Univerzita Karlova v Praze
Matematicko-fyzikalni fakulta

DIPLOMOVA PRACE

Katerfina Op@enska

Dynamic Setup for Clusters with Multi-Master Archit ecture

Katedra softwarového inzenyrstvi

Vedouci diplomové prace: RNDr. Jakub Yaghob, Ph.D.
Studijni program: Informatika, Softwarové systemy

Rada bych na tomto méspodtkovala svému vedoucimu, panu RNDr. Jakubu Yaghebovi
PhD. za moznost vypsani tohoto tématu jako diplamprace na MFF a za jeho odborné
vedeni, pedevsim za cenné rady tykajici se samotného textu.

Dale bych chila podtkovat skupig PH-SFT z CERNu za nabidku tohoto zajimavého tématu
a za poskytnutou podporu vipehu jeho zpracovavani. Jmendavitdékuji svému
konzultantovi z CERNu, panu Gerradu Ganisovi, zpad§ a pomoc V ib¢hu vyvoje

a za veSkerou praktickou podporti gmplementaci a nasazovani algoritmu do praxe.
V neposlednfadcé dékuji také pani Ana Robertové za korekturu anginy.

At this place, | would like to thank to my supeosisMr. Jakub Yaghob, PhD.
for the possibility of presenting this project amaster thesis at the Faculty of Mathematics
and Physics, Charles University in Prague, andtter professional guidance, concerning
specifically the thesis text itself.

Further, 1 would like to thank the CERN PH-SFT gvdor the offer of this interesting topic,
and for the great support during the time | waskivay on it. Especially, my thanks to my
CERN'’s consultant, Mr. Gerrardo Ganis, for the glead help during the development
and for all technical support during the impleméntaand deployment of the algorithm.

Last but not least, | would like to thank Mrs. AnRaberts for helping me to improve
the English of this text.

ProhlaSuji, Ze jsem svou diplomovou praci napsamastatd a vyhradg s pouzitim
citovanych prameh Souhlasim se zégovanim préce.

V Praze dne 10. prosince 2009 Kiae Op@enska

Table of contents

I [0] o o 18 [ox [0 o PR UURPPPRUPPUPTRPR 6
3 N = 7= Td (o [o 11 [T 6
1.2, The PROOF SYSIEIMcciii ittt e e e e e e e e e e ee e e e e eenneeeeeesennnnns 7
1.3. Project motivation and main gOalSceceueeeeiieeieeeeieiieiiieiiiiiiee s eeeeeen s 8
1.4. Thesis Structure deSCrIPLIONiceeeeeeeeeitiiiiiaaea e e e e e e e e e e e e e eeeeeeeeeeeeneeeeeenennnnns 9

PART I

2. Master-worker Paradigm...........cooiiiiiiiiiuiimmm e e e ettt eaaa e e e e e aaaaas 10
20 S Y [o | L= 4 =] (] 10
2.2. Advantages and lIMitatioNScoocorec oo eiiieeiceeeeii e 10
2.3. Hierarchical master-worker paradigmcoeceee.oeeeeeiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 12
2.4. Improving performance with hierarchical masterker..............ccccovviiiiiiiinnnnn. 13

3. General multi-master setup pProblem............oveeiiiiiiiie e 14
3.1. Single master PlaCemENt........coooi e 14

G 00 00 S AY o] o] [To%= 14 (o] VIV 0] 1q] = T [15
3.1.2. SYSLEM CONSIIAINTS ...t 15
3.1.3. Additional constraints for SlaveRate..cccccc....coooiiiiiiiiin 16
3.1.4. Transformation to maximum flow problemcccooooiiiis 17
3.1.5. Selecting the master (algorithm).....cccceeeuvciiiiiiiii e 17
3.1.6. Environment and COMPIEXILYouvuuueuumiiiiiiiieee e 18
3.1.7. CONCIUSION ...t eeeas 19
3.2, Multiple Masters PlaCemMENT............. o eeeerereiiiiiaaaa e e e e e e e e eeeeeeeeseeeeeeeeeeeeeees 20
3.2.1. Model VariabIles ... 20
3.2.2. B-COVER problem formulationcoeeeiiiiiiii e 22
3.2.3. B-COVER complexity: NP-hard.......... ... 24
3.2.4. (0] o Tod U] [0] o P 24

PART Il

4. The PROOF SYSIEIM OVEIVIEW.....uuuuiiiiieee e e ee e e ettt e e e e e e e e e e e e e eeeeeeeeeeees 25
4.1, ROOT framEWOIK........uuuiiiiiiiiiiiiiis et e e e e e e e et ber e e eees s s s aanaes 25
4.2. PROOF deSigN gOAIScuuuuuiiiiiiieiieeeeaes ettt e e 25
4.3. PROOF multi-tier master-worker arChit@CtUlBcccvvvvvviiiiiiiiiiiiie e 26
4.4. Packetizer - load-balancing engine of PROOFE.............cooviiiiiiiiiiieeeeeeeee, 27
T \V L= T o [T o [0 10 11 01U | £SO PUPPP 28
4.6. Scheduling in PROOFoouuitees o esess s e e e eeeeeaeeeeeesesaannssn s sssneesnnneeee s 29

5. HEP data analysis With PROOFuuuutmmmmeeeeeiiiiiiiiaas e e e e e e eeeeeeeseeeeeeees 30
5.1, TYPICAl USE-CASEcceeieiieeiririenmmmmmmm e eeeeeeeeeeeeeettaaasa s s e e aaeaeeeeenaaaaaaaaaeeeennnnnnes 30
5.2, TSelector qUEry INtEIfaCE............o oot 30
5.3. Simple sample PROOF SESSIONiiiieceeeeeeiie e eeeeeeeeeeeeeeeean e eeeeeen s 32

6. PROOF query processing on single master configuraiinccccoeeeveeiiiiiinieeeeenns 35
6.1. Typical PROOF CIUSLENcciiiiii e e e e e e e e e e e e enneeeeennnnes 35
6.2. Task execution phases for single Masteruuiiiiiiii e, 35

6.2.1. INIEANZATION ...t e e e e e e e e e e e 36
6.2.2. (0] 401 010 =11 (0] o U URRPPPPPPTPPIN 36
6.2.3. FINALIZALION ... 37
6.3. Resource utilization diagramccocceeo oo 38
6.4. Idle periods during COMPULALION.........cemmmurerrurnniiieieeeeeeeeeeeeeereeeeerenenrnnnnneeennne 38
B.5. SUMMAIY ...t e et e e e e e e e e e e e neeesna e e e eennennns 39

7. PROOF query processing Using MOre MASLEIS......ccauuuuiiiieeeeeeeeeeeeeeeeeenieninnnnnns 1.4

7.1. One level multi-master configuration......ccc.ccoooooeee i e 41
7.2. Task execution phases for more Masters......ccc...ooovviiiiiiiiiiiiiiii e, 42
7.2.1. Top-master iNLAlIZAtION............ue e e ee e 42
7.2.2. Initialization of one SUb-MaSter ..o 43
7.2.3. Initialization Of S SUD-MASTErS........coooviii 43
7.2.4. (0] 301 o101 =11 (0] o H U URRURPPPUPPIN 44
7.2.5. Finalization of one sub-master ...t 44
7.2.6. Finalization of S SUD-MaSters ..., 44
7.2.7. Top-master fINAlIZAtION.............. e e e e eeeer e eees 44
7.3. EXecution tiMe SUMMAIYuuuuumiimm e e e eeeeeeeeeeieittbie s e e e e e aaaeaee e e e e e e 44
7.4. How computation can be speeded up by moreamsast..............cccceeeevviiiieiiiiinnnns 45
7.5. Optimal number of masters for finalization................ccoooeiiiiiiiiiiiiiccc s 47
7.5.1. Another view on parallel finalization of neamastersccccccvvvvvvvvcceennnnnn. 48
7.5.2. Speed-up of parallel finalization......ccccc..oooooiiiiiii e 49
8. In search for multi-master setup algorithmooeeviiiiiiiiieeeee 52
8.1. Using state-of-art KNOWIEAQE....... .o 52
8.2. Record-based MMS algorithim ... eeeeeeeeeeeeeeeeeee e 53
8.2.1. Algorithm’s qUICK OVEIVIEW..........cooi oo 53
8.2.2. Changing CONAItIONScooiiiieeieeeeeee e e e e e e eeee e e e 55
8.2.3. Detailed description of record-based MM®atgm...........ccccccoeeviein. 55
8.2.4. Optimistic estimation formula..........ccceeiiiiiiiii s 61
8.2.5. Pilot implementation [@arningcccoee oo 61
9. Merger-based multi-master setup algorithmccc.ouvveiiiiiiiiii e 63
9.1. Optimal configuration for COMPULAtIONccoo.oeiveiiiiiiiiiiiee e 63
9.2. Optimal configuration for finalization....cccc.....oovvvvviviiiiiiii e, 64
9.3. Detailed description of merger-based algorithmy............ooooviiiiiiiinin. 65
9.4. Correctness and fINIEENESS o rrrrrreiiiiieeeeaaaae e e s aeeeee e 69
9.4.1. Algorithm IS fINITEccoeee e 70
S 0 5 A\ (o To 11 0 g N ES R o0 (=T o SRR 71
9.5. Supporting algorithm’s robUSINESSeceeiiiiiiiii e 71
9.5.1. Confirmation of merger’s start-uUp SUCCESS.am.covveveeeeerirrreeeeiiiiiiiiinene e 3
9.5.2. Confirmation of successful merging from negrp workercccccevvveeee 75
9.5.3. Confirmation of successful merging from warto master................cc......... 76
9.5.4. SUMIMABIY ...ttt e e ettt e e e e e e eb e e e e e e eaa e eaeeeeeeessnn e eeeas 77
10. Benchmarks of merger-based algorithm...........ccccoceiiiiiiiiii e 19
10.1. Measurement Methodologyoooi i ieeeeeeeeee e 79
10.1.1. TeSt @NVIFONMENTccciiiiiiiis ettt e e e e e e e e e e e e s st eeeees s e e e aans 79
10.1.2. TeSt ApPPrOACK.....cccoiiiiiiieeee e e e e e 79
10.1.3. TeSTAAIA.....ciieieiiiiititee s ettt ettt e e e e e e e e e e e e e e e s snnnr e e e e e e e e e e e e e s 80
10.2. Benchmarks of queries using standard objects............cccceviiiiiiiiiiciinnn. 81
10.3. Benchmarks of queries using optimized 0bJECIS...........cvvviiiiiiiiiieeeeeeee, 2.8
L1, CONCIUSION ... ettt e e e e e e e e e e e e e e e eeaeaaeeeeeeeeeeessneennnnns 84
11.1. FULUIE WOTK ...ttt ettt et e e e e bbb ane s 84
RETEIEINCES ...t ettt ettt e e e e e e e e e bbb bbbttt et e e e e e e aaaeeeeeas 86
Appendix A — Benchmarks of merger-based algorithm...............ccccocviiiiiiii e, 87
Appendix B — Content of encloSed DVDcooooiiiiiiiiiiiiiiiiee e eeeeeeeeeeees 90

Nazev prace: Dynamic Setup for Clusters with MM#aster Architecture
Autor: Katgina Op@enska

e-mail autora: opocenska@gmail.com

Katedra: Katedra softwarového inzenyrstvi

Vedouci diplomové prace: RNDr. Jakub Yaghob, Ph.D.

e-mail vedouciho: jakub.yaghob@mff.cuni.cz

Abstrakt: Diplomova prace se zabyva problémem mméster konfigurace pro pibacové
clustery, na kterychdii systém PROOF. PROOF je framework postaveny reemaorker
architektite, ktery se pouzivaigdevsim na analyzu fyzikalnich dat v CERNu (Evrépsk
organizace pro jaderny vyzkum). Cilem prace j&twptimalni pdet mastet, pii jejichz
pouZiti je dana uloha zpracovana v nejkrat8ase. Na zakladanalyzy pébéhu zpracovani
tlohy je gedstaven a naimplementovan tzv. merger-based #igmj tedy algoritmus
zaloZzeny na konceptu mergera. Merger je uzel, kderfghem vypd@tu chova jako worker,
ale Ehem posledni, a n&idka velmi naréné faze sltovani mezivysledk pini roli mastera.
Pcatet a fesné ufeni mergak probiha dynamicky dhem zpracovani dlohy a jedeno jak
velikosti clusteru, tak i jeho aktualnim vykonema Mavr prace je provedeno srovnani
merger-based algoritmu s dosavadnim klasickyfistygppem, a to natenych uUlohach
a pro Gzné velikosti clusteru. Nagrené zrychleni je srovnano s teoretickymi hodnotami.

Kli¢ova slova: master-worker paradigma, multi-masterfigorace, ROOT/PROOF, merger

Title: Dynamic Setup for Clusters with Multi-Mast@&rchitecture
Author: Katé¢ina Op@&enska

Author’s e-mail address: opocenska@gmail.com
Department: Department of Software Engineering
Supervisor: RNDr. Jakub Yaghob, Ph.D.

Supervisor's e-mail address: jakub.yaghob@mff.cani.

Abstract: The work deals with the problem of mufiaster setup for clusters running PROOF,
which is a master-worker based framework used aRNEEuropean Organization
for Nuclear Research), preferably for analysis @hhenergy physics data. The goal is
to determine an optimal number of masters for tivergtask in order to make the task
execution time as short as possible. Based onrtaklysas of PROOF processing work-flow,
the merger-based algorithm is designed and impledert introduces a concept of the
merger, which is a node acting as a worker durirggdomputation phase, and as a master
during the final phase of sub-results merging. Tlaenber and selection of merger nodes
is performed dynamically, and depends both on thster size and it's recent performance.
The performance of the merger-based algorithm ispaved to the standard approach
on several queries and several sizes of the cluBber measured speed-up is confronted with
the previously invented theory.

Keywords: master-worker paradigm, multi-master gpamtion, ROOT/PROOF, merger

1. Introduction

1.1. Background

Today’s high-energy physics (HEP) experiments pcedextremely large amounts of data,
which need to be stored and further processedowily the recent start-up of the LHC
(Large Hadron Collider), the world’s biggest pdri@ccelerator at CERN Switzerland,
physicists are getting ready for arrival of petaelsyof new data. They hope that its analysis
could help them to answer the most important qoestof today’s particle physics, such as

the origin of the matter, and thus of our Universe.

The LHC will generate 40 million proton-proton dsibns per second at the center of each
of its four main experiments (ALICE, ATLAS, CMS, ICGb). However, not all the collisions
are interesting from the LHC physics program arel ¢hallenging task of specialized data
acquisition systems, located very close to theatilets, is to reduce the huge collision rate to
a manageable rate of O(100 Hz) including all irdeng collisions. The output of the
acquisition system is made of raw detector signddsh are not directly usable for physics
analysis. The raw data are therefore reconstruckd transformed into physical properties

such as energies, charges, tracks etc., whichedylend-user physicists.

It is expected to record 100 — 200 ‘interestingllismns per second. This turns into
the registration of 1§ collisions per year, which means up to 15 peta{i& million GB)
annually. If we wrote all that data to CD’s and them one on another, we would get a stack

that was about 20 kilometers high.

Expecting to have that huge amount of data comuegyeyear, we need to think carefully
about effective ways of its storage and process®igviously, only CERN’s computing
capacity would never be enough. However, the WdddwLHC Computing Grid
(WLCG) [1] project is hoping to solve this probleby exploiting various computing
resources around the globe. The WLCG is a globldtmaration of 33 countries, involving
more than 140 computing centers world-wide. The wn¢he Czech Republic is located
at Institute of Physics, Academy of Sciences of@aech Republic in Prague. The goal of the
WLCG is to create and maintamhata storageand computing infrastructurdor the data
coming from the LHC experiments, and enabling tlteeas to this data to thousands
of involved physicists regardless of their physioghtion.

After the initial processing and back-up of thedmong data mainly on tapes at CERN

(Tier-0), it is then distributed to about 10 primary looats around the world referred

! European Organization for Nuclear Research

-6 -

asTier-1 centers. Tier-1’s make the data available to atol@0 Tier-2 centers for specific
analysis tasks. Individual physicists connect teer-®'s from their home institutions
(Tier-3's) to perform the analysis they demand.

To do this, they need powerful, yet not too congikd tools, allowing them to process the
large amounts of the data in reasonable time. Ty way to achieve this is to exploit the
inherent parallelism of HEP data (the collisions mdependent) and hence process in parallel
different portions of the data samples.

The traditional way how to approach it is to umech systembuilt on apush architecture
meaning that the tasks are divided into severaitasks in advance. These sub-jobs are then
run in parallel and in the end, their sub-resulesraerged. The main advantage is that there is
no need for the program modification, i.e. the samer code can run locally as well as
on a batch system. However, the length of the emtiecution is limited by the execution
time of the slowest sub-task, which leads to a iBa@mt prolongation in the case
of an under-performing node or sequential subngtoh some sub-tasks. Other weak points
of the traditional batch systems are e.g., thetiesd feedback and exploiting of multi-cores
machines. All these disadvantages are supposea tovercome by theull-architecture

based system introduced in the following sub-chapte

s 100-200 MB/sec
g‘s:;":l CERN Computer Center Tier-0
‘// l \5-1 0 GBisec

Tier-2 center [l Tier-2 center [l Tier-2 center ‘ Tier-2

e e § .8 Tier
(I Tier-4
—_— .

Figure 1 - Multi-tiered view of the WLCG
(Image source: CERN)

1.2. The PROOF system

As the ROOT software system [2] is heavily usedm®pen-source framework for HEP data
analysis at CERN since the mid-1990s, it was nhtorghink of its extension from single-

core computers to multi-core machines and compmlisters.

-7-

The project called Parallel ROOT Facility (PROOR], [[4] started in 1997 as a ROOT
extension and a joint effort between CERN and tres$achusetts Institute of Technology.
It is meant as an alternative to batch systemgdotral analysis facilities and departmental

workgroups running Tier-2’s and Tier-3’s.

PROOF builds on the well known master-worker patatbmputing paradigm. The master
node distributes the work to a set of workers usipgll architecture i.e. workers ask for a
new sub-task when they have finished the previons. dn the end, the master also
automatically merges their sub-results. PROOF ¢tsm #se a multi-master setup where a set
of statically defined sub-masters are each ingshaf controlling the work of a given sub-set

of workers. The top-master node then distributesraarges the work of these sub-masters.

One of main experiments, which has already adopR@OF is ALICE [5]. It aims to use

PROOF preferably for prompt analysis of proton-protollisions data and pilot analysis
of heavy ions (Pb-Pb first) collision data. The Igofa its PROOF cluster CAF [6] is to have
around 500 CPU’s together with around 100 TB ofallycselected data at the disposal
of ALICE users. This cluster does not aim to repléhe Grid for analysis but to provide fast
access to significant data samples so that thela®went cycle of physics analyses is

speeded up.
CAF Schema

Tier-1 data export
@ Tape storage

Experiment

Disk Buffer

Sub set (moderaked)

Figure 2 — Selecting data from ALICE experiment forstorage on the CAF computing cluster
(Image source: [6])

1.3. Project motivation and main goals

The main goal of this thesis is to develop and en@nt an algorithm solving thaulti-
master setup (MMS) probledor PROOF. By themulti-master setupor configuration,
we mean the master and worker roles’ assignmenmgnotuster nodes, which follows

the classic or the hierarchical master-worker pgraddetails in Chapter 2).

-8-

The problem of multi-master setup then the problem of assigning master and wortders
to individual nodes in order to minimize the togalecution time of the given task. In other
words, should more masters be used instead ofrigke snaster on a given cluster for a given

task. If so, their count, organization, and exacttion should be determined.

Currently, only static assignment of nodes via muration files is supported; so the same
cluster setup is used for all types of incomincgks$adn some cases, this may lead to a non-
optimal performance as the analysis type couldedngm more data-bound to more CPU-
bound. The system should be able to decide dyndlgnighich nodes of the PROOF cluster

should act as sub-masters if any and which ones#dsers.
1.4. Thesis structure description

The work is divided into two main parts. In Partive focus on the master-worker paradigm
and master setup problem in general; while in Pare concentrate only on PROOF and its
special features. This specification of initial ddions will also shift the core of our problem,

as shown later.

Part | comprises Chapter 2 and Chapter 3. Chaptgves the reader a basic understanding
of the master-worker paradigm and its variation]leda hierarchical master-worker.
In Chapter 3, we focus on both single and multiterasetup problem in heterogeneous

environments; and we present recent knowledgeisndhic.

Part Il starts with Chapter 4 devoted to detail®DB®F description followed by Chapter 5,
focusing on PROOF from end-user’s point of viewOhapter 6, we analyze PROOF query
processing and its individual phases when the singister configuration is used. Chapter 7
continues the topic, as its focus is mainly conedran the processing of a query on a multi-
master configuration. Both these chapters serveoasces of facts, features, observations
and computations later used for the design of a MdM&orithm. First, we introduce
the record-based algorithm in Chapter 8 and we @iswuss its pilot implementation learning.
In Chapter 9, we present the merged-based MMS idigor which was later successfully
implemented and tested on the Alice CAF clust&€BRN. Some of its performance statistics
and benchmarks are presented in Chapter 10. llshsegment, Chapter 11, we summarize

the accomplishments of this project and discussassible future development.

PART |

2. Master-worker paradigm

In this chapter, we focus on the master-workergigma in general. We discuss and evaluate
its usability, and both advantages and limitatidviereover, we show how its scalability can
be enhanced by deployment of more masters; andavedp an example where this approach

has already helped.

The intent of this chapter is to offer to a readanore broaden perspective before starting
the description of the PROOF system itself in Céagt This general introduction will also
help us to distinguish more easily between theufeatcoming from the paradigm itself and

features which are linked specifically to PROOF.

2.1. Single master

In (single) master-worker or master-slave basedicgins, all the nodes have a role

of aworkerexcept a single node, which is called thaster In the simplest form, the master

node starts the task, distributes the work to itwkers, collects back their sub-results,

and creates the final result by merging these sabls. Accordingly, each worker node

accepts the work assigned by the master, procéssss sends back its sub-result.

For some long-running tasks, it is more convenamd also safer to use a finer granularity
when distributing the work. In such a case, theteragadually sends pieces of the task to its
workers and can also gradually collect their suduits. However, this also puts more load
on the master node itself, as it runs both the waigtribution and sub-results merging

at once. An alternative is to distribute the workdpally in smaller pieces, collecting all sub-

results at once in the end.

In some master-worker models, the master node lsanparform direct computations, while

in other models it only distributes and collects thork. Both variations can be converted
to each other easily. If the master cannot perfany direct computation, we can simulate it
by adding one more process - the worker process the same node. On the other hand,
master’s ability to compute can be usually supmedsy setting the appropriate computing

rate of the master to zero.
2.2. Advantages and limitations

The master-worker paradigm fits perfectly to thegassing of naturally parallel HEP data,

as well as to many other tasks being parallelizathy. Some other problems commonly

-10 -

solved under the master-worker paradigm are MongloCsimulations [7], genetic
algorithms [8], and N-body simulations [9]. Thessls are all characterized by performing
the same operation on atidependenpieces of input; in our case, these are the inuigre
collision events. The result is that the same amate run on all the worker nodes, just the

input differs for each of them.

Moreover, communication takes place just betweerkers and the master. There are neither
communication nor synchronization requirements agworkers so they can then process
their parts independently and at their own procgssates. This could be especially useful
in heterogeneous environments like computationadlsgrThe available geographically
distributed resources are usually of various poweansl the network latency is significantly
higher. Thus the communication can become a ligifeector of the overall performance
more easily than on a local homogeneous clusteweher, the requirement of the minimal
communication is usually in the opposite with themaénd of effective scheduling,
as advanced scheduling strategies are more comatiwely exhaustive than a simple work
distribution.

Another feature that makes the master-worker agprcaitable for still more popular grid
computing is its failure tolerance. If a workerl$aduring the computation, its work can
be dynamically reassigned to another worker; ands ithe only part that needs to be
recomputed due to the sub-tasks independence. ©rottrer hand, if the master fails,
the computation process must be restarted fronbelgenning. We say that the master creates

the single point of failure in the master-workepkgations.

Master-worker paradigm simplified summary

Advantages Disadvantages

Simple for design and implementation Single poirfedure

Large scale of applicability Limited scalability

Weak communication and

synchronization requirements

Failure tolerant

Table 1- Master-worker paradigm summary

Moreover, the master can easily become a bottl&-imea whole system if there are too many
workers which need to be served. In the case mimany workers trying to communicate

with the single master, there is a high probaboitgome congestion. The incoming messages

-11 -

from workers are not processed immediately ther, ibstead queued on the master.
As a consequence, some workers may become idlegdtire computation phase as they do
not get their input task immediately. It is alwgysssible to find such number of workers,
which is simply unmanageable for the single madtkeerefore, we say that the master-worker

applications have limited scalability.

Another related issue is the final merging phaséhemmaster. The merging is not parallelized
and could make a significant part to the whole a&ea time.

A natural solution to the above mentioned perforceadegradation problems is deploying
of more masters. Each of them manages just a pasailable workers; and therefore, later

merges just a part of their partial results.

2.3. Hierarchical master-worker paradigm

We refer to thehierarchical master worker paradigras a variation of the master-worker
paradigm with two or more levels of masters. On tiye level, there is the single master
called thetop-master, coordinatoor supervisor It distributes the incoming task to another
level of masters, which are calleslib-masters Sub-masters either distribute the work
to another level of sub-masters or directly torthedrkers. In other words, only sub-masters

on the last level communicate directly with workers

Again, the whole configuration follows a tree pattewhere the root of the tree is
the top-master, leaves are workers, and the inodesiare sub-masters. In fact, the same
distribute-and-merg&vork pattern is applied on each level. The avesige of the distributed
work (sub-task) is expected to vary on each leiebrder to keep all the workers busy, the
top-master distributes greater parts of the workgsub-masters than these sub-masters do

to their workers.
bigger + lower

top-master
average communication

sub-task size intensity
sub-masters

workers

smaller higher

\J

Figure 3 - Average sub-task size and communicatidantensity in the hierarchical master worker paradigm

As a consequence, the communication intensity gbdri on lower levels, which could be

taken advantage of especially in heterogeneousr@maents. The sub-master and all its

-12 -

workers could be put on some tightly coupled conmgutresources as they are expected

to communicate more frequently. The overa

Il perfamce may then become better even if the

single master has never been an obvious perforntatte-neck before.

real computing

Comparison of general features

Single master More masters

As many nodes as possible devoted|t8ome nodes at least partially devoted

to management work

Limited scalability

Improved scalability

Simple work distribution

More work distribution ptes

Communication channels determined

by locations of workers

-

Smart positioning of sub-masters ca

improve communication channels in

heterogeneous environments

Table 2 - Comparison of general features of the syjhe and hierarchical master-worker paradigm

2.4. Improving performance with hierarchical master-worker

In [10], the authors discussed the impact of therdnchical master-worker paradigm

on the performance of an application, which sotheBMI Eigenvalue Problery a parallel

branch and bound algorithm. BMI Eigenvalue Problésn an optimization problem

of minimizing the greatest eigenvalue of a bilineaatrix function. To solve the BMI

Eigenvalue Problem, they proposed an algorithmglvie based on the hierarchical master-

worker paradigm. They made a comparison of its goethnce (on a grid test-bed)

with the performance of the previously used conemal master-worker based algorithms:

“The results showed that computation with the come@al master-worker

paradigm is not suitable to efficiently solve thetimization problem with fine

grain tasks on the WAN setting because communicati@rhead is too high

compared to the cost of tasks. The hierarchicalterasorker paradigm avoids

performance degradation caused by high communicatieerhead by putting

frequent communication between a master process veoidker processes in

tightly coupled computing resources. It also eliat@s a performance bottleneck

on a master process and improves performance sitiyaby distributing work

among multiple master processes.”

-13 -

3. General multi-master setup problem

In this chapter, we focus on thgeneral multi-master setup probleme., which nodes
to choose as master(s) in heterogeneous environmeatder to maximize the number
of processed tasks per time unit. It is expectatl bt only computational resources, but also
communication channels, are allowed to have differeharacteristics; therefore,
the determination of the optimal master(s) locggpean be a very complex task. However, it
still has a high importance, as different configioras can considerably affect the overall
execution time of processed tasks.

First, we present the work ofShao, Berman, Wolski: Master/slave Computing
on the Grid[11], where the authors addressed the resoureetgel problem within the
steady-state master-worker scheduling frameworke., i. how to determine
a performance-efficient placement of master andresl@rocesses running in shared,
distributed, and heterogeneous environments. Therollow up with the work oBanino:
Optimizing Locationing of Multiple Masters for MastWorker Grid Applications[12],
which showed that extending of this problem to iingdlocations for more masters also
significantly leverages its complexity. It is impant to note that both works did not directly
address the dynamically changing nature of largégescomputing platforms. However, they

claimed that a dynamic context may be often vieagd succession of static contexts.

3.1. Single master placement

The work-rate-based model for the master-worketiegipn performance proposed in [11]
builds on the network connectivity graph, where esdepresent processors, i.e., worker or
master nodes and edges represent network links gantbese processors (details
in Chapter 3.1.6). The goal is to determine the temagrocessom and the set of slave

processors /7S so that the applicationisork rate(definition follows) is maximal.

In the following figure, we have a simple exampléghwprocessors A, B, C, D connected
through networks Netl, Net2 and Net3.

50
Net3

150 ‘ 10

Net1 Net2
80
200

0
A B (o4 D

Figure 4 - Processors A, B, C and D connected thrgh networks Netl, Net2 and Net3
(Image source: [11])

-14 -

3.1.1. Application work stages

The application’s workis defined as a set of divisible tasks, which eaeh completed
by progressing through the following 4 stages:

1) Transmission of a commarnd initiate a task on one of the slave processocding
all the necessary data.

2) Execution of the tasbn the selected slave.

3) Transmission of resultsom the slave back to the master.

4) Immediate processing of task resuftsm the slave that must be done by the master.

Considering Figure 4, if processor A is chosen les master, a task intended for slave
processor C during Stage 1 will employ the useatiorks Netl, Net2 and Net3 to transfer
required data from processor A to processor C.rguBitage 2, the task will utilize processor
time on C to run task computations. During Stagi@& task will again utilize networks Netl,
Net2 and Net3 to transfer results from C to A. Fpnaduring Stage 4, the task will utilize
processor time on A to process the incoming resuitsto prepare for initiating of additional
task transfers to C.

3.1.2. System constraints

Each system resource, i.e., a processor or a rietwgolimited by a constraint determining
how many tasks it can process in a time unit. b1 ¢hse of network, Wye(n) determines
how many of tasks it can transfer in a time unitt processor, we distinguish two different

processing rates: master work-riasiercpi) and slave work-raté/siavecp(i). Formally:

* Wuastercpdi) IS the maximum master work rate of processorhis is determined
by processors capacity to perform Stage 4 computations for &ifipe application.

* Wesjavecpdil) is the maximum slave work rate of processorThis is determined
by processors capacity to perform Stage 2 computations for aifipdcapplication.

* Whe(n) is the maximum communication rate of network This is determined
by networkn’s capacity to perform Stage 1 and Stage 3 commuaoicédr a specified

application.

In Figure 4, label by an edge represeWis., upper number by a processor represents

Wsiavecpuand lower number by a processor repreS@isercru

Further we define:

» SlaveRate(m, sis the task completion rate (in tasks per unittiofe) occurring

between mastan and slaves.

-15 -

Apparently, SlaveRate(m, s)s determined by the above mentioned system resour
constraints as it involves the transfer and contmrtaf the task as well as the back transfer
of the result and its final processing on the mraste

We can express the total rate of task completions fmaster-worker application as the sum

of task completions by individual workers becaussrtprocessing is independent.

+ AppRatém,S) =" SlaveRatém,s)
s0s

To find the execution time for an application, weed to know total number of taskswhich
this application comprises. Then we can determire @xecution time for masten and

set of slave processogsn the following way:

T
AppRatém, S)

 ExecTimém,S) =

3.1.3. Additional constraints for SlaveRate

Application’s performance can be deduced from \alioe SlaveRate(m, s)In order to find

out these values, the following constraints foteysresources must be met:

1) SlaveRate(m,ix Wsjavecpdi)

2) Y SlaveRatm,i) <Wiastercpm)

ias

3) Y SlaveRatém,i) <We{n)

iOShareNetG,S,m,n)

Auxiliary function ShareNet(G, S, m, n)ised in constraint 3 takes as input network
connectivity graplG, set of slaves processg§smaster process, and network resourae Its
output is the set of slave processes figmvhich share the use of when communicating
with m.

Simply said, the above mentioned constraints ({3)—reflect natural limits of the system.
If some resources are used by more entities at oretevork links, master node), then the
performance of these resources is shared by tmegies Obviously, the goal is to find such
SlaveRate values which meet these constraints and also yidle largest value
of AppRate(m, S)rhe solution then corresponds to the configuratwamch delivers the best

achievable application’s performance.

-16 -

3.1.4. Transformation to maximum flow problem

We can convert the problem of determinBigveRatesalues to the maximum flow problem
where:

» Slave processes from seare sources for flows amdis the sink for all flows.
* The flow constraints correspond to MWRiastercp(i), Wsiavecp(i), andWie(N) capacities.

* TheSlaveRate(m, shlues are the individual flows we wish to find.

The problem can be solved by using some of the kmellvn max-flow algorithms. The basic
idea is to run the algorithm for severalcandidate processes and choose the one allowing
the maximal flow in the system. It is obvious ttiad processor with the great®8astercpi)

does not have to necessarily allow the greateslicapipn’s performance. For example,
considering the processors in Figure 4, host A thes biggestWuastercp(i); however,

the best performance (the highégipRaté is reached when processor B is chosen as the
master (Table 3).

Master | Wuastercpu| SlaveRate SlaveRate SlaveRate SlaveRate AppRate
location m (m) (m, A) (m, B) (m, C) (m, D) (m)
A 200 0 60 50 0 110
B 150 80 0 50 0 130
C 60 50 0 0 10 60
D 90 40 0 50 0 90

Table 3 — Application’s work rate depends on the mster location
3.1.5. Selecting the master (algorithm)

The algorithm presented in [11] is based on thel-kedwn Ford-Fulkerson algorithm.
The estimated flow rate for each master candidatekept augmenting by adding
the contributions of slave processors. First, thestreffective nearby slaves are added,
l.e., those with the highe¥®¥saecpii), reachable within the same local network as theenas
candidate. Then the most effective slaves fromrotieéworks follow. Resource limits have

to be checked all the time.

The entire master selection algorithm in the oagiorm is provided below:

/1 Preparation
For all networks k
Cal cul at e maxi mum net wor k capacity Wet (k)
For all processors j
Cal cul at e maxi mum mast er processor capacity Wvaster CPU(j)

Cal cul at e maxi mum sl ave processor capacity WSl aveCPU(j)

217 -

For each candi date master processor p on local network n

{

}

Set sum for candidate slave work rates CandRate(p) = O
Set found set Found(p) to enpty
For all networks k
Set network utilization sumNetUil(k) =0
Get maxi mum capacity WNet(n) of local network n

Get nmaxi mum naster processor capacity Whst er CPU(p)

/1 Add suitable processors fromthe same | ocal network
VWi | e CandRate(p) < WNet(n) and CandRat e(p) < Wwhst er CPU(p)
{ Sel ect new processor s fromsane local network as p with the
| argest avail abl e W8l aveCPU(s) val ue
Get fraction F of WBl aveCPU(s) that will not cause utilization
NetUtil (n) to exceed WNet (n)
Add F to CandRat e(p)
Add F to NetUtil(n)
Add processor s to found set Found(p)
}
Total candi date work rate CandRate(p)= m n(CandRat e(p), Whast er CPU(p))
Total local network utilization NetUtil(n) = CandRate(p)

/1 Add suitable processors from other |ocal networks
VWi | e CandRate(p) < WNet(n) and CandRat e(p) < Wwhst er CPU(p)
{ Sel ect new processor g fromoutside |ocal network with
the | argest avail abl e W8l aveCPU(q) val ue
Get fraction F of WBl aveCPU(q) that will not cause
utilization NetUtil (i) to exceed WNet (i) for any network i
Add F to CandRat e(p)
Add F to NetUtil (n)
Add F to other NetUtil (k) where network k is involved in
conmuni cati ons between processors p and q
Add processor g to found set Found(p)

Sel ect processor p with |argest CandRate(p) as naster

Sel ect processors from Found as its slaves

3.1.6. Environment and complexity

In [11] there is also presented a way how to obtaeninput parameters for the model and

how to derive a logical view of resource intercartien by using a logical network

configuration discovery tool called Effective Netod/iews (ENV) [13]. The output of the

ENV tool is a simplified network graph represeistatwhere the entire system can be viewed

-18 -

as several sets of processors connected by lotabries. Each of these local networks is then

connected to other local networks by, at most, lenel of remote networking as depicted

in Figure 5.
Metwork 4

I il [, |
| | i

| etwork 1 : | etwork 2 || etwbrk 3 :
| 1 T |
| T | |
I ol): 1 |
| T (. |
| 1 1l |
I T | |
Localnework 1 _________ | localnework2 | ilocalnetworkd |

Figure 5 — Simplified logical graph representatiorproduced by ENV
Therefore:

* Data transfers between nodes on the same locabriefass through only one level
of networking (“1 edge”) and encounter only onentek resource constraint.

» Data transfers between nodes in different localvadts pass through three levels
of networking (“3 edges”) and encounter three neking constraints.

» All slave work rates must meet the resource comggraf the master processor.

At the most, four constraint tests must be therckbe for each master-slave pair. Having
n nodes in the system, therens* (n-1) possible master-slave pairs. As the work needed

for one pair is limited by the constant, the tatigiorithm complexity is O@).

3.1.7. Conclusion

It was shown that the master selection problem lmantransformed to a maximal flow
problem in a graph with a special simplified tomptdFigure 5). Because of this topology,
the problem of finding the master and the setafes$ with the highe#tppRatecan be solved

by a max-flow-based algorithm in Gjn

If we want to place more than one master and firséteof efficient slaves for each master,
the problem becomes substantially more complexthi system ofn nodes, there are
n possible locations for one master. However, if want to places masters in the node

n

S
pairs rather impractical. In the next chapter, wespnt [12] where the author showed that

system, there ar%] possibilities, which makes the approach of an egtnai trial of all

such a problem is NP hard.

-19 -

3.2. Multiple masters placement

Cyril Banino: Optimizing Locationing of Multiple Mters for Master-Worker Grid
Applications[12] introduced a cost model for establishing aperating of more masters
on a platform with heterogeneous environment. Tystesn is expected to deal with a large
number of equal-sizedpplication tasks These application tasks are modeled as requiring
some input data file of siz& and producing some output data file of sfige Input files

(tasks) are generated, and output files (resulestallected on master nodes.

The problem is to select such set of masters thaiakimizes thesteady-state throughput
of the platformi.e., the total number of all application taskegessed by all workers within
one time-unit. All processors are expected to dparader thdull overlap, single-pormode,

which allows them to perform the following actiasimultaneously:

* Receiving data from at most oogits neighbors.
* Performing some independer@mputation.

* Sending data to at most oakits neighbors.

This means that the master nodes do not only blig&ithe work and collect results, but they
can also perform some of their own computationse Ghestion is how much of the work

to compute on themselves and how much to distritaut¢her nodes.

After the start-up phase, all the resources are@rp to operate in@eriodic modelt means
that for each node we can determine fraction ofetispent on receiving, computation,
and sending during one time-unit of the steadyestagime. This allows for computation

of the steady state throughput of the entire ptatfo

-
P
€12 //A\ l'/ll S
g El.%
T, " T R \j
= | P — Fai
‘ vy M
Eglj‘f 'L'ﬂﬁ Ca e €4.7T
I,/;“\I If ; 1 e, 7 s P’:\I
O Y N

Figure 6 - Grid graph: Vertices represent processa, edges represent communication links
(Image source: [12])

3.2.1. Model variables

The target architectural framework is representgd goaph G = (V,E) as illustrated

in Figure 6. VerteXP; € V represents a computing resource of weighfw; > 0), meaning

-20 -

that processoP; requiresw; units of time to process one task. In other wotls, highemw;

the slower the processor is.

Edgee;: Pi — P, represents a communicating resource having a baltiewgqual toy;, which
limits the amount of the data that can be tranetean linke; per time unit in both directions.

Further, we denote:

* Cjj — number of time units needed to transfer anput task from processorP;
to neighbor processét (c;> 0)*

e C’jj — number of time units needed to transfer auput taskfrom processorP;
to neighbor processét (c’;;> 0)

* Jn £ V-the index set of the master candidate’s processor
i O Jn X € {0, 1} the decision variable to place a master at loc&jpne.,x = 1 if
Pi is chosen as a master, aqe 0 otherwise

» f; - the fixed cost of establishing a master at ioce®; (f; > 0)

* i -the per task cost of operating a master atiocd (t; > 0)

* n(i) — the index set of the neighbors of processor

* m - maximum number of input tasks tHatcan communicate to its neighbors per time

unit. This is restricted by the inverse of the desil communication time;; of the
1

min{c; ; | j On(i)}

 m’; - maximum number of output results thatcan receive from its neighbors per time
1

min{c’; ;|] O n(i)}

* g - number of input tasks generated®yer time unitg; is limited by number of tasks

neighbors of;. Hencem =

unit. m’, =

Pi can process per time unit, i.e.,%y+ m

* g' - number of output files collected Pyper time unit
During one time unit:

* g; - fraction of time spent bl; on computing

« s;; - fraction of time spent bly; on sending input tasks to its neighlbpfn(i)

» s’j; - fraction of time spent bly; on sending output results its neighBpfh(i)

* r;; - fraction of time spent bl; on receiving input tasks from its neighfh(i)

* 'y - fraction of time spent bly; on receiving output results from its neighlBp£h(i)

! We do not expect by default the communication simgandc;; (similarly ¢’;; andc’;;) to be equal, due to

say, different /O hardware device of proces$iasndP;

-21 -

3.2.2. B-COVER problem formulation

We call asB-COVER problenthe problem of selecting a master locations st dptimizes
the throughput of the platform within budget coasit B. Mathematical formulation of the
B-COVER problem can be stated by the following gi&telinear program, whose objective is
to maximize the throughput,s(G) of the platform graplG. The objective function is the
number of tasks computed within one unit of time,, ithe platform throughput.

- - a-
Maximize: Nk (G) = D —
iov W,

Subject to the following 12 equations:

(1) Ui:0<a, <1

(2) 0,0j0n@):0=s5 ;<1

(3) 0i,0jOn(i):0<s; ;<1

(4) 0i,0j0On(i):0<r;; <1

(5) 0i,0j0On():0<r' ;<1
Equations (1) — (5) express that all the activigyiables &, s, S'ij, Iij, I'ij) are fractions
of one time unit, i.e., belonging to interval [(, 1

(6) 00,0y On(i): s, =7,

j
(7) O0i,0p0n(i) s =1y,
Equations (6) and (7) ensure communication congigteThe time spent bl on sending

input tasks (output results) B equals to the time spent Byon receiving this input (output)
from P;.

@) 0id(s;+s;;)s1

jon(i)

9) 0 > (r,+r',)<1

jon(i)
Equation (8) and (9) ensure that send and recgigeations to neighbors & are sequential.

(10)0i0J, %+ D.s; <1

iOn(i)

Equation (10) enforces that mastegs=(1) do not receive input files from other processors.

-22 -

(1) Oi0d,:x+ > r,<1

ion(i)
Equation (11) enforces that maste¢s=(1) do not send output results to other processors.
) r. . S r' .
(12) O, OE: (b4 2y * g+ (il + Dy s g <y
' Gi G i Gl '
Equation (12) ensures that link bandwidths caneattreeded. This constraint is due to our

hypothesis that the same lisk may be used in both directions simultaneously.

(13)0i0J, g, =0

(14)0i0J_:0<g, < (= +m)*x
W.

Equations (13) and (14) say that only masterswherei [7J, andx = 1) can generate input
tasks, i.e., to havg > 0.

(15) Ui0Jd,:g,=0
. , 1
(16) Ui0J,, 09 s(—+m;)*x
W,

Equations (15) and (16) specify that only mastem collect generated output files, i.e.,

to haveg’; > 0.
r
(17) Dig+ > =i=9iy Z
ion(y G W jion(
) s a, r
(18)0i:g\+)y —L=— —L
1';0) W, DZ c

Equations (17) and (18) represent conservation:|l&es every processd?; the number
of input files generated, plus the number of infdes received, equals to the number of input
files processed plus the number of input files $&nj.
For every processd?; the number of output files collected, plus the bemof output files
sent, equals to the number of input files procespkt the number of output files
received (18).

(19) Y (fi*x +t,*g)<B

i0Jdp,

Equation (19) ensures that the costs generatedthblshing ;) and operatingti) the chosen

master locations do not exceed the budget consBain

-23 -

3.2.3. B-COVER complexity: NP-hard

Now we present the proof from [12] which shows thia task of determining master
locations in the above described system is NP-N&elbuild the proof on reducing the well-
known MAXIMUM KNAPSACK (MK) problem [14] to the praously defined B-COVER

problem.
Maximum knapsack

* Instance: Finite setU, for eachu € U a sizes(u) € Z+ and a value/(u) € Z+,
a positive integeB € Z+
- Solution: A subset)' € Usuchthat) s(u)<B

uy’
« Measure: Total weight of the chosen elements, e, V(W)
uy’

We construct an instance of the B-COVER problemmftbe instance of MK in the following
way: We create a seéf containing processorB; (i = 1 ...|U|) and a bijective function
f:V—U.

[P, €V we set:w, = f,=s(f(R)) andt; = O

1
v(f(R))’
Further, we seE =/7 andJ,=V.

The graph of the B-COVER instance has no edgeschwhieans that tasks cannot be
transferred among processors. Therefore, taskolgnbe computed in the location where
they are generated. A solution of the B-COVER insgaconsists in determining a subset

1
V'S Vsuchthat) f,<B inorder to maximize the platfornotighput, which is ZW
Rov'W

ROV

It is straightforward that a solution of the B-CORBEproblem instance provides a direct
solution of the MK instance. This proves that B-CER/is at least as difficult as MK. Since
MK is known as NP-hard [14] and since the above troead transformation can be done

in polynomial time, we can conclude that B-COVERiso NP-hard.

3.2.4. Conclusion

As this theoretical result is rather pessimistie author in [12] proposed a simple heuristic
approach based on LP-relaxation, i.e., relaxingititeger constraints of an integer linear
program. If we allowli & J, 0<x <1, we obtain a linear program in rational numbers,
which can be solved in polynomial time. The autblaims that this approach has achieved
very good performance on a wide range of simulatiéiowever, its detailed description and

specific results’ presentation are beyond limitsho work.

-24 -

PART Il

4. The PROOF system overview

In this chapter, we introduce basic concepts of BROOF system in terms of its
master-worker architecture and design goals. Weisfoen how the load-balancing and
scheduling is performed, which will be useful latethen considering key features
of the multi-master setup algorithm. Special attenis paid also to the last phase of task

execution called thénalizationor merging

4.1. ROOT framework

The Parallel ROOT Facility, PROOF, is an extendmthe ROOT system, a cross-platform
object-oriented framework for HEP data analysisviigaised at CERN, Fermilab, and other
nuclear physics laboratories around the world. slitalso the preferred data analysis

environment for all main LHC experiments.
ROOT consists of several parts dedicated to vapomgoses such as:

» Data processing (interactive/batch mode).
» Data analyzing (histograms, trees, advanced matiwahand statistical tools).
* Results visualization (explaining pads, 2D and 3&pbics, GUI editor).

* General and specialized simulations (virtual MdD&lo, geometry packages).

A user interacts with ROOT via command line, GUlpatch scripts. The primary command
and scripting language for ROOT is C++; its embeddderpreter is called CINT [15].
ROOT is an open-source project; all the sourcewealk as the full documentation can be

found on its official website.
4.2. PROOF design goals

PROOF has been developed with the following goatsind:

» Adaptability
* Transparency

» Scalability

Adaptability stands for the appropriate reactions to changéseirsystem environment, such
as the load on the nodes, failures, etc. For iastaii a worker node suddenly fails during
the computation, its work is reassigned to anotharker(s) automatically without the user

having noticed.

-25 -

Transparencymeans that there should be no difference in tesmsser’s interactivity and
results when running an analysis in ROOT locallyoara PROOF cluster. In fact, exactly
the same format of the analysis code can be useloth types of sessions. More details

on the required code structure and input data fooaa be found in Chapter 5.

Scalability stands for the fact that the more workers areperation, the faster the results
should be. In other words, there are no impliettitations on numbers of workers involved

in the computation.
4.3. PROOF multi-tier master-worker architecture

PROOF realizes a 3-tier architecture based on thstenworker computing paradigm.
The third entity besides theasterand theworker is theclient (end user’'s computer), and it
basically starts the whole computation. The cl@inects to a specified cluster node, serving

as an entry point of the PROOF computing facilitgd always later acting as theaster

The computation begins when the master receivesnplete task description from the client.
The task comprises the analysis code in a predefioemat (Chapter 5) and addresses
of processed data on the cluster or worldwide. @mxigeptionally, it could contain also the
processed data itself. However, this is not reconded for large data sets as they would
have to be transferred not only from the clienthe master, but later also from the master

to individual workers.

After receiving the task, the master node decongitseto several smaller independent parts
and distributes them among werkers Workers process their part of the task and sex#t b
their partial results. The master accepts theseapaesults and merges them into the final

result, which is then sent back to the client.

Computing Facility

master
geographical domain

F MSS
= [- =]

geographical domain

top " sub I MssS
master master E@

client

geographical domain

sub Fin MSS
o] <= [| [

Figure 7 - PROOF Multi-tier master-worker architecture
(Image source: CERN)

- 26 -

The master tier can be also multi-layered as showirigure 7, following thereby the
hierarchical master-worker paradigm (Chapter Z2T8)e multi-layer concept was originally
introduced to PROOF because of necessity to seeagrgphically separated domains
(federated clusters). However, as the PROOF cluster getting larger and processed data
bigger, it is worth it to use the multi-level cagiiration also for homogeneous clusters.
The main reason is the single master, which magrbedottle-neck in the case of too many
workers or too long merging of sub-results in thed.eBoth situations are described in detalil

in Chapter 6.
4.4, Packetizer - load-balancing engine of PROOF

The PROOF master does not just divide the taskettep equal to the number of its workers.
Instead, the accepted task is being gradually otd pieces callecpackets,which are
continuously sent to workers. Tipacketis only a description of a sub-task, and it does n
contain any data itself. Typically, it carries dl fmame of a file with HEP events (located
anywhere), and then a range of events, which shbalgrocessed. Since the events are
uncorrelated, they can be processed independemitiyh means on any node and in any
order. This is where PROOF exploits the inherenlpism in HEP data.

For simplicity, we will refer to thesize of a packeas to the number of events the packet
describes, even if the size of the packet objsetfiis naturally always the same. The size
of an assigned packet may vary according to thekevis recent performance and estimated
time until the end of the processing. In princifglee packet size can be as small as the basic

unit being processed — one collision event.

The process of packets calculating and assigningasaged by the load-balancing engine
called thePacketizer.There is a separate instance of the Packetizethermaster node

for each job. If a multi-master configuration iseds then there is one Packetizer on each

of the sub-masters. Computing Cluster

master workers master

g::::(a(:tor ——M | Process | —— M | Merger

\ |Pack et | Packet/'

Packet

Figure 8 - Processing of PROOF packets
(Image source: CERN)

-27 -

The pull approachis used for work distribution, i.e., workers ask fbe next package when
they have finished the previous one. The main gb#ie pull approach is to let all the nodes
finished at approximately the same time. Once tieye finished their work, i.e., they do not
get any new packet when they ask the master; thay sheir sub-results to the master.
In other words, there is no gradual merging of segats on the master during

the computation phase when workers are still réngimew sub-tasks.

The PROOF Packetizer not only distributes the warkong nodes, but also accepts
confirmation that this work was successfully preses If some worker fails, the Packetizer

is responsible for reassigning all its work to ethedes.

The optimal Packetizer strategy depends on the tigek being processed. Some strategies
available in PROOF are described in [16]. In a dmbeen task typedata locality is

the main optimization criteria. Some data sets edefbr a given job may be located

on the worker nodes assigned to that job, while esather data sets may be located
elsewhere. Naturally, a worker is given the locatadsets to process first, if it has any,

and then remote ones in order to minimize datastess among cluster nodes.
4.5. Merging outputs

The sub-result of each worker can be found in trenfof anoutput list We do not have
to care about the order of merging of individuatpu lists, as the merging is commutative.
In other words the final result is the same no emaif we merge together outputs
from workersw, andw first; and then we merge the result with the oufportn workerwe.

Or if we merge outputs fromv, and w; first, and then we merges,. Commutativity

of merging simply comes from the independence oPHdkents.

COutput list Cutput list Cutput olist

worker x workery after merging

@ @ merging procedure for type A o
B B merging procedure for type B ﬂ
i i i t merging procedure for type C E

* Each output list contains three objects of different types A, B and C.

k4

Y

Y

* Different merging procedure is used for merging of a different type.

Figure 9 — Example of output lists merging

-28 -

An output list can contain output objects of vasdypes according to the definition in the
analysis code. Each output list contains the saim&ber of objects of the given type. In other
words, all output lists are equal from the typenpaif view as shown in Figure 9.

Merging of two objects of the same type always sed same amount of resources and
therefore, under equal conditions, takes the same because exactly the same code runs.
However, merging time of two objects of type A andrging time of two objects of type B
can be significantly different even if measureegqual conditions. The length of the merging
strongly depends on the merging function itselfjolvhcan range from simple and quick

addition to some more complicated procedure.

One should note that characteristics of the oudppend completely on the analysis code and
there is no forward relation between the input tredoutput. Therefore we cannot make any
assumptions in advance, either about the numbebjekcts in the output list, or about their
type determining the size (without e.g., performsmne parsing and grammatical analysis
of the input code). However, both characteristietednine, together with the merging
procedure and cluster configuration, the lengtthefmerging.

In one case, the output object can be, for instaaneinteger number; and the merging
procedure can be the choice of a minimum of twdisuanbers. In another case, the output
object can be a full multidimensional histogram.riyleg of two histograms then, naturally,

involves going through all their dimensions andsband adding appropriate values together.

4.6. Scheduling in PROOF

The goal of the scheduling is to efficiently usenpuiting resources in order to minimize
execution times of processed queries. The PROOEdbtdr assigns workers to each query
submitted to PROOF cluster in accordance with atseduling policy. If the policy allows,

a query can also be rejected (in the case of systemoading) or put in the waiting queue.

The scheduling policy is managed by a cluster adhtnator via configuration files, which

simply determines the scheduling algorithm. The bermof assigned workers for a query
or a user can be determined either by the cusysiem load or by user’s or group priority.
These priorities can be set in a static way, orytltan be calculated dynamically

in cooperation with some monitoring systems, &/mnALISA [17].

-29 -

5. HEP data analysis with PROOF

In this chapter, we present PROOF mainly from tlesvwof an end-user physicist. PROOF

accepts both task description and input data ipegial format, which ensures that it can be
parallelized automatically without user having ake care of parallel resources. We describe
the analysis code structure and how it is parakeliwhen being executed on the PROOF
cluster. We also provide an example PROOF sessiarder to give a reader authentic feel

of how the work with PROOF can really look. Howevere start with one important

observation.
5.1. Typical use-case

Typically, once a physicist has developed someyaiglit is very probable that such analysis
code will run many times, just each time on différeata sets. Naturally, the greater the
amount of events has been processed within thgsasalhe more precise the conclusion can
be. One must always find a good balance betweearepsong as much data as possdtlence
and seeing some output in reasonable time, typgidallhours at maximal. The gradual
analysis of huge data, performed in multiple ruas, dherefore, be a good compromise.
Moreover, the same analysis can sometimes be iotatly performed on data sets coming
from various stages of experiment or measured udif@rent conditions. The stand-alone
cases are then various data quality analyses véremun regularly on most of the gathered
data.

5.2. TSelector query interface

The task to be run in parallel is callgderyin PROOF terminology since usually the analysis
itself can be considered as a more complicatedyqoerthe HEP data. The PROOF query
must be implemented as a class derived fi@rlectorabstract class. A simplified version of
TSelector interface is provided below. The comptiscription is available as a
part of the ROOT Reference Guide [18].

class TSel ector {

public:
virtual void Begi n(TTree *);
virtual void Sl aveBegi n(TTree *);
virtual Bool _t Notify();
virtual Bool _t Process(Long64 t /*entry*/);
virtual void Sl aveTerm nat e();
virtual void Term nate();

-30 -

The user writes his/her own analysis code in thedgiined methods, having in mind
the general analysis workflow, i.e., when and wheseh piece of code is executed. The data
structure used in TSelector is thETree For simplicity we can perceive TTree as
an optimized container for HEP events, which isnbeiypically stored within a so-called
ROOT file

* Beginis called on the client side before starting treadprocessing. It prepares
the global environment for the analysis like histogs to be filled with result values.

» BeginSlaves called on every worker before starting the gataessing. It can prepare
the local environment.

* Notifyis called on the worker when a new file has bgemed.

* Processs a piece of code that is executed on every eddtie inputTTree.

* TerminateSlaves called on every worker after the data processin this node has
finished.

» Terminateis called on the client side after all workers édinished their jobs. It is

where result are available and can be presentidsirequired way.

Begin()

BeginSlave()
Notify()

Process()

Process()

Notify()

Process()

Process()

TerminateSlave()

Terminate()

Figure 10 - TSelector calls flow in PROOF

The described selector approach is ROOT-transpdtanieans that the user can run exactly
the same code locally, also within the standard R@&ssion. In such a case, of course, they
would miss the advantage of the speed-up due tpdhalelization, but they would get the
same results. However, non-parallel approachn®sil impossible for analysis of large data
sets. In the following text, we will refer to tiselectoras to the clasderived fromTSelector

andcontaining the analysis code.

-31-

5.3. Simple sample PROOF session

The user connects to some PROOF cluster via TRP&®Wfby typing the following code
in the standard ROOT prompt:

root[0] TProof *p = TProof:: Open("user @master:port")

User is the user name for accessing the cluster, madteris the name of the machine
(the master node) to connect to. The standard PRE&Fnumber (on which appropriate
daemon listens and accepts connections) assignédNv& [19] is 1093, and this is used

by default if omitted.

We overlook the client authentication part sinas tbeyond the limits of this work, as well as
possibilities of uploading of specialized user agss. The sufficient coverage on these
topics can be found within the standard PROOF decuation.

After the connection to the specified PROOF clustar gets a messagehich informs them
on the assigned computing power.

Starting master: opening connection ...

Starting master: K

Openi ng connections to workers: OK (26 workers)

Setting up worker servers: OK (26 workers)
PROOF set to parallel node (26 workers)

Before running the analysis itself the data mugpiepared. Here, logical detsetis created
and filled with the data from four specified ROQIES.

root [1] TDSet * hlset = new TDSet ("h1");

root [2] hlset->Add("dstarnb.root");

root [3] hlset->Add("dstarpla.root");

root [4] hlset->Add("dstarplb.root");

root [5] hlset->Add("dstarp2.root");
All of the above used ROOT files come from the Hllaboration at Deutsches Elektronen-
Synchrotron (DESY), Hamburg and can be downloadeely from the ROOT homepage [2].
Each of the ROOT files contains a part of TTree edhi.

From the same location, user can download alssdhgple H1 analysis fileh{analysis.C

andhlanalysis.H containing the selector for the four data files.

! The example was obtained froalicecaf.cern.ch,access to which was kindly provided by the ALICE
Collaboration.

-32-

Data set name File size (MB) No. events
dstarmb.root 20.3 21 920
dstarpla.root 68.2 73 243
dstarplb.root 79.9 85 597
dstarp2.root 96.0 103 053

Table 4 — Basic properties of H1 data sets

There are several ways to analyze data via seteotoa PROOF cluster. The easiest way is
to call the Processmethod right on thelProof object and pass both the data set and

the selector as its arguments. In fact, by thik v issue processing command to the master.

root [6] p->Process(hlset, "hlanal ysis.C');

Within the Processmethod, we can further specify e.g., the procgssiode, which can be
either synchronous (interactive) or asynchronowsc{l). By default, a query is processed
in a synchronous way. Other useful optional argusare for example the number of events,

l.e., TTree entries to process (all by default)her starting entry (the first one by default).

Since we issued the Process command in the syrmisanode, we would wait for the query
to be processed before the command line is enalgaoh. We are regularly informed about

the state of the processing via the progress biaelRROOF Query Progressindow.

After a while, we get the following text results:

FCN=-23769. 9 FROM M GRAD STATUS=CONVERGED 225 CALLS 226 TOTAL
EDMES. 32237e- 08 STRATEGY= 1
ERROR MATRI X UNCERTAI NTY 1.7 per cent

EXT PARAMETER STEP FI RST

NO. NAME VALUE ERROR SI ZE DERI VATI VE
1 poO 9. 60009e+05 9.09405e+04 0.00000e+00 -1.03857e-08
2 pl 3.51137e-01 2.33453e-02 0.00000e+00 2. 83166e- 02
3 p2 1.18504e+03 5.74357e+01 0.00000e+00 2. 75548e- 06
4 p3 1.45569e-01 5.50738e-05 0.00000e+00 -5.42216e-01
5 p4 1.24391e-03 6.38932e-05 0.00000e+00 -1.56613e+00
ERR DEF= 0.5

-33-

Followed by the graphical output:

@hlanalysis ELELEE
File Edit Yiew Options Tools Help

dm_d Mean = 0.1551

RMS 0.008494 | ——

500

[ools Help

par[1]=p1 | Mean 0.4266
300 RMS 0.997

200

100

T R e e o e e el B o o o e e
#13 0135 0.4 0145 045 0155 016 0.165 0.7 4+r
m,,, - m, [GeVic’] +

~FUN=-23769.9 FROM MIGRAD STATUS=CUNVERGED r
EDM=5.32237e-08 STRATEGY= 50 &

1.7 per cent B '*‘T +

EXT PARAMETER B #*_

NO. NAME VALUE ERROR lyn_ - g

1 po s.cusmserns scawseses o Of &SR oo o T KRS sassdnn.
2 pl 3.51137e-01 2.33453e-02 0.6 3) E 0 2 3 3 3
3 p2 1.18504e+03 5.74357e+01 0.0 1[ps]
4 p3 1.45569e-01 5.58738e-05 0.0

5 p4 1.24391e-03 6.38932e-05 0.0

R

ERR DEF= 0.5 |
root [4] i

Picture 1 - Example H1 analysis running on PROOF @sults)

-34 -

6. PROOF query processing on single master configurain

In this chapter, we focus on the detailed analysthe PROOF query processing when using
cluster setup with the single master ahavorkers. The main goal is to find weak points of
this processing, such ones that they could be réitad by more sophisticated master role’s
assignment (Chapter 2.3). Besides the descripfidimeoquery processing work-flow, we also

present a set of important observations basedearthlyses of real PROOF logs.
6.1. Typical PROOF cluster

We expect to have a typical PRO®BmMogeneous clustemeaning that all its nodes are
of the same hardware equipment and, thereforey; thifesame computing power. In practice,
when more queries are processed at once, the xpllitable power of different nodes can
vary depending on their actual external load. koipBcity, we neglect this difference as it is
mostly unpredictable. An option would be the reguteasuring of the current external load
on each node and its employment into the model.d¥ew this can be quite time consuming
and, therefore, impractical, because we want t@tgess much as possible of the computing
power to the computing itself. Moreover, differexternal load on nodes can be successfully
balanced by the PROOF Scheduler.

All the cluster nodes are also expected to be tinka afast local networkallowing us to
consider communication channels equal betweenwoynbdes. We also do not expect the
network latencybetween individual nodes to be the most limitiegtbr, as it usually is

on computational grids.
Observation 1

The most limiting factor of PROOF query processmghe access rate to the processed data
sets, not the network latency.

6.2. Task execution phases for single master

We define thegask execution timas the time elapsed between starting the compaotatnd
getting the final result. In the case of PROOIFstarts by the master accepting the task from

the client and finishes by the master sendingitied fesult to the client.

For simplicity, we do not include the time spent sending the task from the client to the
master and on sending the final result from thetendsack to the client. Obviously, these
parts cannot be parallelized and are considerbddye a fixed duration for the given task and

environment. Therefore, they are not interestirngufo

-35-

In the following text, we will usé to denote a PROOF task (i.e., selector — Chap®r %/e
will call task sizeas a number of ROOT events to process, which wetde. Please note
thate can differ each time wherruns on the PROOF cluster. We also denolg tag output

list containingq objects, which is left on every worker after theqessing.

The execution time of tagkwith e events on the single master axdvorker nodes is then

composed of three main sequential phasésalization, computatiorandfinalization.

6.2.1. Initialization

Initialization covers the period from the beginniafythe processing to the point when all

workers have received their first packet to process

» Start: The master has received taskom the client.
 End: All N allocated workers have received initial packetrfithe master.

* Length function: init_master(N)

Simply said, the more workers to initialize we hatre longer the initialization phase takes.
Number of workerdN determines the length of the initialization beeati®ey are all informed
sequentiallyby the master about the fact that they act as everkor this computation,
and they are all given the analysis code and th®lipacket. The initialization phase is
independent on the current task sizeas each packet object has always the same size

regardless how many events it describes (Chapter 4.
Note that some packets can be completely processsadduring the initialization phase.
Observation 2

As observed from PROOF logs, the initialization s#dength is practically negligible
in comparison to the computation and finalizati®he reason is thatl is usually in range
of tenths (hundreds as maximal) and the approppaté of the analysis code to transfer

is usually not bigger than a few kilobytes.

6.2.2. Computation

We callcomputatiorthe phase when all workers are processing some packets.
« Start: All N allocated workers have received initial packetfribie master.

» End: The first worker has sent its output to the master

» Length function: computation(e, N, 1)

The length of theomputationphase is determined by the task szthe number of workers

in operationN, and the number of masters managing these wonkdish is simply one in

- 36 -

the single-master case. Naturally, the bigger.e., the more events to process whilds
constant, the longer the computation phase takiesila8y, the biggerN, the shorter the
computation phase dis constant. However, this works only until soneenpwhen the single
master is unable to manage all its workers at oMge. will focus on this situation
in Chapter 6.4.

Observation 3

As observed from PROOF logs, the number of workeeageable by one master is constant
for the given cluster, and independent on proceszskl The role of the master during the
computation phase is always the same for all tgbegieries — the work distributor. Workers
can treat the data in a completely different wagesheling on the selector; but the master, or
more precisely the PROOF Packetizer on the maste,ralways does the same thing under

the same schema: it distributes the work amongatkers.

6.2.3. Finalization

» Start: The first worker has sent its output to the master
* End: The master has sent the final result to the client

* Function: final_mastey(l4, N)

The finalization phase length for taskan be expressed as a functiori;obnd the number

of workersN, as it involves merging dfl output listseach of the length.

We can distinguish two parts of the finalizatiamtte first part, the master is receiving output
lists one after another as workers are finishirge §oal of minimizing this part (of finishing
all workers at once) is the task for the PROOF Baz#r. In the first part of the finalization,
the master does both the merging of already redeivputs and managing of the workers,

which are still processing.

When all workers have finished, the master focusdg on the merging itself. This second
phase calledull mergingis a critical one because it is purely sequeatial involves only the

master node. Both finalization phases are depiat&igure 11.
Observation 4

Full merging on the single master may create aifsignt bottleneck in the case of too large

outputs or too complicated of merging procedures.

-37-

6.3. Resource utilization diagram

We can clearly see all the above mentioned phasdbe resource utilization diagram
(Figure 11), where the utilization for each nod¢inme is depicted. We consider two states of
a node:busy or idle. Periods in white color are periods in which a eodas busy,
l.e., doing some useful work. This is either comrmoating with the master or processing
some packet if the node is a worker node. If c@arey it means that a node was idle in that

time.
fist nods lz=t node (worker 1) fist node {worker 5) lz=t node (worker Z)
{warker 5} started computation finished computation finizhed
started =) toompurtation
computation all nodes compurting
finoim o
weorker 1
]
worker 2 :
|
wiorker 3 :
]
worker 4 :
|
worker 5 !
|
|
master :
I '\—_\-,—/'I
L }\ _F,/Jk full merging J
Y ~ Y
initialization computation finalization
- >
task execution time
Figure 11 - A sample resource utilization diagramifdividual phases not proportional)
6.4. Idle periods during computation

In the real environment, we can also recognizeitthe periods (grey areas in resource
utilization diagram) during the computation, notlyorin the beginning and in the end
of the task execution (Figure 12). We call theemputation idlesand they may significantly
prolong the total execution time. In fact, theyedity express how the connection is fast
and the master responsive. Naturally, it alwaysesakome time to deliver a request
for the next packet to the master, and in retuefiydr the next packet back to the worker.

-38-

task execution time

worker 1

worker 2

worker 3

worker 4 computational

idles

worker 5

]
|
|
|
|
|
]
|
]
|
|
1
|
master I
|

I . I\‘_\-\'r—'_l’l

L k _r,/"k full merging J
Y T~ '

imitialization computation finalization

Figure 12 — Computational idles in resource utilizéion diagram (individual phases not proportional)

In the case of no congestion on the master (meathag it can send a new packet
immediately when it receives an appropriate requélse computation idles are expected
to be as short as the network allows. Moreovely thad to be regular if a worker processes
tasks at a constant rate, and then sends alseduests at a constant rate. In such a case,

computation idles can be observed and easily imcatped into worker’s real processing rate.

If the master cannot respond immediately and thasaorkers do not receive their sub-tasks

within a granted time period, computation idleslgager (workers are starving for work).

Note that some idle times can occur also on theienakiring the computation (preferably
in the beginning when all workers have already ixexktheir first data to process, but they
have not asked for a new packet yet). However, avaat consider this phenomenon to be

harmful, as the idle master does not slow dowrctmeputing in this case.
6.5. Summary

We can define the total taslexecution time when processiegvents on the single master
and N workers as functiorexecution_singlge, N) consisting of the lengths of the above

mentioned sequential phases:

execution_singl€e, N) = init_mastai(N) + computatiop(e, N, 1) + final_maste(lq, N)

Formula 1 — Total execution time for taskt (e events) on the single master and workers

Naturally, using théhierarchical master-workers relevant only in the case when it clearly

speeds up the total task execution time. Such edspe can be expected in a situation when

the single master strongly limits the overall pariance and there are enough workers
-39 -

from which another master(s) can be selected. ilmdhapter, we have addressed two main

situations, which limit the total PROOF performance

1) The master is too overloaded and then slow in sgnits workers during
the computation

2) Finalization on the single master (full merginggaties a bottleneck of the execution

Both issues can be possibly overcome by the usieedfierarchical master-worker if meeting

certain requirements.

The important fact to note is that by deploying tub-master, we always lose some real
computing power which is then devoted on the subtemang. However, this loss can be
greatly compensated by the speed-up of the mengiegen of the computation (due to better
resource utilization). In the next chapter, we willdy both observed cases in more detail.

-40 -

7. PROOF query processing using more masters

In this chapter, we describe the PROOF query psitgswhen using the multi-master
configuration; and we compare it to the single masonfiguration which was analyzed
in the previous chapter. We focus on the changélsercomputation and finalization caused
by deploying of more masters, and we explain whgs¢hphases have almost antagonistic
requirements on the number of masters in operatomther, we show what the optimal
number of masters for the computation and finalmais and what information we need
in order to determine it. Again, we consider havangypical PROOF cluster as described
in Chapter 6.1.

7.1. One level multi-master configuration

In the following text, we always consider only daeel of sub-masterst means that we have
the top-master on the first level, all sub-mastersthe second level, and all workers

on the third level as shown in Figure 13.
* To use one masteneans to use the single master configuration.

* To use moreor s masterys > 2) means to use sub-masters on the second level,

i.e., to have the top-master amslub-masters under it.

top-master

/\

.r’
O O O O . workers (N-s)

sub-masters (=)

Figure 13 — Hierarchical master-worker system withs sub-masters

More levels of sub-masters can be useful eithea gmid or in the case that the top-master
itself becomes too overloaded. On a grid, addingestevels may be useful as it could help
to better utilize the communication channels. Néwadess, we consider a homogenous cluster
to be our primal environment. Therefore, having enl@vels of masters is usually pointless
until the single top-master becomes the bottle-neickhe whole system. Then basically
the same problem must be solved as with the smgk&ter being overloaded, in this case just

one level up. However, such a situation is not etgmeto occur on clusters running PROOF.

-41 -

7.2. Task execution phases for more masters

We denoteS the set of sub-masters (the top-master is notideel). We denote the number
of these sub-masters, i.s.,= |§. To summarize it, we have one top-master nsda)b-
masters andN-s workers. In other wordss nodes from the original number bf workers

became sub-masters and, therefore, they do na asrworkers anymore.

Obviously:
« s=2 Two sub-masters create the simplest reasohatlii-master configuration.
* s<|(N-s)/2 Each sub-master must manage at least two workers.

Every sub-master nodg (s.S) should manage a group of workers of approximately
the same computing power. These groups can theregso basically equal parts
of the original task size,i.e.,e/sin the period of approximately the same length. Shaering

our assumption of the homogeneous cluster suppdoyethe PROOF Scheduler forcing
the uniform load distribution, we assign to each-masters (s L/ S) either r(N-s)/§

or | (N-s)/ls workers. For simplicity, we will expect that eadmbsmaster manages exactly
(N-s)/sworkers. Possible £ 1 difference should be baldmeg by the PROOF Packetizer.

In the case of more masters, we can recognize ewere task execution phases.
The initialization/finalization phase runs now iarpllel on each sub-master, as they are now
the nodes, which communicate directly with workefrberefore, we can simply imagine
the whole master-worker schema as cloned and lihgne level lower. The code, which
previously ran only on the single master, now ronseach ofs sub-masters (Figure 13).
On top of that, we have the new initialization dimélization phases on the top-master node.

7.2.1. Top-master initialization

» Start: The top-master has received tastom the client.
* End: The first sub-master has received the initial &gk from the top-master.

* Length function: init_topmaster

In order to describe the task execution in the faimon-overlappingphases, we define

the top-master initialization as the phase whictisehy the receiving of the first sub-task
on the first sub-master. Obviously, it is complgtedependent on the number of sub-masters

sand, hence, of the constant length for task

L1f s = 1, it means that the top-master manages only oneemashich then manages all workers. From the
practical point of view, such a configuration isspible, but it would have all the negatives of shrgle master
configuration and on top of that, an additionalnmead due to that one sub-master.

-42 -

7.2.2. Initialization of one sub-master

The initialization of one sub-mastgr(managing(N-s)/sworkers) is defined in accordance
with the initialization of the single master mamapN workers (Chapter 6.2.1)

» Start: Sub-mastes has received the initial sub-task from the topteras
* End: All (N-s)/sworkers of sub-mastey have received their initial packet.

« Length function: init_masteg;((N-s)/s)

7.2.3. Initialization of s sub-masters

Let us now focus on the joint initialization ssub-masters from s& They are all expected
to have the same initialization length, as they rahnage basically the same amount
of workers. Their initializations should run, thetically, in parallel; but they are started with
a slight delay. Therefore, we define the initiaiaa phase ok sub-masteras the period,
during which at least one of these sub-masters tiis ia the initialization phase.
In other words, the initialization of sub-masters starts with the initialization of fiinst
sub-master and ends with the end of the initidbmatof the last (slowest) sub-master

(Figure 14). We will denote this perisgans; s { init_masteg;;((N-s)/s) }

» Start: The first sub-master has received the initial sgdifrom the top-master.
» End: All workers of all sub-masters have received timatral packet.

* Length function: spangjs { init_masteg;:((N-s)/s) }

Single master, N workes One top-master, 5 sub-masters, N-5 workes

init_master_,, (N-s)&) |

| init_master_,, ((M-s)s) |

init_rmaster,(M) | | init_topmaster, | +
| init_master__ ((Ns)'s)
i
. _
B
init_rnaster,(M) init_toprmaster, + spansjes{init_mastersj._((N—s}J‘s}}

Figure 14 — Initialization on the single master vsinitialization on s sub-masters

-43 -

7.2.4. Computation

Again, the computation is the phase when all warkef all sub-masters) are processing their
packets. Some packets can be processed also doeingtialization or the finalization phase.

» Start: All workers (of all sub-masters) have startegitocess their first packets.
* End: The first worker (of any sub-master) has finisitedast packet.

* Length function: computation(e, N-s, s)

7.2.5. Finalization of one sub-master

Finalization of one sub-mastey (managing(N-s)/s workers) is defined in accordance

with the finalization of the single master managigorkers (Chapter 6.2.3)

» Start: The first worker of sub-mastsrhas sent its output 8
* End: Sub-mastes has sent its output (sub-result) to the top-master

* Length function: final_maste (I, (N-s)/s)

7.2.6. Finalization of s sub-masters

Finalization ofs sub-masters starts with the finalization of thestfisub-master and ends
with the end of the finalization of the last (sl®t)esub-master. We denote this period

as spags{ final_masteg;(Ig, (N-s)/s) }.

» Start: The first worker of some sub-master has sentutpud to its sub-master.
* End: All sub-masters have sent their outputs (sub-testd the top-master.

* Length function: spans;;s{ final_masteg;(lq, (N-s)/s) }

7.2.7. Top-master finalization

» Start: All sub-masters have sent their outputs (sub-testd the top-master.
* End: The top-master has sent the final result to tleatl

» Length function: final_topmaste(lq, S)

7.3. Execution time summary

The initialization phase in the case sfsub-masterss (S4S) s > 2, each managing
(N-s)/s workers, is comprised of the initialization of thliep-master and initialization

of all s sub-masters:init_topmaster+ spans;s{ init_mastes;:((N-s)/s) }.

Similarly, the finalization consists in the paréfi@alization ofs sub-masters followed by the

finalization of the top-mastespans; s{ final_maste;:(l4, (N-s)/s) }+ final_topmaste(ly, s).

-44 -

The total execution timexecution(e, s, N-s)for taskt (e events) on a setup with sub-
masterss (S.5), s> 2, which manage togethdl-s equal workers can be expressed:
executiop(e, s, N-s) = init_topmastef spans;ss { init_masteg;:((N-s)/s) }
+ computatiof(e, N-s, S)

+ spanys{ final_mastey;(l4, (N-s)/s) } + final_topmasteflq, S)

Formula 2 — Total execution time of task t (e eves) on s masters and N-s workers

We can defineexecutiopalso fors = 0. It means that there is just the top-master anduine
masters under it, i.e. it describes the single emasbnfiguration, which is, obviously,
just a special case of the multi-master configoratvith S = O Naturally,executiog(e, 0, N)

must correspond to Formula 1 introduced in Chapter
executiop(e, 0, N) = execution_single, N)
= init_mastgN) + computation(e, N, 1) + final_maste(ly, N)

Formula 3 - Total execution time of task t (e eves) on single master and N workers

Generally, the more workers we have for the contmtgphase, the faster this phase can be.
Masters do not process any data and, thereforeotapeed up the computation in a direct

way. Therefore, deploying of more masters usuadkgstnot help the computation phase to get
faster. Per contra, it even slows down this phagtere are fewer resources devoted to direct

data processing.

In general, we can say that usualtpmputation(e, N, 1) < computation(e, N-s, S)
for s>2 However, a special situation can be found whendbes not hold. We focus on it

more in Chapter 7.4

In contrast to the computation, for the finalizatiove generally prefer to have more masters
to which to distribute the merging load and thereigke the finalization shorter. The optimal
number of masters for the finalizationfvorkers is discussed in Chapter 7.5

7.4. How computation can be speeded up by more masters

In this section, we concentrate only on the contmriapart of the task execution, not
on the corresponding changes in the initializadod finalization. We focus on the situation
described in Chapter 6.4 when the single mastayasoverloaded to respond to its workers
on time. Consequently, the workers can become @by idle even during

the computation.

-45 -

Let us have general taskwhich had the computation phase of lerig{lunits of time) when

executed on the configuration of the single maaeiN workers.

We denotep as the processing rate (events/unit of time) ofoaker node in the case of no
idle periods. All workers are considered equal (@ea6.1); therefore, the total theoretical

processing rate of the whole PROOF cludiewprkers) in the case of no idle periodptsl.

Let di be the total time when workeyx was idle during the task computation phase. Then
p*d; represents the lost in the task computatiomfoin other words, it says how many more

of the events could have been processed on nafithere were no idle periods. We denote

d= Zdi the total time lost on workers during the compotat
i=1..N

computation

d, = total idle time

on worker 1

worker 1 » e
s———

d_ = total idle time

on worker n
-

worker n B

e .y
—

k

Figure 15 — Visualization of the time lost due todle periods

The computation phase of lendthis obviously comprised from the time when workeese
really processing and from the time when they vidies which is on averagd/N per worker.
We know that thesH workers have together processslents in parallel. It means that each

. e . :
worker was processing forp*—N units of time on average

The total computation timecan be then described in the following way:

k = € +i
p*N N
From that we can expresss: e = (k*p*N) —d*p

Let s be the minimal number of the sub-masters, for tviailt N-s workers are 100% utilized
(when used for the computation of tagkin other wordss (s> 2) is the smallest number
of sub-masters so that all the idle periods on exk(previously caused by the master

overloading) are eliminated. Hence the new totatmatation losd’ is equal to O.

After deployings masters, there afd-s workers left; so their cumulative processing rate i

now a little lower, onlyp*(N-s) events per unit of time.

- 46 -

The new task computation lendthis then:

: e td'= e 10= e _N*k-d

“p*(N-9 p*(N-s) = p*(N-s) N-s

In order to decide which computation time is shonee comparé’ andk i.e., (N*k-d)/(N-s)
andk, i.e.,(N*k-d) and k*(N-s), i.e.,d andk*s.

From that we get:

if d<(k*s) then KK
if d>(k*s) then k- k'

The second case expresses that the computatiomecdaster even on a smaller amount
of workers if these workers are managed in a bettr. Considering that the initialization
and finalization are generally getting shorter wiiemg more masters, we can conclude that
the multi-master configuration in such a situatiould probably lead to the speed-up

of the overall task execution.

On the other hand’ > k does not necessarily mean that the overall taskwonwhen using
more masters must be longer. Changes, preferaliheifinalization phase, must be taken into

account before the final conclusion is made.
7.5. Optimal number of masters for finalization

Now we focus on the determination of the optimamber of masters for the finalization

phase involvindN workers (outputs).

Again, we consider having workers, each with output likt= {obj, obp ... ob}} containing

g objects. These objects do not have to be equai€h4.5).
In addition, we have othemodes serving as sub-masters, i.e., we hakgenodes in total.

We denotemrg (i=1..q) as the time needed for mergioyj (i=1..q) to the final result.

Generally, for merging o objects of the same type, we need to run an apptepnerging

procedure at least-1 times. In the simplest case, it always takes tWas and returns

a merged one, which is then used as the inpuh&néxt round.

Therefore, the finalization (merging) Nfoutput listdy on the single master takes:
final_mastefls, N) = (N =1)* > mrg,

i=1l.q
Formula 4 — Merging objects on the single master

-47 -

7.5.1. Another simplified view on parallel finalization of more masters

Now, imagine that we have more masters to be used for the finalization, tlee, same
amount of outputs fromN workers can now be processed in parallel osmasters;
and the outputs of thesemasters are then merged on the top-master. Taenberging time
is then comprised from the (span of the) parallefgimg time ors=|S| sub-masters; (5.S)

and the merging time on the top-master (Chaptéy i/e3;
, N .
span -<{ final _Mmastey (, 'Z)} + final _topmaster(,,s)

In reality, it is not possible to precisely comptite span of finalizations omsub-masters.
The span can differ each run from the other dependdn the current conditions
on the cluster. In general, we can only conclude tihe highes we use, the more probable it
is that the span gets bigger. Moreover, if theltatamber of workeraN is not divisible
by number of sub-mastesssome sub-masters must merge one more extra wadmkisr may
also lead to the prolongation of their finalizatigghases and, therefore, to enlarging

of the entire span.

We can also describe the length of the finalization more masters in a different way.
The top-master finalization starts when the topterasias received outputs from all
sub-masters (Chapter 7.2.7). However, the top-masaturally starts to merge the first
outputs as soon as it gets them even if it doeshavt all the outputs at the moment.

This corresponds to the behavior of the single erast

Therefore, we can also describe the length of itheization ons masters in the form of two
consequensingle master-like finalizationg-ormula 5). The first proceeds on the fastestlof
sub-masters. The second proceeds on the top-nmaster starting at the point when the top-
master receives the first output from the fastéstsssub-masters. As we do not know which

sub-master will start the finalization as the fimae, we omit the sub-master’s index.

. N .
final _master(, 'E) + final _master(l,,s)
Formula 5 — Another simplified description of the fnalization length in case of s sub-masters

The visual interpretation of the above mentionedmida is provided in Figure 16.
In both cases, we have the same situation. On #ig Wwe describe the length
of the finalization in a similar way as we did irh&pter 7.2.6 and 7.2.7. On the right, we

describe it by Formula 5.

-48 -

finalization length finalization length

sub-master s, ﬁnal_master:a‘l. (Iq, Mid) ﬁnal_masterml. (Iq, Mid)
sub-master s, final_master,;, (Iq, i) final_master_,, (Iq, i)
sub-master s, final_master_;, (I, N/4) final_master,;, (I, N/<)
sub-master s, final_master,,, (Iq, Iid) final_master,, (Iq, i)
top-master
. JL‘_J . A, J
' Y W
span . {final_master,, (I, Ni4) } final_topmaster, (I, 4) final_master (I, N/4) final_master, (|, 4)

Figure 16 — Two possible ways of the finalizatiorehgth description in case of more masters

By substitution of Formula 4 to Formula 5 we get:

final _mastey(l, ,':I) + final _master(l,, s)

=X)% mrg, +(s-) Ymrg, =~ +s-2]* Y mrg
S i=1l.q i=1.q S i=1.q
7.5.2. Speed-up of parallel finalization

In order to describe the gain we get by the deplpyf s sub-masters to merde output

lists |4, we need to compare Formula 4 with Formula 5:

final _master(l,, N)

finalization_speedup(s, Ny I=
: N .
final _master(l, ’E) + final _master(l,,s)

N-1)* Y mrg
_ (‘ izzl,;q J _ N-1 _ s*(N-12
= = =
(E+S—2)* zmrgi E+S—2 s°—-2s+N
S i=1..q S

As finalization_speedups independent oh, we can define it also as a function of only two

variables:
s*(N-1)

s?2-2s+N

Formula 6 — Finalization speed-up for N outputs ircase of s masters

finalization_speedup(s, N) =

We say thas is the optimal number of masters fdmworkers if the best finalization speed-up
for N workers is reached on the configuration vatimasters. In other words, it is that number

swhich makes the value of functidimalization_speedup(s, Nmaximal wherN is constant.

- 49 -

For example, the optimal number of masters for 8bkers is a maximum of function
T s*79

finalization_speedup(s, 80) ==———

—5P P() s? —2s+80

The graph of this function is displayed below:

4.97 5 \
4 / \ finalization_speedup(s, 80)
3 / \\

s

finalization_speedup

\\

/

8.9410 20 30 40 50 60 70 80
s (number of masters)

|

Figure 17 — Finalization speed-up for N=80

The optimal number of masters for 80 workers is tBe (closest integer number
to the function’s real maximum at 8.94). Each ofsth masters then merges outputs from
9 workers, except one master, which merges oniy oworkers (8*9 + 1*8 = 80). The top-
master then merges the output lists of these 9amsasthis corresponds to our intuition that
the work load should be distributed uniformly natlyoamong the sub-masters, but also
between sub-masters and the top-master. The awsteed-up in the finalization, when
neglecting additional overhead, is almost 5.
Now, we find the maximum ofinalization_speedupn a general case by computing
its @sderivative and by setting it to zero.
(N-D)*(N-s%)

(s* —2s+N)?

Jdfinalization_speedufos, N) =

As we always have N > 1>s2, we get the optimal number of sub-masterdNfarorkers as:
Soptimal = N
Formula 7 — Optimal number of masters for merging & N outputs

Note: Formula 7 expresses the optimal numbes pfasters folN workers in the case when
these masters are created on additional nodesdén t find the optimal number eimasters
in the case when these masters are started on ebriNeassigned nodes (i.e., number

-850 -

of workers is then onlyN-s), we would have to computes from the following

equation:s=vN-s . However, in Chapter 9, we will return to our prinegjuation Formula 7.

By substitutions = suimal from Formula 7 tdinalization_speedup(s, Nyve get the function
of the best finalization speed-up fdworkers:

JIN*(N-1)

2(N-4/N)

Formula 8 — Best finalization speed-up for N worker

best finalizaton_speedufN) =

6 , best_finalization_speedup(N)
=3 L
'g 5 _ /
g °F
J B
§ af e
® T -
8 - /
= L
c 3
& - e
R /
@ L

1

0 20 40 60 80 100 120 140

N (number of workers)

Figure 18 — Best possible speed-up in finalizatiodue to deploying of more masters

It is clear that the bigger cluster we have, ileigger N, the higher the speed-up
in the finalization can be. While the expected lizegtion speed-up for clusters having around
20 nodes is not higher than 3, large clusters arol®0 nodes are expected to get the

finalization speed-up over 5. Obviously, the inse& not linear.

One should note thddest_finalization_speedujpinction neglects completely any additional
overheads that can occur in the real environmdmdr&fore we can consider it rather an upper

boundary of our expectations.

-51-

8. In search for multi-master setup algorithm

In this chapter, we describe our first steps whesrching for a suitable multi-master setup
algorithm for PROOF. We explain how the problemraflti-master setup for PROOF differs
to the general multi-master problem, and why welcdoot readapt any of the recent known
algorithms. We also provide a description of thstfialgorithm which was later not used
due to some new findings not directly connectedhi® algorithm’s setup strategy itself.
We explain this issue and its background. The mesult of this thesis, another algorithm

which was later successfully implemented, is preskem Chapter 9.

8.1. Using state-of-art knowledge

When first thinking of some suitable algorithm soly the multi-master setup problem
for PROOF, we naturally tend to reuse or adapt sai¢he already developed ones.
In Chapter 3, we presented a polynomial algorittum determination of the optimal node
for the single master. We also referred to a hearepproach for determining locations
of more masters, which itself is an NP-hard problédoth of these algorithms focus
on the maximizing of platform’s throughput, i.e.n anaximizing the total number
of processedapplication tasksin a time unit. We are aiming at the minimizing
of the execution time of the single PROOF queryweMtheless, both these approaches can be
considered equal thanks to the fine granularitthefPROOF query. We can simply consider
processing of one or more collision events as tkecwing of one application task.
The higher the throughput of the platform is, itee higher the number of events processed
in time unit, the shorter the time of a PROOF query

However, the problem of multi-master setup for PHOG significantly different
to the general multi-master problem. Even if netyhgcsome alterations in the general work-
flow which can be eventually overcomehe two problems are basically focusing on two

different worlds.

Both works presented in Chapter 3 build on hetaregas environment comprising nodes
of various power and communication links of varidusnsfer rates. However, a typical
PROOF cluster offers a homogeneous environment escribed in Chapter 6.1.
As a consequence, all nodes simply would be coreidequal by the algorithms presented
in Chapter 3. Moreover, all recent works focus loa problem of which node(s) to choose as
master(s) in order to maximize the platform thrqugh Such a configuration is then

! E.g., in PROOF: the single master is always ddtexch by connection, masters do not perform any
computations; work distribution is not performedoarallel with results collecting etc.

-52 -

platform-dependentneaning that it is used for all incoming tasksr @woblem is how many
of the masters we need to have in order to makeepsing of a single PROOF query as short
as possible. In other words, we are looking forgpecific configuration for each tas®nce
this number of masters is determined, we can chdosenodes for them almost freely,

regarding just the local presence of the procedat etc.

To summarize it, in general, the main factor is #mwironmentand the main question
Is which nodego choose as masters. In the case of PROOF, thefawdor is thetaskitself;

and the main question isow many node$o use as masters in order to find a balanced
configuration for both its computation and finativa phase. As both the problems

are fundamentally distant, we had to develop a algarithm for PROOF from scratch.

8.2. Record-based MMS algorithm

In this chapter, we present the first designed Maltfprithm for PROOF — the record-based
algorithm. It takes an advantage from the typiddO®F use-case presented in Chapter 5.1:
The same analysis code usually runs several tinme$?’ROOF cluster, each time, just
on a different data set. The main idea of this itigm is to use the information from one run
to adjust the cluster setup for another run.

The finalization is the main phase, which utilizessters; therefore, its length and total
execution share is important when deciding how maagters to use. However, there is no
relation between the input and output (Chapter @8, therefore, no reasonable way
to estimate in advance, either its duration ormpttegortion to the execution phase.

The record-based MMS algorithm idauristic algorithmdesigned for the use in the dynamic
environment of PROOF cluster. It is expected that more runs of the same task we have
done, the more precise the estimation of the opticoafiguration for this task can be.
However, as with many heuristic algorithms, thd mality is hard to proof formally. The
version presented here is the first draft basetherbasic estimations. The original plan was
to create a simple pilot implementation and theradgust the algorithm according to the
observations, preferably focusing on the optimigstimation Formula 9 (Chapter 8.2.3).
However, due to some other complications, we ewaiytulecided to abandon the record-

based approach completely. Related facts are disdus Chapter 8.2.4.
8.2.1. Algorithm’s quick overview

When task is submitted on the PROOF cluster witodes for the first time, it always runs
on the single master configuration. Then, the prepéies inRecord table(t, NjTable 5) are
filled.

-B53 -

Whent is submitted for the second time (and if, agdiig assignedN workers), the previous
results fromRecord table(t, Njare checked. Based on that, it is decided if moasters

should be considered, i.e., if the finalizationrghia the total execution is significant enough.

« If so, we try to add one more master so we will twee mastersfor the second run.
* If not, we run task again on the single master configuration. Whes dtone, we adjust
the stored information iRecord table(t, N)

Every time we rurt on N workers again, we try to add one more mastdr neasters, which

were used the last time. However, we do it onthdé following two criteria are met:

1) The previous configuration dmmasters was more efficient than the one beforh-&n
masters (details on theonfiguration’s efficiencyn Chapter 8.2.2). In other words, we
add one more master only if we see that this agprbas been helpful so far.

» If it has not been, we stay at the best configarasio far, i.e., oh-1 masters.

2) The estimation of execution for configuration withl masters is promising in terms of
its efficiency. Simply said, we believe that addorge master can help.

 |If we do not believe it can help, we stay at thestbeonfiguration so far,

i.e., onh masters.

After every run we also updaiRecord table(t, N).

Record table(taskt, number of workers N)

Variable Description
tim@ast The total execution time of the last run.
final|ast The length of the finalization phase from the last.

mastergst The number of masters used for the last run.

eventgs The number of events processed in the last run.

timBast -1 The total execution time of the run before the fast

masterssi .1 | The number of masters used for the run beforeasterlin.

eventgsr: | The number of events processed in the run beferéagt run.

The average processing rate of a node servingadsothworker and as a
master

The average processing rate of wonkewhich contains processed data
Pd -

l.e.,w.D
The average processing rate of wonkewhich does not contain
processed data i.ev/D

Ps

Pa

Table 5 — RecordTable(t,N) contains all necessargformation about runs of task t on N workers

! Meaning the top-master and two sub-masters asetkfn Chapter 7.1

-54 -

8.2.2. Changing conditions

We expect the PROOF Scheduler to assign to taskuseru the same number of nodes
N each time. However, even if this is the defaultitegy, we cannot guarantee it. Therefore,
we must remember one separ&ecordTable(t, §J for each number of workensy ever
assigned to task The optimal configuration naturally depends oe tlumber of assigned
nodes and cannot be shared. If wetron several differentl, we can simply imagine it as it

runs on several different clusters.

However, we do not have to start with the singlestexaconfiguration for each different
assigned\. If the current number of assigned worklrs greater than some previoNg we
can simply use records of (the highest fouNgd)also forN. The explanation is that if the
configuration withs masters was helpful fod workers, it is expected to be helpful also for
workers wher&l > Ny. On the other hand, N is smaller than aniy assigned so far, we have

to start the algorithm from the single master agunfation.

The number of events to process can also differ (and usually does so)efch run.
Therefore when comparing which configuration igdagmore efficient), we cannot compare
only absolute lengths of the executions, but weehtw normalize them by appropriate
numbers of events (see the appropriate formulaciioA 5 of the algorithm). This is the way
we compute theonfiguration’s efficiencywhich can be used for comparing of configurations

involving processing of different numbers of events

In this algorithm, we also neglect the externaldlam the nodes for the same reasons as
described in Chapter 6.1.

8.2.3. Detailed description of record-based MMS algorithm

All used variables are taskelated, so they should have another ingdeletermining the task.

However, we omit that index for brevity.

INPUT:
» Code inputSelectort
» Data input: Addresses ofl different places containing data sets wéthevents
to process in total
* Nassigned workemodesn; (i=1..N, N> 6) + master node M
* FINAL_SHAREconstandefined by cluster administrator (e.g., 10 %)

= The maximal finalization share which is still cathesied insignificant

-55 -

START - INITIALIZATION:

Denote byD the set of assigned nodes which contain some data sets for tadkcally.

In generaD can range from the empty set (if all the dataraneote) tdD| = N, meaning that
each of the assigned nodes contains some datbbsédskt locally. We cannot influence the
choice of the nodes as this is the task for the ®BRGcheduler. However, we assume that

if some nodes contain data sets for taskey are assigned tan preference.

Goto ACTION 1

ACTION 1 - Checking if task t has ever run before

if (task t has run before on N nodes) {
Load Record table(t, N)
Go to ACTION 3

}

else (task t has run before on M nodes, M <N) {
Create new Record table(t, N)
Copy all values from Record table(t, M) to Rectable(t, N)
Go to ACTION 3

}

else { // Task t has never run or task t has run only owdtkers, where M >N
Create new Record table(t, N)
Set all values in Record table(t, N) to O
Go to ACTION 2

ACTION 2 - Running task t on the single master configuration withN workers

Run task on the single master configuration withworkers. From the task execution, obtain

the following information:

- Number of processed evemon each worker nodg.
- Computation phase lengkh(including the initialization phase).

- Finalization phase length
Shift the last configuration results so far (if m@vious results exist, all values are 0):

timaast-]_ = t|meast
mastergsi.1 = mastergs:

eventgsi.1 = eventgg

-56 -

Remember current results as the last ones:

timeas: = (k+f) /] Total execution time

mastergs = 1 /I Number of masters equaled to 1 in tars
finalase =f /I Length of the finalization phase
eventgss =€ // Number of events processed in this run

Computep’gand p’sfrom the previously obtained information.

28 >q
i;n, 0D p’a: i;n, 0D
k* (N -|D)

P47 k*p

* p’q IS an average processing rate (events/time una)wbrker node that belongs to >

i.e., of a node, which contains some of the praxkssita sets locally.

e p’ais an average processing rate of a worker nodeshndoes not belong to dBt

if (pa==0) {p=p4 } I/ First run on single master configuration
else { p= average (pp’q) } // Multiple run on single master configuration
if(pa==0) {p=pa } /I First run on single master configuration
else { p= average(@’'s) } // Multiple run on single master configuration

Go to FINALIZATION

ACTION 3 - Evaluating of multi-master suitability

last_fshare= finaljast/ timaas:*100 /I Finalization share in last execution time (%)

if (mastergst == 1 AND last_fshare < MERGING_SHARE)
{ Il Insignificant share of finalizatios= no need for more masters

Go to ACTION 2 /I Run single master configuration again

}
else {
if (mastergsi== 1 AND (mastelg.1==0 OR masterg:1==1))
Go to ACTION 5 /IMake estimation for mastess+1, i.e., for 2 masters
else
Go to ACTION 4 //Check results from last run
}

-57 -

ACTION 4 - Checking results from the last run

if (M€ < M€) I/ Efficiency of last configuration higher
events, events,,
{
if (mastergs > mastergst.y) /l Last number of masters higher
Go to ACTION 5 /[Make estimation for masteygt1l masters
else
Go to ACTION 6(run on mastefgimasters)
}

else // Efficiency of last configuration not higher

/I => go back to configuration before last one

Go to ACTION 6(run on mastefg:.1masters)

ACTION 5 - Estimation of the computation length formastersag + 1 masters

Note: For resources utilization reasons, we allow a nddeserve both as a worker and

as a master at once.
By default, put alN assigned nodes to 3&t={n; }i=1. n-

ConstructS = {n}, set of mastergs: + 1 masters, i.e., choose sommastergs + 1 nodes
from W, preferably those not belongingBd.

Load previously measured valugs p; andps. Note thatps can still be equal to zero, which
means that no multi-master configuration has runfaso Based on the previous results,
estimate processing rgbefor each node; :

foreachpdW (i=1..N) {

if (nOS) { // Node running both worker and sub-master

if (g==0) { /[l No multi-master configuration has run so far
if (nOD) {pi =} /I Processing local data sets
else {p=p} /l Processing remote data sets
}

else { p=p } [/ Previously measured processing rate of sub- enast

! We do this because we want to keep the processia@f nodes; /7D on the highest possible level
in order to allow them to process as big as posghblt of their local data right on them.

- 58 -

else // nJS = node running only worker

{
if (nOD) {pi =m} /Il Processing local data sets

else {p=p} Il Processing remote data sets

}
}

Estimate aggregated processing rafer all N worker nodes P= ;Npi

Estimate the execution time omasterss; + 1 masters for processirgevents according to

Formula 9. e final

o * master
estimatioifmasterg,, +1) =— + st MASTET Ry
P masters,, +1

Formula 9 — Optimistic estimation formula for s masers

Check if at least the estimation forastergs: + 1 masters (normalized bs) is better than
the real result obtained fanastergs; masters (normalized by previoegentgs). If so, we try
to run task on mastergg; + 1 masters. If not, we go back to the last configaratnastergs;,

which is also the best so far. Naturally, we préifier configuration with higher efficiency.

estimatiofmasterg, +1) < time,,
e events,,

it

Go to ACTION 6(run onmastergs; + 1 masters) // Try to add one more aster

else

Go to ACTION 6(run onmastergs; masters) // Stay at previous configuration

ACTION 6 (run on s masters) - Runningt on configuration of s masters

if (s == 1)

Go to ACTION 2 // Run t on single master configuration

Determine seB of s sub-masterthe same way as described in Action 5.

Divide all N worker nodes ints sub-groupsh (j=1..s) so that the aggregated processing rate
of nodes in each sub-group is approximately edodhct, we can just dividdl workers into

ssub-groups randomly, only taking care that:

» Worker processes running on sub-master nodes signasd to these sub-masters.

» Each worker group contains approximately the sanmeber of workers from set D.

! See Chapter 8.2.4 for more details on the estimatirmula

-59 -

Once the worker groups for all sub-masters arerghted, runt on theses sub-masters.

From this run obtain and store the following infation:

- Number of processed evemn each worker nodg //W.
- Computation phase lengkh(including the initialization phase).

- Finalization phase length.

Computep’,, p'q (for pure worker nodes only, i.e., do not includese nodes which serve as

sub-masters, too) ampds from the previously obtained information:

2.8 2.8 >e

' i;n,0D,n,0S ' i;n,0D,n; 0S ! i;n,0S

T =(D-pns) P k*(N-DOS) b=

“k*(sD
Refine oldp,, py andpsvalues using new valugs,, p'gandp’s :

pa= average(p;, pu)

Pa= average(R; Pa)

if(ps==0) { R=ps}

else { p=average(R ps)}

If we run the same configuration as the last time only replaceimeas;, final,s; andeventgs;
by the most actual value. This means that the mmédion on configuratioimastergs:.1 IS

preserved. If we tried a new configuration, we abift the results.

if (s '= mastergs) // Shift so far the last configuration results

{
mastergs.s = mastelss
tim@ast.1 = tiMm@ast
eventgse: = eventgg
mastergsy =S

}

eventsst =e

tim@ast =k +f

finaliast =f

Go to FINALIZATION

FINALIZATION
Save RecordTable(t, N)

End of the algorithm

-60 -

8.2.4. Optimistic estimation formula

For the estimation of the execution timesomasters, we use optimistic estimation Formula 9.
The optimism in this formula is twofold. First, the finalization phase, we simply neglect
any additional overhead related to running of nmoessters. This overhead is likely to occur,

but hard to express in the form of a mathematisattion.

Second, when the multi-master configuration is @erred for the first time (on two masters),
the sub-mastering overhead in the computation ésgad througps working rate) is not yet
known and therefore ignored. This also lowers thimated execution time and, therefore,
encourages using of more masters. The estimatiamastionally stimulative. We consider
better to try more masters, get worse result aacetly reach the upper limit, than not try and

possibly miss a better configuration.

Optionally, also a version of the algorithm comelgtwithout the estimation formula can be
considered. In such a case, we would always tadtbone more master until the point when

the efficiency of the configuration starts to dese.

Start - initialization

Checking if task ¢ has ever run before

Evaluating of multi master
suitability

Checking results from
the last run

Estimation of the computation

length for mastersy,, + 1 masters

Running ¢ on configuration of

Running task ¢ on the single
5 masters

master configuration !

with NV workers

Finalization

Figure 19 —Work-flow of the record-based algorithm
8.2.5. Pilot implementation learning

Pilot implementation of the record-based MMS altjon revealed some interesting facts,
which unfortunately made this algorithm hard to urs¢he real environment. The same use-
case, which the algorithm tries to benefit frone.(imultiple runs of the same analysis code),

suddenly also became the biggest obstacle.

-61-

It turned out thatnatural behavior of PROOF usermakes the recognition of the same
analysis code a non trivial task. The users tendsetheir analyses several times, but they
usually perform slight changes, like adding or rgm@ dumps, variable renaming, code
formatting, etc. Logically, the analysis couldIdbé the same, but the source code would look

slightly different each time.

The basic idea was to recognize a selector, whiaf &ready run, by the file name
and author. If the name and author are recognibea, the hash codes of both the incoming
and the remembered source code are comparedylatleesqual, then the upcoming run can

be considered as a multiple run of the same arsalysi

Even if the users would not rename their files aaild not change anything inside, there is
still an additional problem of storing and searghfor hash codes. It became obvious that
some more sophisticated way of storing and seagchiould have to be developed in order

not to overload the PROOF master by this task.

Another option was to involve the users, themseglvesthe analysis code recognition.
For example, they would get a special number/cdtz their task’s execution. When they
run the same task again, they can use this nundoler/to benefit from the record-based
algorithm. However, this would require educatiortted users in whahe same analysis code
means. PROOF clusters like CAF are also meantrfalysis development. In such cases, the
first version of the analysis code and the finak anay differ significantly in measured

characteristics. However, from the user’s pointiefv, it is still the same analysis.

As we had overall low confidence in the above nwm@d approach, we abandoned the
record-based approach completely. Instead, we éécdim design an algorithm, which would
require neither obtaining nor storing of any infatron. Such one is introduced in the next

chapter.

-62 -

9. Merger-based multi-master setup algorithm

In this chapter, we present the main outcome o wrk, the merger-based multi-master
setup algorithm for PROOF.

As already explained, the optimal number of masterdhe computation phase can greatly
differentiate to the optimal number of masters fbe finalization phase. Previously
introducedrecord-based MMS algorithfChapter 8.2) simply tried to find a balance betwe

these different needs. As a consequence, neitleecdmputation nor the finalization was

performed on the optimal number of masters.

Overcoming this undesirable feature became the gbrmmotivation for the concept of two
different configurations - one optimal for the camwgtion phase and another optimal
for merging. The main question is when and howatich between these two setups, and not
to affect or slow down the whole processing. Theneefwe introduce a new type of the
node - themerger The merger acts as a worker during the computgtimse and as a master

during the finalization phase.

Merger-based multi-master setup algorithm changeswork-flow of the finalization part.
Before diving deeper into these changes, we presahibrt comment regarding the optimal

configuration for the computation phase.

9.1. Optimal configuration for computation

In general, we want to devote as much as possililethe computing resources
to the processing itself; i.e., we want to have nagny as possible workers for the
computation. As mentioned in Observation 3 (Chapet.2), the amount of workers
manageable by one master is task independent anbdecdetermined by a simple load test.
We expect to know this limit, and we will callmtax_manageable_limit

We can see thmax_manageable_limés the number of workers, for which the computatio
time is the shortest possible. In other words, mgidjust one more worker on top
of max_manageable_limwould make the total computation time longer. Téason is the
idle periods on workers, which are the result o¢ thon responsive overloaded master
(Chapter 6.4 and Chapter 7.4).

The optimal configuration for the computation ignhthe configuration with as little masters

as possible, but no one of them serving more thax_manageable_limdf workers.

-63 -

Let N be the number of workers assigned for procesdimgeryt by the PROOF Scheduler.

Then the optimal number of masters for the compmnas simply given as:

mastersgy: = /N / MAX_MANAGEABLE_LIMIT

Formula 10 — Optimal number of masters for the comptation

This is also how we find the initial configurationge., the initial number of masters.

If mastersp:> 2, then equal part of the workers is assigned to ehdhese masters. The same
approach as in the record-based algorithm can eé fs that. We determine the workers,
which contain some data sets to be processedypealtl we assign these workers uniformly

to all mastersy; masters.

9.2. Optimal configuration for finalization

In order to incorporate mergers smoothly to th& easecution, we made the following change
into the PROOF processing work-flow:

When a worker has processed its last packet, ¥ do¢ send its output to the master as it
would usually do when using the standard approlstead, it just informs the master about

the fact that it has finished. In turn, the maséacts in one of the following ways

o Establishes the finished worker as a merger foremivnumber of workers
(“Be merger mfor p workers”).

» Tells the finished worker to which merger to setscbutput(*Send output to).

The total number of mergers established by the endsliows the computations introduced
and explained in Chapter 7.5. Fof workers N output lists), there areN mergers
established. To be more precise, the first finisfNedodes become mergers as these nodes are

currently the most efficient ones and also freetok as masters.

The remaining nodes are just redirected to theseifsgd mergers. Once a merger has
received the outputs from all its workers, it setfdsmerged output to the master. The master

then merges the outputs from all mergers to thed fiesult.

approach

Figure 20 - Standard approach: Finished workers s&l their outputs automatically to the master

Standard

! In the case of less than 6 workers or unexpeatelgms (Chapter 9.5), the master can also aswaohnker for
sending the output directly to(itSend output back”).

-64 -

Merger-based

algorithm
merged output merged output
of wy. we and ws of wy, Wy and wy
W3
output oytput output output
of w, of wy of wy of ey
merger merger

Figure 21 - Merger-based algorithm:
Workers send their outputs to mergers, which thenend the merged outputs to the master

This means that each time quetyis executed on the different number of nodes,
the number of mergers is different, toot i executed on the same number of workers, the
number of mergers is the same. However, differedies can be chosen as mergers each time

depending on their current performance.

9.3. Detailed description of merger-based algorithm

In this chapter, we describe the merger-based MiMSrithm more formally in the form

of a simple communication protocol. As the algantinterferes only with the finalization
part, we start at the point when the first workes Hinished. Until this point, there is no
intervention to the current approach except thedhiction of Formula 10 for setting of the

initial number of masters (Chapter 9.1).

For clarity, we neglect here any potential problesush as a node failure or a message lost.

These issues are later discussed in Chapter 9.5.

All used variables in the following text are quémelated, so they should have another index

t, determining the query. However, we omit that it brevity.
VARIABLES AND MARKING:

 Master node M

* N workers nodes w... Wy

In the beginning we expected to have initializegl fillowing variables:

On the master node: Integer mergers =-1
Integer workers_on_merger =-1
Integer created_mergers =0
Integer finished_mergers =0
Integer current_merger_index =1
Array merger_list[]

- 65 -

On the worker node: Integer workers_to_merge 0=

Integer merged_workers =0

We use auxiliary functiorMessage (from, to, content) describe that the nodeom is
sending the message with tbententto the node on address Names of nodes determine

their addresses.

EVENT #1: Worker w; (i=1..N) has finished its computation.
Action:
Il Worker winforms master M that it has finished the compotati

Message(w M, “Finished”);

Comment:Event #1 occurs on every worker node exactly oneg;it occurdN times in total
during the execution of the algorithm.

EVENT #2: Master M is informed by worker w; (i=1..N) that w; has finished its
computation.
Action:

if (N<6) //Too little workers for the merger-based algonith

{
/I Master M asks worker;wo send its output directly to it
Message(M, w “Send output back”);
}
else // Enough workers for mergers
{
if (mergers == -1) // First worker has finished - number of mergers set yet
{
mergers =VN; I/ Total number of mergers to be created

initialize array merger_list[] from index 1 to merg;
/I Array for addresses of mergers
/I Number of workers for one merger

workers_on_merger = (N — mergers) / mergers;

! More preciselymergers = round¢fN) as we want mergers to be an integer number. Hawexeskipround
function for brevity.

2 For simplicity, we expect that all mergers serxaatly the same number of workers. In practiserethis
usually £ 1 worker difference; however, this does change anything in the algorithm. Just the mdsds to
then remember the number of workers for each méngéridually.

- 66 -

if (created_mergers < mergerg) Some mergers still to be created.
{
created_mergers++;
/I Master M informs worker ythat it will serve as merger dBated_mergers
/Il for workers_on_merger workers
Message (M, v “Be merger Mieated_mergersfOr worker_on_merger
workers”);
merger_list[created_mergers] 5 w/ Save merger’s address
}
else // All mergers have been created — we redirect iamg workers to
I/l these mergers in the rountin fashion

/I Master M tells worker wo send its output to merger
Il Meyrrent_ merger inde©N address merger_list[current_merger_index]
Message (M, w “Send output to Murent merger_indePN

merger_list[currenenger_index]”);

current_merger_index++;
if (current_merger_index > mergers)

current_merger_index = 1;

Comment:Event #2 occurs on the master node exdttiynes in total (once for each finished

worker).

EVENT #3: Worker w; (i=1..N) has been informed by masteM that it will serve as
merger m; (j=1..N) for p workers.
Action:

workers_to_merge = p;

merged_workers = 0;

/I As a merger, it starts to wait for workers_to rgeeconnections

// to come from other workers.

Comment:Event #3 occurs on every node, which is selectedhbsterM as a merger. As

master M creates mergers, event #3 occurbl times in total.

- 67 -

EVENT #4: Worker w; was told to send its output directly to masteM.
Action:
/' Worker w sends its output directly to master M

Message (wi, M, “Output” + output);

Comment: Event #4 occurs only iIN < 6, or in the case of some unexpected error (see
Chapter 9.5)

EVENT #5: Worker w; was told to send its output to mergem; on addresswy.
Action:

/I ' Worker w sends its output to merger an address y

Message (W wy, “Output” + output);

Comment:Event #5 occurs on every worker node which wassetdcted as a merger. As we
have N worker nodes in total anfll of them were selected as mergers; event #5 occurs

exactlyN-vN times in total.

EVENT #6: Merger m; has received output from workerw;.

Action:
/I Merger maccepts output ofvand merges it with its current output
merged_workers++;

if (merged_workers == workers_to_mergeMerger already merged all its workers

{
/l Merger m sends its output (including outputsrirall workers_to_merge
/l merged workers) to master M.
Message (mM, “Output” + output);

}

Comment:Event #6 occurs on every merger neawkers_to_mergémes. In total, it occurs

N - vN times, i.e., once for each worker which is notager.

EVENT #7: Master M has received output list from mergem;.
Action:
/I Master M merges the output list fromwith its current output list.

finished_mergers++;

- 68 -

if (finished_mergers == mergers) // All mergers already finished

{ I/l Master send its output — which is also the firggult now — to the client.
/I It is the end of the algorithm
Message(M, client, “Output” + output);

Comment: Event #7 occurs on the master node exactly ormmre elach merger,

i.e., "N times in total.

Messages between nodes
Worker — Master Master — Worker ~ Worker — Merger Merger — Master

Be merger mfor p

Finished
workers

Output Output

Output Send output to;m

Send output back

Table 6 - Five types of messages can occur betwegrtes in the merger-based algorithm
9.4. Correctness and finiteness

We described the merger-based MMS algorithm infoh@ of several events. Because of its
parallel character, we cannot usually determineclvi@vent will occur on which node, or
which the order of these events on the individuales is. In the following figure, there are

depicted the most important moments in the algorishwvork-flow:

» Establishing of a merger (by the master)
* Redirection of a worker to its merger (by the mgste
* Sending of the output from a worker to its merger

* Sending of the output from a merger to the master

First worker w; : All mergers already : Merger my;
finished | established. | already merged all its
: Worker w4 finished l p workers
[
: |
I |
I |
: |
(1) Finished | Send output |
: : Output
|
Be merger m, I ok |
l@)for 0 workers : ® Filimstyed |
|
|
| wETIT : A
|
! ‘\‘__)/’f @Output ! ‘x‘__/'f
m, m

Figure 22 — Merger-based algorithm work-flow (focuson one merger)

-69 -

9.4.1. Algorithm is finite

By finiteness of the merger-based MMS algorithm, mean that the modified finalization
part can reach its end; i.e., that in the end, enddtalways sends its output to the client. To
demonstrate that we help ourselves with the staégraim of the master node depicted
in Figure 23. There are 5 states of the mastediadt) the merger-based algorithm starts with
the transition from state 1 to state 2, i.e., lyshing of the first worker. In state 2, mastér
establishes finished workers as mergers. In statea8teM redirects each finished worker to
some merger. In state 4, mastéraccepts the outputs from finished mergers. Whendkt
N-th merger has finished, mastdr mergers its output with the current one and sehids

final result to the client.

We can clearly see that all the loops in the statgram are finite, restricted by the number of
finished workers or mergers. Mastdr hence, stays in each of the states only for gfime

and therefore always reaches final state 5, wiiche sending of the output to the client.

State diagram
of the master

k-th worker finished k=th worker finished me-th merger finished

|

| [[3 3
|

#4 |
#1 st #2 wN+1 #3 st i uN-th #5
Work — 1f yvorker_' Establishing —worker —» Workers L merger Merging —merger —» Sending result
e inished ; s finished finished . -
distribution 1 mergers finished redirecting finished to the client

| mergers
|

Start of the merger-based
algorithm

Figure 23 — State diagram of the master in the merg-based algorithm

To make the picture complete, we also provide tategliagram of the worker node (Figure
24). The transition from state 2 to either statei3fo state 5, is determined by when the
worker finishes. If it becomes a merger, it thentsvéor p workers to finish; i.e., the loop in

state 3 is also finite, restricted py

merger

State diagram

[|
| |
of the worker | ™ #4 I
| w:tlwtr'::lr:ot:)p _p-mevr-rgo:;ar’ Sending result | |
“Be merger | come to the master :
for p warkers”| |
recaived : T I
|
| x
#1 Report to #2 | I‘(::;:;ocrtl:;r :
Work | master N Waiting for | k=1 |
processing | ‘Finished™ | reply from e I
finished the master
“Send output to”
received #5
[| Sendingthe
output where
requested

Figure 24 — State diagram of the worker/merger inhe merger-based algorithm

-70 -

9.4.2. Algorithm is correct

By correctness of the merger-based MMS algorithm,mean that the output list, which is
sent from the master to the client, contains mermgeputs from allN workers; and each
output is merged exactly once. In other words fithe output list is the same as if all of the
merging would have been done on the master nodg. &k know that the merging

of the output lists is commutative (Chapter 4.5).

Observations:

* The output of each worker goes to one merger.
o Every worker is either established as a mergelf itseredirected to exactly one
merger (Figure 24 — transition from state #2 tbegistate #3 or #5).
* The output of each merger goes to the master.
o Each merger sends its output list only once (FiQdre state #4).
o The master does not send its output list to trentluntil it gets the output lists from

all mergers (Figure 23 - transition from state é4tate #5).

The output list from each worker is merged exacitige on some merger. The output list
from each merger is merged exactly once on theandstmeans that each output list goes
“through” exactly one merger, and all the mergeesraerged on the master all output lists

are merged into the final result.
9.5. Supporting algorithm’s robustness

In the previous sub-chapter, we described the \ilork-in the ideal case when there are no
unexpected events, such as a non-master nodeefailla message lost. In order to make the
merger-based algorithm more resistant to such estsgdand hence, really usable in the real

environment, we introduce the following confirmatimessages:

» Confirmation of merger’s start-up succ€dderger started”)
* Confirmation of successful merging from a merger it® worker (“Successfully
merged”)
» Confirmation of successful merging from a workethtemaster (“Successfully merged
on ny)
The usage of these three confirmation messagespistdd in the following figure, which is
an extension of Figure 22. Further details of thmsdirmation messages are discussed in the

following sub-chapters.

-71 -

Successfully

A
A
Merger merged on m,

j started
s

|

/

First worker w; l All mergers already } Merger my
finished | established. | already merged all its
! Worker wy. finished | p workers
| |
! |
' |
® ‘ |
Finished |
Be merger m, : ® Finished Send output :
/f for p workers : m | Output
| |
! |
' |
! [
! |
! |
| |

Pl
! i)
i 1
W !

\..____./

m;

Successfully
merged

Figure 25 — Use of confirmation messages

The main idea behind the support of the algorithmébustness is the independence
of merging. If a merger fails, its workers canlstisend their outputs directly to the master.
Here, they are simply merged with the output lstsiing from successful mergers.

If a worker fails before it sends out its outpute tappropriate part of the input must be
processed again. In fact, it is just a special cdse worker failing during the computation,
which is handled by the PROOF Packetizer (Chapt. 4 the master node fails, then the
computation is completely lost as in many similaster-worker based applications.

In the ideal case when all confirmations come gseeted, the state diagrams of the master

and worker look like the following:

[mm—m m e -
k-th worker finished

State diagram
of the master

For each merger m;

k-th worker successfully

| |
' i
| |
! v I
| |
' |
[#3 |
: Redirecting p |
I #2 Confirmation | Werkers tom :
! Establishing w | from m All workers #4 | #5
Work | workerw | asmergerm, | arived -» redirected Waiting for | Output from Waiting for
distribution finished for p workers “Merger Waiting for and output from m; received outputs from
and waiting for | started” merging confirmed merger m | other mergers
its confirmation confirmations
from all p
redirected
workers

Figure 26 — State diagram of the master includingending/waiting for confirmations

-72-

oL
k-th worker
connected

k=1...p

State diagram

I
I
|
I
I
I
of the worker " !
|
Waiting for p |
workers to :
#3 connect |
Sending p-th worker #5 :
"Be merger m——p| tco:::i m':‘; » Merging — mergded —» Sending result| |
for p workers™ 0 the mas an to the master | |
received '‘Merger confirmed I
started” . I
Sending |
“Successfully I
merged” :
#1 Report ta #2 to workers |
Work |_the master | Waiting for |
processing “Finished" replyfrom (| ~——7"7"" """ """~ 7~"~-~"~- -~ ~-—- - -
finished the master
“Send outpuf #6
tom w Sending
received output to - #7
| merger m; Sucoessgﬁlly Sending
> merge —»{ “Successfully
Waiting for received merged on m,”
“Successfully from m, to the master
merged"
from
merger m;

Figure 27 - State diagram of the worker including snding/waiting for confirmations

In the following sub-chapters, we focus on theaittns when confirmations do not come

within the given time period; or even negative @onations come. When we say that some
confirmation was not receivegiithin the given time periqdt also covers the case when more
request attempts were made. We also expect thidweadintities can handle possible duplicates
of all messages; e.g., more mergers are neveredtam the same worker node even
if multiple requests are received. Both the timdeungth and the maximal number of attempts

can be set freely according to the properties ®RROOF cluster.
9.5.1. Confirmation of merger’s start-up success

More precisely, the title refers to confirmatitklerger started” coming from workerw;

to masteM and confirming thatv, became mergen as requested (Figure 25 — the first case).

No workers are redirected to merggrby masteM until the confirmation from this merger
arrives onM, i.e., until it is sure tham was started successfully (Figure 26 — state #2).
Finished workers can simply wait until they areirected by master M (Figure 27 — state #2).

* Problem 1: MasterM has not received confirmation from worker(“Merger started”)
within the given time period.

» Solution: Workerw; is asked to send its output directly to madef'Send output back”).

* Problem 2: Negative confirmation of master start-up arrif&annot be merger).

» Solution: Workerw; is asked to send its output directly to madlgt'Send output back”).

-73-

Problem 1 Problem 2

Cannot be merger

®

Send
output back

@

I
|
|
|
|
|
|
|
Be merger m, | Be merger m,
|
|
|
|
|
|
I
|

for p workers Send for p workers

output back

Figure 28 — Possible problems related to confirmatn of merger’ start-up success

If worker w; is asked to send its output directly to maMeit means thatv, will certainly not
serve as a merger anymore. Its merger role isdbksigned by mast&i to some other node.
This node is simply chosen from the group of waitivorkers (which were originally waiting
for the unsuccessful node), and the whole cycle, including the waiting fbetconfirmation
repeats. The only change is that the number of @erfor the new merger is lowered by one.

In a better case, the unsuccessful workesends its output to mastel, and here it is later

merged with the outputs from successful mergers.

* Problem 3: Workerw; was asked for output$end output back}, but no response has
come within the given time period.
» Solution: Output of workemw; is considered unreachable.

o The node, on whickv was running, is deleted from the list of availahteles; and
the cluster administrator is informed about thebpgm (manual restart can be
necessary).

o The PROOF Packetizer is asked by masteto re-assign the work originally
processed onv, to other nodes. This is performed as a complet@yndalone
query with the same selector, but only with the-seb of the original data
(“emergency” query). This allows its processingfast as possible; as again, all
the nodes may be involved, although used in thieréifit and thus independent
sessions.

o When the “emergency” query is finished, its outdaes not go to any client, but
directly to masteM, which started the session. Here, this emergeneyyoputput
is merged with the standard output of the origiopary. MasteM cannot finish

before this emergency output is received.

-74 -

Problem 3

@ The Packetizer

Re-process
wark of w,

timeout

Send
output back

Figure 29 — Worker w; not responding to request “Send output back”
9.5.2. Confirmation of successful merging from merger to erker

More precisely, the title refers to confirmatitBuccessfully mergedtoming from mergem
to workerwy and confirming thatny merged output ofw successfully (Figure 25 - second

case, message 4).

After worker wi sends its output to mergem, it waits for the confirmation. If the
confirmation does not come within the given timeiqd workerwy sends to mergem

a special message requesting the confirmation ef previously sent outpuf'‘Confirm
merging”). This covers the case when the confirmatitButcessfully merged’was sent by
m;, but got lost on the way. The advantage is that dhtput itself does not have to be

transferred again fromy to m.

* Problem 4: Confirmation of merging “Merged successfullyy has not come within
the given time period.

* Solution: The same as for Problem 5.

* Problem 5: Negative confirmation of merging carfiderging unsuccessful”).
* Solution: Worker wy informs mastemM that mergem is broken(*Merger my down”)

and sends its output directly to magwe(“Output”).
Problem 5

Merging
unsuccessful

timeout

Figure 30 - Possible problems related to the confination of successful merging from a merger to a wéer

-75 -

9.5.3. Confirmation of successful merging from worker to naster

More precisely, the title refers to confirmatidiSccessfully merged on;n, which comes

from workerwg to masterM and confirms that output ofi was successfully merged by

mergerm. As depicted in Figure 25 (second case), ideallg tonfirmation immediately

follows the previous confirmation from mergaey to worker wy (“Merged successfully”)

MasterM is awaiting the confirmation on successful mergirgm each of the redirected

workers.

Problem 6: Workerw reports its mergam; as broker(*Merger m; down”) to masteM.
Solution: MasterM immediately stops using merggy.
o The workers, expected to be redirectedmn are asked to send their outputs
directly to masteM (“Send output back™when they finish.
0 Master M asks for the current output of mergey (“Send output back”).If
received, it contains the outputs of all the woskewhich were successfully

merged omm, before, as well as the outputrafitself.

Mo more
redirecting to m,

@ Merger m,

Send @ down

output
back

Figure 31 — Worker w reporting failed merger m,

Problem 7: Broken mergermy was asked for output'Send output back”) but no
response has come within the given time period.
Solution:
o MasterM asks all workers, which have been merged sucdBssiu m before,
to send their outputs directly to(itSend output back”).
o The workers, which are not responding, are constlanreachable; and their part
of the work must be processed again, as well ag/tik of m as a worker.
0 The same approach is used as in the solution ®iéhp3. The Proof Packetizer is
asked to again process the work, originally proegssim and all the unreachable
workers. MasteM waits until this result is received, and then érges it with the

results obtained from the successful mergers.

-76 -

Note that the negative confirmati¢iMerger mj down”) comes from workew, when there is

a problem on mergen;, butwis all right. If no confirmation comes, there ip@blem on w.

* Problem 8: No merging success confirmati¢tMerged successfully on ;i) has come
from workerwi to masteM within the given time period aftew s redirecting tan.

« Solution: We need to discover whether worker has ever sent its output to merger
or not. ThereforeMaster M asks mergermy if it has received output fromw
(“wyxmerged?”).

Mergerm replies:
0 “wgmerged”
= As we have the output @fi merged, we do not have to care about its crash.
0 “wygnot merged?
» Together with the send-out of this message, memgerautomatically
lowers the total number of workers to merge fnoto p-1.
= Worker wy is asked for sending its output directly to master(“Send
output back”).Possible problems are handled the same way & inase
of Problem 3.
o If mergermy does not respond at all, then madtebehaves as if mergen was
reported as broken (Problem 7).

When masteM receives the merging confirmatio(fSuccessfully merged onjth from all

workers redirected to mergey, it then starts to wait for the output fram

* Problem 9: No output has come from mergarwithin the given time period, although all
its workers already reported successful mergingido masteiM.

» Solution: MasterM asks mergem for the final output explicitly“Send output back”)
If mergerm does not respond, the same approach as for Prabiemsed,; i.e., all merged

workers are asked to re-send their outputs dir@athpasteiM.
9.5.4. Summary

There are many other possibilities of how to solugexpected problems of worker’s
or merger’s failure. We decided to choose the nsbstightforward approach in order
to make the work-flow transparent and loggable a@metomplicated situations. For instance,
according to the above mentioned rules, if a workas once redirected to some merger, it
will never be redirected to any other merger agawen if the original merger fails). In such
situations, the worker is always asked to sendutiput directly to the master. Generally,
redirecting to some other merger could be fastewéver, we decided on this approach
-77 -

for several reasons. First, such failures are rative so the potential slow-down is negligible.
Second, redirecting right to the master is easierontrol (another merger would have to be
informed about another worker on the top of theioal limit; it would have to confirm it,
etc.). Moreover, once some merger has failed, wis® to be more careful when relying on
other mergers as mergers’ failures often happeetheg due to some shared problems on the

cluster.

In the following table, we list all types of messagwhich can occur between any pair of

nodes including all confirmations and negative comdtions.

Messages between nodes

Worker — Master - Worker — Merger — Merger — Master —
Master Worker Merger Worker Master Merger
Finished Be merger | Output Successfully Output Send output
merged back

Output Send output] Confllrm Merging Merger Wi merged?

to m merging unsuccessful | started
' Send output

Merger mdown back wyx merged

Successfully Wy hot

merged on m merged

Cannot be

merger

Table 7 - Messages between nodes including confirtians

-78 -

10. Benchmarks of merger-based algorithm

In this chapter, we present some benchmarks giréhngously introduced merger-based MMS
algorithm. We do not only provide the comparisonh&fstandard approachvith themerger-
based algorithm but we also measure the finalization speed-upnwtiiéferent than the
optimal number of VN mergers is uséd Therefore, we run each query on 4 different
configurations covering the standard approaeN, mergers, vN-1 mergers andvN+1

mergers.

The merger-based algorithm is intended for tasksufeng a significant finalization phase,

a common characteristic of many HEP analyses. Hewat is necessary to ensure that
gueries with the short finalization can also becpssed as fast as possible. In such cases,
naturally, we cannot expect any significant speedhut we need to make sure that the
overhead of mergers does not cause any noticeaddtengation. However, as our test queries
also feature the finalization phase shorter thanidute, which is also speeded up; we can
conclude that the mergers’ overhead does not degradormance of the queries with the

short finalization.
10.1. Measurement methodology

10.1.1. Test environment

All the results presented in this chapter were iabth from the Alice CAF cluster [6] at

CERN offering the following environment:

* Number of physical cluster nodes: 15 (1x masteenaad test node, 13x worker node)
* HW configuration of a node: 8x Intel Xeon CPU 2.386 16 GB RAM
* Network configuration: 2 x Gigabit Ethernet Conleol

We will present results obtained on CAF when usirggfollowing numbers of workers:

e 26 workers (i.e., 2 worker processes per physwcaker node)

« 52 workers (i.e., 4 worker processes per physwcaker node)

The worker processes running on the same physoz# share the memory (16 GB) of this

node.
10.1.2. Test approach

Alice CAF cluster is recently used for the recounstion of the first LHC data; and therefore,

it is not possible to ensure exactly the same d¢mmdi for all the runs of our test queries.

! N is the number of workers assigned

-79 -

However, we can take an advantage of the factrtbaé of the configurations differ in the
computation phase, i.e., that the same code runagdthe computation regardless of the

configuration.

We say that the computation phase lengths in afspieries arenutually comparablé their
coefficient of variation is lower than 5%. Coeféait of variation is defined as the ratio of the

standard deviation to the mean.

Each test query was run 10 times on each of fatedeconfigurations; i.e., it was run 40
times in total. All 40 runs were performed in agiéenrow, one after another. If all these 40
runs weremutually comparablén their computation phase lengths, it means ttheexternal
load on the cluster was without significant chandesng the time that these 40 queries were
running. If all the computation phases are mutuattynparable, we can also consider the

finalization phases mutually comparable.

In order to be able to get sets of runs, whichratgually comparable in computation, we
tested preferably shorter queries, i.e., queriesinig around a few minutes each (see
Appendix A for details). In the case of longer degy it would be impossible to ensure the

stability of the external load during the whole ¢imf their execution.
10.1.3. Test data

We tested six different queries, either developgd us or by the ROOT developers
for measurement of the PROOF performance. For sitypl we do not describe their
background here. Naturally, we are more interesteitheir outside characteristics, e.g., the

length, finalization speed-up, etc., than in tieirctionality or physical meaning.

Seme | (Hevems) | (touputobects)| Ouputobiect type
Query A 5,000,000 10,000 General custom object B
Query B 100,000 100 ROQOT List of objects
Query C 10,000,000 10,000 General custom object A
Query D 20,000,000 15,000 General custom object B
Query E 1,000,000 10,000 1D histogram

Query F 250,000 25,000 2D histogram

Table 8 — List of tested queries with basic charaetistics

-80 -

10.2. Benchmarks of queries using standard objects

First, we present the finalization speedup for @uer E, which involve merging of standard
objects, i.e., either general ROOT non-optimizegecs or custom objects. More details

on these measurements are presented in Appendix A.

The theoretical speed-up in the finalization phaggen using merger-based algorithm
depends on the size of the cluster. The biggerariuge have, the bigger the finalization
speed-up can be. For cluster withnodes, the theoretical speed-up in case wiergers is

described by Formula 6 in Chapter 7.6.2.

In Figure 32, we compare the theoretical final@atispeed-up with the real finalization
speed-up reached in Query A and B. Both queries wested on 26 nodes, having either 4, 5

(optimal) or 6 mergers.

Finalization speed-up on 26 workers

4.00

3 v+r———————-——-"—-"—"———-

3.00

2.50

2.00

4 mergers 5 mergers 6 mergers

—&— Theoretical 2.94 3.05 3.00
—— Query A 3.8 38 3.5
—A— Query B 24 3.1 3

Figure 32 —Finalization speed-up in PROOF queriessing standard objects (26 workers)

In Figure 33, we present the finalization speediuuery C and D, which run on 56
workers, having either 6, 7 (optimal) or 8 mergerse theoretical speed-up, awaited for such

configurations, is also displayed.

Finalization speed-up on 52 workers

6 mergers 7 mergers 8 mergers
—&— Theoretical 4.03 4.10 4.08
—l— Query C 5.7 54 5
—a— Query D 54 51 5

Figure 33 - Finalization speed-up in PROOF queriessing standard objects (52 workers)

-81 -

An interesting observation is that the real spgednauthe finalization phase is usually above
the theoretical values. This is especially remakaonsidering the fact that the theoretical
speed-up does not include any overheads relatéldetestablishing or running of mergers.
The most probable explanation of this phenomenael&ed to the memory. When merging
in parallel, each merger not only merges fewer abjéhan the single master; but it can also
use its own memory for that. Therefore, the totabant of memory available for merging is

simply bigger. This supports the hypothesis of |gsge faults during the merging, which also

brings an additional speed-up.

We can also recognize a tendency of reaching thet bpeed-up omM-1 mergers,
instead of onvN mergers. However, even if the difference in theesbup may seem
significant, i.e., 5.4 to 5.7, in real values th#edence is usually only in a range of a few
seconds (see Appendix A). Moreover, even the thieatespeed-ups forN, N-1andvVN+1
mergers are very close to each other. Considerurgnoeasurement precision due to the
dynamic environment, all the presented theoretipakd-ups are simply equal for constdnt
(i.e., 3 for 26 workers, 4 for 52 workers). It is@the reason why we use two decimal places
precision for theoretical values, but only one oeti place precision for real values.
Nevertheless, the most important fact is that tieere significantly better number of mergers
than N, which basically confirms our theory off\ as an optimum. However/N-1

or vN+1 mergers can also be considered as good optiofisrif, any reason, a little less or

more mergers are needed.

10.3. Benchmarks of queries using optimized objects

Recently, some optimizations aimed at the mergingetected objects were introduced to the
ROOT system. In general, merging is performed byi.€; for N objects, the merging
procedure rundl-1 times. As a consequence, mergin@bfobjects takes basically twice as
much time as merging & objects. This fact also served as one of ouralnfireconditions

when determining the optimal number of mergershiaier 7.5.

-~

standard object
time

optimized object

objects merged

Figure 34 — Time needed for merging of objects ineases with the amount of these objects

However, for optimized merging, there is no linealation as objects are merged in larger
groups and in a more sophisticated way. In fastatithors focused on the same problem as
-82 -

we are solving in this work, but they decided fodifferent approach. Instead of trying
to parallelize the critical part of the mergingwas do, they improved some of the merging
procedures themselves. As a consequence, theura af the time needed for the merging
of N objects may looks like the one in Figure 34. Thackxurve’'s shape naturally depends

on the concrete type of the optimized object.

As both these approaches do not go against eaeh, athd thus can be used together, we
decided to test the merger-based algorithm foofitenized objects, too.

In the following figures, we can see the resultmea for Queries E and F which are build
on optimized objects, representing a 1D and s 2fofgram. Again, we present results

obtained on 26 and 52 nodes and we confront themour theory.

Finalization speed-up on 26 workers

35
34— .’ — _T*: _______ _+ _____
25+————-—--—-""—-"—-"—-"-"-—-"—-"—-"—"—"—"—-"—"—-"—-"——— - — — — 1
, - — —u
4 mergers 5 mergers 6 mergers
—&— Theoretical 2.94 3.05 3.00
—l— QueryE 2.2 23 2.2

Figure 35 —Finalization speed-up in PROOF queriessing optimized objects (26 workers)

Finalization speed-up on 52 workers

45
P/ ————— —— —
3 b —— e — — e — — = = — — — = — — —
3 + ———_—— e Al e e o e e e e —_—— — — — — —_——_— e — — —]
25
6 merger 7 mergers 8 mergers
—&— Theoretical 4.03 4.10 4.08
Query F 3 34 3.3

Figure 36 —Finalization speed-up in PROOF queriessing optimized objects (52 workers)

As expected, the finalization speed-up in theseigsi@vas lower than in the queries featuring
standard objects. However, the speed-up is sghiicant enough; and thus, the merger-

based algorithm can be also successfully usedhéogueries built on the optimized objects.

The finalization speed-up for these queries is,enéeless, hard to describe or evaluate
in general as it is strongly object-dependent. rdeo to adjust the merger-based algorithm
also for these specific objects, we would havexanmene them one by one and analyze their
optimized merging procedures. Since the optimizatieas introduced only a few weeks

before the deadline of this project, we considér e beyond the limits of our work.

-83 -

11. Conclusion

In this thesis, we dealt with the problem of muftaster setup, which was defined
in Chapter 1. Our goal was to design and implemeenmulti-master setup algorithm
for PROOF, a specialized framework for parallebdatalysis at CERN. The main motivation
of our effort was basically to speed-up the datyais in physical research.

We described the PROOF system as well as the mast&er paradigm, on which PROOF is
built. After the initial discussion on the paradignadvantages and limitations, we presented
recent knowledge on the topic. Further, we thorbugimalyzed PROOF query processing
in the case of the single and multi-master con&gan; and we found possible areas for its
work-flow improvement. Based on that, we designiee record-based algorithipnand we
explained reasons why we later decided to abartdon i

Finally, we presented thmerger-based algorithmwhich is considered the main outcome
of this work. We provided a detailed descriptioritah both a simple and a more robust form.
We also created its pilot implementation, which wdaployed in the real environment of one
of CERN’s computing clusters. In order to evaluidie algorithm’s qualities, we conducted
several tests and analyzed and clarified theirtsesu

After benchmarks’ evaluation, we can conclude thatmerger-based algorithm did meet our
expectations, based on the previously inventedryhé@onsidering the standard objects, the
real finalization speed-up usually even exceedshberetical values (due to better memory
utilization). For specific optimized objects, thmdlization speed-up is, according to our
expectations, lower, but still distinctive enoughnake the long analyses perceptibly shorter.
Therefore, we can state that the goal of this ptowas fulfiled. We designed and
implemented a multi-master setup algorithm, whigally speeds up the data analysis
in defined, but common cases.

The merger-based algorithm is already incorporatdtie official ROOT repository and will

be part of release 5.26, which is scheduled foetieof December 2009.
11.1. Future work

Even if delivering awaited speed-up, there ard ptissible ways the algorithm can be
improved in the future. The most natural next steld be to analyze merging in the case
of individual optimized objects (Chapter 10.3), fprably those to be most likely used
by PROOF users, e.g., 1D or 2D histograms. Basdtaina new estimation for the speed-up
can be set. Possibly, some changes would be matte talgorithm itself. The recognition

of the output object type can be included right ithte beginning of the algorithm. Instead just
informing on its finishing, a worker would alsoltéde master which type(s) of object(s) it has

-84 -

in its output list. Some of the next steps of thgoathm can then be influenced by that

information.

Another field of future research and possible improent is the choice of merger nodes.
Now, the first finished, i.e., the fastest, nodes established as mergers. In small and middle-
sized clusters (< 100 workers), all workers finmsimost at the same time, usually within
a few seconds. However, in larger clusters, tha gpahe finished times can get longer; and
therefore, we can consider also alternate appra&em establishing mergers. In other words,
we would not establish the fastest nodes as mefgause they would all wait too long
for their first redirected workers. Instead, we Idoestablish a merger and redirect a worker
alternately as workers are finishing. The questtben, would be the proportion of mergers
and redirected workers (e.g., the first and eabHibished node becomes merger). Could this
approach make a difference? Could it help or watuggve worse results? It is an interesting

topic and definitely worth future research.

-85 -

References

[1] Worldwide LHC Computing Grid, http://lcg.web.cerh.c

[2] Brun, R., Rademakers, F.: ROOT - An Object Orienata Analysis Framework,
Proc. of AIHENP: New Computing Techniques in PhgsiResearch, Lausanne,
Switzerland, 1996, http://root.cern.ch.

[3] Ballintiin, M., Roland, G., Brun, R. and RademakeFs. The PROOF Distributed
Parallel Analysis Framework Based on ROOT, Prod¢hefConference for Computing
in High-Energy and Nuclear Physics, La Jolla, @atifa, 2003.

[4] Ganis, G., lwaszkiewicz, J., Rademakers, F.: Datalysis with PROOF, Proc. of the
X1l Advanced Computing and Analysis Techniques hy$ics Research, Erice, Italy,
2008.

[5] ALICE, A Large lon Collider Experiment, http://edinfo.cern.ch.

[6] Grosse-Oetringhaus, J.: The CERN Analysis FacillyPROOF Cluster For Day-One
Physics Analysis, Proc. of International ConfereaneComputing in High Energy and
Nuclear Physics, Victoria, British Columbia,
http://aliceinfo.cern.ch/Offline/Activities/AnalysiCAF

[7] Basney, J., Raman, B. and Livny, M.: High throughidonte Carlo, Proc. of the Ninth
SIAM Conference on Parallel Processing for Scien@omputing, San Antonio Texas,
1999.

[8] Cantu-Paz, E.: Designing efficient master-slavealpar genetic algorithms, Genetic
Programming: Proc. of the Third Annual Conferen&@an Francisco, Morgan
Kaufmann, 1998.

[9] Govindan, V. and Franclin, M.: Application Load ladance on Parallel Processors,
Proc. of the 10th International Parallel Process8ynposium, Honolulu,. Hawalii,
1996.

[10] Aida, K., Natsume, W., Futakata, Y.: Distributedn@muting with Hierarchical Master-
worker Paradigm for Parallel Branch and Bound Alpon, Proc. of the 3rd
International Symposium on Cluster Computing ared@nid, Tokyo, Japan, 2003.

[11] Sbal, G., Berman, F., Wolski, R.: Master/slave Cotimg on the Grid, Proc. of the 9th
Heterogeneous Computing Workshop, IEEE Computeie§0@000.

[12] Banino, C.: Optimizing Locationing of Multiple Mast for Master-Worker Grid
Applications, Proc. of the Workshop on Applied RlataComputing, Lyngby, Denmark.
2004.

[13] Shao, G., Berman, F., and Wolski, R.: Using effectnetwork views to promote
distributed application performance, Proc. of tf#94 International Conference on
Parallel and Distributed Processing Techniques Apglications, Las Vegas, USA
1999.

[14] Ausiello, G., Protasi, M., Marchetti-Spaccamela, Bambosi, G., Crescenzi, P., Kann,
V.: Complexity and Approximation: Combinatorial @pization Problems and Thein
Approximability Properties. Springer-Verlag New ¥p.999.

[15] Goto M.: CINT, C++ Interpreter, CQ publishing, ISBN89-3085-3 (Japanese),
http://root.cern.ch/root/Cint.html.

[16] Ganis, G., Iwaszkiewicz, J., Rademakers, F.. Sdivggdand Load Balancing in the
Parallel ROOT Facility (PROOF), Proc. of the Xldmational Workshop on Advanced
Computing and Analysis Techniques in Physics Rebe@msterdam, the Netherlands,
2007.

[17] MonALISA, MONitoring Agents using a Large IntegrdteServices Architecture,
http://monalisa.cern.ch/monalisa.html.

[18] ROOT Reference Guide, http://root.cern.ch/root/html

[19] IANA, Internet Assigned Numbers Authority, http:iw.iana.org.

- 86 -

Appendix A — Benchmarks of merger-based algorithm

All tested configurations are listed in the firgllunn calledConfiguration The following
two columns show mean values and standard dev&fsah) of the computation (including
initialization) and finalization phases. In the rthicolumn, there is the speed-up in the
finalization phase compared to the standard sefup. total execution time and the total
execution speed-up are displayed in tfieasd %' column. Naturally, the total execution
speed-up strongly depends on the original finabmashare in the total execution, which is
individual for each tested query.

Please note that all differences in the computadiagrage within one query are only due to
the variability of the real environment. Ideallhet computation phase within one query

should have the same duration, regardless on tifegocation (Chapter 10.1.2).
All time data are stated in minutes.

Query A (run on 26 workers)

. e Average Total Average
, , Computation | Finalization . .
Configuration " speed-up in | execution | speed-up
average*(sd) | average(sd) N :) :
finalization | time (sd) in execution
Standard setup 1:50:01) 1:09(0:04) - 3:00(0:04) | -
4 mergers 1:500:01) 0:16(0:00) 4.3 2:06(0:01) (1,4
Merger-based
algorithm 1:49(0:00) 0:18(0:01) 3.8 2:08(0:01) | 1,4
(5 mergers)
6 mergers 1:500:01) 0:20(0:01) 3.5 2:10(0:02) | 1,4
Coefficient of variation in computation phase: 0,9%
Query B (run on 26 workers)
. . Computation | Finalization EEE . Total : Average
Configuration . speed-up in | execution | speed-up
average*(sd) | average(sd) N :) ;
finalization | time (sd) in execution
Standard setup 2:48:03) 0:51(0:03) - 3:39(0:05) | -
4 mergers 2:520:03) 0:21(0:02) 2.4 3:13(0:01) 1,1
Merger-based
algorithm 2:53(0:03) 0:16(0:00) 3.1 3:09(0:03) | 1,2
(5 mergers)
6 mergers 2:500:09) 0:17(0:01) 3 3:07(0:10) |1,2

Coefficient of variation in computation phase: 3,3%

-87 -

Query C (run on 52 workers)

. o Average Total Average
, . Computation | Finalization . :
Configuration " speed-up in | execution | speed-up
average*(sd) | average(sd) | o .- . i) :
finalization | time (sd) in execution
Standard setup 1:58:00) 2:05(0:08) - 3:58(0:08) | -
6 mergers 1:490:00) 0:22(0:01) 5.7 2:11(0:01) | 1,8
Merger-based
algorithm 1:51(0:01) 0:23(0:02) 5.4 2:14(0:01) | 1,8
(7 mergers)
8 mergers 1:500:01) 0:25(0:02) 5 2:15(0:02) | 1,8
Coefficient of variation in computation phase: 4%
Query D (run on 52 workers)
. . Computation | Finalization e . Total : Average
Configuration . speed-up in | execution | speed-up
average*(sd) | average(sd) | o .- . : . :
finalization | time (sd) in execution
Standard setup 5:28:04) 6:09(0:18) - 11:37(0:17) | -
6 mergers 5:260:01) 1:08(0:04) 54 6:34(0:01) | 1,8
Merger-based
algorithm 5:29(0:11) 1:12(0:04) 5.1 6:41(0:13) | 1,7
(7 mergers)
8 mergers 5:270:01) 1:20(0:05) 5 6:48(0:06) | 1,7
Coefficient of variation in computation phase: 2,3%
Query E (run on 26 workers)
. . Computation | Finalization AR . Total : Average
Configuration . speed-up in | execution | speed-up
average*(sd) | average(sd) | o . . .) :
finalization | time (sd) in execution
Standard setup 2:55:03) 1:40(0:03) - 4:35(0:05) | -
4 mergers 2:560:03) 0:43(0:01) 2.3 3:39(0:03) | 1,3
Merger-based
algorithm 2:55(0:03) 0:45(0:01) 2.2 3:40(0:04) | 1,3
(5 mergers)
6 mergers 2:5%50:03) 0:48(0:02) 2.2 3:43(0:02) | 1,3

Coefficient of variation of computation phase: 1,7%

- 88 -

Query F (run on 52 workers)

. o Average Total Average
. . Computation | Finalization . :
Configuration average*(sd) | average(sd) speed-up in | execution | speed-up
9 9 finalization | time (sd) in execution
Standard setup 2:48:03) 17:25(2:01) |- 20:13(1:59) | -
6 mergers 2:510:08) 5:48(0:11) 3 8:33(0:16) | 2,3
Merger-based
algorithm 2:50(0:05) 5:09(0:07) 3.4 7:59(0:07) | 2,5
(7 mergers)
8 mergers 2:510:12) 5:14(0:09) 3.3 8:05(0:07) | 2,5

Coefficient of variation of computation phase: 4.2%

-89 -

Appendix B — Content of enclosed DVD

/root A complete copy of the ROOT Subversion repogito
(trunk), revision 31416.

The current trunk can be obtained from
https://root.cern.ch/svn/root/trunk

mergers101209.diff The patch with the merger-based algorithm. htams
all necessary changes for its integratiore t
ROOT/PROOF system.
Directly applicable to the enclosed ROOT warsi

opocenska_thesis.pdf Electronic version of this text.

-90 -

