
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Martin Brehovský

GPU Accelerated Adversarial Search

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Branislav Bošanský

Study programme: Informatics
Specialization: Software Systems

Prague, 2011

This thesis would not have been possible without the continuous support of my
parents who always support me and give me the will to succeed.
I would like to thank my supervisor Branislav Bošanský for his support and advice.
Finally, I thank all my friends who so patiently put up with me while I worked on
my thesis.

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, 14.04.2011

Název práce: Akcelerace adversariálních algoritmů s využití grafického procesoru

Autor: Martin Brehovský

Katedra / Ústav: Kabinet software a výuky informatiky

Vedoucí diplomové práce: Mgr. Branislav Bošanský, Katedra kybernetiky, Fakulta

elektrotechnická, České vysoké učení technické v Praze

Abstrakt: Moderní programovatelné grafické čipy umožňují významným způsobem

urychlit běh výpočetně náročných algoritmů. Tato technologie schopná masivní

paralelizace výpočtů významně zvyšuje výkon velké skupiny algoritmů. Tato práce

se zaměřuje na využití grafických procesorů (GPU) v akceleraci algoritmů na

takzvané prohledávání herních stromů. Zkoumáme, zda jsou tyto algoritmy vhodné

pro paralelizace typu SIMD(single instruction multiple data), jež GPU poskytuje.

Proto byly paralelní verze vybraných algoritmů pro GPU srovnány s algoritmy

běžícími na CPU. Získané výsledky ukazují výrazné zlepšení rychlosti a dokazují

použitelnost GPU technologií v oblasti prohledávání herních stromů.

Klíčová slova: Grafický procesor, Adversariální algotitmy, SIMD paralelizmus,

prohledávání herního stromu

Title: GPU Accelerated Adversarial Search

Author: Martin Brehovský

Department / Institute: Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Branislav Bošanský, Department of

Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract: General purpose graphical processing units were proven to be useful for

accelerating computationally intensive algorithms. Their capability to perform

massive parallel computing significantly improve performance of many algorithms.

This thesis focuses on using graphical processors (GPUs) to accelerate algorithms

based on adversarial search. We investigate whether or not the adversarial algorithms

are suitable for single instruction multiple data (SIMD) type of parallelism, which

GPU provides. Therefore, parallel versions of selected algorithms accelerated by

GPU were implemented and compared with the algorithms running on CPU.

Obtained results show significant speed improvement and proof the applicability of

GPU technology in the domain of adversarial search algorithms.

Keywords: GPU computing, adversarial search, SIMD parallelism, game tree search

Table of Contents

1. Introduction 1

1.1 Graphical processing units in high performance computing 2

1.2 Researched domain 3

1.3 Outline 4

2. CPU architecture evolution, problems, limitations and comparison to GPU 6

2.1 Evolution of the CPU over the last 20 years 6

2.2 Changes in CPU architecture 7

2.3 Problems influencing performance of CPU based systems 12

2.4 Overview of GPU architecture 14

2.5 Summary 16

3. OpenCL 18

3.1 Platform model 18

3.2 Execution model 19

3.2.1 NDRange 20

3.2.2 Synchronization 20

3.2.3 OpenCL execution flow 21

3.3 Memory model 22

3.3.1 Host to device memory transfer 22

3.4 OpenCL C99 structure 23

3.5 Recommendations and optimizations 25

3.6 Alternatives 26

4. Adversarial search 28

4.1. Multi-agent environments 28

4.2. Games 29

4.3 MiniMax algorithm 30

4.3.1 Optimizations and heuristics 31

4.4. Approaches to solve well known games 33

4.4.1 Ultra-weakly, weekly and strongly solved games 33

4.4.2 Tree search techniques 34

4.4.3 Solved games 34

4.4. Parallel approaches on CPU based systems 36

4.4.1 Static parallel evaluation 36

4.4.2 Tree decomposition 36

4.5 Summary 39

5. GPU accelerated adversarial search algorithms 39

5.1 Testbed description 40

5.2 Sequential algorithms 40

5.1.1 Sequential algorithm setup 42

5.1.2 Evaluation function complexity 43

5.1.3 Rules of tested game Fox and Hounds 44

5.2 Applying GPU architecture 47

5.2.1 Investigated attributes 47

5.2.2 Analysis and design of benchmark scenarios 48

5.3 Analysis of empirical results 51

5.3.1 Parallel adversarial search on synthetic trees 52

5.3.2 Benchmarks for tested game Fox and Hounds 58

5.4 Summary 62

Conclusion 65

Bibliography 67

List of Tables 71

Attachments 73

1. Introduction

An increasing demand for ever-greater processing power has been one of the

greatest challenges facing modern-day science and industry in recent years.

Computers are used in computational science, allowing scientists to perform a

variety of experiments. Currently, these scientists are bound firstly by the processing

performance of the hardware available to them; and consequently by budgetary

constraints that may inhibit the desired evolution of the hardware model. The

computational challenges cannot be faced so easily with traditional laboratory

approaches. The overall result of an experiment may be beyond the scope of a

conventional setup due to the complexity of the evaluated elements and executed

computations. Detailed precision of measurements are difficult to obtain in common

laboratory conditions and hence, computers themselves are effectively becoming the

new laboratories.

Simulations optimized and broken down into a huge amount of simpler

computations put an enormous load on computer systems. They can fully utilize

what traditional central processing unit (CPU) based computers have to offer, but

CPUs organized in clusters are the only alternative for significant performance gains.

Investments to construct new supercomputers are enormous and therefore access to

high performance is limited for common research. As described in [1] a notable

example is represented by microscopic models of the structure of surfaces at the

nano-scale, which cannot yet be characterized experimentally using available

imaging techniques. Conditions that cannot be created in laboratories are also

simulated over different time scales. A pretense setup can monitor, for example,

each nanosecond of an experiment or the evolution over thousands of years in soil

water to climate change.

In many fields, computer simulations are essential and cannot be replaced by

experiments. In multiple physical, medical and chemistry disciplines highly complex

programs are at the cutting edge of new discoveries. The most difficult boundary

they struggle against is the performance limitation of the available computer

1

systems. The evolution of performance tuning has reached a new era where graphical

processing units (GPU), previously used only to process graphics, are now widely

used to support such problems in a parallel manner. Developments in the GPU world

now allow easier access to computational resources for a broader range of users by

creating a more user-friendly interface.

 1.1 Graphical processing units in high performance
computing

The performance of the central processing unit, which increases by Moore's

law, estimates the upper boundary for high performance computing (HPC).

Computations in science use more sophisticated algorithms and models, so the

demand for better performance from these HPC systems easily outruns Moore's Law.

The previous generation of scalable supercomputers relied on vendor-specific

systems using high-performance, proprietary microprocessors, proprietary

interconnects and vendor system software. This customized hardware is usually very

expensive. One of the promising ways to increase processing power is to increase the

granularity of parallelism in applications. Utilising simultaneous multi-threading can

exploit thread-level parallelism. As is discussed in Chapter 2, the CPU itself is not

designed to fully utilize the problems that HPC struggles with and so new

technologies must be evaluated.

As mentioned, up until a few years ago, graphical processing units were

employed for graphics only. Programming on them was very difficult and data had to

be mapped into textures. Only highly experienced programmers were able to utilize

their potential power. In recent years, attempts to unify access to GPU led to

proprietary interfaces to access GPUs from the manufacturer NVIDIA. Cuda is the

first example that provides high level access for the common programmer. This

interface revealed its performance for massive, general purpose, parallel computing.

OpenCL is an open standard for writing programs that execute across heterogeneous

platforms including CPU and GPU. Suitable cases for GPU are computationally

intensive tasks, that require high floating point performance on multiple independent

data sets. Data parallelism supported by GPU has its limitations and further

2

investigation is needed to fully utilize GPU's resources across specific domains.

1.2 Researched domain

One of the candidates to examine the suitability of using GPU to accelerate

algorithms is in Artificial Intelligence (AI). Not a lot of research was initially done in

applying GPU hardware to this field, while AI also faces a number of

computationally expensive problems. One example is adversarial search or planning

algorithms. This domain is interesting to research since the problems it faces have a

simple definition although solutions are computationally very intensive. Some

successful attempts to improve parallel path-finding algorithms on CPU based

clusters and grids were researched in [2, 3]. Similar research in the field of parallel

pathfinding [4] took place. The promising results showed the feasibility of applying

parallel processing to this field.

Adversarial search algorithms, often known as games algorithms, have

significant importance in game theory. Every multi-agent environment can be viewed

as economy where agents/players interact in a cooperative or competitive manner.

The problem in adversarial search is to reach the goal of a player, with respect to the

behavior of other agents also trying to reach their goals. In adversarial search, agents

are usually competitive. A basic approach to solve an adversarial search problem is

the simulation of all the possible states that can be reachable and by choosing a

proper strategy to reach that goal. The number of actions in such economy allowed to

perform by each agent defines the branching factor and by that, the complexity of the

searched space. The size of this searched space size then grows exponentially with

each simulated step.

With sequential algorithms, it can be very time consuming to examine the

game space into levels of depth sufficient to determine the optimal strategies. Many

current non-parallel CPU based approaches use heuristics to improve performance

algorithms. The purpose of this thesis is to investigate further possibilities for the use

3

of GPU based technology in adversarial search and to examine the limitations of the

technology in this field. Further in this thesis we investigate currently available

sequential and parallel algorithms and their implementations. Analysis of researched

fields provides a broad overview with respect to the specifics of GPU architecture

and its programming interface. Identification of suitable approaches serves as a

starting point for case studies. We prove that chosen algorithms fit for GPU

processing by implementing analyzed algorithms first on theoretical game scenarios.

Consequently, the results are backed up by practical implementation on

representative games. We discuss benchmarks that present speedups with respect to

the specifics of GPU architecture. An analysis of the results presents speedups and

recognized drawbacks and limitations.

1.3 Outline

The purpose of this thesis is to investigate further possibilities for the use of

GPU based technology in adversarial search and to examine the limitations of the

technology in this field.

In Chapter 2 we briefly describe the evolution of CPU and GPU based

systems. This gives the reader a better insight in architectural differences and

technological details. Recognizing them help to realize the potential of this

technology, its strengths and its limitations. The basic differences enlighten the

suitability for different tasks and by that, to help recognize the best usage on

algorithms more easily.

OpenCL as an open standard for programming on heterogeneous platforms is

presented in Chapter 3. This framework provides an interface to access and use GPU

capabilities. The technical specification of this framework is essential for the design

of performable, massively parallel applications using GPU. The basic architecture,

programming and memory model is described and we concentrate on well known

limitations and recommendations. These are used as the basic knowledge in the

analysis of approaches from the researched domain.

4

In Chapter 4 we provide a detailed presentation of key attributes of an

examined Artificial intelligence domain. First, we introduce basic problems and

concepts then we describe the standard approaches that are used to tackle them, with

currently available sequential and parallel algorithms presented. We introduce

theoretical approaches used to solve adversarial games and inspired by successful

real life applications where speedup was proven, we identify the ones that are mots

suitable for implementation with GPU acceleration.

In Chapter 5 the parallel nature of adversarial search and applicable use of

GPU power is examined to cut down processing time. We concentrate on suitable

tree decomposition, identification and assignment of sub-tasks that will be performed

in parallel and has to fit the GPU architecture. Communication and synchronization

issues influencing the performance of algorithms are mainly determined by memory

architecture. We present and discuss benchmarks for several scenarios on multiple

setups that showed both gains and limitations of GPU technology on this type of

problems. The researched algorithms were tested on different configurations of

synthetic game trees and the speedup are presented on an implementation of the

game Fox and Hounds. A comparison of benchmarks obtained from both sequential

and parallel algorithms is presented. The suitability of GPU to accelerate adversarial

search algorithms is discussed and illustrated on benchmarks.

In Chapter 6 we conclude the thesis and discuss possible future work.

5

2. CPU architecture evolution, problems, limitations and

comparison to GPU

Problems inhibiting the performance of CPU are motivating developers to

look for other ways to accelerate their applications. GPU emerged as a possible

addition and access to its computational power is easier now than ever before. In this

chapter we present the major differences between CPU and GPU architectures. Each

technology is designed to serve a predefined purpose - CPU to perform control logic

and GPU to perform huge number of parallel computations, of limited complexity

very fast. A good understanding of both helps to choose the best possible technology

with respect to their specifics and to fully utilize the potential of the underlying

hardware.

2.1 Evolution of the CPU over the last 20 years

Over the last twenty years, the performance of central processing units (CPU)

based on microprocessors has increased while the price rapidly decreased. CPUs

from Intel and AMD were able to perform over one billion floating point operations

per second (GFLOPS) at a reasonable price for the average user and hundreds of

GFLOPS solutions in cluster. Software development also evolved over those years

to use the power of available resources. With the vision of ever-growing performance

of available hardware, programmers were not motivated to investigate new

approaches in the development of software or alternative uses of the hardware.

Moore's law describes a long-term trend in the density of transistors on an integrated

circuit. It states that the density of transistors on the circuit will approximately

double every two years. It held over the last 50 years [5]. In recent years it has

proven to be harder and harder to keep up the exponential growth due to

manufacturing issues and higher current leakage on smaller scales. The cost of

6

developing processes to manufacture these circuits rises perhaps even faster than the

transistor count. Another important factor is the manufacturing cost. A necessary

change in architecture introduced processors with multiple cores that are used per

single chip, but an increase in the number of transistors does not guarantee linear

growth in practical CPU performance. In fact, a multi-core CPU's speed doesn't

greatly increase in many applications that are not specifically designed and

implemented with respect to the hardware capabilities. Case studies showed that an

increase of 45% in the number of transistors on a processor translated to only about a

10–20% increase in processing power [6]. The majority of applications are

implemented as sequential programs, thus delivering limited performance by not

taking advantage of hardware resources. Performance improvement in applications

running on an ever-growing number of transistors is achieved by changing the nature

of these applications to become parallel programs. Concurrency revolution [7] is a

dramatically escalated incentive of parallel programs where multiple threads of

execution, running at the same time, co-operate to deliver work much faster. Such

applications run on large scale computers or computer clusters that are very

expensive. The necessary performance growth in many fields of computational

science requires a dramatic increase. There are many predictions about when the

continuous trend described in Moore's law will end. There are still a few other

approaches on how to enhance the performance of computing, and one of the most

promising areas is to take advantage of a larger number of small processors dedicated

for specialized operations organized into one high-speed, massively parallel

processing system. This is where graphic processing units(GPU) emerged as a

promising candidate.

2.2 Changes in CPU architecture

Since the introduction of one of the first modern Pentium microprocessors on

March 22 1993, the CPU evolved in many ways to try to scale performance and

match Moore's law. In the first concept of this architecture, a major part of the chip's

surface area was covered with transistors. Products with code 80501 contained 3.1

7

million transistors that covered 293.92 mm2 [8]. Further improvements came with

the next generation Pentium II processors presented in 1997, doubling the number of

transistors to 7.5 million as well as being half the size of it's predecessor. This model

was designed to cut costs while introducing a larger L1 cache and cheaper and slower

L2. Pentium III in 1999 brought with it a total of 9.5 million transistors over 128

mm2 and introduced an enriched SSE instruction set to better support and accelerate

floating point operations. The following generation increased the cache further while

decreasing the size of the transistor, making the instruction set richer while

introducing hyper-threading technology. Noticeably, the main idea behind increasing

performance was to make the transistors smaller and the cache larger while

supporting a more complex instruction set. Limitations on size reduction, cache size

and energy consumption pushed hardware architects into exploring new approaches.

Hyper-threading as the way to create virtual processors and by that improve the

parallelism of computations showed possibilities to improve the overall performance.

Codename: Penryn Bloomfield Gulftown Beckton
Architecture Penryn Nahalem Westmere Nehalem EX
Socket 775 1366 1366 1367
Cores/Threads 2/2 4/8 6/12 8/16
Hyper-

threading

No Yes Yes Yes

L3 Cache No 8MB 12MB 24MB

Table 1: Overview of current multicore CPUs by Intel

Further research into performance enhancements by CPU vendors such as

Intel resulted in a multicore solution. As seen from Table 1, the number of cores

almost doubles with each generation. Such chips are out-of-order, multiple-

instruction issue processors implementing a full x86 instruction set suited to optimize

the performance of sequential programs. Compared to single core CPUs, cache sizes

increased and a new L3 cache with a 200GB/s bandwidth and 24MB size was

introduced in the latest version of the Nahalem EX architecture. With 2.3 billion

transistors, it is the most complex processor produced by Intel.

8

Figure 1: Architecture of Nahalem EX [8]

From Figure 1 we can see that the 24 MB L3 cache is divided into eight

separate blocks of 3 MB. All of these blocks can be used simultaneously for multiple

cores. In this way the bandwidth between cores and cache is maximized. From the

description above it is clear that the development of new CPU architectures leads

into more extensive parallelism of execution with an increased number of cores. We

also get a faster, dedicated cache adjusted to provide a higher throughput suited for

further generations of CPUs. Of course there are several limitations, which is

described further.

On the other hand, the GPU world is based on a multi-core architecture

designed to achieve the highest possible throughput of parallel programs. They are

well suited for single instruction multiple data (SIMD). Thanks to their in-order,

single instruction issue processor, the performance of the most recent GPUs

surpasses CPUs' performance by an order of magnitude. While the CPU's current

peak performance is in the tens of GFLOPS, GPU's performance is about 1000

GFLOPS. As mentioned in [9] the peak performance growth rate of CPU

microprocessors over the last decade has been relatively slow, while GPU

performance has grown exponentially. The performance gap started widening around

2004. CPU annual growth stabilized at around 20% annually, while the GPU keeps

9

scaling up at a rate of 50% of performance per year.

Figure 2. Performance growth over past years [9]

At this rate, the CPU will lose performance 1000 times compared to Moore's

law until the year 2016 and observation of declining performance growth can be

confirmed nowadays. The peak performance of the fastest CPU processor is 107.55

GFLOPS, while the NVIDIA Tesla C2050 performs around 515GFLOPS [10] in

double precision calculations, and in single precision performance around 1.03

TFLOPS. As we can see from Figure 3, the availability of increasing performance

changed the approach of building supercomputers and current top supercomputers

nowadays are based on GPUs. For example, Tianhe-1A - NUDT TH MPP, X5670

2.93Ghz 6C, NVIDIA GPU, FT-1000 8C, currently the fastest supercomputer in the

world [11] is based on GPU technology and is able to perform 2566 TFLOPS. Third

in the list is Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050

GPU with performance 1271TFLOPS. These recently constructed supercomputers

show further investments in gaining performance into combined systems consisting

of both GPU and CPU technology. Again from Figure 3, the inclusion of GPU

power helps a lot these days to preserve the growth of performance of

supercomputers. A combination of these technologies enables us to bridge the

insufficiency of two different approaches of handling both instructions and data.

10

Figure 3. Supercomputers' evolution prediction [11]

There are fundamental differences in the designs of the two architectures, the

main one being that the CPU is designed to increase performance of sequential

applications. Control logic of CPU schedules instructions to be executed in an

optimal manner on all the resources it has. It tries to organize instructions running in

a single thread to be executed in parallel or even reschedule them out of their

sequential order while preserving the overall picture of sequential execution.

Instructions and data access latencies are reduced by using big caches. The

complexity of instructions and a lack of parallelism in applications make the

presence of those parts necessary. Arithmetical logical units (ALU) or processor

cores are the parts of the CPU that perform all of the instructions. Usually, in current

processors, there are 4-16 cores. In comparison, the GPU uses minimalistic control

logic and cache - the number of cores is 100 times higher, but their instruction set is

simpler.

Another very critical aspect while comparing performance is memory

bandwidth. In the GPU world it is very important to handle large textures, filtering

and anti-aliasing. Memory bandwidth is important in nearly every aspect of graphics

11

processing. Designers pushed by the demands of the gaming world are challenged by

the requirements of an economically strong industry. The number of simple floating

point operations per video frame is significantly increasing so that the execution of a

huge number of threads needs to be optimized. The hardware performs minimal

control logic of execution for each thread and thus it reduces long latency memory

access. Current graphic cards, for example the NVIDIA Tesla, has a throughput of

about 150 gigabytes per second (GB/s) [10], while the peak in CPU models is about

35GB/s.[8]

2.3 Problems influencing performance of CPU based systems

There are many problems that limit the performance growth of a system. The

speed of a program is always influenced by the performance of the whole system, not

just the part where computation is done. For example, important aspects are memory

and disk access latency. As described in [9] the value of resources changed over the

years and with them, the view on computer architecture design. Several barriers

were defined from this perspective as a challenge to hardware engineers and software

developers. These are power, memory, frequency, cost and parallelism.

In the past, these barriers in computer architecture were defined differently

than they are nowadays. Power itself was not a limitation at all, while the density of

transistors per chip was an issue. Proportionally, executing operations such as

multiplication were considered to be slow, while accessing memory was fast. A

higher level of of parallelism was achieved by investing in out-of-order execution,

speculation and branch prediction in sequential programs. The situation changed and

new boundaries have now been reached, so the aforementioned problems had to be

redefined.

A memory barrier limits the bandwidth of the channel between the CPU and a

computer's memory. Increasing the number of cores increases the demanded memory

bandwidth. The cache itself occupies a fair part o the chip and requires a lot of power

to manage. Increasing the cache size and bandwidth requires an increase in power

consumption. One of the basic laws of physics states that all electrical power

12

consumed by a system is eventually radiated as heat. The chip's overall temperature

and power consumption is limited and depends highly on the availability and cost of

cooling technologies. The power per transistor rises with frequency but decreases

with area. Smaller transistors require less power which can lead to an increased

frequency. However, the transistor density also increases, which leads to a problem

with heat dissipation. By splitting them into multiple units (multiple cores) they can

be run in parallel at lower frequencies to maintain a similar throughput while saving

on power consumption. Increasing the frequencies would lead to the power wall, so

performance may be increased by increasing the level of parallelism. Recently,

parallelism has been performed mainly at the instruction level. The instruction level

parallelism (ILP) wall emerged with the availability of enough discrete parallel

instructions for a multi-core chip. The processing of single instruction multiple data

(SIMD) instructions or vector parallelism combined with out-of-order execution

reached the point where substantial effort (and an increase in transistor count) brings

only marginal gain. Limiting issues are clock rate, instruction fetch and decode per

clock rate, memory bandwidth and its locality. Scaling the ILP wall requires a

significant change in the level of parallelism of applications - using SIMD or vector

instructions. One possible way to exploit the effect of ILP is to increase the

granularity of parallelism in applications by simultaneous multi-threading or data

intensive computing.

All these barriers influence each other and a change in one causes another to

reach its limits. A significant additional factor is cost. For example, increasing the

level of abstraction of developed applications would enhance parallelism but increase

the number of man-days spent in design and development of programs. From the

perspective of development of new hardware, costs can be categorized as design and

manufacturing costs. Power limitations can also be addressed by increasing the

number of much slower cores, rather than their frequency. One of the possible ways

is in the use of multiple heterogeneous cores, specialized on a smaller set of

instructions to improve power and performance.

13

The limitations presented create a significant shift towards a heavily

multicore architecture. An increase in hardware support for parallel computing and

its specialization is emerging as a possible gain for performance. An example may be

a cooperation between a core that is designed primarily to handle control flow and

branching logic, and different hardware accelerators suitable to accomplish massive

SIMD operations. Promising candidates to accelerate data intensive computing are

graphic cards. The newest architecture from NVIDIA is called Fermi, and an

introduction to its specification and capabilities follows.

2.4 Overview of GPU architecture

In the past, NVIDIA presented tree generations of graphic card designs. The

breakthrough was the G80-based GeForce 8800 introduced in November 2006. It

substituted the separate vertex and pixel processors with a unified one programmable

in the C language. This allowed a broader range of applications. The peak

performance of 681 million transistors was about 500 GFLOPS compared with the

peak of 20 GFLOPS for CPU at that time. It supports a single instruction multiple

thread (SIMT) execution model and inter-thread communication using shared

memory and synchronization barriers. The second generation of this architecture was

GT200 first introduced in 2008 as GeForce GTX 280. Compared with the previous

generation it consists of 1.5 billion transistors and delivers over 900 GFLOPS. The

biggest improvement besides speed is the addition of IEEE 754R double precision

floating point arithmetic and hardware memory access coalescing. The amount of

memory doubled and the bus width of the memory to the GPU interface was also

increased. The number of simultaneously processed threads increased three-fold (to

30,000).

14

Figure 4. NVIDIA GPU architecture overview [10]

 As shown in Figure 4. the architecture of GT200 doubled most of the

parameters over the previous generation. The architecture introduces cache

hierarchy, error correction code (ECC) protection, faster double precision floating

point arithmetic, context switching, PTX 2.0 instruction set and faster atomic

operations.

In Fermi architecture, a chip consists of 3 billion transistors, 512 streaming

processor (SP) or Cuda cores, which are grouped into blocks of 32 per streaming

multiprocessor (SM). Each block of 32 cores has 64KB memory, that can be

configured as shared memory or L1 cache in ratio 1:2 or 2:1. The L2 cache is a

768KB memory shared between the blocks. The GPU supports up to 6GB GDDR5

memory. In each SM there are two warp schedulers that simultaneously dispatch

instructions from two independent warps. GPU is connected to CPU using a PCI-

Express interface. Switching between applications is supported by GigaThread

hardware scheduler. It is 20 times faster than any previous GPU and it can manage

all 1536 simultaneously active threads.

Each of the 16 streaming multiprocessors that execute programs and

15

manipulate data contains 32 SP as well as 16 load/store units, four special function

units (SFUs), a 64KB block of high speed on-chip memory that can be used either to

cache data for individual threads and/or to share data among several threads; and an

interface to the L2 cache shared among all sixteen SM's. Each core can perform one

single precision fused multiply-add(FMA) operation per clock cycle and one double

precision operation per 2 cycles. The IEEE 754-2008 floating-point standard that

Fermi supports includes all four rounding modes and subnormal numbers. FMA

support increased the accuracy of several numeric operations. The SFU can handle

four special operations such as sin, cos, exp and reciprocal per clock cycle.

The new parallel thread execution (PTX) 2.0 instruction set supports greater

accuracy, performance and programmability. It implements a unified address space

for all three memory spaces, thread local, block shared and global space for

load/store instructions. Addressing is done in a 64-bit manner.

Compared to the previous generation of GPUs, Fermi comes out on top. For

example, in the implementation of radixsort, Fermi was 4.3 times faster than its

predecessor. In double precision applications like matrix multiplication and tri-

diagonal solver, the performance increased 4.2 times [11]. Physical algorithms

including fluid simulations delivered a 2.7 times speedup.

2.5 Summary

All the described differences show specific fields for the use for each

technology. The resources that are available have to be used for what they are best

suited. That is, the GPU for parallel processing of computationally expensive parts of

applications, with the CPU running their control logic. A combination of the two

different approaches delivers higher performance and makes it possible to execute

numerically expensive applications. An application requiring huge processing power

that can be achieved only by running it on large processor clusters limits the

customer base that can afford it. The multi-core architecture of GPU makes resources

for parallel processing feasible at lower costs and higher availability for the market.

The size and price of a cluster itself is both a demotivating and limiting factor for the

16

development and use of parallel applications. An overview of the framework

OpenCL that allows us to access and use the computational power of GPU is

presented in the next chapter. A general introduction into the architecture, execution

and memory model allow a closer look into the characteristics of this technique. An

important part of Chapter 3 exhibits well known recommendations and limitations.

17

3. OpenCL

OpenCL (OPEN Computing Language) is an open standard based on the C

programming language to unify general-purpose computations on heterogeneous

systems such as multi-core CPUs and the latest GPUs. The language specification is

C-based across the platform programming interface, as a subset of ISO C99 with

language extensions and a numerical rounding accuracy for all floating point

operations with a defined maximum error based on IEEE 754. A brief overview of

the platform, execution and programming model follows. It determines the way how

resources of underlying hardware are used. Knowledge of them is crucial to be able

identify their fit on researched algorithms and to create performable application.

3.1 Platform model

OpenCL provides a hardware abstraction layer over diverse computational

resources. The host connects to one or more OpenCL devices . A device is divided

into one or more compute units (CUs) which are further divided into one or more

processing elements (PE). The devices needs to be queried, selected and initialized to

use for further usage. Computations on a device occur within the processing

elements. An application submits commands from the host to execute computations

on the processing elements within a device. Execution can be performed in a single

stream of instructions as SIMD units (execute in lock step with a single stream of

instructions) or as SPMD units (each PE maintains its own program counter). All the

devices that should be used in such an execution must be recognized, registered and

assigned into one compute context. Each device must be associated with the

command queue that allows the host application to assign commands to it. OpenCL

takes care of compiling commands into the devices' specific instruction set.

Recognition of heterogeneous devices and their characteristics is performed during

execution time so, for example, the most suitable device can be picked at runtime

based on input data or other parameters. The execution model about how to identify,

18

assign and manage the devices follows. Illustration of platform model is displayed in

Figure 5.

Figure 5. Platform model [14]

3.2 Execution model

A programmer has flexibility in the type of compute kernel that is used.

Compute kernels can be thought of either as data-parallel, which is well-matched to

the architecture of GPUs, or task-parallel, which is better suited to the architecture of

CPUs. A compute kernel is the basic unit of executable code and can be thought of as

a C function. Communication between the host application and the devices is

managed via command queues. Each device must have an associated command

queue within this context. Kernels are distributed to the processing elements of each

device by commands. A command queue associated with a device schedules

commands on its processing elements from the host application. Commands are

distinguished as memory commands and kernel execution. Execution of kernels can

proceed either in-order or out-of-order depending on the parameters passed to the

system when queuing the kernel for its execution. Events are provided with each

execution so that the developer can check on the status of outstanding kernel

execution requests and other runtime requests. Details on exact API commands on

how to create context, query devices and assign queues to them can be found in [16].

19

3.2.1 NDRange

A unit of work is called a work-item. Each work-item can be identified by it's

specific global id. Work items are grouped into a work-group and each have their

specific work-group IDs. Each work item can be identified within a work-group

based on local ID. A combination of the local ID and a work-group ID uniquely

represents each created kernel instance. Work-group items are executed concurrently

on the compute unit associated with this group. On GPU, each work item runs in its

own hardware managed lightweight threads. The entire index space of work items is

called NDRange. It is N dimensional index space defining computation space, where

N is one, two or three. An array of length N defines the number of items in each

dimension.

According to [15] the recommended sizes of work-group size are powers of

two when the possible and maximum local work-group size is less then or equals to

512.

3.2.2 Synchronization

Synchronization can be performed on multiple levels. In the case of one

device and multiple kernels that are scheduled in its queue, synchronization depends

on the chosen type of execution. When in-order execution is selected, commands are

launched and finished in the same order to how they were added into the queue. In

this case, no explicit synchronization is needed. Out-of-order execution, on the other

hand, starts execution in the order they were added but it is non-blocking, so the

second command is initiated immediately without waiting for the first command to

complete. There is no guarantee that the result of the first command is available at

the time the following command starts and in fact. The synchronization has to be

done explicitly by using synchronization commands. These commands and the

execution of the kernel and memory commands generate events. Such events can be

used for this explicit synchronization between the commands, the host and the

device. This includes the case when more devices are used, since each of them has its

20

own command queue within the context.

 A second type of synchronization is on a work-item level. As id described

later, synchronization of memory between work-items of a given work-group can be

done via shared memory. Since OpenCL uses relaxed memory consistency, memory

visible to different work-items or commands may be different. Except at a barrier or

other synchronization point. OpenCL provides a work-group barrier function that

ensures all the work-items in work-group must reach a barrier before all of them can

continue in an execution. With this barrier it is important to realize that the execution

flow can be different per work-item. Since all work-items must reach a barrier, there

must be careful usage of it in combination with if, while, do, for and switch

instructions. In the case that a barrier is not reachable by even a single work-item, the

execution never finishes.

3.2.3 OpenCL execution flow

Here is a brief summary of the steps of the execution. A host application

identifies devices, queries their properties and picks the ones that fit the specific

needs of application. It creates computational contexts for each chosen device. Each

context must be associated with a command queue via that kernel so that the

executions can be scheduled. Based on the C implementation provided, a program

object must be created. A program is created from a source code string or binary. A

program object encapsulates this list of devices, the latest successfully built

executable for each device and a list of kernel objects. The kernel contains specific

kernel functions in a program and argument values. The core of the whole execution

starts by defining the order of commands to be passed to queues created beforehand.

Data has to be written into a device using the appropriate queue before executing the

kernel. Definition of dimensions have to be passed into the kernel as it has to be

initialized on NDRange index space. Reading of results is the last stage of this simple

execution model. All operations passed into the command queue can be performed in

an asynchronous/non-blocking or synchronous/blocking manner. This is defined as a

21

parameter passed to each function. For more details about the above mentioned

functions and their parameters refer to [16].

3.3 Memory model

As displayed in Figure 6, a memory model in OpenCL consists of a multi-

level hierarchy that differentiates in size, speed, location and type of access for the

host and processing elements on a device. There are four memory spaces defined:

private, local, constant and global. From the host, the only accessible memory are

global and constant for both read and write operations. On a device, private memory

is assigned and visible to every individual processing element. This memory space is

dedicated to it and no other PE can access it. On the other hand, local memory is

shared for all the processing elements within one processing unit and may be used

for synchronization and exchange of information between them. The size of private

and local memory is relatively small but speed of access is high. A processing

element from one compute unit can not access the local memory of other unit. Global

memory is accessible from all processing elements on a device. The size of it is much

bigger than local and private memory, but speed of access is significantly slower.

Constant and global memory are filled from the host.

3.3.1 Host to device memory transfer

This can be done by explicitly copying data or by mapping and unmapping

regions of a memory object. As described above, commands to read or write memory

objects from or to a device can be queued in a command queue, in both blocking or

non-blocking ways. Mapping methods allows to map memory from hosts into

devices' address spaces. One of the most important measures of performance for a

system is memory bandwidth. Data transfer between a host and a device is

considered to be slow compared to transfers on a device alone [17]. Such transfers

should be minimized and the use of intermediate structures created and destroyed on

a device is preferable.

22

Figure 6. OpenCL memory model [18]

3.4 OpenCL C99 structure

There are a few differences between regular C99 and OpenCL C99, which

was designed to fully support GPU architecture and conveniently control parallel

execution. Some of the differences define direct limitations of the framework. Based

on [16, 18], an overview of major differences are presented to give the reader a better

insight into the capabilities and limitations of this framework.

Vital OpenCL specific extensions include the kernel or __kernel identifier

that specifies what functions can be called by the host application via the OpenCL

API. A prefix of “__” is not compulsory and may be ignored in all the identifiers

mentioned here. In the declaration of variables, this is a keyword to distinguish

address space, where this variable should be created and must be declared. The

region of memory that is used to allocate the object can be identified by the global,

23

local, constant and private keywords. If this identification is missing, generic address

space is used.

As described above, each work-item can be identified uniquely in two ways;

by its global ID or combination of group ID and local ID. Specific kernel instances

must identify the part of the data array that it handles based on those attributes.

Unique identification within all work-items globally per each dimension (1,2 or 3)

can be queried using get_global_id(dimension). The function

get_global_size(dimension) returns the number of work-items specified to execute

the kernel. Similar identification can be queried by get_local_size and get_local_id

for work-items within a work-group. The number of workg-roups and work-group ID

for a specific work-item is available via get_num_groups and get_group_id. Using

these functions, it is possible within each kernel instance uniquely to recognize its

input and output data structures in parallel execution.

Significant importance have built-in vector types, especially if using the GPU

as a device, vector types are basic structures supported by the hardware. Build-in

mathematical and common functions with hardware support may increase

performance of whole processing. For example, multiply-add (mad) or native_

geometric functions, cross and dot products for vector manipulation. Such functions

may map to one or more native instructions and have typically better performance.

An important note here is that the accuracy of native_ functions is implementation

defined.

Limitations of current OpenCL 1.1 C99 implementations compared to

standard C99 include the absence of recursion support, dynamic memory allocation,

pointers to functions, variable length arrays, bit-fields, and a lack of support for

functions included in standard C99 headers. A list of them can be found in [16]. As

discussed in [18], random number generators that are not included cause difficulties

to implement learning and evolutionary algorithms that are by nature parallel and can

benefit from parallel processing.

Referencing a programming model, a program to execute on a device is

compiled at runtime. A program object can be created using

24

clCreateProgramWithSource() or clCreateProgramWithBinary() so the definition of

a program can be changed programatically in the host. This allow wider possibilities

on how to manage the application logic.

3.5 Recommendations and optimizations

A best practices guide by NVIDIA in [19] describes some of the

recommendations and optimizations for development using OpenCL on NVIDIA's

devices. A subset of the most important are presented here to give the reader a clearer

picture about use of OpenCL on GPU devices. The key issue is to gain the best

performance from a GPU device via its support of a lightweight thread model. The

application must be suitably adapted to fit into this architecture and the user should

concentrate mainly on exploiting the level of parallelism in code with respect to

underlying resources. A theoretical maximum speedup factor of program is defined

by Amdahl's law. Since the number of processors that are available is high, a

proportion of the program running in parallel must be increased as much as possible

to gain significant speedup.

In the case of GPU, a PCI interface that usually connects host and device has

a limiting bandwidth. To achieve maximum application performance, it is essential

to minimize data transfer latency and therefore data transfers should be limited. The

price paid for the amount of data transferred has to be justified by the complexity of

computations on the device. Data should be kept on a device as long as possible and

sometimes it is worth executing a command that is slower on the device than on the

host without data movement to achieve an overall better performance.

Optimization of memory access by the kernel is crucial in GPU devices, as

described in [19, 21] to fully utilize texture efficiency and coalesced data transfers.

GPU memory access patterns enable the hardware to accelerate data access and

perform read and write operations on multiple data structures in one operation. One

of the most important characteristics of GPU architecture as a main architecture of

25

OpenCL-enabled devices from NVIDIA, is coalesced global memory access. The

architecture bundles several threads from one workgroup for execution and each

workgroup is partitioned into warps, each of which usually contains 32 threads

(G80/GT200). The hardware executes an instruction for all threads in the same warp

before moving to another. As described in [21], the advantage is when all threads in

a warp execute the same instruction at any given point in time. When all threads in a

warp execute a load or store instruction, the hardware detects whether the global

memory locations are consecutive. If this is the case, the hardware combines all the

consecutive accesses into a single request to DRAMs. Once a control flow is

different for items within a warp, multiple passes are required to satisfy divergent

memory requirements. Those passes are sequential so it increases the overall time of

execution. The effects of misaligned access or stride access are displayed in [19]. The

access to global memory is much slower than local memory, so for synchronization

purposes it is recommended to use local memory instead of global.

Usage of instructions with high throughput is preferable. The precision of

computations should be adjusted to the needs of the application. Double precision

floating point operations are slower and so single precision should be used instead

the former is not necessary. Built-in native mathematical functions are mapped

directly to the hardware level and are faster at the cost of lower precision.

All the above mentioned characteristics significantly influence the

performance of applications, with respect to specifics of NVIDIA's GPU

architecture. Since the main purpose of this thesis is to evaluate possible acceleration

of adversarial search algorithms using GPU, those specifics play an important role in

the use cases presented in Chapter 5. All the specifics of GPU architecture are fully

accessible using OpenCL. Besides the standard, other frameworks, some of which

are described briefly next, were created to access computational performance of

GPU devices.

26

3.6 Alternatives

Some alternatives to OpenCL are available. One of them is a vendor specific

solution from NVIDIA. It is called Cuda SDK and it supports GPU-specific

characteristics and optimizations from this vendor very well. Compared to OpenCL,

the architecture and memory model are very similar. For most of the fundamental

characteristics there exists a one-to-one mapping. The work item is represented in

Cuda as a thread, a work-group is called a thread block and NDRange is called a

grid. The main difference is that OpenCL as a standard is designed to support code

portability across devices produced by different vendors, thus allowing for greater

hardware diversity. Device management, kernel compilation and execution are more

complex in OpenCL. In Cuda there is a special kernel calling syntax and a variety of

hardware specific variables. But as examined in [22] a comparison of Cuda versus

OpenCL performance showed very similar results on benchmarks with high data

sizes. Cuda is tailored for Nvidia products, but suffers from a lack of support by

other vendors. Portability on heterogeneous devices is very limiting compared to

OpenCL. However, by allowing access to specifics of the hardware it makes it

possible to use its full potential.

27

4. Adversarial search

A basic introduction into the adversarial search domain presents in this

chapter it's complexity, main problems and algorithms used to solve them.

Improvements in precision, speed and the size of space of search depends complexity

of algorithm and it's ability to use underlying hardware resource. Recently the most

significant results were achieved using parallel algorithms. In this chapter we

introduce theoretical approaches used to solve adversarial games and inspired by

successful real life applications where speedup was proven, we identify the ones that

are mots suitable for implementation with GPU acceleration.

4.1. Multi-agent environments

Artificial intelligence provides a way to formalize environments, where large

number of agents interacts and changes it's state. The behavior of agents can be

cooperative or competitive, depending on their individual goals. Each agent or player

has a predefined set of possible moves. Because players interact, some of the moves

may not always be possible to perform. Agents evaluate the situation of the world

independently, based on their specific rules and knowledge. One can not predict

another player's next move, so to make a decision, one has to consider all possible

moves of other players. A combination of allowed move sequences for every player

generates all possible states of the world. States where agent has reached its goal are

called terminal states. Each performed move has a cost that influences all agents

welfare. Sequences of moves leading to a terminal state may have different costs.

The goal of an agent is to reach terminal state with the maximal possible value. In

competitive environments the goals are usually adverse, so minimizing one agents

costs maximizes the costs of the others. In general, adversarial search is defined as

search in multi-agent environment where the goals of players are contrary. Important

representatives of adversarial search problems are games.

28

4.2. Games

Games have a great importance. Their rules are usually simple to formalize,

while complexity of search space for optimal strategy is high. Games have structured

tasks and clear definition of agents goals. In general, games that we discus can be

defined as multi-agent environments, where players' moves are unpredictable and

change as their goals are usually conflicting. As described in [23] a game can be

formally defined as a search problem with few characteristics. The initial state

represents the positions of each player on the playing board. Because of the turn-

taking nature of discussed games, only one player has to perform its move each turn.

All the available legal moves are known to the player, and the set is determined by

the position of other players on the board. It defines a transition model from this

state. Each move changes the world state and tests to see if the world state is

terminal. Terminal states define end of the game. A function to evaluate a terminal

state is called a utility function. It numerically represents the outcome of game. In

some cases it just identifies the winner for example as -1 for agent number 1 ,0 for a

draw and 1 as a win for agent 2, but often it also indicates the final score.

Each game satisfying the definition can be represented using a game tree. The

initial state defines a root node, a transition model represents all the child nodes of

root and for each of them recursively applies a transition model. Recursion ends by

definition in terminal nodes. The game tree represents all the possible states of the

game, thus the complexity of a searched problem for the optimal strategy can be

calculated. It leads to the lowest cost, or in other representation to the highest score.

In chess the average branching factor is 35, so investigating 5 moves ahead would

require an evaluation of about 50 million states [23]. An even bigger branching factor

of 361 is in GO.

A move performed by one of the players is called a ply. Usually there is a

time constraint for each move or for the whole game and evaluating the entire game

tree in such cases is not possible and so decision of the player is not optimal in most

cases. The result is based on an approximation of world state evaluation.

29

Figure 7. Minimax algorithm [23]

4.3 MiniMax algorithm

Zero-sum games are defined as games where the total amount of points

owned by all players in the game is 0. Usually in two player zero-sum games, players

are called MIN and MAX. Because of the conflicting goals of the players, each of

them tries to reach different terminal nodes within the game tree. With this

assumption, each player chooses an action that would assure maximum benefit, and

minimize the chance of losing. Assuming this, one has to always take into

consideration optimal play from an opponent. For each state in the game tree, a

minimax value can be defined. Expected optimal play dictates that the first player

choose the move with maximum minimax value from the child nodes of its current

state to maximize the gain (MAX). The second player wants to minimize MAX

payoff (MIN), to maximize his benefit, therefore he chooses a minimum from

minimax values of his child nodes. The minimax algorithm as defined in [23]

recursively computes for each node in the search tree a minimax value as illustrated

on Figure 7.

30

 The recursive definition of algorithm traverse whole tree down to terminal

nodes. An utility function is used to evaluate leaf nodes and to deliver their minimax

value. This value is then propagated up the tree. Altering MAX and MIN moves

changes the minimax values of nodes from leaves towards the initial state. Choosing

the child node where the highest minimax value came from determines the optimal

strategy for MAX. The value is a guaranteed minimum for MAX if MIN plays

optimally. In the case of a suboptimal play by MIN, MAX can reach even higher

value. Branching factor is determined by a number of legal moves for player from a

position. Based on the branching factor, defining the width of game tree, the

complexity of game is determined. In some cases there are time limitations to

provide approximate results where terminal nodes are not reachable in reasonable

time. For those purposes, the look-ahead value restricts maximum number of plies

examined by algorithm. In the case terminal nodes are deeper in the tree than the

look-ahead value, approximation of minimax value, provided by evaluation function

is taken into account. This algorithm is optimal against an opponent employing

optimal strategy.

The minimax algorithm is based on the depth first search (DFS). Given the

maximum depth or the look-ahead value M and the number of moves for each player

that defines a branching factor of the tree B, the time complexity of the minimax

algorithm is O(BM). Algorithm can be implemented in different ways with various

space complexity. The version that generates and stores all of the child nodes for

position at once has space complexity O(BM) while the version that generates one

successor at the time has O(M).

4.3.1 Optimizations and heuristics

Exponential time complexity of evaluating the whole game tree is not suitable

for games where time per move is limited. There are optimizations and heuristic

techniques that may decrease the number of examined states without modifying the

overall result. One of the examples is alpha-beta pruning. The main idea of alpha-

beta pruning is to prune unevaluated branches of the tree that cannot change the final

31

value in the root. Due to the DFS nature of minimax, if there is an unexamined node

x during evaluation and the algorithm has already found a better choice somewhere

in the parent or up in the hierarchy, node x may be excluded from the evaluation

since it never influences the parents' minimax value. This comes at a cost, however,

as an improvement in execution time is needed to maintain two parameters - alpha

and beta - that define the boundaries of examined nodes. A detailed description of

this algorithm can be found in [23].

The order of examined child nodes determines the improvement of the

approach. To define useful ordering rules, substantial knowledge about the searched

game is required. The heuristics such as the previously best move first, may be also

applied. As discussed in [23], time complexity of a minimax algorithm using alpha-

beta pruning is reduces to O(B(M/2)). In an average case, without applying special

ordering, complexity is reduced to O(B(3M/4)).

Identical states in the game tree usually appear more than once. Information

about already evaluated states may be stored in transposition tables. This increases

the space, but may reduce the time complexity. In this case, space complexity grows

with each distinct examined state and can lead to exponential growth of search space.

 As briefly discussed, different domain specific evaluation functions are used

to estimate the expected utility value. Evaluation functions, in general, are replacing

branches of the tree with estimated values once they pass a cutoff test. States for

those branches are replaced by a terminal state with an estimated value. Tests may

be defined according to the look-ahead value if there are no more time/resources to

evaluate the next level or based on game specific features of the state. Even minimax

with alpha-beta pruning can evaluate only a limited depth of around 5 to 10 due to

the exponential growth in number of states [24]. Proper evaluation functions based

on detailed domain knowledge decrease the size of the search space significantly.

They provide values that doesn't influence the decision in negative way. More details

about different evaluation functions and learning techniques are described in [23,

24].

32

4.4. Approaches to solve well known games

We discuss well known games with attention to the way how they have been

solved, or the solutions that gave good approximation of the result. Strategies

applied, are usually game specific, but some common approaches can be found.

Their properties are discussed further. The analysis serves as a starting point for

examined use case study.

4.4.1 Ultra-weakly, weekly and strongly solved games

To solve a game means, by the definition provided in [25], to find a game-

theoretical value for each game position. Based on the definitions provided in [26,27]

a game can be solved on three different levels;

1. Ultra-weak – For a given starting position, the result of perfect play is

known, but the proof is not conclusive. A strategy for a perfect play does not have to

be provided. An example of such a game is Hex. It can be shown by the “strategy-

stealing” argument described in [28], that the first player has a winning strategy, but

no winning strategy is currently known.

2. Weakly Solved - a strategy is known to achieve the maximum game-

theoretic value of the game from the initial position for all players under reasonable

resources. Most of the well known games have been solved at this level. Examples

are Go-Moku [29], Nine-Men's Morris [30] and Checkers [31]. Resource limitation

is substantial and limits impractical solutions that would need too much time to

provide a solution.

 3. Strongly solved – For all possible legal positions on the board, the game-

theoretical value and strategy is known for all players, using reasonable resources.

Strongly solved games are for example Awari [32], Kalah [33] and Connect Four

[34].

33

This thesis evaluates mainly strongly and weakly solved games and the

techniques that were used to solve them. Exact approaches used to solve games

follow, with a description of techniques used. Specific implementations of

representative examples of games are discussed in Chapter 5, with special attention

to parallel solutions and the possibility to use GPU to accelerate the computation.

4.4.2 Tree search techniques

Out of all techniques used to solve well known games, game tree search

algorithms play major role. As defined in [31] we can distinguish two types of tree

search: Forward search and Backward search. The first processes the game tree from

the starting position towards terminal nodes and gradually expands the tree depth

until subtrees are solved. This is a straight-forward top to bottom approach.

Exhaustive search methods like alpha-beta, and its variants, help to reduce the

searched space. However, they are very time consuming as evaluation exponentially

increases the state space size. A backward search, on the other hand, starts in the

terminal nodes and evaluates their terminal values. From this point it searches for all

positions that lead to the evaluated terminal nodes. Minimax values for the nodes that

directly precede the terminal nodes are calculated. Minimax values calculated in this

manner are propagated until the initial node is reached. All of them are stored and

this creates the end game database. Retrograde analysis is the most commonly used

representative of a backward search. This approach is has practical use for games

where the search space converges like in Chess, Othello, Awari and Checkers.

In a forward tree search, situations emerge when a different combination of

moves leads to the same state. As described above, transposition tables may be used

to optimize the performance and cut-off sub-trees where the game's theoretical value

is already known. It is a trade-off between memory usage and computational

complexity. A time management strategy called iterative deepening was introduced.

4.4.3 Solved games
One of the best known games, tic-tac-toe, is a representative of a connection

34

game, where the goal is to connect predefined number of pieces on the playing board

with a straight line. As discussed in [35] these kinds of games have too many

terminal states so backward search is not feasible. The game Connect Four was

proven to be winning for the first player [27, 36]. Forward search techniques were

used in a combination of alpha-beta search with a transposition table and move

ordering heuristics (killer move heuristic [37], conspiracy-number search [38]). The

result is that the first player has to start in the middle column to win. An extension of

tic-tac-toe is called go-moke and it is also known as 5-in-a-row. There are many

modifications that define the number of pieces in a row, board size, or defining

restrictions for moves. Techniques used to evaluate such games in [26] are forward

search with move ordering heuristics such as thread -based search, best first search

and dependency based search. Free-style go-moku starting in an initial state was

proven [26] to be winning for the first player in 18 moves against an ideal opponent.

In Renju without opening rules, it was proven [39] that the first player wins by using

iterative deepening, transposition tables and a dependency based search [26].

Different kind of games like Kalah and Awari belong to the Mancala family

of games. The playing board is represented as set of holes and seeds in them. Each

player in a move takes all seeds from an allowed hole and places them into

subsequent holes, one seed per hole. A player can capture seeds at the end of his turn

based on specific rules. For example, the last placed seed was third in the hole.

Approaches described in [33] solve most of the variations of Kalah while retrograde

analysis was used to pre-compute end game databases. Program created can solve

several starting configurations up to six holes and 5 counters per hole, by usage of

iterative deepening, and other search enhancement techniques like move ordering,

transposition tables and Futility pruning. Awari was solved in [32] using retrograde

analysis and a computing score of 889,063,398,406 positions. In combination with

forward search it was shown that the result is a draw. Since an enormous database

was created to contain all the positions that can occur in the game, Awari was solved

strongly. Nine Men's Morris was solved in a similar way. The solution presented in

[30] proved that the result is a draw. Forward search and retrograde analysis were

used where the end game database holds 7,673,759,269 reachable states.

35

As described above, many games were strongly solved. Approaches presented

in most cases consist of a combination of forward search and a precomputed end-

game database using retrograde analysis. Usage of alpha-beta search in combination

with different move ordering techniques and transposition tables helped to decrease

the search space.

4.4. Parallel approaches on CPU based systems

There are many attempts to provide parallel applications that solve

adversarial search problems. Many of them have successfully improved the

performance of sequential approaches. Parallelism was used in different ways. Tree

decomposition, identification and assignment of sub-tasks performed in parallel

differ per approach. These are defined by capabilities of the hardware and the

application that was running. Basic problems tackled are tree decomposition,

computation complexity, synchronization and communication.

4.4.1 Static parallel evaluation

The evaluation of the static independent sub-parts of an adversarial search can

be performed in parallel. Generation of moves or computation of the evaluation

function were implemented as parallel processes. An example is Cray Blitz, a chess

program that uses vector processing. Another chess machine Deep Thought uses

special hardware for parallel generation of all legal moves for all positions. Details

on the implementation and hardware can be found in [40, 41]. The evaluation

function can be very computationally intensive, so an application can benefit from its

parallelization. The speedup is limited by the degree of parallelism in move

generation and evaluation. However, domain specific implementations show

promising results.

36

4.4.2 Tree decomposition

The transition between static parallel evaluation and real game tree

decomposition is an approach called Parallel search window. This method performs a

game tree search on the whole tree using every available processor. Each iteration is

performed with a different cost bound (window) [42].

Hierarchical node assignment to processors

An algorithm defined in [43, 44] decomposes the tree structure statically into

disjointed parts and searches them in parallel. All of the processors are arranged in a

tree structure and are then mapped to the searched tree. The inner nodes of the

processor tree generates successors for positions assigned to them and propagates

them to be evaluated by successive processors. Leaf processors perform a sequential

minimax and return calculated values to their parents in the processor tree. After that,

a new sub-problem from the queue of its parent is assigned to them if it exists.

Generate and compute in parallel

The algorithm presented in [40] distinguishes two types of processors. The

first type searches the tree up to a predefined depth d. All positions found are then

divided into two groups. The first group contains only nodes of the minimal game

tree, while the second contains the rest. The first group is then processed on parallel

processors by a sequential algorithm to a depth d. The result is returned to the master

processor and then the second group is enqueued for processing.

Central control approach

An example of centralized control approach is the Principal Variation (PV)

splitting algorithm. It can be described as a global synchronization model, since the

application logic is centralized in one processor that takes care of load balancing. The

algorithm takes advantage of move ordering heuristics and performs best on well

37

ordered game trees. The ordering of moves in combination with cutoffs is used to

decrease the size of the search space. To perform cutoff, the leftmost part of the tree

has to be evaluated first. The idea is to use all processors to search in parallel the left

part and only after retrieving boundaries for cutoffs is the right part searched in

parallel. A process is performing sequential version of minimax algorithm (e.g.

alpha-beta). One of the improvements of this approach is enhanced dynamic load

balancing, since the trees searched in parallel are not of a uniform size. Idle

processors may help busy ones by sharing their tasks.

Client-server approach

Young brother wait concept (YBWC) is a representative of the client-server

or master-slave model of parallelism in a game tree search. The main idea is that the

boundary has to be obtained first for the leftmost branch and then all the other

branches can be examined in parallel. This concept defines the highest split node as

the node for that value of which the first branch is known and its height is minimal.

The algorithm assigns the first processor to the root of the tree and starts searching

the tree usually using an alpha-beta algorithm. The list of split points is maintained

and if some processor is idle, the branch from the highest split point is assigned to it.

A processor starts searching the subtree it owns and maintains its split point

information for the purpose of load balancing. Once the branch is examined, the

processor returns the value to the server that assigned it. YBWC is described in

further detail in [45].

Peer-to-peer approach

An approach called Dynamic tree splitting described in [46] is one of the

more complex algorithms. None of the processors own any node and the processor

that finishes last on the split point reports a calculated value to the parent of the split

point. Classification of nodes and criteria for choosing split points are detailed in

[46]. During the algorithm, an idle processor chooses the split point with the highest

priority from the global list. Once the work is finished, the processor updates bounds.

The algorithm was specifically designed for a shared-memory, multiprocessor

architecture where the goal was to optimize load balancing and it is used in several

38

chess programs such as Cray Blitz.

4.5 Summary

The parallel algorithms described above were proved to gain a substantial

performance increase over sequential versions of adversarial search algorithms. Each

of them approaches the domain in its specific way and is trying to utilize all

resources available in the system it is implemented in. They addresses architectural

issues such as the effective use of all processors and load balancing by proper

decomposition of the searched tree that are best suited to the processing power of the

available hardware. Communication and synchronization issues influencing the

performance of algorithms are mainly determined by memory architecture.

Accessing shared memory or maintaining a distributed model is distinguishes the

algorithms and their usability of use on certain machine architectures.

39

5. GPU accelerated adversarial search algorithms

In the following chapter we present implementations of algorithms used to

solve adversarial search problems. Special attention is given to parallel algorithms

described in chapter 4. Their fit on GPU is discussed and the most promising ones

are implemented. The researched algorithms were tested on different configurations

of synthetic game trees and the speedup are presented on an implementation of the

game Fox and Hounds. A comparison of benchmarks obtained from both sequential

and parallel algorithms is presented. The suitability of GPU to accelerate adversarial

search algorithms is discussed and illustrated on benchmarks at the end of the

chapter.

5.1 Testbed description

All of the measurements were performed on two different configurations of

hardware. The first was a Macbook Pro notebook. The CPU configuration for this

model is 2.0GHz quad-core Intel Core 2 Duo T9400 i7 processor with 6MB shared

L3 cache and 4GB (two 2GB SO-DIMMs) of 1333MHz DDR3 memory. The

graphical card was a NVIDIA GeForce 9600M GT that featured 32 stream processors

and 256 MB GDDR3 memory of its own that contained 314 million transistors. We

refer to this configuration as "standard". More advanced hardware was used in

second configuration. The graphical card used was a NVIDIA GeForce GTX 480

with 480 CUDA cores with 1536 MB GDDR5 containing 3 billion transistors. This

GPU is based on Fermi architecture that was described briefly in Chapter 2 while this

configuration is referred to henceforth as "advanced".

5.2 Sequential algorithms

In general, most of the sequential approaches described in Chapter 4 are

based on the minimax algorithm. A standard tree search, when the terminal nodes are

not reachable within a reasonable amount of time and evaluation functions are used,

40

consists of several phases [41].

Figure 8. Tree search phases

In the first phase, as displayed in Figure 8, at the top of the searched tree, all

the nodes are visited. Usually there are no cutoffs in this stage and tree is searched

completely. Once the required depth is reached, a selective search phase is initiated

and only the interesting nodes are visited and investigated further. The definition of

interesting is usually domain specific and is based on certain compositions of board

figures or boundaries of the evaluation function. A selective search usually also has a

predefined maximal depth. The third phase is called the quiescence search. The

principle of it is very similar to a selective search in that it evaluates into more depth

only positions, such as the ones with direct threat, that are marked as noisy.. A search

is then performed until a noisy position changes to quiet one, and this improves a

position's minimax value by emulating moves that significantly influence its

evaluation.

As described in the previous chapter, a reduction in the number of searched

positions can be achieved by using endgame databases. They often contain evaluated

41

positions of a certain type. For example, all positions for a number of pieces on the

board are evaluated. Retrograde analysis is used to emulate the searched tree

traversal backwards from the terminal nodes. Parallel implementation of this

preprocessed database proved suitability of it's practical use while solving the games

Awari [32].

5.1.1 Sequential algorithm setup

All implemented algorithms were compared based on the total time elapsed.

At first, algorithms were tested on two player board game. We investigate adversarial

search algorithm on synthetically generated game tree. The game that takes place is a

standard chess board where only black squares are used. Each player has a

configurable number of pieces. Players alternate their moves, each with one piece per

move. Pieces can move one square in any diagonal direction in case square is free

and chess board limits are not violated. The result of the evaluation function defines

leaf value distribution that influences the strength of the ordering heuristics.

Uniformly distributed trees are used here, so that every successor has the same

probability to be the best one. Trees constructed in this way provide a good

approximation for real life situations and are usually referred to as synthetic trees,

frequently used in the literature [51]. Multiple measurements were taken with a

different combination of parameters like number of pieces and search depth.

Based on the division of the tree search into the three phases described earlier,

we can recognize three possible scenarios. The first is of particular importance, later

referred as the "top", where the search is performed over all of the nodes. For a given

position, using the minimax algorithm a whole tree is generated. The search stops at

a predefined depth where the evaluation function can be used to determine the value

of a position.

We are considering selective and quiescence search phases as separate

scenarios. We assume that those phases of the search are performed separately,

without top phase. We have n nodes at a generated depth d and for those, a selective

or quiescence search is performed. This means that we have to traverse n trees with

42

branching factor b. In a selective search we limit the number of branches examined

by picking the most promising ones. For the purpose of generality, a restrictive

definition to perform a search on the best few moves from each node is provided and

search ends in predefined depth. A quiescence search is performed on all branches

until the branch is no longer stable. This means that the function to evaluate stability

of a position has to be applied to every new successor of a position in the searched

tree. Restriction is defined for a maximal depth of quiescence search.

Benchmarks for a sequential approach were measured using a standard,

depth-first, search-based, minimax algorithm in non recursive implementations with

respect to minimize memory requirements and processing speed. Data structures

used and description of algorithm are described further in the text.

5.1.2 Evaluation function complexity

The evaluation function takes into consideration many aspects of the game. It

is usually created by game experts, evaluates the current position and determines its

minimax value statically. In many board games, including chess, the static function is

constructed as a weighted sum of various factors. An example of game with complex

definition of evaluated factors is chess. According to [47] we can recognize seven

main factors that influence the static value of position: Material, King Safety, Piece

Mobility, Pawn Structure, Space, The Center, Threats. Each of them has a different

complexity to calculate. Material is usually defined as the sum of the values of pieces

for each player on the board. Valuation of material takes into account the number of

pieces on the board. Mobility is defined as the number of legal moves each player

can make with all the pieces on the board. The complexity to calculate this factor is

influenced by the number of pieces on the board and the number of their legal

moves. Board control factor is defined in chess as the number of squares controlled

by each player. A square is controlled by player once it has more pieces attacking it

than the opponent's. Controlled squares in chess carry different weights - those in the

43

middle of the board are fundamental for opening up the game. Of course, examples

of the factors described here have different relevance per game. Mobility is, for

example less important in chess than it is for Othello and board control is a crucial

aspect for Go. From the examples described above it is clear that the complexity in

calculating factors that influence the evaluation function differs per game.

5.1.3 Rules of tested game Fox and Hounds

The second tested implementation is the game Fox and Hounds. The rules of

the game, as described in [48], define that the game is to be played on a standard 8x8

chess board where only the black squares are used. Four hounds are initially placed

on the dark squares at once edge of the board while the fox is placed on any dark

square on the opposite side of the board. Initial positions of pieces are shown on

Figure 9.

Figure 9. Initial position of Fox and Hounds board game [48]

The objective of the fox is to cross the board from its initial position to the

opposite end of board, to the initial position of any hound. The hounds' objective is to

prevent this by moving only diagonally forward while the fox moves are also

allowed backwards. Hounds' moves are like a man and fox like a king in draughts.

No jumping, promotion, or removal of pieces is permitted. Each player has to move

with exactly one piece per turn. There are two types of terminal positions in the

44

game: the first is a victory for hounds when the fox is trapped and it does not have a

legal move. The fox wins by evading the hounds and making its way to one of the

hounds' initial positions.

The game has been proven in [49] to be winning for hounds from an initial

position allowing a choice of any of the four starting positions for the fox. We have

obtained benchmarks for the implementation of Fox and Hounds. Game positions are

represented as positions of all five pieces on the board. Positions on the board are

numbered from the top-left corner starting from first black square as 0 until 31 at the

bottom-right. As shown in Figure 10, a position in this scenario would be represented

as [17,8,5,10,7]. The first number always represents the position of Fox with the

other four numbers marking the positions of the hounds. The second number is the

hound that started at position 0, ..., and the fifth number is hound that started at

position 3. Obviously two pieces cannot occupy the same position at a given time.

Figure 10. Fox and Hounds game representation

The program calculates the minimax value for a given position by performing

a depth-first search based the minimax algorithm in non-recursive form. Algorithm

with same structure and objects is used in case of synthetic game trees. High level

description of algorithm can be represented as:

45

while (!done){

if(level is max or no new move was generated){

decrease level

if (terminal position or level is max) => evaluate_function(position)

else if (level == -1) return results[0];

else {

store minimax value for this node as results[level+1]

}

calculate min or max based on level and stores to results[level]

return_back_to_parent_position

}

}

try_to_generate_new_move(position, movement_history)

if(new move generated){

increase level

}

}

The state of algorithm is maintained in stack called movement_history in

representation of algorithm above. To reduce memory requirements, and by that the

space complexity, the stack contains a numerical representation of piece and chosen

directions on each tree level. Each direction for each piece is represented by a

number. Figure's id is stored on the positions of decimals and direction of it's move

on position of units. With a combination of actual positions (five numbers), it gives a

representation of the actual search state and information how this state can be

achieved from initial position. The memory requirements are to store five numerical

representations of the actual state and one number for each level up to predefined

look-ahead. The look-ahead represents the maximum number of plies max.

Movement back from a position in the tree is represented as negative value of

number used to get into the position. To store the temporary minimax values for each

level, an array results of length of max is used. Once the algorithm reaches a

predefined max level and no terminal position is reached, the evaluation function

evaluate_function is used to determine a minimax value for that node. The function

calculates the number of reachable positions for the fox. It is implemented as a

breadth-first search algorithm. The algorithm requires to store already visited

46

squares. For this purpose a specific array is used.

Similarly to algorithms on artificial trees, several scenarios were tested. The

First one (FnH1) is a basic algorithm that evaluates one initial position. The Second

scenario (FnH2), to simulate quiescence, selective search phase and retrograde

analysis, where as an input n different positions are provided. A third benchmark is

created on a setup where the evaluation function is calculated for n positions. All the

benchmarks are later evaluated and compared with the parallel implementation on

GPU.

5.2 Applying GPU architecture

In this section we evaluate the suitability of the aforementioned algorithms to

be implemented on GPU architecture. We try to identify and evaluate the attributes of

algorithms that would indicate their suitability for acceleration using GPU.

Afterwards, we propose an implementation of a test scenario that is used in both

standard and advanced hardware configurations to retrieve benchmarks and further

be compared with sequential approach.

5.2.1 Investigated attributes

An introduction to GPU programming and a description of the architecture

are presented in Chapter 3. Specifics of the execution model that determine the type

of parallel processing must be taken into account while determining the overall

algorithm suitability. The number of threads that run in parallel on GPU is huge. To

maximise this potential, we have to be able to identify parts of the evaluated

algorithms that can be performed in parallel with respect to specifics of GPU

architecture. Most of the algorithms described above are typically recursive. Their

non-recursive implementations are requiring an extra memory maintenance. Missing

recursion inside kernels also leads to substantial algorithmic overhead.

47

Synchronization defined only within a given work-group is limiting and so we have

to try to identify the parts of the algorithm with the most scope for parallelization.

The sequential parts of algorithms are also limited by system requirements, which

must be be taken into account.

Awareness of the GPU's memory model is very important. Once identifying a

suitable way for parallelism, there are certain restrictions on each kernel that may be

crucial. Restricted local memory space and expensive global memory access define

the boundaries for the data types used in algorithms running in kernels. Since

copying from host is considered expensive, this means that the complexity of

computation in a kernel has to be worth the copying overhead as restrictions on

granularity of kernel programs indicate. Non-coalesced memory access causes

substantial delays and decreases the overall performance. This can also be due to

different execution paths within kernels. Restrictions and recommendations for GPU

architecture must be taken into account in the analysis phase to determine the best-fit

for the algorithm or its part for GPU suitable parallel processing while still benefiting

from its SIMD nature.

5.2.2 Analysis and design of benchmark scenarios

Generation of all possible moves or the next move is the base of game tree

generation. In practice static parallel evaluation was used to generate moves in chess

using special hardware. The idea of generating moves for one position is not suitable

for processing on GPU for several reasons. The number of threads that are initiated is

very low and since the branching factor of chess is 35, only 35 threads would be

needed for that game. A second scenario is that we would generate more moves

(more plies) for more initial positions. This would theoretically occupy enough

threads to fully utilize GPU, but the ratio of data transfer operations to the

complexity of calculations per kernel may not be beneficial. As an input data,

information about all pieces on the board has to be transferred from host to device,

and each kernel generates a subtree for a predefined number of plies and for each

position check if it is legal.

48

Static parallel evaluation

A static evaluation can be performed in parallel on evaluation functions for

different leaf nodes. As described in the overview of sequential algorithms, the

evaluation functions may have different complexity depending on the type of game.

Complexity of evaluation functions usually depends on the number of pieces or the

number of squares on the board. More complex game specific evaluations that detect

patterns of position of pieces on the board are out of scope. For example in [50], the

evaluation function of the game Awari consists of 12 features with different weights

that influence the final function value. All of the features take into account the

number of pits with a special number of seeds. We consider a scenario where the

evaluation function is applied to multiple positions in parallel. Since the input is a

board status and the result is in fact one number per position, data transfer delay

should not harm the overall performance.

Parallel window search

In a parallel window search as described in [42], the total range of values in a

game tree is divided into p (the number of processors) ranges that do not overlap. All

ranges are examined in parallel for the whole tree. If we want to utilize the maximum

number of processors available in GPU it would cause ranges to be very narrow. A

lot of cutoffs would be performed in the early stage of processing, then they would

be idle and have to wait until the others finish. Limited local memory for work-items

also causes problems since it defines a boundary for the number of plies each kernel

is able to examine. Execution paths per kernel differ and non-coalesced access to

memory negatively influences the performance.

Hierarchical node assignment, combined CPU, GPU approach

A method that maps processors into tree structures is not suitable for GPU.

Although we have a lot of processors available, synchronization between them is

restricted to the work-groups level. The type of synchronization required by this

49

approach would be very difficult to maintain within GPU. Synchronization of work-

items on GPU device is restricted due to SIMD architecture. Taking into

consideration an approach that generates nodes to a depth d and then runs all nodes

in parallel suits our architecture very well. So instead of assigning work to kernels by

other kernels, a straight-forward approach is where the host defines independent

SIMD or actually STMD to be processed by the device. A tested scenario generates

nodes in the tree until predefined depth. It must be deep enough to generate an

appropriate number of nodes to run in parallel and utilize the whole potential of the

available GPU. Once the nodes are generated, the parallel part of the evaluation starts

where the minimax algorithm is initiated on GPU per each kernel. A basic version of

minimax is implemented without cutoffs to keep execution paths the same. Due to

memory restrictions, a non-recursive version of minimax as described in the

sequential algorithms section is implemented. Several versions of each algorithm are

tested. and tests are performed for variable values of parameters: the number of

inputs for parallel processing, number of pieces, depth of game tree generated in each

kernel. We refer to this scenario as generate_and_parallel_minimax.

Quiescence and selective search in parallel

To get a comparable scenario with a sequential version of a selective search, a

branching factor in tests are restricted. We compare results from this benchmark,

parallel_selective_search, with results from a sequential selective search. A similar

approach is used in the case of the quiescence search whereby the algorithm

evaluates stability for every generated position. Since the stability function has

similar properties to the evaluation function, its complexity is also one of the

parameters. This scenario is called parallel_quiescence_search and it has all of the

previously mentioned parameters including depth and number of inputs.

Principal variation, young brother wait concept, dynamic tree splitting

The essence of the principal variation splitting algorithm as a representative

method with centralized control indicates a few complications. Splitting the tree into

sequential parts usually produces not too many trees, with different height and

branching factor. This method may not be able to utilize the relatively high number

50

of processors available on GPU. The structure of branches searched in parallel is

irregular and PV in CPU implementation lacks any load balancing between

processors. This algorithm is effective only when the leftmost branch provides good

bounds so cutting off some of the right branches is possible. The synchronization

overhead is large and the speed overhead is usually huge if the tee is not well-

ordered. Due to an insufficient level of parallelism and the irregular structure of

branches examined in parallel, we are not investigating this method further. The

irregularity of branching factor and subtree height would cause a high overhead

because of non-coalesced access to memory. Many of the processors would become

idle too soon while a few may hit the boundary of local memory while examining

large trees. Division of work is not suitable for the SIMD nature of parallel

processing on GPU. Although a similar, more uniform version of this scenario

without pruning has already been tested in generate_and_parallel_minimax.

Peer-to-peer approach, dynamic tree splitting, as the enhanced version of

Young Brother Wait Concept, requires overly complex coordination in synchronizing

work to be carried out at runtime. Data parallelism of GPU is not suitable for this

level of self-load balancing between processors. In other words, processing elements

are scheduled by the device to perform a job and only after all of them finish can

they be reused. This is why it is essential to assign the same job to all the kernels and

to follow the SIMD paradigm of GPU.

5.3 Analysis of empirical results

In this section we present measured benchmarks. Empirical results directly

prove the suitability of a GPU processor to accelerate the described representative

scenarios. Each tested scenario is discussed with respect to its performance and

gained speedup while comparing sequential and parallel implementation. First, we

examine algorithms on synthetic game trees simulating a two player game on a chess

board. Results of measurements are then backed up with benchmarks obtained from

51

an implementation of the game Fox and Hounds. On this application we practically

prove the suitability of adversarial search algorithms for parallel processing with

GPU. The benchmarks disclosed several limitations of GPU usage.

5.3.1 Parallel adversarial search on synthetic trees

A synthetic game tree is created for all scenarios based on the configuration

of the number of pieces per player and look-ahead. Speedup is defined as the ratio

between the time of sequential algorithm running on CPU to the time of parallel

algorithm on GPU running against the same problem.

Table 2. Minimax search on artificial board game on standard hardware setup

with 4 and 8 pieces on the board

Hierarchical node assignment, combined CPU, GPU approach

The first examined scenario is generate_and_parallel_minimax. As

described above, based on one initial position, the algorithm performs a minimax

search on the tree until a predefined depth, after which a minimax value is returned.

Two basic setups are examined for this scenario. In the first we examined a game

with 4 pieces (2 per player). Since each piece can move in 4 diagonal directions, the

maximal branching factor per player move is 8. In the second scenario there are 8

pieces on the board. The first player has 2 and second 6, so this scenario generates

many more possible positions. The algorithm that uses GPU to accelerate its

processing consists of three parts. In the first part, an in-host program algorithm

52

Minimax search Total look-ahead
Total number of pieces 4 8

14 8

CPU (ms) 4067 33167

GPU Standard (ms)
6 2533 2 5473

8 5409 4 8506

6 1.61 2 6.06

8 0.75 4 3.90

Look-ahead
parallel

Speedup factor

generates the game tree up to a predefined depth that is sufficient as an input for the

GPU accelerated parallel part. In the second, the GPU takes over and performs a

minimax algorithm on each of the nodes generated by the first part. Minimax values

for all nodes are then returned and in the third phase the host program finishes the

search and returns a minimax value for each input position.

Table 3. Minimax search on artificial board game on advanced hardware setup

with 4 pieces on the board

Benchmarks measured with a standard hardware setup are shown in Table 2.

Although in a standard hardware setup there are only 256MB memory on GPU, we

were able to gain maximal speedups of 6 in the case of the 8 piece scenario and a

look-ahead of 8. In the first scenario the speedup was only 1.61 but the look-ahead is

14 in proportion to time elapsed. The difference in look-ahead is caused by a

different branching factor and memory requirements to store examined positions. An

advanced setup shows much more interesting results from the perspective of

speedup. We were able to evaluate the game tree up to depth of 20 with a speedup

factor of 35.37 in the case of the first scenario with 4 pieces on the board. The first

part of the algorithm has to produce enough input to fully utilize all processors of the

GPU.

In second setup of the first scenario with 8 pieces on the board, a speedup

factor of 82.91 was achieved with look-ahead of 10. N/A values in Table 4 with

53

Number of pieces: 4 Look-ahead

14 16 18 20

CPU (ms) 4067 53309 647546 8036000

GPU Advanced (ms)
6 2332 4260 11061 N/A

8 3231 5260 17566 N/A

10 9175 21293 45021 227204

6 1.74 12.51 58.54 N/A

8 1.26 10.13 36.86 N/A

10 0.44 2.50 14.38 35.37

Look-ahead
parallel

Speedup factor

benchmarks of advanced hardware setup on scenario with 8 pieces are caused by

memory constraints on the host side or by not having enough data to start parallel

processing on GPU. In the case of the advanced setting it is 1024 inputs and in the

case of standard it is 512. The range of data sizes are chosen in the way that they fit

into GPU's memory at once. In this case there is no need to batch the same execution

and encounter a longer delay caused by the host to device memory transfer. In the

other case, we would have to schedule commands for data transfer and algorithm

execution into the command queue multiple times. N/A values for example in Table 3

are there because of this restriction.

Table 4. Minimax search on artificial board game on advanced hardware setup

with 8 pieces on the board

In tables 2 and 3 there are reported speedups of 0.75 and 0.44. As seen in both

tables with an increasing number of look-ahead, the parallel speedup decreases,

although with the overall look-ahead it increases. This observation proves that GPU

as a SIMD processor can work in a better way with more data and simpler

operations. A parallel look-ahead of 10, leaves only 4 to be executed by host. The

size of the input to be performed in parallel is low and the computation on it is very

complex. The paradigm of SIMD processing defines suitable input in the opposite

way. There is an observable trend in all the results for this scenario towards setup

with a lot of data produced by the host program and a lower number of parallel look-

ahead, with less complex work done on GPU.

Another observation is that with a higher look-ahead for the second part, that

54

Number of pieces: 8 Total look-ahead

8 10

CPU (ms) 33167 2551000

GPU Advanced (ms)
2 2126 N/A

4 3017 30769
6 N/A 70305

2 15.60 N/A

4 10.99 82.91
6 N/A 36.28

Look-ahead
parallel

Speedup factor

should be executed in parallel, memory requirements for GPU increase. With more

branches to examine, the structure of created trees differs further. Some of the

branches, created by legal moves, have more nodes due to board limitations and the

presence other pieces on the board. With more execution paths the application loses

the advantage of fast coalesced memory access as described in Chapter 3 - OpenCL.

Figure 11. Selective search on artificial board game

– standard hardware setup (lower is better)

Selective search in parallel

A second scenario examined is parallel_selective_search. In this scenario we

have a measured speedup factor of the applied selective search on a generated game

tree while selecting only moves that look interesting from a board position

perspective. An input for this scenario marked as Data size defines the number of

positions that should be examined further in this selective manner and the look-ahead

value. In our test case, parameters for the chess board-based game are four pieces -

two per each player. For each position on the chess board, only diagonal moves are

examined. Gathered results on a standard hardware setup for a look-ahead of 6 are

55

2 4 8 16 32
0

5000

10000

15000

20000

25000

CPU
GPU Standard

Input size-number of evaluated positions (thousands)

Av
g.

 ti
m

e
el

ap
se

d
in

 m
ill

is
ec

on
ds

displayed in Figure 11. An average speedup factor of 2.03 was achieved.

The speedup factor of the selective search with an advanced hardware setting

and with the same configuration is displayed in Table 5. The difference in hardware

setups is clearly recognizable and the speed of processing is lower for much bigger

input data sizes. Speedups of 122 while investigating millions of positions shows

suitability of this kind of application for GPU.

Table 5. Selective search on artificial board game

on advanced hardware setup

Quiescence search in parallel

Similar results are achieved in an implementation of

parallel_quiescence_search. With a standard hardware configuration we have gained

a speedup factor of 3.59 as illustrated in Figure 12. The function that checks the

stability of a position performs a measurement on the average distance of pieces

with complexity O(board_size*number_of_pieces). In our case those were four

pieces on a chess board. An evaluation function is applied on every position that is

generated to check its stability. Evaluation of each position causes computational

complexity of parallel search to increase, in case a lot of positions would look

promising. Since a quiescence search has a maximal look-ahead, we limit our

scenario to 6. This boundary was proven to be efficient in the

generate_and_parallel_minimax scenario to balance the complexity of the algorithm

executed in parallel and data complexity. As mentioned earlier, computation of the

evaluation function is itself a suitable candidate for parallel processing. This

suitability is examined further on an implementation of Fox and Hounds.

56

Selective search
Data size

512*128 512*256 512*512 512*1024 512*2048
CPU (ms) 49556 122881 304704 755561 1873532

GPU Advanced (ms) 1424 2308 4166 7079 15389

35 53 73 107 122Speedup factor

 Figure 12. Quiescence search on artificial board game

– standard hardware setup (lower is better)

Benchmarks from a quiescence search performed on an advanced hardware

setup show an almost linear time increase both on CPU and GPU. This linearity is

caused by fewer cutoffs. Evaluation of position is done for every new position in this

scenario to illustrate the stability of parallel processing speedup with respect to the

amount of computation performed per position. As can be seen from Table 6, almost

linear speedups per number of examined positions proves that performing more

complex algorithms on the same set of data is suitable for GPU architecture and can

deliver total speedups in ranges of around 115. As previously mentioned, while

taking advantage of GPU parallelism we have to take into account the number of

inputs that we have and the complexity of an algorithm that should be performed on

top of this data. The overhead of slow copying of data via PCI Express from host to

device has to be balanced against the speed achieved from data parallel execution of

algorithms.

57

2 4 8 16 32
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

CPU
GPU Standard

Av
g.

 ti
m

e
el

ap
se

d
in

 m
ill

is
ec

on
ds

Input size-number of evaluated positions (thousands)

Table 6. Speedup factor of quiescence search on artificial board game

on advanced hardware setup

5.3.2 Benchmarks for tested game Fox and Hounds

Until now, we have presented very positive speedups gained on

implementations of parallel algorithms on artificial game trees. The theoretical value

of results shown above is described next, backed up by examining the same types of

algorithms on a practical example, such as Fox and Hounds. Tested scenarios for this

game prove that good speedups can be achieved also in practice. Benchmarks for the

minimax game tree search for one position along with selective and quiescence

searches are presented. In addition, measurements for static parallel evaluation are

discussed in the case of the evaluation function for the game. In the next part, we

present gathered empirical results.

Hierarchical node assignment, combined CPU, GPU approach

Interesting speedups were measured on scenario, with one input position, for

the algorithm before described as FnH1. As displayed in Table 7, reported results

ranging from 0.02 to 64.47 were seen. There are huge differences in speedups with

each new ply. A speedup 0.2 of setup with a look-ahead of 8 where two are

performed in parallel jump to a speedup factor of 8.2 with look-ahead of 10. This

increase is caused by the CPU speed. In the first case 6 out of 8 are computed on the

CPU. The CPU speed computes, on average, 14815 in 81.44 milliseconds based on

the algorithm's log. The speedup drops with the increasing parallel look-ahead for a

look-ahead of 8. With increasing parallel look-ahead, the amount of inputs decreases

and that has negative effect on the speedup. This indicates that the number of inputs

generated by the CPU is insufficient for the GPU. The overhead of copying the data

58

Quiescence search Data size
512*128 512*256 512*512 512*1024 512*2048 512*4096

CPU (ms) 79963 167520 350950 735230 1540286 3226856

GPU Advanced (ms) 1335 2149 3728 7450 14284 28108

60 78 94 99 108 115Speedup factor

is not compensated by the speedup factor of calculating minimax value for trees with

a look-ahead of 2 to evaluate that position. The CPU performs better in such a case.

In the setup with a speedup factor of 8.2, 299117 positions are created by the CPU.

Such a range of data is suitable for standard hardware configurations to deliver the

best results. With an increasing number of look-ahead in parallel and the same total

look-ahead, the performance speedup decreases since less data is provided to the

GPU while more complex computation is expected. From the same table, we can also

see that those ranges of data are not suitable for an advanced hardware setup. Since

the number of board positions generated by the CPU with a look-ahead of 6 is low,

no speedup is gained for a look-ahead of 10. Interesting values are in the range of

look-ahead 14 and 16. Speedups of 49.72 and 64.47 are significant.

Table 7. Speedup factor of game Fox and Hounds scenario FnH1

Static parallel evaluation

As discussed earlier, static parallel evaluation was used to speed up the

evaluation function of chess positions. We examine the possible acceleration of

speedup in the case of the evaluation function for Fox and Hounds. The evaluation

function in this case searches for the given state of the board all legally accessible

fields for fox. The implementation uses a BFS-based algorithm that visits all

neighboring squares. Memory requirements are determined by an array to store

previously visited squares and a storage for the evaluated position so the id of field

59

Total look-ahead

8 10 12 14 16

GPU Standard (ms)
2 0.20 8.20 N/A N/A N/A
4 0.17 3.05 3.64 N/A N/A
6 0.05 0.95 2.97 N/A N/A

GPU Advanced (ms)

4 0.03 0.56 13.63 46.19 N/A
6 0.03 0.61 14.68 49.72 64.47
8 N/A 0.18 2.95 42.13 62.54
10 N/A N/A 0.28 3.41 51.25

Fox and Hounds (FnH1)
speedup factors

Look-ahead
parallel

for each piece on the board. Evaluated positions for pieces on the board were

generated randomly.

 Figure 13. Evaluation function for Fox and Hounds

 Comparison of CPU and standard GPU (lower is better)

Results for a standard hardware setup are displayed in Figure 13. Due to the

high number of input positions and suitable complexity of algorithm, significant

speedups were gained. Maximal acceleration is 10.95 in case of the largest data set.

On advanced hardware we tested the evaluation static on data sets that were eight

times larger. Results show speedups of 69.01. The data parallel nature of these kinds

of sub-algorithms for solving adversarial search problems are very well suited for

GPU architecture. Speedups of GPU implementation show an increasing trend with

the amount of data evaluated. That is caused by higher utilization of parallel

processors on GPU.

60

1 2 4
0

5000
10000
15000
20000
25000
30000
35000
40000

CPU
GPU Standard

Input size - number of evaluated positions (millions)

Av
g.

 ti
m

e
el

ap
se

d
in

 m
ill

is
ec

on
ds

Figure 14. Selective search for Fox and Hounds

 Comparison of CPU and GPU (lower is better)

Selective and quiescence search in parallel

Benchmarks for the implementation of selective and quiescence search for

Fox and Hounds shows similar results. The memory requirements for both in both

cases are restrictive on the size of look-ahead that we can achieve. To display a

representative selection of benchmarks, scenarios were tested with a look-ahead of 4.

The average speedup for a selective search is displayed in Figure 14 - for a standard

GPU configuration this is 4.13. In the case of synthetic game trees, the average

speedup obtained was only 2.3. One of the reasons for this increase is the complexity

of the evaluation function. In the case of synthetic trees, the function takes into

account the position of each piece and calculates distances between them. Fox and

hounds evaluates the whole board with respect to positions of all the pieces on it.

Additional memory usage and access for this purpose causes the CPU to be slower in

computation of the value. Memory that has to be used to calculate the evaluation

function is allocated in private memory for each work item. Fast access to local

memory that is executed in parallel increases the speedup. Similar results are

61

0.5 1 2 4 8 16
0

5000

10000

15000

20000

25000

30000

CPU
GPU Standard
GPU Advanced

Av
g.

 ti
m

e
el

ap
se

d
in

 m
ill

is
ec

on
ds

Input size-number of evaluated positions (thousands)

presented for a quiescence search in Figure 15.

Figure 15. Quiescence search for Fox and Hounds

Comparison of CPU and GPU (lower is better)

Results of implemented scenarios for Fox and Hounds proved the suitability

of GPU accelerated algorithms in the domain of adversarial search algorithms. High

speedups were gained on synthetic game trees scenarios with a higher number of

pieces on the board as well as in cases with a high look-ahead of around 20.

Acceleration using GPU can be used in multiple ways. On the top levels of a tree, in

combination with CPU as described in a generate_and_parallel_minimax scenario or

in further stages to perform quiescence and selective search. Parallel static evaluation

of the evaluation function was proven to deliver very promising results and can help

to accelerate overall performance of more complex algorithms in this field.

5.4 Summary

Empirical results that we have presented in previous section prove suitability

of GPU based acceleration in the field of adversarial search. Results showed

significant speedups in all tested scenarios. Major differences in hardware

62

0.5 1 2 4 8 16
0

10000

20000

30000

40000

50000

60000

CPU
GPU Standard
GPU Advanced

Av
g.

 ti
m

e
el

ap
se

d
in

 m
ill

is
ec

on
ds

Input size-number of evaluated positions (thousands)

specification of used GPUs are reflected in overall results. With standard hardware

setup we achieved speedups factor of 6.06 in first tested scenario for 8 pieces on the

board. Advanced setup reached speedup factor of 58.54 with look-ahead of 18. Very

positive results achieved on artificial trees are supported by benchmarks of

representative game Fox and Hounds where speedups of 10.01 and 64.47 are

reached. First scenario can be described also as combined computational effort by

CPU and GPU. Benchmarks show for lower look-ahead values significantly better

CPU performance. Searches to depth of 8 in the trees with low branching factor does

not provide enough inputs for GPU to take advantage of their parallel execution. The

reason is already mentioned limiting factor in speed of data transfer between host and

GPU device. This delay must be balanced by executing sufficiently large number of

parallel processes. Once this limit is reached we were able to achieve significant

speedups for this scenario.

While moving towards larger look-ahead values, we have observed

increasing speedup for cases where look-ahead parallel value was lower. Better

results for less workload in parallel on larger input data set can be rationalized by

greater divergence in execution paths. Additional experiment was created to support

this theory where selective search scenario was executed first with randomly

generated positions of pieces and then with all the positions being the same. Since

the order of move generation is predefined. In second setup accesses to memory were

coalesced. In first, number of moves concurrently examined per position differs due

to difference number of legal moves(board's boundary, other pieces). Average

speedup was 4.38 for coalesced access on standard hardware setup. This shows one

of the possible improvements that can be investigated further since average speedup

factor of selective search was only 2.03. In case of advanced hardware setting, where

huge amounts of data were examined in parallel, top speedup is 122. Amount and

complexity of computations that CPU has to do in case of quiescence search can be

enormous for this big data set. Speedup increased linearly with number of inputs

reaching to acceleration factor of 115 on tested benchmarks.

Presented speedups on representative adversarial search algorithms proved fit

63

for GPU acceleration in this domain. However, we have to keep in mind setups

where CPU showed better results and adjust usage of resources to the specific

requirements and properties of implemented problem. Merits and restrictions of both

CPU and GPU has to be taken into account and combination of their use balanced to

push performance limitations of specific application further.

64

Conclusion

Increasing need for processing power in many fields motivates to examine

new technologies and different approaches to achieve it. GPU as a resource, that is

no longer used only for displaying graphics shows promising possibilities to use. It

represents widely accessible and cheap resource with enormous computational

power. The power comes from its specific architecture supporting highly parallel

computations. However, exploiting its full potential can be difficult.

It requires being acquainted with the differences in architecture and programming for

CPU and GPU architectures. Only then we are able to optimally utilize both and

more importantly, to choose the best architecture for the problem at hand.

We presented problems, limitations and comparison of each technology to provide a

better understanding of the behaviour of AI algorithms on massively parallel

architectures. OpenCL, an open standard for computing on heterogeneous platforms,

served as an interface to perform the programming of GPU. Ability to uniformly

access both platforms and combine their advantages allows us to improve

performance of applications in many fields. GPUs with their extensive parallelism

allow allow programmers to achieve impressive speedup factors.

The main focus in the described domain of adversarial search is on games. Games, in

general, are of special interest since their definition is usually very simple, but

solving them completely presents significant challenges and needs serious

computational power. Complexity of the problems grows exponentially with the level

of detail we are examining. Different algorithms were created over time, using

sequential and parallel approaches to examine game trees. We have researched

available algorithms nowadays and analyzed their fit for acceleration on GPUs. We

applied theoretical knowledge about GPU architecture and OpenCL framework to

provide implementation of selected adversarial search algorithms chosen in analysis

phase. Tested scenarios covered different states of game tree evaluation.

All nodes at the top of the searched tree are visited on the CPU, however, selective

search phase, in which only the interesting nodes are visited and investigated further,

initiated at a certain depth and is run on the GPU. The evaluation function in

65

complex sub-problems can be easily parallelized applying the GPU acceleration.

We presented and discussed benchmarks for all the scenarios on multiple setups that

showed both gains and limitations of GPU technology on this type of problems. We

identified scenarios where GPU was more suitable. Discussion and reasoning for it

concluded practical prove. Significant results were achieved on implementation of

game Fox and Hounds. The algorithm used CPU in the initial phase while number of

nodes was low. We used it in combination with GPU accelerated parallel execution

applied once number of nodes is high enough. With look-ahead depth of 16, the

algorithm showed speedup factors of 60 compared to CPU based sequential

algorithm. This particular game showed also downsides and the need to be aware of

technology limitations, where sequential solver running on CPU performed better

than just GPU. Insufficiently large number of inputs for processing on GPU caused

slowdown of the application. Overall, GPU proved to be a very suitable coprocessor

to CPU and using them in cooperation we were able to both reduce time and increase

depth of search significantly.

Implementation of more complex games like chess and go, using combined

performance of both GPU and CPU is still a challenge. We have proved that

algorithms used to solve this kind of problems have suitable granularity to exploit the

level of parallelism offered by the GPU. This thesis can serve as starting point for

further research into applications of this technology in the domain of adversarial

search.

66

Bibliography

[1] Experiment and theory have a partner: Simulation, Arnie Heller, Ann Parker, U.S.

Department of Energy, http://www.eurekalert.org/features/doe/2005-02/dl-

eat021105.php

[2] The Method of the Chess Search Algorithms - Parallelization using Two-

Processor distributed System, Vladan Vučković, FACTA UNIVERSITATIS (NIS),

Ser. Math. Inform. Vol. 22, No. 2 (2007), pp. 175–188

[3] Scalability and Parallelization of Monte-Carlo Tree Search, Bourki A., Chaslot

G., Coulm M., Danjean V., Doghmen H., Herault T., Hoock J.-B., Rimmel A.,

Teytaud F., Teytaud O. et al. The International Conference on Computers and Games

2010, Japon (2010)

[4] GPU accelerated pathfinding, Proceedings of the 23rd ACM

SIGGRAPHEUROGRAPHICS symposium on Graphics hardware (2008) Volume:

65, Issue: 17, Publisher: Eurographics Association, Pages: 65-74, ISSN: 17273471

[5] Classic.Ars: Understanding Moore's Law, Jon Stokes,

http://arstechnica.com/hardware/news/2008/09/moore.ars

[6] Silicon Insider: Welcome to Moore's War ABC News, Michael S. Malone, 27

March 2003, http://abcnews.go.com/Business/story?id=86673&page=1

[7] Software and the Concurrency Revolution, H. Sutter, J. Larus, Queue -

Multiprocessors, Volume 3 Issue 7, September 2005

[8] www.intel.com

[9] The Landscape of Parallel Computing Research: A View from Berkeley, Krste

Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry

Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,

Samuel Webb Williams and Katherine A. Yelick, EECS Department, University of

California, Berkeley, Technical Report No. UCB/EECS-2006-183 December 18,

2006

[10] www.nvidia.com

[11] www.top500.org

[12] Artificial Intelligence: A Modern Approach (2nd Edition), Stuart J.Russell ,

Peter Norvig, Prentice Hall, ISBN: 0137903952, 2003

67

[13] www.nvidia.com

[14] An Introduction to OpenCL, http://www.amd.com

[15] http://www.macresearch.org/opencl

[16] The OpenCL Specification, Editor: Aaftab Munshi, Version: 1.1, Revision: 36,

Khronos OpenCL Working Group

[17] NVIDIA CUDA C, Programming Guide, NVIDIA, Version 3.2 10/22/2010

[18] OpenCL Tutorial with OpenCLTemplate and Cloo, http://www.cmsoft.com.br/

[19] NVIDIA OpenCL Best Practices Guide, NVIDIA, Version 1.0, www.nvidia.com

[20] Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow;

Wilson W. L. Fung, Electrical and Computer Engineering University of British

Columbia

[21] David B. Kirk and Wen-mei Hwu, Programming Massively Parallel Processors:

A Hands-on Approach, February 5, 2010, ISBN 0123814723

[22] NVIDIA Fermi with CUDA and OpenCL,

http://blog.accelereyes.com/blog/2010/05/10/nvidia-fermi-cuda-and-opencl/

[23] Artificial Intelligence: A Modern Approach (2nd Edition), Stuart J.Russell ,

Peter Norvig, Prentice Hall, ISBN: 0137903952, 2003

[24] Minimax Search and Reinforcement Learning for Adversarial Tetris, Maria

Rovatsou, Thesis for Department of Electronic and Computer Engineering Technical

University of Crete

[25] Solving difficult game positions, Jahn-Takeshi Saito. Maastricht, August 2010

[26] Games solved: Now and in the future, Artificial Intelligence, H. Jaap van den

Herik, Jos W.H.M. Uiterwijk, Jack van Rijswijck, Artificial Intelligence 134 (2002)

277–311

[27] V. Allis, Searching for Solutions in Games and Artificial Intelligence. PhD

thesis, Department of Computer Science, University of Limburg, 1994

[28] Hex, Thomas Maarup · University of Southern Denmark, Department of

Mathematics and Computer Science, 2005

[29] Go-Moku Solved by New Search Techniques, Allis, L.V., Huntjes, M.P.H., and

Herik, H.J. van den, 1996, Computational Intelligence, Vol. 12, No. 1

[30] Solving Nine Men's Morris, R. Gasser, 1996, Computational Intelligence, Vol.

12

[31] Checkers is solved, Schaefer, J., Burch, N., Bjornsson, Y., Kishimoto, A.,

Muller, M., Lake, R., Lu, P., and Sutphen, S., 2007, Science, Vol. 317, No. 5844

68

[32] Solving the Game of Awari using Parallel Retrograde Analysis, Romein J. W.,

Bal, H. E. In: IEEE Computer 2003; 36 (10): 26-33.

[33] Solving Kalah, Irving, G., Donkers, H.H.L.M., and Uiterwijk, J.W.H.M. (2000).

ICGA Journal, Vol. 23, No. 3

[34] Solving Connect-4 on Medium Board Sizes, Tromp, J. (2008), ICGA Journal,

Vol. 31, No. 2

[35] Lambda-search in game trees – With application to Go, Thomsen, T., 2000,

International Compuer Games Association Journal

[36] Heuristic Programming in Artificial Intelligence 1: the First Computer

Olympaid, Allen, J. D. (1989), pages 134–135. Ellis Horwood, Chichester, England.

[37] The Principal Continuation and the Killer Heuristic, Selim Akl and Monroe

Newborn, 1977 ACM Annual Conference Proceedings, pp. 466-473. ACM, Seattle,

WA.

[38] Conspiracy Numbers, Jonathan Schaeffer, 1990, Artificial Intelligence, Vol. 43,

No. 1, pp. 67-84. ISSN 0004-3702

[39] Solving Renju, Wágner, J. and Virág, I., (2001), International Computer Games

Association Journal, 24

[40] Large scale parallelization of Alpha-Beta Search: An algorithmic architectural

study with computer chess, F.H.Hsu, Phd. thesis. Carnegie Mellon University,

Pittsburg. USA. (1990)

[41] Advances in computer chess IV., R.M. Hyatt, B.E. Gower, H.L. Nelson, Cray

Blitz, D.F. Beal (Editor), Pergamon press. pp. 8-18

[42] Single-Agent Parallel Window Search, C. Powley, Richard E. Korf, IEEE

Transactions on Pattern Analysis and Machine Intelligence archive, Volume 13 Issue

5, May 1991

[43] Parallel Alpha-beta search on Arachne, R.A. Finkel, J.P. Fishburn, IEEE

International conference on parallel programming; pp. 235-243 (1890)

[44] Parallelism in Alpha-beta search, R.A. Finkel, J.P. Fishburn, Artificial

intelligence Vol. 19 pp. 89-106 (1982)

[45] Game tree search on massively parallel systems, Rainer Feldmann, Thesis,

University of Paderborn, 1993

[46] The Dynamic Tree-Splitting Parallel Search Algorithm, Robert Hyatt (1997).

69

ICCA Journal Vol. 20, No. 1, pp. 3-19.

[47] Chess Programming Part VI: Evaluation Functions, François Dominic Laramée,

http://www.gamedev.net/page/resources/_/reference/programming/artificial-

intelligence/gaming/chess-programming-part-vi-evaluation-functions-r1208

[48] http://en.wikipedia.org/wiki/Fox_games#Fox_and_Hounds

[49] Winning ways for your mathematical play, E.R. Berlekamp, J.H. Conway, and

R.K. Guy. Academic Press, 1982

[50] Ayo, The Awari Player,or How better representation trumps deeper search,

Daoud M., Kharma N., Haidar A, Popoola, J., Dept. of Electr. & Comput. Eng.,

Concordia Univ., Montreal, Que., Canada

[51] Parallel Tree Search on SIMD Machines, Holger Hopp, Peter Sanders,

Proceedings of the Second International Workshop on Parallel Algorithms for

Irregulary Structured Problems, Vol. 980, p. 349-361, 1995.

70

List of Tables

Table 1: Overview of current multicore CPUs by Intel

Table 2: Minimax search on artificial board game on standard hardware setup with 4

and 8 pieces on the board

Table 3: Minimax search on artificial board game on advanced hardware setup with 4

pieces on the board

Table 4: Minimax search on artificial board game on advanced hardware setup with 8

pieces on the board

Table 5: Selective search on artificial board game on advanced hardware setup

Table 6: Speedup factor of quiescence search on artificial board game on advanced

hardware setup

Table 7: Speedup factor of game Fox and Hounds scenario FnH1

71

Attachments

Content of the CD:

1) An electronic copy of the master thesis in folder:

<CD>/gpu_accelerated_adversarial_search.pdf

2) Source code for all tested scenarios is placed in two separate folders, cpu and

gpu. In each of them, appropriate versions of tested scenarios can be found.

Scenarios are divided into folders, each containing make file configured to build

executable from source code. Applications were created and tested in Ubuntu 9.01.

OpenCL needs to be installed on the system and supported graphic card is required.

Details about installation can be found in <CD>/readme.txt

Configuration, important parameters (if applicable):

LOOK_AHEAD – look-ahead value

PIECES_TOTAL – total number of pieces on the board

ITERATIONS, DATA_SIZE – input size

pieces_player – starting index of first piece per player

initialPosition – predefined initial position

List of main source code files:

– cpu

contains sequential algorithms tested on CPU

– fnh1/FoxNHounds-FnH1.c

game Fox and Hounds scenario FnH1

– fnh2_quiescence/FoxNHounds-FnH2-quiescence.c

Quiescence search for Fox and Hounds

– fnh2_selective/FoxNHounds-FnH2-selective.c

Selective search for Fox and Hounds

– fnh3_evaluation_function/FoxNHound-evaluation.c

Evaluation function for Fox and Hounds

– synthetic_board_game_no_recursion/synthetic_board_game.c

 Minimax search on artificial board game

72

– synthetic_board_game_quiescence/synthetic_board_game_quie.c

selective search on artificial board game

– synthetic_board_game_selective/synthetic_board_game_selective.c

quiescence search on artificial board game

– gpu

contains parallel algorithms tested on GPUs

– fnh1/combined.c

Parallel version of game Fox and Hounds scenario FnH1

– fnh2_quiescence/OpenCl-FoxNHounds-quie.c

Parallel version of Quiescence search for Fox and Hounds

– fnh2_selective/OpenCl-FoxNHounds-selective.c

Parallel version of Selective search for Fox and Hounds

– fnh3_evaluation_function/OpenCl-Evaluate_FoxNHounds.c

Parallel version of Evaluation function for Fox and Hounds

– synthetic_board_game_no_recursion/board_combined.c

Parallel version of selective search on artificial board game

– synthetic_board_game_quiescence/board_game_quie.c

Parallel version of quiescence search on artificial board game

– synthetic_board_game_selective/board_game_sel.c

Parallel version of quiescence search on artificial board game

73

	1. Introduction
	 1.1 Graphical processing units in high performance computing
	1.2 Researched domain
	1.3 Outline

	2. CPU architecture evolution, problems, limitations and comparison to GPU
	2.1 Evolution of the CPU over the last 20 years
	2.2 Changes in CPU architecture	
	2.3 Problems influencing performance of CPU based systems
	2.4 Overview of GPU architecture
	
2.5 Summary

	3. OpenCL
	3.1 Platform model
	3.2 Execution model
	3.2.1 NDRange
	3.2.2 Synchronization
	3.2.3 OpenCL execution flow

	3.3 Memory model
	3.3.1 Host to device memory transfer

	3.4 OpenCL C99 structure
	3.5 Recommendations and optimizations
	3.6 Alternatives

	4. Adversarial search

	4.1. Multi-agent environments
	4.2. Games
	4.3 MiniMax algorithm
	4.3.1 Optimizations and heuristics

	4.4. Approaches to solve well known games
	4.4.1 Ultra-weakly, weekly and strongly solved games
	4.4.2 Tree search techniques
	4.4.3 Solved games

	4.4. Parallel approaches on CPU based systems
	4.4.1 Static parallel evaluation
	4.4.2 Tree decomposition

	4.5 Summary
	5. GPU accelerated adversarial search algorithms
	5.1 Testbed description
	5.2 Sequential algorithms
	5.1.1 Sequential algorithm setup
	5.1.2 Evaluation function complexity
	5.1.3 Rules of tested game Fox and Hounds

	5.2 Applying GPU architecture
	5.2.1 Investigated attributes
	5.2.2 Analysis and design of benchmark scenarios

	5.3 Analysis of empirical results
	5.3.1 Parallel adversarial search on synthetic trees
	
5.3.2 Benchmarks for tested game Fox and Hounds

	5.4 Summary

	Conclusion
	Bibliography

	List of Tables
	Attachments

