
Charles University in Prague

Faculty of Mathematics and Physics

DIPLOMA THESIS

Milut́ın Krǐstofič

Coordination among Logic agents

Department of Theoretical Computer Science and

Mathematical Logic

Supervisor: Prof. RNDr. Petr Štěpánek, DrSc.

Study programme: Computer Science, Theoretical Computer

Science

This thesis could not have been completed without the support of a number
of people. I would like to start by thanking my supervisor, Prof. RNDr.
Petr Štěpánek, DrSc., for his support and encouragement during writing
this thesis. I would also like to thank Martin Baláž, who introduce me the
defeasible logic programming, which became my inspiration. And I would
like to thank my parents, for being the best parents in the world, and my
friends for having so much fun while writing this thesis.

Prohlašuji, že jsem svou diplomovou práci napsal(a) samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

I hereby declare that I wrote this thesis by myself, only with the help of the
referenced literature. I agree with lending the thesis.

Prague, August 6, 2009 Milut́ın Krǐstofič

2

Contents

1 Introduction 5

1.1 Contribution of the diploma thesis 6
1.2 Structure of the document 7

2 Social Ability in Multi-agent systems 8

2.1 Coordination . 9
2.1.1 Coordination approach with the ABBC 10

2.2 Argumentation . 12
2.2.1 Dung’s abstract argumentation framework 13

2.3 Communication . 16

3 Argumentation Black Board for Coordination 19

3.1 Defeasible Logic Programming 20
3.2 Argumentation Blackboard for Coordination 28

4 Abstract ABBC 34

4.1 Software design of Abstract ABBC 38

5 Related Work and Discussion 41

6 Conclusion and Future Work 42

References 43

3

Title: Coordination among Logic agents
Author: Milut́ın Krǐstofič
Department: Department of Theoretical Computer Science and Mathemat-
ical Logic
Supervisor: prof. RNDr. Petr Štěpánek, DrSc.
Supervisor’s e-mail address: stepanek@ksi.ms.mff.cuni.cz

Abstract: In this thesis, we study the recent models for coordination and we
propose a new model based on argumentation system. This system, named
Argumentation BlackBoard for Coordination (ABBC), and its extension,
Abstract ABBC, are based on successful argumentation approaches, such as
abstract argumentation framework and defeasible logic programming. Our
aim is to present necessary argumentation elements in open multi-agent
system that consists of logic agents. In this work, we also describe a brief
software design for the system.
Keywords: defeasible logic programs, blackboard systems, coordination,
argumentation

Název práce: Koordinace mezi logickými agenty
Autor: Milut́ın Krǐstofič
Katedra (ústav): Katedra teoretické informatiky a matematické logiky
Vedoućı diplomové práce: prof. RNDr. Petr Štěpánek, DrSc.
e-mail vedoućıho: stepanek@ksi.ms.mff.cuni.cz

Abstrakt: V predloženej práci študujeme súčasné modely pre koordináciu
a navrhujeme nový model založený na argumentačnom systéme. Tento
systém, nazvaný Argumentation BlackBoard for Coordination (ABBC) a
jeho rozš́ırenie, Abstract ABBC, zakladáme na úspešných argumentačných
pŕıstupoch ako je abstraktný argumentačný framework a defeasible logic
programming. Náš hlavný zámer je zachytenie potrebných argumentačných
zložiek v otvorenom multi-agentnom systéme s logickými agentami. V práci
je popisaný aj stručný návrh na implementáciu takého systému.
Kĺıčová slova: defeasible logic programs, blackboard systems, koordinace,
argumentace

4

Chapter 1

Introduction

One of the recent trends in computing is to develop ever more intelligent
systems. That means the complexity of tasks we are capable of automating
and delegating to computers has grown steadily as mentioned in [27]. The
most frequently used computation models (procedural, object-oriented) have
disadvantages which limit their use in these intelligent systems. In past years
it was mainly the problem with verification and the lack of robustness.

While the earliest computer systems were isolated entities communicat-
ing only with their human operators, contemporary computer systems are
usually interconnected. The logical consequence is to develop interaction
tools for computer systems to interact with each other without the help of
human users. This interaction will cover argumentation, coordination, co-
operation, negotiation and other human-like social activities. This may be a
potential problem when developing computer systems only as a procedural
computation models.

In this thesis we are concerned only about one type of interaction, the
coordination among logic computation models. Firstly, we will study the
recent models, preferring the most abstract one. After a deep research in
the concept of coordination, we will start to develop our own model for coor-
dination. We decided that the other type of interaction, the argumentation,
can be used as a tool for the coordination. The coordination itself will be a
logical argumentation among seeking a common knowledge among a group
of agents, decision making, distribution of task or resources, etc.

We will also study the argumentation and will be searching for an ap-
propriate framework for our tool. The defeasible logic programming [10]
shows an interesting connection between argumentation and non-monotonic

5

logic. It also defined many argumentation elements, but it was developed
only for one agent reasoning. So we will propose a distributed extension
of defeasible logic programming, that we called Argumentation BlackBoard
for Coordination (ABBC). We will do only the necessary modifications in
the defeasible logic programming, most elements remain, because of their
universality in argumentation.

For inference in the ABBCs are used only derivations and programs from
defeasible logic programming. We will try to remove this disadvantage in
framework, we called the Abstract ABBC. It will be based on the abstract
argumentation framework from Dung [6]. We will propose the definitions
for argumentation elements, that are not defined in abstract argumentation
framework. We will define them similarly as they are in ABBC and defeasible
logic programming. Therefore we will receive a framework that can be used
as ABBC, but can use other types of inference, syntax, rules, relations, etc.

We will also describe a brief software design for Abstract ABBC, and
ABBC. We believe that the Java Agent Development Framework (JADE) [2],
which is the implementation of multi-agent systems that complies with the
FIPA specifications [9] in Java language, is the best option for these systems.
FIPA specifications consists of FIPA Agent Communication Language (FIPA
ACL) [9] for communication, that can be used for interaction between an
agent and the argumentation framework.

1.1 Contribution of the diploma thesis

We propose a novel approach for coordination among logical agents. It is
based on application of an argumentation system as a tool, which can be used
to make deals, propositions and other elements needed for an coordination.

We develop this argumentation system, the Argumentation Black Board
for Coordination (ABBC) as an extension of defeasible logic programming
(DELP) [10]. We prepared a distributed version of DELP with necessary
modification.

We describe also an extension of ABBC, Abstract ABBC. It is based
on ABBC, DELP and the abstract argumentation framework [6]. They can
obtain any non-monotonic inference operator and syntax and also they can
be limited by any set of argumentation rules.

Finally we draft a brief software design for Abstract ABBC.

6

1.2 Structure of the document

The thesis is structured as follows. In the chapter 2 we discuss social ability
in multiagent systems. We shortly describe a philosophy and the best-known
frameworks for coordination and afterwards we present our coordination ap-
proach based on argumentation. We also discuss the research in argumenta-
tion and we describe the abstract argumentation framework. In the chapter 3
we show the defeasible logic programming and we propose the ABBC frame-
work based on DELP. In the chapter 4 we propose the Abstract ABBC and
its brief software design. In chapter 5 we shortly discuss the related work in
abstract argumentation framework and DELP. In chapter 6 we summarize
this thesis and we outline the future work on the proposed frameworks.

7

Chapter 2

Social Ability in Multi-agent

systems

Multi-agent systems have the capacity to play a key role in current and
future development of computer science and its applications, because of
their robustness and capability to cope with an increasing complexity of
applications. We adopt definitions from Wooldridge’s paper [27]. A multi-
agent system composed of multiple interacting computing element, known
as agents. Agents are acapable of an autonomous action and interacting
with other agents. This interaction is not based on simple exchange of data,
but rather imitates the human social activity: argumentation, coordination,
cooperation, negotiation and the like.

These social activities become necessary in systems that can represent
our best interests, because these interests, that computer systems represent
on our behalf, are not always the same. For example we need negotiation
for reaching agreements with one another on matters of self-interest, or co-
ordination for recognizing when agents’ beliefs, goals, or actions conflict.

There are not many studies of social ability in sum. One from philoso-
phy is a classification of human dialogues according to the objectives of the
dialogue by argumentation theorists Doug Walton and Erik Krabbe in [26].
They prepared six primary dialogue types: Information-Seeking Dialogue,
Inquiry Dialogues, Persuasion Dialogues, Negotiation Dialogues, Delibera-
tion Dialogues and Eristic Dialogues. Formal models of all of these dialogue
types have been developed in recent years except for the Eristic Dialogues,
which is a substitute for physical fighting and therefore it is not really im-
portant to be formalized.

8

Thus the social ability is currently studied separately for each particular
type of a dialogue. In our work we declare a tool for a coordination, but we
believe that it can be used also for other types of dialogues as well.

2.1 Coordination

A formal background of the coordination is not developed as much as the one
of the argumentation that will be described, because there are many different
point of views on the coordination itself. We consider the coordination
in the ideas of coordination models [17] that consists of three elements:
(1) the coordinables, which represent the entities being coordinated (2) the
coordination media, which are the abstractions enabling agent interactions
(3) the coordination laws, which define the behaviour of the coordination
media in response to interaction events.

As a definition for coordination, we refer to the one from Thomas Malone
and Kevin Crowstone [14]. That coordination is managing dependencies
between activities. Therefore, if there is no interdependence, there is nothing
to coordinate. Examples of common dependencies are shared resources, task
assignments, prerequisite constraints, but also knowledge.

We can make our first simplification, because our environment consists
only of logical agents. We assume that the knowledge describes everything
important and therefore it describes also every possible dependency. Our
only concern will be in managing knowledge. The possible implications are
left to agents themselves.

It will be useful to mention a few approaches related closely to the coor-
dination models. We restrict our focus on those ones mentioned in survey
[3], that its authors believe represent the state of the art of two different
communities. Hybrid models based on tuple centers from the coordination
community and interaction protocols based on some communication lan-
guages from the agent community.

A coordination through tuple centers promotes a clear separation be-
tween the specification of components of the computation and the specifi-
cation of their interactions or dependencies. A tuple centre [17] is a coordi-
nation virtual machine, that can be programmed to specify the behaviour
of the coordination media. They are usually presented in the form of a
blackboard system. The coordinables are agents, which use coordination
language like Linda [17] for interaction. These languages are focused on
synchronization, exchange of simple information, notification and reaction

9

that are represented by a set of some simple coordination primitives. The
coordination media are represented by the tuple centre and programs used
to specify tuple centre constitute the coordination laws.

A coordination through interaction protocols [8, 9] is using an asyn-
chronous messages that are structured in terms of a performative verb and
a content. The perfomative expresses the intent of the agent in sending
the message. They use an agent communication language like KQML [8]
or the FIPA ACL [9]. The agents are described as finite state machines
where states identify global states of the protocol and transitions represent
messages labelled with a performative. There is an extension for the inter-
action protocol (see [12] for KQML and [20] for FIPA ACL), where formal
semantics are proposed. The coordinables in this case are agents also, the
coordination medium is an agent communication language and the coordi-
nation laws are expressed through the finite state machine representing the
protocol. They do not separate specification of agents and their specification
of interactions as well as tuple centers.

These approaches do not involve in more detail coordination, they can
be seen rather as a necessary tool for modeling coordination. We believe
that it is possible to go further and not to fall in the layer of application
such as LuCe [5], a tuple centre-based system integrating Prolog and Java.
In our case, this further approach is achieved by the fact that our system
consists only of logical agents.

2.1.1 Coordination approach with the ABBC

In our new concept for a coordination, the agents will not only be the co-
ordinables, but they can represent also the coordination law. Some agent
might be specialized for some coordination jobs, like a planner agent, an
agent responsible for distribution of tasks and resources, etc. The coordi-
nation medium will be a blackboard system, that we call ABBC, Argumen-
tation Black Board for Coordination. The coordination laws will recall in
their processes ABBC as a medium for communication with other agents.
The ABBC system is based on argumentation [10] and we believe that it
have all necessary properties needed for the coordination.

ABBC might be implemented as tuple centers, but also as interaction
protocols. Our approach, as we will show, guarantees a separation between
the specification of agents and their specification of interactions. We only
need to implement agents for the interactions with ABBC properly. For

10

every new coordination process, a special agent will be developed. It will
use ABBC in the same way as other agents, but it will start ABBC as
frequently as needed and with a specific input.

We previously mentioned dialogue types. Deliberation dialogue is a col-
laboration to decide, what action or a course of action should be adopted in
some situation. This is one type of coordination. A formal model for delib-
eration was proposed in [16]. It is an eight-stage model from the philosophy
field of argumentation, hence it is a good example to be introduced in the
ABBC coordination.

The authors in [16] assume that agents will not enter any dialogue until
they perceive it to be in their self-interest and in this thesis we share the
same assumption. The deliberation dialogue is neither an attempt by one
participant to persuade any of the others to agree to an initially defined pro-
posal. An option which is optimal for the group when considered as a whole
may be seen as sub-optimal from the perspective of each of the participants
of the deliberation. This could happen because a demonstration of optimal-
ity requires more information than is held by any one of the participants at
the start of the dialogue, or because individual participants do not consider
all the relevant criteria for an assessment.

A model from [16] consists of eight stages: (1) Open, where the raising
of a governing question about what is to be done takes place. It is like
opening ABBC with same meaning query. (2) Inform stage consists of a
discussion of desirable goals and any constraints of the possible actions can
be viewed as the ABBC argumentation about the query. (3) Propose, where
the suggestion of possible action-options can be made by a coordination
law agent and it corresponds to opening a new ABBC with a proposal. (4)
Consider and (5) Revise comprise of commenting on proposals. It can be also
modeled by the ABBC argumentation about the proposal. (6) Recommend
and (7) Confirm are an acceptance or a non-acceptance and their confirming.
We can simulate it with a third ABBC. (8) Close, where a coordination law
agent will end its process. This stages may occur in any order and may be
entered by participants as frequently as desired, but this requirement is not
a problem in the ABBC coordination.

David Vengerov proposed an adaptive communication and coordination
[24] through the idea of a two level architecture. At the local level, abstract
agents learn to behave optimally in certain environment and at the global
level, agents use obtained knowledge in their decision-making throughout
the next individual phase. This idea can be implemented in our approach,

11

because there are also both the computation inside an agent and among
the agents. However, Vengerov used this architecture in a neural net, or
using Q-learning. They are both sub-symbols approaches and they are very
different from symbols approaches such as logic. His idea also aims, more
than our approach, to learn than coordination.

There are many formal models that represent other types of social ability
in the terms of argumentation. A framework based upon a system of argu-
mentation, which permits agents to negotiate in order to establish acceptable
ways of solving problems, is described in [18]. An abstract argumentation
framework for decision making is used in [25]. It suggests a Dung-style gen-
eral framework that takes different arguments and a defeat relation among
them as an input, and returns a status for each option as an output. These
works show a possibility to define some coordination activities in an argu-
mentation concept.

2.2 Argumentation

Argumentation systems formalise non-monotonic reasoning as the construc-
tion and comparison of arguments for and against certain conclusions. In
particular, argumentation is an useful and an intuitive paradigm for doing
non-monotonic reasoning. Moreover it can be applied to any form of rea-
soning with contradictory information. The contradictions may arise from
reasoning with several sources of information, or they may be caused by
disagreement about beliefs. Several argumentation systems have been pro-
posed in the literature [4]. Some of them, the so-called rule-based systems,
use a particular logical language with strict and defeasible rules.

In [19], Prakken and Vreeswijk discuss the following five elements of
argumentation systems. (1) A logical language is what the argumentation
systems are built on. It also contains an associated notion of logical con-
sequence and definition of the notion of an argument. (2) Arguments cor-
responds to a tentative proof in the underlying logic. Sometimes they are
defined as a tree of inferences grounded in premises and sometimes as a
sequence of such inferences. (3) Conflict between arguments. The terms
attack and counterargument are also used. (4) Defeat between arguments
is a form of evaluating conflicting pairs of arguments, or, in other words, a
form of determining whether an attack is successful. It has the form of a
binary relation between arguments. (5) The dialectical status of arguments
is a definition of all ways in which the arguments interact.

12

In the literature, three types of conflicts are discussed. (a) Rebutting
attack, which is symmetric and occurs, when the arguments have contra-
dictory conclusions, as in ’Tweety flies, because it is a bird’ and ’Tweety
does not fly because it is a penguin’. The other two types of conflict are
not symmetric. (b) Assumption attack makes a non-provability assumption.
(c) Undercutting attack is when one argument challenges, not a proposition,
but a rule of inference of another argument.

Argumentation systems vary in their grounds for determining the de-
feat relations. A frequently used criterion is the specificity principle, which
prefers arguments based on the most specific information. It is a syntactic
criterion. However, often only the domain-specific criteria are available and
these are often defeasible. It is important to note that a defeat relation
does not yet tell us what arguments are justified; it only tells us something
about the relative strength of two individual conflicting arguments. We
need a declarative or a procedural form to declare, which arguments are
acceptable, not acceptable and undecided.

In our thesis, we will discuss two famous argumentation systems. The
most abstract argumentation framework, introduced by Dung in [6], and,
the defeasible logic programming [10], which is an approach to realise non-
monotonic reasoning via dialectical argumentation. The former is described
for better understanding and formalization of argumentation. It is the in-
spiration for our Abstract ABBC framework. The later is extended in our
ABBC framework.

2.2.1 Dung’s abstract argumentation framework

This section describes the abstract argumentation framework proposed by
Dung in [6]. This framework leaves the internal structure of an argument
completely unspecified. Dung treats the notion of an argument as a primi-
tive, and exclusively focuses on the ways arguments interact. Thus Dung’s
framework is of the most abstract kind.

The way humans argue is based on a very simple principle which is
summarized by an old saying: ”The one who has the last word laughs.”.
The goal of an argumentation theory is to give a scientific account of this
basic principle. In this point of view, the following definitions from [6] were
proposed.

Definition 2.2.1 (Argumentation framework [6]). An argumentation frame-
work is a pair AF = 〈AR, attacks〉, where

13

• AR is set of arguments

• attacks is a binary relation on AR

For two arguments A, B, the meaning of attacks(A, B) is that A repre-
sents an attack against B. An example of abstract argumentation framework
with a graph representation:

Example 2.2.1. 〈{i1, i2, a}, {(i1, a), (a, i1), (i2, a)}〉.

i1 a

i2

Definition 2.2.2 (Conflict-free set [6]). A set S of arguments is said to be
conflict-free if there are no arguments A, B in S such that A attacks B.

1. An argument A ∈ AR is acceptable with respect to a set S of arguments
iff for each argument B ∈ AR: if B attacks A then B is attacked by
S.

2. A conflict-free set of argument S is admissible iff each argument in S

is acceptable wrt S.

There are three types of semantics: preferred semantics (credulous), sta-
ble semantics and grounded semantics (skeptical).

Definition 2.2.3 (Preferred extension [6]). A preferred extension of an ar-
gumentation framework AF is a maximal (wrt set inclusion) admissible set
of AF.

Every argumentation framework possesses at least one preferred exten-
sion. In the worst case, it is an empty set. In Example 2.2.1 it is not
difficult to see that AF has exactly one preferred extension E = {i1, i2}. It
is a possible to have more than one preferred extension, for example:

Example 2.2.2. This example represent well-known Nixon Diamond. A

represents ”Nixon is anti-pacifist since he is a republican” and B represents
”Nixon is a pacifist since he is a quaker”.

14

A B

Definition 2.2.4 (Stable extension [6]). A conflict-free set of arguments
S is called a stable extension iff S attacks each argument which does not
belong to S.

Every stable extension is a preferred extension, but not vice versa. In
Example, 2.2.1 the stable extension is {i1, i2}.

Definition 2.2.5 (Characteristics function [6]). The characteristics func-
tion, denoted by FAF of an argumentation framework AF = 〈AR, attacks〉
is defined as follows:

FAF : 2AR → 2AR

FAF(S) = {A|A is acceptable wrt S}

Definition 2.2.6 (Grounded extension [6]). A grounded extension of an
argumentation framework AF, denoted by GEAF is the least fixed point of
FAF.

Example 2.2.2 does not have a grounded extension. A skeptical reasoner
will not conclude anything.

Example 2.2.3. Example 2.2.1 has the following grounded extension:

FAF(∅) = {i2}

F 2

AF(∅) = {i2, i1}

F 3

AF
(∅) = F 2

AF
(∅)

Definition 2.2.7 (Complete extension [6]). An admissible set S of argu-
ments is called a complete extension iff each argument which is acceptable
wrt S, belongs to S.

A conflict-free set of arguments E is a complete extension iff E =
FAF (E). Each preferred extension is a complete extension, but not vice
versa. The grounded extension is the least (wrt set inclusion) complete
extension.

In previous definitions, we have shown which arguments may be put
together and support a coherent point of view. In following we mention an
definition for the different status that an argument may have from [25].

15

Definition 2.2.8 (Argument status [25]). Let AF = 〈AR, attacks〉 be an ar-
gumentation framework and ξ1, . . . , ξn its extension under a given semantics.
Let a ∈ AR.

1. a is skeptically accepted iff there exists at least one non-empty exten-
sion and for all i (1 ≤ i ≤ n) a ∈ ξi.

2. a is credulously accepted iff there exists at least one extension that
contains a and one that does not contain a.

3. a is rejected iff there does not exist extension that contains a.

A direct consequence of this definition is that an argument is skeptically
accepted iff it belongs to the intersections of all extension, and it is rejected
iff it does not belong to the union of all extensions.

The idea of argumentation reasoning is that a statement is believable if
it can be argued successfully against the attacking arguments. The beliefs
of a rational agent are characterized by the relations between the ”internal”
arguments supporting his beliefs and the ”external” arguments supporting
contradictory beliefs. This double check is the inspiration for our thesis.

2.3 Communication

The agent community does not treat communication in a low-level way, such
as the research in concurrent systems or computer networks. It is studied
more like we think of utterances changing the world in the way that physical
actions do. We can ask, how speech changes the world. In [27], there are
examples from a philosopher Austin such as declaring a war, or saying ’I now
pronounce you man and wife’. These utterances clearly change the state of
the world in some way.

Austin identified a number of performative verbs, which correspond to
various different types of speech acts, such as request, inform and promise.
He also referred to the conditions required for the successful completion of
performatives: (1) There must be a convention for the performative. (2) The
procedure must be executed correctly and completely. (3) The act must be
sincere.

Speech act theory treats communication as an action. It is predicated on
the assumption that speech actions are performed by agents just like other
actions, in the furtherance of their intentions. The agent communication

16

languages (ACLs) FIPA ACL [9] and KQML [8], which were discussed in
section 2.1 a little, were developed on the basis of the speech theory. We
will discuss them again, because we believe that they can be used in an
implementation of the ABBC.

In a general, a speech act can be seen to have two main components:
A performative verb and a prepositional content. Sometimes there is a
discussion about language and ontology, but in our case, when agents are
using the same logic language, it is not interesting.

The KQML [8] is a message-based language for agent communication. It
was developed by an institution DARPA. KQML defines various acceptable
performatives such as ask-if, perform, tell, reply, etc. A KQML message has
a perfomative and a number of parameters such as receiver, content, sender.
Here is an example KQML message from [27]:

Example 2.3.1. The intuitive interpretation of this message is that the
sender is asking about the price of IBM stocks.
(ask-one

: content (PRICE IBM ?price)

: receiver stock-server

: language LPROLOG

)

Despite the success of KQML in the multiagent systems community, it
was criticized for many issues. The performative set was not tightly con-
strained nor were the semantics of KQML ever rigorously defined. Thus we
do not know whether the agents are using the language properly. These crit-
icism led to the development of a new, but rather closely related language
by The Foundation for Intelligent Physical Agents (FIPA), which started a
work on a program of agent standards.

An FIPA ACL [9] has a basic structure, quite similar to KQML. There
are 20 types of performatives in FIPA ACL and messages contain items
such as sender, receiver, content and performative. The example message
2.3.1 can be an example of FIPA ACL message also. There are only two
basic performatives, Inform and Request, in FIPA ACL. All others are macro
definitions, defined in the terms of these.

FIPA ACL successfully separates the utterance level of a communicative
act (the process of sending a message) from the level of illocution (the mental

17

states characterizing the sender). FIPA’s definition refers to agents’ mental
states. In [22], the authors claim that this approach supposes, in essence,
that agents can read each other’s minds, which they do not believe to hold
for agents. They showed that ACL’s formal semantic must emphasize a
social agency. In this article and in the proposed future implementation, we
will use a way from [7], where authors distinguish an agent’s communication
strategy, which may be private and will be determined by the agent’s goals
and beliefs, from the public protocol which lays down the conventions of
communication in the terms of publicly observable events.

18

Chapter 3

Argumentation Black Board

for Coordination

In this chapter, we will propose our novel argumentation system, an Argu-
mentation Black Board for Coordination (ABBC). As we mentioned before,
it can be used as a tool for coordination and for argumentation in same time.

An ABBC is a Black Board system (BB) with knowledge base and a
query. This architectural model, where a common knowledge base, the
blackboard in our approach, is iteratively updated by a diverse group of
specialist knowledge sources, in our case logic agents, starting with a prob-
lem specification as a query and ending with a solution as an answer for the
query. These updates are allowed by the rules of argumentation.

All elements of argumentative framework for ABBCs were obtained from
defeasible logic programming (DELP). Moreover, we decided to make an
distributed abstraction of DELP. The key definitions and properties from
DELP are only slightly changed in ABBC, because of their universality in
argumentation.

An agent will have the opportunity in any time recall an ABBC with
knowledge base and a query. Each agent in the environment is notified
about a newly opened ABBC and it has a choice to join to the ABBC under
certain conditions. After the argumentation in the ABBC, the answer will
be produced whether a query is or is not warranted in a common knowledge
among a group of agents. This answer and also whole argumentation process
may be very useful for all agents in the environment and used for various
activities, such as coordination, argumentation, learning, etc.

19

3.1 Defeasible Logic Programming

In the following paragraphs we briefly describe Defeasible Logic Program-
ming (DELP) [10]. The following definitions and examples in this section
are taken from [10]. The DELP successfully combines Logic Programming
and Defeasible Argumentation, that is used as an inference mechanism for
warranting the entailed conclusions.

By a literal L we mean a ground atom A, or a negated ground atom
∼A. The Symbol ∼ represents the strong negation. A fact is a literal
and a rule is an ordered pair 〈H, B〉, where H is a literal and B is a finite
non-empty set of literals. A defeasible rule is an rule denoted H � B, and
a strict rule is a rule denoted H ← B. We can write the strict rules as
L0 ← L1, . . . Ln(n > 0) and the defeasible rules can be written similarly. In
the context of Logic programming a set of strict rules is neither a Normal
Logic Program nor an Extended Logic Program, then it has not be defined
at all in Logic Programming, yet. A Normal Logic Program [1] has in the
head of rules only an atom and an Extended Logic Program [1] can possibly
have default negation in the body of rules.For this reason we will call set of
strict rules and facts simply a program. Some example will use schematic
rules with variables, which stand for the set of all ground instances of them.
Variables will be denoted with an initial uppercase letter.

Definition 3.1.1 (Defeasible logic program [10]). A Defeasible Logic Pro-
gram (delp) P = (Π, ∆) is a possibly infinite set of facts, strict rules and
defeasible rules, where

Π is a subset P of facts and strict rules, that is non-contradictory

∆ is a subset P of defeasible rules

A strict rule is used to represent sound knowledge, like mammal ← dog,
and a defeasible rule used for representing tentative information. H � B

means that ”Reasons to believe in the antecedent B provide reasons to believe
in the consequent H” [21].

20

Example 3.1.1. Here follows the most notorious delp.

Π =































bird(X)← chicken(X)
bird(X)← penguin(X)
∼flies(X)← penguin(X)
chicken(tina)
penquin(tweety)
scared(tina)































∆ =















flies(X) � bird(X)
∼flies(X) � chicken(X)
flies(X) � chicken(X),

scared(X)















As we can see the program is easy to read. We have facts and rules about
birds’ flying abilities.

Definition 3.1.2 (Defeasible Derivation [10]). Let P = (Π, ∆) be a delp. A
defeasible derivation of a ground literal L from P, denoted P |∼ L, consists
of a finite sequence L1, L2, · · · , Ln = L of ground literals, and each literal
Li is in the sequence because:

• Li is a fact in Π, or

• there exists a rule Ri in P (strict or defeasible) with head Li and body
B1, B2, · · · , Bk and every literal of the body is an element Lj of the
sequence appearing before Li(j < i)

In the delp from Example 3.1.1 there is the sequence of literals c(tina),
b(tina), f(tina) a defeasible derivation of the literal f(tina), obtained from
the following rules: b(tina) ← c(tina) and f(tina) � b(tina). There is also
a defeasible derivation of ∼ f(tina), for example the sequence c(tina),∼
f(tina).

It is easy to see, that if a delp has no facts, then no defeasible derivation
can be obtained. This is possible, because a delp does not have presumptions,
that represent a defeasible facts. They can be added as an extension to
DELP, and we will use them in the next section.

We can define a strict derivation, as a derivation, in which only strict
rules and facts are used. The literal ∼flies(tweety) in Example 3.1.1 has a
strict derivation.

Definition 3.1.3 (Contradictory set of rules [10]). A set of rules is con-
tradictory if and only if, there exists a defeasible derivation for a pair of
complementary literals from this set.

21

In Example 3.1.1 both f(tina) and ∼f(tina) can be defeasibly derived,
so the example shows a contradictory set of rules. Garcia and Simari in
[10] declared that in general, a useful defeasible logic program will be a
contradictory set of rules. However in Definition 3.1.1 we require a non-
contradictory set of facts and rules, otherwise we would obtain every literal.

The symbol will represent the complement of a literal with respect to
the strong negation, i. e. p is ∼p, and ∼p is p.

Definition 3.1.4 (Argument Structure [10]). Let h be a literal, and P =
(Π, ∆) a program. We say that 〈A, h〉 is an argument structure for h, if
A ⊆ ∆, such that

1. there exists a defeasible derivation for h from Π ∪ A

2. the set Π ∪ A is non-contradictory, and

3. A is minimal, there is no proper subset A′ of A such that A′ satisfies
conditions (1) and (2).

Informally, an argument is a minimal and non-contradictory set of rules
used to derive a conclusion. In Example 3.1.1 there are two arguments for
a literal f(tina): A1 = 〈{flies(tina) � bird(tina)}, f lies(tina)〉 and A2 =
〈{flies(tina) � chicken(tina), scared(tina)}, f lies(tina)〉.

It is proved in [10] that if there exists a strict derivation for q, then there
exists a unique argument structure for q : 〈∅, q〉. It is unique because of
condition 3 in the definition. Observe that if q have a strict derivation and
if there exists a defeasible derivation for q from Π ∪ A, for some set A then
Π∪A will be contradictory. No argument structure for q could be obtained.
For the literals with a strict derivation, there are unique argument structures
without counter arguments.

An argument structure 〈B, q〉 is a sub-argument structure of 〈A, h〉 if
B ⊆ A. The union of arguments is not always an argument, because the
union could be not minimal or contradictory.

Definition 3.1.5 (Disagreement [10]). Let P = Π ∪ ∆ be a delp. We say
that two literals h1 and h2 disagree, if and only if the set Π ∪ {h1, h2} is
contradictory.

Two complementary literals trivially disagree for any set. Furthermore,
two literals that are not complementary can also disagree. For example the
literals a, b with Π = {(∼h← b), (h← a)}.

22

Definition 3.1.6 (Counter-argument [10]). We say that 〈A1, h1〉 counter-
argues, rebuts or attacks 〈A2, h2〉 at literal h, if and only if there exists a
sub-argument 〈A, h〉 of 〈A2, h2〉 such that h and h1 disagree. h is called
counter-argument and 〈A, h〉 is called the disagreement sub-argument.

From Example 3.1.1, the argument 〈{∼f(tina)�c(tina)},∼f(tina)〉 have
counter-argument 〈{f(tina) � b(tina)}, f(tina)〉 and vice-versa.

We have defined three from five elements of argumentation: a logical
language as a logic program, arguments, and conflict between arguments.
These three elements are also necessary in Dung’s argumentation framework.
We can now prepare a set of arguments and a binary relation on them.
DELP includes also the other two elements of argumentation. We are now
continuing with defeat between arguments. The definition can be based on
specificity or on priorities among program rules. We are showing the former
one.

Definition 3.1.7 (Specificity [10]). Let P = (Π, ∆) be a delp and let ΠG

be the set of all strict rules from Π. Let F be the set of all literals that have
a defeasible derivation from P (F will be considered as set of facts). Let
〈A1, h1〉 and 〈A2, h2〉 be two argument structures obtained from P. 〈A1, h1〉
is strictly more specific than 〈A2, h2〉, if the following conditions hold:

1. For all H ⊆ F : if ΠG ∪H ∪A1 |∼ h1 and ΠG ∪H 6⊢ h1 then ΠG ∪H ∪
A2 |∼ h2 and

2. there exists H ′ ⊆ F such that ΠG ∪H ′ ∪ A2 |∼ h2 and ΠG ∪H ′ 6⊢ h2

and ΠG ∪H ′ ∪ A1 |6∼ h1

This notion of specificity favors two aspects in an argument: it prefers an
argument with greater information content, or with less use of rules. From
Example 3.1.1 〈{∼f(tina)�c(tina)},∼f(tina)〉 is strictly more specific than
〈{f(tina) � b(tina)}, f(tina)〉, because it is more direct. And 〈{f(tina) �

c(tina), s(tina)}, f(tina)〉 is strictly more specific than 〈{∼f(tina)�c(tina)},∼
f(tina)〉, because it is based on more informations.

We can declare two types of defeater:

Definition 3.1.8 (Proper Defeater [10]). Let 〈A1, h1〉 and 〈A2, h2〉 be two
argument structures. 〈A1, h1〉 is a proper defeater for 〈A2, h2〉 at literal h, if
and only if there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉
counter-argues 〈A2, h2〉 at h and 〈A1, h1〉 > 〈A, h〉

23

Definition 3.1.9 (Blocking Defeater [10]). Let 〈A1, h1〉 and 〈A2, h2〉 be two
argument structures. 〈A1, h1〉 is a blocking defeater for 〈A2, h2〉 at literal h,
if and only if there exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉
counter-argues 〈A2, h2〉 at h and 〈A1, h1〉 is unrelated by the preference order
to 〈A, h〉 (〈A1, h1〉 6> 〈A, h〉, and 〈A, h〉 6> 〈A1, h1〉)

Definition 3.1.10 (Defeater [10]). The argument structure 〈A1, h1〉 is a
defeater for 〈A2, h2〉, if and only if either:

1. 〈A1, h1〉 is a proper defeater for 〈A2, h2〉; or

2. 〈A1, h1〉 is a blocking defeater for 〈A2, h2〉.

In Example 3.1.1 is 〈{f(tina) � c(tina), s(tina)}, f(tina)〉 is a proper
defeater for 〈{∼f(tina) � c(tina)},∼f(tina)〉.

Example 3.1.2. This Nixon example, which we mentioned also in previous
chapter, is famous for introducing reciprocal defeaters:

Π =







l in chicago(nixon)
quaker(nixon)
republican(nixon)







∆ =























h a gun(X) � l in chicago(X)
∼h a gun(X) � l in chicago(X),

pacifist(X)
pacifist(X) � quaker(X)
∼pacifist(X) � republican(X)























In 3.1.2 there is 〈{pacifist(nixon) � quaker(nixon)}, pacifist(nixon)〉
as a blocking defeater for an argument structure 〈{∼ pacifist(nixon) �

republican(nixon)},∼pacifist(nixon)〉 and vice versa.
For deciding whether an argument structure is non-defeated, all its de-

featers have to be considered. Since a defeater is also an argument structure,
then its defeaters may exist, and so on. In this manner, a sequence of argu-
ment structures is created, where each element of the sequence defeats its
predecessor.

Definition 3.1.11 (Argumentation Line [10]). Let P a delp and 〈A0, h0〉 an
argument structure obtained from P. An argumentation line for 〈A0, h0〉 is
a sequence of argument structures from P, denoted Λ = [〈A0, h0〉, 〈A1, h1〉,
〈A2, h2〉, 〈A3, h3〉, . . .], where each element of the sequence 〈Ai, hi〉, i > 0 is
a defeater of its predecessor 〈Ai−1, hi−1〉

24

In argumentation theory there are several problematic situations that in
our case will arise in an argumentation line leading to an infinite sequence
of defeaters.

Firstly, it is a self-defeating argument, when an argument structure is a
defeater for itself. Our definition of an argument structure does not allow
self-defeating, because Π ∪ A must be non-contradictory.

Secondly, there are reciprocal defeaters, as we have shown in the nixon
example 3.1.2. For reminding, this happens when a pair of arguments defeat
each other. This situation leads to the construction of an infinite sequence
of arguments, therefore they must be detected and avoided.

Thirdly, a circular argumentation is obtained when an argument struc-
ture is reintroduced again in an argumentation line to defend itself. The
reciprocal defeaters can be defined as a special case of a circular argumenta-
tion. Moreover, a more subtle case of circular argumentation happens with
the reintroduction of a sub-argument, that was defeated earlier in the line.

Fourth, when the same argument becomes both a supporting and an
interfering argument of itself. This situation arises because the supporting
argument has a sub-argument for the literal, which is contradictory with
arguing in favor. This should be avoided and it is formally with notion of
argument concordance.

Definition 3.1.12 (Supporting and Interfering argument structures [10]).
Let Λ = [〈A0, h0〉, 〈A1, h1〉, 〈A2, h2〉, 〈A3, h3〉, . . .] an argumentation line, we
define the set of supporting argument structures ΛS = [〈A0, h0〉, 〈A2, h2〉,
〈A4, h4〉, . . .], and the set of interfering argument structures ΛI = [〈A1, h1〉,
〈A3, h3〉, . . .].

Definition 3.1.13 (Concardance [10]). Let P = (Π, ∆) be a delp. Two
arguments 〈A1, h1〉 and 〈A2, h2〉 are concordant iff the set Π ∪ A1 ∪ A2 is
non-contradictory. More generally, a set of argument structures {〈Ai, hi〉}

n
i=1

is concordant iff Π ∪
⋃n

i=1
A1 is non-contradictory.

In summary, the undesirable situations mentioned above are avoided by
requiring all argumentation lines to be acceptable as defined next.

Definition 3.1.14 (Acceptable argumentation line [10]). Let Λ = [〈A0, h0〉,
. . ., 〈Ai, hi〉, . . ., 〈An, hn〉] be an argumentation line. Λ is an acceptable
argumentation line iff:

1. Λ is a finite sequence

25

2. The set ΛS of supporting arguments is concordant, and the set ΛI of
interfering arguments is concordant

3. No argument 〈Ak, hk〉 in Λ is a sub-argument of an argument 〈Ai, hi〉
appearing earlier in Λ (i < k)

4. For all i, such that the argument 〈Ai, hi〉 is a blocking defeater for
〈Ai−1, hi−1〉 if 〈Ai+1, hi+1〉 exists, then 〈Ai+1, hi+1〉 is a proper defeater
for 〈Ai, hi〉

In DELP, a literal will be warranted if there exists a non-defeated argu-
ment structure. As we stated before, the set of defeater for this argument
will be considered and also their defeaters, and so on. Therefore more than
one argumentation line could arise, leading to a tree structure that will be
defined.

Definition 3.1.15 (Dialectical Tree [10]). Let 〈A0, h0〉 be an argument
structure from a program P. A dialectical tree for 〈A0, h0〉, denoted T〈A0,h0〉,
is defined as follows:

1. The root of the tree is labeled with 〈A0, h0〉

2. Let N be a non-root node of the tree labeled 〈An, hn〉 and Λ =
[〈A0, h0〉, . . ., 〈An, hn〉] the sequence of labels of the path from the
root to N . Let 〈B1, q1〉, 〈B2, q2〉, . . . , 〈Bk, qk〉 be all the defeater for
〈An, hn〉

For each defeater 〈Bi, qi〉(1 ≤ i ≤ k) such that, the argumentation line
Λ = [〈A0, h0〉, . . ., 〈An, hn〉, 〈Bi, qi〉] is acceptable, then the node N

has a child Ni labeled 〈Bi, qi〉

If there is no defeater for 〈An, hn〉 or there is no 〈Bi, qi〉 such that Λ′

is acceptable, then N is a leaf

Every node, except for the root, represents a defeater of its parent. Each
path from the root to a leaf corresponds to one distinct acceptable argumen-
tation line.

In order to decide whether the root of a dialectical tree is defeated, a
marking process will be defined. The nodes will be recursively marked as D
(defeated) or U (undefeated) as follows:

Definition 3.1.16 (Marking of a dialectical tree [10]). Let T〈A,h〉 be a di-
alectical tree for 〈A, h〉. The corresponding marked dialectical tree, denoted
T ∗
〈A,h〉 will be obtained marking every node in T〈A,h〉 as follows:

26

1. All leaves in T〈A,h〉 are marked as U (undefeated) in T ∗
〈A,h〉

2. Let 〈B, q〉 be an inner node of T〈A,h〉.

(a) Then 〈B, q〉 will be marked as U in T ∗
〈A,h〉 iff every child of 〈B, q〉

is marked as D

(b) The node 〈B, q〉 will be marked as D (defeated) in T ∗
〈A,h〉 iff it has

at least a child marked as U .

This warrant procedure can be optimized with pruning. We can use
minimax tree from Artificial Intelligence for game trees.

Example 3.1.3. An marked dialetical tree for chicken example 3.1.1 is the
following tree:

〈{f(t) � b(t)}, f(t)〉 U

〈{∼f(t) � c(t)},∼f(t)〉 D

〈{f(t) � c(t), c(t)}, f(t)〉 U

Definition 3.1.17 (Warranted literals [10]). Let 〈A, h〉 be an argument
structure and T ∗

〈A,h〉 its associated marked dialectical tree. The literal h is
warranted iff the root of T ∗

〈A,h〉 is marked as U. We will say that A is a
warrant for h.

We will define a modal operator of belief B where Bh means h is war-
ranted and ¬Bh means h is not warranted.

Definition 3.1.18 (Answer to queries [10]). The answers of a DELP inter-
preter can be defined in terms a modal operator B. In terms of B, there are
four possible answers for a query h:

• YES, if Bh (h is warranted)

• NO, if Bh (the complement of h is warranted)

27

• UNDECIDED, if ¬Bh and ¬B ∼h (neither h nor ∼h are warranted)

• UNKNOWN, if h is not in the language of the program

The answer for chicken example and query flies(tina) is YES. Of course
DELP answers NO for query ∼flies(tina).

An interpreter of DELP was implemented in PROLOG [28], unfortu-
nately with some bugs. If there is an equivalence in a program such as p � q

and q � p, it will not compute anything at all.

3.2 Argumentation Blackboard for Coordi-

nation

In this section we propose definitions for our framework, ABBC. As we
mentioned before, it is distributed extension of DELP [10]. Therefore, the
following definitions are inspirited by DELP [10], but they are introduced
from our point of view.

A program in DELP contains strict and weak rules. The boundary be-
tween these two types of rules is vague. In our framework, there is only one
type of rules, but we distinguish the rules from blackboard knowledge base,
which will behave as strict rules, and rules from the agent’s knowledge base,
which will behave as weak rules. Moreover we will not separate facts from
rules as it is not separated in Logic Programming [1]. Hence facts will be
represented as rules with an empty body.

Consequently, if a fact can be a rule and an agent can use the rule
in an argumentation, the argumentation might use weak facts, known as
presumptions. DELP in [10] does not compute with presumptions, but the
ABBC does. In this point of view, the following definition of a program or
knowledge base is proposed.

Definition 3.2.1 (Program). A program is a set of rules. A rule is an
ordered pair 〈H, B〉, where H (Head) is a literal and B (Body) is a finite set
of literals. The body can be possibly empty.

A literal was described in the previous section. In ABBC we are using
the same logic programming syntax as in DELP [10], except we do not need
a symbol for all weak rules. We can now formally describe an ABBC.

28

Definition 3.2.2 (Argumentation Black Board for Coordination). Let G ⊆
{1, . . . , n} be a group of agents, KBBB be a program, ≺ be a binary relation
on agents and q be a query consisting of one literal. We say that a tuple BB =
〈KBBB, G,≺, q〉 is an Argumentation Black Board for Coordination. It is
assumed that ∀k ∈ G KBBB ⊆ KBk and the set KBBB is non-contradictory.

ABBC’s knowledge base KBBB must be a subset of agent’s knowledge
base, if the agent want to participate in an argumentation. The agent should
add the missing rules from KBBB, but it is important that its knowledge base
will not become a contradictory set of rules. Therefore KBBB is a set of rules,
that any participating agent’s knowledge base do not contradict. A binary
relation ≺ represents a priority among agents, but it can be empty and in
this case, the agents will be equal.

Example 3.2.1. We introduce an example for ABBC, that was transformed
from [13], where it was represented to show a problem with updates in logic
programming.

KBBB =

{

sleep←∼tv on

watch tv ← tv on

}

2 ≺ 1
q = watch tv

1 =

{

∼tv on← power failure

power failure← true

}

2 =

{

tv on← in evening

in evening ← true

}

We have a KBBB about behaviours of people in the evening. The first
agent is a power maintenance agent and it knows, when something is plugged.
The second agent is a home agent, who knows a behaviour of its owners. Of
course the first agent information is more relevant according to the priority
relation ≺. The query is watch tv.

We expect that the agent’s knowledge base will be unknown for the
ABBC. The ABBC will obtain only some messages with requests, or with
an argument for participating in argumentation. An argument has the same
structure as in 3.1.4.

Notation 3.2.1 (Argument). Let h be a literal, A be an set of rules and
i ∈ G be an agent. Then 〈A, h, i〉 denotes an argument for h from agent i.

The ABBC will have to decide for each argument 〈A, h, i〉 if the argument
is correct according to the ABBC knowledge base KBBB and the set of rules
A. We require the same criteria as DELP, i.e. A∪KBBB is non-contradictory,

29

A is minimal and there is a derivation of h using A∪KBBB as a set of rules.
By modification of definition of derivation and argument structure from [10],
we get the following definitions:

Definition 3.2.3 (Derivation). Let BB = 〈KBBB, G,≺, q〉 be an ABBC. A
derivation of a ground literal L from BB and some set A of rules, denoted
KBBB ∪ A |∼ L, consists of a finite sequence L1, L2, · · · , Ln = L of ground
literals, and each literal Li is in the sequence because:

• Li is a fact (a rule with empty body) in KBBB ∪A, or

• there exists a rule Ri in KBBB∪A with head Li and body B1, B2, · · · , Bk

and every literal of the body is an element Lj of the sequence appearing
before Li(j < i).

Definition 3.2.4 (Acceptable argument). Let α = 〈A, h, i〉 be an argument
and BB = 〈KBBB, G,≺, q〉 be an ABBC. We say that α is an acceptable
argument in BB iff:

1. there exists a derivation for h from KBBB ∪A

2. the set KBBB ∪ A is non-contradictory, and

3. A is minimal, there is no proper subset A′ of A such that A′ satisfies
conditions (1) and (2).

In example 3.2.1 an acceptable argument is shown 〈{∼tv on← power failure,
power failure← true},∼tv on, 1〉 from agent 1 and 〈{tv on← in evening,
in evening ← true}, watch tv, 2〉 from agent 2.

The ABBC will be empty in the beginning and it will accept only argu-
ments supporting query q, or complementary literal q. In this thesis we will
call them base arguments.

Definition 3.2.5 (Base argument). Let α = 〈A, h, i〉 be an acceptable ar-
gument and BB = 〈KBBB, G,≺, q〉 be an ABBC. We say that α is an base
argument for q (q) in BB iff

1. h = q (h = q) and

2. there is no argument β = 〈B, f, j〉, where B = A, used as base ar-
gument for q (q), or β is not used as an supporting argument in the
dialectical tree for q (q).

30

In Example 3.2.1, the acceptable argument 〈{tv on← in evening, in evening ←
true}, watch tv, 2〉 from agent 2 is a base argument, because the query is
watch tv.

There can be many different base arguments for a literal and they will
become roots of trees. Afterwards, agents are allowed to send a counter-
argument defined in 3.1.6. These counter-arguments will be accepted, if
they satisfy the conditions from 3.2.8.

During whole ABBC process we will work with a marked dialectical
forest, which is a modification of 3.1.15 and 3.1.16, with the following prop-
erties:

Definition 3.2.6 (Marked Dialectical tree). Let 〈A0, h0, i0〉 be an argument.
A marked dialectical tree for 〈A0, h0, i0〉 is defined as follows:

1. The root of the tree is labeled with 〈A0, h0, i0〉.

2. Each tree path from the root to the leaf is an acceptable argumentation
line.

3. All leaves are marked as U (undefeated).

4. Let 〈B, q, i〉 be an inner node.

(a) Then 〈B, q, i〉 will be marked as U iff every child of 〈B, q, i〉 is
marked as D (defeated).

(b) The node 〈B, q, i〉 will be marked as D iff it has at least a child
marked as U .

Definition 3.2.7 (Marked dialectical forest). Let q be a query consisting of
one literal. A marked dialectical forest F for q is a disjoint union of marked
dialectical trees where the root of each dialectical tree is labeled with a base
argument 〈A0, h0, i0〉 for q or q.

Example 3.2.2. A marked dialetical forest for Example 3.2.1 is for instance
the following tree:

〈{tv on← in evening, in evening}, watch tv, 2〉 U

Finally, we can define acceptable defeaters, which are the key objects in
the ABBC, together with base arguments. Only these two components can
change the outcome of an argumentation in ABBC.

31

Definition 3.2.8 (Acceptable Defeater). Let α = 〈A, h, i〉 be an acceptable
argument and F be a dialectical forest for a query q. We say that α is the
defeater for F , iff

1. there exists an undefeated node β = 〈Aj, hj, ij〉 in F , where α is a
blocking defeater for β or α is a proper defeater of β, and

2. the sequence from root of the tree to β and α [〈A0, h0, i0〉, . . . , 〈Aj, hj, ij〉,
〈A, h, i〉], is an acceptable argumentation line.

Example 3.2.3. In Example 3.2.1 is shown the acceptable argument 〈{∼
tv on ← power failure, power failure ← true},∼tv on, 1〉 from agent 1
and an acceptable defeater for the argument 〈{tv on← in evening, in evening ←
true}, watch tv, 2〉 from agent 2. The marked dialectical forest for tv exam-
ple can be following:

〈{tv on← in even, in even}, watch tv, 2〉 D

〈{∼tv on← power fail, power fail},∼tv on, 1〉 U

The acceptable defeater will be added to the marked dialectical tree as
the successor of the nodes it defeats. The ABBC will change marks of the
arguments in a marked dialectical forest (MDF) according to the definition
of MDF. The query is validated during the whole process. It starts as
UNDECIDED and changes according the following definition. The warrant
is defined in 3.1.17.

Definition 3.2.9 (Answers to queries). The answers of an ABBC interpreter
can be

• YES, if q is warranted and q is not warranted,

• NO, if q is warranted and q is not warranted,

32

• UNDECIDED, otherwise.

In Example 3.2.3, the answer for query watch tv and this marked di-
alectical forest is UNDECIDED. However the agent 1 can decide that there
is not powerfailure and it can send a defeater for his last argument. This
can be useful to extend an ABBC with default negation, to have rules such
as ∼watch tv ← not watch tv. A default negation, not F , is assumed by
default, i.e., it is assumed in the absence of sufficient evidence to the con-
trary. In DELP, it means that there is no warrant as discussed in [10]. We
plan to extend ABBC with default negation, but an extended DELP, which
contains the default negation, is in preparation too.

33

Chapter 4

Abstract ABBC

In this chapter, we will define an Abstract ABBC, a framework which is
more abstract than ABBC, but less abstract than the Dung’s framework
[6]. It was inspirated by the fact that we could change some definitions of
ABBC to obtain a different behaviour. The Abstract ABBC abstracts from
the details of syntax, inference rules and some other details. The framework
will consist only of the necessary parts of argumentation, which will be
discussed as argumentation elements, as it was mentioned in section 2.2.

The first argument element is a logical language. We want to stay in
logic programming, but we want to provide possibility of a choice among
different kind of logic programming programs such as definite logic program
[1], DELP language [10], or disjunctive logic programs [15]. A common
alphabet for all logic languages may be defined

Definition 4.0.10 (Alphabet of Abstract ABBC). An alphabet A of an
Abstract ABBC is a disjoint set of constants, variables, predicate symbols
with associated arity, and function symbols with associated arity.

An Abstract ABBC can be used with many different languages. They
must be defined by a grammar and can use punctuation symbols and logical
symbols, such as conjunction and disjunction. With this definition, each
logic programming language is a language of Abstract ABBC.

Definition 4.0.11 (Language of Abstract ABBC). Let A be an alphabet
of an Abstract ABBC and G be a grammar over A and alphabet of logical
symbols and punctuation symbols. We say that a language L is a language
of abstract ABBC if L = L(G).

34

A query is a literal in DELP and ABBC, and it is a sequence of literals
in Prolog as well. By this way we will have the possibility to define queries
as we would like.

Notation 4.0.2 (Query language). A Query language LQ is a language of
Abstract ABBC.

Example 4.0.4. In this example, we will show how ABBC language can be
defined such a language of Abstract ABBC. ABBC has following an alphabet
of logical and the punctuation symbols AS = {∼,←} ∪ {, }. Let A be an
alphabet of Abstract ABBC, C be a set of constants from A, V be a set
of variables from A. We define the corresponding grammar for ABBC as
follows:

1. Set of terms over A is T = C∪V ∪{f(t1, . . . , tn)}, where f is function
symbol from A and ti ∈ T , is a set of terms over A.

2. A = {p(t1, . . . , tn)}, where p is predicate symbol from A and ti ∈ T , is
a set of atoms over A.

3. I = A ∪ {∼a}, where a ∈ A, is a set of literals over A.

4. H = I, is a set of heads over A.

5. B = {true}∪{i1, . . . , in} , where i1, . . . , in are literals, is a set of bodies
over A.

6. R = {h← b}, where h ∈ H, b ∈ B, is a set of rules over A.

The language of ABBC is same as a language of Abstract ABBC, defined as
the set of rules. Queries in ABBC have the same structure as queries from
a query language, which is defined as the set of literals.

We expect that a language is usually defined as a set of clauses, therefore
the definition of a program follows:

Definition 4.0.12 (Program). Let L be a language of Abstract ABBC, we
say that finite subset of L is a program of language L.

We can now define Abstract ABBC, that can be defined in each language,
and also the consequence operator.

35

Definition 4.0.13 (Non-monotonic consequence operator). Let L be a lan-
guage of an Abstract ABBC. We say that a function Cn : P(L) → P(L) is
a non-monotonic consequence operator, if for every E ⊆ L is Cn(Cn(E)) ⊆
Cn(E).

In ABBC a non-monotonic consequence operator is defined by a defea-
sible derivation.

Definition 4.0.14 (Abstract Argumentation Black Board for Coordina-
tion). Let L be a language of Abstract ABBC, LQ be a query language, Cn be
a non-monotonic consequence operator and let < (a criterion on arguments),
ξ (an acceptance function), S (a semantic function) be a defined below in
4.0.16, 4.0.18 and 4.0.19. Let G ⊆ {1, . . . , n} be a group of agents, KBBB be
a program of L, ≺ be a binary relation on agents, q ∈ LQ. We say that a tu-
ple BB = 〈L, LQ,Cn, <, ξ, S,KBBB, G,≺, q〉 is an Abstract Argumentation
Black Board for Coordination. It is assumed that ∀k ∈ G KBBB ⊆ KBk

and the set KBBB is non-contradictory.

Note that in Dung’s argumentation framework [6], the concept of the
argument is not defined. In many argumentation systems, arguments have
similar structure as a set of logical formulae and the sentence which can be
proved from them. In the following, we shall use the following definition:

Notation 4.0.3 (Argument). Let BB = 〈L, LQ,Cn, <, ξ, S,KBBB, G,≺, q〉
be an Abstract ABBC, h ∈ LQ and A be a program of L, i ∈ G is agent.
Then 〈A, h, i〉 is an argument for h from agent i

Definition 4.0.15 (Acceptable argument). Let α = 〈A, h, i〉 be an argu-
ment and BB = 〈L, LQ,Cn, <, ξ, S,KBBB, G,≺, q〉 be an Abstract ABBC.
We say that α is an acceptable argument in BB iff:

1. h ∈ Cn(KBBB ∪A)

2. the set KBBB ∪ A is non-contradictory, and

3. A is minimal, there is no proper subset A′ of A such that A′ satisfies
conditions (1) and (2).

There are three types of conflict between arguments as described in sec-
tion 2.2. We will use only two of them: rebutting attack and assumption
attack, which are defined in the definition of counter argument in 3.1.6.

36

We do not need the undercutting attack, which is an attack on a rule of
inference, because in each argument, the same inference rule is used.

A Defeat between arguments similarly to DELP is defined by specificity
or by domain-specific criterion. We will define it abstractly as a relation.

Definition 4.0.16 (Criterion for arguments). Let L be a language of ab-
stract ABBC, LQ be a query language, ≺ is a binary relation on agents. We
say that a relation < on 2L×LQ×N×2L× ≺ is a criterion for arguments. We
say that an acceptable argument 〈A1, H1, i1〉 is more specific than 〈A2, h2, i2〉
if 〈A1, h1, i1,KBBB,≺〉 < 〈A2, h2, i2,KBBB,≺〉 and 〈A2, h2, i2,KBBB,≺〉 6<
〈A1, h1, i1,KBBB,≺〉

We will define an argumentation graph, which will represent the status
of an argumentation. In ABBC we used a marked dialectical tree, because
of the limitation for an accepting argument. Such a graph will have two
types of edges, one for blocking defeaters and second for proper defeaters.

Definition 4.0.17 (Argumentation Graph). Let A be a set of arguments
and V, W be relations on A × A. We say that a tuple G = 〈A, V, W 〉 is
an argumenation graph, if α ∈ A counter-argues β(∈ A) iff (α, β) ∈ V and
moreover α is more specific than β, iff (α, β) ∈W .

Definition 4.0.18 (Acceptance function). Let G = (A, V, W) be an argu-
mentation graph and α be an acceptable argument. An acceptance function
ξ is a function ξ : Σ × A → {0, 1}, where A is a set of all arguments and
Σ is a set of all paths. ξ for every argument path λ in a graph decides: an
argument α can be added, iff ξ(λ, α) = 1.

As the Dialectical status of arguments, the user may choose from one of
Dung’s semantics. They can be represented as a function on an argumenta-
tion graph.

Definition 4.0.19 (Semantic function). Let G = (A, V, W) be an argumen-
tation graph. We say that a function S : G → P(A), where A is a set
of all arguments, is semantic function. S(G) will produce a set of sets of
warranted arguments.

Then we can define answer to queries as follows.

Definition 4.0.20 (Answer to queries). Let BB = 〈L, LQ,Cn, <, ξ, S,KBBB, G,≺
, q〉 be an Abstract ABBC and G = (A, V, W) be an argumentation graph.
The answers of an ABBC interpreter can be

37

• skeptically YES, if q is in all A ∈ S(G)

• credulously YES, if there exists at least one A ∈ S(G), which contains
q

• skeptically NO, if q is in all A ∈ S(G)

• credulously NO, if there exists at least one A ∈ S(G), which contains
q

• UNDECIDED, otherwise

4.1 Software design of Abstract ABBC

In this section, we will introduce a software design for Abstract ABBC. In
this thesis, we are interested only in the theoretical properties of coordination
and argumentation. Therefore, our description of the software design will
be brief without concrete implementation details.

Abstract ABBC, as a tool for coordination among logical agents, can
be implemented in various multi-agent systems. The most popular and
widespread software multi-agent technology platform available today is Java
Agent DEvelopment Framework (JADE) [2]. JADE is written completely
in Java, therefore it can benefit from the huge set of language features and
third-party libraries. Containing the standard FIPA-ACL communication
language, it provides the best opportunity to implement the Abstract ABBC.
In the following, we will discuss sending and receiving FIPA ACL messages,
an agent life-cycle, which are all implemented as the basic services and in-
frastructure in JADE.

Abstract ABBC is defined as universal as it is possible. We do not
expect that the user to define all properties of the Abstract ABBC in each
its recall of the Abstract ABBC. Therefore, we assume that there will be a
few prototypes of Abstract ABBC implemented, in our case we will discuss
ABBC as a prototype of Abstract ABBC. So that logic agents will point to
prototype of Abstract ABBC.

Additionally a service will be created in JADE for creating the Abstract
ABBCs as new agents. The logic agents in open multi-agent system will have
a choice to ask this service for creating an Abstract ABBC any time during
their life-cycle. A logic agent will send a FIPA ACL message similar to the
one in example 2.3.1. This message will contain a request performative and

38

a content with a query, the prototype of Abstract ABBC and a set of rules.
Then the set of rules will become knowledge base of the Abstract ABBC.
The service will check consistency of rules through a consistency module
and inform through a FIPA ACL message about accepting or refusing the
creation of the Abstract ABBC. The newly opened Abstract ABBC will
broadcast a FIPA ACL inform message about its presence to all agents.

We do not need to go into the details of software design of the logical
agents as this is left to the users of the Abstract ABBC. We assume that
their creators prepared them for making arguments, requesting to create an
ABBC, or possibly managing coordination. We do not design the whole
multi-agent system, only a coordination tool as an Abstract ABBC.

Abstract ABBC’s functional requirements, which will be communicated
through FIPA ACL messages, are :

• sending responses for agent’s requests such as:

– dialetical status of the argumentation,

– rules in knowledge base,

– list of undefeated arguments,

– list of agents involved in the argumentation.

• managing arguments that the Abstract ABBC received from logical
agents.

As it was already mentioned above, Abstract ABBC consists of a graph
structure to capture the whole argumentation about the query. Each node
in the structure will embody an argument defined in 4.0.3 and the nodes
will be connected according to the defeat relation. The graph structure
can vary according to the type of the Abstract ABBC. For example the
ABBC’s graph structure is a forest, i.e. a disjoint union of trees, which can
be implemented in faster data structures than a graph. Also, generally in
the Abstract ABBC, we need to have a module to compute the dialetical
status of the argumentation from the entire graph, when it is requested. In
ABBC type, this dialectical status is computed only through exploring the
marks of roots of the trees, which represent undefeated or defeated status
of the query.

The similar situation happens when we design the response to a request
for a list of undefeated arguments. Generally, this is a method on the entire
argumentation structure, which needs to evaluate arguments at first and

39

then search for an undefeated one. In ABBC type, the forest structure only
needs to search, using for example depth-first search (DFS), all trees for
undefeated arguments, as they are marked in the tree.

If the agent is submitting an argument that becomes accepted, an Ab-
stract ABBC will add an agent’s ID to the list of agents. This list can be
represented as an array, where each item represents an agent’s ID and the
time when its last argument was accepted. This list can be replied when a
logical agent requests a list of agents involved in the argumentation.

Managing the arguments is one of the most important functionalities of
the Abstract ABBC. When an Abstract ABBC receives an argument from
a logical agent, it must check its acceptability. In general, an acceptable
argument must be added to each path in the argumentation graph and the
Abstract ABBC must check the validity of this path according to the defined
rules. It must be, however, optimized for each type of the Abstract ABBC
as it is in the corresponding ABBC. The ABBC prototype will compare
the argument with all undefeated arguments in its argumentation structure.
If the argument becomes the acceptable defeater, it will be added to the
marked dialectical tree in the ABBC type as the successor of the nodes,
which the argument defeats. The marks of the arguments in ABBC argu-
mentation structure will be changed only by traversing through the parents
of the nodes from the added defeater to root of the tree.

40

Chapter 5

Related Work and Discussion

In [23], Matthias Thimm and Gabriele Kern-Isberner proposed a distributed
framework that enables DELP. Their main goal is to model a distributed
argumentation for common conclusion of a group of agents. As an exemplary
application, they described a jury court where every juror has a personal
opinion about the guilt or innocence of the accused person.

They used a centralized approach of organisational structuring, in op-
position to our open architecture. There is an interface of the system and
an contact for queries, called moderator, that coordinates the argumenta-
tion process and analyzes the answer to the given query. Although it is a
distributed system,a s the knowledge base is separated to global and several
local knowledge bases, their system is not as much distributed and open as
ours. It is more a distribution of rules to modules than an open multi-agent
system.

An extension of an abstract argumentation framework [6] was devel-
oped by Srdjan Vesic in [25]. This two-step argumentation process, called
a general argumentation framework for decision making, aims to prepare
a framework for decision making among agents. It, however, remained in
abstract argumentation and it does not specify the structure of arguments,
and the defeat and conflict relations are defined only as given. The agents
discuss options in their decision and argue about them. This is made by the
same process as in the abstract argumentation framework. We believe that
this can be processed in Abstract ABBC as one type of coordination. Our
system is more specific in argumentation and it can be used for many types
of coordination.

These works should be reimplemented in approach of ABBCs.

41

Chapter 6

Conclusion and Future Work

The ABBC extends the defeasible logic Programming (DELP) [10] and pro-
vides possibility of argumentation among logical agents. The argumentation
is an important tool for model coordination, therefore the ABBC as the
argumentation framework is an appropriate tool for agent coordination in
multi-agent system.

The Abstract ABBC specifies some yet unspecified elements in the ab-
stract argumentation framework [6] and enables argumentation in all possi-
ble non-monotonic languages with any inference operator. It consists only
of the most necessary and universal elements of argumentation. In future it
can be used for experiments with argumentation parameters, that may lead
to new insights into logic-based argumentation and disclosures new applica-
tion areas. The other extensions of ABBC, or types of the Abstract ABBC
should be developed. We mentioned a possible extension with a default
negation.

In this thesis, we studied various theories and models for coordination
and argumentation among the logical agents and as a result, we proposed
two theoretical frameworks, ABBC and Abstract ABBC. They would need
to be studied by the means of complexity theory to optimize their processes.
Afterwards they need to be implemented. With an existing implementation,
coordination methods based on ABBC and Abstract ABBC tools should be
proposed.

ABBC and Abstract ABBC should be implemented firstly in JADE [2],
a software framework for multi-agent systems, because JADE complies with
the FIPA specifications, which describe the FIPA ACL for communication.
It is also the most widespread framework in multi-agent community.

42

Bibliography

[1] Baral C. and Gelfond M.: Logic programming and knowledge represen-
tation Journal of Logic Programming, 1994, Vol. 19, 73-148.

[2] Bellifemine F., Caire G., Greenwood D.: Developing MultiAgent Sys-
tems with JADE, 2007

[3] Bergenti F., Ricci A.: Three Approaches to the Coordination of Multi-
agent Systems, 2002

[4] Caminada M., Amgoud L.: On the evaluation of argumentation for-
malisms, 2007

[5] Denti E., Omicini A.: Engineering Multi-Agent Systems in LuCe, 1999

[6] Dung P.M.: On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-persons games,
1995

[7] Endriss U., Maudet N., Sadri F., Toni F.: Logic-based Agent Commu-
nication Protocols, 2005

[8] Finin T., Fritzson T., McKay D., and McEntire R.: KQML as an agent
communication language, 1994

[9] FIPA. FIPA 97 specification part 2: Agent communication, 1998.

[10] Garcia A. J., Simari G. R.: Defeasible Logic Programming - An Argu-
mentative Approach, 2004

[11] Huhns M. N., Stephens L. M.: Multiagent Systems and Societies of
Agents in Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence edited by Weiss G., 1999, pp. 79-120

43

[12] Labrou Y. and Finin T.: Semantics for an agent communication lan-
guage, 1998

[13] Leite J.A.: Evolving knowledge bases, 2003

[14] Malone T., Crowston K.: The Interdisciplinary Study of Coordination,
1994

[15] Minker J., Seipel D.: Disjunctive Logic Programming: A Survey And
Assessment 2002

[16] McBurney P., Hitchcock D., Parsons S.: The eightfold way of delibera-
tion dialogue, 2004

[17] Papadopoulos G. A., Arbab F.: Coordination models and languages,
1998

[18] Parsons S., Sierra C., Jennings N.: Agents that reason and negotiate by
arguing, 1998

[19] Prakken H., Vreeswijk G.: Logics for defeasible argumentation, 2002

[20] Sadek S. D.: Dialogue acts are rational plans, 1991

[21] Simari, G. R., Loui R. P.: A Mathematical Treatment of Defeasible
Reasoning and its Implementation. Artificial intelligence, 1992, Vol. 53,
125–157.

[22] Singh M. P.: Agent Communication Languages: Rethinking the Princi-
ples, 1998

[23] Thimm M., Kern-Isberner G.: A Distributed Argumentation Framework
using Defeasible Logic Programming (Extended Version), 2008

[24] Vengerov D.: Adaptive Communication and Coordination in Multi
agent systems, 2000

[25] Vesic S.: An abstract argumentation framework for decision making,
2008

[26] Walton D. N., Krabbe E. C. W.: Commitment in Dialogue: Basic
Concepts of Interpersonal Reasoning, 1995.

44

[27] Wooldridge M. J.: An introduction to Multi-agent systems, Wiley, 2001

[28] http://cs.uns.edu.ar/∼ ajg/DeLP.html

45

