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Abstrakt:

Práce se bude zabývat problematikou indexace XML dat a efektivńıho vy-
hledáváńı s indexem. Hlavńım těžǐstěm bude snaha navrhnout datové struktury a
algoritmy, které umožńı úlohu vyhledáváńı maximálně paralelizovat a využ́ıt tak
potenciálu v́ıcejádrových procesor̊u. Součást́ı práce bude i pilotńı implementace
navržených algoritmů.

Dotazováńı bude prob́ıhat pomoćı vlastńıho jazyka (ne nutně v textové podo-
bě), což umožńı použ́ıvat r̊uzné vyhledávaćı jazyky jako frontendy. Jako ukázka
použit́ı bude implementován vzorový frontend umožňuj́ıćı vyhledáváńı pomoćı pod-
množiny jazyka XPath.
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Abstract:

This thesis will address the problems of indexing XML datasets and finding
effective searching methods for indexed data. Defining data structures and algo-
rithms that take highly parallel approach to the searching problem is considered
to be main objective, therefore the implementation may benefit from the power
of multicore CPUs. Prototype of such implementation will be presented with the
thesis.

Internal query model will be developed as a common layer. Multiple front-ends
representing different query languages will be able to operate on the top of this
model, thus the engine will not be dependent on any particular language. Sample
front-end for a subset of XPath will be implemented along with the prototype.
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1. Introduction

In 1965 Gordon E. Moore, Intel co-founder, first observed the intriguing phe-
nomenon that the number of transistors, which can be placed on integrated circuit,
grows exponentially with time. In fact, this number doubles approximately every
two years. It is reasonable to assume that many attributes of microprocessors, such
as frequency or cache capacity, are directly proportional to the amount of integrated
transistors. Therefore it was believed that speed of processors will also double about
every two years. Unfortunately, at the dawn of 21th century this assumption was
proven wrong by Intel.

It was discovered that energy consumption and thermal production of a mi-
croprocessor is quadratically proportional to its nominal frequency. The frequency
escalation trend hit a barrier of about 3Ghz, beyond which the processors based on
current architectures consume too much energy and produce too much heat. In or-
der to solve this crisis, processor developers have abandoned the frequency pursuit
and focused on optimizing the architecture and creating multicore microchips.

1.1. Thinking Parallel

At present time, dual-core and quad-core processors are quite common in PC
configurations. Graphic cards are becoming more sophisticated and the computa-
tional power of their tens or hundreds of stream processors can be used for general
purpose computing. We have to ask ourselves, what we shall do with all these
cores. As the hardware outran the software again, we have to learn new ways of
developing applications, designing algorithms, and even thinking about problems.
The efficiency and time complexity have become less important and what really
matters is how applications scale with more processors.

Writing algorithms, which can properly distribute work so that it can be pro-
cessed concurrently, is quite a challenge. Parallelism brings many issues that do not
concern us in single-threaded applications and which must be addressed properly,
especially

� thread management,
� synchronization,
� and memory allocation.

Furthermore, we must not forget that there are problems which may not be
parallelized at all, since they are serial in nature. For example reading data from
a pipe or computing expression y = x1 
 x2 
 x3 
 . . . where 
 is nonassociative
operation. The most difficult part of parallel programming is to find out which
parts of the algorithm are not serial and to exploit the parallelism inside them.
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1.2. Looking for a Needle in XML Haystack

This work will focus on problems of searching data in XML [XML] document
and explore possible ways of evaluating a search query concurrently. Even though
the search engine presented with this thesis is independent on a query language, it
has been inspired mostly by XPath [CD+99], the state of the art in XML. Subset
of XPath was also implemented as a front-end to our engine (for more details see
appendix A).

There are many ways of evaluating XPath queries. Traditional recursive ap-
proach may be the simplest for implementation, however, it is usually the slowest
one since it leads to exponential time complexity for some queries. Fortunately,
there are more efficient ways of processing XPath [GKP05]. These algorithms in-
troduce two general ideas. First, we should determine which parts of context infor-
mation are used by each subquery and if there are subqueries that do not require the
complete context information, some optimizations may be performed. Second, we
must prevent unnecessary repetitive evaluation of subqueries in order to maintain
polynomial time complexity.

1.3. Objectives

The problem of evaluating queries over XML datasets is rather vast and well
beyond the scope of this thesis. There are many details in the specification which
affect the problem significantly: Whether we are searching in one XML document
or whole set of documents, whether we execute one query at a time or multiple
queries at once, whether we have XML data loaded into memory or we read them
sequentially from a data stream.

In this work we will attend to simple XPath evaluation of a single query at
a time in one XML document. We expect that the document is already loaded into
the main memory in a DOM-like [DOM] tree with simple name-based index for
XML elements. We will try to design algorithms which would scale optimally with
number of processors and implement the most promising ones in our prototype.
Finally, we will test them on real and synthetic data and compare them with some
known XPath implementations.

In chapter 2, we will analyse problems related to multi-threaded enviroment
and possible approaches to scalable XPath evaluation with proper XML represen-
tation. Algorithms and data structures used in our prototype are revised in chapter
3 followed by implementation techniques and details in chapter 4. Chapter 5 is
dedicated to practical results of our search engine and their interpretation. Finally,
in chapter 6, we will summarize contributions and outline possible improvements
and further research objectives.
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2. Analysis

2.1. Concurrency Issues

Parallelism introduces many issues which must be treated properly in order to
design scalable application while keeping the overhead and programming complexity
in acceptable limits.

2.1.1. Threading Model

First and the most essential thing we need to consider is how to exploit multi-
ple processor cores. Many operating systems and platforms offer various tools for
parallel computation and we have to choose the most suitable ones. However, the
technical details of scheduling, context switching and other low-level parts of paral-
lelism will not be discussed in this thesis. Henceforth, we expect that our platform
provides us with classical threads and some mechanisms which allow us to create,
dispose and synchronize them.

When a workload is divided among multiple threads, we have to decide whether
the threads will be created and disposed dynamically, or whether we create fixed
amount of threads at startup and keep them until the application terminates. First
approach seems more convenient since it does not consume more system resources
than it really needs. Fixed number of threads lack the flexibility of dynamic cre-
ation. On the other hand, creating and disposing of threads is bound with nontrivial
overhead and it is much faster waking sleeping threads then creating them.

Practical results [Rei07] suggest that it is more convenient to choose fixed
amount of threads. Question remains how many threads we should allocate. Since
we would like the application to scale properly with number of processors and we are
also minimizing the overhead, the obvious choice would be to allocate one thread
for each logical processor available. This way we will be able to load the hardware
entirely while the threads will not struggle for time slices.

When we use a thread pool of fixed size, we must also design strategy how
to keep these threads occupied. First of all, we need to decide whether the job
planing will be preemptive or nonpreemptive. Preemptive approach would give
us full control over the job assignment. Unfortunately, the price for full control is
context-switching overhead and vast code complexity. The alternative is to use non-
preemptive planing which will not be difficult to implement. However, when a task
is assigned to a thread, it must finish before any other work can be dispatched to
that thread. For the sake of simplicity and speed, we shall not examine the preemp-
tive model further and from now on, we will consider only simple nonpreemptive
planing.

Finally, we have to decide how to divide workload among the threads. Let us
say we have a job of size N , which can be divided into fragments down to size 1,
and four threads in the pool. Naturally, the naive solution would be to divide the
job into tasks of size N/4 and assign each task to one of the threads. This approach
will most certainly minimize the overhead and will perform excellently if it takes
approximately the same time to process each task. If it turns out that one of the
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tasks will compute much longer than the others, three threads will be waiting idly
until the fourth one finishes.

Better solution is to create many tasks regardless the size of the pool. When
a thread becomes idle, it simply takes another task to process. This way the threads
keep themselves occupied and since the tasks are very small, none of them will wait
too long when the last task is being finished. Unfortunately, the more tasks we
have the more time is consumed by their administration and dispatching. If they
are too small, the overhead will take over useful work and the whole concept will
become quite ineffective, so we have to find the acceptable minimal size of the
tasks.

2.1.2. Synchronization

Another serious issue of parallel programming is the unpredictability of execu-
tion order. When two threads are executed concurrently, we cannot tell how the
instructions will blend.

The deterministic concept of programming requires that the same data on the
input will lead to the same results on the output no matter how many threads we
use or in what order their instructions are executed. Local state of each thread is
isolated from the others so the only real problem are operations accessing shared
memory.

Obviously, concurrent reading does not cause any trouble since it is completely
idempotent. Concurrent writing or combination of reading and writing operations is
usually problematic. For better illustration let us examine the traditional example
of code incrementing global variable x executed in two threads simultaneously.

t
im

e

Thread A

a = x

inc a

x = a

Thread B

b = x

inc b

x = b

Figure 2-1: Race condition example

Let us say the original value of x was 42 so after two increments it should be
equal to 44. However, if the instructions are executed as shown above, the final
value stored in x will be 43. Problem demonstrated in this example is also known
as race condition.

Race condition is a flaw in the code which causes that the result of computa-
tion is dependent on the order in which the instructions are processed. The term
originates from the idea of two threads “racing” each other. Segments of code which
cause race conditions are called critical sections . In order to compute results cor-
rectly we must ensure mutual exclusion of critical sections which operate over the
same variables, thus executing these sections atomically.
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Synchronization Primitives and Techniques

There are several ways of synchronizing access to memory by excluding con-
current execution of critical sections. The most common methods are

� implicit synchronization,
� atomic operations,
� and locking on mutexes.

Implicit synchronization is the best method of mutual exclusion, but it does
not fit every situation. The general idea is to divide the data into disjoint parts
and let each thread process a different part. For example, let us have an array
A of integers, which we want to increment, and two threads. If we divide A into
two halves and let one thread process first half and the other the second half, no
other synchronization is required since both threads are operating on different data.
Example with incrementing integers might be trivial, however, it is not always easy
to find a way how to divide data in order to achieve implicit synchronization.

If the nature of the problem prevents us from synchronizing data implicitly,
we have to ensure mutual exclusion by other means – the synchronization prim-
itives . For very short critical sections which contain only simple operation (such
as incrementation in previous example), the exclusion may be realized by atomic
operation. Atomic operation is usually hardware specific instruction or combina-
tion of instructions which are guaranteed to execute atomically. These instructions
are usually quite slower than common instructions as they require some hardware
synchronization.

Mutexes

When a critical section cannot be covered by single atomic operation, we use
a mutex. Mutex 1 is a synchronization primitive with simple semantics. When
a thread wants to access memory guarded by mutex, it must lock the mutex before
entering critical section. At the end of the section, the lock is released. Mutex
ensures that only one thread at a time may hold the lock. Other threads trying to
lock the mutex are suspended, waiting for the lock to be released.

There are two types of mutexes. Spin-lock mutexes are based on active waiting.
Basically, it is a loop which tests whether the lock has been released and terminating
only when the thread acquires the lock. Spin-locks are usually implemented using
atomic operations, thus completely in userspace.

Classical mutexes use services of operating system which suspend the waiting
thread and wake it again once the lock has been released. Spin-locks are suitable
for short waiting and they have lower latency. However, waiting on a spin-lock
consumes precious processor time.

Atomic operations and classical mutexes may be combined to create more ef-
ficient synchronization primitive – a futex . Futex (fast userspace mutex) has the
same semantics as mutex, but it is almost entirely implemented by atomic opera-
tions in userspace. No system call is invoked unless threads collide on the lock and
one of them needs to be suspended. Therefore, futex reduces the necessity of using
expensive system calls for locking.

1 Word mutex was created by combination of words mutual and exclusion.

13



2.1.3. Memory Allocation

Memory allocation and deallocation are performed quite often by an appli-
cation. The memory allocator presents serious hotspot, which may cause severe
performance problems in multithreaded enviroment. It is obvious that access to
memory allocator must be synchronized, otherwise its internal data structures may
be corrupted. If concurrent tasks call the allocator too often, the threads will spend
a lot of time waiting on synchronization primitive protecting the allocator and cre-
ating a convoy effect. Hence, code will be executed almost sequentially and the
application will be even slower than single-threaded version.

We can reduce this problem by allocating as much memory as possible before
concurrent tasks are executed and by preferring local stack of the thread over the
global heap for data structures allocated concurrently. Unfortunately, memory pre-
allocation cannot be used in many situations considering we usually do not know
in advance how much memory will be required. Futhermore, systems based on
non-uniform memory architecture [NUM] will perform better if each thread allo-
cates its own memory. Memory allocated directly by the thread will be closer to
corresponding processor core, thus faster to access.

Scalable Allocator

As the pre-allocation does not seem promising, we will design a scalable memory
allocator which uses a different approach. General idea (described in [Rei07]) is to
create separated heap for each thread in the pool. When a thread allocates memory,
it uses its own heap, thus it does not block nor wait for other threads.

Scalable allocator has a minor problem with memory deallocation, to be more
specific, when a thread deallocates memory that has been allocated by another
thread. In this case, two possible solutions can be found. Either we allow threads
to access foreign heaps or we just mark memory for deallocation and let the owning
thread deal with it later.

First option requires that we synchronize access to every heap. Therefore, even
if a thread is accessing its own heap, it must lock corresponding mutex to ensure
that no other thread will modify it meanwhile. It seems that we have got to all this
trouble with multiple heaps for nothing. However, if we expect that disposing of
foreign memory is rare, the collision on the mutex protecting a heap would be also
very rare, so the performance should improve significantly.

The second solution expects that heap may be accessed only by its owning
thread so no mutual exclusion is required. If thread needs to dispose of foreign
memory, it does not access the heap but rather add the disposed address into the
‘to-dispose’ list of owning thread instead. When a thread disposes (or allocates) its
own memory, it also disposes everything on its ‘to-dispose’ list. The list itself may
be implemented easily by atomic operations.

Both solutions for disposing memory are mode effective than simple allocator
with locking. The former requires locking for accessing the heap, but it is also quite
simple. The latter is more complicated, but it might perform slightly better under
stress conditions.
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2.1.4. False Sharing and Cache Optimizations

When optimizing any algorithm for speed, current microprocessor architectures
must be taken under advisement, which brings us to another memory-related issue.
Main memory is not accessed directly by the processor, but there is a cache (in
fact two or three levels of cache) between them. Usually, each processor core has
its own cache. A synchronization protocol2 is in place in order to maintain cache
and memory coherency. This protocol may cause serious performance loss if the
memory is accessed without respect to caches.

Data are copied between cache and memory in blocks of fixed size called cache
lines . Cache line is tens of bytes long (usually 64 B) and it cannot be fragmented. If
two variables happen to be on the same cache line and each is accessed by a different
thread executed on a different core, the cache coherency protocol will get busy.
When a variable is accessed, the protocol tries to load the line in dispute into cache
of the processor core from which it was accessed. So if both variables are accessed
simultaneously, the line will be transferred from one core to another and back again
which will dramatically decrease performance.

The described phenomenon is called false sharing since both involved threads
are not sharing any real data, but due to unfortunate circumstances they are strug-
gling over single cache line.

The best way to prevent this effect is to align and pad every variable which
could be a victim of false sharing, so it will be alone on a cache line. On the other
hand, it is not a good idea to pad every variable in the application, because such
memory dissipation may not reflect positively on performance as well.

We must also be careful when using implicit synchronization. When data are
divided for separate threads, we should not split them in the middle of cache line.
This may be ensured by simple rule: We will always divide data into blocks of size
2k where k � 6, so each block is formed by one or more cache lines.

2.2. XPath Evaluation

XML queries can be evaluated in many different ways. Many of them are quite
effective in single-threaded applications, but only a few present enough opportuni-
ties for parallelism. We will examine some of these strategies from the perspective
of concurrent evaluation.

XPath language is quite extensive. It contains arithmetic and logic operations,
relational and equality comparisons, various functions and, most importantly, lo-
cation paths. Location paths are subqueries that retrieve nodes from XML DOM
[DOM] structure, therefore they present the most difficult and the most intriguing
component of the language.

2.2.1. XPath Semantics Revision

Before we explore different approaches to the problem, we shall revise the most
important definitions in XPath specification [CD+99].

2 For example MESI protocol used in IA32 architecture.
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Evaluation Context

Every XPath query and its subexpression is evaluated with respect to a context .
A context consists of

� a context node,
� two positive integers position and size,
� variable bindings,
� a function library,
� and a set of namespace declarations.

Since many of these items are not relevant to our work nor they change during
evaluation, we reduce the context information to context node, position and size.
If we use a node from a node-set as an evaluation context for XPath subexpression
without specifying context position and size explicitly, we shall define them implic-
itly as follows: the context position is the index of context node within original
node-set and context size is equal to number of nodes in the set. Context position
is also affected by order of nodes in the original node-set. Nodes are arranged in do-
cument order or in reverse document order, depending on how they were retrieved
(see [CD+99] or appendix A for details).

Location Paths

Location path ‘step1/step2/ . . .’ is evaluated as follows. The step1 is evaluated
using initial evaluation context for the entire path and yields node-set S1. The step2

is resolved then, taking every node in S1 as evaluation context, thus yielding set
of node-sets fS2,iji 2 S1g. Before third step is processed, the nodes are united in
single node-set S2 = [S2,i, so the recursion is not exploited any further. The set S2

is used as context set for the third step and so on. Result yielded by the last step
is also a result of the whole location path.

Each location step consists of initial part (axis::filter) followed optionally
by a list of predicates. When initial part is resolved, it yields initial node-set which
is then filtered by predicates. The initial node-set is formed by all nodes that are
in relation (defined by the axis) with the context node and match specified filter3.
A predicate is evaluated separately for every node in the initial node-set as context.
If predicate returns false for some nodes, these nodes are removed from the initial
node-set. Nodes that remain in the initial set after filtering are yielded as the result
of the step.

2.2.2. Recursive Approach

Naive implementation of location step evaluation described in XPath language
specification leads to a recursive algorithm. The algorithm itself does not need to be
implemented recursively, however, we will use the term recursive for its description
of the approach is quite apposite.

Potential problem with recursive evaluation is hidden in predicates. If the
initial part of some step yields similar node-set for different contexts, its predicates
are evaluated repeatedly for the same nodes, thus doing needless work. We will
demonstrate it on practical example.

3 We will use only name filter which selects nodes of given name.
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Exponential Phantom Menace

Let us have a XML document with a root element which has many children
named ‘a’ (we shall denote them ai where i 2 f1 . . . Nag). Some of the ai nodes
may also have a child named ‘b’. We would like to evaluate simple location path
query:

/descendant::a/following::a[b]

First step (‘descendant::a’) will retrieve all elements named ‘a’ from the do-
cument, thus the second step is evaluated for every node ai. For a1 the ‘following’
axis yields nodes a2, a3, . . . , aNa

, so the predicate [b] will be evaluated Na�1 times.
Unfortunately, for a2 the axis yields a3, . . . , aNa

and the [b] will be evaluated again
for these nodes (Na � 2 times). Obviously, the predicate will test needlessly too
many nodes, so the whole process has O(Na

2) time complexity.

We might argue that the presented query is poorly designed, therefore it de-
serves to be evaluated slowly. Nevertheless, we must bear in mind that recursive
approach may for some queries lead to exponential time complexity O(Nk) where
N is the size of the document and k represents the depth of the query.

On the other hand, recursive approach works fine for common queries, it is
quite easy to implement, and it does not consume more than O(k � N) additional
memory for temporary results.

Parallelization

Recursive approach does not offer any opportunity how to parallelize evalu-
ation of whole query, however, we may still parallelize each location step. The
most promising is evaluation of predicates. Each predicate is evaluated separately,
therefore we may create a task for every node in the initial set and execute them
concurrently. The initial part of the step might be parallelized as well and we will
discuss this matter later in 2.3. Finally, the union of multiple node-sets (at the end
of location step) can be performed concurrently with proper data structures.

2.2.3. Iterative Methods

Iterative methods try completely different approach to processing XPath. Their
main objective is to eliminate the greatest problem of recursive algorithm – redun-
dant work which leads to exponential time complexity. We will revise methods
presented in [GKP05] and evaluate them from the perspective of parallelism.

Bottom-up Evaluation

Bottom-up algorithm evaluates each atomic subquery for every possible context
and records computed values into context-value tables . Leaf atomic expressions
are evaluated first, then expressions that require intermediate values from other
subexpressions are computed by joining data in value tables. When table for the
whole query is completed, the result is simply found on the proper line. We shall
demonstrate it on example from [GKP05]. Let us have following location path
query.

descendant::a/following-sibling::*[position() != last()]
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By processing the query we obtain parse tree with six subexpressions:

E2 : E3[E4]

E3 : following-sibling::∗ E4 : E5 != E6

E5 : position() E6 : last()

E1 : descendant::a

Q : E1/E2

Figure 2-2: Parse tree

Each expression Ei has its own table T (Ei). Tables for the leaf expressions E1,
E3, E5 and E6 may be resolved immediately. Tables for Q, E2 and E4 are computed
afterwards by joining tables of underlying expressions.

This algorithm was designed especially to prove that iterative approach leads
to polynomial time complexity. If we denote N number of nodes in processed XML
document, every table has O(N3) rows at most, while in the worst case each row
contains node-set with N nodes, hence each table requires O(N4) space.

The most complex joining operation is in expression Q (location step E1/E2).
To compute each row in T (Q) we need to lookup node-set in T (E1) and use every
node in it as a context for T (E2). There are up to N nodes in this node-set so we
need to merge O(N) lines from T (E2) each containing at most N nodes. As we
said, this must be done for every row in T (Q), thus final time complexity of this
join is O(N5).

We have shown only the most important indices why iterative methods should
have polynomial time complexity. Formal proof can be found in [GKP05].

Top-down Evaluation

Even though bottom-up algorithm runs in polynomial time, it is quite inefficient
since many rows in context-value tables are computed needlessly. Top-down method
shares the main idea with bottom-up algorithm and removes some unnecessary
work.

The evaluation proceeds from the top of the parse tree, starting with the root
expression. Before each subexpression is processed, set of all required contexts is
prepared. Then, the subexpression is evaluated solely for those contexts, thus only
necessary intermediate values are computed. When all descendants of an expression
are evaluated, its result is joined from intermediate values the same way as in the
bottom-up algorithm.

Described method may resemble the recursive approach. The difference is that
we do not evaluate subexpressions repeatedly using one contexts at a time, but
rather evaluate them “at once” for whole vector of contexts. This way the redundant
work is avoided and exponential boom prevented. According to [GKP05] the time
complexity of top-down evaluation algorithm is O(N4 � q2) where q is the number
of atomic expressions in Q.
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Min-context Algorithm

The final stage of evolution in iterative methods presents the minimal-context
algorithm. It brings many improvements into the top-down evaluation, most im-
portantly the context restriction.

Some of the atomic expressions do not depend on the whole context informa-
tion. For example position() function requires only the position value from the
context, completely ignoring context node and size, location step requires only con-
text node, and first location step of absolute location path does not require any
context information at all. Knowing this, we may optimize the amount of interme-
diate values computed by top-down algorithm.

Even though min-context optimization may improve evaluation speed, the
asymptotic time complexity remains O(N4 � q2) for the worst case. Space com-
plexity is improved from O(N3 � q2) (for top-down evaluation) to O(N2 � q2) (see
[GKP05] for more details).

Summary

Iterative approach offers quite pleasant polynomial time complexity. The cost
of this convenience is more difficult implementation and quadratic space complex-
ity which renders this methods useless for large documents. On the other hand,
iterative methods present many opportunities for parallelism.

When atomic expression is evaluated for given set of context, each result could
be computed by independent task, thus by independent thread. Written data do
not collide so implicit synchronization can be used. Joining intermediate values
into final result by merging node-sets could also be parallelized with proper data
structures.

At topmost level, the bottom-up evaluation is most promising. All leaf expres-
sions can be evaluated concurrently and other expressions could be parallelized too
when dependency issues are solved. In top-down evaluation the concurrent process-
ing of subqueries is more complicated. Location steps Ex/Ey and predicates Ex[Ey]
cannot be parallelized at all, because in both cases intermediate values of the first
subexpression are required for establishing context set for evaluation of the second
one.

Iterative methods seem to be better than recursive approach from perspective
of parallelism. Unfortunately, their space complexity O(N2 �q2) may cause problems
with large documents. To be specific, DOM structure with 105 nodes or more cannot
be processed by iterative algorithms on present hardware.

2.2.4. Plumbing a Pipeline

Methods presented so far were originally developed to process XPath in single-
threaded applications. Now we will take more direct approach to parallelism and
try to create algorithm using the well-known design pattern – a pipeline.

Pipeline Concept

Pipeline is common design pattern that was inspired by manufacturing assem-
bly line. It is formed by acyclic oriented graph where vertices are stages and edges
represent the direction in which data flows among the stages. Each stage processes
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data in some way and passes them on. Also, there is at least one stage which
generates the data and at least one stage that collects the results.

Stages may work on the data concurrently without explicit synchronization.
Each stage is processing different data block which will not be passed further before
the stage completes its job. Furthermore, some of the stages may process multiple
data blocks at a time if the task performed on one data block does not depend on
the other blocks from same collection.

There are many ways how to implement pipeline. However, technical details
about mapping stages to threads or synchronizing dataflow are beyond the scope
of this work. The pipeline problematic is extensively covered in [Rei07].

Compiling Query into Pipeline

Questions brought to our attention are whether and how could a pipeline be
used to compute XPath queries. The general idea is not to use one universal pipeline
for every XPath expression but to compile a specialized one that will only compute
results for a given query.

First, we decompose the query to atomic expressions as shown in 2.2.3. Almost
every expression is turned into stage and relations among expressions are expressed
by stage connections. Location steps Ex/Ey are created only by connecting the last
stage of pipeline segment computing Ex to the first stage of Ey segment. Complex
expressions (such as predicates, binary expressions, etc.) can be handled in two
ways:

� hierarchial approach (creating nested pipelines)
� decomposition of problematic operations into two or more stages (encap-

sulating pipeline segments of nested expressions)

We will demonstrate both approaches on a compilation of following query:

descendant::a/following::b[c/@ref = @id]

Hierarchial approach creates single stage for composed expressions in the top-
level pipeline and all subqueries are plugged into nested pipelines. Thus the expres-
sion looks like atomic task from outside while it is evaluated by another pipeline
inside. If the nested pipeline would be too simple to actually parallelize any work,
any other previous method (i.e. recursive or iterative) may be used locally.

descendant::a following::b [ ]

=

c @ref

@id

Figure 2-3: Nested pipelines
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Nesting concept increases overhead while the pipeline effect is diminished. The
more stages we have interconnected the more tasks may be computed simultane-
ously. We could solve this by integrating all pipelines into the main pipeline. In
order to do that, we need to split some of the stages into two – opening and ending.
Opening part tags the data and prepares them to be processed by subexpression
segments of the pipeline. Ending part removes tags and summarise intermediate
values into the result of composed expression.

@id

[descendant::a following::b ]

c @ref

==

Figure 2-4: Pipeline with encapsulating stages

We could combine both approaches and there might also be other methods how
to construct pipeline from given query. However, for the sake of space, we will not
explore them more thoroughly.

Summary

Despite the fact we have not demonstrated the pipeline construction more for-
mally nor we have solved every technical detail, the pipeline concept seems to have
a lot of potential. Stage can start working on partial result of previous stage before
the previous one yields all data blocks, thus more work can be done concurrently.

On the other hand, some of the stages might require all data blocks before
they can proceed with their own work. For example the last() function used inside
a predicate needs to know the size of filtered node-set, thus it must wait for all data
blocks yielded by preceding stage.

Another issue which must be addressed is the one of redundant computations.
We have observed in recursive approach that repetitive evaluation of predicates for
the same contexts leads to exponential time complexity. Iterative methods solved
this problem by evaluating each subexpression exactly once for whole vector of
contexts. The evaluated expression has full information about requested results,
thus it could organize its work and no intermediate values are computed more than
once.

In the pipeline, stage starts computing intermediate values before it knows all
the contexts, therefore it might be unavoidable to compute some of the intermediate
values repeatedly. Fortunately, every stage is usually evaluating block of contexts
instead of just one, thus the problem is not as severe as in recursive approach. We
can also integrate cache in every stage, so when an intermediate value is returned,
it is cached and never computed again.

Asymptotic space complexity will most certainly not exceed the complexity
of bottom-up algorithm even if we use a cache table for each stage, but the real
memory consumption will be probably higher.

The pipeline concept was presented just for comparison with traditional meth-
ods. Even though this topic is worth further exploration, we shall focus on more
conservative and traditional algorithms.
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2.3. Indexing DOM Structure

When XML document is loaded into memory, it is represented by Document
Object Model [DOM]. DOM is in fact a tree and its nodes represent elements,
attributes and other XML data. Each element node can reach only its parent,
siblings, children and attributes directly (in constant time). DOM does not provide
us with more complex operations. So we have to implement them ourselves by
traversing the tree.

Since retrieving nodes based on their axis-defined relations is essential to loca-
tion step evaluation, it may be beneficial to create an index over DOM structure
which speeds up these operations. There are many types of indices so we cannot
possibly cover them all. We will examine only the traditional and a few specialized
types.

2.3.1. Left-right-depth Index

Left-right-depth index (we shall denote it also as LRD) is often used in many
XML algorithms to determine the relation of two nodes in constant time. Variations
on this index can be found for example in [Gru02], [KPS04] or [GKP05]. The index
is based on tagging nodes of DOM structure with three integral numbers – left-
value, right-value and node depth. We may choose to tag only element nodes or
every node in the tree.

Left-values are assigned to nodes incrementally by preorder traversal of the
DOM tree and they reflect position of the node in the document. If we are tagging
attribute nodes as well, we should tag them before children elements of current node.
Right-value is equal to largest left-value of all descendants (and attributes). Nodes
without any descendants or attributes have their left-value equal to their right-
value. Node depth is simply defined as depth in the DOM tree, where document
node has depth 0, root element 1, its children 2 and so on.

Identifying Relations

As promised, described index allows us to determine a relation between two
nodes in constant time. Let us have nodes u and v waiting for comparison.

� If left(u) < left(v) ^ right(u) � right(v), node u is ancestor of v (and v is
descendant of u).
� If right(u) < left(v), node u is preceding v (and v is following u).

By using the depth value we are able to test even more complicated relations.
For example whether v is grandchild of u: left(u) < left(v) ^ right(u) � right(v) ^
depth(u) = depth(v)� 2. There are many applications of LRD and we will exploit
them later, mostly in combination with other indices.

Two-dimensional Representation

We can use left-value and right-value to place nodes into two-dimensional grid
as suggested in [Gru02]. Every node v is represented by one point (left(v), right(v))
of two-dimensional space U2 where U is set of all identifiers (left-values) in the
document.

22



r
ig

h
t
-v

a
lu

e

5

6
chapter(5,6)

left-value

book

title

author

chapters

chapter

chapter

headline

book(1,8)

author(3,3)title(2,2) chapters(4,8)

chapter(5,6) chapter(7,7) chapter(8,8)

headline(6,6)

Figure 2-5: Two-dimensional node representation

We can make a simple observation about XPath axes. If we unite all major
axes (ancestor , descendant , following and preceding) and the context node, we will
get the whole document. Furthermore, each two sets in this union have empty
intersection. Hence, major axes create perfect decomposition of the document.

ancestor(v) [ descendant(v) [ following(v) [ preceding(v) [ v =

= fuju 2 document(v) ^ type(u) = elementg

If we take context node c and divide our grid by horizontal and vertical line
so that both lines intersect the point representing c, each of four created quad-
rants corresponds to one of the major axes. The right-bottom quadrant represents
descendant axis as it contains all nodes with left-values greater than left(c) and
right-values lesser than right(c). Analogically, the upper-left nodes are ancestors of
the context node.

The bottom-left quadrant contains all nodes with their left-values lesser than
left(c) and right-values lesser than right(c). Since left-right value ranges cannot
partially overlap, the right-values must be also lesser than left(c), so it obviously
complies with the very definition of preceding axis described earlier. Analogically,
we determine that the last remaining (upper-right) quadrant corresponds to follow-
ing axis.

Now we need an effective method how to accelerate the major axes using this
index. Obvious choice is to use R-trees or similar multi-dimensional trees for rep-
resenting points in two-dimensional space. However, these trees are quite complex
for implementation and present little potential for parallelisation, thus we shall not
explore them further.

2.3.2. Element Index

The most common location step filter is the name filter. Step with such filter
adds only nodes with specific name into initial node-set. Therefore, it might be
useful to create element index based on names.

The index is formed by hash table where element names are keys. Each name
holds a list of references to the DOM structure pointing to all elements with this
name.
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Question remains how the links in the reference list should be ordered. The
most obvious solution would be to order them by the position of nodes to which
they point to. As we will demonstrate later, this ordering is very useful.

We should also define how the index speeds up the evaluation of location paths.
In order to do that, we will combine element index with LRD described in 2.3.1.
Let us take a look on each axis and how it can benefit from these indices.

Implementing XPath Axes

Implementation of descendant axis is quite simple. The reference list is ordered
by position of the nodes in the document, thus by their left-values. Furthermore, we
know that every descendant of element e has its left-value in range (left(e), right(e)i.
Such nodes are definitely stored in continuous subrange of the reference list. Since
the list is ordered, a binary search algorithm can be applied to find both beginning
and end of the subrange.

Following axis uses the same approach. If we have an element e, all following
nodes have their left-values greater than right(e). Thus we just find first reference
on the list which fulfils this condition and then we take all nodes from its position
to the end of the list.

Preceding axis is little more complicated than the previous two. Let us say we
are looking for all predecessors of context node c. In order to determine whether
node n precedes c, we need to compare right(n) with left(c). Unfortunately, the
reference list is not ordered by right-values.

Since the right-value is always greater or equal left-value (of the same node), we
will use all nodes with left-value lesser than left(c) as candidates . These candidates
contain two types of nodes – predecessors of c and ancestors of c. We can test
each candidate for conditions described earlier at LRD index and filter out the
predecessors.

Of course, we might create second element index where references will be or-
dered by right-values and implement evaluation of preceding axis analogically to
following axis. This is classical time-space dilemma and final decision will depend
on how much memory we can use and whether preceding axis is often used in our
XPath queries.

Ancestor axis cannot be effectively accelerated by this index. On the other
hand, we expect that XML documents are shallow, therefore the best way to find
all ancestors of context node is to follow parental links in DOM structure and filter
nodes one by one.
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Children and Sibling Axes

Techniques described for descendant , following and preceding axes could be
extended also to child , following-sibling and preceding-sibling relations. In order to
do that, an element index must be also built for every node with children. Such
index contains of course only children elements of associated node.

2.3.3. Special Indices

Finally, we shall examine two rather special DOM indices. Each one is designed
for different purpose, thus having different advantages and disadvantages.

Index for Descendant Paths

Child and descendant axes are the most exploited ones in XPath queries. There-
fore, it might be useful to build a special index just for them. We shall revise
a method described in [CSF+01] for indexing descendant paths.

Let us have location path /a/b/c. Common algorithms evaluate the path step
by step. Root element ‘a’ will be probed for all children ‘b’ and they will be used
to retrieve all their ‘c’ children. The result is computed in three steps and many
intermediate values (e.g. set containing ‘b’ nodes) are computed and then dismissed.
It is also possible that intermediate values are much larger than the final result. If
the root element ‘a’ contains many ‘b’ children, but only few of them have direct
descendant ‘c’, we will spend a lot of time creating and processing intermediate
set with ‘b’ nodes needlessly. It would be better if we could retrieve final node-set
directly without computing intermediate values.

We will create an index structure which will help us to retrieve node-sets by
their descendant paths. Henceforth, we denote Pn a descendant path leading from
root to node n. This path is uniquely defined by the node n, because there is exactly
one path between any two nodes in connected tree. Each node n in the DOM is
inserted into the index using sequence of all element names on Pn as its key. Nodes
with paths Pi and Pj which have the same sequence of element names are rendered
under the same key, thus in one node-set.

Implementing effective index structure for this application is not quite easy.
One of the possibilities is to use treelike structure called Index Fabric which is
based on Patricia Trie. This structure is thoroughly described in [CSF+01].

Described techniques encode and accelerate only raw paths (absolute descen-
dant paths). Whole concept may be improved by encoding refined paths instead
(see [CSF+01]). This improvement allows us to accelerate also descendant paths
with wildcards or to optimize frequently occurring patterns.

Multi-dimensional Index for XPath Axes

Idea of addressing nodes by their root-to-node paths can be exploited even fur-
ther as suggested in [KPS04]. In following revision, we expect that DOM structure
has been already indexed by LRD index.

A path to node n is sequence of identifiers left(root), left(u1), left(u2), . . . ,
left(ud(n)−1), left(n) where d(n) is depth of the node n (thus length of the path)
and ui are nodes between root and n lying on the path. We can omit the root since
it is present in every path and represent every node as a vector

(left(u1), left(u2), . . . , left(ud(n)−1), left(n), 0, . . . , 0)D
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of length D where D = max(d(n)), n 2 document (vectors for nodes with d(n) < D
are padded with zeroes). This representation assigns each node single point in UD

space where U is set of all left-values in the document.

Furthermore, we assign numeric identifier Id(u) to each element name (by
incremental indexing). Path to every node n has associated labeled path Id(u1),
Id(u2), . . . , Id(ud(n)−1, Id(n)), which can be transformed into vector the same way
the real path is. Each real path has exactly one corresponding labeled path, but
labeled path may stand for multiple real paths.

Having space of real paths and associated labeled paths, we can implement
location step axis using simple point and range queries. XPath axis evaluation has
three steps:

� Translate each node name to identifier assigned by Id relation.
� Retrieve all labeled paths using point and range queries.
� Join retrieved labeled paths with real paths to obtain results.

Range and point queries are best solved using multi-dimensional trees such as
UB-trees, R-trees or R∗-trees. Even though these structures may be used in our
case as well, the solution was originally designed for database systems which can
process multi-dimensional data natively.

Summary

Suggested special indices may improve the performance especially on large doc-
uments, however, they are not that much interesting from parallelisation point of
view. They are also optimized for XML data that does not fit into main memory,
which is of little use for us. Finally, both indices require nontrivial data structures
that are bound with vast coding complexity, thus we will not use these indices in
our implementation.

2.4. Redundant Computations

The more threads we have the more difficult is to keep them occupied. When
thread becomes idle and there is no regular task which can be dispatched, we may
still provide the thread with some work even though we do not know yet whether
the computed results will be used. Following example demonstrates the problem
and implied dilemma.

2.4.1. Minimal Evaluation Rule vs. Parallelism

Let us have a logical query Op1 ^ Op2 where Op1,2 are operands which both
yield a Boolean value. A minimal evaluation rule is applied in most languages. The
Op1 is evaluated first, and if it resolves as false, Op2 will not be evaluated at all
since the result of whole expression is already known. If the first operand yields
true, we must evaluate second operand to determine the result. In query languages
we may assume that evaluating an operand is an idempotent operation with no
side-effects, therefore second operand may be always evaluated without changing
semantics of the expression.

This rises fair question whether we should execute both operands simultane-
ously to speed up the evaluation process. If both operands are evaluated in ap-
proximately the same time and we have a spare thread, the result will be always
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computed by the time Op1 is evaluated. This way we did not worsen the time
complexity in case Op1 yields false and we have reduced it to the half in case Op1

yields true.

Unfortunately, there is also another side to this idea. It is quite rare to have two
operands which are evaluated for approximately the same time. If the first operand
resolves much faster and yields false, we will still have to wait for the second operand
to finish since we do not have any means how to terminate tasks prematurely in
nonpreemptive scheduling system. Furthermore, the second task may slow down
evaluation of the first one thanks to hardware issues (cache coherency, logic units
sharing, etc.). Last but not the least problem is the overhead bound to starting two
tasks simultaneously and waiting for them to finish. If both operands are resolved
quickly, the overhead may exceed useful work, thus leaving parallel version even
slower than serial evaluation.

We can partially bypass at least the first of the problems by polling technique.
The procedure which evaluates second operand shall check periodically whether the
first one has already finished and terminate its execution if Op1 has yielded false.
However, polling has also certain overhead, thus it may slow down evaluation even
further, and there is little we can do about the other issues.

There are too many unpredictable details, hence this dilemma cannot be de-
cided by theoretical approach. It is also possible that some problems may benefit
from redundant computations while others will not. We will test this concept on
parallel evaluation of predicates by implementing both redundant and sequential
approach and measuring time consumed by evaluation in chapter 5.5.
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3. Algorithms and Data Structures

First chapter (3.1) is dedicated to revision of standard parallel design patterns
described in Threading Building Blocks [Rei07] and implemented in TBB libraries
[tbb]. Understanding of these patterns is required since they are used quite often
in our work.

Following chapters describe all algorithms, data structures, techniques and
methods used in our implementation of XPath. We will also expose their advantages
and disadvantages in comparison with alternatives.

3.1. Implementing Parallelism

First of all, the issues of parallelism need to be solved. Developing a complex
framework for concurrent computations is a task well beyond the scope of this
thesis. We shall use solution implemented by Intel in the Threading Building Blocks
libraries [tbb]. All algorithms and data structures described in this section may also
be found in TBB book [Rei07].

3.1.1. Job Decomposition and Dispatching

Job decomposition depends especially on chosen threading model. As suggested
in 2.1.1, the best solution is to create one thread for each logical processor core,
so we can fully exploit the hardware potential while avoiding oversubscription and
reducing the overhead to minimum. Remaining issue is how the workload should
be divided among the threads in order to keep them all occupied.

Tasks

Work shall be divided into small fragments called tasks . Each task is in fact
a functor object which caries reference to code that shall be executed and to data
being processed by the code. Tasks are indivisible from logical point of view, how-
ever, they may spawn other tasks.

Usually, when work is decomposed into several tasks, it is necessary to synchro-
nize their termination. In other words, we should have a mechanism which detects
that all tasks working on the same job have finished, so another job may be started
or resumed. TBB [Rei07] presents two task patterns for these situations.

Blocking style presents classical recurrence pattern. When task spawns some
children, it yields its thread and waits on the stack until all its children terminate.

parent

child child

parent

child

parent

child

parent

Figure 3-1: Blocking concept

Blocking pattern has one disadvantage. The parent task is waiting on the stack
until its children terminate. This may lead to unnecessary memory consumption or,
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in extreme situations, even to stack overflow. On the other hand, the intermediate
state of the parent task may be held simply on the stack without necessity to copy
it somewhere else.

If blocking concept is not desired, continuation-passing style may be used. In
this case, parent task does not spawn only children, but a continuation task as
well. All references from children are set to the continuation instead of the parent.
Furthermore, uplink reference to grandparent task is transferred from parent task
to the continuation. Parent task does not wait for children but it finishes its own
work and terminates. Since it has no references nor any references point to it, the
parent is then disposed.

parent continue

child child

parent continue

child child

continue

Figure 3-2: Continuation-passing concept

This way the parent may also do some useful work before terminating and it
does not block any memory on the stack. However, any intermediate state required
for continuation must be transferred to newly created task.

Scheduling

As we have seen in previous two recurrence patterns, the tasks are organized
in directed graph. Each task forms a vertex with one outgoing edge, pointing to
its parent. A task has also a refcount indicator which keeps number of references
pointing at it and a depth value which resembles depth in the graph. The depth is
usually equal to the depth of parent task plus one. Root task does not have any
pointer to parent and its depth is 0.

Each thread has its own ready pool where tasks ready to run are kept. The
pool is organized as an array of lists where the array is indexed by task’s depth,
thus it keeps tasks with the same depth in one list.

When last reference pointing to a task is removed (so its refcount reaches 0) the
task is marked as ready for execution and added into ready pool of a thread which
created the task. Ready tasks are picked one by one and executed nonpreemptively
by corresponding threads.

Main priority of the scheduler is minimizing both memory demands and cross-
thread communication. To achieve this, tasks are executed in depth-first order.
When thread is picking another task for execution, first item in the deepest non-
empty list is selected. This approach has two great advantages:

� Optimizes usage of caches (the deepest task are the most recently created,
thus they are hottest in the cache)
� Minimizes memory usage (the task trees are usually broad and shallow)

Finally, we will address the issue of load balancing. When task is marked
as ready to execute, it is added into ready pool of its owning thread. Tasks are
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not “donated” into other pools. Therefore, situation may happen that one thread
is quite busy while another relaxes. To avoid this, a task stealing technique is
implemented.

When thread does not have any tasks in its pool, it tries to steal one from
another thread. Victim is chosen as the first shallowest task of a random pool.
This way a breadth-first unfolding is achieved since shallowest tasks will most likely
spawn many descendants. If no victim is found, the thread is suspended for a short
period of time and then the task stealing is tried again.

Described recurrence patterns are not the only ways how the tasks may be
handled, and we have not presented every detail of the scheduler. However, no
more complex patterns are needed for our implementation nor we require better
understanding of TBB internals. All these issues are vastly elaborated in [Rei07].

3.1.2. Standard Loop Parallelization

Although the task scheduler offers solid basis for almost any parallel algorithm,
more conservative approach may sometimes be more beneficial. It seems that many
common problems can be solved by more strict patterns. Therefore, TBB imple-
ments three templates for parallelization of standard loops.

Parallel For

The most simple pattern is parallel for which performs concurrent execution of
standard ‘for’ loop. We shall demonstrate its function on an example. Let us have
an array1 A with n items and we need to invoke function foo() on each item in A.
Normally, we would write simple two-line code:

1. For i 0 to n� 1:

2. foo(A[i])

If the foo() is thread-safe and operates only with its argument, we may invoke
any number of foos on different items concurrently. Trivial solution would be to
create a task for each item in A. However, if the items are small or execution
of foo takes only a few instructions, it would be better to create task for small
groups of items. If the items in group are aligned on cache lines and the whole task
spans over 105 instructions at least, both false sharing and overhead problem will
be minimized. Appropriate number of items processed by one task is also called
grain size and we shall denote it g.

Algorithm: ParallelFor

1. Determine appropriate grain size g

2. Create dn/ge tasks with ranges h0, g � 1i, hg, 2g � 1i, . . .

3. Spawn tasks and wait for them to terminate

While each task implements simple for-loop:

1. For i rangeStart to rangeEnd :

2. foo(A[i])

1 We shall always index arrays from 0 to size � 1.
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Previous algorithm demonstrates how parallel for is implemented using blocking
style recurrence pattern. Continuation-passing style may be used as well, however,
it might be difficult to transfer intermediate state from parent to continuation task.

3.1.3. Parallel Reduce

The parallel for loop may be used only for the most trivial tasks. Different pat-
terns are required in more difficult situations. Sometimes, even as simple algorithm
as finding minimum of an array requires special treatment.

Minimum

Let us assume we would like to find minimum from array A. Serial code would
be quite simple:

Input: Array A[0 . . . n� 1] (assume n > 1)

Output: Minimum m

1. m A[0]

2. For i 1 to n� 1:

3. If m > A[i]: m A[i]

If we rewrite serial code using parallel for directly, each task shall perform the
following code. Let us assume we have global variable m shared among the tasks,
which is initialized by the main thread before all tasks are spawned.

Input: Array A

Output: Minimum stored in global variable m

1. For i rangeStart to rangeEnd :

2. Lock m

3. If m > A[i]: m A[i]

4. Unlock m

It is obvious that access to m must be synchronized in order to avoid race
condition, however, synchronization will force m to serious hotspot and parallel
version will run even slower than original serial code due to locking overhead. The
solution may be slightly improved:

1. m′  A[rangeStart ]

2. For i rangeStart + 1 to rangeEnd :

3. If m′ > A[i]: m′  A[i]

4. Lock m

5. If m > m′: m m′

6. Unlock m

This will reduce the amount of locking, allowing tasks to run at least part of
their code concurrently, but it still forces them to wait on a lock in the end. It is
clear now that we need more sophisticated pattern than parallel for to solve our
problem efficiently. We will try the divide and conquer approach.
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Divide and Conquer Solution

The minimum can be computed also by recursive decomposition. We split A
into two ranges of approximately the same size and find minima m1,m2 for both of
them. Them we determine minimum of A as m = min(m1,m2). The recursion is
stopped on ranges containing only one item since this item is also minimum of the
range.

Algorithm: RecursiveMin

Input: Array A, subrange hl, ri of the A

Output: Minimum m

1. If l = r:

2. m A[l], return m and terminate

3. c b(l + r)/2c (center of the range)

4. m1  RecursiveMin(A, hl, ci)

5. m2  RecursiveMin(A, hc + 1, ri)

6. m min(m1,m2) and return m

Previous algorithm can be parallelized much better since m1 and m2 may be
computed concurrently. However, in order to keep tasks effective, we should stop
recursive unfolding sooner and use standard iterative approach for small ranges.
The code of a task with blocking style pattern looks like this:

Algorithm: ParallelMin

Input: Array A, subrange hl, ri of the A, grain size g

Output: Minimum m

1. If r � l < g: (range is too small to be decomposed further)

2. Compute m by simple loop and terminate

3. c b(l + r)/2c (center of the range)

4. Spawn task ParallelMin(A, hl, ci, g) computing m1

5. Spawn task ParallelMin(A, hc + 1, ri, g) computing m2

6. Wait for both tasks to terminate

7. m min(m1,m2) and return m

Synchronization of access to variable m was completely replaced by synchro-
nization of tasks which is provided by the scheduler and unavoidable even in parallel
for template. Also some merges of immediate m values may be done concurrently,
thus faster.

Parallel Reduce Template

All algorithms based on divide and conquer paradigm can be divided into three
parts: problem decomposition, recursive solution of subproblems, and merging in-
termediate values from subproblems into the result. As we have shown in previous
example, subproblems may be solved concurrently.

Implementations of different divide and conquer algorithms have many similari-
ties. In order to avoid redundancies in written code and to streamline programming,
we will design a template called parallel reduce. This template accepts one task ob-
ject with following routines which are corresponding to phases of divide and conquer
concept:
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� split operation (decomposition)
� main routine (where actual work is done when decomposition is stopped)
� join operation (composition)

Split operation divides task into two and the work is evenly distributed between
original and newly created task. If the task is small enough that further decom-
position is not desired, the main routine is used to compute intermediate result of
the task. When previously splitted tasks are completed, join operation merges their
results.

The greatest benefit of presented template is that programmer has to write
only three simple routines, leaving everything else on the parallel reduce. Here is
generic code executed by the task.

Algorithm: T.evaluate()

1. If T.size > g:

2. T ′  T.split() (divide work between T and newly created T ′)
3. Spawn new task T ′

4. T.evaluate() (evaluate modified T recursively)

5. Wait for T ′

6. T.join(T ′)
7. Else:

8. Invoke the main routine of T

Presented solution seems similar to the trivial implementation with parallel for,
but it has two major advantages. First, no locking is required since all synchro-
nization is achieved implicitly or by task dependencies. Second, thanks to the task
stealing mechanism, some of the split and join operations are executed concurrently.

We have presented only one trivial application of parallel reduce, but it may be
used for more complex algorithms like Quick sort, multiplication of long numbers
etc.

3.1.4. Parallel Scan

Last algorithm template, the parallel scan, is designated for special category
of problems – computation of parallel prefix. Let � be associative operation with
left-identity element id⊕. Furthermore, let us have arrays X and Y , both of size n.
We would like to compute values of Y by following formula:

� Y [0] = id⊕ �X[0]
� Y [i] = Y [i� 1]�X[i] (for i > 0)

In serial programming, a simple loop can handle this operation:

1. t id⊕ (accumulator variable)

2. For i 0 to n� 1:

3. t t�X[i]

4. Y [i] t

First examination of this code does not reveal any possible ways how this prob-
lem may be parallelized. Every computed value directly depends on the previous
one, thus it cannot be computed concurrently. However, the scan may be paral-
lelized if we suffer some redundancy.
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Main Idea

First, we shall divide interval h0, n�1i into four ranges of approximately equal
size. The algorithm will proceed in two phases. In the first phase, we precompute
a � sum of X for each range and denote si the sum of i-th range. Then we can
use s1 as starting value for second range, s1 � s2 starting value for third range and
s1 � s2 � s3 for the last range. So in the second phase, we may compute Y values
for each range concurrently using four threads.

Obviously, the s1 sum is also last value of the first range in Y array, therefore
we can compute Y values for first range in preprocessing phase and pick s1 from
Y without doing the same job twice. Furthermore, value s4 is not used anywhere,
thus we need not to compute it. The progression of parallel scan is depicted on
following diagram. We have denoted first phase as pre-scan and the second phase
final scan.

final scan

pre-scan

pre-scan

final scan

final scan

final scan
⊕

⊕

1.

2.

3.

4.

Figure 3-3: Computation of parallel scan

Each task does one quarter of original work and there are six tasks. Thus the
parallel scan does 1.5� the original work. However, if both phases are parallelized
using at least three threads, it can be computed in about half the time (plus thread-
ing overhead) of the serial implementation. Of course, the speedup will not be that
good on two threads, but it still outperforms serial code.

Implementation and Practical Issues

In final implementation, we shall not divide workload only to four parts, but
we use approach similar to parallel reduce. We pick suitable grain size g and divide
the arrays into ranges of that size. With more tasks the total work redundancy will
tend to 2.0�, but the problem will scale optimally with more threads.

We should also ensure that redundant work is minimized if there are no avail-
able threads to execute parallel scan tasks. For example, when only one thread is
available, it would be prudent not to do any redundant work so the solution will
not be much slower than traditional serial code.

This may be achieved by appropriate order of task execution. Let us assume
we have only one thread evaluating parallel scan. First executed task must compute
final scan of the first range. If other threads were available, pre-scan of second range
would be computed concurrently. However, when the only thread completes first
range, the final scan of second range may be computed instead of pre-scan. This
way the single-threaded evaluation of parallel scan will compute only final scans, so
it will be almost as fast as serial solution2.

2 Unfortunately, some scheduler overhead is unavoidable, unless we implement
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Tasks

Internal tasks used for parallel scan share the same paradigm with parallel
reduce. Programmer must provide split, join and the main routine, and the parallel
scan template takes care of the rest. The main routine differs from parallel reduce
problem, because it may be invoked twice (for pre-scan and for final scan), so it has
a flag that determines in which phase it has been executed.

Algorithm: ParallelScan (main routine)

Input: Array X, starting value s

Output: Sum s, filled array Y (after final scan)

1. For i rangeStart to rangeEnd :

2. s s�X[i]

3. If this is final scan:

4. Y [i] s

The starting value s is equal to Id⊕ for the pre-scan and to Y [rangeStart � 1]
for final scan. At the end of pre-scan, actual � sum is stored in s. The joining
routine just performs � operation on computed sums of joined tasks. For more
details about parallel scan see [Rei07].

3.1.5. Data Structures

Ordinary data structures are usually not thread-safe and operations performed
by multiple tasks concurrently must be synchronized. Naive implementation which
uses single mutex to lock whole data structure every time it is accessed creates
usually a hotspot. If the algorithm works with the data often, tasks are forced into
serial execution, thus the solution becomes slower than simple nonparallel code.

We shall use better techniques to improve scalability of our data structures:

� immutable data,
� implicit synchronization,
� and specialized solutions using atomic operations.

Immutable data structures are used in cases when the structure is constructed
and no modification are required afterwards. Such structure is then read-only,
so concurrent access does not pose any threat. This technique is used for DOM
structure and its index.

Implicit synchronization is the most prefered way of avoiding race condition
on mutable structures. In our case, it is most often used for processing node-sets
(which are represented by a vector). The whole set is divided into disjoint subsets
(ranges) and each one is treated by different task.

For some cases when implicit synchronization cannot be used, we design special
data structures that use lightweight atomic operations to ensure data coherency
avoiding heavy mutex locking. Both structures are used for building node-sets
concurrently.

both serial and parallel version of the scan.
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Concurrent Vector

Analogically to STL vector [STL], this data structure represents automatically
growing array of items, in our case nodes (pointers to DOM tree). The concurrent
vector has following features:

� Items may be accessed randomly by given index3 in O(log log N) time
(which is in our case as good as O(1)). Access to these items is not
synchronized.
� Multiple tasks may grow the array concurrently. When task grows the

vector, it also obtains offset of the appended path, so it may be filled by
items using implicit synchronization.
� Growing vector does not invalidate old indices and iterators (never re-

locates memory), so other tasks may access previously allocated ranges
concurrently.

The concurrent vector is used for building node-sets when each node is inserted
into constructed set exactly once, so we do not need to take care about duplicities.

Concurrent Hash-map

If the uniqueness of inserted nodes cannot be ensured (e.g. when multiple node-
sets are merged together), we have to use more sophisticated structure – a hash
table. Concurrent hash-map is similar to SGI’s STL extension hash_map [STL],
which is in fact a set of key-value pairs where each key is unique.

Concurrent version uses simple read-write locking mechanism over the items
which is implemented by atomic variables. When task needs to read or write an
item, it must acquire an accessor object for that item. There are two types of
accessors (constant and regular) which correspond to the read and write types of
locks.

For the purpose of node-set building, we use concurrent hash-map with left-
values as keys and pointers to the DOM tree as values. We could also use pointers
as keys and ignore the values, however, unique integers are much more suitable for
hashing than memory addresses.

3.2. XML Representation and Indexing

Our approach to query processing expects that XML [XML] document is com-
pletely loaded into main memory with index to accelerate XPath axes. Following
section will describe used data structures.

3.2.1. Document Object Model

When XML document is loaded into memory, it must be properly represented.
WWW Consortium designed DOM specification [DOM] which describes object
model for XML data. This model is in fact a tree where nodes represent XML
elements, attributes, text data, etc. Since DOM is rather complex, we use similar
tree structure which is more simple but not fully DOM compliant.

3 Index of the fist item is zero.
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Nodes

We recognize only the following types of nodes. Other types described in DOM
(like namespaces, processing instructions, etc.) are omitted since they are not
interesting from our point of view.

� Text node is simple node which contains one plain text string. It has no
name nor children.
� Attribute represents name-value pair associated with an element. Attribu-

tes also cannot have children.
� Document root is the top most node in the DOM tree. It does not have

any special attributes nor value and it has exactly one child element.
� Element is the most important node in DOM. It has name, list of attributes

and children nodes. References to attribute nodes are stored in an array
ordered by their position in the document. In order to retrieve attributes
by their names in constant time, simple hash table index which maps
names to positions in the list is constructed for each element4. Children
of the element are stored in simple array, ordered by their position in the
document. Each child may be either a text node or a nested element.

attrib2

attrib1

attrib3

1

0

2

. . .
0 1 2

element

attrib2 attrib1 attrib3

Figure 3-4: Representation of references to attributes in the element node

Name Index

Element and attribute nodes have names. Name is a string value of arbitrary
length, therefore comparing two strings may take up to O(l) time where l is length
of the shorter string. Since node names are also used in XPath queries, these
comparisons are quite frequent and should be optimized.

In order to do that, we create a translation table for each document. This
table assigns each name a numeric identifier (starting from 1) and provides means
to translate names to identifiers and vice versa. Identifier-to-name translation is
simple, considering the names are stored in an array and every identifier is in fact
a position of corresponding name in this array. Reverse index is realized by balanced
binary search trees (implemented in STL map [STL]).

It would be better to use hash table or trie for name-to-identifier translation.
However, when name is translated, its identifier is used ever since, thus the trans-
lation is performed only once when query is parsed. Furthermore, elements of real

4 Let us just recall that element may not have two attributes with the same
name.
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XML documents only have few distinct node names so it does not really matter
whether translation takes Θ(log k) (where k is number of names) or Θ(1). The bi-
nary tree was chosen as we have encountered several problems with using hash_map

template with strings on some platforms.

Henceforth, when we discuss node names or name comparison, we in fact mean
their numeric identifiers. We also expect that these identifiers may be copied and
compared in constant time.

3.2.2. Node-sets

Node-sets are represented by dynamic arrays (a STL vector [STL], to be pre-
cise) of pointers to the DOM structure. Each pointer must be unique in the set
and they are ordered by left-values of nodes to which they point. When nodes are
mentioned in following text, we speak about pointers to immutable DOM tree.

Node-set does not provide any means of synchronization since it is often used
as immutable object. When modified, it expects that only one task works with it
at a time. Multiple threads may still work with the items if the size of the array
remains constant. Concurrent access to items is synchronized implicitly.

This way the node-set does not carry the burden of locking. On the other hand
we must define other means of building node-set by simultaneously executed tasks.

Building a Node-set

There are three issues that make parallelisation of node-set building a complex
task:

� resizing the set,
� uniqueness of the items,
� and proper ordering (by left-values).

When nodes are written to the set concurrently, the array must not be resized.
Modification of set size can be performed only by one thread at a time, and syn-
chronization implied to this problem would affect the performance seriously. Thus,
if we do not know the size of constructed set in advance, we have to use special
data structures described in 3.1.5. Otherwise, we just allocate sufficient space for
the set and use implicit synchronization for written nodes.

If the uniqueness of nodes is not ensured by the algorithm natively, we use
a concurrent hash-map to build node-set. First, all nodes are added to the map by
multiple tasks and the map takes care of duplicities. Then the node-set is resized
according to number of items in the map and all nodes are copied to the set using
parallel scan (3.1.4) with following main routine:

Input: rangeStart and rangeEnd iterators to the hash-map, offset

Output: node-set S, updated offset

1. For iterator  rangeStart to rangeEnd :

2. If this is final scan:

3. S[offset ] iterator .value

4. offset  offset + 1

Concurrent hash-map does not provide random access to items, but it offers
splittable iterator for parallel reduce and scan. Therefore, parallel scan is used to
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compute offsets where the nodes will be placed in pre-scan and in the final phase,
nodes are really copied.

When the uniqueness of nodes is guaranteed by other means, but the size of cre-
ated node-set is unknown in advance, we may use concurrent vector. The situation
is analogical to concurrent hash-map. Nodes are assembled in the concurrent vec-
tor and then copied into a node-set. The difference is that vector supports random
access, thus the nodes can be copied simply by parallel for.

Finally, we have to address the problem of ordering. When nodes are copied
from concurrent hash-map or vector, they are not arranged in any particular or-
der. We have to sort them, to ensure node-set coherency. Parallel implementation
presented in TBB [Rei07] as parallel sort is used.

Removing Nodes and Compacting

Removing an item from ordered array has unpleasant time complexity O(N)
and it is hardly parallelizable. Node-sets are often filtered (e.g. by predicates), so
we have to optimize this operation. We shall proceed in two phases. First, all nodes
to be removed are marked (their pointers are set to NULL). Marking does not shift
nodes nor change size of the set, therefore it is perfectly parallelizable. When first
phase is completed, the set is compacted and every NULL pointer removed.

Since we would like to parallelize the compacting routine as well, we rather
copy remaining nodes to new array using parallel scan. First pass computes offsets
to compacted array where each range is copied and the second pass finally copies
the nodes.

Input: node-set X with NULL values, offset

Output: compacted node-set Y , updated offset

1. For i rangeStart to rangeEnd :

2. If X[i] 6= NULL:

3. If this is final scan:

4. Y [offset ] X[i]

5. offset  offset + 1

3.2.3. Index

The DOM structure may be indexed many ways, as we have shown in chapter
2.3. Some of presented indices are quite complex and more suitable for database
management systems. We have chosen only those which are simple enough to be
implemented in standalone programs and which have significant impact on parallel
XPath evaluation.

First of all, we use LRD index (presented in 2.3.1) which has many applications.
This index is embedded directly in DOM structure and is built on the fly when
document is loaded. Each DOM node (including attributes and text nodes) has
its left, right and depth value. Left-values are assigned incrementally starting from
root (document) node which has left-value zero.

For accelerating location path axes, we also use the element index (described
in 2.3.2) for the entire document and for nodes with more than a few children5.

5 The threshold was set to 16 children after some experiments.
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Document index is implemented by hash table (STL hash_map [STL]) with name
identifiers as keys and and node-sets as values. Children index also uses a hash
table which maps XML nodes to their indices while every children index has the
same representation as document index.

name1

name2

name3

element1
. . .

. . .

. . .

element2

element3

. . .
node-sets

hash table hash table

Figure 3-5: Implementation of children index

Both document and children indices are constructed right after document is
loaded into DOM structure. Document index is created by preorder traversal of the
DOM tree, appending each element to proper node-set. The same principle is used
when children index is built, except children of each element are stored in different
indices.

3.3. Location Paths

The location paths are the most intriguing component of XPath language.
Different algorithms for their evaluation were discussed in 2.2 and now we describe
the concept which was used in our implementation.

3.3.1. Evaluation Concept

We have presented three general techniques (in 2.2) that may be used in XPath
evaluation:

� the recursive approach,
� iterative methods
� and the pipeline concept.

The pipeline concept might be promising and it is worth further research. How-
ever, we have chosen more conservative way based on recursive approach and iter-
ative methods.

Recursive approach is quite simple for implementation and requires only linear
additional space. Unfortunately, it leads to exponential time complexity for some
queries. Iterative methods solve the problem of exponential phantom menace, but
they also require up to O(N2) additional space, thus cannot be practically used for
large documents.

Since we consider processing large documents (over 105 nodes) a priority, we
require an algorithm that manages to evaluate queries in O(k � N) space where k
is size of the query. Therefore, our implementation is based on recursive approach
with two improvements:
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� Minimal context rules are applied for each subquery. When a subquery
does not require entire context information for its evaluation, we may op-
timize it. In some cases, we may even use iterative methods while linear
space complexity is preserved. This way we create faster solution which
can be applied even for large documents.
� If the amount of available memory is limited, exponential time complex-

ity can not be prevented for some queries. However, we might reduce it
significantly using caches for subqueries .

Recursive Algorithm

Suggested optimizations will be described in following sections. First, we for-
malize the recursive algorithm without them. Each step of location path is in fact
a projection C ! S where both C,S are node-sets (� DOM )). Location path is
evaluated sequentially. First location step has only the context node of the entire
path in context set C. Node-set yielded by first step is used as context set for the
second one, second step yields context set for third one and so on. Last step returns
result of the whole path.

Step s consists of axis, filter and list of predicates Ps = fp1, p2, . . . , pπs
g, where

number of predicates for node s is denoted πs. Axis and filter are evaluated for each
node n from C (as described in 3.4) and yield set of node-sets Sn. Each node-set
Sn is filtered by predicates P and then united in result set S.

Algorithm: EvaluateStep

Input: Node-set C, axis , filter , list of predicates P

Output: Node-set S

1. Prepare empty node-set S

2. Parallel for each node n in C:

3. Use axis and filter to get node-set Sn from n

4. Filter Sn by predicates P

5. S  S [ Sn

6. Return S

In our implementation, multiple tasks from parallel for will unite nodes with
set S, therefore access to S must be synchronized. If we use concurrent hash-map
to build S, both synchronization and uniqueness of nodes in the set will be ensured.

Predicates

Predicates used for filtering nodes are arbitrary subqueries and their results
are always converted to Boolean. If predicate yields a number, it is compared
with context position (predicate = position()) and Boolean value yielded by this
comparison is used. Otherwise, the predicate expression is just enclosed by boolean()
function which ensures the correct type of the result.

When a node-set is filtered by a predicate, the predicate is executed recursively
for every node in the set using the node, its position and size of the set as context
values. If the predicate yields true, tested node is included into the result. First
predicate from P uses initial node-set S0

n as its input and returns S1
n. Then S1

n is
used as input for p2 which yields S2

n and so on. The last predicate returns the final
result of the entire filtering process.
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Algorithm: FilterPredicates

Input: Initial node-set S0, list of predicates P (of size π)

Output: Filtered node-set Sπ

1. For i 1 to π:

2. Prepare empty set Si

3. Parallel for j  0 to size(S(i−1))� 1:

4. r  pi(S
(i−1)[j], j + 1, size(S(i−1))) (evaluate pi)

5. If r is true:

6. Si  Si [ S(i−1)[j] (add tested node into next set)

7. Return Sπ

While nodes are inserted into each set Si concurrently, access to Si must be
synchronized. In the implementation we use implicit synchronization. Before Si

is filled, space for each node from S(i−1) is reserved and marked as empty. When
node S(i−1)[j] is inserted to Si, it is stored at position j, so it will not conflict
with other nodes. After filling phase is completed, Si is compacted (as described
in 3.2.2).

3.3.2. Vector Operations

When a subquery is evaluated, it requires a context information which consists
of context node, position and size. Many subqueries (location steps, predicates,
. . . ) are evaluated multiple times for different contexts. In fact, when recursive
approach is used, these subqueries are often evaluated repeatedly for the same
contexts, but we shall deal with this problem later, in 3.3.5. In following section,
we will focus solely on optimizing some queries using techniques from iterative
algorithms.

Let us have an XPath expression E, which is evaluated for two contexts with
the same context node (n, p1, s2) and (n, p2, s2). What if E does not require con-
text position nor size for evaluation? Both contexts will lead to the same result
as they have the same context node. Unfortunately, when subqueries are eval-
uated using one context at a time, this redundant evaluations cannot be easily
prevented.

Top-down algorithm described in [GKP05] suggests that subexpressions should
be evaluated not for one context at a time, but for whole vector of contexts. Parent
expression prepares all contexts and then gives them to a subquery at once, so the
subquery may better plan its work and avoid repetitive evaluation. The problem
is that vector of contexts may take up to O(N3) considering that there are N
available nodes in DOM structure and context position and size are numbers so
that 1 � p � s � N . Furthermore, each context value may yield another node-set
with size O(N), so the total space complexity is O(N4).

The vector operations described by top-down algorithm could be still used in
some special cases though. If evaluated expression utilizes only a part of the context
information, for instance only a context node, a simple node-set with size of O(N)
can be used instead of vector of (n, p, s) tuples. Still, each context node may spawn
another set with O(N) nodes, thus total space requirements are O(N2) which is
still far from linear complexity.
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In location step evaluation (as described in 3.3.1) we need not remember, which
context node yielded which node-set considering all sets are united in the end.
Location step requires set of context nodes and yields only one node-set, thus it
requires only linear space for both input and output. Henceforth, when we refer
to vector operations , we always mean a projection S1 ! S2 where both S1, S2

are node-sets (� DOM ) and algorithms implementing a vector operation will be
denoted with 〈〉 suffix.

Location Steps as Vector Operations

Location steps are in fact vector operations as we have just shown. Unfortu-
nately, the XPath specification defines, we should evaluate initial part of the step
(axis and filter) independently for each context node, so each initial node-set is
filtered by predicates separately. This seems quite inefficient at first considering
one node is filtered multiple times by the predicates. We have to bear in mind that
each node may have different position or the initial node-set could have different
size and these context information might be vital for evaluation.

On the other hand, when none of the predicates requires context position or
size, only the context nodes are important. We can evaluate initial part of location
step as vector operation which unites all node-sets before they are processed by
predicates and the united set is filtered instead.

This approach allows us to optimize axis evaluation as we will demonstrate in
3.4.3. Furthermore, number of nodes filtered by predicates is reduced from O(N2)
to O(N). Even though we have optimized only location steps with no predicates
that would require context position or size, it is still significant improvement. Many
location steps do not have predicates at all, or use a nested location step as pred-
icate expression (which requires only context node for its evaluation). Now we
shall describe how to determine which parts of context information are required by
a predicate.

3.3.3. Minimal Context Rules

In previous section, we demanded to know which parts of context are required
by an expression for evaluation. In order to do so, we establish list of context
flags to label each subexpression in query tree. We use three types of flags, each
corresponding to one part of the context:

� flag n for context node,
� p for position,
� and s for size.

Every subexpression E is tagged with set of flags denoted cf (E) � fn, p, sg.
When a flag is present in the set cf (E), corresponding part of context is required
for evaluation of E. Formally, we define cf as following.

expression E context flags cf (E)

arithmetic operators (+,�, �,div, mod) cf (operand1) [ cf (operand2)

comparisons (<,�, >,�,=, ! =) cf (operand1) [ cf (operand2)

logical operators (and, or) cf (operand1) [ cf (operand2)
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expression E context flags cf (E)

absolute location path fg

relative location path fng

location step fng

[predicate] cf (predicate)

list of predicates P
S

cf (p), p 2 P

union (j) cf (operand1) [ cf (operand2)

position() fpg

last() fsg

functions without arguments fg

other functions
S

cf (a), a 2 arguments

numeric and string literals fg

Table 3-1: Context flags for different types of expressions

Context Classes

Even though there are eight (23) types of expressions depending on which of
n, p, s flags they have, we will streamline the situation by recognizing only three
context classes :

� Context-free class represents expressions with empty cf set. These expres-
sions are either constant (like literals) or contain absolute location paths.
� Expressions in context-node class requires only context node, thus their

cf (E) = fng. Typical representants are relative location paths and loca-
tion steps.
� Finally, in full-context class we place every remaining expression.

We call the context-free class the weakest , because empty context flag set is
always a subset of any other class. Analogically, the full-context class will be the
strongest . Expression with non-empty cf � fp, sg is also considered to be stronger
than context-node expression for the context position and size is always generated
together with nodes, hence node flag is in fact implicitly included.

Vector Operations Again

Now we can redefine our rule for vector optimization of location steps using
context classes. When a location step has list of predicates P that do not belong
to full-context class, we can use vector optimization for axis evaluation and to
reduce number of nodes filtered by predicates. Otherwise, if at least one predicate
is full-context type, the original EvaluateStep algorithm must be used.
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3.3.4. Evaluation of Context-free Subqueries

The most problematic subqueries are non-literals from the context-free class.
Expressions which do not need a context for evaluation yield always the same re-
sult, thus we would like to avoid their repetitive evaluation. We will illustrate the
problem on following example.

Let us have simple document that represents information about system users
and groups. A group is always owned by one user and we would like to list all
groups that are owned by very smart people:

/group[@ownedBy = /user[iq >= 150]/@id]

When parsed, the query will form following syntactic tree.

Q : /E1

E1 : E2[E3]

E3 : E4 = E5E2 :child::group

E4 : @ownedBy E5 : /E6/E7

E6 : E8[E9] E7 : @id

E8: child::user E9 : E10 ≥ E11

E10 : child::iq E11 : 150

Figure 3-6: Parse tree of sample query

The predicate which filters groups is quite complex and it must be evaluated
for every potential group in the document. Obviously, the right side of comparison
(E5) always yields the same result as the absolute location path is context-free.
Without any optimizations, the set of smart users will be retrieved for each group
even though it could have been done only once.

We can insert a cache mechanism to avoid repetitive evaluation of context-
free subexpressions. The expression is evaluated when its value is required for the
first time and the value is cached. This approach works satisfactorily in serial
enviroment. However, if the predicate is evaluated simultaneously for multiple
contexts, access to cache must be synchronized.

Synchronization unavoidably causes one of following problems. Either one task
holds a lock for the cache while it computes required value and other tasks must
wait, or multiple tasks evaluate the context-free expression needlessly. Both situa-
tions reduces parallelism significantly for multiple threads are blocked or performing
redundant work.
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Eager Evaluation

Key to better performance is to evaluate context-free expressions before paral-
lel execution is initiated. This approach may evaluate some expressions even if their
results are not required in the end. On the other hand, situations when a subex-
pression is not evaluated at all are assumed to be very rare and the eager approach
has positive impact on parallelism.

Before a predicate is evaluated, its parse subtree is traversed. Each context-free
subexpression is evaluated and replaced by literal value:

Q : /E1

E1 : E2[E3]

E3 : E4 = E5E2 :child::group

E4 : @ownedBy E5 : (node-set)

Figure 3-7: Modified parse tree (E5 is replaced by a literal)

The right operand of comparison from previous example has been resolved and
replaced by constant node-set. Then the predicate may be evaluated concurrently
for each group without processing the absolute location path multiple times.

3.3.5. Caches

We have dealt with context-free subexpressions and introduced vector opera-
tions for location steps without full-context predicates, but we still have not com-
pletely solved the problem of redundant evaluation. For better demonstration, let
us have a location path which retrieves ‘b’ elements:

//a/following::b[(count(c) >= 3) and (last() < position()*2)]

The predicate contains position() and last() functions as well as location path,
thus it has cf value fn, p, sg and falls into full-context class. Obviously, we cannot
use vector optimization to evaluate second location step, so we have to fall back to
the orignal algorithm.

The first problem is that the predicate may happen to be evaluated multiple
times for the same context. Two different ‘a’ nodes might have the same set of
following ‘b’ elements, hence these sets are filtered twice needlessly.

Second problem is that right operand of the logical ‘and’ operation is a full-
context expression while the left operand comes only into context-node class. When
the predicate is evaluated for multiple different contexts with the same context node,
left operand will be also evaluated multiple times even though it yields always the
same result.
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Implementation

We solve both problems by caches. A cache is simple unary expression which
does not modify semantics, but eliminates repetitive evaluation of its operand. We
say that the operand subexpression is covered by the cache.

The cache is inserted right above cached expression in the query tree and it
has the same result type as its operand. Therefore, we have four different caches
depending on their result types (boolean, number, string or node-set). Cache has
also the same context class as its operand. Since we do not cache context-free
expressions (as the eager context-free evaluation is used as described in 3.3.4), there
are two variants of caches – a full-context and a context-node class.

E2

E1

E2

E1

C1

Figure 3-8: Covering expression E2 by a cache

Inside the cache, values are stored in concurrent hash-map. Context-node cache
uses left-value of a context node as hash key. The full-context cache hashes tuples
(left(n), p, s). When requested value is not in cache, it is evaluated by an operand
and inserted into the map. Corresponding key is locked meanwhile and if accessed
by another task, this task is blocked until the value is computed. Unlike in context-
free class, we expect that these collisions are rare, hence the tasks will not be blocked
often.

Rules for Inserting and Disposing Caches

For the sake of clarity, we shall denote predicates and their subqueries to be
nested expressions while other subqueries are be top-level expressions. Only nested
expressions are affected by problems described earlier.

Top-level expressions (except for location steps) are always evaluated just once.
Nested expressions are usually evaluated multiple times for different contexts, so
we will focus solely on them. When a top-level location step is evaluated, all its
predicates (and their subqueries) must be covered by caches. We initialize the cache
objects just before and dispose them right after the evaluation. Following rules are
applied when caches are initialized.

� Literal values must not be covered by a cache directly.
� When an expression is covered by a cache, all its subexpressions from the

same or stronger class are also considered to be covered. This rule is
transitive and does not apply for predicates (a predicate cannot be cov-
ered transitively). All expressions from weaker classes must be covered by
another cache of their own.
� If location step has a full-context predicate, all predicates of that step

must be covered by caches. Otherwise, no predicate of that step needs to
be covered, but these rules are applied recursively on nested predicates.
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Furthermore, the predicates are always covered by Boolean caches consid-
ering they are implicitly enclosed by boolean() function.

E : E1[E2]

E2 : E3 and E4

E1 : following::b C1 (full-context)

C2 (context-node)

E3 : E5 ≥ E6

E5 : count(E7) E6 : 3

E7 : child::c

E4 : E8 > E9

E8 : last() E9 : E10 ∗ E11

E10 : position() E11 : 2

Figure 3-9: Application of cache rules on a sample query

In our sample, E2 is covered by a cache since it is full-context predicate. Also
E3 is covered for it comes into weaker context class than its parent, thus it is not
covered transitively.

Space Requirements

Obviously, the full-context cache with node-set result type is the largest one.
If completely filled, it takes up to O(N4) space, hence it has the same asymptotic
complexity as iterative approach. In fact, the cache is little worse in comparison
with top-down algorithm since hash-map has greater overhead than simple vector.

On the other hand, caches are much more flexible. Small documents may use
up to O(N4) space and avoid redundant evaluations completely. If there is not
enough memory, we may put restrictions on cache size and make it forget records.
This way we cannot avoid computing some intermediate values repetitively, but the
cache decreases number of such events significantly. Therefore, we can evaluate also
very large documents – it just takes more time. This adaptative space-time tradeoff
cannot be easily achieved with iterative methods considering they always require
at least O(N2) memory.

3.3.6. Predicates

We have already introduced the general algorithm for filtering node-sets by
predicates in 3.3.1. Now we shall revise it once again with the optimizations de-
scribed in previous sections.

Before a location step is evaluated, the context-free subexpressions in predicates
are resolved (and replaced by literals) and constant predicates are handled. This
preprocessing is done only for top-level location steps.

Algorithm: FilterPredicatesPreprocessing

Input: list of predicates P (of size π)

Output: modified P
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1. empty  false

2. Parallel for i 1 to π:

3. Evaluate context-free subexpressions of predicate pi

4. If pi is boolean literal true:

5. Remove pi from P

6. Else If pi is boolean literal false:

7. empty  true

8. If empty is true: (at least one literal is constantly false)

9. Mark the location path as empty node-set literal and terminate

10. Else: Proceed with predicates filtering

If the preprocessing finds at least one predicate that is constantly false, the
whole location path is marked as empty since it always returns node-set with no
nodes. Otherwise, the preprocessing terminates successfully and we proceed with
location step evaluation.

If there is no full-context predicate in P , vector operations may be used to
optimize evaluation (as suggested in 3.3.2). The initial part of the step is evaluated
and all node-sets merged before they are filtered by predicates. Then, we may use
optimized algorithm for filtering which does not create intermediate node-sets, but
rather computes final result from the initial set.

Algorithm: FilterPredicatesIntern〈〉
Input: Initial node-set S0, list of predicates P (of size π)

Output: Filtered node-set S1

1. Parallel for i 0 to size(S0):

2. j  1, res  true

3. While j � π and res is true:

4. res  pj(S
0[i]) (evaluate pj using only context node)

5. j  j + 1

6. If res is true:

7. Add S0[i] to S1

8. Return S1

When P comes into full-context class, we have to filter each initial node-set
separately and merge them after filtering. If the location step is top-level, all
predicates and their subexpressions must be covered by caches as described in 3.3.5.
Caches are disposed after the location step is resolved since it will not be evaluated
again.

Before node-sets are filtered, the predicates are grouped into segments . We
denote σi the i-th segment. A segment is continuous subrange of P constructed by
these two rules:

� A full-context predicate is always the first predicate in the segment. There-
fore, two following full-context predicates ought to be separated into two
segments.
� A full-context predicate followed by a predicate from weaker class or two

following context-node predicates must be in the same segment.

50



This way we have ensured that only the first node in segment requires context
position and size. Therefore, we need to create intermediate node-sets only for each
segment, not for each predicate. Predicates in one segment are then processed using
the same technique as FilterPredicatesIntern〈〉 routine.

Algorithm: FilterPredicatesIntern

Input: Initial node-set S0, segments σi of predicates P (of size ς)

Output: Filtered node-set Sς

1. For i 1 to ς:

2. Prepare empty set Si

3. Parallel for j  0 to size(S(i−1))� 1:

4. res  true

5. For each predicate p from σi and while res is true:

6. res  p(S(i−1)[j], j + 1, size(S(i−1)))

7. If res is true:

8. Si  Si [ S(i−1)[j] (add tested node into next set)

9. Return Sς

Parallel Evaluation

Finally, we have to consider a dilemma of redundant computations suggested
in chapter 2.4. When multiple predicates are evaluated for single node (in vectorial
version or in one segment of classical filtering function), the results can be computed
concurrently. On the other hand, if any of the predicates yields false, following
predicates should not be evaluated since the tested node cannot be added into the
result set anyway.

All the operations are idempotent and have no side-effects, thus parallel evalu-
ation will not change the semantics. However, we cannot tell whether this approach
is better than serial evaluation unless we test it. The standard implementation will
be modified as follows.

1. res  true

2. Parallel for each predicate p from the segment:

3. If res is false: Terminate loop (avoid some redundant work)

4. If p(context) yields false:

5. res  false

6. . . .

Access to res must be synchronized. However, the variable is set to true before
the parallel for is started and each task may only change it to false (never back
to true). Assuming that result can be only true or false, no race condition may
happen when the value is written, but we still have to ensure, that every task reads
actual value of res from memory.

We will execute and compare both standard and parallel version of predicate
evaluation in chapter 5.5.
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3.4. XPath Axes

The general idea of the XPath axes implementation using element index was
already presented in 2.3.2. We shall now formalize it and design parallel algorithms.
Henceforth, we denote Index the element index and ChildIndex the children index.
An Index [name] refers to a node-set containing all elements with defined name and
ChildIndex [n][name] is node-set containing all children of node n with given name.

Each of the following algorithms requires context node (denoted ctxNode) and
filter name as input, and it yields node-set S as output. It is assumed that every
algorithm has also read-only access to the document and children index.

The name could be either regular node name or a wildcard ‘*’ which matches
any name. Name is represented by an identifier described in 3.2.1. The wildcard
has a special identifier that is never used for any node. Since we do not want to
complicate retrieving algorithms, we also include the wildcard into the document
index. The Index [�] refers to node-set which contains all elements of the document.
We also define ChildIndex [n][�] as list of all element-children of node n.

Searching the Node-sets

Before we start with describing axes implementation, we shall present a sub-
routine which is used in following algorithms quite often. It is standard binary
search which find first element in the set with given or greater left-value.

Algorithm: BinSearch

Input: Node-set S, left-value l

Output: Index i of first node in S with its left-value greater or equal to l

1. i 0, j  size(S) (start with h0, size(S)) range)

2. While i < j:

3. m (i + j)/2 (m is the middle of hi, j))

4. If left(S[m]) � l:

5. j  m

6. Else:

7. i m + 1

8. Return i

The binary search algorithm works in Θ(log size(S)) time.

3.4.1. Algorithms for Major Axes

Descendants

Descendants and successors of the context node are stored in one continuous
subrange of the index node-set. Descendants have their left-values greater than
left(ctxNode) and lesser or equal to right(ctxNode) so we just find border nodes by
binary search algorithm and copy everything between them.

Algorithm: GetDescendants

1. If Index [name] does not exist: Return empty S and terminate

2. l  BinSearch(Index [name], left(ctxNode) + 1)

3. r  BinSearch(Index [name], right(ctxNode) + 1)

4. Prepare node-set S with reserved size (r � l)
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5. Parallel for i 0 to (r � l � 1):

6. S[i] Index [name][i + l] (copy nodes from hl, r) range)

7. Return S

Algorithm uses binary search routine and copies the results, thus it works in
Θ(log Nname + r) time where Nname is number of nodes with given name in the
document and r is size of the result.

There is also a simple variation for this axis called descendant-or-self which
includes the self node into the result if it matches given name. We can mod-
ify presented algorithm just by shifting index for the first BinSearch call (using
left(ctxNode) instead of left(ctxNode) + 1).

Following Nodes

Following nodes are retrieved the same way as descendants, except they have
their left-values in (right(ctxNode),1) interval.

Algorithm: GetFollowing

1. If Index [name] does not exist: Return empty S and terminate

2. l  BinSearch(Index [name], right(ctxNode) + 1)

3. r  size(Index [name])

4. Prepare node-set S with reserved size (r � l)

5. Parallel for i 0 to (r � l � 1):

6. S[i] Index [name][i + l]

7. Return S

Algorithm for following nodes is almost identical to GetDescendants , thus it
has the same time complexity.

Preceding Nodes

Preceding axis is slightly more complicated than already presented following
and descendant axes. The problem is that predecessors of context node are not in
one compact range when nodes are ordered by their left-values in the set. However,
we know that nodes with their left-value lesser than left(ctxNode) are in fact union
of all predecessors and ancestors. If we filter out the ancestors, only preceding nodes
remain.

Algorithm: GetPreceding

1. If Index [name] does not exist: Return empty S and terminate

2. r  BinSearch(Index [name], left(ctxNode))

3. If r = 0: Yield an empty node-set and terminate

4. Prepare node-set S with reserved size r

5. Invoke parallel scan on h0, r � 1i interval of Index [name]

6. Update actual size of S to offset value returned by parallel scan

7. Return S

We cannot use simple parallel for, because we do not know positions of nodes
in final set in advance. Therefore, we use parallel scan which first computes the
offsets and then copies the nodes. The scan has following main routine:
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Algorithm: GetPrecedingScan

Input: Index node-set I, preallocated node-set S, ctxNode, offset

Output: Filled node-set S, updated offset

1. For i rangeStart to rangeEnd :

2. If right(I[i]) � left(ctxNode): (not ancestor of context node)

3. If this is final scan:

4. S[offset ] I[i]

5. offset  offset + 1

If we expect that the XML document has depth O(log N) (where N is the
number of nodes), the maximal number of ancestors for one node is also O(log N).
Hence, the time complexity would be O(log Nname + r + log N) which is in fact
O(log N + r).

Ancestors

As suggested earlier, we expect that XML documents are shallow. Therefore,
we do not accelerate ancestor axis by any index, but use simple DOM traversing
instead.

Algorithm: GetAncestors

1. Node pointer p ctxNode

2. Prepare empty node-set S

3. While p has a parent: (p is not document root)

4. p parent(p)

5. If name of p matches name:

6. Append p to S

7. Reverse S (ensure proper ordering of the set)

8. Return S

If the expected depth of the document is O(log N), the algorithm works with
O(log N) time complexity.

Like for the descendants, ancestor axis has a variant called ancestor-or-self
which also includes the self node into the result (if it matches given name). This
axis may be implemented by minor modification of GetAncestors algorithm. We
just shift the p  parent(p) line (4th step) at the end of the ‘while’ loop. The
modification will work since root element has valid parent node (document root),
thus it will be also processed.

3.4.2. Children and Siblings

Retrieving children and sibling nodes depends on whether the contex node (or
its parent in case of siblings) has children index. Nodes with too few children do
not have any index, so the results must be picked directly form the DOM tree.

Algorithm: GetChildren

1. If index ChildIndex [ctxNode] exists:

2. If ChildIndex [ctxNode][name] does not exist:

3. Return empty S and terminate

4. Copy entire ChildIndex [ctxNode][name] to S using parallel for
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5. Else:

6. Prepare empty set S

7. For each child c of ctxNode: (we process children sequentially)

8. If name of c matches name:

9. Append c to S

10. Return S

Preceding and following siblings are acquired in similar way as children. The
only difference is that parent of the contex node must be reached first. Subset
of its children with their left-values lesser (or greater) than left-value of context
node represents preceding (or following) siblings. Unlike preceding nodes, preceding
siblings may not contain any ancestors, thus we need not filter them out.

3.4.3. Vector Operations for Major Axes

We have devised an optimization of location steps based on vectorial approach
(in 3.3.2). This optimization requires that the initial part of the location step is
evaluated as vector operation.

Each vector operation described below requires context node-set C as input
(instead of single context node) and, like traditional axis algorithms, it yields node-
set S as an output.

It is obvious we can implement vector operations simply by invoking their scalar
versions and merge the results. If the concurrent hash-map is used for merging, each
intermediate node-set can be computed and added by separate task and these tasks
can be executed simultaneously.

Algorithm: Operation〈〉
1. Prepare concurrent hash-map H

2. Parallel for each node n from C:

3. Sn  Operation(n,name)

4. Add node-set Sn into H

5. Export nodes from H to S and sort S

6. Return S

However, this algorithm does not benefit from knowing all context nodes in
advance. Some operations may be optimized to reduce number of computed inter-
mediate values which should improve the performance. Henceforth, we will refer to
this approach as to naive algorithm.

Descendants

Naive algorithm is not very efficient for the descendant axis. Let us say that
two nodes n1, n2 from initial set are in ancestor-descendant relation, more precisely
n2 is descendant of n1. Then a node-set yielded by GetDescendants(n2) is in fact
a subset of GetDescendants(n1). Knowing this, we need not to compute descendants
of n2 nor to add them to the results again.

Context node-set is, as any other set, ordered by left-values of nodes, therefore
all potential descendants of node n must be after n in the set. A simple rule can be
used to avoid adding nodes into the result needlessly: When descendants of node n
are added into the result, we skip all nodes from initial set with their left-value lesser
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or equal to right(n). This way we ensure node uniqueness in the result, therefore
we can use concurrent vector instead of a hash-map.

Algorithm: GetDescendants〈〉
1. Prepare concurrent vector V

2. Invoke parallel scan on context node-set, which fills nodes into V

3. Export nodes from V to S and sort S

4. Return S

We use parallel scan for processing the context node-set. First phase calculates
initial right-value for each segment. All nodes within bounds of this value are
skipped. The second phase adds descendants of remaining nodes into concurrent
vector.

Input: Context node-set C, max. right-value maxRight from prev. range

Output: Added nodes in concurrent vector V , updated maxRight

1. For i rangeStart to rangeEnd :

2. If left(C[i]) > maxRight :

3. maxRight  right(C[i])

4. If this is final scan:

5. Add GetDescendants(C[i],name) into V

Joining routine for the parallel scan returns maximum of given maxRight values.

Presented algorithm iterates over the initial node-set and retrieves descen-
dants for each node (in the worst case). Hence the time complexity is O(size(C) �
log Nname + r). If the initial node-set is rather large but the document has only
very few elements that match given name, we have to iterate needlessly over many
nodes with no suitable descendants.

We may try different approach to the problem. Instead of iterating over context
node-set, we rather test every candidate from Index [name]. A candidate should be
added into the result if it has at least one ancestor present in the context set. So
we just traverse DOM structure and test each candidate’s ancestor whether it is in
C using binary search algorithm.

Algorithm: GetDescendants2〈〉
1. Prepare S with the same size as Index [name], filled with NULLs

2. Parallel for i 0 to size(Index [name])� 1:

3. n Index [name][i]

4. While n has a parent and S[i] is still NULL:

5. n parent(n)

6. If C[BinSearch(C, left(n))] = n: (Does C contain node n?)

7. S[i] Index [name][i]

8. Compact S (remove remaining NULL values)

9. Return S

The GetDescendants2〈〉iterates over index node-set and test ancestor of each
node (expected depth is O(log N)) by looking for it in the context set (binary search
algorithm takes O(log(size(C))) steps). The final time complexity is O(Nname �
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log(size(C)) � log N), so it should outperform the original algorithm if the Nname is
very small.

Unfortunately, practical results show that the first algorithm performs better.
On dual-core system with approximately 25000 nodes in context node-set and 16
nodes in the index set, the latter algorithm takes about twice the time of the former
solution.

We belive that the reason for this behaviour is different style in which both
algorithms access the memory. First one exhibits the principle of locality when it
reads initial node-set sequentially, while the second one jumps from place to place
as it traverses DOM and uses binary search algorithm on large array. Therefore, the
former approach is more optimized for caches and memory access which makes it
faster even though it does slightly more work. We will only use the first algorithm
for performance testing in chapter 5.

Following and Preceding

The following axis can be optimized greatly as vector operation. We just need
to find node from context set with the smallest right-value and then use it as context
node for scalar operation GetFollowing .

The node with smallest right-value is either first node in the context set or one
of its descendants which is also present in C. Therefore, we just check right-values
of nodes starting from beginning of the context node-set. Once we find a node that
is not descendant of its actual predecessor in C, the search is over and we have our
context node.

Algorithm: GetFollowing〈〉
1. i 0

2. While i < size(C)� 1 and C[i + 1] is descendant of C[i]:

3. i i + 1

4. Return S yielded by GetFollowing(C[i],name)

If we expect that the height of DOM tree is O(log N), the search for proper con-
text node will take also at most logarithmic time. Remaining part of the algorithm
has the same time complexity as the scalar version of this operation.

Analogically, the preceding axis takes initial node with the greatest left-value
and use it as context node for scalar GetPreceding. This is even more simple than
it was for following axis considering such node is the last node in the context set.

Algorithm: GetPreceding〈〉
1. Return S yielded by GetPreceding(C[size(C)� 1],name)

Ancestors

Ancestor axis uses naive algorithm with little optimization. Ancestors of every
context node are processed concurrently and added into a hash-map. When ancestor
node is being inserted while it is already present in the map, remaining ancestors
of the context node are not tested nor added since another task must have already
processed them.
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Algorithm: GetAncestors〈〉
1. Prepare concurrent hash-map H

2. Parallel for i 0 to size(C)� 1:

3. n C[i]

4. While n has a parent and parent(n) /2 H:

5. n parent(n)

6. If the name of n matches name:

7. Add n into H

8. Export nodes from H to S and sort S

9. Return S

Described optimization works only if there are some ancestors that match given
name. If there are very little nodes inserted in hash-map, many ancestors will be
processed multiple times. We can avoid this by using another hash-map where
tested ancestors are inserted if they do not match the name. Every processed an-
cestor will be present exactly in one of these hash-maps, hence we can avoid repet-
itive testing of nodes by checking both maps for presence of an ancestor. However,
practical results show that overhead caused by operations on second hash-map will
take over the practical benefit of this improvement.

3.4.4. Vector Operations for Direct Axes

Children and Siblings

Child axis guarantees that different nodes have disjoint children. Therefore,
we may use naive algorithm with concurrent vector instead of hash-map. Since we
do not know the total number of all children retrieved, we cannot optimize this
problem further.

Preceding and following sibling axes use the same approach as the ancestor
axis. Following siblings of single context node are always inserted in document
order. When a sibling is being added while it is already in the hash-map, all its
following siblings must have been already processed by another task, so we need
not to insert them again.

Algorithm: GetFollowingSiblings〈〉
1. Prepare concurrent hash-map H

2. Parallel for each node n from C:

3. Sn  GetFollowingSiblings(n,name)

4. i 0

5. While i < size(Sn) and Sn[i] /2 H:

6. Add Sn[i] into H

7. i i + 1

8. Export nodes from H to S and sort S

9. Return S

Analogically, we add preceding siblings in reverse document order (from last
to first) and use the same paradigm as for following siblings.
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Algorithm: GetPrecedingSiblings〈〉
1. Prepare concurrent hash-map H

2. Parallel for each node n from C:

3. Sn  GetPrecedingSiblings(n,name)

4. i size(Sn)� 1

5. While i � 0 and Sn[i] /2 H:

6. Add Sn[i] into H

7. i i� 1

8. Export nodes from H to S and sort S

9. Return S

Sibling axes might be optimized a little more by precomputing leftmost (or
rightmost) context node in every children list. However, it is inconclusive whether
this approach would have positive impact on performance. Furthermore, sibling
axes are not the most often used axes from XPath, thus we do not improve them
any further.

Parents

Scalar method for retrieving parents is standard DOM operation as each node
holds reference to its parent. When parent axis is processed as vector operation,
multiple initial nodes may have the same parent, thus we have to ensure uniqueness
of result nodes. Filtering initial node-set for siblings would be rather complicated
though. Therefore, we use naive algorithm and insert all parents of initial nodes
into a hash-map.

Algorithm: GetParent〈〉
1. Prepare concurrent hash-map H

2. Parallel for each node n from C:

3. Add parent(n) into H

4. Export nodes from H to S and sort S

5. Return S

Attributes

Unlike parents, attributes attached to different nodes are unique, so we can use
naive algorithm with concurrent vector instead of hash-map.

Algorithm: GetAttributes〈〉
1. Prepare concurrent vector V

2. Parallel for each node n from C:

3. If name is ‘�’: (wildcard matches every attribute)

4. Parallel for each attribute a of node n:

5. Add a into V

6. Else: (a node can have only one attribute of given name)

7. If n has attribute ‘name’: Add this attribute into V

8. Export nodes from V to S and sort S

9. Return S
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We also have to distinguish, whether we are looking for one attribute or we
would like to retrieve them all (when name is a wildcard). When attribute name
is specified, we can extract it directly using DOM operations (described in 3.2.1).
Otherwise we just copy the whole list of attributes to the result.

3.5. Remaining Issues of XPath Queries

Even though location paths are the most intriguing part of XPath, the lan-
guage specification contains also other expression types (see appendix A). Many of
them are not interesting from our point of view since they cannot be parallelized
efficiently. However, there are two types of expressions where concurrency may be
exploited.

3.5.1. Union of Node-sets

Union is binary operator ‘j’ which accepts any expressions returning node-set
as operands. The operator unites nodes returned by its operands into single set.
Usually, binary operators use left associative rule, thus expression (op1 j op2 j op3) is
in fact ((op1 j op2) j op3). For better performance, we aggregate multiple following
unions into one n-ary expression.

Union operands may be evaluated concurrently using the parallel for template.
The results are gathered by concurrent hash-map which ensures node uniqueness
and synchronizes writing operations.

Algorithm: Union

Input: Operands op1, . . . , opk, evaluation context c

Output: Node-set S

1. Prepare concurrent hash-map H

2. Parallel for i 1 to k:

3. Si  opi(c)

4. Add Si into H

5. Export nodes from H to S and sort S

6. Return S

First-node Optimization

When a node-set is converted into string or number, string value of the first
node in the set is taken (and converted into number if necessary). If we know
that the result of the union will be converted, we may optimize the algorithm to
yield only the first node of the result instead of constructing the whole set. We use
parallel reduce to find the first node.

The main routine of the reduce just evaluates corresponding operand and
yields its first node. If operand returns an empty set, a NULL value is yielded.
Joining routine only returns node with smaller left-value (we additionally define
left(NULL) =1 for this comparison). If both nodes are not present, the join also
yields NULL.
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3.5.2. Comparisons

XPath has six binary operators (<,�, >,�,=, 6=)6 which compare their ope-
rands and return boolean value. This value signals whether the operands are in
relation defined by the operator or not. Comparisons are quite complex since their
semantics depends on result type of compared operands. Details of this operations
are thoroughly described in appendix A as well as in [CD+99].

Comparisons of two scalar (string, number or Boolean) values are not inter-
esting for parallelisation. We shall focus solely on operations where at least one
operand is a node-set.

Comparing Scalar with Node-set

When node-set is compared with a string or a number, every node from the set
is taken and its string value is retrieved. This string value is then compared with
the scalar. If at least one of these comparisons is true, the whole result is true.

We can compare nodes with the scalar concurrently using the parallel for tem-
plate. However, when the result becomes true, we should not compare any other
nodes and terminate immediately. Access to the result value will be synchronized
using atomic operations.

Algorithm: Compare (Scalar – Node-set)

Input: Node-set S, scalar s and comparison operator ./

Output: Boolean value res

1. res  false

2. Parallel for each node n in S:

3. i rangeStart

4. While i � rangeEnd and res 6= true:

5. If (string(n) ./ s) is true:

6. res  true

7. i i + 1

8. Return res

Since simultaneously running tasks cannot be stopped exactly at the same
moment when res is set to true some redundant work will be done. However,
practical results show that the parallel approach performs better even though it
does some unnecessary comparisons.

Comparing Two Node-sets

According to XPath specification, a comparison of two node-sets S1 ./ S2 is
true if and only if a pair of nodes (n1, n2) exists, so that n1 2 S1, n2 2 S2 and
n1 ./ n2 is true. This concept works for any type of comparison, but each type may
be optimized in different way.

Every following algorithm takes two node-sets S1, S2 for input. If one of the
input sets is empty, the result is obviously false. Henceforth, we assume that both
node-sets are not empty.

We examine the equality operator first. Two nodes are equal if their string
values are equal, therefore we need to compute string value for every node in both

6 We shall use ./ symbol as representant of an arbitrary comparison operator.
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sets. Furthermore, we would like to avoid comparing every possible pair of nodes
which would lead to time complexity Θ(size(S1) � size(S2)).

The algorithm has two phases. In the first phase we insert string value of every
node from the first set into a string concurrent hash-map. Then we test string
value of every node in the second set whether it is present in the hash-map. If
two matching strings are found, comparison result is true. Both phases are easily
parallelizable and have the time complexity Θ(size(S1) + size(S2)).

Algorithm: Compare= (Node-set – Node-set)

1. res  false

2. Prepare an empty concurrent hash-map of strings H

3. Parallel for each node n in S1: (render S1 string values into H)

4. Add string(n) into H

5. Parallel for each node n in S2:

6. If res is true: Terminate loop

7. If string(n) 2 H: (pair of equal nodes found)

8. res  true

9. Return res

Inequality comparison can be optimized even further. The first phase of this
algorithm proceeds the same way as equality comparison. When hash-map contains
at least two different string values and second node-set is not empty, the result is
obviously true. No node from second set can have its string value equal to two
different strings from the map, hence a pair of unequal nodes must exist. If the
hash-map contains exactly one string value, we will compare it as scalar with the
second node-set with Compare algorithm described earlier. Both phases are linear,
hence the comparison requires Θ(size(S1) + size(S2)) time.

Algorithm: Compare 6= (Node-set – Node-set)

1. Prepare an empty hash-map of strings H

2. Parallel for each node n in S1: (render S1 string values into H)

3. Add string(n) into H

4. If size(H) > 1: (at least two different values) unequal pair exists)

5. Return true

6. Else: (S1 is not empty, hence H must have exactly 1 item)

7. Return Compare(S2,H[0], 6=) (use scalar – node-set comparison)

Relational operators (<,�, >,�) always compare numbers, so every string
value of each node is converted to number before compared. If such conversion
is not possible, numeric value of the node will be NaN (not-a-number). Let us
recall that any comparison with NaN is always false.

We will also use the two-phase technique for the following algorithm. However,
unlike in string comparisons, we need not to build a hash-map with all numeric
values. We just compute minimal and maximal numeric value of the first set and
compare every value from second set with them. If at least one value compared
with minimum or maximum returns true, the result of node-set comparison will be
also true. We shall use parallel reduce for retrieving minimum and maximum (as
described in 3.1.3).
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Algorithm: Compare<,> (Node-set – Node-set)

Input: Node-sets S1, S2, relational operator ./

1. res  false

2. Use parallel reduce to compute min and max of S1

3. If min and max are NULL: Return res and terminate

4. Parallel for each node n in S2:

5. If res is true: Terminate loop

6. x number(string(n))

7. If (min ./ x) or (max ./ x):

8. res  true

9. Return res

Parallel reduce works in linear time, therefore the time complexity of the rela-
tional comparison of two node-sets is Θ(size(S1) + size(S2)).
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4. Implementation

In this chapter we will take a brief look at important implementation techniques
and architectural decisions.

4.1. Languages and Libraries

The choice of programming language is always the most essential for every
implementation. There are many alternatives, therefore we have to specify our
needs and priorities first.

Evaluation speed is the most crucial issue in our case, so we cannot use in-
terpreted languages. We will also require certain level of control over some lower
operations especially concerning memory access and allocation. Memory safe lan-
guages with native implementation of memory disposal (like Java or C]) are out
of the question since the compacting process of garbage collector would affect our
results. Also, we would like to avoid exotic languages so that anyone can study
or use it. Finally, the available bindings for used libraries must be taken under
advisement.

Considering presented issues, the most acceptable choices are C or C++. We
will use C++ so that we can benefit from the advantages of object oriented program-
ming as well as from the standard template library STL [STL] which is embedded
in language specification.

In order to maintain coding complexity in acceptable scope, we require libraries
for parsing XML documents and managing concurrent execution of code (threads,
synchronization primitives, etc), so we do not need to implement them ourselves.

We have chosen libxml2 [lib] library for XML document parsing. Even though
it is written in C, the SAX parser presents trivial API which can be easily used also
in C++ application. Other libraries (like Xerces [Xer]) were dismissed as they were
too complex for our needs.

There are two libraries for parallel programming that comply with our require-
ments. The OpenMP [Ope] is in fact a compiler extension which presents pragma
directives and some functions for concurrent execution of code. The alternative was
Threading Building Blocks [tbb], a stand-alone multiplatform library with prepared
programming templates and data structures. Both choices have their advantages
and disadvantages. We have chosen the Threading Building Blocks considering they
do not require any support from compiler and they offer more complex tools for
parallelism.
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4.2. Query Representation

Queries are represented by simple object model. This model is independent
on query language even though it is greatly inspired by XPath. Every atomic
expression has its corresponding class. Classes with similar properties have common
base class.

Query

QueryCacheNodeSet

QueryCache

QueryCacheBool

QueryCacheNumber

QueryCacheString

QueryLiteral

QueryLiteralBool

QueryLiteralNodeSet

QueryLiteralString

QueryLiteralNumber

QueryBinary

QueryExpressionCompare

QueryExpressionCompareEqual

QueryExpressionCompareLess

QueryExpressionBool

QueryExpressionOr

QueryExpressionAnd

QueryExpressionArithmetic

QueryUnary

QueryExpressionUnaryMinus

QueryWithChildren

QueryWithChildrenReturningNodes

QueryExpressionUnion

QueryLocationPath

QueryLocationStep

QueryWithPredicates

QueryExpressionFilter

QueryFunction

QueryFunctionPosition

QueryFunctionLast

. . .

Figure 4-1: Class diagram of query object model

Arithmetic, logic and comparison operators are implemented as binary expres-
sions. Even though more complex operations could be also decomposed into binary
tree, we rather aggregate them. Expressions with more than two operands are de-
scendants of QueryWithChildren class. This way all predicates, location steps in
a path or operands in union expressions can be evaluated more efficiently.

Every expression has fixed result type which may be boolean, number, string
or a node-set. However, sometimes the result is converted to another type either
implicitly (defined by semantics of parent expression) or explicitly by conversion
functions. It would be prudent to inform the query that the result will be converted,
so the the query can optimize its work.

In order to achieve this, each expression object has four different methods of
evaluation, each yielding different data type. When an expression requires a value of
specific type from its operand, it calls corresponding method on the subexpression,
so the subexpression is aware of the conversion and it can optimize its work. This
technique is used for example in first-node optimization of union expression (3.5.1).

4.3. Parsing XPath and Query Optimizations

XPath is simple context-free language which can be processed by LALR(1)
parser1. We could have used one of existing parser generators such as Bison [Bis]
to create a deterministic pushdown automaton. However, the XPath language is
simple enough to be implemented directly.

The parser consists of lexical and syntactic analyser. Lexical analyser parses
query string into tokens. These tokens are then processed by syntactic analyser
which constructs the object model. Instead of pushdown automaton, we use set

1 Lookahead left-to-right parser which looks one token ahead.
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of methods, each corresponding to one nonterminal symbol (see appendix A), and
indirect recursion.

4.3.1. Optimizations

When query is parsed from its text representation into object model, several
optimizations are performed to increase the efficiency of evaluation algorithms. The
optimization process consists of following tasks:

� Constant subexpressions are computed and replaced by proper type of
literal object.
� Predicates that are always true are removed.
� Location steps or filter expressions with predicate which is always false are

replaced by empty node-set literal.
� Two following unary minuses or two nested not() functions are removed

since they have no effect.
� Any function for explicit conversion (boolean(), number() or string()) is

removed if its argument already has proper data type.
� Location steps ‘self::*’ without predicates are removed.
� If location step ‘descendant-or-self::*’ without predicates is followed

by descendant or child location step which does not have any predicate in
full-context class, the ‘descendant-or-self::*’ step is removed and child
axis is transformed into descendant. For example ‘a//b’ is transformed into
‘a/descendant::b’.

Last two optimizations are the most important as they improve performance
for queries written in abbreviated syntax such as ‘./x’ or ‘//y’. Without these
optimizations, both presented samples would be evaluated as two location steps
even though they can be reduced to single step.
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5. Experimental Results

In order to verify our claims about scalability and determine how much the
designed improvements are beneficial, our solution was submitted to various tests.
We have also compared it with two known XPath implementations – libxml [lib]
and Xalan [Xal] using standardized XPathMark [XPa] test.

5.1. Preparation

Before testing results are presented, we will revise our methodology and hard-
ware used.

5.1.1. Methodology

Performed tests focus solely on execution speed. We will measure time required
to evaluate a query using system real-time clock. Other operations such as loading
XML data or building element index will not concern us. Real-time clock will better
reflect the practical characteristics of the implementation and cover both application
and kernel time (thus include context switching, thread synchronization, etc.).

Unfortunately, results clocked by the selected method are predisposed to be
highly influenced by other processes running on the same system and hardware
interruptions. We have designed methodology which should reduce this influence
error as much as possible.

Each test consists of query list . When the tested XML document is loaded
into DOM structure and indexed, each query on the list is evaluated 10�, yielding
measured times ti (i 2 f1, . . . , 10g). First, a raw average t̄ is computed as

t̄ =
1

10

10X

i=1

ti

Raw average is used to filter out times which have been biased too much. A new
set T is constructed containing only those time values which are smaller than t̄ with
25% correction.

T = ftiji 2 1, . . . , 10 ^ ti � t̄ � 1.25g

The T is obviously not empty considering there must be at least one ti which
is lesser or equal to t̄. Elapsed time is then determined as average of values in the
filtered set

t =
1

jT j

X

τ∈T

τ

It is still possible that all ten measured values are distorted due to some long
lasting activity running on the system at the same time as the tests. Therefore,
each test was repeated 3� in different daytime. These three results were closely
compared and if one of the values was obviously tainted, the test was repeated.
Final time values presented in result tables below were computed as average from
all three results.
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The data were not subjected to extensive statistical analysis as the main objec-
tive of this chapter was only to show simple conclusions which can be determined
just from presented values. All measured values are also published on attached
DVD, so that anyone can analyse them further.

5.1.2. Hardware Speci�cations

All test were performed on Dell M905 server with four quad-core AMD Op-
terons 8356 (i.e. 16 cores) clocked at 2.3 GHz. Server was equipped with 64 GB
of RAM (running on 667 MHz) organized in 4-node NUMA [NUM]. A RedHat
Enterprise Linux (version 5.3) was used as operating system.

5.2. Scalability

First set of tests is designed to determine scalability of our solution. In other
words, we will measure how much the application benefits from multiple processor
cores.

5.2.1. Testing Data

XML Documents

We use synthetic XML documents with following structure, for scalability tests.
Each document has root element ‘root’. Element nesting is created completely
randomly and restricted by rules in the table below.

Element Children Attributes

root a, b, c

a b, c, d, e id(1.0), info(0.3)

b c, d, e, f id(0.5)

c b, d, e, g, h info(0.7)

d a, d, e, f, g, h x(0.5), y(0.6), z(0.1)

e e, f, g ref(0.1)

f g, h ref(0.3), x(0.3)

g h ref(0.9), y(0.1)

h text only (or empty) z(0.1)

Table 5-1: Structure of synthetic documents

Some of the elements have attributes. Number in parenthesis after each at-
tribute identifier defines frequency of appearance in the document (e.g. attribute
‘z’ is attached to one tenth of all ‘h’ elements). Attribute ‘id’ contains unique iden-
tifier value and ‘ref’ contains reference to existing id value. All other attributes
have integers as values.

Documents in the following tests have been denoted Di, where i resembles num-
ber of elements in thousands (document D25 contains 25‘000 elements). Documents
D10 and D25 have maximal depth 8, D50 has depth limit 9, and depth of D100 is 10.
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Queries

Queries have been chosen carefully to cover various aspects of XPath location
steps with different axes, predicates filtering and node-set comparisons. There are
no simple queries in our selection since they would be resolved very quickly even
on large documents and time intervals shorter than 1 ms have too big a measuring
error, thus we cannot use them to determine scalability.

id XPath query

Q1 //a//b//following::h[2]

Q2 //c[.//h[following::a[ancestor::*[not(self::a)]]][3]]

Q3 //g[@ref=following::e/@ref or @ref=preceding::f/@ref]

Q4 //*[@id=..//@ref]

Q5 //h[following::d]/parent::g/following-sibling::f

Table 5-2: Queries for testing scalability

5.2.2. Measured Times

Following tables show measured times for each query using 1, 2, 4, 8 and 16
threads. All values are presented in milliseconds. Each table also shows the total
time for all five queries and total speedup relative to one thread.

Threads: 1 2 4 8 12 16

Q1 4.853 4.223 2.91 1.932 1.806 1.886

Q2 52.11 105.4 71.62 46.67 38.2 33.5

Q3 144.6 84.44 45.72 24.17 17.34 13.01

Q4 1364 741.4 382.7 212.4 147.9 126.8

Q5 5.445 3.442 2.156 1.393 1.296 1.18

Total: 1572 940.9 509.1 294.6 218.5 192.4

Speedup: 1� 1.67� 3.09� 5.34� 7.19� 8.17�

Table 5-3: Evaluation times in ms for XML document D10

Threads: 1 2 4 8 12 16

Q1 17.84 11.79 6.543 5.442 4.86 4.612

Q2 326.3 541.8 421.1 269.3 226.5 200.9

Q3 1558 740.3 447.3 258.8 192.9 153.9

Q4 14153 6341 3955 2043 1564 1406

Q5 26.4 16.49 9.56 5.753 5.442 4.495

Total: 16083 7653 4844 2590 2006 1786

Speedup: 1� 2.1� 3.32� 6.21 8.02� 9.01�

Table 5-4: Evaluation times in ms for XML document D25
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Paradox of 2.1� speedup on two cores is most likely caused by slightly tainted
results of Q4 on one thread.

Threads: 1 2 4 8 12 16

Q1 85.01 45.89 21.95 12.57 11.96 10.53

Q2 1050 1736 1338 827 720 601.3

Q3 9062 4764 2728 1433 1116 834.7

Q4 49434 24267 13746 6651 5542 4210

Q5 152.8 64.08 36.04 20.84 18.98 16.24

Total: 59785 30879 17874 8952 7421 5689

Speedup: 1� 1.94� 3.34� 6.68� 8.06� 10.51�

Table 5-5: Evaluation times in ms for XML document D50

Threads: 1 2 4 8 12 16

Q1 254.4 141 69.7 37.33 32.19 25.95

Q2 3586 5783 4417 2881 2249 2050

Q3 54286 30874 19143 10157 6752 5803

Q4 157903 91896 55235 30163 20704 19145

Q5 455.3 211.8 109.3 68.53 60.46 44.65

Total: 216486 128908 78978 43315 29810 27085

Speedup: 1� 1.68� 2.74� 5� 7.26� 7.99�

Table 5-6: Evaluation times in ms for XML document D100

First three tables indicate that larger documents are better parallelized by more
threads. The best speedup (11.74� on 16 cores) was achieved by Q4 on D50 and
the total average over 8� speedup is well above expected values.

Unexpectedly, the largest document do not scale as well as smaller ones. Prob-
ably, the serial parts of the algorithms and synchronization overhead grow signifi-
cantly with the size of data set. It is also possible, that results measured on larger
documents are more distorted by interactions with other processes running on the
system.

Query Q2 has exhibited strange behaviour for all documents. Time measured
for one thread is always smaller than times on two and four threads and even with
sixteen threads the speedup does not exceed 2�. This phenomenon is most likely
caused by synchronization on query caches and we examine this hypothesis in the
following chapter.
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5.3. The Impact of Query Caches

We have solved the problem of repetitive execution of predicates by installing
query caches for intermediate values. These caches may prevent needless work, but
they unavoidably slow down the evaluation process. We shall test their impact on
performance using following queries on document D50 from previous tests.

id XPath query

Q1 //a/following::b[following-sibling::b[*]][.//c]

Q2 //a/following::b[.//c][2]

Q3 //a/following::b[.//c[.//e[.//f[.//g]]]][2]

Q4 //h/following::g[@ref][2]

Table 5-7: Queries for testing impact of caches

The queries were designed to test both recursive and vectorial approach to
evaluation and behaviour of caches on nested predicates. Henceforth, we denote Ci
implementation without caches running on i threads and C+

i implementation using
caches on i threads.

C1 C+
1 C4 C+

4 C8 C+
8 C16 C+

16

Q1 823.6 222 232.4 262.5 111.7 173.1 64.94 122.3

Q2 1922 970.2 583.5 1145 326.6 735.6 187.5 521.6

Q3 5435 957.7 1336 1158 693.4 741.7 415.4 535.4

Q4 10808 4450 3437 5334 2112 3455 1232 2529

Total: 18990 6601 5593 7904 3252 5113 1916 3724

Speedup: 1� 2.88� 1� 0.71� 1� 0.64� 1� 0.51�

Table 5-8: Comparison of cached and not-cached evaluation (times in ms)

Caches have significant impact on performance if only one thread is used. On
more threads, the overhead of synchronization mechanisms in concurrent hash-
map used in caches takes over and our solution become slower than simple version
without them.

It would be prudent to try different approach for synchronizing access to cached
values. We can also develop a heuristic function to determine how much will cache
help a particular query and cover only those which are most likely to benefit from it.
Last possibility will be to avoid caches completely if the size of intermediate values
and available memory allows us to use iterative methods for XPath evaluation.

5.4. Practical Tests

In order to compare our implementation with other known XPath libraries, we
have prepared set of practical tests. These tests use document and queries that are
carefully designed to resemble real data and typical searching problems.
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5.4.1. Testing Data

Document used for testing was generated by xmlgen, a XML document gene-
rator developed under XMark [XMa] project. This document simulates an auction
website (a real e-commerce application) and contains over 3 million elements.

Queries evaluated on the document are taken from XPathMark performance
tests [XPa]. These queries are especially designed to determine speed of tested
XPath implementation. Queries that were not compatible with our subset of XPath
were omitted. The document, its DTD and list of applied queries may be found on
the attached DVD.

5.4.2. Measured Times

Result times measured for our implementation on 1, 4, 8 and 16 threads are
shown in following table along with results of tests performed using the same
methodology on libxml (version 2.7.3) [lib] and Xalan-c (version 1.10) [Xal] XPath
implementations.

libxml Xalan C+
1 C+

4 C+
8 C+

16

Q1 544.1 67.89 29.88 13.17 9.267 8.923

Q2 651.3 1341 3.118 2.809 2.126 2.397

Q3 704.7 378.9 3.468 2.733 2.223 2.382

Q4 829.7 50.46 31.74 8.8 5.171 3.807

Q5 1656 110.5 13.63 3.921 2.701 2.448

Q6 3592 86.92 42.05 12.07 6.875 5.275

Q7 20963 788.5 49.12 15.93 9.941 8.79

Q8 7896 196.2 41.8 12.5 7.366 6.031

Q9 3324 300.9 26.46 11.92 8.28 6.777

Q10 1 1 20870 5302 3892 2756

Q11 33903 2750 120.1 53.92 46.97 39.69

Q12 19757 4277 71.46 25.49 21.96 17.63

Q13 19799 4253 66.54 24.55 19.19 16.87

Q14 1 1 791.2 268.3 154.3 106.6

Q15 1 1 7566 1896 1075 606.6

Q16 16096 1442 48.31 14.81 8.75 7.347

Q17 942.2 134 82.94 23.66 12.46 7.272

Q18 1 1 41681 10992 7688 5436

Q19 749.3 84.14 63.84 20.36 17.68 20.11

Q20 232.4 135.6 179.3 136.3 165.3 149.8

Q21 2632 181.8 34.54 10.28 6.175 4.73

Q22 8209 54290 2.337 2.772 1.813 2.173
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libxml Xalan C+
1 C+

4 C+
8 C+

16

Q23 565.5 49.04 17.05 7.41 5.177 6.86

Q24 20944 2747 131.2 54.23 42.77 35.59

Q25 3518 439.9 379.6 328.8 375.4 364.7

Q26 1 1 8629 2207 1261 724.7

Total: 1 1 80977 21456 14859 10366

Total†: 167508 74105 1438 786.4 777.6 719.6

Table 5-9: Times in ms for XPathMark tests

The 1 value stands for tests that were terminated manually after more than
2000 seconds (well over half an hour). Total time denoted with † represents sum of
all measured times without problematic queries Q10, Q14, Q15, Q18 and Q26.

The results clearly state that our implementation is much faster on large doc-
uments and complex queries than well known XPath libraries. Furthermore, the
libxml and Xalan does not have the following and preceding axes optimized, hence
queries which use them are evaluated very slowly.

5.5. Concurrent Evaluation of Predicates

In chapter 3.3.6, we have suggested that predicates could be in some situations
evaluated concurrently which might exploit parallelism even further. Unfortunately,
we cannot ignore the problem of redundant work and synchronization overhead.
We will compare both approaches on testing data to determine the effect of parallel
evaluation of predicates.

For this set of tests, we will use the synthetic document D50 described in 5.2.1.
First two queries have simple descendant location paths as their predicates, so it
is expected that the predicates will be resolved rather quickly. Last test has more
complex predicates, therefore it might benefit from parallel evaluation even more.

id XPath query

Q1 //a/following::b[.//c][.//e][2]

Q2 //a/following::b[.//c][.//e][.//f][.//g][2]

Q3 //a[.//@ref=..//@id][count(.//following::h[3])>10][@info>.//h]

Table 5-10: Queries for testing parallel evaluation of predicates

All tests were preformed on 16 cores in order to fully express the parallel
nature of the algorithms. Since caches affect predicate evaluation significantly, we
have performed the tests both with and without them. In the following table, the
C16 denotes standard implementation executed with 16 threads while P16 stands
for implementation with parallel predicate evaluation. The + sign marks cached
versions as it did in chapter 5.3.
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C16 P16 C+
16 P+

16

Q1 242.9 370.5 647.2 682.1

Q2 241.1 642.5 730 925.2

Q3 2103 1994 2108 1995

Total: 2587 3007 3485 3602

Table 5-11: Serial and parallel evaluation of predicates

Parallel evaluation of predicates does not improve the performance as we can
see on measured results. First two queries are much slower (with or without caches)
when predicates are executed concurrently. Last query shows slight improvement,
however the 5% speedup is almost insignificant.

Poor performance of parallel predicate evaluation is most likely caused by over-
head of the scheduler and redundant work. It seems more convenient to test predi-
cates serially and let parallelism express itself in each predicate subquery. It is also
possible we might get better results if we design a heuristic method which decides
how the predicates will be executed. Complex predicates which cannot utilize mul-
tiple threads on their own can be parallelized while simple predicates or predicates
that are highly scalable will be executed serially.
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6. Conclusions

In the presented work, we have thoroughly explored methods for processing
XPath queries and indexing XML data with strong emphasis on scalability and par-
allel implementation. The main objective was to design and implement algorithms
and data structures for parallel XPath evaluation. Various different approaches and
techniques were illustrated in chapter 2 and chosen solutions were later formalized
in chapter 3.

Presented algorithms were implemented in our prototype application and tested
on various XML documents and many XPath queries. The results indicate that our
solution scales very well up to 16 processor cores and it is reasonable to believe that
it can utilize even more threads when the size of the XML document and complexity
of processed query is sufficient.

Presented solution has outperformed other known implementations even when
it was restricted to one core. Using multiple cores, it forges its lead as libxml and
Xalan are single threaded.

Finally, we have attended the dilemma of redundant computations, in our case
the parallel evaluation of predicates. Even though this concept seemed quite promis-
ing at the beginning, practical tests have shown that in common situations these
techniques do not improve performance much and sometimes even slow down the
evaluation.

There are many questions still open for further research, however we have
successfully achieved our objectives and proved that XML query evaluation is highly
parallelizable problem.

6.1. Possible Improvements

Our prototype implements only a subset of XPath, however it would not be
difficult to integrate remaining details of the language into our model. Also our
XML representation is not completely DOM compliant yet, however, it carries the
basic concepts, hence it can be easily completed to full specification.

In chapter 5.3, we have discovered that query caches slow down evaluation
significantly. This problem can be solved by using iterative methods instead of
caches. These methods must be also combined with memory-saving techniques
since they require O(N2) of additional space. As alternative, the caches might be
maintained if heuristic function is developed in order to estimate how much a cache
accelerates evaluation of particular query and cover only those expressions which
will benefit from it.

Our implementation can exploit parallelism only on documents with suffi-
cient size (thousands of nodes at least). Additional algorithm based on bottom-up
method should be implemented to optimize evaluation of complex queries on small
documents.
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A. XPath Speci�cation

Front-end of the searching engine uses subset of XPath 1.0 [CD+99] language.
Some of the XPath features were not implemented since main objective of the thesis
lies elsewhere. When speaking about the subset, we will use the term xpath for it
is not yet fully grown XPath. It is also expected that reader has basic experience
with XPath, therefore some details are not described very thoroughly.

The main differences between full XPath and xpath are:

� Underlying DOM model (and xpath therefore as well) ignores comments,
processing instructions, and XML namespaces.
� No variables may be used in xpath.
� Function library is somewhat limited. Only few core functions were imple-

mented.
� Location steps does not recognize node type identifiers (such as node() or
text()). Only node name identifiers and ‘*’ wildcard may be used after
axis specifier.

For better clarity, this appendix will describe lexical and syntactic structure of
xpath language. String tokens enclosed by ‘’ and identifiers written in uppercase
denote lexical elements and identifiers in CamelCase are used for nonterminal ele-
ments. We will use the same grammar definition syntax which was used in XPath
specification [CD+99].

A.1. Data Types and Conversions

When xpath expression is evaluated it yields a result which has one of the four
basic data types:

� Boolean (true or false)
� number (a floating-point number)
� string (sequence of characters1)
� node-set (collection of nodes without duplicates)

Data conversions between basic types are allowed. They are either implicit
(defined by the language semantics) or explicit (by conversion functions). Each data
type may be converted into any other type except that nothing can be converted
to a node-set.

Core function library defines conversion functions boolean(), number() and
string(). Each one converts its only argument into data type of the same name.
Implicit conversions use the same rules as these functions. For more details see
section A.5.

1 We expect the string is encoded in plain ASCII or compatible charset.
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A.2. Evaluation Context

Every xpath expression is evaluated within given context . The context is pro-
vided by caller and consists of:

� the context node (reference to DOM)
� positive integer representing size of the context
� positive integer representing position of the node in context (position �

size)

Context may change for some parts of the expression (e.g. the predicates).
Details about when the context is changed are described in language semantics
(A.4).

A.3. Lexical Structure

The lexical structure is very similar to structure of XPath. Tokenization process
uses two basic rules:

� When tokenizing, the longest possible token is always returned.
� Whitespace may be used between two tokens even if it is not explicitly

allowed by the grammar. Therefore whitespace is not passed from tokenizer
to syntactic analyzer.

One expression token is defined as:

ExprToken ::= ‘(’ | ‘)’ | ‘[’ | ‘]’

| ‘.’ | ‘..’ | ‘@’ | ‘,’ | ‘::’

| NUMBER

| STRING

| NODE

| FUNCTION

| AXIS

| Operator

| WILDCARD

For better readability, we will not use any lexical identifiers for the simplest
tokens and we will rather write their text form in quotes.

Numbers in xpath are written in standard decadic format. They may even
contain decimal part separated by ‘.’. However, the number does not contain a sing.
Instead of the sign, number may be preceded by unary operator ‘-’. Processing
unary operators is responsibility of syntactic analysis. Formally the number is
defined as:

NUMBER ::= [0-9]+ ( ‘.’ [0-9]+ )? | ‘.’ [0-9]+

String literal token is any sequence of characters enclosed by ’’ or "". Literal
must not contain character ’ or " inside (depends on type of quotes used). Formally
the string token is defined as:

STRING ::= ‘’’ [^’]* ‘’’ | ‘"’ [^"]* ‘"’

Elements (NODE, FUNCTION and AXIS) are all represented as identifiers . Iden-
tifier token starts with letter or underscore and may be followed by any number of
letters, underscores, hyphens or numbers. The formal definition is:
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Identifier ::= [_a-zA-Z][-_a-zA-Z0-9]*

A set of rules is defined to determine which element is standing for parsed
identifier:

� If the following token is ‘(’, the identifier must be recognized as FUNCTION.
� If the following token is ‘::’, the identifier must be recognized as AXIS.
� Otherwise the identifier is recognized as NODE.

The identifier may also stand for an operator. Details about Operator element
are described later.

If the identifier is resolved as FUNCTION, the function name must match one of
the implemented functions in core library. Otherwise an error is reported. If the
identifier is resolved as AXIS, it must match one of the defined axis identifiers. The
xpath implements all axes defined in XPath except for ‘namespace’.

AXIS ::= ‘ancestor’

| ‘ancestor-or-self’

| ‘attribute’

| ‘child’

| ‘descendant’

| ‘descendant-or-self’

| ‘following’

| ‘following-sibling’

| ‘parent’

| ‘preceding’

| ‘preceding-sibling’

| ‘self’

Axis names are quite self explanatory. The only terms that might be little
misleading are ‘following’ and ‘preceding’ (and their variants with ‘-sibling’
postfix). For context node c the node n is “following” iff n is after c in document
order and n is not a descendant of c nor an attribute node. The following-sibling
nodes are following nodes which have the same parent as the context node. Pre-
ceding and preceding-sibling nodes are defined analogously.

Finally, only operator and wildcard tokens remain to be described. An operator
is formally defined as:

Operator ::= ‘/’ | ‘//’ | ‘|’ | ‘+’ | ‘-’

| ‘=’ | ‘!=’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

| MULTIPLY

| OperatorName

OperatorName ::= ‘div’ | ‘mod’ | ‘and’ | ‘or’

The MULTIPLY operator is represented by the ‘*’ character. Unfortunately
an asterisk is also used as a WILDCARD for node name test. Therefore we must define
rules how to determine the type of ‘*’ when such token is parsed. Similar problem
emerges with the OperatorName tokens. They are represented by identifiers, so we
need to tell them apart from function, axis, and node identifiers.
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XPath specification states that if the preceding token is not ‘@’, ‘::’, ‘(’, ‘[’,
or an Operator, the ‘*’ must be recognized as MULTIPLY operator and any iden-
tifier must be recognized as OperatorName. Otherwise the asterisk is parsed as
a WILDCARD and type of the identifier is determined by rules described above (for
function, axis and node identifiers).

A.4. Syntactic Structure and Language Semantics

The xpath syntax is described by simple context-free grammar. Starting non-
terminal symbol Expr stands for one xpath expression.

Expr ::= OrExpr

Logical operators have the highest priority. They convert result of each operand
into boolean and then perform logical operation so the result is also boolean. See
description of function boolean() for details about conversions.

OrExpr ::= AndExpr

| OrExpr ‘or’ AndExpr

AndExpr ::= EqualityExpr

| AndExpr ‘and’ EqualityExpr

Comparison operators can compare any data types defined in xpath and result
of such operation is always boolean. Furthermore, the equality testing operators
have higher priority than relational operators.

EqualityExpr ::= RelationalExpr

| EqualityExpr ‘=’ RelationalExpr

| EqualityExpr ‘!=’ RelationalExpr

RelationalExpr ::= AdditiveExpr

| RelationalExpr ‘<’ AdditiveExpr

| RelationalExpr ‘>’ AdditiveExpr

| RelationalExpr ‘<=’ AdditiveExpr

| RelationalExpr ‘>=’ AdditiveExpr

Since the operators can compare any data type with any other, special rules
must be defined how to compare different types.

If neither operand returns node-set and the operator is ‘=’ or ‘!=’, then the less
common operand is converted to the type of the other operand. We define relations
between standard types as follows: A number is less common than a boolean and
a string is less common than a number. If we compare number and string for
example, the string is converted into number. Comparison of same types is intuitive
therefore not described here.

If neither operand returns node-set and the operator is ‘<’, ‘>’, ‘<=’ or ‘>=’, then
both operands are converted into a number (using number() function). Numbers
are compared according to IEEE 754 [iee] rules.

Comparisons that involve node-sets are defined using terms of comparisons that
do not involve node-sets. This is done uniformly for both equality and relational
operators. Following rules expect, that at least one of the operands yields node-set
as its result.
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� If both objects to be compared are node-sets, then the comparison will be
true if and only if there is a node in first set and a node in second set so
that comparison of their string-values is true.
� If the other operand is string, then the comparison is true if and only if

there is a node in the node-set such that the comparison of its string-value
and the other string is true.
� If the other operand is number, then the comparison is true if and only if

there is a node in the node-set such that the comparison of its string-value
converted into number (using number() function) and the other number is
true.
� If the other operand is boolean, then the node-set is converted into boolean

(using boolean() function) and compared with the other boolean.

Both logical and relational operators are left associative. For example expres-
sion 3 > 2 > 1 (which should be true from mathematical point of view) is equivalent
to (3 > 2) > 1. First comparison (3 > 2) turns out to be true. Therefore second
comparison becomes true > 1 (true is converted into 1.0) and it evaluates to false.

Arithmetic operators convert result of each operand into number and the result
arithmetic expression is also number. See description of function number() for
details about conversions.

AdditiveExpr ::= MultiplicativeExpr

| AdditiveExpr ‘+’ MultiplicativeExpr

| AdditiveExpr ‘-’ MultiplicativeExpr

MultiplicativeExpr ::= UnaryExpr

| MultiplicativeExpr MULTIPLY UnaryExpr

| MultiplicativeExpr ‘div’ UnaryExpr

| MultiplicativeExpr ‘mod’ UnaryExpr

The minus sign may be used also as unary operator.

UnaryExpr ::= UnionExpr

| ‘-’ UnaryExpr

Union expression requires all operands to return node-sets. The result is also
a node-set created by performing standard union operation on the sets.

UnionExpr ::= PathExpr

| UnionExpr ‘|’ PathExpr

At this point all operators have been described. Therefore the only remaining
syntactic structures are literals, function calls, location paths, and filter expressions.

PathExpr ::= LocationPath

| FilterExpr

| FilterExpr ‘/’ RelativeLocationPath

| FilterExpr ‘//’ RelativeLocationPath

If the filter expression has some predicates or if it starts a location path, it
must return a node-set.

FilterExpr ::= PrimaryExpr

| FilterExpr Predicate
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PrimaryExpr ::= ‘(’ Expr ‘)’

| STRING

| NUMBER

| FunctionCall

Function call definition consists of function identifier and list of arguments
enclosed in parenthesis and separated by commas. Parenthesis are present even if
the function does not have any arguments. Each argument is an xpath expression.

Amount and type of arguments and the result type is completely dependent on
the function. See A.5 for list of implemented functions.

FunctionCall ::= FUNCTION ‘(’ ( Argument ( ‘,’ Argument )* )? ‘)’

Argument ::= Expr

Location paths are the only expression that generates node-set results. We
distinguish two types of paths:

LocationPath ::= RelativeLocationPath

| AbsoluteLocationPath

Absolute location path does not start in contex node, but in the root node
of XML document in which the contex node is present. The abbreviation ‘//’
stands for ‘/descendant-or-self::*/’ location step, therefore addressing any de-
scendants.

AbsoluteLocationPath ::= ‘/’ RelativeLocationPath?

| ‘//’ RelativeLocationPath

Relative location path starts in context node and consists of one or more lo-
cation steps. Relative location path may also start by a filter expression. In such
case result of the filter expression is taken as initial node-set for first location step.

RelativeLocationPath ::= Step

| RelativeLocationPath ‘/’ Step

| RelativeLocationPath ‘//’ Step

One location step is, in fact, a projection from node-set to node-set. It is
evaluated as follows. At first, all nodes that are reachable from initial node-set are
acquired. Whether a node is reachable from another node is defined by the axis
of the step. Acquired nodes are filtered by the node test (see below). Finally the
result is filtered by predicates (in order in which the predicates are specified).

The abbreviation ‘.’ stands for ‘self::*’ and ‘..’ is equal to ‘parent::*’.
Resemblance of ‘.’ and ‘..’ symbols to directory paths is not just coincidental for
their semantics are quite the same.

Step ::= AxisSpecifier? NodeTest Predicate*

| ‘.’

| ‘..’

Axis specifier defines the direction in which the searching will proceed. Abbre-
viation ‘@’ stands for ‘attribute’ axis. If no axis is specified, the ‘child’ axis is
taken as default.

AxisSpecifier ::= AXIS ‘::’

| ‘@’
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Node test is used for filtering nodes only by their name. It may either con-
tain a node identifier (and then only nodes with that name will be returned) or
a WILDCARD token (which stands for any name).

NodeTest ::= WILDCARD

| NODE

Finally, we have to describe predicates. A predicate is xpath expression en-
closed in brackets.

Predicate ::= ‘[’ Expr ‘]’

When set of nodes is being filtered the predicate is executed for each node in
the set. Context node for the predicate is the tested node, size of the context is
equal to node-set magnitude and position is index of context node within the set (in
document order). If the filtered node-set is result of location step which uses reverse
axis (preceding or ancestor), the nodes are indexed in reverse document order.

Only nodes for which the predicate has evaluated true (after conversion to
Boolean) are included into the final result. If multiple predicates are used for
filtering, each predicate generates new node-set (which must be subset of initial
node-set). Generated node-set is used as initial node-set for next predicate which
also generates new set and so on. Node-set generated by last predicate is considered
to be final result of the location step.

Another abbreviation is used in predicate syntax. When predicate expression
evaluates to number, it is not converted into boolean. Instead it is compared with
the position value of current context. For example: child::elem[42] is an abbre-
viation for child::elem[position()=42].

A.5. Core Function Library

Only functions specified in this section were implemented in xpath. Unlike full
XPath, no other functions may be specified in evaluation context.

Function: boolean boolean(object)

Converts its argument into a boolean using following rules:

� A number is converted into true if and only if it is neither positive or
negative zero nor NaN .
� A string is converted into true if and only if it is not empty.
� A node-set is also converted into true only if it has at least one node.

Function: number number(object)

Converts its argument into a number using following rules:

� A boolean is converted into 1.0 if it is true and into 0.0 if it is false.
� A string that consist of one number in decadic notation with optional

decimal part and optional minus sign (the leading and trailing whitespace
is ignored) is converted into a double precision number. Any other string
is converted into NaN .
� A node-set is first converted to a string using string() function and the

string value is converted into number as it was already described above.
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Function: string string(object)

Converts its argument into a string using following rules:

� Boolean true is converted into a ‘true’ string and false is converted to
‘false’.
� A number is converted as follows:

� NaN is converted to ‘NaN’
� positive infinity is converted to ‘Infinity’
� negative infinity is converted to ‘-Infinity’
� positive or negative zero is converted to ‘0’
� integer is returned in decadic form without decimal part
� otherwise the number is presented in decimal format (with the

decimal dot)

� A node-set is converted into a string by returning the string-value of the
first node from the set (in document order). If the set is empty an empty
string is returned.

Function: number position()

Returns the position value of actual context.

Function: number last()

Returns the size of actual context (position of the last node in the context).

Function: number count(node-set)

Returns total number of nodes in given node-set.
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B. Attachments

A DVD with following contents is attached to the thesis.

� Source codes of our implementation with necessary makefiles for Linux and
project files for Microsoft Visual Studio 2008.
� Comparison implementations using libxml and Xalan-c libraries for XPath

processing.
� Used libraries (TBB, libxml2 and Xalan-c)
� XML generator used for generating synthetic documents described in 5.2.1.
� XML documents and queries used for testing.
� All measured result times for every test.
� Reference documentation of code generated by Doxygen from source code.
� This thesis in PDF and PostScript format.
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