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Abstract

In this work we study properties of branched polymers in a good solvent.
We focus on problematic related to the size exclusion chromatography and
predicting elution behavior of randomly branched polymers. We developed a
software for generating self-avoiding walks (SAW) of any given non-looping
architecture on a cubic lattice using Monte Carlo (MC) simulation and vali-
date its reliability by presenting the scaling of different architectures: linear,
3-arm star and 6-arm star and asymmetric star. We calculate distribu-
tion coefficients and calibration curves for size exclusion chromatography
for various architectures to validate that the hydrodynamic radius is more
suitable for predicting elution volume than the radius of gyration. Then we
propose a new method for, although approximate, a very fast estimation of
radius of gyration and hydrodynamic radius for different architecture using
a graph method. It is done by comparing MC results with results obtained
from graph theory. Then we introduce a correction to graph-theory results to
fit the MC. At the end we present depletion layer calculation from MC and
self-consistent field (SCF) method for polymers and their comparison. We
show how calculation of depletion layer using SCF can be improved to get
significantly better agreement with MC results.
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Introduction

People were using naturally occurring polymers such as natural rubber or
caoutchouc for centuries without realizing they are actually dealing with
macromolecules. Until Staudinger in 1922 proposed a hypothesis that poly-
mers are molecules composed of covalently bonded elementary units called
monomers. Even thought his hypothesis was not generally accepted by 1929,
Carothers had synthesized a variety of polymers with well-defined structures.

Polymers were always of a great interest due to their various (mechanical,
thermal, electrical, optical, ...) properties. We are studying these properties
using molecular simulations. Molecular simulation became an established
method of research in science, complementing both the analytical theory as
well as the experiment. And they are still becoming more and more im-
portant as computers progress, pushing their limits to a higher and higher
performance. Due to the complexity of chemical structure of polymer sys-
tems, the variability of their properties is huge. The theoretical methods
often suffers from rather crude approximations, which they apply to study
polymer system, and whose validity is often difficult to justify, both phys-
ically as well as mathematically. Computer simulation can often provide
more complex models in a full detail without introducing serious approxi-
mations. Moreover in comparison with experiment it is possible to improve
models systematically.

Despite of all the technological progress, simulating polymers is still quite
challenging. Already a single chain exhibits structure ranging from size of
a single chemical bond (≈ 1Å) to the persistence length (≈ 10Å) to the
coil radius (≈ 100Å) and the time scales from time of a chemical vibration
(10−14 s) up to relaxation times of the whole coil (10−6 s). This time-scale
gap is a problem, which we have to face and it is often very difficult to
handle. Therefore we instead of simulating polymers of atoms simulate
the behavior of an overall coarse-grained picture of polymers taking into
account only segment or even larger units. This coarse-graining also bring,
to some extent, elimination of fast local motions, however this approach still
turns out to be very reasonable and it often brings good agreement with
experiments.

ix



x INTRODUCTION

In our work we focus on branched polymers in a good solvent. The
branched polymers can exhibit quite different properties from their lin-
ear analogs. Branched polymers can be synthesized for example branching
polyesters may be achieved by addition of glycerol. Similarly the addition
of divivyl compound during chain polymerization of vinyl monomers may
cause branching. You can find also natural branched polymers some of the
examples are polysaccharides or lignin. There are also some special cases of
branched polymers as stars, combs or dendrimer.

We are in particular interested in size exclusion chromatography, which
is one of the most prevalent characterization technique for synthetic and
natural polymers. There are, however, unrevealed questions and the elution
behavior of branched is very difficult to predict since they can not be sep-
arated as their linear analogs, which are shown to separate proportionally
to their molecular weight. This is the main topic we are trying to handle in
this work.



CHAPTER 1

Properties of Polymer Chains

In the following text we introduce some of the very basics of polymer physics.
We closely follow textbooks of Rubinstein [1], Grosberg [2], Doi [3] and de
Gennes [4]. First we discuss some statical properties of ideal and real chains,
scaling and in the end some of the dynamical properties of polymer chains.

1.1 Ideal Polymer Chain

The ideal chain models are important starting point in polymer physics
similarly as a notion of ideal gas in traditional molecular physics. These
models are represented by chain of subsequently connected links, having
no interaction neither with solvent nor with other links. These models can
differ in their link structure or in the type of bonding but they all neglect
the excluded volume interactions.

Figure 1.1: Freely jointed chain model

Re

RN

R0

li = Ri −Ri−1

li+1
li−1

1



2 PROPERTIES OF POLYMER CHAINS

1.1.1 Freely Jointed Chain Model

First, let us describe a very basic model of a polymer chain, a freely jointed
chain model (see Figure 1.1) and show some of its properties. Let N to be
the total number of segments of length l giving N + 1 beads with center of
mass position vectors Ri, i = 0, 1, . . . , N . We should point out that in this
model we do not account for any interactions between the segments and the
bond vectors of links between subsequent beads li = Ri −Ri−1 can point
in any direction and the orientations of the links li are uncorrelated. These
vectors li thus describe a random walk with a step length l = |li| through
space. The total length of polymer chain with N links can be measured
along the contour by sum of bond lengths

L = N |li| = Nl. (1.1)

Next, we define the end-to-end vector, Re, (Figure 1.1) to characterize
the chain conformation

Re = RN −R0. (1.2)

If we than calculate the mean square end-to-end vector, 〈R2
e〉, by averaging

over all conformation we can get a simple characteristics of the average coil
size of the macromolecule.

Additionally we can write the end-to-end vector, Re, using the bond
vectors

Re =

N∑

i=0

li (1.3)

and

〈R2
e〉 =

〈(
N∑

i=0

li

)2〉
=

N∑

i=0

〈
li
2
〉

+ 2
∑

0≤i<j

∑

j≤N
〈lilj〉 . (1.4)

Since bond vectors l are not correlated the angle between li and lj (i 6= j)
has equal probability for any value from 0 to 2π, 〈lilj〉 = l2〈cosϑij〉 = 0.
〈li2〉 = l2 [2], so

〈R2
e〉 = Nl2 (1.5)

meaning that the size of a polymer chain (for N � 1) 〈R2
e〉1/2 ∼ N1/2l is

much less then its contour length Nl. Doing so we have determined the size
of a coil of a freely jointed chain.

Further we introduce some flexibility of polymer. Let us consider some
orientation correlation between segments so 〈lilj〉 6= 0. Then 〈lilj〉 ∼
〈cosϑij〉 determines a degree of polymer flexibility. This correlation can
be expressed as a mean cosine of the angle between different segments of
polymer 〈cosϑ(s)〉, where s is contour length between these segments.
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Since this function of s has a property of multiplicity, for two neighboring
sections can be rewritten as

〈cosϑ(s+ s′)〉 = 〈cosϑ(s)〉〈cosϑ(s′)〉. (1.6)

Function having this property is exponential and can be written as [2]

〈cosϑ(s)〉 = exp

(−s
l̃

)
, (1.7)

where l̃ is a constant for each given polymer called persistence length and it
is a characteristics of polymer flexibility.

Now, let us introduce a Kuhn segment as an effective segment length. In
1934 W. Kuhn introduced another quantitative parameter of polymer chain
flexibility directly associated with 〈R2

e〉. This characteristic is now called
a Kuhn segment. The length of Kuhn segment b for a long chain (L � l̃ )
ideal macromolecule is defined as

〈R2
e〉 = bL. (1.8)

Real macromolecule is then treated as a freely jointed chain of N = L/b
Kuhn segments. In other words Kuhn segment contains more monomer
units which than taken as one behave as a segment of a freely jointed chain.

1.1.2 Gaussian Chain

Here, we mention another ideal chain model, the Gaussian chain. This model
is widely used since it can be easily treated mathematically. Let us consider
a chain bond length having a Gaussian distribution ψ.

ψ(l) =

[
3

2πb2

]3/2
exp

(
− 3l2

2b2

)
(1.9)

so that 〈
l2
〉

= b2. (1.10)
Conformational distribution function Ψ of such a chain is given by [3]

Ψ({li}) =

N∏

i=1

[
3

2πb2

]3/2
exp

(
− 3l2i

2b2

)
(1.11)

=

[
3

2πb2

]3N/2
exp

[
−

N∑

i=1

3(Ri −Ri−1)2

2b2

]
. (1.12)

The Gaussian chain does not describe the local structure correctly but it
correctly describe the property on large length-scales. More different ideal
chain models can be described such a worm-like chain, hindered rotation
model or rotational state model, etc. We will, however, not discuss them
but they can be easily found elsewhere [1, 2].



4 PROPERTIES OF POLYMER CHAINS

1.2 Radius of Gyration

The end-to-end distance 〈R2
e〉 is not always well defined for example for

branched or ring polymers. It is convenient to use the second moment of
mass distribution of polymer called radius of gyration Rg. That is average
square distance between segments in a given conformation and center of
mass of the polymer.

R2
g =

1

N

N∑

i=1

(Ri −RG)
2 (1.13)

and

RG =
1

N

N∑

i=1

Ri (1.14)

where RG denotes the center of mass for a particular conformation and
Ri denotes the vector from the first to the i-th mass point of the chain.
Substituting eqn. (1.14) into eqn. (1.13) we obtain

R2
g =

1

N

N∑

i=1

(
R2
i − 2RiRG −R 2

G

)
(1.15)

=
1

N

N∑

i=1


R2

i − 2Ri
1

N

N∑

j=1

Rj −


 1

N

N∑

j=1

Rj




2

 . (1.16)

This equation can be easily rewritten as

R2
g =

1

N2

N∑

i=1

N∑

j=1

(
R2
i − 2RiRj +RiRj

)
(1.17)

=
1

N2

N∑

i=1

N∑

j=1

(
R2
i −RiRj

)
. (1.18)

Than this expression can be rewritten in a symmetric form

R2
g =

1

N2

N∑

i=1

N∑

j=i

(Ri −Rj)
2
. (1.19)

For polymers the square gyration radius is averaged over the ensemble giving
the mean square radius of gyration [1]:

〈
R2

g

〉
=

1

N

N∑

i=1

〈
(Ri −RG)

2
〉

=
1

N2

N∑

i=1

N∑

j=i

〈
(Ri −Rj)

2
〉
. (1.20)
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Radius of gyration of a Gaussian chain for linear polymer is given by [1]

Rg = b

√
N

6
. (1.21)

1.3 Real Polymer Chains

Until now we were only discussing ideal chain models which do not account
for any excluded volume interactions. In reality, however, in many cases
these iterations can not be neglected.

The excluded volume represents the effect of the interactions of the seg-
ments which are far apart along the chain. Such interactions are called
long-range interactions while on contrary interaction among few neighboring
segments are called short-ranged interactions. The excluded volume effect
was already discussed by Kuhn and then some improvements were initiated
by Flory. It shows that long-ranged interactions change the properties of
chain entirely. For example

〈
R2
e

〉
is no longer proportional to N but to a

higher power of N [1–4] 〈
R2
e

〉
∝ N2ν (1.22)

where ν is a scaling exponent which will be discussed later in more details.

1.3.1 Excluded Volume Chain Models

In the real chains the nature of excluded volume is quite complicated. The
interactions include steric effects, van der Waals attraction and can also
involve many other specific interactions. Nevertheless the excluded volume
effect is strongly controlled by long-range interactions so the details of the
interactions become irrelevant.

Let us define the excluded volume explicitly. The interaction between
segments i and j may be expressed as short-ranged function

U = kBT ṽ(|Ri −Rj |) (1.23)

where kB is the Boltzmann constant and T is temperature. This equation
can be approximated even further by a delta function [3]

U = kBTv δ(|Ri −Rj |) (1.24)

where v is the excluded volume and has the dimension of volume. The total
integration energy can be than written as

U =
1

2
vkBT

∫ N

0

di

∫ N

0

dj δ(|Ri −Rj |). (1.25)
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This equation can be then rewritten using the local concentration of seg-
ments [3, 4]

c(r) =
∑

i

δ(r −Ri) =

∫ N

0

di δ(r −Ri) (1.26)

where r is a position vector. Rewriting eqn. (1.25) using eqn. (1.26) we get

U =

∫
dr

1

2
vkBTc(r)2. (1.27)

Using this expression the excluded volume parameter v can be regarded as
the virial coefficient between the segments. Further virial coefficient expan-
sion can be done but for swollen chains the density of segments in polymer
coil is small and the higher terms can be neglected.

Using mean-field approach internal segment concentration Φ can be de-
fined by replacing average of c2 by the square of average [4]

〈
c2
〉
→ 〈c 〉2 ∼ Φ. (1.28)

Doing so we ignore all correlations between the segments. The internal
segment density is than estimated as [3, 4]

Φ ' N

〈R〉3
∝ N1−3ν = N−4/5 for ν = 3/5 (1.29)

where R is a certain unknown radius (e.g. R = |Re|). Eqn. (1.29) shows
that using above internal segment density Φ becomes very small for large N .

For given combination of polymer and solvent v varies with temper-
ature. More appropriate expression for temperature dependence gives so
called Mayer f -function which is defined as the difference between Boltz-
mann factor for two segments at distance r and two segments at infinite
distance (r =∞)

f(r) = exp

(
−u(r)

kBT

)
− 1. (1.30)

The excluded volume v can be than defined as minus the integral of the
Mayer f -function over the whole space [1]

v = −
∫
f(r)dr =

∫ (
1− exp

[
−u(r)

kBT

])
dr. (1.31)

This single parameter summarizes the net two body-interaction between
monomers.
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1.3.2 Flory-Huggins Theory

Here, we describe a mean-field theory of binary mixtures, a Flory-Huggins
theory and introduce a Flory interaction parameter. [1] Flory-Huggins theory
considers a two-component mixture on lattice with a constant volume where
component A occupies a volume fraction φA and component B occupies a
volume fraction φB . We try to evaluate the energy of mixing Umix of such
system.

The average pairwise interaction of an A-component, UA, with one of
its neighboring monomers is a volume fraction weighted sum of interaction
energies

UA = uAAφA + uABφB (1.32)

where uAA is interaction energy between components A and A and uAB is
interaction energy between component A and B. The corresponding energy
of a B-component, UB , is

UB = uBBφB + uABφA (1.33)

where uBB is interaction energy between components B and B. We write the
total interaction energy of the mixture, U , by summing over all interactions

U =
kn

2
[UAφA + UBφB ] (1.34)

where k is number of lattice sites which also gives the number of pairwise
interactions per site. Since the total volume stays constant we can rewrite
φB as φB = 1 − φA. Substituting that into eqn. (1.34) and using eqns.
(1.32) and (1.33) we obtain

U =
kn

2

[
uAAφ

2 + 2uABφ(1− φ) + uBB(1− φ)2
]
. (1.35)

Then the total energy of both components before mixing can be expressed
as

U0 =
kn

2
[uAAφ+ uBB(1− φ)] . (1.36)

The energy of mixing can be then written as a difference of energies before
eqn. (1.34) and after eqn. (1.36) mixing as

U − U0 =
kn

2
φ(1− φ) (2uAB − uAA − uBB) . (1.37)

It is convenient to study the intensive parameter ∆Umix which is the energy
change of mixing per site

∆Umix =
U − U0
n

=
k

2
φ(1− φ) (2uAB − uAA − uBB) . (1.38)
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The Flory interaction parameter χ is defined to characterize the difference
of interaction energies in the mixture

χ =
k

2

2uAB − uAA − uBB
kBT

. (1.39)

χ is a dimensionless measure of the differences in the strength of the pairwise
interaction energies between species in a mixture. Using this parameter
energy of mixing per lattice site

∆Umix∆Umix = χφ(1− φ)kBT. (1.40)

This energy is a mean-field description of all binary regular mixtures, regular
solutions, polymer solutions as well as polymer blends.

1.3.3 Regimes of Polymer Solutions

Using descriptions of polymer solutions mentioned above various regimes
of polymer solutions can be identified. First let us discuss the athermal
solvents. For high temperate limit the Mayer f -function has no but contri-
bution from hard core repulsion. The excluded volume becomes independent
of temperature at high temperatures. making solvent athemal. We denote
the excluded volume at this temperature vathermal.

In athermal limit the monomer makes no energetic distinction between
other monomers and solvent. In typical solvent monomer monomer attrac-
tion is slightly stronger than the monomer solvent attraction which leads to
lower excluded volume than the athermal value

0 < v < vathermal. (1.41)

At special temperature called θ or Flory temperature contribution to the
excluded volume from hard-core repulsion exactly matches attractive forces
and cancels to zero resulting in θ-solvents

v = 0, χ =
1

2
. (1.42)

Ideal chains are describing polymers at this temperature. At temperature
below θ-temperatures are called poor solvent. In such solvents the excluded
volume is negative.

vnon-solvent < v < 0. (1.43)

The limiting case of poor solvents is called non-solvent. We denote the
excluded volume of non-solvents vnon-solvent. [1] Further in this work we will
only discuss polymers in good and athermal solvents.
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1.3.4 Flory Exponent

Here, we shall derive a Flory arguments for calculating the scaling exponent.
The original ideal of Flory was to calculate the coil size as a sum up two
effects: a repulsive excluded volume effect swelling the coil as volume inter-
actions of the links, F int, and the elastic energy arising from connectivity of
chains, F el, thus [2–4]

F = F el + F int, (1.44)

where F is the free energy. Let us take the free energy of a Gaussian chain
whose end-to-end vector Re is fixed. Partition function corresponding to a
given value of Re is Q(Re). The free energy of the ideal polymer with the
given value Re is than given by [3]

F el = −kBT lnQ(Re, N) + const. (1.45)

For v = 0, the free energy F el can obtained using end-to-end vector dis-
tribution as [3]

F el = kBT
3R2

e

2Nb2
+ const. (1.46)

To estimate the effect of the extended volume interaction we disregard the
connectivity of chain and calculate the interaction energy of a segment gas
confined in a volume R3(R = |Re|). Using the internal segment concentra-
tion Φ = N/R3, the interaction energy is estimated as

F int = vkBTΦ2R3, (1.47)

thus [3]

F = kBT

(
3R2

e

2Nb2
+ v

N2

R3

)
. (1.48)

The average size can be estimated from value which minimizes F . From
∂F/∂R we obtain

〈R〉 '
√
Nb

(√
Nv

b3

)1/5

∝ N3/5. (1.49)

Such calculation gives the scaling exponent ν = 3/5. This result is very
close to the experimental value however this description turns out to not be
adequate because both the repulsive energy as well as the elastic energy are
highly overestimated. The success of Flory calculation comes mainly from
cancellation of errors. [4]
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1.4 Fluctuation Theory and Scaling Concepts

An analysis of a Gaussian coil shows that low concentration polymer solution
in good solvent is a system with strongly correlated fluctuations over long
distances. It is obvious that repulsive volume interaction among links can
only intensify these fluctuations. Hence, such a system can not be very well
described using mean-field approach which is neglecting the fluctuations.

Other physical analogies can be found for system such a polymer in good
solvent. For example magnetic system near critical point or second order
transition where self-consistent Landau theory does not apply because of the
fluctuation grow. Universality of second order phase transition is expressed
by independence of so called critical exponents for each specific system from
microscopic details of its structure. This critical exponent define the be-
havior of various physical quantities near a transition point. For polymers
as for the magnets the critical exponents are universal, that is independent
of specific chemical structure of macromolecules and it is defined only by
their most general properties. The essential is that critical parameters and
fluctuations behavior of polymer as well as other systems generally depends
on dimensional bulk system.

In 1972 P. G. de Gennes pointed out that statistics of single long polymer
chain in a good solvent is equivalent to that of a magnet near the second
order phase transition point in the limit where the number n of components
of an elementary magnetic moment is formally made to approach to zero
(n → 0). The fluctuation theory of second order transitions in magnets
have been thoroughly developed and many results in this area could be
transferred to polymers using so called n = 0 methods. How more accurate
results for critical exponent can be obtain we outline in the following text.

1.4.1 Scaling

Let us introduce the scaling in another fashion. Consider a Gaussian chain,
as mentioned before its statistical property do not depend on the local struc-
ture of the chain. Let us than take apart from the original chain with N
segments of bond length b another Gaussian chain of N ′ = N/λ segments
with bond length

√
λb. Then the transformation of the old chain to the new

one is the change of parameters

N → N/λ, b→ b
√
λ. (1.50)

If you can estimate how the quantity of such transformation changes, you
can make some conclusions about dependence of physical quantity on the
parameters N and b.

We consider various lengths that characterize the size of a Gaussian
chain. For example root of mean square of end-to-end distance

〈
R2
e

〉1/2
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or radius of gyration Rg. Without any calculations we can see that these
quantities are proportional to

√
λb. Let us demonstrate it by following: the

average size of polymer has the dimension of length and can be written as

average size = f(N)b. (1.51)

The size of the polymer must be invariant under transformation eqn. (1.50)

f(N)b = f(N/λ)
√
λb. (1.52)

That is satisfied only when

f(N)b = const×
√
λb. (1.53)

Hence, the distinction among various length is only a numerical constant.
Suppose that similar property exist for the excluded volume chain under
following transformation:

N → N/λ, b→ bλν (1.54)

where ν is the scaling exponent in 〈R〉 ∝ Nν . By the same argument
as above we can show that average size of the excluded volume chain has
following form

average size = const×Nνb. (1.55)

That indicates that there is only one length-scale to characterize the macro-
scopic size of the polymer chain that is the difference between

〈
R2
e

〉1/2
and

Rg is only a numerical constant

Rg = const×
〈
R2
e

〉1/2 ' Nνb. (1.56)

1.4.2 Perturbation Theory

The variety of techniques to evaluate the critical exponent has been devel-
oped, few of them we will try to briefly discuss in the following text and
try to outline how more precise results for critical exponent can be obtain
analytically. First we mention a perturbation theory calculation which can
be with advantage applied to system close to θ-point, i.e. is if excluded
volume v is small. [2,3] Hence, 〈Re〉 can be calculated as a power expansion
of v similarly as perturbation theory virial expansion is used in imperfect
gas. Trough straightforward, such a calculation becomes quite tedious and
we shall not show it here. The perturbation calculation gives [3]

〈Re〉 = Nb2(1 +
3

4
z − 2.075z2 + 6.297z3 − 25.057z4

+116.135z5 − 594717z6 + · · · ), (1.57)
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where z is defined as

z =

(
3

2π

)
v
√
N

b3
. (1.58)

You can note that z is proportional to
√
N thus the perturbation expansion

becomes useless for large N . However, it has been shown that the series in
eqn. (1.57) is asymptotic and by appropriate resummation technique (e.g.
Borel transforms [5,6]) the exponent ν can be estimated as ν = 0.588±0.001.

1.4.3 Renormalization Group Theory

Another way to estimate the scaling exponent is to use renormalization
group technique which was developed to study the critical phenomena. It
was originally invented by Wilson and to polymers it was first applied by de
Gennes and des Cloizeaux. [4] The calculation method of the renormalization
group theory is quite complex and has many variations. [7,8] We mention the
ε-expansion scheme. It is possible to develop an expansion scheme regarding
ε = 4− d as an expansion parameter. [2] Such scheme gives

ν =
1

2

(
1 +

1

8
ε+

15

256
ε2
)
. (1.59)

For d = 3 this gives ν = 0.592 which compares well with more accurate
result ν = 0.588.

1.5 Dynamical Properties

Here, we discuss some dynamical properties of polymer solutions. We only
briefly mention the Rouse model and than concentrate on Zimm model and
how it can be used to estimate hydrodynamic radius, Rh, of a polymer. In
following derivations we closely the textbook of Doi [3]. The static properties
are described by a set of beads connected along the chain. So it seems natural
to describe the polymer dynamics as Brownian motion of such beads. Such
scheme was proposed by Rouse.

1.5.1 Rouse Model

Let us have a set of beads {Ri} ≡ (R1, R2, ..., Ri). In the Rouse model
on each bead act three following forces: first force from neighboring bead
f (p), force of friction against solvent f (fr) and than a random force f (rnd).
Equation of motion of i-th bead can be written as [2]

m
∂2Ri

∂t2
= f

(p)
i + f

(fr)
i + f

(rnd)
i . (1.60)
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We write equation of motion of Brownian particle in Langevin form as [3]

ζ
dx

dt
= −∂U

∂x
+ f(t) (1.61)

where f(t) is a random force, ζ is a friction coefficient and its inverse 1/ζ
is called the mobility. If particle is sufficiently large, ζ can be obtained
from hydrodynamics. For example if the particle is a sphere of radius a and
viscosity of solvent is ηs than

ζ = 6πηsa. (1.62)

Eqn. (1.60) can be rewritten using the Langevin form equation correspond-
ing to Smoluchowski equation in multidimensional space as [3]

∂

∂t
Ri(t) =

∑

j

Hij

(
− ∂U
∂Rj

+ f j(t)

)
+

1

2
kBT

∑

j

∂

∂Rj
Hij (1.63)

where U is potential and H is a mobility matrix. In Rouse model the
excluded volume interaction and hydrodynamic interaction are neglected
and mobility tensor and interaction potential are described as [3]

Hij =
I

ζ
δij (1.64)

and potential in θ-condition is written as

U =
k

2

N∑

i=2

(Ri −Ri−1)
2 (1.65)

where δij is Kronecker delta and

k =
3kBT

b2
. (1.66)

However neglecting the hydrodynamic interaction turns out to be crucial
and Rouse model does not give correct results. Even thought this model
is quite important we will not discuss it here any more. Details on Rouse
model can reader easily find elsewhere. [2, 3]

1.5.2 Zimm model

To describe the polymer dynamics in dilute solutions we have take the hy-
drodynamic interaction into account. A way to do that was proposed by
Zimm and shall discuss it now. Zimm expressed the mobility matrix as
follows [3]

Hii =
I

ζ
, (1.67)
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Hij =
1

8πηs|rij |
(r̂ij ⊗ r̂ij + I) for i 6= j (1.68)

where rij ≡ Ri −Rj and r̂ij is the unit vector in direction of rij and I is a
unit matrix. For that tensor is be shown that [3]

∂

∂Ri
Hij = 0. (1.69)

The Langevin equation (1.63) thus becomes

∂

∂t
Ri =

∑

ij

Hij

(
− ∂U
∂Rj

+ f j(t)

)
. (1.70)

For θ condition eqn. (1.65) and eqn. (1.70) give in continuous limit [3]

∂

∂t
Ri =

∑

ij

Hij

(
k
∂2

∂j2
Rj + f j(t)

)
. (1.71)

Hij is, however, nonlinear function of rij and eqn. (1.71) is quite difficult to
handle. Zimm introduced the preaveraging approximation, which replaces
Hij by its average to simplify the analysis. [3]

Hij → 〈Hij〉 =

∫
d{Ri}HijΨ({Ri}, t) (1.72)

where Ψ is a distribution function. Considering problems near equilibrium,
we may use the equilibrium distribution function in the average of eqn.
(1.72)

Hij → 〈Hij〉eq =

∫
d{Ri}HijΨeq({Ri}). (1.73)

Distribution rij is independent of |rij |, so 〈Hij〉eq can be written as

〈Hij〉eq =
1

8πηs

〈
1

rij

〉

eq

〈r̂ij ⊗ r̂ij + I〉eq . (1.74)

Using

〈r̂ij ⊗ r̂ij〉 =
I

3
(1.75)

we have
〈Hij〉 =

I

6πηs

〈
1

|Ri −Rj |

〉
. (1.76)

In preaveraging approximation eqn. (1.70) thus becomes

∂

∂t
Ri(t)

∑

j

I

6πηs

〈
1

|Ri −Rj |

〉(
k
∂2

∂j2
Rj(t) + f j(t)

)
. (1.77)
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This approximation might seem quite crude, however, the results it gives
have been shown to not be very different from those of more sophisticated
calculations. To analyze eqn. (1.77) we rewrite it in term of Rouse normal
coordinates Xp. [2, 3]

∂

∂t
Xp =

∑

q

hpq(−kqXq + f q) (1.78)

where

Xp ≡
1

N

∫ N

0

di cos

(
πpi

N

)
Ri(t) where p = 0, 1, 2, . . . (1.79)

kp =
2π2k

N
p2 =

6π2kBT

Nb2
p2 (1.80)

and

hpq =
1

N2

∫ N

0

di

∫ N

0

dj cos

(
πpi

N

)
cos

(
πqj

N

)
I

6πηs

〈
1

|Ri −Rj |

〉
. (1.81)

hpq is nearly diagonal and by neglecting off-diagonal components and we get
so called Kirkwood-Riseman approximation [2]

hpq ' hqqδpq. (1.82)

It gives

ζp
∂

∂t
Xp(t) = −kpXp + fp(t) (1.83)

ζp = (hpp)
−1 =

[
1

N2

∫ N

0

di

∫ N

0

dj cos

(
πpi

N

)
cos

(
πqj

N

)
×

× 1

6πηs

〈
1

Ri −Rj

〉]−1
. (1.84)

For p = 0 it gives the result for so called non-draining limit immediately.

ζ0 = (h00)−1 = 6πηsN
2

[∑

n

∑

m

〈
1

Rn −Rm

〉]−1
. (1.85)

1.5.3 Hydrodynamic Radius

Hydrodynamic radius is a radius of a hard sphere that diffuses at the same
rate as the polymer molecule. In the non-draining limit, the friction coeffi-
cient, ζ, can be expressed as

ζ =
3πηsN

2

∑

i

∑

j>i

〈
r−1ij
〉 (1.86)
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where
〈
r−1ij
〉
denotes the average over all conformations and η

0
denotes the

viscosity of the solvent. Friction coefficient and hydrodynamic radius, Rh

are related via

〈Rh〉 =
ζ

6πη
0

=
N2

2
∑

i

∑

j>i

〈
r−1ij
〉 . (1.87)

Simulation time of calculation of Rh according to eqn. (1.87) scales with
N2. In order to save computational time we calculate only an estimate of
Rh. Upon reversing the order of averaging, we replace the exact average over
double sum by average over N randomly chosen inter mass point distances
rij . Thus [9]

2
∑

i

∑

j>i

〈
r−1ij
〉

N2 =

〈
2
∑

i

∑

j>i

r−1ij

〉

N2
≈

〈
N∑

k=1

r−1i(k)j(k)

〉

N
. (1.88)



CHAPTER 2

Monte Carlo

In this work the Monte Carlo methods are crucial. We devote this chap-
ter to them. Monte Carlo methods are stochastic techniques often used for
simulating physical, chemical or mathematical systems. It was developed
by von Neumann, Ulam, Metropolis and others in the 1940s. [10–12] They
realized that determinate mathematical problems can be treated by finding
a probabilistic analog which can be solved by a stochastic sampling experi-
ment. Such experiment is described in following section and it is shown on
Figure 2.1. Treating simple problems this is probably not the method of
choice, however, we will see that while dealing with more complex systems
this technique is very powerful and efficient.

In the following text we try to describe basic principles of Monte Carlo
methods. Then we focus on Monte Carlo techniques we use in our simula-
tions.

2.1 Monte Carlo Integration

To demonstrate the very basics of Monte Carlo we begin with simple Monte
Carlo integration, that is a random number sampling experiment. [10] Let
X1, X2, . . . , XN be random variables with probability distribution f(x) and
then for function g(x) let GN be an estimator

GN =
1

N

N∑

i=1

g(Xi). (2.1)

Then

〈GN 〉 =

∫ ∞

−∞
f(x)g(x)dx, (2.2)

17
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and

var(GN ) =
1

N
var(g) (2.3)

As N →∞ and if the variance exists, the distribution of possible values of
GN narrows about the mean as N−

1
2 or in other words the probability of

finding GN at some fixed distance away from 〈GN 〉 becomes smaller.
Usually, the basic random variable used in Monte Carlo is distributed

uniformly between 0 and 1. [13]

frnd(x) = 1, 0 ≤ x ≤ 1. (2.4)

To illustrate let us show how a simple Monte Carlo integration can be used
to evaluate number π (Figure 2.1). [10]

Consider the unit square in the plane xy and the circle with unit radius.
Integrating over the unit circle but counting only those pairs of x and y that
lie within quarter circle yields the area of the quarter circle. That is

∫ 1

0

∫ 1

0

f(x, y)g(x, y)dxdy =
π

4
(2.5)

where

f(x, y) =

{
1 (x, y) ∈ (0, 1)⊗ (0, 1) (i.e. inside the unit square)
0 otherwise

(2.6)

and

g(x, y) =

{
1 x2 + y2 ≤ 1

0 x2 + y2 > 1.
(2.7)

Since x and y are independent,

f(x, y) = frnd(x)frnd(y). (2.8)

2.2 The Metropolis Method

Having introduced simple Monte Carlo integration, we proceed to more ad-
vanced sampling technique. Consider a hard sphere fluid of N particles and
let us denote Z to be configurational part of a partition function [11,12]

Z ≡
∫
drN exp

[
−βU

(
rN
)]

(2.9)

where U is potential and rN stands for the coordinates of all N particles.
Using simple Monte Carlo integration to evaluate this integral we would,
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Figure 2.1: Monte Carlo integration
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however, find out that for overwhelming number of points the Boltzmann
factor is vanishingly small because for more dense system it is very difficult
to generate configurations where spheres do not overlap, meaning that their
Boltzmann factor is non-zero.

Fortunately, we are rather than in evaluating configurational part of
partition function itself interested in evaluating averages such as

〈A〉 =

∫
drNA

(
rN
)

exp
[
−βU

(
rN
)]

∫
drN exp

[
−βU

(
rN
)] . (2.10)

In such case we can reduce the problem only to evaluating the ratio of
these integrals. In 1953 Metropolis et al. [14] showed that it is possible to
derive an efficient Monte Carlo scheme to sample such a ratio. The ratio
exp

[
−βU

(
rN
)]
/Z in eqn. (2.10) is then probability density of finding the

system around the configuration rN . Let us denote this probability density
by

N (rN ) ≡ exp
[
−βU

(
rN
)]

Z
. (2.11)

Now, let us imagine that we are able to somehow randomly generate
points in configurational space so they have the probability distribution
N
(
rN
)
. Than, clearly, the number of points ni generated per unit volume

around a point rN is equal to LN
(
rN
)
where L is total number of generated

points. So

〈A〉 ≈ 1

L
L∑

i=0

niA
(
rNi
)
. (2.12)
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We should note that using this approach we only know the Boltzmann factor,
exp

[
−βU

(
rN
)]
, and not the configurational part of partition function, Z,

thus we do not know the absolute but only the relative probability of visiting
points in configurational space.

Let us derive the Metropolis scheme to show how to generate points
in configurational space with desired distribution, in our case, Boltzmann
distribution N .

The general approach uses a Markov chain which is a special case of
Markov process. Markov chain X = {X0, X1, . . .} is a particular type of a
stochastic process taking at times k ∈ Z+, values Xk in a state space S with
Markov property defined as [15]

P (Xk+1 = x|X1 = x1, X2 = x2, . . . , Xk = xk) = P (Xk+1 = x|Xk = xk) .
(2.13)

Let us take the state space to be finite and {Ai} ∈ S, i = 1, 2, . . . ,M . The
probability of transition from the state i to the state j at time k for time-
homogeneous Markov chain we define as

Pj|i = P (Xk+1 = j|Xk = i) (2.14)

so transition from i to j at time k can be written as

P
(k+1)
j =

M∑

i=1

P
(k)
i Pj|i. (2.15)

This can be rewritten using the transition or stochastic matrix π as [12]

ρ(k+1) = ρ(k)π (2.16)

where P (k)
i is the probability of state i at time k and ρ(k) is stochastic vector

at time k and sum over state j gives

M∑

j

Pj|i = 1. (2.17)

It is possible to calculate the limiting distribution as [12]

ρ = lim
k→∞

ρ(1)π(k) (2.18)

for given transition matrix, where ρ(1) is initial stochastic vector From eqn.
(2.18) it is clear that limiting distribution ρ must satisfy eigenvalue equation

ρπ = ρ. (2.19)

That is a matrix of an irreducible chain. Irreducible or ergodic chain is a
one where every state can be reached from another one. A suitable scheme
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was derived by Metropolis. It is often known as asymmetrical solution. If
(i 6= j) this solution considers two cases [11,12]

Pj|i ≥0 ∀ i, j = 1, . . . ,M (2.20)
M∑

j=1

Pj|i =1 ∀ i, j = 1, . . . ,M (2.21)

ρπ =ρ. (2.22)

Next to help us find a solution we replace detail balance condition by un-
necessary condition of microscopic reversibility

PiPj|i = PjPi|j . (2.23)

Summing over all states i we gain
∑

i

PiPj|i =
∑

i

PjPi|j = Pj
∑

i

Pi|j = Pj . (2.24)

These equation do specify transition matrix. Let us take

Pi =
exp(−βUi)

Q
(2.25)

than substituting it into eqn. (2.24) we get

Pi|j
Pj|i

=
Pi
Pj

= exp [−β(Ui − Uj)] (2.26)

or
Pi|j = Pj|i = 0. (2.27)

In general case this result means that it is sufficient that we have relative
probabilities. The transition matrix is define by [11,12]

Pj|i =





αj|i for i 6= j and Pj ≥ Pi

αj|i
Pj
Pi

for i 6= j and Pj < Pi

1−
∑

i 6=j
Pj|i for i = j

(2.28)

where αj|i is any stochastic matrix and fulfill condition of microscopic re-
versibility. This is the matrix suggested by Metropolis. The first two rows
are usually rewritten as

Pj|i = αj|i min

{
1,
Pj
Pi

}
for i 6= j. (2.29)

At this point it should be stressed that using this scheme we introduce a bias
into our computations and the generated samples become highly correlated.
This we will discuss in next chapter.
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Figure 2.2: Rosenbluth scheme

a) b)

2.3 The Rosenbluth & Rosenbluth Method

Various schemes how to generate self-avoiding walks (SAW) on lattice and
also off-lattice were developed by various authors. In following we describe
Rosenbluth and Rosenbluth (RR) scheme which we adopt for our calcula-
tion. RR scheme was originally developed to effectively simulate polymer
on lattice in good solvent but it can be easily extended to off-lattice case as
well. [11]

First, we show how standard Metropolis scheme would be used and then
we proceed to RR scheme. Let us consider a chain of N segments on cubic
lattice. Using a classical Metropolis scheme we insert first segment and then
all following segments we insert to any of its k neighboring lattice sites (for
cubic lattice k = 6). Doing so we can by incorporating Metropolis scheme
sample all the chains with correct probability. However, if chosen site is
already occupied the chain intersects itself and generated conformation is
to be rejected. This show out to be crucial and the algorithm becomes very
inefficient for large N .

In 1955 Rosenbluth and Rosenbluth proposed a scheme to sample more
efficiently. [16] Using this RR scheme instead of choosing the direction at
random favoring the direction with the highest Boltzmann factor. Yet, doing
so we introduce a bias in our computation and we must introduce a correction
for that.

In following, we describe the Rosenbluth algorithm and show it gives
correct average having Boltzmann distribution. [11] Let interaction energy
of i-th segment of chain n to be denoted by u(i)(n) We insert the first
monomer and we denote its energy by u(1)(n). Let the RR weight of this
monomer be defined as

w1 = k exp
[
−βu(1)(n)

]
. (2.30)
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Building following segments we define the j-th segment trial position to have
the energy u(i)(j). From k possibilities we select one according to probability

p(i)(n) =
exp

[
−βu(i)(n)

]

wi
(2.31)

where wi is defined as

wi =

k∑

j=1

exp
[
−βu(i)(j)

]
(2.32)

Interaction energy u(i)(j) includes interaction of segment li with other molecules
and with segments l1 up to li−1 of the same macromolecule. The interaction
energy of whole chain n is

U(n) =

N∑

i=1

u(i)(n). (2.33)

The normalized RR factor of configuration n is

W(n) =

N∏

i=1

wi(n)

k
. (2.34)

In case of athermal solvent we do not include energies and the RR weight
reduces simply to

wi =
ki
k

(2.35)

and the RR factor of configuration n is than

W(n) =

N∏

i=1

wi. (2.36)

Eqn. (2.12) becomes

〈A〉R =

M∑

n=1

W(n)A(n)

M∑

n=1

W(n)

(2.37)

where M is number of generated chains and 〈· · · 〉R indicates that con-
formations have been generated using Rosenbluth scheme. Probability of
generation a particular conformation n is given by using equation () and ()

P(n) =

N∏

i=1

exp[−βu(i)(n)]

wi(n)
=
kNexp[−βU(n)]

W(n)
. (2.38)
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It should be noted that probability is normalized
∑

n

P(n) = 1. (2.39)

Let us show that using RR scheme we will get a proper average.

〈A〉R =

M∑

n=1

W(n)A(n)P(n)

M∑

n=1

W(n)P(n)

(2.40)

Substituting (2.34) into (2.38) we get

〈A〉R =

∑M
n=1W(n)A(n)

∏N
i=1 exp[−βu(i)(n)]/wi(n)

∑M
n=1W(n)

∏N
i=1 exp[−βu(i)(n)]/wi(n)

=

∑M
n=1W(n) kN A(n) exp[−βU(n)]/W(n)
∑M
n=1W(n) kN exp[−βU(n)]/W(n)

=

∑M
n=1A(n) exp[−βU(n)]
∑M
n=1 exp[−βU(n)]

= 〈A〉 (2.41)

As we can see RR scheme gives proper average. At the end we can conclude
that this scheme gives major improvement and allow us to simulate chains
with much larger N but the computational cost still grows exponentially
because of the self-trapping. That means that in all surrounding lattice
points there is a segment already present. [11]



CHAPTER 3

Monte Carlo Calculations

The general description of Monte Carlo methods have been already discussed
in previous chapter. In this chapter we present details on how Monte Carlo
calculation have been performed. First we discuss the implementation of the
RR algorithm we use and we discuss its efficiently, than we show that Rg

generated for different architectures follows a proper scaling and how other
characteristic, in particular distribution coefficient and depletion layer, can
be calculated using conformation obtained from MC simulations.

3.1 Algorithm Implementation

First, we refer to standard RR scheme mentioned in the previous chapter
(Section 2.3). Our task is to generate SAWs representing branched polymers
with various architectures. As we mentioned already, the RR algorithm
remarkably improves the efficiency of generating SAWs but nevertheless the
sample attrition still stays exponential because of the self-trapping even
thought at much slower rate. [11, 17] It is clear, that this self-trapping can
be only intensify if we generate a branched polymers which are, from their
nature, more dense than the linear ones.

The principle of the technique we use to generate SAWs is rather simple,
even thought its implementation becomes more complicated from program-
ming point of view. The implementation of the algorithm we use to achieve
higher efficiency is following: We start with standard RR scheme and we use
it to produce first conformation, but other schemes can be used at this point
as well (e.g. the dimerization algorithm which would give us an conformation
from correct distribution and thus you could start to sample immediately).
At the second step modified RR is already used. Instead of rebuilding en-
tire chain again we chose randomly any point along the chain and then we
randomly chose a direction in which we dissolve the rest of the chain from
the chosen point. While dissolving this part we have to calculate its RR

25
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Figure 3.1: Monte Carlo step

weight. Than we regrow the dissolved part and we again calculate its RR
weight. Doing so a new conformation is created. The new conformation is
accepted or rejected according to to Metropolis criteria eqn. (2.29) using
calculated weights of dissolved and regrown parts of the chain. A scheme of
a modified RR MC step is depicted on the Figure 3.1. The computational
time of generation of SAWs still grows exponentially with N but we achieved
to reduce the self-trapping so the exponential grow is slower and we improve
the algorithm efficiency. [17]

To give some idea about efficiency of this algorithm let as mention follow-
ing: For example to generate 1000 segments chain about 106 independent
conformations are needed to calculate an average within 1% error and it
takes about 12 hours but to calculate a chain of 2000 segments within this
error takes already several days. We found 12 hours calculation reason-
able so many of the following SAWs calculations presented have about 1000
segments.

3.1.1 Remark on Bracket Notation

There is a very simple way how trees can be represented using a bracket
notation. [18] We adopted this because it allows us to build any given tree
recursively, that is in a very simple way. It is however useful not only for
programming. In following text we shall use it to describe various architec-
tures presented. This notation uses nested parentheses to describe which
points are either disjoint or one contains to the other, parentheses behind
a number (number of segments of linear chain) signifies another chain con-
nected to it. The best way to explain is probably an example. For example
a star with arms of 100 segments has notation:

[100[100][100]] (3.1)

to the end of first 100 segments are connected two chains of 100 segments.
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3.2 Calculation of Averages

As we mentioned before, configurations obtained from MC are highly cor-
related. In the following, we explain how we decorrelate our data and how
averages and standard deviations are estimated. Also certain number of
conformations from the beginning of the simulation has to be left out from
the computation of averages since the first conformation is not generated
from the correct Boltzmann distribution.

3.2.1 Autocorrelation Function

Let X1, . . . , Xn be the result of n consecutive measurements. The sample
mean we define as

X̄ ≡ 1

n

n∑

t=1

Xt (3.2)

and variance of correlated values we estimate as [11]

var(X̄) = 〈X̄2〉 − 〈X̄〉2 =
1

n2

n∑

i,j=1

γij , (3.3)

=
1

n

(
γ0 + 2

n−1∑

t=1

(
1− t

n

)
γt

)
(3.4)

where γij is autocorrelation function

γij ≡ 〈XiXj〉 − 〈Xi〉〈Xj〉. (3.5)

Autocorrelation function is invariant under time translations and depends
only on interval |i− j|. We, hence, define

γt ≡ γij where t = |i− j|. (3.6)

For large values of t autocorrelation function decays exponentially. Therefore
we define exponential autocorrelation time [17]

τexp,A = lim
t→∞

t

−logγt
. (3.7)

This can be interpreted as relaxation time of the system. In other words
is says how many steps is needed before correlation decreases to 1/e. In
our simulations we always leave out at least ten times this autocorrelation
time from the beginning of the average evaluation. Than we consider the
conformation to have the correct Boltzmann distribution. On the other
hand, we define also the integrated autocorrelation time [17]

τint,A =
1

2
+

∞∑

t=1

γt
γ0
. (3.8)
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By using it, variance can be estimated more precisely as [17,19]

var(X̄) ≈ 1

n
2τint,Aγ0 for n� τ. (3.9)

This result displays that the variance of X̄ is a factor 2τint,A larger than it
would be if the X1, . . . , Xn were statistically independent.

3.2.2 Block Method

To calculate variance of independent samples we use another alternative
method. [19] This method does not use the autocorrelation function to cal-
culate the variance but it uses repeatedly a block transformation

X ′i =
1

2
(Xi +Xi+1). (3.10)

From original n values ofX we obtain n′ = n/2 new valuesX ′1, X ′2, . . . , X ′n/2.
The mean value and the variance are invariant under this transformation and
it is possible to show that value of γ0 transforms as

γ′0 =
1

2
(γ0 + γ1). (3.11)

From eqn. (3.4) variance is

var(X) ≥ γ0
n
. (3.12)

Value γ0/n grows after each block transform until γ1 is not zero. Then γ0/n
is independent under the blocking. And block transformation has a fixed
point with var(X̄) = γ0/n and γt = 0 for t > 0. We continue with blocking
until n′ = 2 and for each block transform var(X̄) is calculated

var(X) ≈ c0
n′ − 1

(3.13)

where ct is an estimator for γij , c0 is of course ct for t = 0,

ct ≡
1

n− t
n−t∑

k=1

(Xk − X̄)(Xk+t − X̄). (3.14)

Plateux of the value var(X̄) tells us that we reached a stationary point. Then
Blocked values are independent and their variance can be estimated. [11]

var(X̄) ≈ c′0
n′ − 1

±
√

2

n′ + 1

c′0
n′ − 1

. (3.15)
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3.3 Scaling

In this section we present scaling for various architectures. We would like to
stress that main aim of this is rather to validate reliability of the program we
developed then to study the scaling behavior. We present our calculations
of following architectures: linear, 3-arm star and 6-arm star and asymmetric
star ([N/2[N/4][N/4]]). We generated SAWs up to 1000 segments for differ-
ent architectures. Around 106 independent conformations is generated for
computing the averages and all averages are calculated within 1% error. In
Figure 3.2 we show scaling of

〈
R2
g

〉
for linear chain and in Figure 3.3 we

show the scaling of
〈
R2
g

〉
for all architectures named above. For linear chain

The scaling is found as
〈
R2

g

〉
= AN2ν . (3.16)

The scaling exponents ν and preexponential constant A for Figure 3.3 are
in Table 3.3. For stars as well as for linear chains the scaling obtained
analytically [20]

〈
R2

g

〉
= Af1−νN2ν . (3.17)

where f in number of arms. This scaling is however supposed to be valid
for many arm star with arms of infinite length which is not the case of stars
we calculated.

We should discuss the results of scaling in comparison to analytical result,
which is ν = 0.588, discussed in Section 1.3. MC and analytical results
although close do not exactly match. The reason for the deviation is that
analytical methods calculate the scaling at the limit for N → ∞ while our
MC calculations of SAWs have rather small amount of segments N ∼ 1000.
It have been shown that to get agreement on third digit, SAWs of 10000
segments have to be used to evaluate scaling. [21] We would like to point
out that all different architectures follow the same scaling exponent ν. The
preexponential constant A varies for different architecture and varies also
with different models being used.

Table 3.1: Scaling exponents ν and preexponential factors A for different ar-
chitectures.

Architecture A ν

linear 0.175 0.594
3-arm star 0.131 0.596
6-arm star 0.074 0.596
asymmetric star 0.145 0.593
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Figure 3.2: Scaling of linear chain.
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Figure 3.3: Scaling of 4 different architectures.
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Figure 3.4: Accessible pore volume for a polymer chain. Accessible pore vol-
ume for center of mass of polymer chain is labeled by darker blue region.

3.4 Distribution Coefficient Calculations

We mentioned already that we estimate various properties of branched poly-
mers such as radius of gyration or hydrodynamic radius. Besides those one
of the important task of polymer theorist is to predict elution behavior of
branched polymers on size exclusion chromatography (SEC) also referred
as gel permeation chromatography (GPC). As we mentioned in the intro-
duction the SEC is one of the most prevalent characterization technique for
synthetic and natural polymers. However despite a wide usage of SEC an
ambiguity about its separation principle remains unresolved. It is gener-
ally believed that SEC is governed by equilibrium thermodynamics rather
than hydrodynamics because the flow rates in experiments are generally
quite low. On the other hand, work of Grubisic, Rempp and Benoit show
that polymer molecules separates according their hydrodynamic volume re-
gardless of their chemical composition and chain architecture. [22] And the
hydrodynamic volume is of course dynamic quantity which points that this
phenomenon is rather controlled dynamical properties of polymers.

In 1970s Casassa and co-workers developed en equilibrium theory for SEC
of branched and linear chains which that the separation process is governed
by the equilibrium partition coefficient,K, of solute macromolecules between
a bulk dilute solution phase located at the interstitial space and confined
solution phase within the pores of the column packing material. [23, 24]

In general, the partition coefficient depend on the molecular size relative
to the pore size. Since there are various measures of polymer coil size, the
fundamental problem in the theory has been the choice of a proper molec-
ular size parameter which correlates with, K. It has been shown before
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Figure 3.5: Determination of the distribution coefficient. The shift distance
at which chain touches the pore walls defines a volume. The average vol-
ume with respect to all direction divided by total pore volume gives the
distribution coefficient, K, of a particular conformation.

Rdir

Rp

that Rh is more suitable then Rg which fails to provide universal calibration
curve. [9,24,25] Recently another parameter was considered to fit even better
to fit this calibration curve for different architectures which is call the span
dimension it is basically average radius of convex envelope of polymer. [22]
We will however not discuss it here and we refer reader elsewhere. Despite
the analytical calculation as well as simulation have been performed to show
that Rh well follows the calibration curve for different architectures we re-
calculate this for even more complex architectures such as dendrimer and
asymmetric H-shape ([50[100][200[300][400]]]]). All calculated architectures
are summarized in Table 3.2. Details on performed calculations follows.

The distribution coefficient is determined as a fraction of the pore volume
accessible for a particular architecture (see Figure 3.4) [9]. For simulation
of the distribution coefficient of a particular conformation we place a center
of mass of the conformation in the center of pore with radius Rp, than we
select a random direction and calculate a displacement vector Rdir at which
conformation intersects with a wall (see Figure 3.5). Average over D direc-
tions gives an average displacement vector which denotes a sphere radius of
volume of accessible fraction. Distribution coefficient is than evaluated as

Kconf =
Vacc
Vpore

=

(
1

D

∑

D

Rdir

)3

R3
p

. (3.18)
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Figure 3.6: Graph of normalized root of average square of gyration radius,〈
R2
g

〉1/2
, vs distribution coefficient K for different architectures, where Rp de-

notes the pore radius. It shows that calibration curve constructed using
gyration radius differs for different architectures.
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Figure 3.7: Graph of normalized average hydrodynamic radius, 〈Rh〉, vs dis-
tribution coefficient K for different architectures, where Rp denotes the pore
radius. It shows that calibration curve constructed using hydrodynamic ra-
dius is suitable for evaluation the elation behavior of randomly branched
polymers.
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Table 3.2: Calculated architectures. On the table from left are snapshots of
different architectures, schemes indicating lengths of particulars branches
and their significant quantities, where N is total number of segments.

Architecture N
〈
R2

g

〉1/2
Rh

1024 1024 25.72 17.68

343

1030 22.65 16.90

171

1027 16.95 14.47

86 1033 18.04 15.04

512

254
1024 23.12 16.93

51

101

301

401

1056 22.73 16.99



DEPLETION LAYER CALCULATION 35

Figure 3.8: Depletion layer. We show depletion layer with error function
depending on number of segments N .
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The self-avoiding walks were generated on cubic lattice using dynamic
Monte Carlo to simulate polymers in good solvent. We calculated normalized
calibration curves for 6 different architectures: linear, 3-arm star, 6-arm
star, dendrimer, 3-arm asymmetric star and asymmetric H-shape (see Table
3.2). All quantities were calculated within error of 1%. 32 trial direction
were calculated to evaluate the distribution coefficient K. For calculation
calibration curves we varied the radius of pore, Rp, instead of the chain
size. Calculated calibration curves are shown in Figures 3.6 and 3.7. They
show that hydrodynamic radius is suitable for predicting elution behavior
of randomly branched polymers.

3.5 Depletion Layer Calculation

Depletion layer and depletion layer thickness are also important in the theory
of SEC. We, however discuss it in more details in Chapter 4. Here, we
only give simulation details on performed calculation of depletion layer. We
calculate a depletion layer using generated MC conformations in the bulk,
not in a vicinity of a wall. To calculate the depletion layer we put the
conformation at certain distance from the wall and than we approach the
conformation in one direction towards the wall. At each step we add up the
histogram. When the conformation reaches the wall we stop. It is equivalent
to generating MC at given distances from the wall but considering that if the
SAW hits the wall we reject it. Conformations generated in such a way have
than the same free energy. In principle you could generate the depletion layer
in a same way as it is done for self-consistent-field calculation (Section 4.1)
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this approach would be, however, computationally much more demanding
since you would have to calculate profiles in many different distances from
the wall and than you would also have to estimate the free energies of these
profiles which can not be done very easily for MC calculations. In Figure
3.8 we show depletion layer of linear chain with N=1024 segments. And we
show the standard deviation of the depletion layer calculated using the way
described above. All the errors are within 1% we thus believe it is a relevant
way to calculate depletion profiles from MC conformations.

3.6 Graph Theory Calibration

We are able to calculate quantities of randomly branched polymers such as
radius of gyration or hydrodynamic radius using MC calculation. This is
however quite time demanding. In some cases the computation time is cru-
cial and we need to estimate these quantities in a very short time although
they would be approximate. There is a method for finding the radius of gyra-
tion of the architectures of branched polymers using a statistical mechanical
theory employing a graph-theoretical representation of the connectivity in
the molecules. [26–28]

3.6.1 Graph Theory

Let us briefly outline how radius of gyration can be calculated from graph
theory. The distribution function for the square radius of gyration Rg of a
system of N beads, which we here consider as a model for molecule with N
monomer units, has been derived as [26]

P
(
R2

g

)
dR2

g =
dR2

g

2π

∫ ∞

−∞
eiβR

2
gB(β)dβ (3.19)

where B(β) is a characteristic function, here presented in a slightly modified
form

B(β) = |I +
iβ

N
Λ−1N−1|−3/2, (3.20)

I in the (N−1)×(N−1) identity matrix and Λ−1N−1 is the matrix with N−1
reciprocals of eigenvalues of the Kirchhoff matrix K, a graph-theoretical
representation describing the connectivity between the N units. Kirchhoff
matrix of a graph G where G = G(V,E) is an undirected, unweighted graph,
V is set of vertex,V ≡ {v1, . . . , vN}, N = |V | and E is an edge set, is a N×N
symmetric matrix, K := (kij)N×N , defined as

kij(G) =





deg(vi) i = j

−1 if i 6= j and vi is adjacent to vj
0 otherwise.

(3.21)



GRAPH THEORY CALIBRATION 37

For example Kirchiv matrix of a star like architecture ([2[1][3]]) is written
as

K =




1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0

0 −1 3 −1 −1 0 0
0 0 −1 1 0 0 0
0 0 −1 0 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 1




. (3.22)

The average square radius of gyration 〈Rg〉 follows form the first moment of
this distribution eqn. (3.19) as [26]

〈
R2

g

〉 〈
l2
〉

= N−1Tr(Λ−1N−1) (3.23)

and is expressed in terms of the mean of the square length of the edges
between units l2. The Kirchhoff matrix is derived from incidence matrix C.

K = CγCT (3.24)

where CT is transpose of C and γ = 3/(2l2ij), lij is a length measure of
the edge between beads i and j. Hence, γ is a vector of length N − 1.
For all edges having equal length equation (3.24) becomes K = γCCT and
equation (3.20) becomes

B(β) = |I +
−iβ
γN

Λ−1N−1|−3/2. (3.25)

3.6.2 Coarse Graining

According to (3.23) for calculating radius of gyration of a molecule with
N segments N × N Kirchhoff matrix has to solved. However that means
that for a molecule with a million segments a matrix of 106 × 106 we would
have to find its smallest values. This is computationally very demanding if
not practically impossible. Fortunately, this model can be coarse-grained in
a very simple way within a reasonable error. [27] Assuming that length of
a coarse grained edge i − j, originally consisting of Nij unit segments, to
equal the average end-to-end distance 〈rij〉 of a linear chain consisting of
Nij segments. The 〈rij〉 scales with root of the number of segments Nij ,
so we accordingly assume lij to equal N1/2

ij . γ thus becomes a vector the
reciprocal value of the number of monomer units in each edge Nij

γ =
3

2Nij
. (3.26)

Equation 3.23 can be than reformulated for evaluation Rg from a reduced
matrix as 〈

R2
g

〉 〈
l2
〉

=
N

N2
red

Tr(Λ−1Nred−1) (3.27)
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Figure 3.9: Logarithmic plot of mean square radius of gyration obtained from
MC calculation 〈Rg〉 divided by results from the graph theory for the same
molecules vs. number of segments N .
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where Nred is number of segments of reduced matrix, meaning that this
new reduced matrix has segments length N/Nred. The error of this coarse-
graining comes from neglecting contribution of very small eigen values. For
more details we refer reader to [26,27].

3.6.3 Comparison of MC and Graph Theory

We compared results for a mean square radius of gyration for different archi-
tectures from MC calculations and from the graph theory. In Figure 3.9 we
show logarithmic plot of mean square radius of gyration obtained from MC
calculation

〈
R2

g

〉
divided by results from the graph theory, N−1Tr(Λ−1N−1),

for the same molecules vs. number of segments N. It displays that MC
results could be estimated using

〈
R2

g

〉

N−1Tr(Λ−1N−1)
≈ A′Nν′ (3.28)

as 〈
R2

g

〉
≈ A′Tr(Λ−1N−1)Nν′+1. (3.29)

Enqs. (3.28) and (3.29) are in accord with graph-theory representation
because it uses Gaussian chain model to derive eqn. (3.19). Meaning that
graph-theory represents an ideal chain which, of course, follows different
scaling. If they had the same scaling the scaling exponent should be close
to one. We see that preexponetial factor in eqn. (3.29) differs for different
architecture but there is still a good quantitative agreement of MC and
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Figure 3.10: Logarithmic plot of mean hydrodynamic radius to power of 4 ob-
tained from MC calculation 〈Rg〉 divided by results from the graph theory for
the same molecules vs. number of segments N .
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graph-theory representation results. The preexponetial factor A′ and the
scaling exponent ν′ can be obtained by numerical fitting. We estimated
them to be A′ = 1.00 ± 0.05 and ν′ = 0.194 ± 0.005, however different
fit can be used as well (e.g. the data can be fitted using only the linear
chain). The eqn. (3.29) can be then used for, although approximate, a
very fast estimation of mean square radius of gyration, 〈Rg〉, for different
architectures.

3.6.4 Hydrodynamic Radius Calibration

As we discussed in Section 3.4 for predicting elution behavior of branched
macromolecules we are rather interested in hydrodynamic radius than in
evaluation of radius gyration. Although eqn. (3.23) is not meant to give a
value of hydrodynamic radius Rh it can still be used as a measure of "branch-
iness" of polymer, i.e. how much is a polymer branched regarding position
of branch points and length of links. According to Figure 3.9 such measure
seems reasonable. Since the hydrodynamic radius also follows scaling be-
havior although the scaling exponent is different from the scaling exponent
of radius of gyration or end-to-end distance Proceeding the same way as
above, i.e. comparing radius of gyration, we can receive a similar graph
to Figure 3.9 but the preexponetial factors of different architectures differs
significantly. However, we show that it is possible to introduce a calibration
to fit MC data with graph-theory which leads to

〈Rh〉4 ≈ A∗Tr(Λ−1N−1)Nν∗+1. (3.30)
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This dependence is plotted in Figure 3.10. Calibration gives preexponential
factor A∗ = 0.128 ± 0.015 and ν∗ = 1.216 ± 0.018. Using the calibration
you can estimate the MC result for hydrodynamic radius within an error
of 3% (for N ∈ (128, 1056)) in a very short time corresponding to the time
needed for solving the eigenvalue problem of a Kirchhoff matrix. We stress
that this agreement is achieved by numerical fitting and we have no theo-
retical evidence for that. For further discussion a proper derivation of the
hydrodynamic radius from graph theory is needed. We suggest that this cal-
ibration can be with advantage used to predict elution behavior of randomly
branched architectures obtained from stochastic kinetics simulations. [27–30]



CHAPTER 4

Self-Consistent Field Method for
Polymers

We have performed Monte Carlo (MC) simulations and self consistent (SCF)
field calculations to analyze the depletion profiles for linear, star-like and
H-shaped polymers in good solvent using lattice approximations in both
methods. In the SCF approach the intra-molecular excluded volume-effects
are accounted for using an approach that resembles Flory’s argument that
leads to the Flory size of the chains. This gives a major improvement over the
classical tanh profile, and becomes much closer to the MC results, provided
that a Kuhn length of 1.5 is implemented.

4.1 Introduction

Polymers that are near non-adsorbing surfaces display the depletion phe-
nomenon. Compared to the possible conformations in the bulk solution, as
soon as the center of mass of the macromolecules is closer to the boundary
than the natural size, h < Rg, the number of allowed conformations are re-
duced. As a consequence a depletion layer develops with thickness δ which
again is of the order of the coil size. [23, 24]

Size exclusion chromatography makes use of this depletion profile to sep-
arate macromolecules with different values of Rg. [31,32] Polymer depletion
is also important for the colloidal stability, albeit that the interactions be-
come relevant when the polymer concentration is near the overlap concen-
tration. [33]

To model the depletion zone near a non-adsorbing surface, one can use
the Edwards equation. The classical result, applicable for Gaussian chains,
is known for a long time. This result is reasonable for chains in a theta
solvent χ = 0.5. However, in good solvent this result is known to be very
approximate. The simple reason is that the coil sizes in good solvent are

41
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larger than the Gaussian dimensions because of excluded volume effects. It is
complicated to introduce intra-molecular excluded-volume effects rigorously.
Below we will introduce a new route which makes use of the self-consistent
field Ansatz to evaluate the depletion profile for chains that swell due to
their excluded volume. The key idea is to consider conformations of chains
with a constraint on the central segment of the chain is located at a specified
coordinate. In this way the chain will feel its excluded volume in a Flory-like
fashion. Of course the results are not exact, because in a real chain, each
segment along the chain has its own excluded volume effects and the central
segment has no special property. Nevertheless we argue that this Flory-
like approach is of use to predict the depletion of architecturally complex
molecules (as well as linear chains).

An alternative way to evaluate the depletion profile is to use the Monte
Carlo (MC) approach. With MC it is possible to generate self-avoiding
chain conformations and evaluate the radius of gyration from this. In di-
lute solutions, one can use the same conformations to predict the depletion
profile.

In this part of our work we compare predictions of the SCF method
sketched above with MC simulations using similar models, namely for flexi-
ble polymers on a cubic lattice in good solvent. We compare result for linear
chains, stars and H-like chains.

First we will give some preliminary considerations of the depletion prob-
lem. This is followed by some details of the SCF method. [34] The details
of the MC calculation are presented in Section 3.5. Before discussing our
results we will go into some details how the models that have been used are
matched. In the end we formulate our conclusions and speculate how the
SCF method may still be improved to obtain an even better match with
MC.

4.2 SCF Theory

Here we give reader some background of the SCF theory. More on the
SCF theory can be found in the textbook [34]. We consider the standard
depletion conditions. More specifically we consider isolated polymer chains
in a good monomeric solvent in contact with a flat non-adsorbing surface.
The classical theory starts with the Edwards equation

∂G(r; s)

∂s
=

1

6
∇2G(r; s)− u(r)G(r; s) (4.1)

where u is segment potential and G is the end-point distribution function.
Below we will discretized space by using a lattice and solve this equation
using the Scheutjens Fleer machinery (SF SCF). In this approach there
exists at each coordinate r a value for the segment volume fraction given
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by ϕp (dimensionless segment concentration) and a solvent volume fraction
ϕs that locally obey the incompressibility constraint ϕp + ϕs = 1. In the
good solvent it can be shown that the dimensionless potentials that obey
this constraint are given by

u(r) = − lnϕs(r)

lnϕbs
. (4.2)

In dilute solutions and for non-adsorbing chains there is just one relevant
coordinate r = z (i.e. distance from the wall) and the potential as given by
4.2 reduces to u(z) ≈ 0. Taking the boundary condition G(0, s) = 0, it is
possible to find an exact solution [35] for the end point distribution

ϕe(z) = erf
z

2Rg
, (4.3)

withRg = b
√
N/6 is the radius of gyration with b the segment size andN the

number of segments in the (linear) chain. To a very good approximation [36]
it is shown that the depletion profile obeys

ϕp(z) = ϕbp tanh z/δ0 (4.4)

where the depletion layer thickness, δ0, is closely related to the gyration
radius

δ0 =
2√
π
Rg. (4.5)

It must be understood that the exact result for the Edwards equation in
the case of depletion from dilute solutions is a mean field result. It applies
for Gaussian chains that have no intra-molecular excluded-volume effects.
The SF SCF method that is elaborated below, maps the Edwards equation
onto a lattice and by doing so, the chain model becomes a freely-jointed
chain, rather than the Gaussian chain. The difference in chain models is
minor. Hence, the SF SCF result for depletion layer is nearly identical to
that for Gaussian chains. The issue is that the classical SF SCF method also
ignores the intra- and inter-molecular excluded-volume effects, especially for
dilute solutions.

Using Flory arguments (Section 1.3.4) we estimated RF
g ∝ N3/5. A

more reasonable result for the depletion layer thickness would therefore be
ϕp(z) = ϕbp tanh z/δ with δ ≈ RF

g . In words, the depletion layer thickness
should, in good solvent, be given by the size of the swollen coil, rather than
that of the unperturbed one.

Below we will elaborate on an extended SF SCF procedure for depletion
from dilute solutions, which significantly improves over the classical method
by accounting (in an approximate way) for the intra-molecular excluded
volume effects. The key idea is to consider all possible conformations of a
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Figure 4.1: Cylindrical coordinates

r

z

h

polymer chain which has a central segment along its architecture fixed to a
specified location. Linear chains are thus represented as a two-armed star,
which the center fixed to a location on the lattice. The solution of the SCF
equations for such a star gives a coil size that is consistent with RF

g . [37,38]
This idea is implemented in a two-gradient cylindrical coordinate system.
In this coordinate system it is possible to combine a flat surface with a chain
fixed at a specified coordinate above this surface.

4.2.1 Self-Consistent Field Theory and the Molecular Model

From the above it is clear that we need to develop the SF SCF formalism
for the case that there is an f -armed star, (the f = 2 star corresponds to
linear chains), with each arm of length Narm, so that the overall number
of segments is given by N = fNarm + 1 (the unity is added to account for
the segment X in the center). We use a two-gradient cylindrical coordinate
system r = (z, r) (Figure 4.1), where layers z = 1, · · · , zM are parallel to
a flat impenetrable (inert) surface (positioned at z = 0). The size of a
lattice site is set equal to the size of a segment given by b. Below all linear
lengths are made dimensionless by this length and therefore b is typically
omitted from the equations. In each layer there are concentric rings of
lattice sites r = 1, · · · , rM , such that the number of lattice sites at L(z, r) =
π(r2 − (r − 1)2) = π(2r − 1). We will apply the mean field approximation
over all sites for given (z, r). The star is, with its central segment, positioned
at a height h above the surface, or more precisely, the pinning site is at
(zp, rp)=(h, 1). The goal is to evaluate both the free energy of the star at
a height h, F (h), as well as the volume fraction distribution ϕ(h)

p (r). From
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this the depletion profile follows as

ϕ(z)

ϕb
=

1

N

∑

h

∑

r

L(z, r)ϕ(h)
p (z, r) exp−∆F (h) (4.6)

where ∆F (h) = F (h) − F (∞) in units of the thermal energy kBT . It is
easily checked that, for large values of z, this normalize profile goes to unity.

Both the ϕ(h)
p (z, r) as well as the corresponding free energy F (h) are

readily available from the SF SCF calculations. The approach starts with a
free energy (in units of kBT ) that, in our case, is written as

F (h) = − lnQ(h) −
∑

r

u(r)L(z, r). (4.7)

Where the segment potentials (cf eqn. 4.2) will, of course, also depend on
the location where the star is pinned. The single chain partition function
Q[u] is computed from the segment potentials. In general one has to account
for the statistical weight of all possible conformations of the chain(s) in the
system. In our case there is just one chain, pinned with the central segment
to location (h, 1). We use the Edwards equation to obtain this partition
function. The chain model that results from mapping the Edwards equation
to the discrete lattice leads to a freely jointed chain (FJC) model.

In the FJC model there exists an efficient way to compute the volume
fraction distribution and to obtain the partition function, which is referred
to as the propagator scheme. Let us first introduce the Boltzmann weights
that contains the segment potential

G(r) = exp [−u(r)] (4.8)

which may be interpreted as the probability to find a segment at location
r if it was not connected to the chain. We consider, for simplicity, a chain
with a symmetric topology of the f -armed star: (A)Narm

(X)1[(A)Narm
]f−1.

For the cases that the chains have a more complex topology we refer to the
literature. [39] The procedure features a pair of complementary propagators,
a forward and a backward one.

Going towards the center of the star, we compute the forward end-point
distribution function G(r; s|1). As compared to eqn. (4.1) we have extended
the notation for the end-point distribution functions. The unity behind the
vertical bar indicates that we have started with the free end

G(r; s+ 1|1) = G(r)
∑

r′

λ(r|r′)G(r′; s|1). (4.9)

This equation is started with putting G(r; 0|1) = 1 for all coordinates r
with z > 0 (unrestricted start) and G(0, r; 0|1) = 0 (chains can not be
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initiated in the plane of the surface). In eqn. (4.9) we have the a priory
step probabilities to go from r′ → r. In a FJC on a cubic lattice there are
six neighboring sites. This leads to λ’s with the following weights

λ(z, r|z − 1, r) =
1

6
(4.10)

λ(z, r|z + 1, r) =
1

6
(4.11)

λ(z, r|z, r − 1) =
1

6

2r

2r − 1
(4.12)

λ(z, r|z, r + 1) =
1

6

2r + 2

2r − 1
(4.13)

λ(z, r|z, r) =
2

6
(4.14)

where eqns. (4.12) and (4.13) have r dependencies to account for the fact
that the number of available sites L(z, r) is growing linearly with r. The
propagator terminates at the central segment s = Narm + 1.

Next, we have to propagate from the center of the star back to the free
end of the star. This leads to backward end-point distribution functions
G(r; s|h, 1;Narm + 1) where the variables behind the vertical bar indicate
that segment s = Narm + 1 is at (h, 1)

G(r; s|h, 1;Narm + 1) = G(r)
∑

r′

λ(r|r′)G(r′; s+ 1|h, 1;Na + 1). (4.15)

Again, the start of the propagator is constrained: segment s = Narm + 1
must be located at (h, 1) and accounting for all f − 1 remaining arms we
may use

G(h, 1;Narm +1|h, 1;Narm +1) = G(h, 1;Narm +1|1)f−1/G(h, 1)f−2 (4.16)

and zero for all r 6= (h, 1). The normalization by G(h, 1)f−2 is necessary
because the statistical weight for the central segment must be given only
once.

The propagators terminate when the chain is at the free end. From the
resulting end-point distribution we can evaluate the single chain partition
function

Q =
∑

z

∑

r

L(z, r)G(z, r; 1|h, 1;Narm + 1). (4.17)

The volume fraction distribution for the full f -armed star can be computed
using the composition law:

ϕ(h)(r) =

Narm∑

s=1

f

Q

G(r; s|1)G(r; s|h, 1;Narm + 1)

G(r)
. (4.18)
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The division by G(r) is necessary to correct for the point that each segment
received the weight both from the forward and the backward propagator.
The multiplication with f reflects the point that each arm has the same
contribution to the volume fractions. The division by the partition function
guarantees that there is exactly one full star in the system. The central
segmentX has a contribution ϕ(h, 1) = 1/L(1) to the overall volume fraction
distribution which must be added to the result of eqn 4.18.

The volume fraction of the solvent monomers simply follows from the
Boltzmann equation

ϕs(r) = ϕbsG(r) = G(r) (4.19)

where it is implemented that in the present system the volume fraction of
solvent in the bulk is unity.

Summarizing, it is shown that the segment potentials depend on the
volume factions (cf Eqn 4.2), and that the volume fractions ϕ(h)(r) and
ϕs(r) are a function of the potentials (cf Eqns 4.8 to Eqn 4.6 and Eqn 4.19).
Only when the potentials and volume fractions are consistent with each
other, we have optimized the free energy and can evaluate eqn 4.7. Such
self-consistent field point is found numerically. Routinely we obtain results
that have at least 7 significant digits. Details are given elsewhere. [40]

4.3 The Models

One of the obvious approximations that is inherent to the freely jointed
chain is the fact that short-range excluded volume correlations along the
chain are only partially implemented. The 6-choice propagator, which is
discussed above, ensures that two neighboring segments s and s + 1 along
the chain occupy neighboring lattice sites. However, s− 1 and s+ 1 may be
on the same lattice site. This is characteristic for a first order Markov chain.
In principle one can correct for this by implementing by implementing an
extended propagator, implementing a longer history. [41] For example one
can implement a second order Markov chain approximation where direct
backfolding is prohibited. This leads to a so-called 5-choice propagator.
When only backfolding is blocked and the chain remains further fully flexible,
it is known that the Kuhn length becomes 1.5 segments. In first order
one thus replace a chain in the 5-choice propagator with N segments by
a chain in the 6-choice lattice using a renormalized number of segments
N (5−choice) = N (6−choice)/1.5 segments, each with a length b(5−choice) =
b(6−choice)1.5 length.

One of the targets of this work is to compare MC results, where chains
are fully self-avoiding, with corresponding results from SF SCF calculations.
It is clear that the models for both approaches should match. Here we insist
on the idea that results for the SF SCF model with the renormalized number
of segments and renormalized segment length should be compared with MC



48 SELF-CONSISTENT FIELD METHOD FOR POLYMERS

results for the unnormalized values for the number of segments with the
unnormalized lengths. When result of the two approaches are compared
we have implemented that the length scale in the SCF is transformed into
those used in MC (that means that all linear lengths in SCF are multiplied
by 1.5).

Results are generated in both approaches for a series of chain architec-
tures ranging from linear chains (f = 1, and f = 2) to stars up to f = 6.
There are also results for stars with lengths of arms that are not all the
same and for architecturally more complex molecules having an H-shape.
The latter molecules are treated using some more complicated propagator
formalism for which we refer to the literature. [39]



CHAPTER 5

Comparison of MC and SCF
Results

We present data from comparison of MC and SCF depletion layer calcu-
lations in Table 5.1. We show the root of mean square radius of gyration
〈Rg〉1/2 and the depletion layer thickness δ for calculated architectures, i.e.
linear (N = 1024), 3-arm star (N = 1030), 6-arm star (N = 1027) and
H-shape (N = 1006). You can see that MC results for radius of gyration
compare quite well with SCF results where 1.0 Kuhn length is implemented.
On the other hand, the results for the depletion layer thickness, δ0, compare
better with SCF where 1.5 Kuhn length implemented.

In all figures the GSA denotes the ground state approximation, i.e. SCF
results without a pinned segment. In Figures 5.1 and 5.2 we show comparison
of depletion layers obtained from MC and SCF calculation. There, you
can see from the graph, what we already mentioned, that SCF with 1.5
Kuhn length gives a better agreement than using the SCF with 1.0 Kuhn
length implemented. For this reason in the rest of graphs we show only a
comparison of MC and SCF 1.5,i.e. with 1.5 Kuhn length implemented. In
Figures 5.3 and 5.4 we show depletion layers of 3-arm star and 4-arm star.
From these graphs you can see than depletion layer becomes more accurate
as the number of arms increases. The last is the Figure 5.5. There we show
H-shape polymer with pin-point once in the center (H-shapec) and then in
the branching point (H-shapec). It shows that it is more reasonable to pin
the branching point rather than the center of the H-shape polymer. Further
discussion follows.

5.1 Discussion

SF SCF results and MC results are in good quantitative agreement, both
for the coil size as well as the depletion layer thickness. Also there is a

49
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Table 5.1: MC and SCF data

〈Rg〉1/2 δ0

MC SCF SCF 1.5 MC SCF SCF 1.5

linear 25.72 33.60 40.12 27.48 24.32 28.86 (1)
25.11 29.98 24.19 28.80 (2)

3-arm star 22.66 21.29 25.44 26.46 23.05 27.55
6-arm star 16.95 15.99 19.12 22.89 20.09 24.05

H-shape 21.51 22.63 26.99 25.42 22.28 26.60 (b)
21.76 25.94 22.82 27.21 (c)

(1) stands for 1-arm star, (2) stands for 2-arm star, (b) is a H-shape polymer
pinned at the branching point and (c) is a H-shape polymer pinned at the
center. SCF 1.5 signifies that 1.5 Kuhn length was implemented.

Figure 5.1: 1-arm star

0 20 40 60 80 100
z

0.0

0.2

0.4

0.6

0.8

1.0

ϕ
/ϕ

b

linear MC
GSA SCF
1-arm star 1.5 SCF
1-arm star SCF

Figure 5.2: 2-arm star
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Figure 5.3: 3-arm star
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Figure 5.4: 6-arm star
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Figure 5.5: H-shape polymer
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reasonable agreement on the depletion profile. Small systematic differences
were detected which point to the approximate nature of accounting for intra-
molecular excluded volume in the SCF method. Possible suggestion to im-
prove on this are discussed below.

For fixed overall molecular weight, increasing the number of arms, im-
plies a more compact structure. The Rg is decreasing with the number of
arms and the corresponding depletion thickness also decreases. This trend
is present in both approaches and the SCF results follow the MC results
almost quantitatively. Indeed, it is found that the results of SCF improve
with the increase in the number of arms. A multi-arm star is, by its con-
struction isotropic and therefore the mean field approximation is gradually
more accurate. According to that, however, we expect that the SCF result
for the linear star is more approximate because of the pre-assumption that
the coils are rotationally symmetric breaks down for low values of f .

We have considered the depletion layer in dilute solutions. In this limit
the thickness of the depletion layer is given by the radius of gyration Rg. At
higher concentrations, and in particular in semi-dilute solutions, the thick-
ness of the depletion layer depends on the concentration. Recently, Char-
laganov and coworkers [42] showed that a combination of a MC approach
and SCF allows to model semi-dilute solutions in such a way that the inter
and intra-molecular excluded volume effects are (again on the Flory level)
accounted for. As a result it was shown that the depletion layer thickness
scaled proportional to the bulk correlation length and the de Gennes scaling
exponent α = −4/3 was recovered.

The idea implemented by Charlaganov et al. is rather simple. They
treated in a 3d volume a set of molecules for which the centers of mass were
generated using the MC scheme and the conformational degrees of freedom
using the discrete version of the Edward equation (similarly as it is the
presented here). It was already discussed that possible improvements of the
excluded volume problem may involve the modeling of chains with multiple
pinned segments, whereas the remainder degree of conformational degrees
of freedom are evaluated using the Edwards equation.

The detailed comparison of SF SCF and MC results for the depletion
profiles revealed systematic deviations. The depletion profile in MC takes
a longer distance to approach the bulk value and has close to the surface
a higher polymer density. Hence, the depletion profile is less steep in MC
than in SF SCF. These deviations also point to the approximate nature of
how the intra-molecular excluded volume is accounted for in the current SF
SCF method. In the current approach there is just one segment which is
pinned at some position in the coordinate system. This pinned segment
generates a crowding of segments in its direct environment. This causes the
chain to swell away from the pinned segment. The mean field approxima-
tion subsequently enforces a rotational symmetry of the resulting density
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profile. More specifically, this prevents the formation of anisotropic coils.
Yet, it is known that chain conformations, especially for linear chains, are
not isotropic at all. Considering two points with excluded volume (for ex-
ample the two ends of the chain), and optimizing the distance between these
two points, may largely correct for this flaw. Implementing this idea for the
depletion problem is expected to improve the match between SCF and MC.

Below we insisted on using in SCF the Kuhn length of 1.5. This intro-
duced a difference in number of segments used in SCF and in MC. For the
case of linear chains and stars with few arms, we believe that the current
approach is reasonable. Of course it is possible to develop the second order
Markov approach in SCF and then the models in SCF and MC match by
construction better. Results for this approach will be discussed elsewhere.
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