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E-mail vedoucího: Frantisek.Mraz@mff.cuni.cz 

Abstrakt: Cílem této práce bylo zkoumání možností vylepšení souboru programů pro 

zarovnávání mnoha sekvencí PRALINE. Nejprve je prezentován přehled současných metod pro 

řešení problému zarovnávání více sekvencí (multiple sequence alignment) s přihlédnutím 

k variantám reprezentace jádra zarovnání – mezivýsledku používaných algoritmů. PRALINE 

byla rozšířena o zarovnávání uživatelsky zadaných profilů. Uživatelem zadaný profil je v tomto 

rozšíření použit v pokročilejši fázi progresivního zarovnávání, jako by se jednalo o mezivýsledek 

předchozích kroků. Toto rozšíření bylo otestováno v typickém případu užití.   

Přidali jsme 2 nové protokoly pro zarovnávání založené na skrytých Markovových řetězcích 

(HMM) a otestovali kvalitu jejich výsledků. Protokol HMMGUIDE vytvoří pro každou sekvenci 

preprofil skládájící se ze segmentů ostatních sekvencí s vysokou lokální podobností.  

Z preprofilu HMMER vygeneruje pro každou sekvenci HMM a PRC zjistí stupeň podobnosti 

mezi dvojicemi HMM. Protokol pak progresivně zarovnává sekvence, jejichž HMM byly 

nejpodobnější. Protokol PRCALIGN postupuje obdobně, ale pro zarovnání použije výstup 

z PRC, sekvence tedy zarovná podle nejlepšího zarovnání HMM. Přestože protokoly 

nedokončily všechny testy úspěšně, výsledky ukazují významné zlepšení oproti původní metodě. 

Klíčová slova: analýza sekvencí, Markovovy řetězce, PRALINE 
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Abstract: The aim of this work is to study potential improvements in the core routines of multiple 

sequence alignment suite PRALINE. A general overview of multiple sequence alignment 

methods used with emphasis on representation of the alignment core is given. A new option for 

aligning sequence profiles was implemented and its usefulness assessed. This option allows a 

user to input a profile which is used in an advanced phase of the progressive protocol as if it was 

a result of the previous steps. 

Two new protocols using profile Hidden Markov models (HMM) and their alignment were 

implemented and tested. The HMMGUIDE protocol creates for each sequence a preprofile 

consisting of segments of other sequences with high local similarity. HMM is generated from 

each preprofile by HMMER, and alignment of every pair is scored by PRC. The protocol then 

progressively aligns the sequence whose HMMs achieved the best score. The PRCALIGN 

protocol works similarly but aligns the sequences according to the best alignment of the HMMs. 

While not all test alignments were finished successfully for both protocols, the results constitute 

a statistically significant improvement over the original PRALINE protocol. 
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1. Introduction 

This project was done over the course of 8 months as a part of Software 

Systems master degree programme at Charles University in Prague and High-

Performance Distributed Computing at Vrije Universiteit in Amsterdam as a part 

of the Short track Master‟s programme. 

The thesis focused on improving the quality of the multiple sequence alignment 

suite PRALINE [Heringa, 1999; Heringa, 2002; Simossis & Heringa, 2005; 

Pirovano et al., 2008]. Multiple sequence alignment is an important problem in 

biology, it is used for constructing phylogenetical trees, it helps to derive structure 

and function for proteins and more. There are several tools available for computing 

multiple sequence alignment: PROMALS [Pei et al., 2008], CLUSTALW 

[Thompson et al., 1994] and many others. One of them is PRALINE, hosted 

[Simossis & Heringa, 2003] at Vrije Universiteit in Amsterdam, accessible at 

http://www.ibi.vu.nl/programs/pralinewww/. It uses sophisticated methods for 

improving the quality of the alignment like transmembrane segments prediction, 

PSI-BLAST [Altschul et al., 1997] and secondary structure prediction. However, 

we believe that the quality of alignments can be improved as other alignment 

methods sometimes provide more accurate results. 

Chapter 2 of the thesis describes pairwise sequence alignment in detail 

including an important concept of homology. For definition and discussion of the 

multiple sequence alignment consult Chapter 3. This chapter also includes a look 

at the current methods used to perform the multiple sequence alignment including 

the ones used in PRALINE (Chapter 3. 3. 7). Chapter 4 introduces Hidden Markov 

models that were used in some of the new protocols for multiple sequence 

alignment that were implemented in PRALINE. These new protocols are described 

in more detail in Chapter 5. Chapter 6 presents the results of these protocols and 

compares them directly with the current version of PRALINE. Chapter 7 

summarizes the conclusions and discusses possible further work. 
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The results of this work are accessible at http://www.ibi.vu.nl/programs/ 

pralineprofwww/. 

Results of the experiments and the modified source code can be found at 

http://dl.dropbox.com/u/98435/thesis.zip. 
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2. Sequence alignment 

In this chapter I describe the problem of pairwise sequence alignment and 

algorithms used to solve it. 

2. 1. Description of the problem 

Sequence alignment means arranging strings of characters (which may stand 

for amino acids in protein sequences or nucleotides in DNA or RNA sequences) so 

that related characters end up aligned in one column. In this work, we will only 

deal with protein sequence alignment. 

Pairwise sequence alignment is used to obtain a measure of similarity (from the 

percentage of identical residues or by using scoring matrices) of two proteins. It 

helps to derive 3D structures of proteins from known similar structures, and it 

generally allows inferring properties of a sequence that can be sufficiently well 

aligned with another sequence sharing a common ancestor sequence; sequence 

alignment also helps to find such ancestor sequences.  

A formal description of the protein sequence alignment follows. 

Input: sequences Sa = (a1, .., an) and Sb = (b1, .., bm) where a1, .., an,b1, .., bm  

C={ „A‟, „C‟, „D‟, „E‟, „F‟, „G‟, „H‟, „I‟, „K‟, „L‟, „M‟, „N‟, „P‟, „Q‟, „R‟, „S‟, „T‟, 

„V‟, „W‟, „Y‟}, n,m≥1.  

These letters are one-letter codes for amino acids (for actual meaning of each 

letter consult for example [Bourne & Weissig, 2003]. The proteins are linear 

chains of these amino acids.   

Output: α1, .., αp and β1, .., βp where αi is either a gap (noted as „.‟ or „–„) or ak(i) 

where k(0) = 0,  k(i) = k(i–1) for gaps and k(i) = k(i–1)+1 otherwise. Similarly for 

βi. At the same time the arrangement α and β is such that the sequence scoring 

function  
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is maximal over all alignments. Function f is called a scoring function. It is defined 

on C  {„-‟}  C  {„-‟}. The value of f can be obtained by using a substitution 

matrix S: S[ai,bj] specifies the score (bonus or penalty) for aligning amino acid ai 

with bj. It can be simply 1 when amino acids match and –1 otherwise or a log-odds 

score for each combination of amino acids (as in PAM [Dayhoff et al., 1978] or 

BLOSUM [Henikoff and Henikoff, 1992]). Later we discuss other possible ways 

how to calculate value of the scoring function. 

The number of possible sequence alignments grows exponentially with the 

lengths m,n of sequences according to the formula [Waterman, 1995]: 

 

Thus evaluating it for all sequences would be impossible even for very short 

protein sequences. 

To overcome this, multiple methods have been designed. Initially simple ones 

such as the dot matrix method [Maizel and Lenk, 

1981] were used. This method could be easily 

performed by hand without the need for a computer 

as it does not involve any complex calculations. It 

creates an   matrix with columns corresponding 

to residues of the first sequence and rows to the 

residues of the second sequence, with a dot in a cell 

Mi,j if ai is equal to aj. Diagonal stretches of dots 

indicate similarity in the corresponding parts of 

sequences. As Figure 1 shows, the plot contains a lot of “noise”. This can be 

alleviated by using a method called windowing. Windowing is used mainly in 

Figure 1 Dot matrix method 
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DNA/RNA sequence alignment where instead of comparing single nucleotides, we 

compare segments or windows of length larger than 1 [Wilbur and Lipman, 1983]. 

However, finding the best alignment is impossible with this method, the sequences 

have to be very similar to find a good alignment [Xia, 2001]. 

[Needleman and Wunsch, 1970] designed a dynamic programming algorithm to 

solve the problem in time . This algorithm in the simplest form also creates 

an  matrix, but the cell Mi,j corresponds to the best value of F for alignments 

of a1… ai and b1…bj.  

Initialization: All cells are initialized to 0 except cells in the first column and 

first row – these are initialized to i (resp. j) times a constant c1>0 called "gap 

penalty". The gap penalty (c1 = f(„–„, a) = f(a,‟–„) for all a  C) is a constant which 

controls how likely gaps are to occur in the alignment.   

 

Matrix computation: The whole matrix is then filled in according to the 

recursive formula 

– – – – – – . 

Backtracking: After filling the whole matrix the algorithm performs 

backtracking – starting from the final position i = n, j = m it builds the alignment: 

 If Mi,j = Mi–1,j–1+S[ai, bj] then prepend ai, bj to the alignment and set 

–  and j – . 

 If Mi,j = Mi,j–1–c1 then prepend „–„, bj to the alignment and set j = j–1. 

 If Mi,j = Mi–1,j–c1 then prepend ai,„–„ to the alignment and set i = i–1. 

This is repeated until i = 0 and j = 0 (omitting impossible options when 

reaching the edge). 
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This variant of the algorithm is called „global alignment with linear gap 

penalties‟. „Global alignment‟ means that the two sequences are aligned from the 

first to the last residue. Another variant is „semi-global alignment‟ where the 

leading and trailing gaps do not add penalties to the score. This can be useful when 

aligning a multi-domain protein against one of its domains. „Local alignment‟ is an 

often-used variant of the problem, its aim is to find highest scoring segment of 

alignment i.e. subsequences which are most similar. It is solved using Smith-

Waterman algorithm [Smith and Waterman, 1981]. It differs by disallowing 

negative cell values (all cells that would be negative are set to zero) and starting 

the backtracking in the cell with the highest value. One of the reasons why this 

approach works is that the scoring function is positive for a pair of similar amino 

acids and negative otherwise.  

The method for scoring gaps we used in the example is called linear gap 

penalty: the penalty for a gap of length k is c1k. Thus the penalty increases linearly 

Example: 

 

Figure 2 Backtracking and alignment 

The matrix was filled by following the rules (using -1 as both a gap and mismatch 

penalty and +1 for a match, see Matrix Computation above) for sequences AMIRD 

and AIR. Bold numbers indicate a match between amino acids. The arrows show a 

possible backtracking route resulting in the alignment presented below the matrix. 
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with the length of the gap. Another method for calculating the penalty for long 

gaps is an affine gap penalty function and it models the situation in nature where 

an insertion is an unlikely event, but when it happens it can easily be more than 

one amino acid long.  The cost of a gap 10 amino acids long incurs smaller penalty 

than ten isolated gaps of a single amino acid. The penalty is calculated as c2+c1(k–

1) by using one constant for starting a gap (c2) and another smaller constant for 

extending it (c1) [Smith and Waterman, 1981].  

2. 2. Homology 

Sequence alignment is an important tool for biologists because when two 

sequences have a high similarity (>30% of residues are identical), it is likely that 

they originated from the same ancestor organism possibly far in the past; these 

sequences are called homologues. Homology is an important concept because it 

can be used to infer unknown features (function, structure, etc) of a sequence from 

a homologue for which these features are known. With declining sequence 

similarity the probability that the alignment happens due to pure chance and not 

because the sequences are biologically related increases, and at the same time these 

sequences are increasingly difficult to align in a biologically meaningful way. 

Sequence pairs from a so-called „twilight zone‟ (20%–30% of sequence identity) 

are particularly difficult to align correctly, while it is crucial to get the highest 

possible score [Sander and Schneider, 1991]. 

Most proteins fold into a complex 3D structure. To understand the structure 

better it is beneficial to consider it at several levels. The sequence of amino acids 

in the protein is often referred to as the primary structure. This primary structure 

can form secondary structure elements – a helix, a sheet or a coil. When the chain 

of amino acids folds into a spiral we call it a helix. The most common type of helix 

is left-handed α-helix with 3.6 residues per turn. A sheet is formed by two or more 

parallel chains in the same plane, for historical reasons it is sometimes called β-

sheet. Parts of the chain which are neither helices nor sheets are said to have 

secondary structure „coil‟. Biochemists also talk about tertiary structure at the level 
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of the whole protein molecule and quaternary structure when multiple protein 

subunits bind together to create protein complexes.  

The secondary structure in which a gap occurs can often be more significant 

than its length. For example a single additional amino acid in a helix region causes 

the rest of the helix to be rotated by approximately 100 degrees (including the 

structure after the helix), which can significantly alter the fold of the protein, its 

functional sites and other properties. Similarly when an odd number of residues is 

inserted into a beta-strand it changes the direction which the residues are facing. A 

gap in a coil region does not have to have so pronounced effects.  

Depending on the actual position of the strand or helix, such an insertion can 

have profound effects on the geometry of the protein and on the way it folds (see 

Figure 3). However, without knowing the complete fold of the protein it is very 

hard to decide whether placing a gap at a particular position will have such a 

profound effect.  



 

9 

 

 

  

  

Figure 3 Protein secondary structure 

Diagram of an α-helix using ball-and-stick model (left) and an antiparallel β-sheet 

(right) (adapted from [Bourne and Weissig, 2003]).  

An alignment placing a gap at sidechain 3 of the helix would effectively remove 

this residue from the protein shifting residue 4 and all following by one place. This 

means that from this residue all sidechains extend into a completely different 

direction than before. 

However, the situation in β-sheets can be even worse – removing residue 1 in a 

similar fashion swaps the sidechains of both sides of the β-sheet. 
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2. 3. Scoring 

Sequence alignment should (but often does not) align similar amino acids and 

sequence features from the sequences. Secondary and tertiary structure elements, 

functional sites, locations of post-translational modifications and other important 

locations should be in the same columns in the alignment. Unfortunately, this does 

not always happen – even related sequences sometimes differ in function or 3D 

structure of a particular segment. 

The scoring function should ideally incorporate information about all sequence 

features as soft constraints. We have already introduced simplest forms of scoring 

– a penalty for a mismatch or a gap and a bonus for matching residues. However, 

often a substitution matrix is used. A substitution matrix specifies for each 

combination of amino acids the bonus or penalty if these two residues are aligned 

together that is in line with the probability that in the past there was a mutation 

event from one to the other. These matrices are generated from sets of known 

alignments by counting the occurrence of mutations between particular pairs of 

amino acids. Thus, they should intrinsically represent penalties for changing 

properties of the side chains such as hydrophobicity, size, charge and so on, based 

only on the statistics of mutations. Example substitution matrices include 

BLOSUM [Henikoff and Henikoff, 1992] or PAM [Dayhoff, 1978]. 

PRALINE uses these matrices only in the simplest case without secondary 

structure or trans-membrane prediction. When secondary structure is predicted for 

the sequences, Lüthy's [Lüthy et al., 1991] set of matrices is used. This set contains 

different matrices for scoring residues known to be in a helix, strand or coil region. 

When the assigned secondary structure does not match, PRALINE uses the matrix 

for coil. When trans-membrane prediction is requested it uses PHAT [Ng et al., 

2000] for the membrane regions of proteins. By using these matrices, PRALINE's 

scoring function reflects more properties of the sequences than just the string of 

amino acids, while not enforcing it strictly. This allows aligning regions even when 

the secondary structures do not match. 
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3. Multiple sequence alignment 

Multiple protein sequence alignment is an essential tool for biologists and its 

exact solution is an NP-hard problem [Wang and Jiang, 1994]. This chapter defines 

the problem, presents general techniques of solving it and discusses contemporary 

methods used and their advantages and drawbacks. Finally, it contains information 

about the current state of the PRALINE suite.  

3. 1. Description of the problem 

Multiple sequence alignment (MSA) – aligning more than 2 sequences so that 

corresponding letters in the sequences are in the same column – is a natural 

extension of the pairwise alignment described in Chapter 2. It reveals much more 

information about the sequences allowing observation of features conserved across 

whole families or identification of features whose absence or presence determines 

important functionality of given sequences. 

Unfortunately, it is inherently more difficult than pairwise sequence alignment 

[Murata et al., 1985]; in fact it has been proven to be NP-complete. Moreover, 

when certain conditions are met it is proven that it does not have a polynomial-

time approximation scheme [Wang and Jiang 1994]. Even when using some clever 

heuristics [Carillo and Lipman, 1988], MSA starts to be prohibitively 

computationally expensive for more than approximately 10 typical protein 

sequences [Helal 2008].  

Biologists frequently need to perform MSAs of more than 20 sequences, thus 

performing an optimal alignment becomes infeasible even with the algorithms 

from the previous paragraph. They use MSA for a wide range of applications – 

phylogenetic mapping of sequences and generation of whole phylogenetic trees of 

organisms (although this is somewhat controversial [Brocchieri, 2001]), assessing 

similarity among a family of proteins, detection of mutation events, and 

identification of motifs and functional sites [Xiong 2006]. MSA is also used in 
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several secondary structure prediction tools [Rost et al. 2004; Cole et al. 2008], and 

for prediction of protein features [Bendtsen et al. 2004].  

The performance features of the optimal algorithm make it unusable for MSAs 

of larger groups of sequences. Heuristic algorithms have been designed to 

overcome these problems. Most of these follow the "progressive algorithm" 

[Hogeweg and Hesper, 1984; Feng and Doolittle, 1987]. They first construct a 

"guide tree" – a rooted binary tree – which should be close to phylogenetic tree of 

the sequences, in which closely related sequences should end up near each other in 

a branch, whereas more divergent sequences should be further away in the tree. 

During the construction of the tree an average over all alignments between 

sequences in the branches [Corpet, 1987] is used as a score. Alternatively, the most 

similar sequence pair can be joined first and other sequences added to it one at a 

time [Barton and Strenberg, 1987]. The whole branch can be represented by some 

data structure instead: a simple consensus sequence [Hogeweg and Hesper, 1984], 

a profile [Taylor 1987; Gribskov et al. 1987] or a more complex data structure, like 

a hidden Markov model (HMM) [Churchill 1989] or finite state automaton (FSA) 

[Searls and Murphy 1995]. As these data structures are the main focus of this work 

we will describe them later in greater detail.  

The next step is to align the sequences by traversing the tree performing a 

pairwise alignment starting with the two closest sequences. While scoring a 

pairwise sequence alignment is relatively straightforward, the direct equivalent in 

MSA – the so-called sum-of-pairs (i.e. sum of pairwise alignment scores) often 

scores the biologically meaningful and "correct" alignment with lower sum-of-

pairs score than other alignments [Waterman and Byers, 1985]. This can be 

improved by using a scoring matrix that does take into account consistency, 

secondary structure and other possible sequence features in matrix-based methods, 

or a complex scoring function in consistency-based methods [Notredame et al., 

2000].  



 

13 

All heuristic MSA methods make the (reasonable) assumption that closely 

related sequences should be "easy" to align, thus there will be fewer errors when 

aligning them than when aligning two distantly related ones. If any errors are made 

when creating the core of the alignment, it is very hard to correct them later ("Once 

a gap, always a gap" [Feng and Doolittle 1987]). The progressive alignment 

methods focus on building the most correct guide tree. However, they can be 

further extended by trying to find and correct the errors made in previous steps in 

an iterative fashion. Multiple algorithms employ iterations to improve the quality 

of the alignment: Probcons, MUSCLE, PRALINE and others. 

3. 2. Representation of the alignment core 

During the course of progressive alignment it is necessary to score two groups 

of (already aligned) sequences. This can be done by storing the "alignment core" of 

these sequences – i.e. what they have in common. The first attempt to store such 

information was with consensus sequences. Consensus sequence contains a 

particular amino acid at a position i if and only if all the sequences from the group 

also contain this particular amino acid at this position. This approach works only 

for the simplest cases of a few sequences with few or no mutations. Indeed even a 

common mutation would cause the position in a consensus sequence to be empty 

and thus carry no information. However, working with consensus sequences is 

easy and they require minimal changes to the alignment algorithm itself. 

A better alternative [Notredame, 2002] is to use profiles. A profile is a matrix 

storing for j-th position in the alignment counts or frequencies of amino acid 

(or gap) i. It typically has 20 rows (one for each amino acid) and as many columns 

as the alignment. It can thus record which amino acids are expected at a particular 

position. Typically gap counts are also stored so that the profile alignment score 

receives smaller penalty for a gap if the alignment at this position already contains 

some gaps. The scoring gets a bit more complicated though, for profiles with 

amino acid frequencies  and  the score for position k can be calculated as  
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The substitution matrix can be written as  

 

where  is the probability of aligning amino acids  and  and  is 

the relative frequency of amino acid  or background gap frequency.  [Von Öhsen 

and Zimmer, 2001] proposed a modification to this scoring mechanism – the log-

average score: 

 

which performs better than the previous model. MUSCLE [Edgar 2004] further 

improves the scoring using the log-expectation score: 

 

where  is the number of gaps in the column. 

HMMs (Hidden Markov Models) are even more sophisticated; we describe 

them in greater detail in Chapter 4. 

However, even HMMs do not carry all the information contained in a sequence 

alignment. All presented data structures model the alignment as if residues in the 

column k were independent from residues observed in some other column l, while 

this is seldom the case. Often a particular residue at position k appears always with 

a different residue at position l and the alignment clearly shows it (for example 

when the protein fold brings these residues close together). Such information can 
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KDKWVDDVRNER-G 

K-NWIKELKTML-G 

K-SWIKELQRQA-P 

A-KWIQEIERYA-R 

K-QWLSEIDRYA-S 

M-KWVSDVDEYA-P 

K-QWMQEIQRYA-C 

K-MWLQEIDRYAYT 

...W.......... 

       0     1     2     3     4     5     6     7     8     9    10    11    12    13 

A  0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.000 0.000 

C  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125 

D  0.000 0.125 0.000 0.000 0.000 0.125 0.250 0.000 0.375 0.000 0.000 0.000 0.000 0.000 

E  0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.000 0.125 0.125 0.125 0.000 0.000 0.000 

F  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

G  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 

H  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

I  0.000 0.000 0.000 0.000 0.375 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 

K  0.750 0.000 0.375 0.000 0.000 0.250 0.000 0.000 0.125 0.000 0.000 0.000 0.000 0.000 

L  0.000 0.000 0.000 0.000 0.250 0.000 0.000 0.250 0.000 0.000 0.000 0.125 0.000 0.000 

M  0.125 0.000 0.125 0.000 0.125 0.000 0.000 0.000 0.000 0.000 0.125 0.000 0.000 0.000 

N  0.000 0.000 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.000 0.000 0.000 0.000 

P  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 

Q  0.000 0.000 0.250 0.000 0.000 0.375 0.000 0.000 0.250 0.000 0.125 0.000 0.000 0.000 

R  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.625 0.000 0.125 0.000 0.125 

S  0.000 0.000 0.125 0.000 0.000 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125 

T  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.000 0.000 0.000 0.125 

V  0.000 0.000 0.000 0.000 0.250 0.000 0.000 0.250 0.000 0.000 0.000 0.000 0.000 0.000 

W  0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Y  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.625 0.000 0.125 0.000 

be kept in partial order graphs; this approach is used in POA [Grasso and Lee, 

2004]. 

Examples of representations of the alignment core 

For the following sequence alignment: 

 

 

 

 

A consensus sequence would look like this: 

 

A profile (depending on sequence weighting scheme) would look like this: 

It is clear that this structure contains much more information than the consensus 

sequence. 
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3. 3. Approaches to MSA 

This subchapter describes currently used methods for MSA and discusses their 

advantages and innovative features. We also describe PRALINE, its evolution and 

areas of possible improvement. 

3. 3. 1. CLUSTAL W 

CLUSTAL W [Thompson et al., 1994] (http://www.ebi.ac.uk/Tools/clustalw2/) 

is the most frequently used package for performing multiple sequence alignment. It 

is a classical progressive alignment approach – first it performs the pairwise 

alignment of sequences. Using these pairwise scores as inverse distances, 

CLUSTAL W then uses the neighbour-joining algorithm [Saitou and Nei, 1987] to 

create an unrooted binary guide tree. This tree is then rooted by mid-point method 

so that the mean lengths of the branches on either side are equal. This tree is later 

used for sequence weighting. The closest two sequences on this tree are then 

aligned and replaced by a profile representing their alignment. CLUSTAL W uses 

position-specific gap penalties – lower penalties for gaps in hydrophilic regions, 

for more distant sequences and for extending the gaps made in previous steps and 

higher penalties for gaps near existing gaps. The scoring matrices used for 

particular alignment depend on their similarity – an appropriate matrix is chosen 

from either the PAM or BLOSUM series of matrices. This alignment package is 

widely used (the original paper has almost 30 000 citations) even though there are 

better and faster methods. 

3. 3. 2. T-COFFEE 

T-COFFEE [Notredame et al., 2000] (http://www.ebi.ac.uk/Tools/t-coffee/) 

uses a library of pairwise sequence alignments to arrive at the final multiple 

sequence alignment. This library is generated from CLUSTAL W global alignment 

and the top ten local non-overlapping alignments from LAlign (a very fast local 

alignment program [Huang and Miller, 1991]). These pairwise alignments are then 

refined by checking consistency when a third sequence is added. T-COFFEE does 

not weigh sequences, but rather pairs of aligned residues – aligned residues could 



 

17 

be regarded as constraints in this scheme. The distance matrix and a guide tree are 

built from these refined alignments. Creating an optimal alignment satisfying these 

weighted constraints is an NP-complete problem. Consequently the authors had to 

use a heuristic approach that uses at least some of these constraints. 

3. 3. 3. MUSCLE 

MUSCLE [Edgar, 2004] (http://www.drive5.com/muscle/) is a fast and fairly 

accurate method. It first estimates a distance matrix, which it uses to produce a 

quick alignment. This alignment is then used to improve the original distance 

matrix and construct a better alignment. MUSCLE then divides the sequences into 

two groups, realigns them and if the resulting alignment is better, the original one 

is replaced – see Figure 4 from [Edgar, 2004]. 
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3. 3. 4. Probcons 

Probcons [Do et al., 2005] (http://probcons.stanford.edu/) is a probabilistic 

consistency-based method. First it calculates probabilities of aligning a particular 

pair of residues for all the pairs of sequences and for all the residues. Then it re-

estimates this probability by aligning the residues from this pair of residues with 

residues from a third sequence – similarly to the refinement in T-COFFEE. This 

re-estimation should improve the precision of the probability distribution and it can 

 

Figure 4 MUSCLE algorithm 

Sequence of steps taken by the MUSCLE algorithm: using guide tree to calculate 

rough MSA, identity ratios between sequences are used to build a refined 

distance matrix which in turn is used to build another tree. This tree is used to 

actually guide the progressive alignment step and the algorithm iteratively 

modifies it to obtain better results. 
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be repeated. The guide tree is then constructed with expected values from these 

distributions used as distances between sequences, and with weighted averages 

used as distances between aligned blocks of sequences. A scoring function for the 

alignment is then derived from the probabilities. 

Probcons achieves very good results and is generally very fast.  

 

3. 3. 5. PROMALS 

PROMALS3D [Pei et al., 2008] (http://prodata.swmed.edu/promals3d/ 

promals3d.php) is claimed by its authors to be the most accurate algorithm for 

multiple sequence alignment. It searches for homologues with PSI-BLAST 

[Altschul et al., 1997] and uses the results to predict secondary structure with 

PSIPRED as well. The alignment algorithm has two stages. In the first stage, 

sequences are aligned in a pairwise fashion and only those sequences that have a 

similarity above a certain threshold are aligned together. This is used to process the 

"easy" sequences quickly and yields a set of relatively divergent sequence groups. 

From each such group, a representative is selected which is used as a query to PSI-

BLAST. Checkpoint files from PSI-BLAST are used for secondary structure 

prediction with PSIPRED [Jones, 1999], and to generate a “profile-profile HMM”. 

This HMM is similar to HMMs for pairwise alignment of sequences [Durbin et al., 

1996] with a match state emitting two positions from the profiles (instead of a 

single residue as in the profile HMM or two residues in the HMM for pairwise 

alignment). This produces posterior probabilities of residue matches (similar to 

those from Probcons). These are again used to generate a scoring function for 

aligning.  

PROMALS uses special representation of the core of the alignment consisting 

of two profile components (frequency vectors: effective and target frequencies) 

based on position specific independent counts [Sunyaev et al., 1999; Pei and 

Grishin, 2001] weighting of sequences. 
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3. 3. 6. Dialign 

Local alignment program DiAlign2 [Morgenstern, 1999] does not use gap 

penalties. It breaks up sequences into smaller blocks, aligns all of them and uses 

the highest scoring ones to compile a multiple sequence alignment while leaving 

the residues between the blocks unaligned. 

3. 3. 7. PRALINE 

In this section we will describe PRALINE. As the focus of the thesis is on 

extending it, this section will be more detailed than the previous ones.  

PRALINE [Pirovano et al., 2008] (http://ibi.vu.nl/programs/pralinewww) is a 

multiple sequence alignment suite first described in [Heringa, 1999]. The multiple 

sequence alignment progressive protocol is enhanced in PRALINE by several 

additions aimed at improving consistency and avoiding errors in the alignment, 

especially in the initial stage. We will describe the following additions in some 

detail: pre-profiles, no guide tree, position dependent scoring matrices and gap 

penalties, sequence weighting, secondary structure and transmembrane prediction 

integration and iterating with consistency scores. 

PRALINE performs a pre-processing step before starting the alignment routine 

– it aligns each sequence (the query sequence) to all the other sequences and if the 

resulting score is higher than a threshold it adds the sequence to a "stack" from 

which a pre-profile is created for the query sequence. Columns where the query 

sequence would have a gap are not considered for the pre-profile. Pre-profile for 

the sequence is then generated according to the relative frequencies of the amino 

acids. Gaps in the alignment (except for the query sequence) then contribute to the 

calculation of the position-dependent gap penalty, which is a part of the pre-

profile.  

The main difference in regard to other progressive alignment routines is that 

PRALINE does not use an explicit guide tree. It computes a distance matrix of all 

the pre-profiles in the beginning and then after each step when two pre-profiles are 
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joined, it realigns this new pre-profile with the rest. This leads to a rather long 

running time, a common complaint about PRALINE [Xiong, 2006].  

The long running time is also caused by secondary structure prediction as some 

of the predictors run a PSI-BLAST search. These searches were later [Simossis & 

Heringa, 2005] adopted into the protocol itself – in PRALINE-PSI, PSI-BLAST 

results are used to build the pre-profiles. Predicted secondary structure information 

is used in PRALINE in a conservative way – when aligning two sequences, the 

score for a match of ai and bj can be taken from a substitution matrix for helix (or 

sheet or coil; matrices from [Lüthy et al., 1991]) if both positions i and j in the 

respective sequences are predicted as helix (resp. sheet or coil). This contrasts with 

the method SPEM [Zhou and Zhou, 2005] which disallows gaps in helix and coil 

regions completely. The transmembrane prediction, which was added later 

[Pirovano et al., 2008], is implemented in a similar way. This prevents overreliance 

on prediction results; as accuracies of even the best predictors are around 80% it is 

a necessary measure. PRALINE can use PSIPRED [Jones, 1999], PORTER 

[Pollastri and McLysaght, 2005], YASPIN [Lin et al., 2005] or JPRED[Cole et al., 

2008] as secondary structure predictor.  

The use of pre-profiles allows scoring the consistency of a given residue from 

any sequence based on how often this particular residue appears in pre-profiles of 

the other sequences. This further allows iterating the whole algorithm using the 

weights obtained when scoring the pre-profiles to ensure the core regions of the 

alignment are aligned correctly. These consistency weights then give a general idea 

about the quality of the alignment at a given column [Notredame, 2002]. The fact 

that PRALINE iterates to improve the alignment leads some authors to include it in 

iterative alignment methods [Pevsner, 2009], others classify it as an iterative 

progressive algorithm [Caroll, 2008]. 

In [Heringa, 2002] pre-profile construction was further improved by offering 

the choice to use local or local-global pre-processing. The original pre-processing 

performed a global alignment of the sequences and these two newer strategies 



 

22 

include only better scoring fragments (local) or best scoring fragments, which 

improve the global alignment of the sequences (local-global double dynamic 

programming). These protocols (as well as the new protocols we implemented and 

a host of other options and tweaks) can be used through specific command-line 

options. 
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4. HMMs 

This chapter contains formal definition of Hidden Markov models (HMMs) and 

gives a general overview of some important algorithms that are used when working 

with them as well as specific features of profile HMMs used for representation of 

the alignment core. 

HMMs are used in sequence analysis [Churchill, 1989; Krogh, 1994; Durbin et 

al., 1996; Eddy, 1998; Finn et al., 2009], in other areas of bioinformatics 

(transmembrane topology prediction [Krogh et al.,2001; Sonnhammer et al., 1998], 

gene prediction [Munch and Krogh, 2006], modeling of DNA sequencing errors 

[Lottaz et al., 2003], protein secondary structure prediction [Asai et al., 1993], 

ncRNA identification [Zhang et al., 2006], RNA structural alignment [Yoon et al., 

2008], RNA structure prediction and alignment [Harmanci et al., 2007]), speech 

and image recognition [Xie et al., 2004; Juang and Rabiner 1991], signal 

processing [Crouse et al., 1998] and other disciplines. 

4. 1. Definition and basic description 

Hidden Markov models are statistical models used for modeling sequences of 

data or states which have the Markov property: 

Definition A Markov chain is a sequence of random variables X1,X2,... where 

the value of Xi depends only on Xi–1 for i>1 (the Markov property). 

A hidden Markov model (HMM) is (adapted from [Rabiner and Juang, 1986]) a 

quintuple M = (Q, V, A, B, π), where  

Q is a finite set of states {q1,.., qN} for N>1,  

V is a finite set of observations {v1, .., vM} for M>1,  

A is a state transition probability distribution {ai,j}: ai,j = P(HMM will be in 

state qj in the next step | HMM is in state qi) for i,j ,  
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B is a set of independent emission probability distributions {bj(k)}:bj(k) = 

P(HMM emits symbol vk|HMM is in state qj)} and π is the initial state probability 

distribution {πj}: πj = P(HMM starts in state qj) for j . bj(k) can be 0 for 

all k , thus creating a non-emitting state referred to as silent or mute. An 

HMM is valid only if it does not contain a directed cycle with non-zero probability 

consisting of silent states. 

HMM starts in time t = 1 in one of the states  with >0 (for i1 ), 

and in each step s randomly transitions to one of the states according to its 

probability , where it emits a symbol Ot = vk  according to the probability 

(k) creating an observation sequence Ot . 

It can be seen that the sequence of states  (where 1≤s≤n) is a Markov chain. 

Important problems are: 

1. Given an HMM M and observed sequence {Ot}, find the most likely state 

trajectory  emitting Ot . 

2. Given Ot , Q and V, find A, B and π, so that Ot  is the most likely 

observation sequence emitted by M = (Q, V, A, B, π). 

3. Given 2 HMMs M and M’, find the most likely trajectories in both of them 

that produce the same most likely common output sequence Ot . 

4. 2. Profile HMM 

Profile HMM is an HMM used in sequence analysis to store information about 

multiple related sequences (typically a family). In profile HMMs, set of 

observations V is a set of all amino acids and the sequence Ot  corresponds to a 

protein sequence that would belong to the family represented by this profile HMM 

with probability P Ot . The set of states Q of profile HMMs consists of a start 

state (which is the only one with non-zero start probability), an end state (which 

does not allow transitions to other states), and a certain number of groups of states 
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called nodes. Each node corresponds to a column in the alignment from which this 

profile HMM was built. They consist of three states: match, insert and delete. 

Match state outputs one amino acid letter and roughly corresponds to a column in a 

profile – the emission probabilities are related to probabilities in the profile, an 

insert state allows inserting arbitrary number of amino acids between this position 

and the next one and a delete state is used to skip the next position (it does not emit 

any amino acids). Profile HMM can transition from the start state to one of the 

states in the first group, match (M) and delete (D) states transition to one of the 

states in the next group, an insert state (I) can transition to itself or to the match 

and delete state in the current group. For an example of a profile HMM, see 

Figure 5. 

 

4. 3. Algorithms used with HMM 

Here I present some problems illustrating use of HMMs. 

Problem 1, the most likely state trajectory for a given observation sequence, 

can be solved by the Viterbi algorithm (see for example [Rabiner, 1989]) 

Input: HMM M = (Q, V, A, B, π), O = Ot  where Ot  V for t = 1,..,m 

Output: T =  where Q for s = 1,..,n and T is the most likely state 

trajectory emitting O. 

The Viterbi algorithm exploits the independence of states in a Markov Chain. It 

recursively calculates  – the probability that the character Ot = V was 

emitted by state  in step s, from the probabilities that Ot–1 was emitted by state 

  (which is already known from the previous recursive step for all possible 

states). This can be used with only small modifications even if M contains silent 

states. 
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Problem 2 – building of the model – is solved by the “maximum a posteriori” 

(MAP) model construction algorithm (see [Durbin et al., 1996]) 

Input: Q, V, multiple sequence alignment of K sequences Ok = Ok,t  where 

Ok,t V  {„_‟} for t = 1,..,m, k = 1,...,K  

Output: A, B, π so that for HMM M = (Q, V, A, B, π), the set of sequences 

Ok   are the most likely sequences to output. 

The MAP model construction algorithm is a type of expectation-maximization 

(EM) algorithm. This algorithm is guaranteed to find only a local optimum, which 

should then be tested against real data. 

Problem 3 – the most likely common sequence and its sequence of states – 

corresponds to finding the most probable HMM-HMM „alignment‟. This algorithm 

was designed by [Lyngsø et al., 1999] and later used in [Söding et al., 2005], and 

eventually implemented in PRC [Madera, 2008], which we use in the 

implementation. 

Input: HMMs M = (Q, V, A, B, π) and M' = (Q', V', A', B', π'). 

Output: 2 aligned sequences of states through which M and M’ passed when 

generating the most likely common sequence of observations. 

The output of the PRC program (see [Madera, 2008]) can be formatted in 

various ways according to the compilation options. Here we use the most 

restrictive option “SPACE5, VIA_MM” (described on page 52 in [Madera, 

2008].). This variant does not allow alignment of two states unless at least one of 

them is a match state which makes handling of the output easier. 

In the context of profile HMMs Problem 2 corresponds to building and training 

a profile HMM model, Problem 1 to aligning a query protein sequence to the 

profile HMM and Problem 3 represents aligning two profile HMMs to each other. 

The sequence of states in Problem 2 can be thought of as a representation of an 
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alignment – match states represent a match, delete states represent a gap in the 

query sequence, and insert states a gap in the profile. 

4. 4. PLAN7 

HMMER 2.0 introduced an arrangement of states and transitions that allows 

using the same model for local and global alignments. It is called PLAN7 as it 

allows 7 transitions M→M, M→I, M→D, I→I, I→M, D→M, D→D. Transitions 

I→D and D→I are not allowed to simplify the model and disallow alignments 

where a gap in the first sequence is immediately followed by a gap in the other. 

PLAN7 then contains additional states (B, N, E, C, J) that can be used to enable 

local alignment and to control algorithm dependent features of the model. 

 

 

Figure 5 PLAN7 

A schema of PLAN7 profile HMM. The state S is the only one with non-zero initial 

probability, T terminates the generation of observed sequence. The N and C states are 

N resp. C terminal unaligned sequence states and can be used to allow local 

alignment. Begin (B) and end (E) states are for entering and exiting the main model 

which consists of match (M), insert (I) and delete (D) states. If the transition E→J has a 

non-zero probability multihit alignments are allowed, i.e. all local alignments above 

certain score threshold. 
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4. 5. Other variants of HMMs 

Among new variants of Hidden Markov Models that were recently proposed, 

the fuzzy HMM [Tran and Wagner, 1999] caught our attention. These models 

remove the assumption of independence between states (which is unrealistic in 

protein sequences). They have been successfully employed in sequence alignment 

[Bidargaddi et al., 2005; Collyda et al., 2006] and have shown improved 

performance compared to traditional HMMs, especially in the training of the 

model. 
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5. Algorithm development 

This Chapter provides a description of the work done – profile alignment and 

new protocols using HMMs that were added into PRALINE. 

5. 1. Overview 

In this thesis we focused on improvements of the quality of the alignments the 

PRALINE suite produces. We explored 2 ways to this improvement: allowing to 

align two or more profiles in addition to sequences (Chapter 5. 2) and replacing the 

profile representation of the core of the alignment with one based on profile 

Hidden Markov Models (Chapter 5. 4). 

Aligning two profiles instead of a list of sequences can be beneficial to 

scientists who already have an alignment, which they perhaps hand-tuned with 

great effort and want to join it with another one or another set of sequences. 

The quality of the alignment itself depends heavily on the representation of the 

alignment. We felt that PRALINE already has a set of great protocols to align 

sequences however, with a careful look on modern alternatives to sequence 

profiles its accuracy could be improved.  

5. 2. Profile alignment 

As a first task and an introduction to the problem domain, alignment of profiles 

was added to PRALINE as an option PROFPROFALI. With this option PRALINE 

reads multiple alignment files in MSF or FASTA format, runs a secondary 

structure prediction for the sequences, and aligns the profiles according to their 

relative distance – closest first. The rationale for adding it was that researchers 

often already have a manually tuned alignment and want to "add" other multiple 

alignments to it, and not many alignment packages allow to do that (the only one 

that could do it reliably was M-COFFEE [Wallace et al., 2006], although others, 

like MUSCLE [Edgar, 2004] provide profile-profile alignment option for aligning 

two profiles).  



 

30 

As some secondary structure prediction methods (PORTER and SSPRO) in 

PRALINE can accept an alignment instead of a sequence as an input, we 

considered whether to predict secondary structure for one sequence at a time or 

predict it from the alignment for the whole profile at once. The former method 

where the prediction of secondary structure would be based on PSI-BLAST results 

is computationally expensive and time consuming but should produce superior 

results as the input alignment is not guaranteed to contain enough information, 

especially in comparison with PSI-BLAST results for all the sequences. 

Furthermore, using the alignment as an input would depend too strongly on the 

quality of the prediction, as there would be only one prediction which itself would 

be based on the user-supplied alignment. As the general philosophy in the use of 

secondary structure prediction in PRALINE is to use it only when we can be 

certain about it, running PSI-BLAST for each sequence in the alignment was 

chosen.  However, secondary structure is assigned to the profile position only 

when all the sequences have the same prediction at that position. The prediction 

can be done with any of the predictors supported by PRALINE (see Chapter 3. 3. 

7) 

 

5. 3. Use of HMMs in PRALINE 

To improve the sensitivity of PRALINE alignment and scoring of profiles, it 

was decided to use profile HMMs [Durbin et al., 1996] instead of Gribskov's 

amino acid frequency profiles [Gribskov et al., 1987] for representation of the core 

of the alignment. As state-of-the-art utilities that could be used for building and 

comparing HMMs are available we chose to modify hmmbuild from HMMER in 

version 2.0 [Eddy, 2008] (http://hmmer.janelia.org/) and alignment of two HMMs 

by PRC [Madera, 2008] (http://supfam.mrc-lmb.cam.ac.uk/PRC/) to hold 

secondary structure information in the model. The SAM package [Karplus et al., 

1998], which provides means of building HMMs like HMMER, was reported to 

produce better results [Wistrand and Sonnhammer, 2005] but its sources are not 

available for download, therefore we chose to use HMMER. PRC was chosen as 
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the source code is freely available and well documented and it has been shown to 

perform very well [Reid et al., 2007]. 

PRC and HMMER were then used in PRALINE to perform the actual 

alignment. As the source code of both of these programs is distributed under GNU 

General Public License their source codes were easily available. However, the 

modifications of these programs would have to be made available if PRALINE 

were to be distributed. 

As an intermediate step before the actual implementation of HMM profiles, it 

was decided to try guiding the alignment by profile similarity computed by scoring 

HMMs constructed from the pre-profiles (see Chapter 3. 3. 7) against each other, 

instead of aligning the profiles by the traditional dynamic programming method. 

We will refer to this method as „hmmguide‟. First, we perform pre-processing 

(either global, local, local-global or PSI-BLAST; using normal dynamic 

programming) to obtain pre-profiles of the sequences, use these pre-profiles to 

build profile-HMMs by hmmbuild (with parameter: „-g‟), score similarity of these 

HMMs by PRC (with parameters „-hits 1 -stop -500  -align prc -mode global-

global‟), and align (again using normal dynamic programming method) the two 

pre-profiles which are found to be the closest. These HMMs did not include any 

information on the secondary structure of the profiles to enable running the 

experiment quickly without extensive changes to the code of both HMMER and 

PRC. Using only such simple technique we were able to achieve improvement 

over standard PRALINE using the local pre-processing protocol, see Chapter 6. 2. 

5. 4. Aligning with PRC 

These results promised good performance and thus we decided to use HMMs 

fully in the protocol. The difference between the „HMMGUIDE‟ method and this 

one („PRCALIGN‟) is that HMMs are built using not only sequence information, 

but also the predicted secondary structure and the alignment produced by PRC is 

actually used to align the two profiles. A number of modifications to both 
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HMMER and PRC had to be made to accommodate the secondary structure in the 

HMM model. 

The protocol is as follows: 

1. Pre-process the sequences (either using PSI-BLAST results or 

PRALINE pre-processing) to obtain prealignments. 

2. Feed these prealignments to HMMER to build HMMs. 

3. Following the progressive alignment protocol align these HMMs with 

PRC and insert gaps into the sequences according to this alignment to 

obtain the final alignment of the input sequences. 

These steps are illustrated in Figure 6. 

The step 3 requires a bit more explanation: for 2 HMMs PRC can return a 

match (a significant alignment between the HMMs). If it does not return a match it 

is assumed that these two sequences are unalignable. This is not as serious as it 

looks because PRALINE can just assign a very low score to this combination of 

HMMs effectively setting their distance in the distance matrix to infinity. 

Hopefully, there will be pairs which can be aligned normally and from those the 

one with the highest score will be used. The row representing this joint alignment 

will then be recalculated in the distance matrix. 

If PRC returns a match, PRALINE parses the output for the resulting score 

(and stores it in the distance matrix) and for the alignment strings. PRC allows 

multiple output formats for the description of the alignment, we chose „prc‟. This 

consists of two state trajectories (as described in the problem 3). PRALINE joins 

the alignments according to these rules: 

 Combination of M and M or M and D: a match between alignments. 

 Combination of M and I or D and „~’: a gap in the second alignment 

(i.e. the final alignment will include the full column from the first 

alignment and a column full of gaps from the second). 
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Thanks to the SPACE5, VIA_MM parameters these were the only 

combination of states PRALINE has to parse (except for the symmetrical case). 
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Figure 6 The PRCALIGN PRALINE protocol 

In step 1 we perform a local preprocessing – gathering the segments of the 

sequences that have a high similarity to a query sequence. For each of the 

query sequences we thus obtain the pre-profile, which we treat as an 

alignment and feed it in step 2 to hmmbuild. It creates HMMs that are in pairs 

aligned with PRC in step 3. The best alignment is used to join the corresponding 

pre-profiles and a new HMM is built from this joint alignment in step 4. The 

steps 3 and 4 repeat until there is only one block: the result. 
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5. 5. HMMER modifications 

The modification of HMM building in HMMER consisted mainly of extending 

the alphabet used from 20 amino acids to 60 symbols: amino acid x secondary 

structure (helix, strand or coil) combinations. This presented some challenges as 

even though the HMMER User's Guide states that changing alphabet is easy and it 

has been done, we have found only one published instance of such modifications 

[Bernsel et al. 2008] and the authors have used only two symbols in the alphabet – 

extending it beyond 20 caused some difficulties. 

Our extended alphabet was represented by 60 consecutive characters from the 

ASCII table starting with the exclamation mark character „!‟ (ASCII code 33) and 

ending with „]‟ (ASCII code 93). „!‟ was chosen to fit the whole alphabet between 

a space and an underscore. The underscore („_‟, ASCII code 95) was used for gaps 

to avoid problems with the MSF format (that was used as an input for hmmbuild), 

which would arise if a space was used. 

When HMMER encounters a column consisting of mostly gaps it does not 

create a match state but an insert state. This could derail PRALINE when it is 

parsing the state trajectories from PRC, thus it reads the Stockholm alignment 

(SXL) output of HMMER, which contains annotated alignment including states 

assigned to particular columns, and stores indices of those that were assigned to 

insert states (thus effectively removing them from the HMM). When PRALINE is 

combining the alignments and it reaches such a column it automatically treats it as 

a gap in the other alignment. When it encounters situation where both columns 

were assigned insert states it considers it a match of these columns.  

5. 6. Priors 

The HMMER does not use scoring matrices [Henikoff and Henikoff, 1992; 

Dayhoff, 1978; Lüthy, 1991] for assessing similarity between sequences and 

building a model, instead it uses a single probability distribution called Dirichlet 

mixtures (DM) [Brown et al. 1993] [Sjölander et al., 1996] – a mixture of Dirichlet 

distributions. DMs have been proven to achieve the best performance in a related 
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field of statistical text modelling [Yamamoto and Sadamitsu, 2005]. This 

distribution is dependent on multiple parameters (referred to as priors): weight 

coefficients of the mixtures, the number of mixtures, and the parameters of the 

underlying Dirichlet distribution (one for each mixture and alphabet symbol) 

[Sjölander et al., 1996; Becker et al., 2001]. 

As the modified hmmbuild creates HMMs over a different alphabet, it needed a 

different prior. The quality of HMMs built from the input multiple sequence 

alignment strongly depends on the quality of the prior used [Wistrand and 

Sonnhammer, 2004].  We obtained the prior for the extended alphabet by training 

DM over vector counts (see [Sjölander et al., 1996]) calculated from the 

HOMSTRAD database [Mizuguchi et al., 1998] of multiple sequence alignments 

with structural information.  

Every column in each alignment of the latest release of the HOMSTRAD 

database was first assigned a secondary structure (a coil, a strand or a helix). Then 

they were divided into „match states‟ and „insert states‟ datasets according to a 

simple heuristic: a column with a gap was assigned to the „insert states‟ so that 

both datasets contained a significant number of vector counts to estimate DM 

parameters properly. We are aware that hmmbuild can assign an insert state to a 

column even if it does not contain any gaps at all and the presence of a gap does 

not automatically mean that it will be assigned an insert state. However, we believe 

that this approach presents a reasonable tradeoff between accuracy and speed of 

counting. For each such column we created a vector of length 60 with the counts of 

occurrences of each symbol of the extended alphabet in this particular column. The 

sequences were weighted according to [Henikoff and Henikoff, 1994], thus the 

vector counts were not necessarily integer. The actual training was performed on 

the vector counts by the „dm‟ utility [Mochihashi, 2006].  

The secondary structure was assigned by running DSSP and applying a 

standard mapping („H‟ from DSSP as helix, „E‟ as strand and everything else as 

coil [Pollastri et al., 2002]). HOMSTRAD database from 9th November 2009 was 
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used. Only the alignments where the sequence from PDB file could be globally 

aligned with the sequence from the alignment (with average score higher than 3 

per residue) were used, yielding 3 427 sequences in 1 029 alignments with 254 738 

columns. 49 221 of these columns were regarded as insert and 205 517 as match 

states. 

An alternative way of producing vector counts was to use hmmbuild itself to 

read the alignments and assign insert and match states with the algorithm that is 

actually used when building the HMMs. However, for this a prior for the extended 

alphabet is needed, thus making it unusable for the first prior estimation. 

Nevertheless, we tried to use this method for improving the quality of the prior 

after adding the prior we obtained in the previous steps into hmmbuild. 

Unfortunately, in this way only 478 columns were assigned to the insert dataset. 

We believe it is not possible to properly train the model with at least 60 parameters 

on such a small sample, thus we kept the first prior. 

The vector counts served as input for the „dm‟ utility for estimating Dirichlet 

mixture parameters. The „dm‟ utility requires the number of mixtures as a 

parameter, thus multiple training runs with different values to achieve a reasonable 

tradeoff between model precision and complexity were performed. Perplexity  

 

where q(xi) is the probability of vector count xi in the model and N is the number of 

vector counts, was reported by „dm‟ and was thus used as a measure to decide on the 

number of mixtures. It was recorded for models using 9, 18, 27 and 35 mixtures for 

the match emission prior and 3, 6 and 9 mixtures for the insert emission prior, see 

Figure 7 and Figure 8. These numbers were chosen arbitrarily. As estimating the 

priors took about a day on our machine and the difference in perplexity between the 

worst one and the best one was 0.2%, we did not continue looking for the best prior. 
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A model with 27 mixtures was chosen for the match emission prior and with 6 

mixtures for the insert emission priors. 27 was chosen for the match emission prior 

because the original prior used in hmmbuild used 9 mixtures and the new model 

has 3 times more states, thus a 3 times increase in the number of mixtures seems 

 

Figure 7 Match emission model perplexity 

  

Figure 8 Insert emission model perplexity 

These figures present results of prior estimation in terms of the model perplexity 

depending on the number of mixtures. 
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like a logical choice and the PPL does not suggest it is a wrong choice. 6 mixtures 

for the insert emission were chosen as the increase from 3 to 6 seems to improve 

the model much more than a step from 6 to 9. Further research into prior 

estimation is needed, possibly based on benchmarking the priors on an alignment 

database as this method does not test the priors in the way they are used in 

hmmbuild. These priors were then hard-coded into HMMER source files along the 

original ones. The transition probabilities were kept unchanged. However, we 

believe that using a different set of transition probabilities for different secondary 

structure regions can be strongly beneficial. It was not attempted as it would 

require additional changes in HMMER source code and a rigorous approach to 

estimating them would be required. 

Another set of required parameters was the background frequencies of the 

symbols of the extended alphabet. This was also obtained from the 3 427 

sequences from HOMSTRAD database. The frequencies and ratios of secondary 

structure regions can be seen on Figure 9 and Figure 10, respectively. The amino 

acid frequencies show a good agreement with the current knowledge about the 

biases of certain amino acids towards secondary structure – for example that amino 

acids M, A, L, E and K are expected in helix regions. 
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Figure 9 Amino acid frequencies according to secondary structure 

The frequencies were normalized (for each secondary structure they were divided by the 

ratio of this secondary structure) so that bias of some amino acids towards particular 

secondary structure can be observed. 

 

Figure 10 Secondary structure ratios 
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6. Results 

This chapter presents the results of the experiments described earlier. First the 

results of the profile alignment are presented and then behavior of the two new 

protocols is discussed. 

Chapter 6. 1 discusses the results of the PROFPROFALI option for aligning 

profiles. Chapter 6. 2 summarizes the results of the HMMGUIDE and PRCALIGN 

protocols on the BAliBASE 3.0 benchmark. 

6. 1. Results of PROFPROFALI 

The usefulness of the option PROFPROFALI was tested using sample PFAM 

[Eddy and Bateman, 2009] seed alignments of superfamily Ras. PFAM is a 

database of alignments for biologically related sequences. The Ras family was 

used as it is well studied in literature and the seed alignment contains 4 subfamilies 

suitable for use as profiles for alignment. The test was performed by comparing the 

original PFAM alignment with three alignments produced by PRALINE with 

default options using PSIPRED secondary structure prediction:  

1) Aligning all sequences at the same time. 

2) Alignment produced by taking blocks from PFAM alignment corresponding 

to different families and aligning them using the new PROFPROFALI option.  

3) Aligning first the sequences from the families and then aligning the resulting 

MSAs together using PROFPROFALI.  

The first method represents the "old way", the second one is a reference how 

close can the results from PRALINE get to the original alignment and the last 

method was used to see whether PRALINE would perform better just with 

information on family membership. Furthermore, Probcons [Do et al. 2005] and 

Muscle [Edgar 2004] were used as they were readily available and produce 
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alignments of a quality comparable to PRALINE. However, only the simple test 1) 

was performed with them. 

No large scale testing was done as dividing sequences into subfamilies and 

locating subfamily specific residues and functional sites have to be done manually. 

It is in fact quite difficult to find superfamilies described well enough to perform 

such studies. 

The sample PFAM alignment of the Ras superfamily was divided to families 

Ran, Ras, Rho and Rab. The quality of the alignment of functional and family 

specific position was assessed according to [Wennerberg et al. 2005; Bourne et al. 

1991] and [Pacold et el. 2000]. The position numbers mentioned below are from 

the PFAM alignment.  

[Bourne et al. 1991] mentions three positions which distinguish families of Ras 

from each other: position 33, 41 and 68. The PFAM alignment does not align the 

residues mentioned in this paper in one column; Rho family should have a 

phenylalanin at position 33 but has a gap there instead. All alignments except 1) 

exhibit the pattern from the paper however. In other columns all methods resulted 

in the same alignment as PFAM, with the exception of method 1) at position 41. 

Method 1) placed a gap there shifting it by 1 in families Ras and Rho. Position 68 

did not result in any significant differences. [Pacold et al. 2000] mentions position 

85 (labeled there as arg73) as important for the function of Ras superfamily as it is 

in a loop region close to the functional site. All programs manage to align it 

correctly, but methods 1) and 3) place gaps directly next to it, which was judged to 

be wrong as they are so close to a superfamily-wide functional site. 

[Stenmark and Olkonen 2001] lists functional sites in the whole superfamily 

and some specific to Rab family. Sites G1, G2, G3, PM1 and PM3 are aligned in 

the same correct way in the results of all the methods. The dissimilarity of the 

sequence RHO3_YEAST confused methods 1) and 3) at PM2 as they shifted the 

functional site by a few residues.  
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We present also the sum-of-pairs score (SP) and column conservation score 

(TC) when compared with the PFAM alignment: 

 

Overall all methods produce alignment that can be used to distinguish the families. 

Moreover, the results show slightly better results from 1) compared to 3) caused 

probably by the ability of PRALINE to perform the alignment without actually 

generating a guide tree and always aligning closest sequences/profiles first instead. 

When PRALINE is supplied with the information about alignment in the families 

(method 2) it is vastly superior to MUSCLE and Probcons. 

6. 2. Results of HMMGUIDE and PRCALIGN 

Both PRCALIGN and HMMGUIDE were tested using BAliBASE 3.0 

[Thompson et al., 2005] reference sets 1–5 (denoted RV11, RV12, RV20, RV30, 

RV40 and RV50). This test suite contains 217 alignments. Median of number of 

sequences in one alignment is 21 and maximum 142. Altogether 7 methods were 

compared: 

 SP TC 

Muscle 0.957 0.78 

Probcons 0.959 0.75 

PRALINE 1) 0.946 0.64 

PRALINE 2) 0.969 0.84 

PRALINE 3) 0.92 0.63 

Table 1 Sum-of-pairs score (SP) and column conservation (TC) 

Unsurprisingly method 2) (aligning parts of the PFAM alignment) was the best 

method both in SP and TC scores. However, method 1) (aligning all the sequences 

at the same time) outperformed 3) (aligning subfamilies first). PRALINE apparently 

aligned the sequences in a better order in method 1) than when using the order 

suggested by the subfamilies. 
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1. MUSCLE v 3.7 with default settings, 

2. PRALINE without modifications, 

3. PRALINE with HMMGUIDE parameter, 

4. PRALINE with PRCALIGN parameter, 

5. PRALINE without modifications with secondary structure prediction, 

6. PRALINE with HMMGUIDE parameter with secondary structure 

prediction, and 

7. PRALINE with PRCALIGN parameter with secondary structure 

prediction. 

PRALINE was always run with local pre-processing (with score threshold 80), 

default scoring matrices and gap penalties. The secondary structure was predicted 

using PSIPRED [Jones, 1999] running over „nr‟ BLAST database. These 

alignments were scored using the bali_score_zeus comparison tool from 

BAliBASE benchmark which produces both sum-of-pairs (SP) and column 

conservation (TC) scores. Means were calculated for every method (see Figure 13).  
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Figure 11 SP scores 

Figure presents average sum-of-pairs scores over different reference sets of the 

BAliBASE benchmark. The subsets RV11 and RV12 together form the reference set 1, 

but they are separated in the graph as they clearly represent significantly different 

tasks. The difference between methods was perhaps the most pronounced in RV11, 

where PRCALIGN with secondary structure was 20% better than classical PRALINE and 

cca 5% better than classical PRALINE with secondary structure. The reference set 4 

(RV40) caused some problems (see Chapter 6. 3, if a method did not finish the run the 

alignment was ignored when computing the averages for this method) that affected the 

results. However, the overall conclusion that new methods produce better results than 

classical PRALINE is clearly visible. 

The coloring in this graph is used in all other graphs presenting the results of different 

methods as well. 
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The protocol PRCALIGN has not produced a useful alignment due to problems 

with the protocol itself (see Chapter 6. 3 for discussion of the problems). The alignments 

with incomplete results were removed from the dataset resulting in 198 alignments out 

of 217. All other methods correctly aligned all 217 alignments. 

 

Figure 12 TC scores 

This plot presents the average total column conservation scores for reference sets 

for the BAliBASE benchmark. As on previous figure, the results for set RV40 show 

that the PRCALIGN method encountered severe problems. Colors and order of 

different methods is the same as in the previous graph. 
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Figure 13 SP and TC averages 
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 These plots show average sum-of-pairs and column conservation scores for the 

whole BAliBASE benchmark. They were cropped (the y axis does not start at 0) so 

that the differences can be seen easily. The PRCALIGN without secondary 

structure represents the biggest improvement in quality over the classical 

PRALINE (8%), but problems in alignment prevented the PRCALIGN method 

from reaching the full potential when using the secondary structure prediction. The 

HMMGUIDE probably does not perform much better than the original PRALINE.  



 

48 

 

 

Figure 14 Boxplots of SP and TC scores 

Boxplots of combined results for the alignment scores where all methods finished. The 

central mark is the median, the blue box extends from 25th to 75th percentile, the black 

line ends at the most extreme data point or at 1.5 multiple of 25th to 75th percentile 

distance from the blue box and the red crosses represent outliers. Notable features 

include numerous outliers close to zero for the method PRCALIGN with secondary 

structure in TC scores and much smaller variance of results in TC scores for MUSCLE 

compared to any PRALINE method. The improvement in quality is obvious for the new 

protocols without secondary structure, but questionable when using secondary 

structure. 
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As the absolute differences between the methods over the whole BAliBASE 

dataset were rather small (about 5% in both SP and TC scores, see and Figure 14), 

we decided to use ranking to visualize and test the differences. To simplify the data 

handling we used only TC scores for additional visualizations as they are 

considered more relevant [Waterman and Byers, 1985]. The difference between SP 

and TC scores can be probably explained by different alignment of columns with 

low conservation.  

When testing whether the new protocols were better than the classical 

PRALINE, we considered which method (of the two) produced better results. We 

thus obtained a set binary (is/is not better) values. These were tested using one 

sided binomial sign test [Sheskin, 2003] to assess the statistical significance of the 

differences between different methods. This method was used because it is 

nonparametric, robust and takes advantage of the fact that the data are paired. 

However, it does not take into account the size of the difference in score between 

the methods, only whether it produced better results. The p-values of the test (that 

is the probability that the proportion of observations of the method being better 

than the classical PRALINE happening just by chance) are tabulated in Table 2. 

 

Thus on 95% significance level we can conclude that HMMGUIDE is better 

than PRALINE with or without secondary structure and PRCALIGN is 

conclusively better than PRALINE only when the secondary structure prediction is 

not used. 

 without SS with SS 

HMMGUIDE 0,017 5,00E–04 

PRCALIGN 1,65E–13 0,5 

Table 2 P-values 

The table presents p-values of the test that the method (in the first column) is 

produces alignment which is closer to the one from BAliBASE benchmark than 

the classical PRALINE.  
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Figure 15 Histograms 

This plot shows how often was each method ranked by column conservation score at 

that particular position. I.e. the first bars in the graph labeled 1 show how often each 

method was the best for an alignment. For example method PRCALIGN without 

secondary structure was the best method 46 times (out of 198). The upper graph shows 

overall ranks and graphs below show results when only PRALINE with or without 

secondary structure were considered. These graphs show very good results for 

PRCALIGN without secondary structure (it was the best method without secondary 

structure for 122 times). This graph uses the same colors and order of the methods as in 

Figure 11 SP scores 
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To get a detailed view of the differences between the methods we divided the 

methods to groups with and without the use of predicted secondary structure and 

for each BAliBASE alignment ranked the scores the methods achieved. 

Histograms of the ranks can be seen on Figure 15. Without secondary structure 

PRCALIGN (the green, 3
rd

 column) is clearly the best method however problems 

in alignment sent it to second place when using secondary structure (the blue, last 

column). 

6. 3. Problems in aligning 

In order to describe the problems we faced we will first review the PRCALIGN 

with secondary structure prediction protocol where most of the errors occurred. 

The protocol started with a local pre-processing step which created the pre-profiles 

from which HMMs were built. This step was needed as HMMER would not 

produce relevant HMMs from a single sequence itself. However, sequences that 

were added to the pre-profile were carried along to later stages which resulted in 

huge pre-profile alignment files (1000 sequences with 2000 alignment columns). 

These alignments were mostly filled with gaps thus producing very low quality 

HMMs which then scored badly against other HMMs in the group. PRC would 

often even refuse to align them altogether. We managed to force it to align all 

HMMs by setting the STOP parameter to –500 (the default is –2) while setting 

HITS to 1 so that it does not enter a “near-infinite” loop as recommended by the 

README file of PRC. 

However, we soon encountered another problem: HMMER was not able to 

construct an HMM from the alignment. It either assigned an insert state to all the 

columns (which is relatively reasonable as they were at least 50% gaps) or did not 

find any other match states than the first and the last – thus producing a B→E 

transition which is forbidden in PLAN7. We were not able to overcome this 

problem as it is inherent to the complex alignments that we obtained through the 
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use of local pre-processing. Identifiers of the alignments which failed to produce 

results for PRCALIGN with secondary structure prediction can be seen in Table 3. 

RV40.BB40002     

RV40.BB40004     

RV40.BB40011     

RV40.BB40013     

RV40.BB40015     

RV40.BB40016     

RV40.BB40017     

RV40.BB40022     

RV40.BB40023     

RV40.BB40027     

RV40.BB40037     

RV40.BB40038     

RV40.BB40039     

RV40.BB40040     

RV40.BB40041     

RV40.BB40047     

RV40.BB40049     

RV50.BBS50003    

RV50.BBS50011 

Table 3 Failed alignments 

List of identifiers of alignments for which PRCALIGN with secondary structure failed to 

produce results. The prefix RV40 indicates it comes from reference set 4 and RV50 

reference set 5 of BAliBASE benchmark. 

Reasons why the local pre-processing resulted in such complex alignments 

might include: bias towards secondary structure conservation in the priors, 

extended alphabet, “once a gap, always a gap” and the complexity of set 4 of 

BAliBASE. We describe these causes and their possible corrections in the 

following paragraphs. 
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When we prepared the data for training the priors we assigned a single 

secondary structure to the whole column of an alignment from HOMSTRAD. 

Thus, we trained the prior only on columns with total secondary structure 

conservation. Total conservation of secondary structure in a column is however 

very unlikely in real life alignments. This could be alleviated by randomly 

changing the secondary structure for single residues in a column of HOMSTRAD 

alignment when preparing the vector counts. Yet, it would require significant 

additional effort and further testing, consequently it was not attempted. 

The extension of the alphabet from 20 to 60 symbols significantly decreased 

chances of randomly aligning two matching residues and getting a completely 

conserved column from the alignment. With the accuracy of secondary structure 

prediction around 80% we can expect to have a wrong secondary structure of 1 

residue in a column of 5 sequences. Lower conservation means HMMER assigns 

an insert state to this column rather than a match state. The more columns are 

marked as insert states, the less information the HMM contains.  

The number of gaps in the alignment grows also due to the “once a gap, always 

a gap” principle [Feng and Doolittle, 1987]. The local pre-processing cannot insert 

gaps into the main sequence (to protect against this), however it can and does 

insert gaps in the other sequence segments. Such a profile can then easily have 

more than 50% gaps in columns in parts of the sequence for which no analogous 

segments in other sequences were found. In fact columns with a single non-gap 

symbol can occur; if the pre-profile then contains 10 sequences we get 90% ratio 

of gaps. These gaps get carried through the whole protocol always increasing the 

ratio of gaps in a column. 

Finally, the set 4 of BAliBASE benchmark is notoriously difficult to align 

correctly – the classical PRALINE also struggles with it. It is probably caused by 

the vast differences between sequences (length ratios can be up to 1:4). This 

further worsens all previously mentioned problems. The scores of PRCALIGN 

show that without secondary structure prediction on set 4 and on other sets show 
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how bad the performance relatively is. The method performs quite well and 

finishes almost all of the alignments (with the exception of 2 alignments from set 

5) however the combination of extended alphabet and set 4 is hard. 17 out of 51 

alignments in set 4 did not produce results. At the same time those that did finish 

produced alignment of unsatisfactory quality. If PRCALIGN with secondary 

structure prediction performed at least as well as PRCALIGN without secondary 

structure prediction it would be definitely the best performer (see Figure 14). 

HMMGUIDE was not hit by these problems as severely, it managed to pass all 

tests. It is probably caused by the fact that the alignment was actually constructed 

by PRALINE without the problems that plague the alignment of extended alphabet 

HMMs. 

6. 4. Performance 

Performance improvements were not really the main aim of this work; we 

present here just a general overview of performance considerations. 

As the methods used in these protocols are significantly more complex than the 

original PRALINE the processing time needed is multiple times more. Simple 

PRALINE without secondary structure prediction took about 6 seconds on a 

3.2GHz CPU while the PRCALIGN protocol needed 9 seconds to finish alignment 

of 15 sequences. However, when considering that the prediction of secondary 

structure alone takes approximately 3 full minutes for each sequence the difference 

between the protocols becomes insignificant. 

No formal analysis was done but we estimate that the time complexity of the 

new methods is similar to that of the old method – O(n
4
) where n is the size of the 

input – as the most demanding part of the algorithm is computing the initial 

distance matrix (i.e. n(n-1)/2 comparisons) over sequences and each such 

comparison has a quadratic time complexity. We assume here that the time to build 

and compare two HMMs is quadratic which seems reasonable. 
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7. Conclusion 

We implemented a profile alignment method which improved the accuracy of 

the alignment when user supplied additional information and 2 new protocols 

which produced significantly (with 95% confidence level) better results on the 

BAliBASE dataset. Particularly the protocol PRCALIGN without secondary 

structure represents a major improvement over PRALINE. The goal of improving 

PRALINE was thus reached. However, the new method has not produced results 

for some particularly complicated inputs.  

We believe that the results show superiority of profile HMMs when compared 

to ordinary profiles for representation of the alignment core at the cost of increased 

computational overhead. The main advantage HMMs have over the profiles is a 

more precise statistical model of the alignment which can capture more nuanced 

relations between sequences. 
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8. Further work 

We believe even better results could be achieved with further effort put into 

these protocols. We present some further research that would improve the results 

obtained here. 

8. 1. Finishing BAliBASE 

Producing an alignment for all sequences in BAliBASE should have the highest 

priority. Careful consideration should be given to the methodology of training the 

priors. Saving vector counts from processing parts of BAliBASE benchmark which 

produce reasonable alignments and combining them with the ones from 

HOMSTRAD might produce better results. 

Large scale testing and tuning of the parameters of the alignment [Joachims et 

al., 2006] such as local pre-processing thresholds could be used to simplify using 

these tools, as the sequences themselves frequently contain all the information 

necessary for deciding on the value of all parameters. 

8. 2. Integration of other predictions 

When using tools such as PSI-BLAST the MSA program has a vast amount of 

information available – the alignments with all homologues sequences from the 

database can be used to obtain further information about the sequence. Predictions 

of the secondary structure [Sander and Schneider, 1991; Heringa, 1999; Pei and 

Grishin, 2008] are known to improve the quality of the sequence alignment. 

Transmembrane topologies can also be used [Pirovano et al., 2008]. Current state-

of-the-art allows several predictions to be made solely from the sequence data. 

Information on contacts [Kleinjung et al., 2004], solvent accessibility [Chang et al., 

2008], motifs describing families [de Castro et al., 2006], post-translational 

modifications – signal peptides [Dyrløv Bendtsen et al., 2004] and phosphorylation 

sites [Blom et al., 2004; Blom et al., 1999; Wan et al., 2008] etc. could all be 

incorporated into calculations for more details about the sequences and about 
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particular positions. Function tends to be conserved more than structure and 

structure more than sequence [Illergård et al., 2009], thus insights into the function 

of a particular segment in aligned sequences can help us align it in an evolutionary 

meaningful way.  

8. 3. Performance 

Finally most of the effort is spent on improving the quality of the alignments. 

However, the speed might be considerably improved as well. Using vector 

instructions (SIMD Streaming Extensions – SSE on x86), parallelizing main parts 

of the algorithm for use on a single multi-core CPU or parallelization on a cluster 

would allow scientists to perform more alignments in a shorter time. 
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