc-consistency enforcing algorithms produce a new equivalent CSP problem:

X = (ZEhfL’Q)
D, ={1,2}
D., ={2,3}

We see that e.qg. for variable x1 and its value 3, there is no possible value
in the domain of xo, so that 3 < xs. Therefore algorithm enforcing this
level of consistency will deduce that value 3 is filtered out from domain of x;.
Similarly for the value 1 in the domain of x».

We define further levels of consistency.



Definition 7. The CSP is path — consistent where any subproblem of size
2 can be consistently extended by assigning one more value to a variable.

Algorithms enforcing arc-consistency filter the domains of variables. Algo-
rithms enforcing path-consistency are adding new constraints to the pairs of
variables.

Definition 8. In general, we define i — consistency as a level of consistency,
where any consistent subproblem of size © — 1 can be extended to consistent
subproblem of size 1.

We see that all these level of consistency are there to provide guide for search
algorithm. If there is a strong enough consistency enforced, the given step of
the algorithm can immediately have a consistent assignment without having
to backtrack.

Definition 9. If CSP problem is i-consistent for all 7, we call it globally
consistent and the search in this case directly provides solutions without
need of backtrack.

In general, the time and space complexity of algorithms enforcing complexity
is exponential in 7. One of the way how to solve this problem is to use so-
called directional consistency, where consistency is not forced among all the
variables, but just along some fixed order of variables heavily decreasing
complexity (based on some properties of graph representation of a CSP
problem) and allowing backtrack free search along this ordering. The
generalized version of these principles is used in one of the basic algorithms
used throughout computer science. It is called dynamic programming. For
more information about these algorithms, please see [1] or [2].

We have briefly described these techniques as they are used to boost search
algorithms and basic forms of consitency algorithms are used commonly in
search techniques.

3.2 Search algorithms

No matter how much inference we do on our problem, at one moment we
must turn to trial and error. The search systematically assigns variables
values from their domains and checks for the consistency. In this chapter we
will describe the basic complete search algorithms, in particular complete
DFS algorithms and local search algorithms. Complete DFS algorithms
serve as the base for incomplete DFS algorithms. Local search algorithms
are incomplete but are not based on DFS principle and are mentioned for
reference.



3.2.1 Backtrack

The backtracking algorithms explores the search space in a depth-first
manner. It is also known as depth first search (DFS). It is generating partial
consistent assignments and in each step it tries to assign a value to a next
uninstantiated variable. If the assignment is not consistent, it tries another
value. If there are no more values to try, it has to return back to deal with
the dead end. In this case it backtracks and tries a new value with previously
assigned variable. If necessary it might continue up to the root of the search
space. [1]

Algorithm 1 backtrackSearch(Variables)

if all_variables_assigned(V ariables) then
return true
end if
var < select_free variable(Variables)
while value = get_next_value(var) do
assign(Variables, var, value)
if backtrackSearch(Variables) then
return true
end if
unassign(Variables, var)
end while

In this manner, backtracking algorithm systematically explores whole search
spaces until the solution is found or coming to a conclusion that there is no
solution. We can see that complexity of basic backtrack search algorithm
is O(d"™) where d is the domain size for variables and n is the number of
variables.

3.2.2 Combining search and inference

Research and solving of real life problems show that combination of inference
and search gives good results and better performance than if used as a
standalone algorithms.[1]

Currently the most efficient complete search algorithm is MAC. The al-
gorithm combines the backtrack search and maintaining generalized arc
consistency. [2]

10



3.2.3 Local search algorithms

The basic principle of systematic search algorithms is that we assign a value
to a variable, check if the assignment is consistent, assign a value to a next
variable, check for consistency, and so on until we find a solution. If it finds
inconsistency it discards the last assigned value and try another one, if needed
the more several last assignments are discarded. During the whole search
it maintains consistency and systematically searches the space of partial
consistent assignments until it reaches full consistent assignment or algorithm
finishes with no full consistent assignment found meaning that problem has
no solution.

In contrast to this, local search algorithm maintains all the variables assigned
some values all the time, but this assignment is not necessarily consistent.
Instead, in each step of algorithm we try to change the values assigned so
that we decrease the number of satisfied constraints. This basic algorithm
from this category is commonly known as the hill-climbing. [1]

The local search algorithms are incomplete algorithms. They do not
guarantee the finding of solution. These algorithms can get stuck in the
local minimum. This is the situation where changing the value of any
assigned variable doesn’t reduce the count of violated constraints but overall,
there is a better solution. For these reason, various methods known for
hill-climbing algorithms are used - such as random restart, taboo search,
simulated annealing, and others. [1]

4 General incomplete DFS algorithms

We have shown the basic depth first search algorithm, which is complete. If
we have a search space which is too large to explore completely we need to
introduce some limits on various criteria that allows us to prune the search
space. These limits can be depth, branching or number of assignments to
a given variable. Based on what the limit is, we get various algorithms
described in this chapter.

4.1 Depth bounded backtrack search (DBS)

Depth bounded backtrack search limits the maximum depth in a search
tree, where all the alternatives are explored. Below this depth only a single
alternative is tried. The idea behind this algorithm is that goal nodes are
distributed evenly in the search tree. Thus we don’t want to direct our search

11



into a single area of the tree, but instead to spread the focus on the whole
tree.

Algorithm 2 depthBoundedSearch(variables, depth)

if all_variables_assigned(variables) then
return true
end if
var < select_free_ variable(variables)
tried < false
while value = get_next_value(var) and (!tried or (depth > 0)) do
assign(variables, var, value)
if depthBoundedSearch(variables, depth — 1) then
return true
end if
unassign(variables, var)
end while

We will explain function used throughout this algorithm. We need to
check if all variables has been instantiated in each step of the algorithm.
This happens in all variables_assigned(variables) which returns boolean
value identifying the fact. In this case we have found a solution to a
problem. Another function, select_free_variable(variables) selects the first
unassigned variables available. The order in which the variables are chosen
can be determined by a heuristic. The function assign(variables, var, value)
assign the wvalue to a variable var. Also, this step may contain any
inference algorithm that helps to guide the search. If we introduce the
inference algorithm, it prunes the possible search state space further either
by filter domains by using arc consistency algorithms or by introducing new
constraints in higher level of consistency.

It may happen that during the run of consistency algorithm, all possible
values are filtered from domains of a variable to be assigned. In this case,
algorithm backtracks similarly as in the case of exhaustively checking all
possible values from a domain of a variable to be assigned. This is called
shallowbacktracking.

If we execute the algorithm successively with increasing depth limit, we
eventually obtain full DFS algorithm when we reach the maximal depth of
the tree. Also, this algorithm may be combined with other incomplete search
algorithms, where tree is exhaustively searched up to a given depth and
below this level, some other algorithm is used. This may have performance
advantages in combination with discrepancy based algorithms described in
further sections.

12



4.2 Credit search (CS)

Credit search is very similar to depth bounded backtrack search, the amount
of branching is limited. However, we have more control over on this limit.
The algorithm starts with the so-called credit which is the natural number
that tells the algorithm how many branching it is allowed to do altogether
before it reduces to a simple direct path by choosing the first value for each
variable. In each step, this credit is evenly distributed among the child nodes.
Each node receives (n div k) credit where n is the credit in a given node and
k is the number of branches. The rest of the credit (n mod k) is evenly
distributed in a way that each branch from left receives one more credit. If
there is only credit value of 1, the search continues to the bottom of the tree
only with a single alternative tried. [3]

Algorithm 3 creditSearch(Variables)

if all variables_assigned(V ariables) then
return true
end if
var < select_free_variable(Variables)
baseCredit < |Dj|/|D;|
restCredit < |D}|%|D;|
valueCounter < 0
while value = get_next_value(var) do
assign(Variables, var, value)
valueCounter < valueCounter + 1
if valueCounter > 0 then
valueCredit < baseC'redit
else
valueCredit < baseCredit + 1
end if
if valueC'redit > 0 then
if creditSearch(Variables,valueCredit) then
return true
end if
end if
unassign(Variables, var)
end while

Restarting of the algorithm with the increasing credit also leads to a complete
search. This algorithm has the time complexity of O(c) where c is credit value
for algorithm run. This gives us a very fine control about how much time is
spent on processing during search.

13



4.3 TIterative broadening (IB)

Iterative broadening is based on a premise that decision on each level of the
search tree has equal weight and the probability of error is evenly distributed.
Depth bounded search and credit search preferred variables selected earlier
as backtracking on the first nodes is the last option where all others fail.
It does so by introducing cutoff of number of branching on each level. It
establishes a breadth limit, which tells how many alternatives can be tried
at each node.

Algorithm 4 iterativeBroadeningSearch(Variables)

if all_variables_assigned(V ariables) then
return true
end if
var < select_free_variable(Variables)
breadthCounter < 0
while value = get_next_value(var) and breadthCounter < breadthLimit
do
assign(Variables, var, value)
breadthCounter < breadthCounter + 1
if iterative BroadeningSearch(V ariables, breadthLimit) then
return true
end if
unassign(Variables, var)
end while

With each restart of algorithms we increase this breadth limit. Eventually
we end up with a complete search algorithm. Notice that this algorithm is
exponential, each restart takes up to O(n®) where b is factor of branching.

[4]

4.4 Limited assignment number search (LAN)

Limited Assignment Number search builds up on the idea of Iterative
Broadening. It sticks to the idea that each variable has equal chance of
mistake, but instead of limiting number of branching for a given node,
we cutoff on a limited assignment number of a given variable through the
search. Once the variable has hit its cutoff limits of assignments, only single
alternative is tried.

In this algorithm, function filter_expired filters out all the expired variables
from processing, i.e. variables where counter has reached the LAN Limit.

14



Algorithm 5 limited AssignmentNumberSearch(Variables, LANLimit)

FreeVariables < filteroxpired(Variables)
if all_variables_assigned(FreeVariables) then
return true
end if
var < select_free variable( FreeVariables)
while value = get_next_value(var) and counter(var) < LAN Limit do
assign(Variables, var, value)
counter(var) < counter(var) + 1
if limitedAssignment NumberSearch(V ariables, LAN Limit) then
return true
end if
unassign(Variables, var)
end while

Where algorithms mentioned before don’t work with variables and thus they
may be used in other areas of artificial inteiligence which utilize incomplete
search algorithms, Limited Assignment Number search is specialized in
problems, where branching is represented as an assigning different values
to a specific variable, in particular CSP problems.

5 Discrepancy based search algorithms

So far we have discussed general incomplete search algorithms. Many times
when we solve common types of problems we have a heuristics that can help
us to get to the goal state more quickly. Heuristics in general are functions
that can be calculated quite easily in comparison to search algorithm and
provide us with an advice which branch should we choose in branching step.
In order for heuristic to be effective, the probability, that a given choice leads
to a solution must be higher than 0.5.

In the ideal world, heuristic would lead us directly to the goal state every
time. In this case the heuristic itself would be a solution to a problem and
we wouldn’t to perform any search algorithm. In the real life, heuristics
do mistakes. A lot of algorithms deal with situations where heuristics do
mistakes.

Most of them are based on one or both of two simple principles. The first
principle is that heuristic in general tend to do few mistakes. That leads
us to a standpoint where we want to discover the states of the search space
where we can get during the search with just few deviation from heuristic
decision and if solution is not found there, gradually allow the number of

15



deviations from the heuristic. We call these decision where we deviate from
heuristics decision a discrepancy. The second principle is based on that the
more information we have, the more accurate heuristic tends to be. Therefore
we assume that heuristic makes more mistakes early in the search and much
less mistakes in the lower parts of the tree.

Definition: discrepancy is a choice made by search algorithm, where it choose
the alternative that is against heuristic.

In this chapter we will introduce incomplete search algorithms where the
limiting cutoff factor is based on discrepancies.

5.1 Limited discrepancy search (LDS)

The limited discrepancy search introduces a limit to discrepancies along the
road. We specify a limit k. In a given search node, we follow this alternative
only if it is recommended by a heuristic or the limit of the discrepancies so
far has not been excluded. During the restarts we are increasing the limit
of discrepancies until the solution is found. This way we take advantage of
the idea, that there is higher probability that there are just few discrepancies
along the search path.

Algorithm 6 limitedDiscrepancySearch(variables, discrepancyLimit)

if all_variables_assigned(variables) then
return true
end if
var < select_free_variable(variables)
first_value < select_first_value(var)
if first_ value # NIL then
assign(variables, var, value)
if limitedDiscrepancySearch(variables, discrepancyLimit) then
return true
end if
unassign(variables, var)
end if
while value = get_next_value(var) and DiscrepancyLimit > 0 do
assign(variables, var, value)
if limitedDiscrepancySearch(variables, discrepancyLimit — 1) then
return true
end if
unassign(variables, var)
end while

16



With subsequent restarts of this algorithm we achieve complete algorithm [5]

5.2 Improved Limited Discrepancy Search (ILDS)

Limited Discrepancy Search has a disadvantage that with each restart it
revisits all the nodes it has explored before. In [?] there was proposed
in improvement to this algorithm, where instead of limiting the number
of discrepancies by some number in each restart of algorithm, we specify
exactly the number of discrepancies which must be on the path in search
state generated by search algorithm.

Algorithm 7 improvedLimitedDiscrepancySearch(variables, discrepan-
cyLimit)

if all_variables_assigned(variables) then
return true
end if
freeVarCount < free_variables_count(variables)
var < select_free_variable(variables)
first value < select_first_value(var)
if dicrepancyLimit < freeVarCount then
assign(variables, var, value)
if improvedLimitedDiscrepancySearch(variables, discrepancyLimit)
then
return true
end if
unassign(variables, var)
end if
while value = get_next_value(var) and DiscrepancyLimit > 0 do
assign(variables, var, value)
if improvedLimitedDiscrepancySearch(variables, discrepancy Limit—
1) then
return true
end if
unassign(variables, var)
end while

In this algorithm, function free_variables_count returns the number of still
unassigned variables. With subsequent restarts of this algorithm we achieve
complete algorithm.

17



5.3 Depth-bounded Discrepancy search (DDS)

Depth-bounded Discrepancy Search sets the parameter - depth limit d,
up to which discrepancies are allowed. After this limit is reached the
algorithm must follow the heuristic. This is discrepancy-based analogy to
DBS algorithm.

The idea behind is algorithm is that heuristics tend to do more errors in the
beginning of the search, where they have just few information. Thus the
discrepancies should be allowed in these intial stages of search.

Algorithm 8 depthBoundedDiscrepancySearch(Variables)

if all_variables_assigned(variables) then
return true
end if
var < select_free_variable(variables)
tried < false
while value = get_next_value(var) and (!tried or (depth > 0)) do
assign(variables, var, value)
if depthBoundedSearch(variables, depth — 1) then
return true
end if
unassign(variables, var)
end while

5.4 Other Discrepancy-based Search algorithms

There are several more discrepancy-based search algorithms. Interleaved
depth-first search (IDFS) is similar do DDS. It tries to keep discrepancies up
in the tree. However it tries to search paralels branches and in the moment
it should backtrack, it tries to continue with finding solution in a parallel
branch of the algorithm. See [6] for more details

Discrepancy-bounded depth first search algorithm tries to preserve discrep-
ancy order of branches explored while try to limit the number of revisited
nodes as much as possible. It parametrized by the value k. In each iteration,
it explores branches between (i — 1)k and ik discrepancies.

5.5 Discrepancy-based sliced neighborhood search (SINS)

In [7] Parsini, Lombardi and Milano noticed that LDS and ILDS algorithms
as they search exhaustively the neighborhood of a state in search space to

18



where heuristic points to. First, the direct solution is explored, then all
states in search space with one discrepancy, then search space with two
discrepancies and so on. They observed, that for some classes of problems,
this space may grow very fast and provides algorithm performance drawback.

The algorithm is optimized for iterative search in optimization problems,
where incumbent solution is used as a heuristic in next iteration of the
algorithm. They proposed that in each step we fix some amount of variables,
and perform the search only on the rest of variables, effectively searching
just a slices of the neighborhood and not scanning it exhaustively. They
provided experimental results showing the algorithm outperforms classic
ILDS algorithm for assymetric travelling salesperson with time window.

6 Evaluation and future work

The field of constraint satisfaction problems is dynamically evolving dis-
cipline. In the recent years most of research is concentrated in inference
algorithms introducing methods such as contraint weighting and symmetry
breaking allowing to increase performance on the lot of tasks commonly
solved in operational analysis and constraint satisfaction in general.

Combining these new methods provide a great opportunity of research trying
to combine them with both complete and incomplete search algorithms.

19



References

1]
2]
3]

[4]

Dechter, R. (2003): Contraint Processing, Morgan Kaufmann
Lecoutre, Ch. (2009): Constraint Networks, Wiley-ISTE

Bartédk, R. (2004): Incomplete depth-first search techniques: a short
survey, CDPC 2004

Harvey, W.D., Ginsberg M.L. (1990): Iterative Broadening. In
Proceedings of National Conference on Artificial Intelligence (AAAI-
90). AAAI Press, pp. 216-220

Harvey, W.D., Ginsberg M.L. (1995): Limited discrepancy search. In
Proceedings of the 14th International Joint Conference on Artificial
Intelligence, pp. 607-615

Meseguer, P. (1997): Interleaved Depth-First Search. In Proceedings of
15th International Joint Conference on Artificial Intelligence, pp. 1382-
1387

Parsini F.,Lombardi M., Milano M. (2010): Discrepancy-Based Sliced
Neighborhood Search

20



	Introduction
	Constraint Satisfaction Problems
	Incomplete Search Algorithms
	Goal of the thesis
	Structure of the text

	Formal definitions
	CSP Solving
	Inference algorithms
	Search algorithms
	Backtrack
	Combining search and inference
	Local search algorithms


	General incomplete DFS algorithms
	Depth bounded backtrack search (DBS)
	Credit search (CS)
	Iterative broadening (IB)
	Limited assignment number search (LAN)

	Discrepancy based search algorithms
	Limited discrepancy search (LDS)
	Improved Limited Discrepancy Search (ILDS)
	Depth-bounded Discrepancy search (DDS)
	Other Discrepancy-based Search algorithms
	Discrepancy-based sliced neighborhood search (SNS)

	Evaluation and future work
	References

