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1. Introduction 

An increasing demand for ever-greater processing power has been one of the 

greatest  challenges  facing  modern-day  science  and  industry  in  recent  years. 

Computers  are  used  in  computational  science,  allowing  scientists  to  perform  a 

variety of experiments. Currently, these scientists are bound firstly by the processing 

performance  of  the  hardware  available  to  them;  and  consequently  by  budgetary 

constraints  that  may  inhibit  the  desired  evolution  of  the  hardware  model.  The 

computational  challenges  cannot  be  faced  so  easily  with  traditional  laboratory 

approaches.  The  overall  result  of  an  experiment  may be  beyond  the  scope  of  a 

conventional setup due to the complexity of the evaluated elements and executed 

computations. Detailed precision of measurements are difficult to obtain in  common 

laboratory conditions and hence,  computers themselves are effectively becoming the 

new laboratories.

Simulations  optimized  and  broken  down  into  a  huge  amount  of  simpler 

computations put  an enormous load on  computer  systems.  They can fully utilize 

what traditional central processing unit (CPU) based computers have to offer, but 

CPUs organized in clusters are the only alternative for significant performance gains. 

Investments to construct new supercomputers are enormous and therefore access to 

high performance is  limited for common research.  As described in  [1]  a  notable 

example is  represented by microscopic models of the structure of surfaces at  the 

nano-scale,  which  cannot  yet  be  characterized  experimentally  using  available 

imaging  techniques.  Conditions  that  cannot  be  created  in  laboratories  are  also 

simulated  over  different  time scales.  A pretense setup  can  monitor,  for  example, 

each nanosecond of an experiment or the evolution over thousands of years in soil 

water to climate change.

       

In many fields, computer simulations are essential and cannot be replaced by 

experiments. In multiple physical, medical and chemistry disciplines highly complex 

programs are at the  cutting edge of  new discoveries.  The most difficult boundary 

they  struggle  against  is  the  performance  limitation  of  the  available  computer 
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systems. The evolution of performance tuning has reached a new era where graphical 

processing units (GPU), previously used only to process graphics, are now widely 

used to support such problems in a parallel manner. Developments in the GPU world 

now allow easier access to computational resources for a broader range of users by 

creating a more user-friendly interface. 

 1.1   Graphical  processing  units  in  high  performance 
computing

The performance of the central processing unit, which increases by Moore's 

law,  estimates the  upper  boundary  for  high  performance  computing  (HPC). 

Computations  in  science  use  more  sophisticated  algorithms  and  models,  so  the 

demand for better performance from these HPC systems easily outruns Moore's Law. 

The  previous  generation  of  scalable  supercomputers  relied  on  vendor-specific 

systems  using  high-performance,  proprietary  microprocessors,  proprietary 

interconnects and vendor system software. This customized hardware is usually very 

expensive. One of the promising ways to increase processing power is to increase the 

granularity of parallelism in applications. Utilising simultaneous multi-threading can 

exploit thread-level parallelism.  As is discussed in Chapter 2, the CPU itself is not 

designed  to  fully  utilize  the  problems  that  HPC  struggles  with  and  so  new 

technologies must be evaluated.

 

As  mentioned,  up  until  a  few years  ago,  graphical  processing  units  were 

employed for graphics only. Programming on them was very difficult and data had to 

be mapped into textures. Only highly experienced programmers were able to utilize 

their  potential  power.  In  recent  years,  attempts to  unify   access  to  GPU led  to 

proprietary interfaces to access GPUs from the manufacturer NVIDIA. Cuda is the 

first  example  that  provides  high  level  access  for  the  common programmer.  This 

interface revealed its performance for massive, general purpose, parallel computing. 

OpenCL is an open standard for writing programs that execute across heterogeneous 

platforms  including CPU and GPU.  Suitable  cases  for  GPU are  computationally 

intensive tasks, that require high floating point performance on multiple independent 

data  sets.  Data  parallelism  supported  by  GPU  has  its  limitations  and  further 
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investigation is needed to fully utilize GPU's resources across specific domains.

1.2 Researched domain

One of the candidates to examine the suitability of using GPU to accelerate 

algorithms is in Artificial Intelligence (AI). Not a lot of research was initially done in 

applying  GPU  hardware  to  this  field,  while  AI also  faces  a  number  of 

computationally expensive problems. One example is adversarial search or planning 

algorithms. This domain is interesting to research since the problems it faces have a 

simple  definition  although  solutions  are  computationally  very  intensive.  Some 

successful  attempts  to  improve  parallel  path-finding  algorithms  on  CPU  based 

clusters and grids were researched in [2, 3]. Similar research in the field of parallel 

pathfinding [4] took place. The promising results showed the feasibility of applying 

parallel processing to this field. 

Adversarial  search  algorithms,  often  known  as  games  algorithms,  have 

significant importance in game theory. Every multi-agent environment can be viewed 

as economy where agents/players interact in a cooperative or competitive manner. 

The problem in adversarial search is to reach the goal of a player, with respect to the 

behavior of other agents also trying to reach their goals. In adversarial search, agents 

are usually competitive. A basic approach to solve an adversarial search problem is 

the simulation of all  the possible  states that can be reachable and by choosing a 

proper strategy to reach that goal. The number of actions in such economy allowed to 

perform by each agent defines the branching factor and by that, the complexity of the 

searched space. The size of this searched space size then grows exponentially with 

each simulated step. 

With  sequential algorithms, it can be very time consuming to examine the 

game space into levels of depth sufficient to determine the optimal strategies. Many 

current non-parallel CPU based approaches use heuristics to improve performance 

algorithms. The purpose of this thesis is to investigate further possibilities for the use 
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of GPU based technology in adversarial search and to examine the limitations of the 

technology in this  field.  Further  in  this  thesis  we  investigate  currently available 

sequential and parallel algorithms and their implementations. Analysis of researched 

fields provides a broad overview with respect to the specifics of GPU architecture 

and  its  programming  interface.  Identification  of  suitable  approaches  serves  as  a 

starting  point  for  case  studies.  We    prove  that  chosen  algorithms  fit  for  GPU 

processing by implementing analyzed algorithms first on theoretical game scenarios. 

Consequently,  the  results  are  backed  up  by  practical  implementation  on 

representative games. We discuss benchmarks that present speedups with respect to 

the specifics of GPU architecture. An analysis of the results presents speedups and 

recognized drawbacks and limitations. 

1.3 Outline

The purpose of this thesis is to investigate further possibilities for the use of 

GPU based technology in adversarial search and to examine the limitations of the 

technology in this field. 

In  Chapter  2  we  briefly  describe  the  evolution  of  CPU  and  GPU  based 

systems.  This  gives  the  reader  a  better  insight  in  architectural  differences  and 

technological  details.  Recognizing  them  help  to  realize  the  potential  of  this 

technology,  its  strengths  and  its  limitations.  The  basic  differences  enlighten  the 

suitability  for  different  tasks  and  by  that,  to  help  recognize  the  best  usage  on 

algorithms more easily. 

OpenCL as an open standard for programming on heterogeneous platforms is 

presented in Chapter 3. This framework provides an interface to access and use GPU 

capabilities. The technical specification of this framework is essential for the design 

of performable, massively parallel applications using GPU. The basic architecture, 

programming and memory model is described and we concentrate on well known 

limitations  and  recommendations.  These  are  used  as  the  basic  knowledge  in  the 

analysis of approaches from the researched domain. 
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In  Chapter  4  we  provide  a  detailed  presentation  of  key  attributes  of  an 

examined  Artificial  intelligence  domain.  First,  we  introduce  basic  problems  and 

concepts then we describe the standard approaches that are used to tackle them, with 

currently  available  sequential  and  parallel  algorithms  presented.  We  introduce 

theoretical approaches used to solve adversarial games and inspired by successful 

real life applications where speedup was proven, we identify the ones that are mots 

suitable for implementation with GPU acceleration.

In Chapter 5 the parallel nature of  adversarial  search and applicable use of 

GPU power is examined to cut down processing time.  We concentrate on suitable 

tree decomposition, identification and assignment of sub-tasks that will be performed 

in parallel and has to fit the GPU architecture. Communication and synchronization 

issues influencing the performance of algorithms are mainly determined by memory 

architecture.  We present and discuss benchmarks for  several scenarios on multiple 

setups that showed both gains and limitations of GPU technology on this type of 

problems.  The  researched  algorithms  were  tested  on  different  configurations  of 

synthetic  game trees  and the speedup are presented on an implementation of the 

game Fox and Hounds. A comparison of benchmarks obtained from both sequential 

and parallel algorithms is presented. The suitability of GPU to accelerate adversarial 

search algorithms is discussed and illustrated on benchmarks.

In Chapter 6 we conclude the thesis and discuss possible future work.
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2.  CPU  architecture  evolution,  problems,  limitations  and 

comparison to GPU

Problems inhibiting the performance of  CPU are motivating developers to 

look for  other  ways  to  accelerate  their  applications.  GPU emerged as  a  possible 

addition and access to its computational power is easier now than ever before. In this 

chapter we present the major differences between CPU and GPU architectures.  Each 

technology is designed to serve a predefined purpose - CPU to perform control logic 

and GPU to perform huge number of parallel computations, of limited complexity 

very fast. A good understanding of both helps to choose the best possible technology 

with respect  to  their  specifics and to  fully utilize the potential  of the underlying 

hardware.   

2.1 Evolution of the CPU over the last 20 years

Over the last twenty years, the performance of central processing units (CPU) 

based on microprocessors  has  increased while  the price rapidly decreased.  CPUs 

from Intel and AMD were able to perform over one billion floating point operations 

per second (GFLOPS) at a reasonable price for the average user and hundreds of 

GFLOPS  solutions in cluster. Software development also evolved over those years 

to use the power of available resources. With the vision of ever-growing performance 

of  available  hardware,   programmers  were  not  motivated  to  investigate  new 

approaches  in  the  development  of  software  or  alternative  uses  of  the  hardware. 

Moore's law describes a long-term trend in the density of transistors on an integrated 

circuit.  It  states  that  the  density  of  transistors  on  the  circuit  will  approximately 

double every two years.  It  held over the last  50 years  [5].  In recent  years it  has 

proven  to  be  harder  and  harder  to  keep  up  the  exponential  growth  due  to 

manufacturing  issues  and  higher  current  leakage  on  smaller  scales.  The  cost  of 
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developing processes to manufacture these circuits rises perhaps even faster than the 

transistor  count.  Another  important  factor  is  the  manufacturing  cost.  A necessary 

change in architecture introduced processors with multiple cores that are used per 

single chip, but an increase in the number of transistors does not guarantee linear 

growth  in  practical  CPU performance.  In  fact,  a  multi-core  CPU's  speed  doesn't 

greatly  increase  in  many  applications  that  are  not  specifically  designed  and 

implemented with respect to the hardware capabilities. Case studies showed that an 

increase of 45% in the number of transistors on a processor translated to only about a 

10–20%  increase  in  processing  power  [6].  The  majority  of  applications  are 

implemented  as  sequential  programs,  thus  delivering  limited  performance by not 

taking advantage of hardware resources. Performance improvement in applications 

running on an ever-growing number of transistors is achieved by changing the nature 

of these applications to become parallel programs. Concurrency revolution [7] is a 

dramatically  escalated  incentive  of  parallel  programs  where  multiple  threads  of 

execution, running at the same time, co-operate to deliver work much faster. Such 

applications  run  on  large  scale  computers  or  computer  clusters  that  are  very 

expensive.  The  necessary  performance  growth  in  many  fields  of  computational 

science requires a  dramatic  increase.  There are many predictions about when the 

continuous  trend  described  in  Moore's  law will  end.  There  are  still  a  few other 

approaches on how to enhance the performance of computing, and one of the most 

promising areas is to take advantage of a larger number of small processors dedicated 

for  specialized  operations  organized  into  one  high-speed,  massively  parallel 

processing  system.  This  is  where  graphic  processing  units(GPU)  emerged  as  a 

promising candidate.

2.2 Changes in CPU architecture

Since the introduction of one of the first modern Pentium microprocessors on 

March 22 1993, the CPU evolved in many ways to try to scale performance and 

match Moore's law. In the first concept of this architecture, a major part of the chip's 

surface area was covered with transistors. Products with code 80501 contained 3.1 
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million transistors that covered 293.92 mm2  [8]. Further improvements came with 

the next generation Pentium II processors presented in 1997, doubling the number of 

transistors to 7.5 million as well as being half the size of it's predecessor. This model 

was designed to cut costs while introducing a larger L1 cache and cheaper and slower 

L2.  Pentium III  in 1999 brought with it a total of 9.5 million transistors over 128 

mm2 and introduced an enriched SSE instruction set to better support and accelerate 

floating point operations. The following generation increased the cache further while 

decreasing  the  size  of  the  transistor,  making  the  instruction  set  richer  while 

introducing hyper-threading technology. Noticeably, the main idea behind increasing 

performance  was  to  make  the  transistors  smaller  and  the  cache  larger  while 

supporting a more complex instruction set. Limitations on size reduction, cache size 

and energy consumption pushed hardware architects into exploring new approaches. 

Hyper-threading as  the  way to create  virtual  processors  and by that  improve the 

parallelism of computations showed possibilities to improve the overall performance. 

Codename: Penryn Bloomfield Gulftown Beckton
Architecture Penryn Nahalem Westmere Nehalem EX 
Socket 775 1366 1366 1367
Cores/Threads 2/2 4/8 6/12 8/16
Hyper-

threading

No Yes Yes Yes

L3 Cache No 8MB 12MB 24MB

Table 1: Overview of current multicore CPUs by Intel 

Further  research into performance enhancements by CPU vendors  such as 

Intel resulted in a multicore solution.  As seen from Table 1, the number of cores 

almost  doubles  with  each  generation.  Such  chips are  out-of-order,  multiple-

instruction issue processors implementing a full x86 instruction set suited to optimize 

the performance of sequential programs. Compared to single core CPUs, cache sizes 

increased and a new L3 cache with a 200GB/s bandwidth and 24MB size was

introduced  in the latest  version of the Nahalem EX architecture.  With 2.3 billion 

transistors, it is the most complex processor produced by Intel. 
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Figure 1:  Architecture of Nahalem EX [8] 

From Figure 1 we can see that the 24 MB L3 cache is divided into eight 

separate blocks of 3 MB. All of these blocks can be used simultaneously for multiple 

cores. In this way the bandwidth between cores and cache is maximized.  From the 

description above it is clear that the development of new CPU architectures leads 

into more extensive parallelism of execution with an increased number of cores. We 

also get a faster, dedicated cache adjusted to provide a higher throughput suited for 

further  generations  of  CPUs.  Of  course  there  are  several  limitations,  which  is 

described further.

On the  other  hand,  the  GPU world  is  based  on a  multi-core  architecture 

designed to achieve the highest possible throughput of parallel programs. They are 

well  suited for single instruction multiple  data  (SIMD).  Thanks to  their  in-order, 

single  instruction  issue  processor,  the  performance  of  the  most  recent  GPUs 

surpasses CPUs' performance by an order of magnitude. While the CPU's current 

peak  performance  is  in  the  tens  of  GFLOPS,  GPU's  performance  is  about  1000 

GFLOPS.  As  mentioned  in [9] the peak  performance  growth  rate  of  CPU 

microprocessors  over  the  last  decade  has  been  relatively  slow,  while  GPU 

performance has grown exponentially. The performance gap started widening around 

2004. CPU annual growth stabilized at around 20% annually, while the GPU keeps 
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scaling up at a rate of 50% of performance per year.

Figure 2. Performance growth over past years [9]

At this rate, the CPU will lose performance 1000 times compared to Moore's 

law until  the year 2016 and observation of declining performance growth can be 

confirmed nowadays. The peak performance of  the fastest CPU processor is 107.55 

GFLOPS, while the NVIDIA Tesla  C2050 performs around 515GFLOPS [10] in 

double  precision  calculations,  and  in  single  precision  performance  around  1.03 

TFLOPS. As we can see from Figure 3, the availability of increasing performance 

changed the approach of building supercomputers and current top supercomputers 

nowadays are based on GPUs.  For example,  Tianhe-1A - NUDT TH MPP, X5670 

2.93Ghz 6C, NVIDIA GPU, FT-1000 8C, currently the fastest supercomputer in the 

world [11] is based on GPU technology and is able to perform 2566 TFLOPS. Third 

in the list is  Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 

GPU  with performance 1271TFLOPS.  These recently constructed supercomputers 

show further investments in gaining performance into combined systems consisting 

of both GPU and CPU technology.  Again from  Figure 3,  the inclusion of  GPU 

power  helps  a  lot  these  days  to  preserve  the  growth  of  performance  of 

supercomputers.  A combination  of  these  technologies  enables  us  to  bridge  the 

insufficiency of two different approaches of handling both instructions and data. 
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Figure 3. Supercomputers' evolution prediction [11]

There are fundamental differences in the designs of the two architectures, the 

main  one  being  that  the  CPU is  designed  to  increase  performance  of  sequential 

applications.  Control  logic  of  CPU  schedules  instructions  to  be  executed  in  an 

optimal manner on all the resources it has. It tries to organize instructions running in 

a  single  thread  to  be  executed  in  parallel  or  even  reschedule  them out  of  their 

sequential  order  while  preserving  the  overall  picture  of  sequential  execution. 

Instructions  and  data  access  latencies  are  reduced  by  using  big  caches.  The 

complexity  of  instructions  and  a  lack  of  parallelism  in  applications  make  the 

presence  of  those  parts  necessary.  Arithmetical  logical  units  (ALU) or  processor 

cores are the parts of the CPU that perform all of the instructions. Usually, in current 

processors, there are 4-16 cores. In comparison, the GPU uses minimalistic control 

logic and cache - the number of cores is 100 times higher, but their instruction set is 

simpler.

Another  very  critical  aspect  while  comparing  performance  is  memory 

bandwidth. In the GPU world it is very important to handle large textures, filtering 

and anti-aliasing. Memory bandwidth is important in nearly every aspect of graphics 
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processing. Designers pushed by the demands of the gaming world are challenged by 

the requirements of an economically strong industry. The number of simple floating 

point operations per video frame is significantly increasing so that the execution of a 

huge number  of  threads  needs  to  be optimized.  The hardware  performs minimal 

control logic of execution for each thread and thus it reduces long latency memory 

access. Current graphic cards, for example the NVIDIA Tesla, has a throughput of 

about 150 gigabytes per second (GB/s) [10], while the peak in CPU models is about 

35GB/s.[8]

2.3 Problems influencing performance of CPU based systems

There are many problems that limit the performance growth of a system. The 

speed of a program is always influenced by the performance of the whole system, not 

just the part where computation is done. For example, important aspects are memory 

and disk access latency. As described in [9] the value of resources changed over the 

years and with them, the view on computer architecture  design.   Several barriers 

were defined from this perspective as a challenge to hardware engineers and software 

developers. These are power, memory, frequency, cost and parallelism.

 

In the past, these barriers in computer architecture were defined differently 

than they are nowadays. Power itself was not a limitation at all, while the density of 

transistors  per  chip  was  an  issue.  Proportionally,  executing  operations  such  as 

multiplication  were  considered  to  be  slow,  while  accessing  memory was  fast.  A 

higher level of of parallelism was achieved by investing in out-of-order execution, 

speculation and branch prediction in sequential programs. The situation changed and 

new boundaries have now been reached, so the aforementioned problems had to be 

redefined.  

      

A memory barrier limits the bandwidth of the channel between the CPU and a 

computer's memory. Increasing the number of cores increases the demanded memory 

bandwidth. The cache itself occupies a fair part o the chip and requires a lot of power 

to manage. Increasing the cache size and bandwidth requires an increase in power 

consumption.  One  of  the  basic  laws  of  physics  states  that  all  electrical  power 
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consumed by a system is eventually radiated as heat. The chip's overall temperature 

and power consumption is limited and depends highly on the  availability and cost of 

cooling technologies.  The power per transistor rises with frequency but decreases 

with  area.  Smaller  transistors  require  less  power  which  can  lead  to  an  increased 

frequency. However, the transistor density also increases, which leads to a problem 

with heat dissipation. By splitting them into multiple units (multiple cores) they can 

be run in parallel at lower frequencies to maintain a similar throughput while saving 

on power consumption. Increasing the frequencies would lead to the power wall, so 

performance  may  be  increased  by  increasing  the  level  of  parallelism.  Recently, 

parallelism has been performed mainly at the instruction level. The instruction level 

parallelism  (ILP)  wall  emerged  with  the  availability  of  enough  discrete  parallel 

instructions for a multi-core chip. The processing of single instruction multiple data 

(SIMD)  instructions  or  vector  parallelism  combined  with  out-of-order  execution 

reached the point where substantial effort (and an increase in transistor count) brings 

only marginal gain. Limiting issues are clock rate, instruction fetch and decode per 

clock  rate,  memory  bandwidth  and  its  locality.  Scaling  the  ILP wall  requires  a 

significant change in the level of parallelism of applications - using SIMD or vector 

instructions.  One  possible  way  to  exploit  the  effect  of  ILP  is  to  increase  the 

granularity of  parallelism in  applications  by simultaneous  multi-threading or  data 

intensive computing. 

All these barriers influence each other and a change in one causes another to 

reach its limits. A significant additional factor is cost. For example, increasing the 

level of abstraction of developed applications would enhance parallelism but increase 

the number of man-days spent in design and development of programs. From the 

perspective of development of new hardware, costs can be categorized as design and 

manufacturing  costs.  Power  limitations  can  also  be  addressed  by  increasing  the 

number of much slower cores, rather than their frequency. One of the possible ways 

is  in  the  use  of  multiple  heterogeneous  cores,  specialized  on  a  smaller  set  of 

instructions to improve power and performance.
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The  limitations  presented  create  a  significant  shift  towards  a  heavily 

multicore architecture. An increase in hardware support for parallel computing and 

its specialization is emerging as a possible gain for performance. An example may be 

a cooperation between a core that is designed primarily to handle control flow and 

branching logic, and different hardware accelerators suitable to accomplish massive 

SIMD operations. Promising candidates to accelerate data intensive computing are 

graphic  cards.  The  newest  architecture  from  NVIDIA is  called  Fermi,  and   an 

introduction to its specification and capabilities follows.

2.4 Overview of GPU architecture

In the past, NVIDIA presented tree generations of graphic card designs. The 

breakthrough was the G80-based GeForce 8800 introduced in November 2006.  It 

substituted the separate vertex and pixel processors with a unified one programmable 

in  the  C  language.  This  allowed  a  broader  range  of  applications.  The  peak 

performance of 681 million transistors was about 500 GFLOPS compared with the 

peak of 20 GFLOPS for CPU at that time. It supports a single instruction multiple 

thread  (SIMT)  execution  model  and  inter-thread  communication  using  shared 

memory and synchronization barriers. The second generation of this architecture was 

GT200 first introduced in 2008 as GeForce GTX 280. Compared with the previous 

generation it consists of 1.5 billion transistors and delivers over 900 GFLOPS. The 

biggest improvement besides speed is the addition of IEEE 754R double precision 

floating point arithmetic and hardware memory access coalescing.  The amount of 

memory doubled and the bus width of the memory to the GPU interface was also 

increased. The number of simultaneously processed threads increased three-fold (to 

30,000).
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Figure 4. NVIDIA GPU architecture overview [10] 

         As shown in  Figure  4.  the architecture  of  GT200 doubled  most  of  the  

parameters  over  the  previous  generation.  The   architecture  introduces  cache 

hierarchy, error correction code (ECC) protection, faster double precision floating 

point  arithmetic,  context  switching,  PTX  2.0  instruction  set  and  faster  atomic 

operations.  

In Fermi architecture, a chip consists of 3 billion transistors, 512 streaming 

processor (SP) or Cuda cores, which are grouped into blocks of 32 per streaming 

multiprocessor  (SM).  Each  block  of  32  cores  has  64KB  memory,  that  can  be 

configured as shared memory or L1 cache in ratio 1:2 or 2:1. The L2 cache is a 

768KB memory shared between the blocks. The GPU supports up to 6GB GDDR5 

memory.  In each SM there are two warp  schedulers that  simultaneously dispatch 

instructions from two independent warps.  GPU is connected to CPU using a PCI-

Express  interface.  Switching  between  applications  is  supported  by  GigaThread 

hardware scheduler. It is 20 times faster than any previous GPU and it can manage 

all  1536 simultaneously active threads.

Each  of  the  16  streaming  multiprocessors  that  execute  programs  and 
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manipulate data contains 32 SP as well as 16 load/store units, four special function 

units (SFUs), a 64KB block of high speed on-chip memory that can be used either to 

cache data for individual threads and/or to share data among several threads; and an

interface to the L2 cache shared among all sixteen SM's. Each core can perform one 

single precision fused multiply-add(FMA) operation per clock cycle and one double 

precision operation per 2 cycles.  The IEEE 754-2008 floating-point standard that 

Fermi  supports  includes  all  four  rounding  modes  and  subnormal  numbers.  FMA 

support increased the accuracy of several numeric operations. The SFU can handle 

four special  operations such as sin,  cos,  exp and reciprocal per clock cycle.      

The new parallel thread execution (PTX) 2.0 instruction set supports greater 

accuracy, performance and programmability. It implements a unified address space 

for  all  three  memory  spaces,  thread  local,  block  shared  and  global  space  for 

load/store instructions. Addressing is done in a 64-bit manner.

   

Compared to the previous generation of GPUs, Fermi comes out on top. For 

example,  in  the implementation  of  radixsort,  Fermi was 4.3 times faster  than  its 

predecessor.  In  double  precision  applications  like  matrix  multiplication  and  tri-

diagonal  solver,  the  performance  increased  4.2  times  [11].  Physical  algorithms 

including fluid simulations delivered a 2.7 times speedup.  

2.5 Summary

All  the  described  differences  show  specific  fields  for  the  use  for  each 

technology. The resources that are available have to be used for what they are best 

suited. That is, the GPU for parallel processing of computationally expensive parts of 

applications,  with the CPU running their control logic.  A combination of the two 

different approaches delivers higher performance and makes it possible to execute 

numerically expensive applications. An application requiring huge processing power 

that  can  be  achieved  only  by  running  it  on  large  processor  clusters  limits  the 

customer base that can afford it. The multi-core architecture of GPU makes resources 

for parallel processing feasible at lower costs and higher availability for the market.  

The size and price of a cluster itself is both a demotivating and limiting factor for the 
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development  and  use  of  parallel  applications.  An  overview  of  the  framework 

OpenCL that  allows  us  to  access  and  use  the  computational  power  of  GPU  is 

presented in the next chapter. A general introduction into the architecture, execution 

and memory model allow a closer look into the characteristics of this technique. An 

important part of Chapter 3 exhibits well known recommendations and limitations. 
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3. OpenCL 

OpenCL (OPEN Computing Language) is an open standard based on the C 

programming  language  to  unify  general-purpose  computations  on  heterogeneous 

systems such as multi-core CPUs and the latest GPUs. The language specification is 

C-based across the platform programming interface, as a subset of ISO C99 with 

language  extensions  and  a  numerical  rounding  accuracy  for  all  floating  point 

operations with a defined maximum error based on IEEE 754. A brief overview of 

the platform, execution and programming model follows. It determines the way how 

resources of underlying hardware are used. Knowledge of them is crucial to be able 

identify their fit on researched algorithms and to create performable application.

3.1 Platform model

OpenCL provides a hardware abstraction layer  over  diverse computational 

resources. The host connects to one or more OpenCL devices . A device is divided 

into one or more compute units (CUs) which are further divided into one or more 

processing elements (PE). The devices needs to be queried, selected and initialized to 

use  for  further  usage. Computations  on  a  device  occur  within  the  processing 

elements. An application submits commands from the host to execute computations 

on the processing elements within a device. Execution can be performed in a single 

stream of instructions as SIMD units (execute in lock step with a single stream of 

instructions) or as SPMD units (each PE maintains its own program counter). All the 

devices that should be used in such an execution must be recognized, registered and 

assigned  into  one  compute  context.  Each  device  must  be  associated  with  the 

command queue that allows the host application to assign commands to it. OpenCL 

takes  care  of  compiling  commands  into  the  devices'  specific  instruction  set. 

Recognition of heterogeneous devices and their characteristics is performed during 

execution time so, for example, the most suitable device can be picked at runtime 

based on input data or other parameters. The execution model about how to identify, 
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assign and manage the devices follows. Illustration of platform model is displayed in 

Figure 5.

Figure 5. Platform model [14]

3.2 Execution model

A programmer has flexibility in the type of compute kernel that is  used.  

Compute kernels can be thought of either as data-parallel, which is well-matched to 

the architecture of GPUs, or task-parallel, which is better suited to the architecture of 

CPUs. A compute kernel is the basic unit of executable code and can be thought of as 

a  C  function.  Communication  between  the  host  application  and  the  devices  is 

managed  via  command  queues.  Each  device  must  have  an  associated  command 

queue within this context. Kernels are distributed to the processing elements of each 

device  by  commands.  A  command  queue  associated  with  a  device  schedules 

commands  on  its  processing  elements  from the  host  application.  Commands  are 

distinguished as memory commands and kernel execution. Execution of kernels can 

proceed either in-order or out-of-order depending on the parameters passed to the 

system when queuing the kernel for its execution.  Events are provided with each 

execution  so  that  the  developer  can  check  on  the  status  of  outstanding  kernel 

execution requests and other runtime requests. Details on exact API commands on 

how to create context, query devices and assign queues to them can be found in [16].
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3.2.1 NDRange

 

A unit of work is called a work-item. Each work-item can be identified  by it's 

specific global id. Work items are grouped into a work-group and each have their 

specific  work-group IDs.  Each work item can be identified within a  work-group 

based on local ID. A combination of the local ID and a work-group ID uniquely 

represents each created kernel instance. Work-group items are executed concurrently 

on the compute unit associated with this group. On GPU, each work item runs in its  

own hardware managed lightweight threads. The entire index space of work items is 

called NDRange. It is N dimensional index space defining computation space, where 

N is one, two or three. An array of length N defines the number of items in each 

dimension.  

According to [15] the recommended sizes of work-group size are powers of 

two when the possible and maximum local work-group size is less then or equals to 

512.  

3.2.2 Synchronization

Synchronization  can  be  performed  on  multiple  levels.  In  the  case  of  one 

device and multiple kernels that are scheduled in its queue, synchronization depends 

on the chosen type of execution. When in-order execution is selected, commands are 

launched and finished in the same order to how they were added into the queue. In 

this case, no explicit synchronization is needed. Out-of-order execution, on the other 

hand, starts execution in the order they were added but it is non-blocking, so the 

second command is initiated immediately without waiting for the first command to 

complete. There is no guarantee that the result of the first command is available at 

the time the following command starts and in fact. The synchronization has to be 

done  explicitly  by  using  synchronization  commands.  These  commands  and  the 

execution of the kernel and memory commands generate events. Such events can be 

used  for  this  explicit  synchronization  between  the  commands,  the  host  and  the 

device. This includes the case when more devices are used, since each of them has its 
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own command queue within the context. 

    A second type of synchronization is on a work-item level. As id described 

later, synchronization of memory between work-items of a given work-group can be 

done via shared memory. Since OpenCL uses relaxed memory consistency, memory 

visible to different work-items or commands may be different.   Except at a barrier or 

other  synchronization point.  OpenCL provides  a work-group barrier  function that 

ensures all the work-items in work-group must reach a barrier before all of them can 

continue in an execution. With this barrier it is important to realize that the execution 

flow can be different per work-item. Since all work-items must reach a barrier, there 

must  be  careful  usage  of  it  in  combination  with  if,  while,  do,  for and  switch 

instructions. In the case that a barrier is not reachable by even a single work-item, the 

execution never finishes. 

3.2.3 OpenCL execution flow

Here is a brief summary of the steps of the execution. A  host application 

identifies devices,  queries  their  properties and picks the ones that fit  the specific 

needs of application. It creates computational contexts for each chosen device. Each 

context  must  be  associated  with  a  command  queue  via  that  kernel  so  that  the 

executions can be scheduled. Based on the C implementation provided, a program 

object must be created. A program is created from a source code string or binary. A 

program  object  encapsulates  this  list  of  devices,  the  latest  successfully  built 

executable for each device and a list of kernel objects. The kernel contains specific 

kernel functions in a program and argument values. The core of the whole execution 

starts by defining the order of commands to be passed to queues created beforehand. 

Data has to be written into a device using the appropriate queue before executing the 

kernel. Definition of dimensions have to be passed into the kernel as it has to be 

initialized on NDRange index space. Reading of results is the last stage of this simple 

execution model. All operations passed into the command queue can be performed in 

an asynchronous/non-blocking or synchronous/blocking manner. This is defined as a 
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parameter  passed  to  each  function.  For  more  details  about  the  above  mentioned 

functions and their parameters refer to [16].     

3.3 Memory model

As displayed in Figure 6, a memory model in OpenCL consists of a multi-

level hierarchy that differentiates in size, speed, location and type of access for the 

host and processing elements on a device. There are four memory spaces defined: 

private, local, constant and global. From the host, the only accessible memory are 

global and constant for both read and write operations. On a device, private memory 

is assigned and visible to every individual processing element. This memory space is 

dedicated to it and no other PE can access it. On the other hand, local memory is 

shared for all the processing elements within one processing unit and may be used 

for synchronization and exchange of information between them. The size of private 

and  local  memory  is  relatively  small  but  speed  of  access  is  high.  A processing 

element from one compute unit can not access the local memory of other unit. Global 

memory is accessible from all processing elements on a device. The size of it is much 

bigger than local and private memory, but speed of access is significantly slower. 

Constant and global memory are filled from the host. 

3.3.1 Host to device memory transfer

This can be done by explicitly copying data or by mapping and unmapping 

regions of a memory object. As described above, commands to read or write memory 

objects from or to a device can be queued in a command queue, in both blocking or 

non-blocking  ways.  Mapping  methods  allows  to  map  memory  from  hosts  into 

devices' address spaces. One of the most important  measures of performance for a 

system  is  memory  bandwidth.  Data  transfer  between  a  host  and  a  device  is 

considered to be slow compared to transfers on a device alone [17]. Such transfers 

should be minimized and the use of intermediate structures created and destroyed on 

a  device is preferable.  
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Figure 6. OpenCL memory model [18]

3.4 OpenCL C99 structure

There are a few differences between regular C99 and OpenCL C99, which 

was designed to fully support GPU architecture and conveniently control parallel 

execution. Some of the differences define direct limitations of the framework. Based 

on [16, 18], an overview of major differences are presented to give the reader a better 

insight into the capabilities and limitations of this framework.    

Vital  OpenCL specific  extensions include the  kernel or  __kernel identifier 

that specifies what functions can be called by the host application via the OpenCL 

API. A prefix of “__” is not compulsory and may be ignored in all the identifiers 

mentioned here.  In  the  declaration  of  variables,  this  is  a  keyword  to  distinguish 

address  space,  where  this  variable  should  be  created  and must  be  declared.  The 

region of memory that is used to allocate the object can be identified by the global,  

23



local, constant and private keywords. If this identification is missing, generic address 

space is used.

 

As described above, each work-item can be identified uniquely in two ways; 

by its global ID or combination of group ID and local ID. Specific kernel instances 

must identify the  part of the data array that it  handles based on those attributes.  

Unique identification within all work-items globally per each dimension (1,2 or 3) 

can  be  queried  using  get_global_id(dimension).  The  function 

get_global_size(dimension) returns the number of work-items specified to execute 

the kernel. Similar identification can be queried by get_local_size and  get_local_id 

for work-items within a work-group. The number of workg-roups and work-group ID 

for a specific work-item is available via  get_num_groups and  get_group_id.  Using 

these functions, it is possible within each kernel instance uniquely to recognize its 

input and output data structures in parallel execution. 

Significant importance have built-in vector types, especially if using the GPU 

as a device, vector types are basic structures supported by the hardware. Build-in 

mathematical  and  common  functions  with  hardware  support  may  increase 

performance  of  whole  processing.  For  example,  multiply-add  (mad)  or  native_ 

geometric functions, cross and dot products for vector manipulation. Such functions 

may map to one or more native instructions and have typically better performance. 

An important note here is that the accuracy of  native_ functions is implementation 

defined.

Limitations  of  current  OpenCL  1.1  C99  implementations  compared  to 

standard C99 include the absence of recursion support, dynamic memory allocation, 

pointers  to  functions,  variable  length  arrays,  bit-fields,  and a  lack  of  support  for 

functions included in standard C99 headers. A list of them can be found in [16]. As 

discussed in [18], random number generators that are not included cause difficulties 

to implement learning and evolutionary algorithms that are by nature parallel and can 

benefit from parallel processing. 

Referencing  a  programming  model,  a  program to  execute  on  a  device  is 

compiled  at  runtime.  A  program  object  can  be  created  using 
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clCreateProgramWithSource() or  clCreateProgramWithBinary()  so the definition of 

a program can be changed programatically in the host. This allow wider possibilities 

on how to manage the application logic. 

3.5 Recommendations and optimizations

A  best  practices  guide  by  NVIDIA  in  [19]  describes  some  of  the 

recommendations and optimizations for development using OpenCL on NVIDIA's 

devices. A subset of the most important are presented here to give the reader a clearer 

picture about use of OpenCL on GPU devices.  The key issue is  to gain the best 

performance from a GPU device via its support of a lightweight thread model. The 

application must be suitably adapted to fit into this architecture and the user should 

concentrate  mainly on exploiting the level  of  parallelism in code with respect  to 

underlying resources. A theoretical maximum speedup factor of program is defined 

by  Amdahl's  law.  Since  the  number  of  processors  that  are  available  is  high,  a 

proportion of  the program running in parallel must be increased as much as possible 

to gain significant speedup. 

In the case of GPU, a PCI interface that usually connects host and device has 

a  limiting bandwidth. To achieve maximum application performance, it is essential 

to minimize data transfer latency and therefore data transfers should be limited. The 

price paid for the amount of data transferred has to be justified by the complexity of 

computations on the device. Data should be kept on a device as long as possible and 

sometimes it is worth executing a command that is slower on the device than on the 

host without data movement to achieve an overall better performance. 

Optimization of memory access by the kernel is crucial in GPU devices, as 

described in [19, 21] to fully utilize texture efficiency and coalesced data transfers. 

GPU memory access  patterns  enable  the  hardware  to  accelerate  data  access  and 

perform read and write operations on multiple data structures in one operation. One 

of the most important characteristics of  GPU architecture as a main architecture of 
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OpenCL-enabled devices from NVIDIA, is coalesced global memory access.  The 

architecture  bundles  several  threads  from one workgroup for  execution  and each 

workgroup  is  partitioned  into  warps,  each  of  which  usually  contains  32  threads 

(G80/GT200). The hardware executes an instruction for all threads in the same warp 

before moving to another.  As described in [21], the advantage is when all threads in 

a warp execute the same instruction at any given point in time. When all threads in a 

warp execute a load or store instruction, the hardware detects whether the global 

memory locations are consecutive. If  this is the case, the hardware combines all the 

consecutive  accesses  into  a  single  request  to  DRAMs.  Once  a  control  flow  is 

different for items within a warp, multiple passes are required to satisfy divergent 

memory requirements. Those passes are sequential so it increases the overall time of 

execution. The effects of misaligned access or stride access are displayed in [19]. The 

access to global memory is much slower than local memory, so for synchronization 

purposes it is recommended to use local memory instead of global.

Usage of instructions with high throughput is  preferable.  The precision of 

computations should be adjusted to the needs of the application. Double precision 

floating point operations are slower and so single precision should be used instead 

the  former  is  not  necessary.  Built-in  native  mathematical  functions  are  mapped 

directly to the hardware level and are faster at the cost of lower precision. 

All  the  above  mentioned  characteristics  significantly  influence  the 

performance  of  applications,  with  respect  to  specifics  of  NVIDIA's  GPU 

architecture. Since the main purpose of this thesis is to evaluate possible acceleration 

of adversarial search algorithms using GPU, those specifics play an important role in 

the use cases presented in Chapter 5. All the specifics of GPU architecture are fully 

accessible using OpenCL. Besides the standard, other frameworks, some of which 

are described briefly next,   were created to access computational performance of 

GPU devices.  
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3.6 Alternatives

Some alternatives to OpenCL are available. One of them is a vendor specific 

solution  from  NVIDIA.  It  is  called  Cuda  SDK  and  it  supports  GPU-specific 

characteristics and optimizations from this vendor very well. Compared to OpenCL, 

the architecture and memory model are very similar. For most of the fundamental 

characteristics there exists a one-to-one mapping. The work item is represented in 

Cuda as a thread, a work-group is called a thread block and NDRange is called a 

grid. The main difference is that OpenCL as a standard is designed to support code 

portability across devices produced by different vendors, thus allowing for greater 

hardware diversity. Device management, kernel compilation and execution are more 

complex in OpenCL. In Cuda there is a special kernel calling syntax and a variety of 

hardware specific variables. But as examined in [22] a comparison of Cuda versus 

OpenCL performance showed very similar  results  on benchmarks  with high  data 

sizes. Cuda is tailored for Nvidia products, but suffers from a lack of support by 

other vendors. Portability on heterogeneous devices is very limiting  compared to 

OpenCL.  However,  by allowing access  to  specifics  of  the hardware it  makes  it 

possible to use its full potential. 
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4. Adversarial search

A basic  introduction  into  the  adversarial  search  domain  presents  in  this 

chapter  it's  complexity,  main  problems  and  algorithms  used  to  solve  them. 

Improvements in precision, speed and the size of space of search depends complexity 

of algorithm and it's ability to use underlying hardware resource. Recently the most 

significant  results  were  achieved  using  parallel  algorithms.  In  this  chapter  we 

introduce theoretical  approaches used to  solve adversarial  games and inspired by 

successful real life applications where speedup was proven, we identify the ones that 

are mots suitable for implementation with GPU acceleration. 

4.1. Multi-agent environments

Artificial intelligence provides a way to formalize environments, where large 

number of agents interacts  and changes  it's  state.  The behavior  of agents can be 

cooperative or competitive, depending on their individual goals. Each agent or player 

has a predefined set of possible moves. Because players interact, some of the moves 

may not always be possible to perform. Agents evaluate the situation of the world 

independently,  based on their  specific  rules  and knowledge.  One can  not  predict 

another player's next move, so to make a decision, one has to consider all possible 

moves of other players. A combination of allowed move sequences for every player 

generates all possible states of the world. States where agent has reached its goal are 

called terminal states.  Each performed move has a cost that influences all  agents 

welfare. Sequences of moves leading to a terminal state may have different costs. 

The goal of an agent is to reach terminal state with the maximal possible value. In 

competitive environments the goals are usually adverse, so minimizing one agents 

costs maximizes the costs of the others. In general, adversarial search is defined as 

search in multi-agent environment where the goals of players are contrary. Important 

representatives of adversarial search problems are games. 
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4.2. Games 

Games have a great importance. Their rules are usually simple to formalize, 

while complexity of search space for optimal strategy is high. Games have structured 

tasks and clear definition of agents goals. In general, games that we discus can be 

defined as multi-agent environments,  where players'  moves are unpredictable and 

change as their goals are usually conflicting. As described in [23] a game can be 

formally  defined  as  a  search  problem  with  few  characteristics.  The  initial  state 

represents the positions of each player on the playing board. Because of the turn-

taking nature of discussed games, only one player has to perform its move each turn. 

All the available legal moves are known to the player, and the set is determined by 

the position of other players on the board. It defines a transition model from this 

state.  Each  move  changes  the  world  state  and  tests  to  see  if  the  world  state  is 

terminal. Terminal states define end of the game. A function to evaluate a terminal 

state is called a utility function. It numerically represents the outcome of game. In 

some cases it just identifies the winner for example as -1 for agent number 1 ,0 for a 

draw  and  1  as  a  win  for  agent  2,  but  often  it  also  indicates  the  final  score.

Each game satisfying the definition can be represented using a game tree. The 

initial state defines a root node, a transition model represents all the child nodes of 

root and for each of them recursively applies a transition model. Recursion ends by 

definition in terminal nodes. The game tree represents all the possible states of the 

game, thus the complexity of a searched problem for the optimal strategy can be 

calculated. It leads to the lowest cost, or in other representation to the highest score. 

In chess the average branching factor is 35, so investigating 5 moves ahead would 

require an evaluation of about 50 million states [23]. An even bigger branching factor 

of 361 is in GO. 

A move performed by one of the players is called a ply. Usually there is a 

time constraint for each move or for the whole game and evaluating the entire game 

tree in such cases is not possible and so decision of the player is not optimal in most 

cases. The result is based on an approximation of world state evaluation. 
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Figure 7. Minimax algorithm [23]

4.3 MiniMax algorithm

Zero-sum games  are  defined  as  games  where  the  total  amount  of  points 

owned by all players in the game is 0. Usually in two player zero-sum games, players 

are called MIN and MAX. Because of the conflicting goals of the players, each of 

them  tries  to  reach  different  terminal  nodes  within  the  game  tree.  With  this 

assumption, each player chooses an action that would assure maximum benefit, and 

minimize  the  chance  of  losing.  Assuming  this,  one  has  to  always  take  into 

consideration optimal  play from an opponent.  For  each state  in  the game tree,  a 

minimax value can be defined. Expected optimal play dictates that the first player 

choose the move with maximum minimax value from the child nodes of its current 

state  to  maximize the gain (MAX).  The second player  wants  to  minimize  MAX 

payoff  (MIN),  to  maximize  his  benefit,  therefore  he  chooses  a  minimum  from 

minimax  values  of  his  child  nodes.  The  minimax  algorithm  as  defined  in  [23] 

recursively computes for each node in the search tree a minimax value as illustrated 

on Figure 7.
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 The recursive definition of algorithm traverse whole tree down to terminal 

nodes. An utility function is used to evaluate leaf nodes and to deliver their minimax 

value.  This value is then propagated up the tree.  Altering MAX and MIN moves 

changes the minimax values of nodes from leaves towards the initial state. Choosing 

the child node where the highest minimax value came from determines the optimal 

strategy for  MAX. The value  is  a  guaranteed  minimum for  MAX if  MIN plays 

optimally. In the case of a suboptimal play by MIN, MAX can reach even higher 

value. Branching factor is determined by a number of legal moves for player from a 

position.  Based  on  the  branching  factor,  defining  the  width  of  game  tree,  the 

complexity  of  game  is  determined.  In  some  cases  there  are  time  limitations  to 

provide approximate results where terminal nodes are not reachable in reasonable 

time. For those purposes, the look-ahead value restricts maximum number of plies 

examined by algorithm. In the case terminal nodes are deeper in the tree than the 

look-ahead value, approximation of minimax value, provided by evaluation function 

is taken into account. This  algorithm  is  optimal  against  an  opponent  employing 

optimal strategy.

The minimax algorithm is based on the depth first search (DFS). Given the 

maximum depth or the look-ahead value M and the number of moves for each player 

that defines a branching factor of the tree B, the time complexity of the minimax 

algorithm is O(BM). Algorithm can be implemented in different ways with various 

space complexity. The version that generates and stores all of the child nodes for 

position at once has space complexity O(BM) while the version that generates one 

successor at the time has O(M). 

4.3.1 Optimizations and heuristics

Exponential time complexity of evaluating the whole game tree is not suitable 

for games where time per move is  limited.  There are  optimizations and heuristic 

techniques that may decrease the number of examined states without modifying the 

overall result. One of the examples is alpha-beta pruning. The main idea of alpha-

beta pruning is to prune unevaluated branches of the tree that cannot change the final 
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value in the root. Due to the DFS nature of minimax, if there is an unexamined node 

x during evaluation and the algorithm has already found a better choice somewhere 

in the parent or up in the hierarchy, node x may be excluded from the evaluation 

since it never influences the parents' minimax value. This comes at a cost, however, 

as an improvement in execution time is needed to maintain two parameters - alpha 

and beta - that define the boundaries of examined nodes. A detailed description of 

this algorithm can be found in [23].

 

The  order  of  examined  child  nodes  determines  the  improvement  of  the 

approach. To define useful ordering rules, substantial knowledge about the searched 

game is required. The heuristics such as the previously best move first, may be also 

applied. As discussed in [23], time complexity of a minimax algorithm using alpha-

beta pruning is reduces to O(B(M/2)).  In an average case, without applying special 

ordering, complexity is reduced to O(B(3M/4)). 

Identical states in the game tree usually appear more than once. Information 

about already evaluated states may be stored in transposition tables. This increases 

the space, but may reduce the time complexity. In this case, space complexity grows 

with each distinct examined state and can lead to exponential growth of search space.

 As briefly discussed, different domain specific evaluation functions are used 

to estimate the expected utility value. Evaluation functions, in general, are replacing 

branches of the tree with estimated values once they pass a cutoff test. States for 

those branches are replaced by a terminal state with an estimated value.  Tests may 

be defined according to the look-ahead value if there are no more time/resources to 

evaluate the next level or based on game specific features of the state. Even minimax 

with alpha-beta pruning can evaluate only a limited depth of around 5 to 10 due to 

the exponential growth in number of states [24]. Proper evaluation functions based 

on detailed domain knowledge decrease the size of the search space significantly. 

They provide values that doesn't influence the decision in negative way. More details 

about different evaluation functions and learning techniques are described in [23, 

24]. 
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4.4. Approaches to solve well known games

We discuss well known games with attention to the way how they have been 

solved,  or  the  solutions  that  gave  good  approximation  of  the  result.  Strategies 

applied,  are  usually  game specific,  but  some common approaches  can  be found. 

Their  properties  are  discussed further.  The analysis  serves  as a  starting point  for 

examined use case study. 

4.4.1 Ultra-weakly, weekly and strongly solved games

To solve a game means, by the definition provided in [25], to find a game-

theoretical value for each game position. Based on the definitions provided in [26,27] 

a game can be solved on three different levels;

1.  Ultra-weak – For a given starting position,  the result  of perfect play is 

known, but the proof is not conclusive. A strategy for a perfect play does not have to 

be provided. An example of such a game is Hex. It can be shown by the “strategy-

stealing” argument described in [28], that the first player has a winning strategy, but 

no winning strategy is currently known.

2.   Weakly Solved -  a  strategy is  known to achieve the maximum  game-

theoretic value of the game from the initial position for all players under reasonable 

resources. Most of the well known games have been solved at this level. Examples 

are Go-Moku [29], Nine-Men's Morris [30] and Checkers [31]. Resource limitation 

is  substantial  and limits  impractical  solutions  that  would need too  much time to 

provide a solution. 

 3. Strongly solved – For all possible legal positions on the board, the game-

theoretical value and strategy is known for all players, using reasonable resources. 

Strongly solved games are for example Awari [32], Kalah [33] and Connect Four 

[34].
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This  thesis  evaluates  mainly  strongly  and  weakly  solved  games  and  the 

techniques  that  were used to  solve  them.  Exact  approaches  used  to  solve  games 

follow,  with  a  description  of  techniques  used.  Specific  implementations  of 

representative examples of games are discussed in Chapter 5, with special attention 

to parallel solutions and the possibility to use GPU to accelerate the computation.

4.4.2 Tree search techniques

Out  of  all  techniques  used  to  solve  well  known games,  game tree  search 

algorithms play major role. As defined in [31] we can distinguish two types of tree 

search: Forward search and Backward search. The first processes the game tree from 

the starting position towards terminal nodes and gradually expands the tree depth 

until  subtrees  are  solved.  This  is  a  straight-forward  top  to  bottom  approach. 

Exhaustive  search  methods  like  alpha-beta,  and  its  variants,  help  to  reduce  the 

searched space. However, they are very time consuming as evaluation exponentially 

increases the state space size. A backward search, on the other hand, starts in the 

terminal nodes and evaluates their terminal values. From this point it searches for all 

positions that lead to the evaluated terminal nodes. Minimax values for the nodes that 

directly precede the terminal nodes are calculated. Minimax values calculated in this 

manner are propagated until the initial node is reached. All of them are stored and 

this creates the end game database. Retrograde analysis is the most commonly used 

representative of a backward search. This approach is has practical use for games 

where the search space converges like in Chess, Othello, Awari and Checkers. 

In a forward tree search, situations emerge when a different combination of 

moves leads to the same state. As described above, transposition tables may be used 

to optimize the performance and cut-off sub-trees where the game's theoretical value 

is  already  known.  It  is  a  trade-off  between  memory  usage  and  computational 

complexity. A time management strategy called iterative deepening was introduced. 

4.4.3 Solved games
One of the best known games, tic-tac-toe, is a representative of a connection 
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game, where the goal is to connect predefined number of pieces on the playing board 

with  a  straight  line.  As  discussed  in  [35]  these  kinds  of  games  have  too  many 

terminal  states  so backward  search  is  not  feasible.  The game Connect  Four  was 

proven to be winning for the first player [27, 36]. Forward search techniques were 

used  in  a  combination  of  alpha-beta  search  with  a  transposition  table  and  move 

ordering heuristics (killer move heuristic [37], conspiracy-number search [38]). The 

result is that the first player has to start in the middle column to win. An extension of 

tic-tac-toe is  called go-moke and it  is  also known as 5-in-a-row. There are many 

modifications  that  define the number  of  pieces  in  a  row,  board size,  or  defining 

restrictions for moves. Techniques used to evaluate such games in [26] are forward 

search with move ordering heuristics such as thread -based search, best first search 

and dependency based search.  Free-style  go-moku starting in  an initial  state  was 

proven [26] to be winning for the first player in 18 moves against an ideal opponent. 

In Renju without opening rules, it was proven [39] that the first player wins by using 

iterative deepening, transposition tables and a dependency based search [26]. 

Different kind of games like Kalah and Awari belong to the Mancala family 

of games. The playing board is represented as set of holes and seeds in them. Each 

player  in  a  move  takes  all  seeds  from  an  allowed  hole  and  places  them  into 

subsequent holes, one seed per hole. A player can capture seeds at the end of his turn 

based on specific  rules.  For  example,  the last  placed seed was third in  the hole.  

Approaches described in [33] solve most of the variations of Kalah while retrograde 

analysis was used to pre-compute end game databases. Program created can solve 

several starting configurations up to six holes and 5 counters per hole, by usage of 

iterative deepening, and other search enhancement techniques like move ordering, 

transposition tables and Futility pruning. Awari was solved in [32] using retrograde 

analysis and a computing score of 889,063,398,406 positions. In combination with 

forward search it was shown that the result is a draw. Since an enormous database 

was created to contain all the positions that can occur in the game, Awari was solved 

strongly. Nine Men's Morris was solved in a similar way. The solution presented in 

[30] proved that the result is a draw. Forward search and retrograde analysis were 

used where the end game database holds 7,673,759,269 reachable states.
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As described above, many games were strongly solved. Approaches presented 

in most cases consist of a combination of forward search and a precomputed end-

game database using retrograde analysis. Usage of alpha-beta search in combination 

with different move ordering techniques and transposition tables helped to decrease 

the search space.  

4.4. Parallel approaches on CPU based systems

There  are  many  attempts  to  provide  parallel  applications  that  solve 

adversarial  search  problems.  Many  of  them  have  successfully  improved  the 

performance of sequential approaches. Parallelism was used in different ways. Tree 

decomposition,  identification  and  assignment  of  sub-tasks  performed  in  parallel 

differ  per  approach.  These  are  defined  by  capabilities  of  the  hardware  and  the 

application  that  was  running.  Basic  problems  tackled  are  tree  decomposition, 

computation complexity, synchronization and communication. 

4.4.1 Static parallel evaluation

The evaluation of the static independent sub-parts of an adversarial search can 

be  performed in  parallel.  Generation  of  moves  or  computation  of  the  evaluation 

function were implemented as parallel processes. An example is Cray Blitz, a chess 

program that  uses vector processing. Another chess machine Deep Thought uses 

special hardware for parallel generation of all legal moves for all positions. Details 

on  the  implementation  and  hardware  can  be  found  in  [40,  41].  The  evaluation 

function can be very computationally intensive, so an application can benefit from its 

parallelization.  The  speedup  is  limited  by  the  degree  of  parallelism  in  move 

generation  and  evaluation.  However,  domain  specific  implementations  show 

promising results.
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4.4.2 Tree decomposition

The  transition  between  static  parallel  evaluation  and  real  game  tree 

decomposition is an approach called Parallel search window. This method performs a 

game tree search on the whole tree using every available processor. Each iteration is 

performed with a different cost bound (window) [42].

Hierarchical node assignment to processors

An algorithm defined in [43, 44] decomposes the tree structure statically into 

disjointed parts and searches them in parallel. All of the processors are arranged in a 

tree  structure  and are  then  mapped to the  searched tree.  The inner  nodes  of  the 

processor tree generates successors for positions assigned to them and propagates 

them to be evaluated by successive processors. Leaf processors perform a sequential 

minimax and return calculated values to their parents in the processor tree. After that, 

a new sub-problem from the queue of its parent is assigned to them if it exists.

Generate and compute in parallel 

The algorithm presented in [40] distinguishes two types of processors. The 

first type searches the tree up to a predefined depth d. All positions found are then 

divided into two groups. The first group contains only nodes of the minimal game 

tree, while the second contains the rest. The first group is then processed on parallel 

processors by a sequential algorithm to a depth d. The result is returned to the master 

processor and then the second group is enqueued for processing.

Central control approach 

An example of centralized control approach is the Principal Variation (PV) 

splitting algorithm. It can be described as a global synchronization model, since the 

application logic is centralized in one processor that takes care of load balancing. The 

algorithm takes advantage of move ordering heuristics and performs best on well 
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ordered game trees. The ordering of moves in combination with cutoffs is used to 

decrease the size of the search space. To perform cutoff, the leftmost part of the tree 

has to be evaluated first. The idea is to use all processors to search in parallel the left 

part  and only after  retrieving boundaries  for cutoffs  is  the right  part  searched in 

parallel.  A process  is  performing sequential  version  of  minimax  algorithm  (e.g. 

alpha-beta). One of the improvements of this approach is enhanced dynamic load 

balancing,  since  the  trees  searched  in  parallel  are  not  of  a  uniform  size.  Idle 

processors may help busy ones by sharing their tasks.

Client-server approach

Young brother wait concept (YBWC) is a representative of the client-server 

or master-slave model of parallelism in a game tree search. The main idea is that the 

boundary has  to  be  obtained  first  for  the  leftmost  branch and  then  all  the  other 

branches can be examined in parallel. This concept defines the highest split node as 

the node for that value of which the first branch is known and its height is minimal. 

The algorithm assigns the first processor to the root of the tree and starts searching 

the tree usually using an alpha-beta algorithm. The list of split points is maintained 

and if some processor is idle, the branch from the highest split point is assigned to it.  

A processor  starts  searching  the  subtree  it  owns  and  maintains  its  split  point 

information for the purpose of load balancing.  Once the branch is  examined,  the 

processor returns  the value to  the server  that  assigned it.  YBWC is  described in 

further detail in [45].

Peer-to-peer approach

An approach called Dynamic tree splitting described in [46] is  one of the 

more complex algorithms. None of the processors own any node and the processor 

that finishes last on the split point reports a calculated value to the parent of the split 

point. Classification of nodes and criteria for choosing split points are detailed in 

[46]. During the algorithm, an idle processor chooses the split point with the highest 

priority from the global list. Once the work is finished, the processor updates bounds. 

The  algorithm  was  specifically  designed  for  a  shared-memory,  multiprocessor 

architecture where the goal was to optimize load balancing and it is used in several 
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chess programs such as Cray Blitz.

4.5 Summary

The parallel  algorithms described above were proved to gain a substantial 

performance increase over sequential versions of adversarial search algorithms. Each 

of  them  approaches  the  domain  in  its  specific  way  and  is  trying  to  utilize  all 

resources available in the system it is implemented in. They addresses architectural 

issues  such  as  the  effective  use  of  all  processors  and  load  balancing  by proper 

decomposition of the searched tree that are best suited to the processing power of the 

available  hardware.  Communication  and  synchronization  issues  influencing  the 

performance  of  algorithms  are  mainly  determined  by  memory  architecture. 

Accessing shared memory or maintaining a distributed model is distinguishes the 

algorithms and their usability of use on certain machine architectures. 
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5. GPU accelerated adversarial search algorithms

In  the following chapter we present implementations of algorithms used to 

solve adversarial search problems.  Special attention  is  given to parallel algorithms 

described in chapter 4. Their fit on GPU is discussed and the most promising ones 

are implemented. The researched algorithms were tested on different configurations 

of synthetic game trees and the speedup are presented on an implementation of the 

game Fox and Hounds. A comparison of benchmarks obtained from both sequential 

and parallel algorithms is presented. The suitability of GPU to accelerate adversarial 

search  algorithms  is discussed  and  illustrated  on  benchmarks  at  the  end  of  the 

chapter.

5.1 Testbed description

All of the measurements were performed on two different configurations of 

hardware. The first was a Macbook Pro notebook. The CPU configuration for this 

model is 2.0GHz quad-core Intel Core 2 Duo T9400 i7 processor with 6MB shared 

L3  cache  and  4GB  (two  2GB  SO-DIMMs)  of  1333MHz  DDR3  memory.  The 

graphical card was a NVIDIA GeForce 9600M GT that featured 32 stream processors 

and 256 MB GDDR3 memory of its own that contained 314 million transistors. We 

refer  to  this  configuration  as  "standard".  More  advanced  hardware  was  used  in 

second configuration. The graphical card used was a NVIDIA GeForce GTX 480 

with 480 CUDA cores with 1536 MB GDDR5 containing 3 billion transistors. This 

GPU is based on Fermi architecture that was described briefly in Chapter 2 while this 

configuration is referred to henceforth as "advanced".

 

5.2 Sequential algorithms

In  general,  most  of  the  sequential  approaches  described  in  Chapter  4  are 

based on the minimax algorithm. A standard tree search, when the terminal nodes are 

not reachable within a reasonable amount of time and evaluation functions are used, 
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consists of several phases [41]. 

Figure 8. Tree search phases

In the first phase, as displayed in Figure 8, at the top of the searched tree, all 

the nodes are visited. Usually there are no cutoffs in this stage and tree is searched 

completely. Once the required depth is reached, a selective search phase is initiated 

and only the interesting nodes are visited and investigated further. The definition of 

interesting is usually domain specific and is based on certain compositions of board 

figures or boundaries of the evaluation function. A selective search usually also has a 

predefined  maximal  depth.  The  third  phase  is  called  the  quiescence  search.  The 

principle of it is very similar to a selective search in that it evaluates into more depth 

only positions, such as the ones with direct threat, that are marked as noisy.. A search 

is then performed until a noisy position changes to quiet one, and this improves a 

position's  minimax  value  by  emulating  moves  that  significantly  influence  its 

evaluation.

As described in the previous chapter, a reduction in the number of searched 

positions can be achieved by using endgame databases. They often contain evaluated 
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positions of a certain type. For example, all positions for a number of pieces on the 

board  are  evaluated.  Retrograde  analysis  is  used  to  emulate  the  searched  tree 

traversal  backwards  from  the  terminal  nodes.  Parallel  implementation  of  this 

preprocessed database proved suitability of it's practical use while solving the games 

Awari [32].

5.1.1 Sequential algorithm setup

All implemented algorithms were compared based on the total time elapsed. 

At first, algorithms were tested on two player board game. We investigate adversarial 

search algorithm on synthetically generated game tree. The game that takes place is a 

standard  chess  board  where  only  black  squares  are  used.  Each  player  has  a 

configurable number of pieces. Players alternate their moves, each with one piece per 

move. Pieces can move one square in any diagonal direction in case square is free 

and chess board limits are not violated. The result of the evaluation function defines 

leaf  value  distribution  that  influences  the  strength  of  the  ordering  heuristics. 

Uniformly distributed  trees  are  used  here,  so  that every successor  has  the  same 

probability  to  be  the  best  one. Trees  constructed  in  this  way  provide  a  good 

approximation for real life situations and are usually referred to as synthetic trees, 

frequently used  in  the  literature  [51].  Multiple  measurements  were  taken  with  a 

different combination of parameters like number of pieces and search depth.

Based on the division of the tree search into the three phases described earlier, 

we can recognize three possible scenarios. The first is of particular importance, later 

referred as the "top", where the search is performed over all of the nodes. For a given 

position, using the minimax algorithm a whole tree is generated. The search stops at 

a predefined depth where the evaluation function can be used to determine the value 

of a position. 

We  are  considering selective  and  quiescence  search  phases  as  separate 

scenarios.  We assume  that  those  phases  of  the  search  are  performed  separately, 

without top phase. We have n nodes at a generated depth d and for those, a selective 

or quiescence search is performed. This means that we have to traverse n trees with 
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branching factor b. In a selective search we limit the number of branches examined 

by picking  the  most  promising  ones.  For  the  purpose  of  generality,  a  restrictive 

definition to perform a search on the best few moves from each node is provided and 

search ends in predefined depth. A quiescence search is performed on all branches 

until the branch is no longer stable. This means that the function to evaluate stability 

of a position has to be applied to every new successor of a position in the searched 

tree. Restriction is defined for a maximal depth of quiescence search. 

Benchmarks  for  a  sequential  approach  were  measured  using a  standard, 

depth-first, search-based, minimax algorithm in non recursive implementations with 

respect  to  minimize  memory requirements  and  processing  speed.  Data  structures 

used and description of algorithm are described further in the text.

5.1.2 Evaluation function complexity

The evaluation function takes into consideration many aspects of the game. It 

is usually created by game experts, evaluates the current position and determines its 

minimax value statically. In many board games, including chess, the static function is 

constructed as a weighted sum of various factors. An example of game with complex 

definition of evaluated factors is chess. According to [47] we can recognize seven 

main factors that influence the static value of position: Material, King Safety, Piece 

Mobility, Pawn Structure, Space, The Center, Threats. Each of them has a different 

complexity to calculate. Material is usually defined as the sum of the values of pieces 

for each player on the board. Valuation of material takes into account the number of 

pieces on the board. Mobility is defined as the number of legal moves each player 

can make with all the pieces on the board. The complexity to calculate this factor is 

influenced by the  number  of  pieces  on  the  board  and  the  number  of  their  legal 

moves. Board control factor is defined in chess as the number of squares controlled 

by each player. A square is controlled by player once it has more pieces attacking it  

than the opponent's. Controlled squares in chess carry different weights - those in the 
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middle of the board are fundamental for opening up the game. Of course, examples 

of  the  factors  described here  have  different  relevance  per  game.  Mobility  is,  for 

example less important in chess than it is for Othello and board control is a crucial 

aspect for Go. From the examples described above it is clear that the complexity in 

calculating factors that influence the evaluation function differs per game. 

5.1.3 Rules of tested game Fox and Hounds

The second tested implementation is the game Fox and Hounds. The rules of 

the game, as described in [48], define that the game is to be played on a standard 8x8 

chess board where only the black squares are used. Four hounds are initially placed 

on the dark squares at once edge of the board while the fox is placed on any dark  

square on the opposite side of the board.  Initial positions  of pieces are shown on 

Figure 9. 

Figure 9. Initial position of Fox and Hounds board game [48]

The objective of the fox is to cross the board from its initial position to the 

opposite end of board, to the initial position of any hound. The hounds' objective is to 

prevent  this  by  moving  only  diagonally  forward  while  the  fox  moves  are  also 

allowed backwards. Hounds' moves are like a man and fox like a king in draughts. 

No jumping, promotion, or removal of pieces is permitted. Each player has to move 

with exactly one piece per turn.  There are two types of terminal positions in the 
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game: the first is a victory for hounds when the fox is trapped and it does not have a 

legal move. The fox wins by evading the hounds and making its way to one of the 

hounds' initial positions.

The game has been proven in [49] to be winning for hounds from an initial 

position allowing a choice of any of the four starting positions for the fox. We have 

obtained benchmarks for the implementation of Fox and Hounds. Game positions are 

represented as positions of all five pieces on the board. Positions on the board are 

numbered from the top-left corner starting from first black square as 0 until 31 at the 

bottom-right. As shown in Figure 10, a position in this scenario would be represented 

as [17,8,5,10,7]. The first  number always represents the position of Fox with the 

other four numbers marking the positions of the hounds. The second number is the 

hound that started at  position 0, ...,  and the fifth number is hound that started at 

position 3. Obviously two pieces cannot occupy the same position at a given time. 

Figure 10. Fox and Hounds game representation

The program calculates the minimax value for a given position by performing 

a depth-first search based the minimax algorithm in non-recursive form.  Algorithm 

with same structure and objects is used in case of synthetic game trees. High level 

description of algorithm can be represented as: 
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while (!done){

if( level is max or no new move was generated ){

decrease level

if (terminal position or level is max) => evaluate_function(position)

else if (level == -1) return results[0];

else {

store minimax value for this node as results[level+1]

}

calculate min or max based on level and stores to results[level]

return_back_to_parent_position

} 

}

try_to_generate_new_move(position, movement_history)

if(new move generated){

increase level

}

}

The  state  of  algorithm is  maintained  in  stack  called movement_history  in 

representation of algorithm above. To reduce memory requirements, and by that the 

space complexity, the stack contains a numerical representation of piece and chosen 

directions  on  each  tree level.  Each  direction  for  each  piece is  represented  by  a 

number. Figure's id is stored on the positions of decimals and direction of it's move 

on position of units. With a combination of actual positions (five numbers), it gives a 

representation  of  the  actual  search  state  and  information  how  this  state  can  be 

achieved from initial position. The memory requirements are to store five numerical 

representations of the actual state and one number for each level up to  predefined 

look-ahead.  The  look-ahead  represents  the  maximum  number  of  plies  max. 

Movement  back  from a  position  in  the tree  is  represented  as  negative  value  of 

number used to get into the position. To store the temporary minimax values for each 

level,  an  array  results of  length  of  max is  used.  Once  the  algorithm reaches  a 

predefined  max level and no terminal position is reached, the evaluation function 

evaluate_function is used to determine a minimax value for that node. The function 

calculates  the  number  of  reachable  positions  for  the  fox.  It  is implemented  as  a 

breadth-first  search algorithm.  The  algorithm  requires  to  store  already  visited 
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squares. For this purpose a specific array is used.  

Similarly to algorithms on artificial trees, several scenarios were tested. The 

First one (FnH1) is a basic algorithm that evaluates one initial position. The Second 

scenario  (FnH2),  to  simulate  quiescence,  selective  search  phase  and  retrograde 

analysis, where as an input n different positions are provided. A third benchmark is 

created on a setup where the evaluation function is calculated for n positions. All the 

benchmarks are later evaluated  and compared with the parallel implementation on 

GPU.

5.2 Applying GPU architecture

In this section we evaluate the suitability of the aforementioned algorithms to 

be implemented on GPU architecture. We try to identify and evaluate the attributes of 

algorithms  that  would  indicate  their  suitability  for  acceleration  using  GPU. 

Afterwards, we propose an implementation of a test scenario that is used in both 

standard and advanced hardware configurations to retrieve benchmarks and further 

be compared with sequential approach.

5.2.1 Investigated attributes

An introduction to GPU programming and a description of the architecture 

are presented in Chapter 3. Specifics of the execution model that determine the type 

of  parallel  processing  must  be  taken  into  account  while  determining  the  overall 

algorithm suitability. The number of threads that run in parallel on GPU is huge. To 

maximise  this  potential,  we  have  to  be  able  to  identify  parts  of  the  evaluated 

algorithms  that  can  be  performed  in  parallel  with  respect  to  specifics  of  GPU 

architecture. Most of the algorithms described above are typically recursive. Their 

non-recursive implementations are requiring an extra memory maintenance. Missing 

recursion  inside  kernels  also  leads  to  substantial  algorithmic  overhead. 
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Synchronization defined only within a  given work-group is limiting and so we have 

to try to identify the parts of the algorithm with the most scope for parallelization.  

The sequential parts of algorithms are also limited by system requirements, which 

must be be taken into account.

Awareness of the GPU's memory model is very important. Once identifying a 

suitable way for parallelism, there are certain restrictions on each kernel that may be 

crucial. Restricted local memory space and expensive global memory access define 

the  boundaries  for  the  data  types  used  in  algorithms  running  in  kernels.  Since 

copying  from  host  is  considered  expensive,  this  means  that  the  complexity  of 

computation in a  kernel  has to  be worth the copying overhead as  restrictions  on 

granularity  of  kernel  programs  indicate.  Non-coalesced  memory  access  causes 

substantial delays and decreases the overall performance. This can also be due to 

different execution paths within kernels. Restrictions and recommendations for GPU 

architecture must be taken into account in the analysis phase to determine the best-fit 

for the algorithm or its part for GPU suitable parallel processing while still benefiting 

from its SIMD nature. 

5.2.2 Analysis and design of benchmark scenarios

Generation of all possible moves or the next move is the base of game tree 

generation. In practice static parallel evaluation was used to generate moves in chess 

using special hardware. The idea of generating moves for one position is not suitable 

for processing on GPU for several reasons. The number of threads that are initiated is 

very low and since the branching factor of chess is 35, only 35 threads would be 

needed for that game.  A second scenario is  that  we would generate more moves 

(more  plies)  for  more  initial  positions.  This  would  theoretically  occupy  enough 

threads  to  fully  utilize  GPU,  but  the  ratio  of  data  transfer  operations  to  the 

complexity  of  calculations  per  kernel  may  not  be  beneficial.  As  an  input  data, 

information about all pieces on the board has to be transferred from host to device, 

and each kernel generates a subtree for a predefined number of plies and for each 

position check if it is legal.
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Static parallel evaluation 

A static evaluation can be performed in parallel on evaluation functions for 

different  leaf  nodes.  As  described  in  the  overview  of  sequential  algorithms,  the 

evaluation functions may have different complexity depending on the type of game. 

Complexity of evaluation functions usually depends on the number of pieces or the 

number of squares on the board. More complex game specific evaluations that detect 

patterns of position of pieces on the board are out of scope. For example in [50], the 

evaluation function of the game Awari consists of 12 features with different weights 

that  influence  the  final  function  value.  All  of  the  features  take  into  account  the 

number of pits with a special number of seeds. We consider a scenario where the 

evaluation function is applied to multiple positions in parallel. Since the input is a 

board status and the result is in fact one number per position, data transfer delay 

should not harm the overall performance.

Parallel window search

In a parallel window search as described in [42], the total range of values in a 

game tree is divided into p (the number of processors) ranges that do not overlap. All 

ranges are examined in parallel for the whole tree. If we want to utilize the maximum 

number of processors available in GPU it would cause ranges to be very narrow. A 

lot of cutoffs would be performed in the early stage of processing, then they would 

be idle and have to wait until the others finish. Limited local memory for work-items 

also causes problems since it defines a boundary for the number of plies each kernel 

is able to examine. Execution paths per kernel differ and non-coalesced access to 

memory negatively influences the performance. 

Hierarchical node assignment, combined CPU, GPU approach 

A method that maps processors into tree structures is not suitable for GPU. 

Although we have a lot of processors available,  synchronization between them is 

restricted to  the work-groups level.  The type  of  synchronization required  by this 
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approach would be very difficult to maintain within GPU. Synchronization of work-

items  on  GPU  device  is  restricted  due  to  SIMD  architecture.  Taking  into 

consideration an approach that generates nodes to a depth d and then runs all nodes 

in parallel suits our architecture very well. So instead of assigning work to kernels by 

other  kernels,  a  straight-forward  approach  is  where  the  host  defines  independent 

SIMD or actually STMD to be processed by the device. A tested scenario generates 

nodes  in  the  tree  until  predefined depth.  It  must  be  deep enough to generate  an 

appropriate number of nodes to run in parallel and utilize the whole potential of the 

available GPU. Once the nodes are generated, the parallel part of the evaluation starts 

where the minimax algorithm is initiated on GPU per each kernel. A basic version of 

minimax is implemented without cutoffs to keep execution paths the same. Due to 

memory  restrictions,  a  non-recursive  version  of  minimax  as  described  in  the 

sequential algorithms section is implemented. Several versions of each algorithm are 

tested.  and tests  are  performed for  variable  values  of  parameters:  the  number  of 

inputs for parallel processing, number of pieces, depth of game tree generated in each 

kernel. We refer to this scenario as generate_and_parallel_minimax.

Quiescence and selective search in parallel 

To get a comparable scenario with a sequential version of a selective search, a 

branching factor in tests  are restricted.  We compare results  from this benchmark, 

parallel_selective_search, with results from a sequential selective search. A similar 

approach  is  used  in  the  case  of  the  quiescence  search  whereby  the  algorithm 

evaluates  stability  for  every  generated  position.  Since  the  stability  function  has 

similar  properties  to  the  evaluation  function,  its  complexity  is  also  one  of  the 

parameters. This scenario is called  parallel_quiescence_search and  it has all of the 

previously mentioned parameters including depth and number of inputs.

Principal variation, young brother wait concept, dynamic tree splitting 

The essence of the principal variation splitting algorithm as a representative 

method with centralized control indicates a few complications. Splitting the tree into 

sequential  parts  usually  produces  not  too  many  trees,  with  different  height  and 

branching factor. This method may not be able to utilize the relatively high number 

50



of  processors available on GPU. The structure of branches searched in parallel is 

irregular  and  PV  in  CPU  implementation  lacks  any  load  balancing  between 

processors. This algorithm is effective only when the leftmost branch provides good 

bounds so cutting off some of the right branches is possible. The synchronization 

overhead is  large and the speed overhead is  usually huge if  the tee  is  not  well-

ordered.  Due to  an insufficient  level  of  parallelism and the irregular  structure of 

branches  examined in parallel,  we are  not  investigating  this  method further.  The 

irregularity  of  branching factor  and  subtree  height  would  cause  a  high  overhead 

because of non-coalesced access to memory. Many of the processors would become 

idle too soon while a few may hit the boundary of local memory while examining 

large  trees.  Division  of  work  is  not  suitable  for  the  SIMD  nature  of  parallel 

processing  on  GPU.  Although  a  similar,  more  uniform  version  of  this  scenario 

without pruning has already been tested in generate_and_parallel_minimax.

Peer-to-peer  approach,  dynamic  tree  splitting,  as  the  enhanced  version  of 

Young Brother Wait Concept, requires overly complex coordination in synchronizing 

work to be carried out at runtime. Data parallelism of GPU is not suitable for this 

level of self-load balancing between processors. In other words, processing elements 

are scheduled by the device to perform a job and only after all of them finish can 

they be reused. This is why it is  essential to assign the same job to all the kernels and 

to follow the SIMD paradigm of GPU. 

5.3 Analysis of empirical results 

In this section we present measured benchmarks.  Empirical results directly 

prove the suitability of a GPU processor to accelerate the described representative 

scenarios.  Each  tested  scenario  is  discussed  with  respect  to  its  performance  and 

gained speedup  while comparing sequential and parallel implementation. First, we 

examine algorithms on synthetic game trees simulating a two player game on a chess 

board. Results of measurements are then backed up with  benchmarks obtained from 
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an implementation of the game Fox and Hounds. On this application we practically 

prove the suitability of  adversarial  search algorithms for  parallel  processing with 

GPU. The benchmarks disclosed several limitations of GPU usage. 

5.3.1 Parallel adversarial search on synthetic trees

A synthetic game tree is created for all scenarios based on the configuration 

of the number of pieces per player and look-ahead. Speedup is defined as the ratio 

between the time of sequential algorithm  running on  CPU to the time of  parallel 

algorithm on GPU running against the same problem. 

Table 2. Minimax search on artificial board game on standard hardware setup 

with 4 and 8 pieces on the board

Hierarchical node assignment, combined CPU, GPU approach 

The  first  examined  scenario  is  generate_and_parallel_minimax.  As 

described above, based on one initial position, the algorithm performs a minimax 

search on the tree until a predefined depth, after which a minimax value is returned. 

Two basic setups are examined for this scenario. In the first we examined a game 

with 4 pieces (2 per player). Since each piece can move in 4 diagonal directions, the 

maximal branching factor per player move is 8. In the second scenario there are 8 

pieces on the board. The first player has 2 and second 6, so this scenario generates 

many  more  possible  positions.  The  algorithm  that  uses  GPU  to  accelerate  its 

processing consists of three  parts. In the first part,  an in-host program algorithm 
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Minimax search Total look-ahead
Total number of pieces 4 8

14 8

CPU (ms) 4067 33167

GPU Standard (ms)
6 2533 2 5473

8 5409 4 8506

6 1.61 2 6.06

8 0.75 4 3.90

Look-ahead 
parallel

Speedup factor



generates the game tree up to a predefined depth that is sufficient as an input for the 

GPU accelerated parallel part.  In the second, the GPU takes over and performs a 

minimax algorithm on each of the nodes generated by the first part. Minimax values 

for all nodes are then returned and in the third phase the host program finishes the 

search and returns a minimax value for each input position.

Table 3. Minimax search on artificial board game on advanced hardware setup 

with 4 pieces on the board

Benchmarks measured with a standard hardware setup are shown in Table 2. 

Although in a standard hardware setup there are only 256MB memory on GPU, we 

were able to gain maximal speedups of 6 in the case of the 8 piece scenario and a 

look-ahead of 8. In the first scenario the speedup was only 1.61 but the look-ahead is 

14  in  proportion  to  time  elapsed.  The  difference  in  look-ahead  is  caused  by  a 

different branching factor and memory requirements to store examined positions. An 

advanced  setup  shows  much  more  interesting  results  from  the  perspective  of 

speedup. We were able to evaluate the game tree up to depth of 20 with a speedup 

factor of 35.37 in the case of the first scenario with 4 pieces on the board. The first  

part of the algorithm has to produce enough input to fully utilize all processors of the 

GPU.

In second setup of the first scenario with 8 pieces on the board, a speedup 

factor of 82.91 was achieved with look-ahead of 10. N/A values in Table 4 with 
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Number of pieces: 4 Look-ahead

14 16 18 20

CPU (ms) 4067 53309 647546 8036000

GPU Advanced (ms)
6 2332 4260 11061 N/A

8 3231 5260 17566 N/A

10 9175 21293 45021 227204

6 1.74 12.51 58.54 N/A

8 1.26 10.13 36.86 N/A

10 0.44 2.50 14.38 35.37

Look-ahead 
parallel

Speedup factor



benchmarks of advanced hardware setup on scenario with 8 pieces are caused by 

memory constraints on the host side or by not having enough data to start parallel 

processing on GPU. In the case of the advanced setting it is 1024 inputs and in the 

case of standard it is 512. The range of data sizes are chosen in the way that they fit  

into GPU's memory at once. In this case there is no need to batch the same execution 

and encounter a longer delay caused by the host to device memory transfer. In the 

other case, we would have to schedule commands for data transfer and algorithm 

execution into the command queue multiple times. N/A values for example in Table 3 

are there because of this restriction. 

Table 4. Minimax search on artificial board game on advanced hardware setup 

with 8 pieces on the board

In tables 2 and 3 there are reported speedups of 0.75 and 0.44. As seen in both 

tables  with  an  increasing  number  of  look-ahead,  the  parallel  speedup  decreases, 

although with the overall look-ahead it increases. This observation proves that GPU 

as  a  SIMD  processor  can  work  in  a  better  way  with  more  data  and  simpler 

operations. A parallel look-ahead of 10, leaves only 4 to be executed by host. The 

size of the input to be performed in parallel is low and the computation on it is very 

complex. The paradigm of SIMD processing defines suitable input in the opposite 

way. There is an observable trend in all the results for this scenario towards setup 

with a lot of data produced by the host program and a lower number of parallel look-

ahead, with less complex work done on GPU.  

Another observation is that with a higher look-ahead for the second part, that 
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Number of pieces: 8 Total look-ahead

8 10

CPU (ms) 33167 2551000

GPU Advanced (ms)
2 2126 N/A

4 3017 30769
6 N/A 70305

2 15.60 N/A

4 10.99 82.91
6 N/A 36.28

Look-ahead 
parallel

Speedup factor



should be executed in parallel, memory requirements for GPU increase. With more 

branches  to  examine,  the  structure  of  created  trees  differs  further.  Some  of  the 

branches, created by legal moves, have more nodes due to board limitations and the 

presence other pieces on the board. With more execution paths the application loses 

the advantage of fast coalesced memory access as described in Chapter 3 - OpenCL.

Figure 11. Selective search on artificial board game 

– standard hardware setup (lower is better)

Selective search in parallel 

A second scenario examined is parallel_selective_search. In this scenario we 

have a measured speedup factor of the applied selective search on a generated game 

tree  while  selecting  only  moves  that  look  interesting  from  a  board  position 

perspective. An input for this scenario marked as  Data size  defines the number of 

positions that should be examined further in this selective manner and the look-ahead 

value. In our test case, parameters for the chess board-based game are four pieces - 

two per each player. For each position on the chess board, only diagonal moves are 

examined. Gathered results on a standard hardware setup for a  look-ahead of 6 are 
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displayed in Figure 11. An average speedup factor of  2.03 was achieved.

The speedup factor of the selective search with an advanced hardware setting 

and with the same configuration is displayed in Table 5. The difference in hardware 

setups is clearly recognizable and the speed of processing is lower for much bigger 

input data sizes. Speedups of 122 while investigating millions of positions shows 

suitability of this kind of application for GPU. 

Table 5.  Selective search on artificial board game 

on advanced hardware setup

Quiescence search in parallel

Similar  results  are  achieved  in  an  implementation  of 

parallel_quiescence_search. With a standard hardware configuration we have gained 

a speedup factor of 3.59 as illustrated in Figure 12. The function that checks the 

stability of a  position performs a measurement on the average distance of pieces 

with  complexity  O(board_size*number_of_pieces).  In  our  case  those  were  four 

pieces on a chess board. An evaluation function is applied on every position that is 

generated to check its  stability.  Evaluation of each position causes computational 

complexity  of  parallel  search  to  increase,  in  case  a  lot  of  positions  would  look 

promising.  Since  a  quiescence  search  has  a  maximal  look-ahead,  we  limit  our 

scenario  to  6.  This  boundary  was  proven  to  be  efficient  in  the 

generate_and_parallel_minimax scenario to balance the complexity of the algorithm 

executed in parallel and data complexity. As mentioned earlier, computation of the 

evaluation  function  is  itself  a  suitable  candidate  for  parallel  processing.  This 

suitability is examined further on an implementation of Fox and Hounds. 
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Selective search
Data size

512*128 512*256 512*512 512*1024 512*2048
CPU (ms) 49556 122881 304704 755561 1873532

GPU Advanced (ms) 1424 2308 4166 7079 15389

35 53 73 107 122Speedup factor



 Figure 12. Quiescence search on artificial board game 

– standard hardware setup (lower is better)

Benchmarks from a quiescence search performed on an advanced hardware 

setup show an almost linear time increase both on CPU and GPU. This linearity is 

caused by fewer cutoffs. Evaluation of position is done for every new position in this 

scenario to illustrate the stability of parallel processing speedup with respect to the 

amount of computation performed per position. As can be seen from Table 6, almost 

linear  speedups  per  number  of  examined  positions  proves  that  performing  more 

complex algorithms on the same set of data is suitable for GPU architecture and can 

deliver  total  speedups  in  ranges  of  around  115.  As  previously  mentioned,  while 

taking advantage of GPU parallelism we have to take into account the number of 

inputs that we have and the complexity of an algorithm that should be performed on 

top of this data. The overhead of slow copying of data via PCI Express from host to 

device has to be balanced against the speed achieved from data parallel execution of 

algorithms. 
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Table 6. Speedup factor of quiescence search on artificial board game 

on advanced hardware setup

5.3.2 Benchmarks for tested game Fox and Hounds

Until  now,  we  have  presented  very  positive  speedups  gained  on 

implementations of parallel algorithms on artificial game trees. The theoretical value 

of results shown above is described next, backed up by examining the same types of 

algorithms on a practical example, such as Fox and Hounds. Tested scenarios for this 

game prove that good speedups can be achieved also in practice. Benchmarks for the 

minimax  game  tree  search  for  one  position  along  with  selective  and  quiescence 

searches are presented. In addition, measurements for static parallel evaluation are 

discussed in the case of the evaluation function for the game. In the next part, we 

present gathered empirical results.

  

Hierarchical node assignment, combined CPU, GPU approach 

 

Interesting speedups were measured on scenario, with one input position, for 

the algorithm before described as FnH1. As displayed in Table 7, reported results 

ranging from 0.02 to 64.47 were seen. There are huge differences in speedups with 

each  new  ply.  A speedup  0.2  of  setup  with  a  look-ahead  of  8  where  two  are 

performed in parallel jump to a  speedup factor of 8.2 with look-ahead of 10. This 

increase is caused by the CPU speed. In the first case 6 out of 8 are computed on the  

CPU. The CPU speed computes, on average, 14815 in  81.44 milliseconds based on 

the algorithm's log. The speedup drops with the increasing parallel look-ahead for a 

look-ahead of 8. With increasing parallel look-ahead, the amount of inputs decreases 

and that has negative effect on the speedup. This indicates that the number of inputs 

generated by the CPU is insufficient for the GPU. The overhead of copying the data 
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Quiescence search Data size
512*128 512*256 512*512 512*1024 512*2048 512*4096

CPU (ms) 79963 167520 350950 735230 1540286 3226856

GPU Advanced  (ms) 1335 2149 3728 7450 14284 28108

60 78 94 99 108 115Speedup factor



is not compensated by the speedup factor of calculating minimax value for trees with 

a look-ahead of 2 to evaluate that position. The CPU performs better in such a case. 

In the setup with a speedup factor of 8.2, 299117 positions are created by the CPU. 

Such a range of data is suitable for standard hardware configurations to deliver the 

best results. With an increasing number of look-ahead in parallel and the same total 

look-ahead,   the performance speedup decreases since less data is provided to the 

GPU while more complex computation is expected. From the same table, we can also 

see that those ranges of data are not suitable for an advanced hardware setup. Since 

the number of board positions generated by the CPU with a look-ahead of 6 is low, 

no speedup is gained for a look-ahead of 10. Interesting values are in the range of 

look-ahead 14 and 16. Speedups of 49.72 and 64.47 are significant. 

Table 7. Speedup factor of game Fox and Hounds scenario FnH1

 

Static parallel evaluation 

As  discussed  earlier,  static  parallel  evaluation  was  used  to  speed  up  the 

evaluation  function  of  chess  positions.  We  examine  the  possible  acceleration  of 

speedup in the case of the evaluation function for Fox and Hounds. The evaluation 

function in this case searches for the given state of the board all legally accessible 

fields  for  fox.  The  implementation  uses  a  BFS-based  algorithm  that  visits  all 

neighboring  squares.   Memory requirements  are  determined by an  array to  store 

previously visited squares and a storage for the evaluated position so the id of field 
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Total look-ahead

8 10 12 14 16

GPU Standard (ms)
2 0.20 8.20 N/A N/A N/A
4 0.17 3.05 3.64 N/A N/A
6 0.05 0.95 2.97 N/A N/A

GPU Advanced (ms)

4 0.03 0.56 13.63 46.19 N/A
6 0.03 0.61 14.68 49.72 64.47
8 N/A 0.18 2.95 42.13 62.54
10 N/A N/A 0.28 3.41 51.25

Fox and Hounds (FnH1)   
speedup factors

Look-ahead 
parallel



for  each  piece  on  the  board.  Evaluated  positions  for  pieces  on  the  board  were 

generated randomly.      

   Figure 13. Evaluation function for Fox and Hounds

 Comparison of CPU and standard GPU (lower is better)  

Results for a standard hardware setup are displayed in Figure 13. Due to the 

high  number  of  input  positions  and suitable  complexity of  algorithm,  significant 

speedups were gained. Maximal acceleration is 10.95 in case of the largest data set. 

On advanced hardware  we tested the evaluation static on data sets that were eight 

times larger. Results show speedups of 69.01. The data parallel nature of these kinds 

of sub-algorithms for solving adversarial search problems are very well suited for 

GPU architecture. Speedups of GPU implementation show an increasing trend with 

the  amount  of  data  evaluated.  That  is  caused  by  higher  utilization  of  parallel 

processors on GPU.  
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Figure 14. Selective search for Fox and Hounds

 Comparison of CPU and GPU (lower is better)

Selective and quiescence search in parallel

Benchmarks for the implementation of selective and quiescence search for 

Fox and Hounds shows similar results. The memory requirements for both in both 

cases are  restrictive on the size of look-ahead that we can achieve.  To display a 

representative selection of benchmarks, scenarios were tested with a look-ahead of 4. 

The average speedup for a selective search is displayed in Figure 14 - for a standard 

GPU configuration this  is  4.13.  In  the case of  synthetic  game trees,  the  average 

speedup obtained was only 2.3. One of the reasons for this increase is the complexity 

of  the  evaluation function.  In  the case of  synthetic  trees,  the function  takes  into 

account the position of each piece and calculates distances between them. Fox and 

hounds evaluates the whole board with respect to positions of all the pieces on it. 

Additional memory usage and access for this purpose causes the CPU to be slower in 

computation of the value. Memory that has to be used to calculate the evaluation 

function is  allocated in  private memory for each work item. Fast  access to local 

memory  that  is  executed  in  parallel  increases  the  speedup.  Similar  results  are 
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presented for a quiescence search in Figure 15.  

Figure 15. Quiescence search for Fox and Hounds

Comparison of CPU and GPU (lower is better)

Results of implemented scenarios for Fox and Hounds proved the suitability 

of GPU accelerated algorithms in the domain of adversarial search algorithms. High 

speedups were gained on synthetic game trees scenarios with a higher number of 

pieces  on  the  board  as  well  as  in  cases  with  a  high  look-ahead  of  around  20.  

Acceleration using GPU can be used in multiple ways. On the top levels of a tree, in 

combination with CPU as described in a generate_and_parallel_minimax scenario or 

in further stages to perform quiescence and selective search. Parallel static evaluation 

of the evaluation function was proven to deliver very promising results and can help 

to accelerate overall performance of more complex algorithms in this field.  

5.4 Summary

Empirical results that we have presented in previous section prove suitability 

of  GPU  based  acceleration  in  the  field  of  adversarial  search.  Results  showed 

significant  speedups  in  all  tested  scenarios.  Major  differences  in  hardware 
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specification of used GPUs are reflected in overall results. With standard hardware 

setup we achieved speedups factor of 6.06 in first tested scenario for 8 pieces on the 

board.  Advanced setup reached speedup factor of 58.54 with look-ahead of 18. Very 

positive  results  achieved  on  artificial  trees  are  supported  by  benchmarks  of 

representative  game  Fox  and  Hounds  where  speedups  of  10.01  and  64.47  are 

reached. First scenario can be described also as combined computational effort by 

CPU and GPU. Benchmarks show for lower look-ahead values significantly better 

CPU performance. Searches to depth of 8 in the trees with low branching factor does 

not provide enough inputs for GPU to take advantage of their parallel execution. The 

reason is already mentioned limiting factor in speed of data transfer between host and 

GPU device. This delay must be balanced by executing sufficiently large number of 

parallel processes. Once this limit  is reached we were able to achieve significant 

speedups for this scenario.

While  moving  towards  larger  look-ahead  values,  we  have  observed 

increasing  speedup  for  cases  where  look-ahead  parallel  value  was  lower.  Better 

results for less workload in parallel on larger input data set can be rationalized by 

greater divergence in execution paths. Additional experiment was created to support 

this  theory  where  selective  search  scenario  was  executed  first  with  randomly 

generated positions of pieces and then with all the positions being the same. Since 

the order of move generation is predefined. In second setup accesses to memory were 

coalesced. In first, number of moves concurrently examined per position differs due 

to  difference  number  of  legal  moves(board's  boundary,  other  pieces).  Average 

speedup was 4.38 for coalesced access on standard hardware setup. This shows one 

of the possible improvements that can be investigated further since average speedup 

factor of selective search was only 2.03. In case of advanced hardware setting, where 

huge amounts of data were examined in parallel, top speedup is 122. Amount and 

complexity of computations that CPU has to do in case of quiescence search can be 

enormous for this big data set.  Speedup increased linearly with number of inputs 

reaching to acceleration factor of 115 on tested benchmarks.

Presented speedups on representative adversarial search algorithms proved fit 
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for  GPU acceleration in  this  domain.  However,  we have to  keep in  mind setups 

where  CPU  showed  better  results  and  adjust  usage  of  resources  to  the  specific 

requirements and properties of implemented problem. Merits and restrictions of both 

CPU and GPU has to be taken into account and combination of their use balanced to 

push performance limitations of specific application further.  
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Conclusion

Increasing need for processing power in many fields motivates to examine 

new technologies and different approaches to achieve it. GPU as a resource, that is 

no longer used only for displaying graphics shows promising possibilities to use. It 

represents  widely  accessible  and  cheap  resource  with  enormous  computational 

power.  The power comes from its  specific  architecture supporting highly parallel 

computations. However, exploiting its full potential can be difficult.

It requires being acquainted with the differences in architecture and programming for 

CPU and GPU architectures. Only then we are able to optimally utilize both and 

more importantly, to choose the best architecture for the problem at hand. 

We presented problems, limitations and comparison of each technology to provide a 

better  understanding  of  the  behaviour  of  AI  algorithms  on  massively  parallel 

architectures. OpenCL, an open standard for computing on heterogeneous platforms, 

served as an interface to perform the programming of GPU. Ability to uniformly 

access  both  platforms  and  combine  their  advantages  allows  us  to  improve 

performance of applications in many fields. GPUs with their extensive parallelism 

allow allow programmers to achieve impressive speedup factors. 

The main focus in the described domain of adversarial search is on games. Games, in 

general,  are  of  special  interest  since  their  definition  is  usually  very  simple,  but 

solving  them  completely  presents  significant  challenges  and  needs  serious 

computational power. Complexity of the problems grows exponentially with the level 

of  detail  we  are  examining.  Different  algorithms  were  created  over  time,  using 

sequential  and  parallel  approaches  to  examine  game  trees.  We  have  researched 

available algorithms nowadays and analyzed their fit for acceleration on GPUs. We 

applied theoretical knowledge about GPU architecture and OpenCL framework to 

provide implementation of selected adversarial search algorithms chosen in analysis 

phase. Tested scenarios covered different states of game tree evaluation. 

All nodes at the top of the searched tree are visited on the CPU, however, selective 

search phase, in which only the interesting nodes are visited and investigated further, 

initiated  at  a  certain  depth  and  is  run  on  the  GPU.  The  evaluation  function  in 
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complex sub-problems can be easily parallelized applying the GPU acceleration. 

We presented and discussed benchmarks for all the scenarios on multiple setups that 

showed both gains and limitations of GPU technology on this type of problems. We 

identified scenarios where GPU was more suitable. Discussion and reasoning for it 

concluded practical prove.  Significant results were achieved on implementation of 

game Fox and Hounds. The algorithm used CPU in the initial phase while number of 

nodes was low. We used it in combination with GPU accelerated parallel execution 

applied once number of nodes is  high enough.  With  look-ahead depth  of  16,  the 

algorithm  showed  speedup  factors  of  60  compared  to  CPU  based  sequential 

algorithm. This particular game showed also downsides and the need to be aware of 

technology limitations,  where sequential  solver running on CPU performed better 

than just GPU. Insufficiently large number of inputs for processing on GPU caused 

slowdown of the application. Overall, GPU proved to be a very suitable coprocessor 

to CPU and using them in cooperation we were able to both reduce time and increase 

depth of search significantly. 

Implementation  of  more  complex  games  like  chess  and  go,  using  combined 

performance  of  both  GPU  and  CPU  is  still  a  challenge.  We  have  proved  that 

algorithms used to solve this kind of problems have suitable granularity to exploit the 

level of parallelism offered by the GPU. This thesis can serve as starting point for 

further  research into applications  of  this  technology in the domain of adversarial 

search. 
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Attachments

Content of the CD:

1) An  electronic  copy  of  the  master  thesis  in  folder:  

<CD>/gpu_accelerated_adversarial_search.pdf

2) Source code for all tested scenarios is placed in two separate folders, cpu and 

gpu.  In  each  of  them,  appropriate  versions  of  tested  scenarios  can  be  found. 

Scenarios are divided into folders,  each containing make file configured to build 

executable from source code. Applications were created and tested in Ubuntu 9.01. 

OpenCL needs to be installed on the system and supported graphic card is required. 

Details about installation can be found in <CD>/readme.txt

Configuration, important parameters (if applicable): 

LOOK_AHEAD – look-ahead value

PIECES_TOTAL – total number of pieces on the board

ITERATIONS, DATA_SIZE – input size  

pieces_player – starting index of first piece per player

initialPosition – predefined initial position 

List of main source code files: 

– cpu 

contains sequential algorithms tested on CPU  

– fnh1/FoxNHounds-FnH1.c 

game Fox and Hounds scenario FnH1

– fnh2_quiescence/FoxNHounds-FnH2-quiescence.c

Quiescence search for Fox and Hounds

– fnh2_selective/FoxNHounds-FnH2-selective.c

Selective search for Fox and Hounds

– fnh3_evaluation_function/FoxNHound-evaluation.c

Evaluation function for Fox and Hounds

– synthetic_board_game_no_recursion/synthetic_board_game.c

 Minimax search on artificial board game
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– synthetic_board_game_quiescence/synthetic_board_game_quie.c

selective search on artificial board game

– synthetic_board_game_selective/synthetic_board_game_selective.c

quiescence search on artificial board game

– gpu

contains parallel algorithms tested on GPUs

– fnh1/combined.c

Parallel version of game Fox and Hounds scenario FnH1

– fnh2_quiescence/OpenCl-FoxNHounds-quie.c

Parallel version of Quiescence search for Fox and Hounds

– fnh2_selective/OpenCl-FoxNHounds-selective.c

Parallel version of Selective search for Fox and Hounds

– fnh3_evaluation_function/OpenCl-Evaluate_FoxNHounds.c

Parallel version of Evaluation function for Fox and Hounds

– synthetic_board_game_no_recursion/board_combined.c

Parallel version of selective search on artificial board game 

– synthetic_board_game_quiescence/board_game_quie.c

Parallel version of quiescence search on artificial board game

– synthetic_board_game_selective/board_game_sel.c

Parallel version of quiescence search on artificial board game
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