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Annotation

The thesis discusses different approaches used to extract activity of individ-
ual hippocampal neurons from multiunit recordings. It presents and compares
different algorithms which have been used for this purpose. Experiments are
made with intention to test the effect of MK-801 (disocilpine) in anesthetized
rats and results are analyzed using described algorithms and methods.

Keywords

Cluster analysis, electrophysiology, extracellular recording, unit activity, hip-
pocampus, mk-801, schizophrenia
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Anotace

Diplomová práce se zabývá různými přístupy používanými k získávání ak-
tivity jednotlivých hipokampálních neuronů z multineuronálních nahrávek.
Uvádí a srovnává různé algoritmy používané pro tento účel. Experimenty byly
prováděny s úmyslem ověřit vliv podání MK-801 (dizocilpin) na neuronální ak-
tivitu v hipokampu u anestetizovaných potkanů. Výsledky jsou analyzovány s
využitím popsaných algoritmů a metod.

Klíčová slova

Shluková analýza, elektrofyziologie, extracelulární nahrávání, jednotková
aktivita, hipokampus, mk-801, schizofrenie
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Foreword

Electrophysiology studies the electrical properties of biological cells and tis-
sues. In neuroscience it is a very important approach, because the electrical
processes play a key role in a function of a neural tissue.

Neural electrical activity can be traced using a current-sensitive electrode.
The electrode signal is amplified, filtered and then digitalized and processed us-
ing a computer. In the case of extracellular recording the signal is generated by
a number of adjacent neurons. Correct assignment of the recorded activity to the
respective neurones is therefore very important. The main and most commonly
used method in this classification is the cluster analysis.

This thesis focuses on the extracellular recording of neuronal activity, espe-
cially in hippocampus. The Introduction chapter of my thesis is divided into two
sections. In the first section I focus on the physical nature of the extracellular
signal generated by neuronal activity and on its recording. Special attention is
given to the offline processing techniques including spike detection and cluster
analysis. Commonly used methods of cluster analysis are presented and their
principles are briefly explained to show the limitations of these methods.

In the second section of the Introduction chapter I describe hippocampus,
which is the structure of my interest in conducted experiments. The section
includes a description of anatomy and physiology of the hippocampus and special
aspects of recording in this structure. The role of the NMDA receptor blockers
in hippocampal neuronal activity is presented as well.

In the experimental part of the thesis I present all the steps of extracellular
recordings of the neuronal activity in hippocampus. Experiments were made
with primary intention of achieving adequate practice through the recording
process to form a solid base for further research in the deparment. The activity
of hippocampal neurones was recorded in urethane-anesthetized rats before and
after the application of a low dose of the NMDA receptor blocker MK-801 (dis-
ocilpine). This drug is used for modeling schizophrenic-like behavior in animals.
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Chapter 1

Introduction
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1.1 Extracellular recordings of neural activity

1.1.1 Physical nature of measured data

The primary function of a neuron is processing and transmission of cellular
signals. The cellular signals can occur in many different forms depending on its
purpose, but the main signal form processed by the neurons are the electrical
signals.

Major part of the cell’s electrical activity is provided by the electrochemical
dynamic of its transmembrane potential. Controlled changes of the transmem-
brane potential are the main method of signalling in the neural tissue.

Structure of neuron

Neurons can have a wide variety of shapes, according to their specific position
in a neural tissue, but every neuron can be simply divided into three sections:

1. Input section. This part of a neuron is usually formed by so called dendrites,
cellular extensions with many branches, forming a tree-like structure. This
is where the majority of input in the neuron occurs.

2. Integration section. This is the part of a neuron, where all the input signals
are integrated and evaluated together, according to the specific weight of
each input. This integration begins already in the dendrite branches and
ends up in the soma, the central part of a neuron. The resulting sum of
all the inputs is evaluated in so-called axon hillock at the beginning of the
output section of neuron.

3. Output section. This part of a neuron is commonly reffered to as an axon. It
is a variously long cable-like projection, which can extend tens, hundreds,
or even tens of thousands of times the size of the soma. The axon carries
the information away from the soma and transmits it to the other neurons.

The signal input to the neuron takes place in so called synapses, where the out-
put section of one neuron called presynaptic membrane adjoins the postsynap-
tic membrane, the input section of the other neuron . The signal between the
two neurons is transmitted depending on the synapse type. The most common
are the chemical synapses, where the incoming signal triggers a release of a
specific chemical called neurotransmitter from the presynaptic membrane. The
neurotransmitter diffuses through the synaptic gap, binds to the receptors on
the postsynaptic membrane and triggers the corresponding response.
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Transmembrane potential

The transmembrane potential is defined as a difference of electric potentials
between the two sides of a semipermeable cytoplasmatic membrane. This dif-
ference is caused by the electrochemical gradient of ions, which is induced by
the semipermeability of the membrane, where the most of the substances and
especially the charged substances cannot pass through the membrane freely.
Therefore if there is a difference of charge concentration inside and outside the
cell, a non-zero transmembrane potential occurs.

If the cytoplasmatic membrane were surrounded by the solution of one ion
only, the resting potential would be equal to that ion’s equilibrium potential.
Equilibrium potential is defined as a voltage at which the distribution across
the membrane of particular ion is in equilibrium. This means that the potential
exactly matches (resists) the diffusive tendency of the ion, such that the net
current of the ion across the membrane is zero and unchanging. The equilibrium
potential of a particular ion is designated by the notation Eion (i.e. for potassium
the equilibrium potential EK = −80mV , for sodium, ENa = +60mV ).

Equilibrium potential depends on the ion concentrations on both sides of the
membrane as shows the Nernst equation:

Eion =
RT

zF
ln

[ionout]

[ionin]

where R is the universal gas constant (R = 8.314K−1.mol−1), T is the ab-
solute temperature in Kelvines, z is the ion valence, F is Faraday constant
(F = 9.649x104C.mol−1) and [ionout]/[ionin] are the concentrations of the ion on
respective sides of the membrane.

Ion Intracelullar [mmol/l] Extracelullar [mmol/l]
Na+ 5− 15 145
K+ 140 5
Mg2+ 0.5 1− 2
Ca2+ 10−4 1− 2
H+ 7× 10−5 (pH 7.2) 4× 10−5 (pH 7.4)
Cl− 5− 15 110

Table 1.1: Ion concentrations inside and outside a typical mammalian cell. (Al-
berts et al., 2002)

Cytoplasmatic membrane is differently permeable for many ions, each of
which contributes to the resting potential. Commonly three main ions form the
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most of the resting potential and their contribution can be mathematically de-
scribed using the Goldman-Hodgkin-Katz equation:

Em =
PK+

Ptot
EK+ +

PNa+

Ptot
ENa+ +

PCl−

Ptot
ECl−

Here Em is the membrane resting potential, EX is the equilibrium potential
for ion X, PX is the relative permeability of ion X and Ptot is the total permeabil-
ity of all permeant ions, in this case

Ptot = PK+ + PNa+ + PCl−

Most of the living cells are keeping a stable value of the transmembrane
potential called resting potential. This is achieved by the action of ion trans-
porters embedded in the membrane, which maintain different ion concentra-
tions inside and outside the cell. The concentration differences cause the inner
surface of the membrane to be charged negative and the outer surface to be
charged positive. The value of the resting potential in most cells lies in the
range from −30 to −90mV . The resting concentrations of chosen ions inside and
outside a typical mammalian cell are shown in table 1.1.

Signal integration

The role of a single neuron in a tissue can be simply viewed as an analog-
to-digital converter. It usually summarizes a large number of electrical inputs
from other neurons, and according to the resulting potential it fires an action
potential or not.

Depending on the synapse type, the incoming singal can raise either a depo-
larization (in so called excitatory synapses) or a hyperpolarization (in so called
inhibitory synapses) of the postsynaptic membrane potential. This potential
change is initiated by opening or closing the corresponding ion channels with
the activated receptors and spreads down the dendrite. This potential change
propagation can be algebraically described using length and time constants.

Length constant λ is defined as

λ =

√
rm

(ri + ro)

where rmis the resistance across the membrane, ri is the resistance inside the
membrane, and ro is the resistance outside the membrane. In calculation the
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effects of ro are usually negligible and therefore the equation is often simplified
as

λ =

√
rm
ri

The resistance across the membrane is a function of the number of open ion
channels and the resistance inside the membrane is generally a function of the
thread width and the inner space characteristics. The length constant is used
to describe the fall of the potential difference across the membrane of volume
conductor according to the distance from the source

V (x) = Vmaxe
−x/λ

where V (x) is the potential in the distance of x from the origin and Vmax is
defined as the maximum potential change at the origin, Vmax = rmI, where rm
is the resistance across the membrane and I is the current flow. The longer a
length constant of an input is, the bigger weight the input will have along the
cell.

Time constant τ is defined as

τ = rmcm

where rm is the resistance across the membrane and cm is the capacitance
of the membrane and it is a function of the properties of the lipid membrane
bilayer. The time constant is used to describe the fall of the potential in time

V (t) = Vmaxe
−t/τ

where V (t) is the potential in time t.

Extracellular signal propagation

Electrical currents from the neuronal activity distribute in all directions from
a source through the neural tissue. Electrical fields and currents in a neural
tissue act according to Maxwell’s equations. Electrical properties of a tissue can
be described by conductivity σ which is defined as the reciprocal of electrical
resistivity ρ

σ =
1

ρ
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and dielectric constant κr, defined as a relative static permitivity ε of the
medium.

κr =
ε

ε0

Most of the current in a macroscopic cell suspension is expected to bypass
the cells, mainly because of its linearity in the condictive sense. When tissue is
linear in both dielectric and conductive senses and is subjected to an oscillating
electric field of frequency f , the capacitive effect can be described by complex
conductivity:

σc = σ(f)

[
1 + j

2πfε(f)

σ(f)

]

Complex conductivity is a volume conductor analog of impedance in a normal
electric circuit containing resistors and capacitors. The main consequence are
the phase shifts between brain source waveforms and the corresponding poten-
tials. But this phase shift is a different phenomenon from the phase differences
observed between potentials at various locations in the brain, which are due to
phase differences between many underlying current sources (Nunez and Srini-
vasan, 2006).

1.1.2 Data acquisition

It is possible to study the electrical activity of a neuron either by measur-
ing its transmenbrane potential changes directly (intracellular recordings) or by
measuring the potential changes in an extracellular space (extracellular record-
ings).

Both techniques have advantages and disadvantages. Here I will focus on the
extracellular recording. As mentioned in the section above, electrical activity of
a single neuron propagates through the extracellular space as the extracel-
lular action potential, and it can be measured there using an extracellular
electrode. The first use of microelectrodes for extracellular recording of neu-
ronal activity was in the hippocampus by Birdsie Renshaw, Alexander Forbes
and Robert Morison in 1940 (Andersen et al., 2007).

The extracellular signal is always a sumation of activity of many neurons.
In the case we are able to distinguish the individual neurons in the recorded
signal we can study information processing on the level of the neural networks.
In addition it is possible to record the neuronal activity in freely moving animals
and thus to correlate it with their behavior and stimuli presentation.
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A simplified scheme of a basic set-up for the extracellular recording is shown
in Figure 1.1.

Figure 1.1: Scheme of a basic set-up for the extracellular recording. From
Lewicki (1998).

Microelectrodes

The shape of the electrode affects what types of signals are measured. The
larger the tip of the electrode is, the more units (neurones) are recorded, but the
more difficult it is to distinguish them and vice versa (Lewicki, 1998). An ideal
electrode for extracellular recording of individual unit activity has a very small
volume.

The most important characteristic of the electrode is its impedance. It de-
scribes the electrical properties of the electrode in alternating current in the
same way as resistance does it in direct current (in DC there is no distinction
between impedance and resistance, it can be thought of as impedance with zero
phase angle). The impedance affects sensitivity of the electrode and there is
an effort to keep it as low as possible. Same as the resistance, impedance is a
function of exposed area of the recording tip; the bigger is the diameter of an
electrode, the lower is the impedance. This is in contradiction to the need for the
smaller diameters electrodes suitable for the recording of individual neurones
activity.

Action potentials are measured by means of extracellular glass pipettes, iso-
lated wire electrodes with sensitive tip, or by multiple-site probes.
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Glass electrodes can be used to monitor the activity of a single cell, but are
not always practical in freely moving animals as these electrodes are fragile.

Wire electrodes are insulated except from the sensitive tip at the end, which
represents the recording site. They provide better mechanical stability and al-
low for recording from one site using multiple wire electrodes in fixed bundles.
The smallest bundle is made from two electrodes and was first described by Mc-
Naughton et al. (1983) as a stereotrode. Nowadays the most commonly used
configuration is a set of four wired electrodes bundled together, referred to as a
tetrode (O’Keefe and Recce, 1993). Using wired electrodes has numerous ad-
vantages, including easy and cheap fabrication, low-impedance recording tips,
and mechanical stability. In wire electrodes the impedance can be lowered by
gold plating of the tip. Their main disadvantage is that the exact configura-
tion of the recording tips relative to the neurons can not be exactly determined
(Csicsvari et al., 2003).

Factory assembled silicon probes offer great advantages over classical tetrode
recording, they are substantially smaller in size and can be arranged over a
longer distance. In silicon devices, the thin-film recording sites are defined litho-
graphically (Csicsvari et al., 2003) . Any two-dimensional configuration can be
achieved with proper design and can be adapted to particular brain structures
and neuron types. Currently available probes can record from as many as a
hundred well-separated neurons (Buzsaki, 2004). It offers precise distribution
of recording sites and therefore allows for the determination of the spatial re-
lationship of the isolated neurons. Basic problem of this approach is the price
of components needed and also a certain fragility of the probe in comparison to
wired electrodes.

Data preprocessing

Potential difference between given microelectrode tip and a chosen reference
oscillates at values close to zero with extremes in the range of hundreds of mi-
crovolts (µV ). For further data processing, this signal must be amplified (i.e.
10,000x - 50,000x). In the case of multiple channel recording, each channel must
be amplified separately. Number of amplifiers available can be a limitation for
the number of simultaneously recorded channels.

The electrophysiological signal is a continuous analogous signal of potential
differences (see example in Figure 1.2), which has to be stored for later eval-
uation in a digital format. Transformation from analogous data to it’s digital
representation is made by an analog-to-digital converter. This device works at a
given sampling frequency saving discontinuous series of voltages. This implies
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Figure 1.2: Example of extracellular record with spikes. From Lewicki (1998).

inevitable loss of information, which has non-trivial consequences, as will be
shown later. The magnitude of the signal at the given sampling time is stored as
a binary number, which also causes loss of precision, depending on the bit-width
of the sample (usually in the range from 12 to 24 bits).

To improve the accuracy, raw data are filtered from unwanted low and high
frequencies. In the case of unit activity recording filtering improves precision of
the signal coding for a given bit-width.

Data storage

There are two approaches to how to save recorded data. First is to store
all the data in one uninterrupted time series and do the unit activity lookup
and separation later (continous recording). This approach provides better
information about the underlying signal and noise and therefore allows for
better classification of individual units. On the other side it requires large
amounts of computer memory. Second approach is to detect unit activity dur-
ing recording and to store only those time frames containing the expected event
(discontinuous recording). This approach is much less storage space de-
manding and substantially reduces the amount of time needed for a further data
processing.
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1.2 Processing of the recorded data

Figure 1.3: Example of a spike. Adapted
from Lewicki (1998).

A single extracellular electrode
sums electrical activity from several
neurones. Contribution of each neu-
rone depends on its distance from the
electrode’s tip. To progress with data
evaluation, it is essential to distin-
guish the individual neuronal activity
in the record from each other.

Unit activity is commonly reffered
to as a spike, short amplitude peak
in the recorded potential (see Figure
1.3). This event is characteristic by
its high frequency and amplitude in
comparison to the noise. The crucial
role in the spike sorting plays the as-
sumption that spikes from one neu-
rone have a waveform stable in time
and spikes from different neurones have different waveforms (Buzsaki, 2004).

Nowadays the neuronal activity is most recorded by the means of wire
tetrodes or factory-assembled probes. In both, a spike of a single neurone is
recorded by several electrodes simultaneously. Each electrode records a differ-
ent waveform of the spike depending on its position with respect to the neurone
and therefore allows for much more precise spike sorting.

Data analysis steps

In general, the analysis consist of the following steps. These steps will be
discussed in detail later:

1. Spike detection. In this step, individual spikes are extracted from the
underlying data.

2. Spike parametrization. Here each spike is represented by a set of its
characteristic features (feature vector).

3. Cluster analysis. Feature vectors are then classified and sorted using
cluster analysis algorithms.
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4. Cluster quality assessment. The quality of clusters produced by chosen
cluster analysis algorithm is evaluated and only clusters with a sufficient
quality are used for further analysis.

Graphical overview of the basic steps is shown in Figure 1.4.

Figure 1.4: Overview of electrophysiological data processing. From Hazan et al.
(2006).

1.2.1 Spike detection

The recorded data represent noise combined with spikes from several neu-
rones. The task of the spike detection is to distinguish and isolate the individual
spikes in the record.

Spike is characteristic by it’s waveform. A sharp peak in the record highly
above the noise level. Therefore it is usually detected by crossing a given thresh-
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old. In discontinuous recordings it is the main approach because of its fast eval-
uation (Lewicki, 1998). Choosing a proper threshold value is a key part of the
experiment especially in discontinuous recordings. If the threshold is set too
high, lots of spikes are lost, if the threshold is set too low the record contains
an unwanted fraction of fake noise spikes that crossed the threshold because of
random sumation of extracellular potentials.

In continuous records it is possible to use the threshold detection as in the
discontinuous recordings, beside of it it is possible to use the energy of the signal
to detect the presence of spike, because the mean energy of a spike is expected
to be significantly higher than the mean energy of the underlying noise. Energy
from a given time frame is then compared with mean energy of the whole data
and if the energy difference crosses a given threshold value, it is marked as a
spike.

After spikes are detected, they are usually isolated and separated from the
rest of the record to reduce the total amount of processed data. In all continuous
or discontinuous records the time frame saved is always started several samples
before the point of detection to keep the very beginning of the spike and its width
covers the expected length of the spike.

One of the basic problems of spike isolation is possible presence of overlap-
ping spikes. Frequency of overlaps depends on the firing rates of the units in-
volved. The percentage of missed spikes is defined by the probability that the
peak of the isolated spike will occur during the negative phase of the preceeding
spike. It can be quantified as 100rd/1000[%], where r is the firing rate in hertz
and d is the duration of the negative phase in milliseconds (Lewicki, 1998). Thus
if the preceeding neurone is firing at 20 Hz and the duration of the negative
phase is approximately 0.5 ms, then approximately 1 % of the spikes will be
missed.

Another source of error is simultaneous firing of two or more neurones with
their spikes not reaching the threshold. Sumation of the spikes can cross the
threshold and be recorded. In this case, if two independent neurons have rates
r1 and r2 , then their spikes will sum to cross threshold at a frequency of approx-
imately r1r2d/1000, where d is the spike width in milliseconds (Lewicki, 1998).
If the two background neurons have firing rates of 20 Hz and the spike width is
0.25 ms, then they will generate false positives at a rate of 0.1 Hz.

Introduced equations will typically underestimate the frequency of missed or
overlapping events because of a possibly high correlation of firing patterns in
adjacent neurons.
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1.2.2 Spike parametrisation

Each spike is represented by a set of values. The values encode a shape of
the spike. Number of the values depends on the time frame width and sampling
frequency. Thus the spike can be formally viewed as an n-dimensional vector,
where n is the number of values. The dimension is usually 32 or 64 samples.
In the case of multi-channel electrodes (i.e. tetrodes) the number of dimensions
increases, for tetrodes usually 128 or 256 dimensions for a single spike.

The task of spike classification therefore involves evaluation of similarities
and dissimilarities in a high-dimensional vector space. It is very computation-
ally demanding and slow. To reduce the dimension of the vector space, each
spike is represented by a set of suitable parameters, which form a new vector
with a much lower dimension.

Commonly used features include measures of the shape, like spike height and
width or peak-to-valley amplitude. These features are very easy to calculate and
are therefore used mainly in the conditions with restricted computer resources.
Another widely used approach is the use of principal component analysis.
(Lewicki, 1998)

The idea behind the principal component analysis (PCA) is to find a new ba-
sis of the vector space. As a result most of the data variability is represented
along the first dimension of the new basis, the most of the remaining variability
along the second dimension and so on. Therefore it is usually sufficient to repre-
sent the data using only a few first elements of the transformed vectors, mostly
three, reffered to as PC1, PC2 and PC3 (PC standing for Principal Component).
(Lewicki, 1998)

Waveform interpolation

To achieve better performance in spike classification, signal is sometimes
upsampled by interpolation using discrete convolution with an appropriate re-
construction function, i.e. sinc function:

s(t) =
n=∞∑
n=−∞

s(n)h(t− n)

where s(t) is the reconstructed waveform voltage at time t, s(n) is the raw
voltage waveform sampled at time intervals n = 1, 2, 3, ... and h(t) is the sinc
reconstruction function:

h(t) =
sin πt

πt
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This interpolation allows for better waveform estimate and more precise fea-
ture assesment. Other interpolation methods can be also used, bud only Fourier-
based techniques have a solid teoretical grounding. Alternative methods like
cosine, Gaussian, polynomial or cubic spline interpolation are useful for display
purposes but do not give the best results (Blanche and Swindale, 2006).

Figure 1.5: Example of an interpolated spike sampled at the Nyquist rate (12.5
kHz, large dots) and the original waveform (sampled at 100 kHz, fine black line).
Spike amplitudes are underestimated by ε1 and ε2. The cubic spline interpolated
waveform (fine grey line) is shown for comparison. From Blanche and Swindale
(2006).

Information carried by spike

As shown in Gold et al. (2006), extracellular action potential carries not only
the information about electrode position in relation to the firing cell, but it is also
modified by composition of ionic currents in different cells. It has been shown
that each cell’s dendritic morphology had very little impact on extracellular ac-
tion potential waveform.

Henze et al. (2000) reported several parameters of an intrucellularly recorded
action potentials that can be deduced from extracellularly recorded spike wave-
forms. One is the width of the intracellularly recorded action potential, which is
defined precisely by distinct points on the extracellular spike. Another parame-
ters are the amplitude changes of the intracellularly recorded action potential,
which are reflected by changes in the amplitude of the initial negative phase of
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the extracellular action potential. These amplitude changes are dependent on
the state of the network.

1.2.3 Cluster analysis

Cluster analysis is a method of grouping objects from a data set according to
their similarities and dissimilarities. Objects in a cluster should be similar to
one another and different from objects in another cluster.

Types of clusterings

A set of clusters is often called clustering and we can distinguish several
types of clusterings (from Tan et al., 2005):

• Hierarchical versus Partitional clustering: A partitional clustering is sim-
ply a division of the dataset into non-overlapping subsets (clusters); hier-
archical (or nested) clustering allows existence of subclusters and clusters
here are organized in a tree, where each node (cluster) in a tree (except for
the leaf nodes) is the union of its subclusters.

• Exclusive versus overlapping versus fuzzy: Clusterings shown in Figure
1.6 are all exclusive, because they assign each object to a single cluster.
There are many situations in which an object can be reasonably assigned
to more than one cluster, these clusterings are reffered to as overlapping
or non-exclusive. In fuzzy clustering every object belongs to every cluster
with a membership weight in the range from 0 (absolutely doesn’t belong)
to 1 (absolutely belongs). In fuzzy clustering it is often imposed that the
total sum of weights for each object must equal 1.

• Complete versus partial: A complete clustering assigns every object to one
of the clusters, whereas in partial clustering there remain some objects
unclustered. In electrophysiology it is almost always partial clustering, as
there is a fraction of clusters which represent uninteresting noise.

Types of clusters

Cluster analysis tries to find useful groups of objects, where usefulness is
determined by the goals of the analysis. There are several notions of a cluster
that proved useful in practice (examples are shown in Figure 1.7) (from Tan
et al., 2005):
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Figure 1.6: Different ways of clustering the same dataset. From Tan et al. (2005).

• Well-Separated: In well-separated clusters each object is closer (or more
similar) to every other object in the cluster than to any object not in the
cluster. Well-separated clusters can have any shape, but the distance be-
tween them must be larger than the distance between any two objects
within a group. Therefore it is usable only when the data form natural
clusters that are quite far from each other.

• Prototype-Based: A cluster is defined by its prototype object and it contains
all the objects, that are more similar to this prototype than to prototypes
from other clusters. For data with continuous attributes the prototype of a
cluster is often a centroid (i.e. the average of all the points in the cluster);
for categorical attributes the prototype is often a medoid (i.e. the most
representative point of a cluster). These clusters are commonly reffered to
as center-based clusters.

• Graph-Based: In the case of data that can be represented as a graph,
where the nodes are objects and the links represent connection among ob-
jects, cluster can be defined as a connected component - a group of objects
that have connection to one another and no connection to objects outside
the cluster. Example of graph-based clusters are contiguity-based clusters,
where two objects are connected if they are within a given distance of each
other.

• Density-Based: A cluster is defined as a region with high density of objects,
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surrounded by a region of low density.

• Shared-Property (Conceptual Clusters): Objects in such a cluster share
some property. This definition encompasses all the above definitions, how-
ever the shared-property type include also some new types of clusters.

Figure 1.7: Examples of different types of clusters. From Tan et al. (2005).
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Cluster analysis in electrophysiology

In electrophysiology the cluster analysis is mainly used for classification of
spikes. There is an assumption that the underlying data result from several
independent classes, which are expected to represent different neurons and form
different clusters. (Lewicki, 1998)

Clustering is commonly accomplished using manual clustering function in
one of the available software for this purpose. There are implemented algo-
rithms for automatic clustering in electrophysiology, nevertheless these algo-
rithms are not reliable enough for a fully automatic data processing. They are
commonly used in a semi-automatic manner, i.e. the produced results are re-
viewed and refined by the operator manually.

In electrophysiology it is mostly a partial clustering, because there is always
a fraction of events that is likely to be a noise rather than a distinguishable
spike activity. It is also exclusive clustering, because one spike is expected to be
generated by one neurone only and there is no way to assign one spike to more
neurones in real.

1.2.4 Manual clustering

The most basic method of cluster analysis is manual clustering. This is done
using some kind of graphical interface program, which allows an operator to
select two feature vector elements to create a two-dimensional scatter plot from
those elements. The operator then draws polygons around a subset of spikes
assigning the spikes to a common cluster. By viewing other projections, the
operator can adjust and refine the cluster’s boundaries. (Harris et al., 2000)

This method is highly subjective and irreproducible, as even the same experi-
menter does not get exactly the same results on the same data set. Nevertheless
with an experienced operator the results differ only slightly and for most of the
experimental settings those slight differences do not have a significant influence
on the results.

There are several software solutions made solely for the purpose of man-
ual cluster analysis of electrophysiological data, i.e. WClust, MClust, Klusters,
Spikesort 3D and others. Here I will describe in more detail those I have been
working with.

MClust

MClust is an toolbox for Matlab™(The MathWorks Inc.) being developed
by A. David Redish since 1998 (Redish et al., 2010). The current version is
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MClust 3.5A released on April 2008 and requires Matlab™ version 2007a or
higher.

MClust loads raw waveform data, calculates chosen features from the data
and displays a scatter-plot for the manual clustering. MClust is equipped with
loading engine for Neuralynx data format, but a custom loading engine can be
developed according to the requirements described in the documentation, so any
data format can be proccessed in MClust.

Basic cluster features in MClust include peak (maximum height of the wave-
form for each channel), energy (waveform energy for each channel), time, prin-
cipal components 1, 2 and 3 (first three components of the principal component
analysis). There are also additional features like area (area within the wave-
form), valley (maximum depth of the waveform), peak to valley ratio, spike width
and others. It is possible to develop and add new features according to the re-
quirements described in MClust documentation as well.

MClust allows the operator to view many properties of the created clusters
and includes implemented algorithms for calculation of cluster quality mea-
sures, namely Isolation distance and L-ratio (see section 1.2.8 for details).

Klusters

Klusters is a standalone application available for all common platforms. It is
distributed under the GNU General Public License for free as a source code and
can be compiled in all common operating systems (Hazan et al., 2006). As there
is no need for supportive software (as it is for Matlab in the case of MClust), the
overall costs of Klusters usage are minimal.

In contrary to MClust, Klusters has its exactly defined data file structure,
which is described in the documentation. Klusters does not include tools for
feature calculation, feature data have to be loaded from a separate file created
by another program.

1.2.5 Automatic clustering

Automatic clustering algorithms try to sort a given set of feature vectors into
separate clusters. As in the electrophysiology the number of clusters (neurones)
is not known, these algorithms have to estimate the proper number of clusters,
that gives the best clustering results.
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K-Means

One of the general clustering algorithms is K-Means (Tan et al., 2005). This
is an iterative algorithm that basically runs in the following steps:

1. Select K points as initial centroids.

2. repeat

(a) Form K clusters by assigning each point to its closest centroid.

(b) Recompute the centroid of each cluster as a mean of the points as-
signed to this cluster in (a).

3. until Centroids do not change.

K-Means has been used in electrophysiology by Takahashi et al. (2003), but it
is not widely used because it requires an estimation of the number of clusters.
K-Means also fails to cluster “natural” clusters, when they have non-spherical
shapes or widely different sizes or densities (Tan et al., 2005).

KlustaKwik

KlustaKwik is a program for unsupervised classification of multidimensional
continuous data (Harris, 2002). KlustaKwik is based on the Classification Ex-
pectation Maximization (CEM) algorithm (Celeux and Govaert, 1992). It also
uses several tricks to improve execution speed while maintaining good perfor-
mance.

KlustaKwik accepts a set of feature vectors in a “feature file” input and a set
of additional parameters. It produces two output files, the “cluster file” and a
log file. Input file should be named according to the convention described in the
documentation. The cluster file contains the number of classes chosen by the
program and assignment of classes to the input vectors.

The additional parameters include MinClusters and MaxClusters, which re-
strict the random initial assignment. The initial number of clusters will be in the
range from MinClusters to MaxClusters, but the final number may be different,
since clusters can be split or deleted during the course of the algorithm. There is
also the MaxPossibleClusters parameter, which reduces the maximal final num-
ber of created clusters. All the parameters are described in the documentation
file.
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BubbleClust

BubbleClust is an application developed by Peter Lipa, University of Arizona
(Horton et al., 2007) and now provided by Neuralynx Inc.

BubbleClust is based on the kth-nearest neighbour algorithm (Daly et al.,
2004). BubbleClust produces a decision tree that segregates events from the
lowest to the highest neighbor density. It groups spikes according to the nearest-
neighbor distances, clustering spikes that are close to each other.

SOMA

SOMA is an implementation of a machine learning algorithm for spike sort-
ing described by Horton et al. (2007).

First, the algorithm estimates the number of clusters using a proposed ex-
tension to the Kohonen method based on the principle of self-organising maps
(Kohonen networks). After the number is determined, spikes are assigned to the
clusters according to the nodes produced in the first step, reducing misclassifica-
tion using extra nodes, whose position is iteratively updated and moved towards
the edge of the cluster.

1.2.6 Semi-automatic clustering

Results of the automatic algorithms are considered not to be sufficiently accu-
rate in comparison to the manual clustering. Often used approach is to perform
automated clustering using some of the algorithms and then refine the produced
clusters using some of the manual clustering tools.

MClust is deployed together with KlustaKwik and BubbleClust implementa-
tions and allows for the easy results refinement. Klusters program is developed
with respect to the data structure produced by KlustaKwik and it is therefore
easy to combine these two.

The refinement usually includes merging of the clusters that seem to belong
together according to the operator’s experience and deleting clusters that are
obviously formed from noise spikes.

1.2.7 Online clustering

There are two different approaches to cluster analysis. The first is to per-
form clustering on the whole dataset after the recording is done. This so called
offline clustering is more common, because it allows for better feature analy-
sis and cluster quality assessment. Another approach is to cluster data online
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(online clustering) while recorded. This setting allows for “closed-loop” exper-
iments, i.e. the adaptation of the experiment to the observed neural response.
(Rutishauser et al., 2006)

As the online clustering needs to be performed in realtime, it must be done
using some automatic clustering algorithm. Some algorithms require a learning
phase, after which neurons are classified (Aksenova et al., 2003).

1.2.8 Cluster quality assessment

Cluster analysis produces a set of clusters. For further analysis it is neces-
sary to distinguish between good clusters that are well-separated from others,
and bad clusters, which are not so reliable.

In electrophysiology there is not only a need for well-separated spikes. It is
also crucial that the spikes in one cluster come from one neurone. Assuming the
spikes generated by a single neurone, the inter-spike interval should exceed
the absolute refractory period, in which the neurone is not able to fire an action
potential. This refractory period uses to be in the range of miliseconds (Kandel
et al., 1991). Therefore if there are at least two spikes in the cluster in a shorter
interval, the cluster has to be considered to represent a multi-unit activity.

In most cases, it is still a subjective judgment of human experimenter who
evaluates clusters quality according to his experience. This approach is highly
irreproducible and precludes comprehensive assessment of single-unit studies,
and therefore there were suggested metrics that evaluate the cluster quality.

In the following text I will use C as a symbol for a set of spikes in a cluster
and nC as a symbol for the cardinality of C: nC = |C|.

Signal-to-noise ratio

Signal-to-noise ratio is usually used to define an overall quality of the
recorded signal. Joshua et al. (2007) describes two ways of computing signal-
to-noise ratio for a given cluster. Both methods compute the signal in the same
fashion but differ in their noise definition:

The average cluster waveform of a cluster C (in which all the spikes were
aligned by the negative peak) is defined as:

Xavg ≡
1

nC

∑
X∈C

X

Signal is then quantified as the difference h between the minimum and max-
imum of the average spike waveform:
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h = Max(Xavg)−Min(Xavg)

Signal-to-noise ratio (SNR) is then calculated as

SNR =
h

Noise× F

where F is a scaling factor and Noise is defined in two ways:

1. As the standard deviation of a so-called Resid vector. This vector is as
concatenation of all spike residuals in the cluster, where one spike residual
is calculated by subtracting its waveform vector from the vector of the mean
cluster waveform

2. As the standard deviation of a so-called Prev vector. This vector is a con-
catenation of 1.5-3ms period preceeding the spike.

Joshua et al. (2007) states that signal-to-noise ratio can become problematic in
some cases, especially in cases where the spike cluster actually reflects high
amplitude multi-unit activity.

Isolation score

Joshua et al. (2007) describes Isolation score as a good alternative to the
Signal-to-noise ratio. Isolation score quantifies the distance between the spike
cluster and the unclustered noise spikes. Joshua et al. (2007) presents a list
of general requirements for definition of a good formula for calculating quality
score:

1. The score should decrease with the increasing number of spikes that should
belong to the cluster, however were missed by the sorting algorithm (false
negatives).

2. The score should decrease with the increasing number of noise events that
were classified as spikes (false positives).

3. The score should be insensitive to the size of the extracted noise spikes.

4. The score should span an intuitive range, e.g. 0-1.

The presented score is defined as
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IS =
1

nC

∑
X∈C

P (X)

where P (X) can be viewed as a measure of probability that spike X belongs
to the cluster C. It can be viewed as a probability that event X belongs to the
spike cluster. Range of IS is from 0 to 1, where score of 1 means ideal isolation
with all spikes surely belonging to the cluster.

Isolation distance

Schmitzer-Torbert et al. (2005) describes Isolation distance as a useful clus-
ter quality measure. It is based on calculation of Mahalanobis distance. Ma-
halanobis distance D2

x,C of a spike x from the center of a cluster C is defined
as

D2
x,C = (x− µC)TS−1C (x− µC)

where x is a feature (column) vector of the spike and µC is the mean (column)
vector of the values of the spikes in cluster C. SC is a covariance matrix of the
spikes in the cluster C. Mahalanobis distance allows for the measurement of the
distance between objects in a high-dimensional space where there is a correla-
tion between dimensions. This can be observed for example in peaks of spikes on
different electrodes. In this case, the cluster has an elongated shape, reflecting
the correlation between the peaks.

Isolation distance is defined as the D2
x,Cvalue of the nthC closest noise spike. It

is the radius of the smallest ellipsoid from the cluster center containing all the
cluster spikes and equal number of noise spikes. Isolation distance is not defined
in the case where the number of cluster spikes is greater than the number of
noise spikes.

L-ratio

If the cluster C has a multivariate normal (Gaussian) distribution, then the
Mahalanobis distance D2

C (see above) will distribute as χ2
df with the number of

degrees of freedom equal to the feature space dimension. A scalar L is defined
as:

L(C) =
∑
x/∈C

1− CDFχ2
df

(D2
x,C)
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where CDFχ2
df

is the cumulative distribution function of the χ2
df . A low value

of L indicates that the cluster is well separated, whereas a high value indicates
that it is likely to include spikes that are not part of the cluster and exclude
spikes that should be in the cluster. Lratio is defined as L divided by the total
number of spikes in the cluster:

Lratio(C) =
L(C)
nC

Using Lratio instead of L allows larger clusters to be more tolerant to contam-
ination, but in situations where even small amounts of misclustered spikes can
bias the results, L can be more appropriate quality measure (Schmitzer-Torbert
et al., 2005).

Problems affecting cluster quality

There are several issues that can influence the cluster quality and usefulness
of cluster analysis (from Lewicki, 1998):

1. Burst-firing neurons: As mentioned above, the key assumption in such an
analysis is that spike shapes originating from one neurone are stable and
do not change in time. This is not always true. In the case of a bursting cell
(typical for e.g. complex spike cells), the consecutive spikes tend to have de-
creasing amplitudes. There are clustering techniques such as multivariate
Gaussian clustering, that can classify burst accurately if the attenuation is
not too large.

2. Electrode drift: As a response to pressure from the advancement of the
electrode, the neural tissue relaxes and neurones drift slowly to a different
position in respect to the recording tip. This usually results in a gradual
change of spike shapes. The problem can be solved either using the same
approach as in bursts or by splitting the data into a short time interval,
in which chosen features remain relatively constant, and to cluster each
interval separately.

3. Non-stationary background noise: If there is a fluctuating background
noise level, many more misclassifications will occur during high levels of
noise. This can be solved using a variable estimation of the classification
reliability depending on the background noise level, but it is rarely used
because of the complexity of time-varying noise model implementation.
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4. Spike alignment: In a small region of neural tissue, neurones often fire
in a synchronous pattern and show an alignment, which can sometimes
result in an overlapping. Typically spikes are aligned with respect to the
amplitude peak.
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1.3 Hippocampus

Hippocampus is one of the most intensively studied anatomical parts in the
rat’s brain. Its cellular structure is well known and it is the main subject of
extracelular neuronal activity recordings. The name hippocampus comes from
its appearance resembling a seahorse (fish of the genus hippocampus).

Hippocampus plays an important role in formation of declarative memory
across species (Eichenbaum and Otto, 1992) . In rats, hippocampus has proved
its importance in spatial navigation (O’Keefe and Nadel, 1978; Morris et al.,
1982) and place recognition (Klement et al., 2005).

1.3.1 Anatomy

Hippocampus is a curved sausage-shaped pair structure, situated at the base
of medial temporal lobes in forebrain (see Figure 1.8). In rats, hippocampus oc-
cupies a large portion of the forebrain. Hippocampus is a part of a hippocampal
formation. It includes the dentate gyrus (fascia dentata), the hippocampus
proper (Cornu Ammonis) and the subiculum (Fix, 2008). Some authors include
also presubiculum, parasubiculum and ethorinal cortex in the hippocampal for-
mation (Andersen et al., 2007).

Dentate gyrus and the hippocampus proper form two U-shaped interlocking
sectors. Dentate gyrus is divided into internal (buried) and external (exposed)
blade, hippocampus proper is further divided into four fields, CA1-4, CA stand-
ing for Cornu Amonnis.(O’Keefe and Nadel, 1978).

Hippocampus in mammals is a three layered (neocortex consists of six lay-
ers). It consists of principal cells and interneurones.

With the exception of CA4, the basic pattern in all fields of the hippocampus
is the same: an ordered sheet of principal neurones whose cell bodies are all
packed together in one layer (granular layer in dentate gyrus and pyramidal
layer in Cornu Ammonis).

Hippocampus is a part of so-called limbic system together with cingulate
cortex, olfactory cortex, and amygdala (Andersen et al., 2007). These regions
are highly interconnected and do interact with one another.

Cell types

The principal neurones in the hippocampus proper are pyramidal cells, ex-
citatory neurones with the triangular shaped soma (cell body), after which the
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Figure 1.8: Line drawing of the rat brain. It shows the septotemporal and trans-
verse axes of the hippocampal formation. From Andersen et al. (2007)

neurone is named. Pyramidal cell have a single axon, a large apical dendrite
and multiple basal dendrites.

Principal cell type in dentate gyrus are granule cells which in comparison
with pyramidal cells have only apical dendrites.

Most abundant (Freund and Buzsaki, 1996) interneurones in hippocampus
are so called basket cells. Their axons ascend through the cell-body layer, mov-
ing orthogonally to the dendrites of the pyramidal or granule cells, giving off
numerous descending collaterals which end in basket-like plexuses around the
cell bodies.

Other interneurones (e.g. the stellate and fusiform cells of Cajal) send their
axons into the apical dendritic layer to make contact with the distal dendrites of
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the pyramids and granules. There is physiological evidence that some of the in-
terneurones exert a widespread inhibitory control over the pyramidal and gran-
ule cells. (McBain and Fisahn, 2001; Andersen et al., 2007)

Layering

Dentate gyrus has three layers starting from superficial to deep layers:

1. The granule layer containing densely packed cell bodies of the granule
cells;

2. the molecular layer formed by the intertwinning apical dendrites of the
granule cells and their afferents;

3. the polymorph layer in the hilus of dentate gyrus merging with the CA4
field, which contains the initial segments of the granule-cells axons as they
gather together to form the mossy fibre bundle.

Hippocampus proper is basicaly a three-layered structure just like the dentate
gyrus, but it has been divided into seven distinct layers:

1. The alveus, most superficial layer containing axons from pyramidal cells;

2. the stratum oriens, next layer below alveus containing basal dendrites of
the pyramidal cells and also basket cells, as well as afferents from the
septum;

3. the stratum pyramidale containing cell bodies of pyramidal cells;

4. the stratum lucidum;

5. the stratum radiatum containing septal and commisural fibres. It also con-
tains Schaffer collateral fibers which are the projection forward from CA3
to CA1.

6. the stratum lacunosum, a thin stratum that also contains Schaffer collat-
eral fibers and in addition perforant path fibers from the superficial layers
of entorhinal cortex. Due to its small size, it is often grouped together
with stratum moleculare into a single stratum called stratum lacunosum-
moleculare;

7. the stratum moleculare.

(Andersen et al., 2007)
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Connections

The cells of the hippocampus receive afferents from several sources (O’Keefe
and Nadel, 1978; Shepherd, 2004):

1. Intrinsic afferents from cells of the same field. There are two types of in-
teractions between pyramidal cells within the same CA field: a direct exci-
tatory one and an indirect inhibitory one.

2. Intrinsic afferents from other sectors. The major interconnections between
the three sectors are, primarily unidirectional, starting from the dentate
gyrus, coursing through the CA3 field, and ending in CA1. Unmyelinated
axons of dentate gyrus granule cells project along the mossy fiber path-
way to the CA3 region. These axons emerge from the basal portions of the
granule cells and pass through the hilus of the dentate gyrus before enter-
ing the stratum lucidum of CA3. The pathway was named so by Ramon
y Cajal because the axons display varicosities all along their lengths, giv-
ing them a "mossy" appearance. Mossy fibers form multiple synapses with
the elaborate dendritic spines of CA3 pyramidal cells in stratum lucidum.
So called Schaffer collaterals are axons of CA3 pyramidal cells which
project to CA1.

3. Commissural afferents from the opposite hippocampus. Extensive connec-
tions exist between the two hippocampi crossing the midline in the ventral
and dorsal hippocampal commissures.

4. Extrinsic afferents from outside the hippocampus:

(a) From cortical regions. The dentate gyrus receives its major input from
enthorinal cortex through so called perforant path. The projection to
the dentate gyrus arises mainly from layer II of the enthorinal cortex.
A minor component also comes from the deep layers of the enthorinal
cortex.

(b) From subcortical regions. Subcortical inputs to the dentate gyrus orig-
inate mainly in the septal nuclei, supramamillary region of the poste-
rior hypothalamus and several nuclei in the brainstem, especially the
locus coeruleus and raphe nuclei.
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Figure 1.9: Schematic diagram of the intra-hippocampal connections. Horizon-
tal section through the right hippocampus. From O’Keefe and Nadel (1978).

1.3.2 Physiology

Hippocampal EEG

Physiological activity of hippocampus can be easily studied using EEG
recordings. Hippocampus shows three basic types of overall EEG activity:

1. A slow sinusoidal rhythm which normally ranges from 3 to 7 Hz in rabbit,
dog, and cat, and 6 to 10 Hz in the rat and gerbil. This rhythm has been
called theta, or rhythmical slow activity.

2. Large irregular amplitude waves in which the dominant frequency is
slower than in theta and which, with some electrode placements, contain
so called sharp waves of 50-100 ms duration.

3. Small irregular amplitude, desynchronized, high-frequency pattern which
rarely lasts for more than a second or two in the rat, but can be more
sustained in rabbit and cat.

The hippocampus contains neural circuitry which tends to oscillate at the fre-
quencies of hippocampal theta. According to depth-mapping studies of hip-
pocampal theta in rats there is an emerging phase shift between theta in differ-
ent layers. The phase difference is about 180° between theta in CA1 and theta
in dentate gyrus. Characteristics of this shift differ depending on the rat’s state.
In freely moving rats there is a notable gradual shift of phase depending on the
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depth, whereas in curarized rats it is rather an abrupt reversal of phase occur-
ring in stratum radiatum. Distribution of theta is clearly a species-dependent
issue, e.g. in rabbits there is no reported effect of curare on theta profile at all.
(O’Keefe and Nadel, 1978)

Another state of EEG was described by Wolansky et al. (2006), who reports so
called hippocampal slow oscillation recorded using extracellular field techniques
in naturally sleeping and urethane-anesthetized rats. This state is present dur-
ing deactivated stages of sleep and anesthesia and is characteristic by a promi-
nent large-amplitude oscillation with a slow frequency (≤ 1Hz). Recorded units
exhibited differential firing patterns in different EEG states.

Theta rhytm generation

There are at least two generators of theta rhytm found in the dorsal hip-
pocampus: one is located superficially in CA1, whereas the other one is located
ventrally in the stratum lacunosum-moleculare of CA1 and stratum moleculare
of the dentate gyrus (Green and Rawlins, 1979). GABAergic and cholinergic
neurons of the medial septum - diagonal band of Broca contribute to the theta
rhythm by feed-forward disinhibition of CA1 pyramidal cells via the interneu-
rons, and cholinergic activation of an intrahippocampal CA3 theta oscillator
(Buzsaki, 2002).

Hippocampal feedback to the medial septum is crucial for producing
widespread synchrony, however, the hippocampo–septal feedback path is estab-
lished by long-range GABAergic interneurons. The septal and intrahippocampal
pathways produce a current source in the CA1 pyramidal layer and a sink in the
stratum radiatum of CA1. Hippocampus also receives rhythmic subcortical mod-
ulatory inputs from several other sources (Sirota and Buzsaki, 2005).

Presence of multiple interdependent dipoles was also confirmed in Mont-
gomery et al. (2009) by measured layer-dependent fluctuations of theta power,
coherence and phase. Nevertheless, current research points out several inade-
quacies of this model. One of the findings which is at odds with the described
model is that the theta phase relationship of pyramidal cells is not fixed but
changes dynamically as a function of behavior (Buzsaki, 2002).

According to its resistance to administration of atropine, two types of theta
can be distinguished: atropine-sensitive and atropine-resistant. Early observa-
tions reported total elimination of theta oscillations in anesthetized animals. In
contrast, in the awake rats the amplitude and frequency of theta rhytm do not
substantially change even after large doses of systemically administered mus-
carinic blockers, although the wave shape and depth profile of theta under at-
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ropine are quantitatively different from those in thé drug-free animal. This
persisting form of theta is called “atropine resistant” (Buzsaki, 2002).

Another, extrahippocampal, theta oscillator is located in the entorhinal cor-
tex. Perforant path input to distal dendrites of the CA1 and CA3 pyramidal cells
and dentate granule cells is expected to produce current dipoles that are respon-
sible for the large amplitude of theta at around the hippocampal fissure (Sirota
and Buzsaki, 2005).

Gamma rhytm

Gamma rhytm is usually defined as EEG rhythm at frequencies of 30-100
Hz. Gamma is prominent in the hippocampus during its theta state. Rhythms
at similar frequencies occur in the neocortex and they are believed to play an im-
portant role in information processing. Gamma rhytm can be artificially gener-
ated in vitro by networks of interneurones from CAl stratum oriens and stratum
pyramidale during blockade of ionotropic glutamate receptors. Comparable net-
work activity was observed in a model of mutually inhibitory neurones. (Traub
et al., 1996)

Sharp waves

Sharp waves are irregular waves that originate in field CA3 and spread
throughout the hippocampus when animals are alert but immobile or as a com-
ponent of the sleep EEG. They are described as monophasic potentials of ap-
proximately 50–100 ms duration that occur at irregular intervals when animal
enters a state of alert immobility or during the slow-wave portion of sleep. The
waves have a mean frequency between 0.5 to 5 Hz and carry a high frequency,
low amplitude oscillation (ripple) on their ascending phase. (Rex et al., 2009).

It was reported that sharp waves are generated within appropriately pre-
pared hippocampal slices, which confirmed its intrinsic nature. Works on this
basis established that sharp waves are composite excitatory potentials gener-
ated within CA3 and propagated along that region’s associational system. Waves
are shaped by strong inhibition, which limits the number of participating cells.
These observations strongly suggest that individual sharp waves occur when
small populations of neighboring pyramidal cells are recruited by local associ-
ational connections into near-synchronous discharge, resulting in a population
event that propagates from CA3 and into CA1.

There is observable polarity swap of sharp waves present between the stra-
tum pyramidale and the stratum radiatum of CA1 (Buzsaki, 1986).
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Triggering mechanism of sharp waves is not known, but the likely source of
activity that could trigger sharp waves is in dentate gyrus. It has been demon-
strated that the granule cells generate spontaneous waves and that these pre-
cede large sharp waves (Rex et al., 2009). Field sharp waves then represent sum-
mation of potentials of CA1 and subicular pyramidal cells and dentate granular
cells induced mainly by the Schaffer collaterals (Buzsaki, 1986).

Hippocampal synapses

Hippocampal neurons can be divided into two main groups: Excitatory pyra-
midal cells and inhibitory interneurons. As in visual or frontal cortex, there are
two basic types of synapses to be found: Gray Type 1 and Gray Type 2 synapses.
Gray Type 2 synapses are inhibitory and can be found on the soma of pyramidal
and granule cells, whereas Gray Type 1 synapses are excitatory and are located
on dendritic spines. These glutamatergic synapses are involved in very impo-
rant process of synaptic plasticity mainly by long-term potentiation (LTP)
(Andersen et al., 2007).

Extracellular recordings

There are basically two types of recorded units, that can be found in extracel-
lular recordings of hippocampus. Both fire in a synchrony with the hippocampal
theta waves, but in a different way.

The first type of unit has a close relation to theta and is usually reffered to
as a theta cell. These cells increase their firing rate whenever a theta rhythm
appears and usually fire in bursts, with each burst locked to a particular phase
of the theta cycle. Majority of theta cells are found in CA1 in the stratum oriens,
in CA3 in the stratum lucidum/radiatum and moleculare and in fascia dentata
within the hilus. This distribution matches very closely the histological distri-
bution of interneurones.

The second type of unit fires in phase with theta under certain circumstances.
The phasing of these units to theta appears to depend on some extrinsic source,
while the first type is more directly related to theta itself. These units are located
in the stratum pyramidale and are considered to be pyramidal cells. This type
is usually called a complex spike cell. A complex spike is a burst of several
spikes within a brief period (inter-spike interval 1.5-6 ms).

Overall comparison of the theta cells and complex spike cells is shown in
Table 1.2.
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Table 1.2: Differences between theta cells and complex-spike cells in the hip-
pocampus (O’Keefe and Nadel, 1978)

property theta cells complex-spike cells
1. (a) Complex spikes

(b) Simple action potentials
Never
Always

All have some
All have some

2. Duration of extracellular
negative spike (distorted)

All 0.15-0.25 ms All 0.3-0.5 ms in
single spikes and
spikes of complex
spikes

3. Rate of firing most of the
time awake and SWS

Almost all > 8/s All < 12/s, most <
2/s, many off *

4. Maximum rate of firing 29-147/s, sustained
for many seconds

All < 40/s, most <
20/s sustained for
less than 2 s *

5. Patterns of firing Comparatively
regular

Irregular

6. During theta rhythm in slow
waves in paradoxical sleep or
awake
(a) Rate At maximum rate if

and only if theta
rhythm is present

No simple relation
usually < 1/s *

(b) Phase relations Most have clear
phase relation

Most have clear
phase relation

7. Relation to LIA spike Almost all fire with
bursts

Sometimes fire

8. Spike heights Usually < 200µV
(mean = 164µV )

Larger than theta
units (mean =
267µV )

9. Anatomical location
in CA1 Stratum

pyramidale
Stratum oriens

Stratum
pyramidale

in CA3 Stratum
pyramidale
Apical dendritic
layers

Stratum
pyramidale

in dentate gyrus Stratum
granulosum
Hilus of D.G.

Stratum
granulosum

Place cells

Place cell is a name for hippocampal neurons which are characteristic by
location-specific firing. Anatomically, place cells are pyramidal cells. Most
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recordings of place cells have been made in the dorsal hippocampus, but they
have been also found in the ventral hippocampus. This implies that it is a func-
tion of the whole structure.

A given place cell is intensely active when the rat’s head gets into a specific
place in given environment. This place is usually called a firing field. Outside
a firing field, the firing rate of such a place cell is virtually zero. As described
in O’Keefe and Recce (1993), firing of the place cell may or may not include the
complex spike pattern, that is characteristic for pyramidal cells.

In a fixed environment, each place cell has a characteristic and stable firing
field. There is a good evidence that single place cells can have two firing fields,
but the fraction is low (5–10% reported by Muller (1996)) and depends on the
apparatus used. (Muller, 1996)

O’Keefe and Recce (1993) also reported a phase shift between the spike bursts
in a firing field and the EEG theta activity. One of suggested explanations for
this was that the cell acts as a simple oscillator which is turned on for as long
as the inputs exceed the firing threshold. The phase shift then would be caused
by a slight difference in the firing frequency and theta rhytm. Nevertheless this
mechanism fails in explaining why the field firing always begins at a particular
phase of the theta cycle and why the phase shift is restricted to 360° or less. An-
other explanation presented is a possible presence of two oscillators with same
amplitude and opposite phases, which fire at the same frequency outside the fir-
ing field and with slightly different frequencies inside the field. Cell firing would
then be then induced by interference of these sources.

1.3.3 Effect of Urethane on hippocampal neuronal activity

Urethane (ethyl carbamate) has been widely used as an anesthetic in animal
experiments. The advantages of urethane in animal anesthesia are that it can be
administered by several parenteral routes, produces a long-lasting steady level
of surgical anesthesia, and has minimal effects on autonomic and cardiovascular
systems (Hara and Harris, 2002).

According to Hara and Harris (2002), administration of urethane results in
potentiation of neuronal nicotinic acetylcholine, γ-aminobutyric acid and glycine
receptors, and inhibition of NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid receptors. Urethane lacks a single predominant target for its
action.

41



Effect on theta rhythm

Complete surgical removal of the entorhinal cortex results in a loss of one of
the theta sources and such lesions renders the remaining theta oscillation at-
ropine sensitive and its depth profile similar to what observed under urethane
anesthesia. This shows that the receptors involved in atropine-resistant type
of theta are urethane sensitive. It also shows that the atropine-resistant com-
ponent of hippocampal theta is conveyed by layer III and layer II entorhinal
cortical afferents to the CA1, dentate gyrus and CA3 neurons. These pathways
contain glutamate and urethane attenuates glutamate release from presynap-
tic vesicles. It is expected that activation of NMDA receptors is critical for the
atropine-resistant form of theta oscillation. (Buzsaki, 2002)

As described in Kramis et al. (1975), hippocampal theta activity consists
of two separate components, one component being urethane-sensitive with fre-
quency range of 7-12 Hz and the second component being urethane-resistant
with frequency range of 4-7 Hz.

Effect on Hippocampal unit activity

Mercer et al. (1977) examined effect of urethane on hippocampal activity in
rats paralyzed with gallamine triethiodide. They report overall suppression of
hippocampal unit activity following urethane administration, which partialy re-
covers in time. The results show presence of two main distinct groups of cells.
The first group had shown a long-lasting depression of activity, while the second
group had demonstrated partial or even full recovery in activity in times shorter
than 1 hour since administration. These results show possibility of significant
bias in electrophysiological recordings with urethane as an anesthetic.

It is generally agreed that at the present time no anesthetic or paralytic agent
eliminates confounding influences in electrophysiological recordings in the cen-
tral nervous system.

1.3.4 Effect of NMDA receptor blockers on hippocampus

Hippocampus contains a class of receptors for the excitatory amino acid glu-
tamate, that are activated by N-methyl-D-aspartate (NMDA) and that exhibit
a dependency on membrane voltage in becoming active only on depolarization.
Blockade of these sites does not detectably affect synaptic transmission, but pre-
vents the induction of the hippocampal long-term potentiation.

As reported by Morris et al. (1986), chronic blockade of NMDA receptor
causes a selective impairment of place learning, which is highly sensitive to hip-
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pocampal damage (Morris et al., 1982). This shows that the NMDA receptors are
involved in spatial learning and supports the hypothesis that LTP is involved in
some forms of learning. This was confirmed by Steele and Morris (1999), who
found an impairing effect of blocade of intrahippocampal NMDA receptors with
D-AP5 on the matching-to-place task.

Kentros et al. (1998) described influence of the NMDA receptors blockade
on hippocampal place cells. He reports that there is no effect of the blockade
on a formation and a short-term stability of the place cell’s firing fields. By
contrast the blockade had shown abolition of a long-term stability of the newly
established firing fields.

Dizocilpine (MK-801) as the animal model of schizophrenia

Dizocilpine (MK-801) is a non-competitive antagonist of NMDA receptors. It
is used to create an animal model of schizophrenia (Nilsson et al., 2001). Unlike
dopaminergic agonist, which mimic only the positive symptoms of schizophrenia,
MK-801 models both positive (hallucinations, delusions, thought disoder) and
negative (amotivation, flattened affect) symptoms (Rung et al., 2005). It was
also reported (Eyjolfsson et al., 2006) that repeated administration of a higher
dose also induces neurochemical alteration that can be found in first-episode
schizophrenic patients.

Bubenikova-Valesova et al. (2008) state that increased cellular destruction by
apoptosis or changes in function of glutamatergic NMDA receptors in the early
development of central nervous system are decisive for subsequent development
of schizophrenia.
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Chapter 2

Aim of this thesis
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This thesis describes experimental work made on the Department of Neuro-
physiology of Memory on the Institute of Physiology, Academy of Sciences, Czech
Republic in years 2009 and 2010.

Experiments consisted of extracellular recordings of neuronal activity in hip-
pocampus in anaesthetized rats. The basic objective of the experiments was to
establish a basic setup for this kind of work and achieve enough practice in this
field.

The thesis discusses the effect of administration of dizocilpine (MK-801) on
the unit activity in rat’s hippocampus. MK-801 has been widely used in behav-
ioral experiments performed in the department and there is a good knowledge
base about its effect on behavior. Experiments described in this thesis aimed to
uncover details about neural substrate of these changes.

The thesis also discusses the influence of cluster analysis approaches on the
reported results as well as the importance of cluster quality.
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Chapter 3

Method
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3.1 Subjects

The subjects (n=5) were male Long-Evans rats. The rats were obtained from
the breeding colony of the Institute of Physiology, Czech Academy of Sciences
and housed in a temperature-controlled room (21°C) with a 12:12 light/dark cy-
cle. Rats were kept on standard diet with ad-libitum access to food and water.
All procedures were in accordance with Institutional and NIH guidelines and
the directive of the European Communities Council (86/609/EEC).

3.1.1 Surgery

One night before the experiment the food was taken away to easy the anaes-
thetization process. Rats were anaesthetized with a peritoneal administration
of 20% solution of Urethane with the dose of 1g/kg. The anaesthetic dose was
not administered at once, but it was divided into three or four parts, which were
administered in intervals according to the actual progression of the anaesthesis.

After a sufficient anaesthesis was reached, the rat’s brain was surgically ex-
posed. Dorsal (parietal) part of the rat’s head was shaved and the head was fixed
in a stereotaxic apparatus. Skin in the shaved part was cut and periostal layers
were removed in order to expose the scull bone.

One hole above each hippocampus was drilled using a bone drill (diameter
3mm) in the coordinates approx. 4mm posterior, 2.5mm lateral from bregma.
Holes for the reference electrodes were made with a drill (diameter 1mm) ap-
prox. 2-3mm posterior from the hippocampal holes.

After the bone was drilled, dura mater was carefully removed using a sharp
pin and forceps. Occasional bleeding was stopped using cotton pads.

As the result of the surgery there were two holes, one above each hippocam-
pus, with clean intact brain exposed and two additional holes for references.
Schematic drawing can be seen in Figure 3.1.

3.2 Apparatus

Recording apparatus consisted of the following parts:

1. Follower (made in our laboratory) with tetrode and reference electrode,

2. connecting and switching panel (made in our laboratory),

3. two eight-channel amplifiers Lynx-8 from Neuralynx Inc.,
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Figure 3.1: Schematic drawing of the exposed rat’s scull after surgery.

4. A/D converter DataTranslation DT 3110 working with the 32 kHz sampling
frequency on 32 channels,

5. oscilloscope with speaker for optical and audio control of the unit activity,

6. recording PC with installed software AcX version 40 or 41 (a software de-
veloped for our laboratory).

Tetrode and the reference electrode were attached to the follower and fixed in
the stereotaxic aparatus above the rat’s head. Follower was connected with the
switching panel using a 24-channel thin cable. The switching panel allowed to
choose from references and to rearrange the connection between channels before
the signal entered the amplifiers.

Follower was connected to the power supply from a set of eight 1.5V batteries
and served as a impedance attenuator improving the current source properties.

Amplifiers were controlled using a PC program, the amplification was usually
set in the range from 10.000 - 20.000 times. Amplifiers worked also as filters of
unwanted high and low frequencies (low cut: 300-600 Hz, high cut: 6000 Hz).

The stereotaxic apparatus with the rat was shielded using metal plates and
grounded to a floating groud defined by the follower current source (so called
rat’s ground).
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3.3 Electrode assembly

Tetrodes were assembled manually using the Tetrode Assembly Station from
Neuralynx Inc. Tetrode channels were made from the Ni-Chrome coated wire,
0.007” bare, 0.001” coating. Assembly cosisted of these steps:

1. Two electrode wires, approx. 15cm each were prepared and the coating at
the ends was removed using a hot solder tip.

2. Steel pins were attached to the ends of each wire using a rubber tube (four
pins together).

3. Wires were bent in half, hang on the stand by the end with the pins and
winded together. The winding was made with 15 coils per centimeter of the
original wire plus 10 more coils and 10 coils relaxation.

4. Bundle was fixed together using a heat gun with temperature set to 350°C.
Wires were exposed to the hot air twice for approx. 5 seconds each. Hot air
caused the coating to melt and glue the wires together.

5. The bent end of the wires was cut using designated tetrode cutting scissors,
creating four bare recording tips.

6. Coating quality and integrity was tested by electrolysis in the natrium
chloride solution. Each channel was connected as a cathode. As the re-
sult, hydrogene bubbles evolved at the tip of the tetrode. In the case of
damaged coating, release of hydrogene could be observed elsewhere along
the tetrode.

7. Impedance of each channel was measured; if it was too high then another
cut of the tip was made. In some cases the impedance was decreased by
electrolytic gold plating in a designated gold plating solution. Each channel
was exposed in the solution to the voltage of 4.5V for 3-5 seconds. The
impedance of a bare electrode was usually about 1MΩ, goldened electrodes
had the impedance about approx. 300kΩ.

8. Final tetrode bundle was fixed in a steel hypotube with the diameter of 31
Ga, using a drop of glue.

9. Steel pins were attached to the mill-max connector and the prepared
tetrode was kept for future use safe in a glass bowl fixed with plasticine.

Reference electrode was made from a single coated wire 80µm in diameter. Steel
pin was attached to the end of the wire using a rubber tube.
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3.4 Recording

Data were recorded in sessions of the length from 1 to 3 hours according to
the current conditions. During the recording the rat was kept on a heating pad
(SuperTech Temperature Controller TMP-5a) with the temperature set to 37°C
and its body was thermally protected with a blanket from cellulose towels.

To prevent dehydratation a dose of saline (1ml) was aministered intraperi-
toneally every 1-2 hours.

3.4.1 Unit lookup

Before the recording could start, unit activity had to be found. Tetrode was
lowered to the surface of the brain (level 0). Using a microdrive shift the tetrode
was lowered quickly 1.5 mm deep to get below neocortex. Then it was moved
slowly until a unit activity was observed on the oscilloscope and heard in the
speaker.

Unit activity could be observed on the oscilloscope as a typical spike-formed
wave and it could be heard in the speaker as sudden cracks emerging in a white
noise. Anatomical location of the tetrode tip was estimated from the known
coordinates and from the presence of complex spiking neurones arranged in a
thin layer (the CA1 part of the hippocampus).

3.4.2 AcX recording software

AcX is a specialized software developed for our laboratory for the purpose of
electrophysiological recordings. It allows for variable experimental setups and
it is capable to record from multiple tetrodes and to save the EEG continuous
signal. It allows the operator to save timestamps of chosen events identified by
key presses as well.

AcX performs discontinuous recording. It saves a window of 32 samples con-
taining the detected spike. The sampling frequency of the tetrode signal is 32
kHz and therefore the window width is 1ms.

Spikes are detected by comparing the signal value with a preset threshold
value. Threshold crossings are detected on all channels and the spike window is
started 8 samples back before the detected threshold crossing (data are stored
in a cyclic buffer).

Before the recording, threshold values for each channel could be adapted ac-
cording to the observed noise level to reduce the amount of unwanted data.

50



Data were stored in a file format containing data structure description in
the ascii head and the binary data together (AcX version 40). In AcX version
41 the data were saved in two separate files, one containing the data structure
description in XML format and the other containing the binary data.

3.4.3 Drug administration

Solution of MK-801 in saline (0.1mg/ml) was administered intraperitoneally
with the dose of 1ml/kg of the animal weight (0.1mg/kg MK-801).

3.5 End of the experiment

After the recording was finished, the apparatus was disassembled and the rat
was sacrificed and its brain was removed and stored in a formaldehyde solution
for future histological verification of electrode position.

3.6 Data processing

Recorded data were processed using manual, semi-automatic and automatic
cluster analysis. The manual clustering was made in the MClust version 3.5
and Matlab version 2008b. The automatic clustering was made with the Klus-
taKwik version 1.5 program, the semi-automatic clustering was a combination of
KlustaKwik and MClust. In the semi-automatic clustering the only operations
that were allowed were either to remove the cluster or to join several clusters
together.

To allow a processing of the data in MClust it was necessary to develop a
loading engine function. This function had to transform the recorded data from
the AcX software format to the format demanded by MClust. This was done by
the author of this thesis with special attention to the speed performance in cases
of large data files.

As the MClust allows for the feature calculation, it was used for this purpose.
Features were chosen according to the current need, usualy including peak and
energy for each channel.

The KlustaKwik program was used configured with the following parameters

-MinClusters 2 -MaxClusters 10 -MaxPossibleClusters 10

The produced clustering was further analysed and evaluated using a set of
Matlab functions written by the author of this thesis.
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Cluster quality

The quality of the clusters was evaluated using the L-ratio and Isolation
distance metrices. Implementations of these functions are distributed together
with the MClust software and they were used by us without changes. Schmitzer-
Torbert et al. (2005) suggest to use a threshold to define the minimum value
of each cluster quality measure in order for a unit to be considered in further
analyses. There is no recommended threshold value, in this thesis I decided to
consider clusters with L-ratio < 0.1 and Isolation distance > 20 as good.

Cell type

The cell type represented by a cluster was estimated according to the prop-
erties described in the Table 1.2. A cluster was assigned to one of three possible
cell types:

• Complex-spike cell for clusters with the average firing rate < 2 Hz and
the average spike width > 300 µs.

• Theta cell for clusters with the average firing rate > 8 Hz and the average
spike width < 250 µs.

• Undecided for the clusters that did not fall into any of the previous cate-
gories.

Firing rate

Firing rate was calculated as a frequency of spikes in a chosen time frame (60
or 300 seconds), producing a series of values for the underlying data. The differ-
ences of firing rates before and after the drug administration were statistically
tested using the Mann-Whitney U-test.

Kendall τ

Kendall τ correlation coefficient (Press et al., 2007) was calculated using the
Matlab corr function in a chosen time frame (300 s). Each time frame was di-
vided into separate time bins of 250 ms, in which the number of spikes was
compared by the algorithm.
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Chapter 4

Results
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4.1 Recording of hippocampal neuronal activity
in anaesthetized rats

In this section I present recordings of the hippocampal neuronal activity. The
effect of different clustering approaches on the overall cluster quality is com-
pared here.

The neuronal activity was recorded in one rat (Subject 1) at two different
locations. Data were clustered using manual, semi-automatic and automatic
clustering.

4.1.1 Recording 1

The first recording started 4 hours and 12 minutes after finishing the surgery
and its duration was 36 minutes. The tetrode tip was located in the left
hippocampus on the coordinates 2.5 mm mediolateral, 3.5 mm posterior from
bregma and 2.45 mm ventral. From the coordinates and the observed activity it
was estimated that the tip was in the CA1 part of the hippocampus.

The manual as well as the semi-automatic clustering of the recorded data
produced three clusters, whereas the automatic clustering in the KlustaKwik
program produced ten clusters. KlustaKwik reached the maximum number of
clusters allowed by its configuration and clustered all the spikes present, includ-
ing the spikes that were considered as a noise in the manual clustering.

The cluster quality was compared using L-ratio and Isolation distance mea-
sures. List of all the clusters and their quality measures is presented in the
Table 4.1.

To compare the overall quality of the clusterings, mean and standard devia-
tion of the L-ratio and the Isolation distance were calculated for each clustering.
The values are listed in Table 4.2. Comparing the cluster quality measures with
the chosen threshold (L-ratio < 0.1 and Isolation distance > 20) there is one good
cluster in manual clustering, two good clusters in semi-automatic clustering and
five good clusters in automatic clustering.

To illustrate the differences in the clusterings I also present a scatter-plot
of the unclustered data (Figure 4.1) and the same scatter-plot after each of the
clusterings (Figures 4.2, 4.3 and 4.4).
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Cluster L-ratio Isolation distance Good
M1 0.003 - *
M2 0.149 26.340
M3 0.174 26.362
S1 0.022 24.968 *
S2 0.001 - *
S3 0.702 11.253
A1 - -
A2 0.022 24.968 *
A3 0.458 13.484
A4 0.043 26.570 *
A5 29.392 4.113
A6 0.010 48.179 *
A7 0.001 - *
A8 0.702 11.253
A9 0.097 20.643 *

A10 7.934 2.990

Table 4.1: Cluster quality comparison for the recording 1. Clusters marked M
are from the manual clustering, clusters marked S are from the semi-automatic
clustering and clusters marked A are from the automatic clustering. Dash in-
stead of a value marks an undefined value. The last column indicates which
clusters met the conditions for a good cluster (L-ratio < 0.1 and Isolation dis-
tance > 20).

Clustering L-ratio Isolation distance
Manual 0.109± 0.092 26.351± 0.016

Semi-automatic 0.241± 0.399 18.111± 9.698
Automatic 4.295± 9.757 19.025± 14.714

Table 4.2: Clustering quality properties for the recording 1. Each row contains
means and standard deviations of the respective measures calculated from all
the clusters produced by the clustering.
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Figure 4.1: Scatter-plot example of the unclustered data, recording 1. Features
Peak1 and Peak2 reffer to the peak on channels 1 and 2.

Figure 4.2: Scatter-plot example of the manual clustering, recording 1. Features
Peak1 and Peak2 reffer to the peak on channels 1 and 2.
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Figure 4.3: Scatter-plot example of the semi-automatic clustering, recording 1.
Features Peak1 and Peak2 reffer to the peak on channels 1 and 2.

Figure 4.4: Scatter-plot example of the automatic clustering, recording 1. Fea-
tures Peak1 and Peak2 reffer to the peak on channels 1 and 2.
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4.1.2 Recording 2

The second recording started 5 hours and 2 minutes after finishing the
surgery and its duration was 32 minutes. The tetrode tip was located in the left
hippocampus on the coordinates 2.5 mm mediolateral, 3.5 mm posterior from
bregma and 2.50 mm ventral. From the coordinates and the observed activity it
was estimated that the tip was in the CA1 part of the hippocampus.

The manual clustering produced five clusters, the semi-automatic cluster-
ing produced four clusters and the automatic clustering in KlustaKwik program
produced ten clusters. As in the first recording, KlustaKwik reached the maxi-
mum number of clusters allowed by its configuration and clustered all the spikes
present, including the spikes that were considered as a noise in the manual clus-
tering.

The cluster quality was compared using L-ratio and Isolation distance mea-
sures. List of all the clusters and their quality measures is presented in the
Table 4.3.

To compare the overall quality of the clusterings, mean and standard devi-
ation of the L-ratio and the Isolation distance were calculated for each cluster-
ing. The values are listed in Table 4.4. Comparing the cluster quality measures
with the chosen threshold (L-ratio < 0.1 and Isolation distance) there is no good
cluster in the manual clustering and four good clusters in the semi-automatic
clustering as well as in the automatic clustering.

To illustrate the differences in the clusterings I also present a scatter-plot
of the unclustered data (Figure 4.5) and the same scatter-plot after each of the
clusterings (Figures 4.6, 4.7 and 4.8).
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Cluster L-ratio Isolation distance Good
M1 0.488 26.124
M2 0.711 10.727
M3 1.252 8.071
M4 0.831 10.139
M5 0.521 13.733
S1 0.000 152.971 *
S2 0.019 26.303 *
S3 0.005 49.632 *
S4 0.013 41.584 *
A1 162.828 2.755
A2 0.188 17.130
A3 0.000 152.971 *
A4 1.434 10.200
A5 0.019 26.303 *
A6 0.744 12.038
A7 0.005 49.632 *
A8 7.137 3.314
A9 0.013 41.584 *

A10 11.725 3.495

Table 4.3: Cluster quality comparison for the recording 2. Clusters marked M
are from the manual clustering, clusters marked S are from the semi-automatic
clustering and clusters marked A are from the automatic clustering. The last
column indicates which clusters met the conditions for a good cluster (L-ratio <
0.1 and Isolation distance > 20).

Clustering L-ratio Isolation distance
Manual 0.760± 0.308 13.759± 7.203

Semi-automatic 0.009± 0.008 67.622± 57.716
Automatic 18.409± 50.897 31.942± 45.527

Table 4.4: Clustering quality properties for the recording 2. Each row contains
means and standard deviations of the respective measures calculated from all
the clusters produced by the clustering.
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Figure 4.5: Scatter-plot example of the unclustered data, recording 2. Features
Peak1 and Peak2 reffer to the peak on channels 1 and 2.

Figure 4.6: Scatter-plot example of the manual clustering, recording 2. Features
Peak1 and Peak2 reffer to the peak on channels 1 and 2.
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Figure 4.7: Scatter-plot example of the semi-automatic clustering, recording 2.
Features Peak1 and Peak2 reffer to the peak on channels 1 and 2.

Figure 4.8: Scatter-plot example of the automatic clustering, recording 1. Fea-
tures Peak1 and Peak2 reffer to the peak on channels 1 and 2.
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4.2 Effect of MK-801 on the hippocampal neu-
ronal activity in anaesthetized rats

The effect of the MK-801 on the hippocampal neuronal activity was tested in
four rats (Subject 2-5). However two subjects were excluded from further analy-
sis. One rat (Subject 4) was excluded, because the recorded activity was unclus-
terable. The other rat (Subject 5) was excluded from the evaluation because the
recording was unstable.

4.2.1 Overall activity

The firing frequency of all the events which crossed the threshold before and
after administration of MK-801 was compared by Mann-Whitney U-test. The
frequency was calculated in 300 s successive time frames. In both recordings
there was an observed rise of activity after administration of MK-801. The pro-
gression of the firing frequency for Subject 2 is shown in Figure 4.9 and for
Subject 3 in Figure 4.10. Overview of the average firing rates is listed in Table
4.5.

Figure 4.9: Overall unit activity, subject 2. Dashed line marks administration of
MK-801.
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Figure 4.10: Overall unit activity, subject 3. Dashed line marks administration
of MK-801.

Subject FR-pre FR-post p-value
2 25.458± 3.805 34.586± 6.771 0.0053 **
3 36.239± 6.811 70.257± 18.954 4.81E-06 **

Table 4.5: Overview of the overall unit activity comparison. FR-pre is mean and
standard deviation of the firing rate before administration of MK-801, FR-post
is mean and standard deviation of the firing rate after administration; p-value
is the Mann-Whitney U-test statistics; ** mark results significantly different on
the h=0.01 significance level.

4.2.2 Recorded units

Recordings from subjects 2 and 3 were clustered in three ways: Manual clus-
tering by two independent operators (here reffered to as operator A and operator
B) and by a semi-automatic clustering based on the KlustaKwik results. Clus-
ters from manual clustering of operator A are marked MA, clusters from manual
clustering of operator B are marked MB, clusters from semi-automatic cluster-
ing are marked SK.
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Cluster quality was evaluated using L-ratio and Isolation distance quality
measures. Only clusters with the L-ratio < 0.1 and the Isolation distance > 20
were used for evaluation.

The cell type was estimated according to the properties described in Table
1.2. Clusters with the average firing rate < 2 Hz and the average spike width >
300 µs were considered as complex-spike cells, clusters with the average firing
rate > 8 Hz and the average spike width < 250 µs were considered as theta cells.
Clusters that did not fall into any of the previous groups were considered as an
undecided cell type.

The presence of inter-spike intervals shorter than the absolute refractory pe-
riod (1 ms) was calculated and is presented as an additional parameter of the
cluster quality.

The operator A created 6 clusters for subject 2 and 5 clusters for subject 3;
the operator B created 8 clusters for subject 2 and 5 clusters for subject 3; semi-
automatic clustering produced 4 clusters for subject 2 and 5 clusters for subject
3. Results from the presented clusterings including cluster quality assessment
are shown in Tables 4.6, 4.7 and 4.8.

Subject Cluster L-ratio Isol. dist %ISI < 1ms Cell type Evaluated
2 MA21 0.047 37.407 0 CSC *
2 MA22 0.037 48.365 0 - *
2 MA23 0.078 26.259 0 - *
2 MA24 0.049 39.864 0 CSC *
2 MA25 0.231 17.178 0 CSC
2 MA26 0.038 48.444 0 - *
3 MA31 0.438 15.758 0.827 CSC
3 MA32 0.044 25.054 1.102 - *
3 MA33 0.060 39.207 0.709 CSC *
3 MA34 0.267 17.429 0.433 CSC
3 MA35 0.328 15.453 1.444 CSC

Table 4.6: Cluster quality measures, manual clustering, operator A. ISI stands
for the inter-spike interval. The estimated cell type can be either CSC (complex-
spike cell), TC (theta cell) or dash (undecided). Last column indicates which
clusters were used for the further evaluation.
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Subject Cluster L-ratio Isol. dist %ISI < 1ms Cell type Evaluated
2 MB21 0.033 44.139 0 - *
2 MB22 0.091 21.598 0 - *
2 MB23 0.219 18.242 0 CSC
2 MB24 0.063 29.020 0 CSC *
2 MB25 0.127 23.192 0 CSC
2 MB26 0.498 13.730 0 CSC
2 MB27 0.651 12.578 0.081 CSC
2 MB28 0.069 29.943 0 CSC *
3 MB31 0.054 34.710 0.561 - *
3 MB32 0.196 18.901 0.642 CSC
3 MB33 0.060 29.909 0.788 CSC *
3 MB34 0.302 15.859 1.190 CSC
3 MB35 0.800 13.856 0.590 CSC

Table 4.7: Cluster quality measures, manual clustering, operator B. ISI stands
for the inter-spike interval. The estimated cell type can be either CSC (complex-
spike cell), TC (theta cell) or dash (undecided). Last column indicates which
clusters were used for the further evaluation.

Subject Cluster L-ratio Isol. dist %ISI < 1ms Cell type Evaluated
2 SK21 0.364 15.356 0.028 CSC
2 SK22 0.032 28.449 0 - *
2 SK23 1.282 9.764 0.167 CSC
2 SK24 0.091 20.545 0 CSC *
3 SK31 3.369 9.714 0.988 CSC
3 SK32 0.082 21.530 0.625 - *
3 SK33 1.016 10.522 2.159 -
3 SK34 0.014 28.661 0.716 - *
3 SK35 9.392 5.887 0.962 CSC

Table 4.8: Cluster quality measures, semi-automatic clustering based on the
KlustaKwik algorithm results. ISI stands for the inter-spike interval. The esti-
mated cell type can be either CSC (complex-spike cell), TC (theta cell) or dash
(undecided). Last column indicates which clusters were used for the further
evaluation.

Matching clusters

To determine which clusters in different clusterings of the same recording
represent the same unit it was neccessary to find the mutually corresponding
clusters. Clusters were matched together across the clusterings according to the
distances of their centers. Only clusters with the distance of centers below 40
were considered as matching.

The results show that the following clusters are matching (listing only clus-
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ters with a good quality that were used for the further evaluation): MA21 +
MB24 + SK24, MA22 + MB21, MA23 + MB22, MA24 + MB28, MA32 + MB31 +
SK34 and MA33 + MB33.

Distances of all the clusters for subject 2 are shown in Table 4.9, 4.10 and
4.11, distances of all the clusters for subject 3 are shown in Table 4.12, 4.13 and
4.14.

Clusters MB21 MB22 MB23 MB24 MB25 MB26 MB27 MB28
MA21 482.6 318.1 421.2 16.6 221.0 170.8 201.2 654.6
MA22 11.8 230.2 433.8 482.6 490.0 477.5 523.9 474.0
MA23 211.7 11.7 296.9 319.2 323.8 281.8 327.0 504.6
MA24 489.7 531.0 408.2 664.1 540.1 605.3 657.6 26.9
MA25 428.4 292.0 24.6 418.4 269.2 300.4 297.7 408.6
MA26 234.0 281.5 538.4 459.8 511.6 478.2 550.7 499.2

Table 4.9: Distances of cluster centers for manual clusterings from operator A
and operator B for subject 2. The matching clusters are printed bold.

Clusters SK21 SK22 SK23 SK24
MA21 396.2 367.2 364.5 20.3
MA22 514.0 158.4 582.0 492.7
MA23 347.2 65.0 388.4 319.2
MA24 540.0 508.0 712.6 673.8
MA25 120.7 331.2 297.0 402.2
MA26 596.4 230.9 636.0 475.2

Table 4.10: Distances of cluster centers for manual clusterings from operator A
and semi-automatic clusterings for subject 2. No matching clusters were found.

Clusters SK21 SK22 SK23 SK24
MB21 503.7 147.2 570.8 483.4
MB22 340.0 71.9 378.7 313.1
MB23 140.9 330.2 319.7 407.7
MB24 402.9 360.9 374.4 33.9
MB25 253.1 369.0 300.5 219.5
MB26 265.9 336.2 250.2 153.1
MB27 236.5 380.7 182.1 181.9
MB28 518.0 488.5 691.2 655.1

Table 4.11: Distances of cluster centers for manual clusterings from operator A
and semi-automatic clusterings for subject 2. The matching clusters are printed
bold.
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Clusters MB31 MB32 MB33 MB34 MB35
MA31 99.3 3.6 67.8 79.6 55.8
MA32 17.8 85.5 102.8 104.4 88.2
MA33 116.3 70.5 5.9 63.0 87.3
MA34 107.1 57.8 83.1 92.7 7.2
MA35 121.1 78.6 62.1 7.7 88.7

Table 4.12: Distances of cluster centers for manual clusterings from operator A
and operator B for subject 3. The matching clusters are printed bold.

Distances SK31 SK32 SK32 SK34 SK35
MA31 7.3 82.7 64.1 99.6 45.6
MA32 78.2 48.7 78.3 17.8 78.0
MA33 73.1 118.3 76.7 116.9 52.0
MA34 54.0 81.3 69.9 107.2 51.6
MA35 75.9 103.9 34.1 121.4 43.0

Table 4.13: Distances of cluster centers for manual clusterings from operator A
and semi-automatic clusterings for subject 3. The matching clusters are printed
bold.

Distances SK31 SK32 SK33 SK34 SK35
MB31 94.2 61.2 95.7 1.5 93.9
MB32 10.3 85.1 65.9 100.4 46.5
MB33 68.6 113.5 72.0 113.6 47.1
MB34 77.8 106.1 37.8 120.2 44.8
MB35 52.3 76.6 66.8 104.1 50.3

Table 4.14: Distances of cluster centers for manual clusterings from operator B
and semi-automatic clusterings for subject 3. The matching clusters are printed
bold.

4.2.3 Activity of the recorded units

Firing rate

The effect of administration of MK-801 on the unit activity was tested using
the firing rate. Firing rate was calculated in 300 s successive time frames and
the values before and after administration of MK-801 were compared using the
Mann-Whitney U-test.

In all clusterings there was one unit that showed a significant decrease of
the firing rate and two units that showed a significant rise of the firing rate
on the 0.05 significance level. In all cases the significance and the directon of
the change were the same for the matching clusters. The other units showed no
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significant change on the 0.05 significance level. Overview of the firing rates and
test results is presented in Table 4.15. Firing rate progression for the clusters
with a significant change is plotted in Figures 4.11, 4.12, 4.13 and 4.14.

Cluster FR-pre FR-post p-value
MA21 0.94± 0.46 0.13± 0.10 1.917E-04 * ↓
MA22 0.22± 0.05 0.16± 0.07 0.1282
MA23 0.29± 0.40 0.39± 0.48 0.2047
MA24 0.02± 0.01 0.03± 0.03 0.2912
MA26 0.01± 0.01 0.01± 0.04 0.0364
MA32 6.38± 1.13 13.07± 3.84 5.538E-06 * ↑
MA33 0.16± 0.14 0.38± 0.26 0.0037 * ↑
MB21 0.23± 0.06 0.18± 0.08 0.1681
MB22 0.37± 0.48 0.52± 0.58 0.1375
MB24 1.08± 0.45 0.15± 0.12 1.908E-04 * ↓
MB31 4.17± 0.73 7.26± 2.55 4.770E-05 * ↑
MB33 0.16± 0.13 0.37± 0.25 0.0051 * ↑
SK22 0.66± 0.53 0.72± 0.61 0.9711
SK24 1.24± 0.50 0.31± 0.09 1.881E-04 * ↓
SK32 2.18± 2.01 3.53± 2.03 1.455E-04 * ↑
SK34 5.20± 0.80 9.61± 2.61 5.930E-06 * ↑

Table 4.15: Firing rate of the selected clusters. FR-pre is mean + standard
deviation of the firing rate before administration of MK-801, FR-post is mean
+ standard deviation of the firing rate after administration; p-value is Mann-
Whitney U-test statistics; fifth column marks statistically significant differences
on the 0.05 significance level. The test probability was corrected with the Bon-
ferroni correction for multiple comparisons. Last column indicates the direction
of change.
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Figure 4.11: Firing rate progression for matching clusters MA21(solid line),
MB24 (dashed line) and SK24 (dashed-dotted line).

Figure 4.12: Firing rate progression for matching clusters MA32 (solid line),
MB31 (dashed line) and SK34 (dashed-dotted line).
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Figure 4.13: Firing rate progression for matched clusters MA33 (solid line) and
MB33 (dashed line).

Figure 4.14: Firing rate progression for cluster SK32.

70



Correlation

To evaluate the effect of administration of MK-801 on the mutual correlation
of activity of different units, the Kendall τ correlation coefficient was used. The
coefficient was calculated for 300 s successive time frames. Each frame was
divided into bins of 250 ms and the spikes count in the corresponding bins was
used for the coefficient calculation.

The correlation was calculated for all the cluster pairs in manual clustering
of both operators. The semi-automatic clustering was not used because of the
low number of comparable clusters. The means and standard deviations of the
coefficients along with the linear regression equation are shown in the presented
plots (Figure 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, 4.21 and 4.22). The values are
presented partly for all the clusters, partly only for the clusters that met the
quality conditions.

The plots show that there is no observed change of correlation in subject 2 and
that there is a decrease of correlation in subject 3 that happened with no relation
to the administration of MK-801. It can be also seen that the progression of
correlation does not remarkably change depending on the cluster quality.
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Figure 4.15: Kendall τ correlation of the good clusters (means of all possible
couples) from the manual clustering of operator A for subject 2.

Figure 4.16: Kendall τ correlation of all clusters (means of all possible couples)
from the manual clustering of operator A for subject 2.
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Figure 4.17: Kendall τ correlation of the good clusters (means of all possible
couples) from the manual clustering of operator B for subject 2.

Figure 4.18: Kendall τ correlation of all clusters (means of all possible couples)
from the manual clustering of operator B for subject 2.
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Figure 4.19: Kendall τ correlation of the good clusters (means of all possible
couples) from the manual clustering of operator A for subject 3.

Figure 4.20: Kendall τ correlation of all clusters (means of all possible couples)
from the manual clustering of operator A for subject 3.
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Figure 4.21: Kendall τ correlation of the good clusters (means of all possible
couples) from the manual clustering of operator B for subject 3.

Figure 4.22: Kendall τ correlation of all clusters (means of all possible couples)
from the manual clustering of operator B for subject 3.
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Chapter 5

Discussion

76



The first aim of this thesis was to master the methods of extracellular unit
recording and its subsequent analysis, especially cluster analysis. The cluster
analysis was done using the MClust software. For this purpose it was neccessary
to develop a software package that allowed to use the MClust software for our
data and to evaluate the produced clusterings.

The second aim of this thesis was to study the effect of MK-801 on the hip-
pocampal neuronal activity. To achieve this goal it was neccessary to learn how
to make stable recordings lasting for several hours. So far I can present only
preliminary data based on recordings in three subjects.

The long-term aim of my research is to study the unit activity in hippocampus
in the MK-801 model of schizophrenia.

5.1 Recording of hippocampal neuronal activity
in anaesthetized rats

The demonstrated comparison between automatic, semi-automatic and au-
tomatic clustering approaches shows that there is an apparent decrease of the
average cluster quality in automatic clustering in comparison to the manual and
semi-automatic.

In both recordings in subject 1 the total number of good clusters (the clusters
with L-ratio < 0.1 and Isolation distance > 20) was highest for the automatic clus-
tering. Nevertheless because the automatic algorithm clustered all the spikes
including the apparent noise spikes, there has to be a following decision, which
of the good spikes represent real neurons. This decision can be made according
to the experience and according to the properties of spikes in the cluster (i.e. the
average amplitude, signal energy or the waveform shape). Schmitzer-Torbert
et al. (2005) suggest to test whether any reported results depend on the cluster
quality in extracellularly recorded unit activity study and if so to exclude the
poorly isolated neurons from further analysis.

Harris et al. (2000) reported that automatic clustering tools tend to overclus-
ter the data (to produce more clusters than is the real number of recorded units).
The data presented in this thesis are in agreement with this observation. The
main problem of the automatic clustering is that it is not able to distinguish
and eliminate spikes that are an apparent noise. The KlustaKwik program is
also highly dependent on the parameters set, in both cases the total number of
clusters was equal to the upper limit given to the program.
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5.2 Effect of MK-801 on hippocampal neuronal
activity in anaesthetized rats

Cognitive disorganization is thought to be the core deficit in the disorganized
syndrome of schizophrenia (Phillips and Silverstein, 2003). It is characterized
by hallucinations, disorganization, and thought disorder. This disorganization
hypothesis is based on the observation that schizophrenic subjects are impaired
at segregating relevant and irrelevant stimuli and selectively using associations
between relevant cues (Olypher et al., 2006).

MK-801 has been used as a model of cognitive disorganization in the be-
havioral experiments (Carlsson and Carlsson, 1989; Vales et al., 2006; Stuchlik
et al., 2009) and it is suggested as the animal model of schizophrenia (Nilsson
et al., 2001; Rung et al., 2005). Administration of low doses of MK-801 is re-
ported to cause hyperlocomotion.

There are other models of cognitive disorganization used. Some works
(Olypher et al., 2006) used tetrodotoxine (TTX) and reported short increase of
the unit activity in the uninjected hippocampus (about 15 minutes) and changes
in correlation of activity after unilateral TTX injection. Wesierska et al. (2005)
described effect of unilateral TTX injection in behavioral experiments. They
reported that the TTX injection abolished the ability of rats to organize place-
avoidance behavior specifically when distal room and local arena cues were con-
tinuously dissociated.

Other laboratories tested phencyclidine as the model of the cognitive disor-
ganization, reporting a high increase of the unit activity and changes in mutual
correlation of neuronal activity (unpublished data).

5.2.1 Electrical activity of the hippocampus

Overall activity

The overall activity of hippocampus in relation to the administration of MK-
801 was evaluated only for two subjects and the results therefore have to be
considered as preliminary. In both recordings the overall activity measured as
the mean firing rate in 300 s time frames significantly rises. This is in con-
tradict with the expected stability of hippocampal activity (Buzsaki et al., 2002).
Buzsaki et al. (2002) report that in a long-term scale the firing rates of individual
neurones are relatively constant in an unchanging environment. The observed
rise gives a good chance that there will be an observed effect of the MK-801, but
it has to be confirmed in the following experiments. Control experiments with

78



administration of saline without MK-801 have to follow to exclude the possibility
that the observed results are caused by the long lasting anaestesia.

The observed rise of the activity should not be related directly to the complete
blockage of the NMDA-receptors by MK-801, because the administered dose was
low. It is more probable that the partial blockage of the NMDA-receptor caused
a change of the neuronal network state.

Unit activity

After the recorded data were clustered, effect of the administration of MK-
801 on the firing rate in individual clusters was tested. The firing rate was cal-
culated in 300 s time frames and the values before and after the administration
were statistically compared using a Mann-Whitney U-test.

In all clusterings there were units that showed a rise in the activity, fall of
the activity or their activity remained unchanged (see Table 4.15). The fractions
of these units are affected by the total number of clusters produced by each
clustering and by the quality of the produced clusters. In all clusterings there
were identified 2 good clusters with a rise of activity and 1 cluster with a fall of
activity. In this aspect the clusterings were equal. In all cases the significance
and the direction of the change were the same for the matching clusters, showing
that the results are not significantly dependent on the clustering used.

The effect of affection of the NMDA-receptors has been also described in Ken-
tros et al. (1998), who reported that even during a total blockade of NMDA-
receptors the creation of firing fields remained intact and only their stability
decreased. Kimura and Pavlides (2000) reported experiments with potentiation
of LTP in which the unit activity changed in both directions depending on the
initial state of the unit. They suggest that changes in synaptic efficacy produce
dynamic changes in cell activity.

Correlation

Testing of correlation between clusters tries to uncover possible changes of
synchronicity of the neuronal network. Olypher et al. (2006) describes observed
increase of correlation of previously weakly correlated units in response to the
unilateral TTX injection, causing impairment of the selective activation and in-
hibition of stored spatial representations.

In the data recorded in subject 2 there is no apparent effect of administration
of MK-801 on the correlation of firing between clusters. In the data recorded in
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subject 3 there is an observed decrease of correlation in response to the admin-
istration of MK-801.

The results show that there is no difference between the correlation calcu-
lated from all clusters in comparison with the correlation calculated from the
clusters with a good quality. There is also no difference between the results
from independent operators. This gives a good chance that the results from this
kind of experiments will be relatively immune to the clustering method used.

The real effect of MK-801 has to be widely examined in the following experi-
ments to confirm or reject the preliminary data described in this thesis.
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Chapter 6

Conclusion
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Extracellular recordings of neuronal activity have an indispensable role in
today’s electrophysiology. As the technical equipment improves, the overall qual-
ity of recordings is rising. In past the classical single-neurone recording methods
led to “neurone-centric” concepts of neural coding, whereas more recent multi-
neurone population recordings have inspired “population-centric” concepts of
distributed processing in neural systems. Dynamic fluctuations in neural pop-
ulation functions thus involve subtle changes in the overall pattern of neural
activity. (Chapin, 2004)

This thesis focuses on the cluster analysis as the key tool for evaluation of
extracellular recordings. The reported experiments show a small influence of
chosen cluster analysis algorithms on the experimental results as well as a small
influence of the cluster quality.

The effect of MK-801 is showed by means of the overall and unit activity
and by changes of correlation between the units. The data show a possible rise
of overall activity as well as changes of activity of individual neurones. The
effect on neuronal network synchronicity showed a decrease of correlation in one
recording. This observation has to be confirmed or rejected in the subsequent
experiments.

The data have to be considered as preliminary and the research will be con-
tinued.
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List of Abbreviations

• AcX recording software

• CA1, CA2, CA3, CA4 anatomical parts of Cornu Amonnis

• CEM classification expectation-maximization algorithm

• DC direct current

• D.G. dentate gyrus

• EEG electroencephalography

• LIA large irregular activity

• LTP long-term potentiation

• MK-801 dizocilpine, non-competitive antagonist of NMDA receptors

• NMDA N-methyl-D-aspartate

• PC principal component or personal computer

• PCA principal component analysis

• SNR signal-to-noise ratio

• TTX tetrodotoxin
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