ANALÝZA ZMĚN DOSTUPNOSTI
DO ZÁKLADNÍCH ŠKOL ČR OD ROKU 1961

ANALYSIS OF THE ACCESSIBILITY
OF ELEMENTARY SCHOOLS
IN THE CZECH REPUBLIC SINCE 1961

Bakalářská práce

Tomáš Mattern

duben 2010

Vedoucí bakalářské práce: RNDr. P. Štych, Ph.D
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně a že jsem všechny použité prameny řádně citoval.

Jsem si vědom toho, že případné použití výsledků, získaných v této práci, mimo Univerzitu Karlovo v Praze je možné pouze po písemném souhlasu této univerzity.

Svoluji k zapůjčení této práce pro studijní účely a souhlasím s tím, aby byla řádně vedena v evidenci vypůjčovatelů.

V Praze dne 15. května 2010

……………………………………..

Tomáš Mattern
Poděkování

Analýza změn dostupnosti do základních škol ČR od roku 1961

Abstrakt

Klíčová slova: dostupnost, základní škola, osobní automobilová doprava, silniční síť, síťové analýzy

Analysis of the accessibility of elementary schools in the Czech Republic since 1961

Abstract
The aim of this paper is to analyze the development of accessibility to elementary schools in the Czech Republic since 1961 by the personal car transport using network analysis. In addition, the paper also evaluates the development to elementary schools by public transport. The first part summarizes the available literature about those issues. The second part presents the source data and analysis methodology. Most of the analysis is performed by GIS ArcGIS 9.3. The last part presents the analysis results. It was found that the accessibility of complete elementary schools has improved in the period and the accessibility of all elementary schools has deteriorated. This applies to the accessibility by personal car transport and by public transport.

Keywords: accessibility, elementary school, personal car transport, road network, network analysis
OBSAH

SEZNAM TABULEK, OBRÁZKŮ A GRAFŮ.. 6

1 Úvod ... 7

2 Úvod do problematiky .. 8
 2.1 Základní školy v ČR ... 8
 2.2 Akcesibilita ... 10
 2.3 Vývoj osobní automobilové dopravy ... 11

3 Datové podklady a metodika... 13
 3.1 Základní školy ... 13
 3.2 Tvorba modelu silniční sítě ... 14
 3.3 Analýzy dostupnosti .. 19
 3.3.1 Hustota sítě základních škol .. 19
 3.3.2 Analýzy dostupnosti osobní automobilovou dopravou 19
 3.3.3 Analýza dostupnosti veřejnou dopravou 20

4 Vývoj dostupnosti do základních škol .. 21
 4.1 Vývoj sítě ZŠ .. 21
 4.2 Vývoj dostupnosti do všech ZŠ ... 23
 4.2.1 Vzdálenostní dostupnost ... 23
 4.2.2 Časová dostupnost ... 25
 4.3 Vývoj dostupnosti do úplných ZŠ .. 26
 4.3.1 Vzdálenostní dostupnost ... 26
 4.3.2 Časová dostupnost ... 28
 4.4 Dostupnost do ZŠ veřejnou dopravou .. 29

5 Diskuze výsledků.. 32

6 Závěr .. 34

Seznam zdrojů informací .. 35
Seznam příloh .. 38
SEZNAM TABULEK, OBRÁZKŮ A GRAFŮ

Graf 1: Vývoj počtu ZŠ v ČR v letech 1961-2004.. 9
Tabulka 1: Návrhové a předpokládané průměrné rychlosti na silnicích v Číně 17
Tabulka 2: Předpokládané průměrné rychlosti ve východní Anglii... 17
Tabulka 3: Předpokládané průměrné rychlosti pro silniční síť ČR.. 17
Tabulka 4: Stanovené rychlosti pro model dostupnosti .. 18
Tabulka 5: Vývoj počtu ZŠ v ČR.. 21
Tabulka 6: Vývoj počtu obcí s alespoň jednou ZŠ v ČR ... 22
Tabulka 7: Počet obcí v zónách vzdálenostní dostupnosti, všechny ZŠ .. 23
Tabulka 8: Podíl plochy ČR v zónách vzdálenostní dostupnosti, všechny ZŠ [%] 24
Tabulka 9: Počet obyvatel v zónách vzdálenostní dostupnosti, všechny ZŠ 25
Tabulka 10: Počet obcí v zónách časové dostupnosti, všechny ZŠ ... 25
Tabulka 11: Podíl plochy ČR v zónách časové dostupnosti, všechny ZŠ [%] 26
Tabulka 12: Počet obyvatel v zónách časové dostupnosti, všechny ZŠ 26
Tabulka 13: Počet obcí v zónách vzdálenostní dostupnosti, úplné ZŠ .. 27
Tabulka 14: Podíl plochy ČR v zónách vzdálenostní dostupnosti, úplné ZŠ [%] 27
Tabulka 15: Počet obyvatel v zónách vzdálenostní dostupnosti, úplné ZŠ 28
Tabulka 16: Počet obcí v zónách časové dostupnosti, úplné ZŠ ... 28
Tabulka 17: Podíl plochy ČR v zónách časové dostupnosti, úplné ZŠ [%] 29
Tabulka 18: Počet obyvatel v zónách časové dostupnosti, úplné ZŠ .. 29
Tabulka 19: Suma doby trvání cesty do školy všech obcí ORP Chomutov 30
Obrázek 1: Poloha ORP Chomutov v ČR... 31
KAPITOLA 1

Úvod

Po nezbytném úvodu práce následuje druhá kapitola, která představuje teoretické základy a obecný úvod do problematiky. Je rozdělena na tři části, první se věnuje základním školám na našem území, druhá akcesibilitě a třetí shrnuje vývoj důležitých faktorů, ovlivňujících osobní automobilovou dopravu. Následující kapitola číslo 3 se věnuje tvorbě datových podkladů pro analýzu, což zahrnuje popis bodové vrstvy základních škol a především tvorbu modelu silniční sítě. Čtvrtá kapitola objasňuje problematiku síťových analýz, následující kapitola se zabývá hodnocením výsledků analýzy, popisuje a komentuje tedy vývoj dostupnosti do základních škol a její regionální diferenciaci. Práce je zakončena diskuzí spojenou se závěrem.
KAPITOLA 2
Úvod do problematiky

Tato kapitola nastíní teoretický úvod do zpracovávané tématiky. Jelikož se z dostupných zdrojů nepodařilo najít žádnou podobně zaměřenou studii, bylo nutno vyhledat literaturu zvlášť pro obě dílčí části, tedy pro základní školy v ČR a pro akcesibilitu, a provést určitou syntézu. To také vysvětluje, proč se tato kapitola skládá z více podkapitol. První popisuje situaci ohledně základních škol na území současné ČR a její vývoj od roku 1961. Druhá podkapitola představí téma akcesibility, jejího postavení v oboru geografie dopravy a také přístupy k jeho studiu. Třetí, nejkratší část se stručně pozastavuje nad vývojem osobní automobilové dopravy a infrastruktury pro ni potřebné.

2.1 Základní školy v ČR

ZŠ, ale v obcích, kde se nachází pouze jediná škola, může její zavření vést k velkým problémům, neboť snižuje vybavenost obce základními službami a tím i celkovou atraktivitu obce (Kučerová-Kul dová, 2008). Tyto důvody, podpořené navíc školským zákonem (Zákon č. 561/2044 Sb.), který řiká, „školní docházka je povinná po dobu devíti školních roků, nejvýše však do konce školního roku, v němž žák dosáhne sedmnáctého roku věku“, by tedy měly směřovat k rovnoměrnému rozdělení základních škol, které by vedlo ke stejné, nebo alespoň podobné dostupnosti do ZŠ pro všechny žáky. Není tomu ovšem tak, neboť rozdělení základních škol je velmi závislé na rozdělení populace a velmi úzce s ním koresponduje (Kučerová, 2008). Kromě položky se také rozdělení základních škol výrazně proměňuje s časem.

Graf 1: Vývoj počtu ZŠ v ČR v letech 1961-2004

![Graf 1: Vývoj počtu ZŠ v ČR v letech 1961-2004](graf.png)

Zdroj: Kučerová (2008), výpočet autora
2.2 Akcesibilita

nejkratší (vzdálenost) nebo nejrychlejší (čas) trasu po určité dopravní síti. Poslední metodou tohoto autora je hodnocení nákladů na překonání určité vzdálenosti po povrchu. Nutno dodat, že cena zde není nutně myšlena, jako finanční prostředky, ale jako náročnost průchodu různým prostředím. Všechny tyto metody kalkulují pouze se vzdáleností či náklady na přemístiti, nezahrnují však do výpočtů proměnnou, kterou lze nazvat jako index atraktivity či váhu místa. Tu naopak do výpočtu zahrnují Jiang, Claramunt a Battye (1999), kteří definují geografickou akcesibilitu místa i k místum j jako

\[W \] je zde indexem atraktivity místa (z anglického weight, váha) \(j \) a \(d \) představuje vzdálenost mezi oběma místy. Tito autoři ještě zmiňují vzorec pro geometrickou dostupnost, který je téměř totožný, pouze z proměnné \(W \) se stává konstanta nabývající hodnoty 1. Tento výpočet tedy nebere v úvahu atraktivitu (váhu, potenciál) místa.

\subsection*{2.3 Vývoj osobní automobilové dopravy}

KAPITOLA 3
Datové podklady a metodika

Chceme-li analyzovat dostupnost místa, je nutné určit „kam a kudy“. Potřebujeme tedy definovat cílové destinace a určitou dopravní siť, na které budou následně provedeny analýzy. Jak vidno, potřebujeme nezbytně dvě datové sady. V tomto konkrétním případě, kdy zjišťujeme dostupnost do základních škol osobní automobilovou dopravou, potřebujeme způsob, která budou reprezentovat siť základních škol, tedy informace o tom, ve kterých obcích se základní školy nacházejí, a za druhé model silniční sítě, na které budou prováděny analýzy. Vzhledem k tomu, že se jedná o analýzu vývoje, je třeba mít oba datové podklady v několika časových horizontech, nejlépe rovnoměrně rozdělených ve sledované periodě. Popisem těchto datových souborů a jejich různými úpravami se bude zabývat následující kapitola. V první části bude popsán vznik bodových vrstev základních škol, ve druhé potom situace okolo tvorby modelu silniční sítě.

3.1 Základní školy

Informace o počtu škol byly získány pro rok 1964 ze Statistického lexikonu obcí ČSSR 1965 a ze Statistiky školství a kultury. Pro roky 1976 a 1990 byla data zjištěna z pramene Obce v číslech 1991 a data pro rok 2004 byla zjištěna z internetové databáze Města a obce v číslech (MOS) (Kučerová-Kuldová, 2008). Sama autorka ovšem poukazuje na možné nepřesnosti v uvedených zdrojích, které mohou způsobovat chyby ve finálním datovém výstupu, především...

Tato data byla od jejích autorky získána v tabulce aplikace MS Excel (přípona *.xls), která obsahovala názvy a příslušné kódy všech obcí, které existovaly v roce 2003. U každé obce je dále uveden počet základních škol pro všechny čtyři výše zmíněné horizonty, a to jak celkový součet, tak počet úplných a neúplných (malotřídních) škol. Z těchto dat je tedy jasně patrné, ve kterých obcích se v příslušných letech nacházely základní školy a ve kterých nikoliv.

3.2 Tvorba modelu silniční sítě

Z těchto informací tedy plyne několik nezbytných pravidel pro model silniční sítě. Musí se jednat o vektorový model, sestavený z linii, které představují silnice, a bodů, které představují jejich křižení. V těchto bodech je ovšem nutné definovat pravidla pro odbočování, nebot ne každé křižení silnice představuje křižovatku. Může se jednat například o mimoúrovňové křižení, tedy o nadjezd či podjezd, kde není možné napojení z jedné silnice na druhou. Vedle těchto topologických pravidel je také nutné zkontrolovat, zda je model obecně topologicky čistý, tedy jestli se v něm nevyvstaly chyby a GIS se na něj může spolehnout (Chrisman, 1997). Tyto chyby by v tomto případě mohly představovat například nespojené řetězce nebo křižení linií mimo uzly. Do takto připraveného modelu je před analýzou dostupnosti ještě nutné implementovat pravidla pro pohyb v síti, tedy například určitá omezení a především určitou hodnotu impedance (čas, vzdálenost, ...) pro každý úsek.

Mezi nejdůležitější faktory patří nejvyšší povolená rychlost, která je přímo závislá i na dalších faktorech, jako je například umístění komunikace dovnitř nebo třída silnice. Nejvyšší povolená rychlost samozřejmě není zárukou, že se skutečně dodrží, tyto případy však nelze do modelu zahrnout. Dále je zde kategorie, která je ovlivněna reliéfem, spadá podélí složení vozovky a její deviatilita, která roste s růstoucí členitostí krajiny. Poslední kategorii jsou faktory časové, zdeží tedy, ve které části dne, případně roku se po silnici pohybujeme. Zcela jiné dopravní podmínky panují ve všední den v dopravní špičce a o půlnoci, tyto podmínky je tedy nutné vhodně nastavit podle konkrétních potřeb modelu.

Do analýzy byly nakonec zahrnuty dva faktory, které byly vybrány jako nejvýznamnější, a to třída silnice a umístění komunikace v extravilánu či v intravilánu.

Každá třída silnice má zákonem určené nejvyšší povolené rychlosti, které jsou však v praxi redukovány ostatními faktory, především intenzitou provozu. Bylo proto nutné stanovit průměrné rychlosti na základě prací, věnujících se tomuto tématu a s přihlédnutím ke zkušenostem autora.

Li a Shum (2001) odhadovali průměrné rychlosti pro čínskou dálniční a silniční síť. Tyto rychlosti byly nakonec stanoveny výrazně níže (Tabulka 1), než jsou návrhové rychlosti, a to především u silnic mimo dálnice. Autoři to zdůvodňují především hustotou dopravy a malou šířkou silnic, což výrazně snižuje možnost předtištění.
Tabulka 1: Návrhové a předpokládané průměrné rychlosti na silnicích v Číně

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>návrhová rychlost osobní</th>
<th>návrhová rychlost nákladní</th>
<th>průměrná rychlost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dálnice</td>
<td>120 km/h</td>
<td>80-100 km/h</td>
<td>100 km/h</td>
</tr>
<tr>
<td>ostatní silnice</td>
<td>80 km/h</td>
<td>80 km/h</td>
<td>40 km/h</td>
</tr>
</tbody>
</table>

Zdroj: Li, Shum (2001)

Podrobnější studii o situaci ve východní Anglii se zabývali Brainard, Lovett a Bateman, kteří stanovovali rychlosti podle typu silnice, počtu jízdních pruhů a podle polohy v zástavbě či mimo ní (Tabulka 2).

Tabulka 2: Předpokládané průměrné rychlosti ve východní Anglii

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>venkov</th>
<th>město</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor road</td>
<td>22 km/h</td>
<td>18 km/h</td>
</tr>
<tr>
<td>B-road single carriageway</td>
<td>39 km/h</td>
<td>19 km/h</td>
</tr>
<tr>
<td>B-road dual carriageway</td>
<td>58 km/h</td>
<td>29 km/h</td>
</tr>
<tr>
<td>A-road single carriageway</td>
<td>51 km/h</td>
<td>29 km/h</td>
</tr>
<tr>
<td>A-road single carriageway trunk road</td>
<td>72 km/h</td>
<td>40 km/h</td>
</tr>
<tr>
<td>A-road dual carriageway</td>
<td>80 km/h</td>
<td>40 km/h</td>
</tr>
<tr>
<td>A-road dual carriageway trunk road</td>
<td>87 km/h</td>
<td>45 km/h</td>
</tr>
<tr>
<td>Motorway</td>
<td>101 km/h</td>
<td>56 km/h</td>
</tr>
</tbody>
</table>

Zdroj: Brainard, Lovett, Bateman (1997)

Hudeček (2008) ve své práci zahrnuje do stanovování rychlosti i sklonitost a počet pruhů jednotlivých komunikací (Tabulka 3).

Tabulka 3: Předpokládané průměrné rychlosti pro silniční síť ČR

<table>
<thead>
<tr>
<th>kategorie</th>
<th>Poloha</th>
<th>počet jízdních pruhů</th>
<th>sklonitost v %</th>
<th>průměrná rychlost 2001</th>
<th>průměrná rychlost 1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>dálnice</td>
<td>mimo obec</td>
<td>3</td>
<td>x</td>
<td>120 km/h</td>
<td>x</td>
</tr>
<tr>
<td>dálnice</td>
<td>mimo obec</td>
<td>2</td>
<td>x</td>
<td>115 km/h</td>
<td>100 km/h</td>
</tr>
<tr>
<td>rychlostní silnice</td>
<td>mimo obec</td>
<td>2</td>
<td>5</td>
<td>110 km/h</td>
<td>95 km/h</td>
</tr>
<tr>
<td>rychlostní silnice</td>
<td>mimo obec</td>
<td>2</td>
<td>5</td>
<td>100 km/h</td>
<td>90 km/h</td>
</tr>
<tr>
<td>rychlostní silnice</td>
<td>Obec</td>
<td>2</td>
<td>5</td>
<td>75 km/h</td>
<td>x</td>
</tr>
<tr>
<td>silnice I. třídy</td>
<td>mimo obec</td>
<td>1</td>
<td>6,5</td>
<td>70 km/h</td>
<td>70 km/h</td>
</tr>
<tr>
<td>silnice I. třídy</td>
<td>mimo obec</td>
<td>1</td>
<td>6,5</td>
<td>63 km/h</td>
<td>63 km/h</td>
</tr>
<tr>
<td>silnice II. Třídy</td>
<td>mimo obec</td>
<td>1</td>
<td>7,5</td>
<td>50 km/h</td>
<td>50 km/h</td>
</tr>
<tr>
<td>silnice II. Třídy</td>
<td>mimo obec</td>
<td>1</td>
<td>7,5</td>
<td>45 km/h</td>
<td>45 km/h</td>
</tr>
<tr>
<td>silnice III. Třídy</td>
<td>mimo obec</td>
<td>1</td>
<td>8</td>
<td>33 km/h</td>
<td>33 km/h</td>
</tr>
<tr>
<td>silnice III. Třídy</td>
<td>mimo obec</td>
<td>1</td>
<td>8</td>
<td>30 km/h</td>
<td>30 km/h</td>
</tr>
<tr>
<td>silnice I. třídy</td>
<td>Obec</td>
<td>1</td>
<td>x</td>
<td>30 km/h</td>
<td>35 km/h</td>
</tr>
<tr>
<td>silnice II. Třídy</td>
<td>Obec</td>
<td>1</td>
<td>x</td>
<td>20 km/h</td>
<td>25 km/h</td>
</tr>
<tr>
<td>silnice III. Třídy</td>
<td>Obec</td>
<td>1</td>
<td>x</td>
<td>20 km/h</td>
<td>25 km/h</td>
</tr>
<tr>
<td>silnice I. třídy</td>
<td>mimo obec</td>
<td>2</td>
<td>5</td>
<td>80 km/h</td>
<td>80 km/h</td>
</tr>
<tr>
<td>silnice I. třídy</td>
<td>mimo obec</td>
<td>2</td>
<td>5</td>
<td>72 km/h</td>
<td>72 km/h</td>
</tr>
</tbody>
</table>

Tabulka 4: Stanovené rychlosti pro model dostupnosti

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dálnice mimo obec</td>
<td>110</td>
<td>96</td>
<td>84</td>
<td>x</td>
</tr>
<tr>
<td>rychlostní silnice</td>
<td>100</td>
<td>70</td>
<td>88</td>
<td>66</td>
</tr>
<tr>
<td>silnice II. třídy</td>
<td>70</td>
<td>40</td>
<td>61</td>
<td>40</td>
</tr>
<tr>
<td>silnice III. třídy</td>
<td>50</td>
<td>35</td>
<td>44</td>
<td>36</td>
</tr>
<tr>
<td>silnice I. třídy</td>
<td>40</td>
<td>30</td>
<td>35</td>
<td>31</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora.

Rozlišení silnic mimo obec a v obci bylo provedeno s použitím datové vrstvy, zobrazující zastavěné území, z databáze ČR 150 od firmy CEDA. K samotnému oddělení dat posloužila funkce Intersect (Analysis Tools/Overlay).

Poté již bylo možné k datové vrstvě přidat konkrétní rychlosti pro všechny typy komunikací. Tyto rychlosti byly vloženy do nového sloupcu v atributové tabulce. Následně byl vytvořen nový sloupec, do kterého byl pomocí nástroje Field Calculator dopočítán čas ze vzorce \(v=s/t \). Jako známé proměnné byly použity přiřazená rychlost a délka úseku, kterou datová vrstva obsahuje. Čas byl poté převeden na minuty.
3.3 Analýzy dostupnosti

Tato kapitola popisuje prováděné analýzy dostupnosti. Vývoj dostupnosti do základních škol ovlivňují dva hlavní faktory. Prvním je hustota silniční sítě a druhým počet základních škol v dané lokalitě, který se dá pro konkrétní území popsat například tím, kolik plochy připadá právě na jednu školu. Jak víme z kapitoly 2., tyto faktory se s časem mění protichůdně a pro zjištění, který z nich má na vývoj dostupnosti do ZŠ větší vliv, je vhodné analyzovat i vývoj těchto dvou faktorů a právě tím se zabývá podkapitola 4.1. Podkapitola 4.2 se věnuje samotným analýzám dostupnosti do ZŠ pomocí osobní automobilové dopravy, a to jak časovou, tak vzdálenostní. Poslední podkapitola se věnuje analýze vývoje dostupnosti pomocí veřejné dopravy ve vybraných regionech

3.3.1 Hustota sítě základních škol

Abychom mohli dostupnost do základní sítě porovnat s počtem škol v určité lokalitě, byla nejprve provedena analýza, která se nezabývá samotnou dostupností, ale dalo by se říci, že se jedná o analýzu pomocnou, která pomáhá odhalit, jak je dostupnost do ZŠ závislá na počtu škol. Pro tyto potřeby bylo nejprve nutné zvolit vhodnou územní jednotku. Po úvaze byl a současná území obcí s rozšířenou působností (ORP). V každém tomto regionu bylo zjištěno, pro všechny čtyři sledované roky, kolik plochy připadá právě na jednu základní školu. Následně bylo možné zjistit vývoj hustoty sítě ZŠ a to pořádávat se zjištěným vývojem dostupnosti.

3.3.2 Analýzy dostupnosti osobní automobilovou dopravou

problém, neboť škála výsledných hodnot byla poměrně široká, avšak jednotlivé hodnoty byly na celém intervalu rozmostěny značně nerovnoměrně. Pro časovou dostupnost byly po několika odhadech a pokusech zvoleny intervaly 5, 10, 20 a 25 minut v případě zkoumání souboru všech škol, pro analýzu pouze škol úplných, kterých bylo menší množství, bylo nutné přidat ještě poslední hodnotu 30 minut. Pro analýzu vzdálenostní dostupnosti to bylo 3 000, 5 000, 10 000, 15 000 a 25 000 metrů pro oba hodnocené soubory dat. Byl zvolen generalizovaný typ výsledných polygonů, které jsou vytvořeny rychleji, ale postrádají některé detaily. Před spuštěním analýzy bylo ještě nutné nastavit vytváření zón jako prstence (Overlap Type/Rings), aby určená plocha pro následné výpočty zahrnovala pouze danou hodnotu a ne i všechny ostatní směrem k výchozímu bodu (bodům). Po nastavení všech parametrů bylo možné analýzu spustit (Solve).

Mimo to byly zóny dostupnosti využity i pro následné hodnocení. Vzhledem k tomu, že s nimi lze pracovat jako s běžnými polygony, dá se určit, jakou plochu zabírají, případně jaké obce se v jakém roce vyskytovaly v té konkrétní zóně. Pro hodnocení polohy obcí v zónách dostupnosti bylo pro lepší srovnání ve všech čtyřech časových horizontech pracováno se stavem obcí k roku 2004.

3.3.3 Analýza dostupnosti veřejnou dopravou

KAPITOLA 4

Vývoj dostupnosti do základních škol

Cílem této kapitoly je prezentace výsledků provedených analýz. Jelikož skupin výsledků bylo více, bude i jejich prezentace rozdělena do více podkapitol. V té první budou popsány výsledky dílčí a pomocné, a to vývoj počtu škol, vývoj počtu obcí, ve kterých se nachází alespoň jedna škola, a také vývoj hustoty sítě ZŠ. Další dvě podkapitoly se věnují vývoji dostupnosti do základních škol. V případě podkapitoly 4.2 se jedná o všechny ZŠ, podkapitola 4.3 pojednává o vývoji dostupnosti do základních škol úplných. V závěrečné části bude popsán vývoj dostupnosti do ZŠ veřejnou dopravou ve vybraném modelovém území.

4.1 Vývoj sítě ZŠ

Jak již bylo zmíněno v úvodní kapitole o základních školách v ČR (2.1), jejich celkový počet po celou sledovanou dobu stále klesal (Tabulka 5). Největší skok v počtu ZŠ přišel hned v období mezi lety 1961 a 1976, kdy jejich počet klesl více než o jednu třetinu. V dalších letech už nedocházelo k takto výrazným skokům a mezi lety 1976 a 2004 došlo pouze o necelou tisícovku ZŠ.

<table>
<thead>
<tr>
<th>Rok</th>
<th>všechny školy</th>
<th>úplné školy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>7 370</td>
<td>2 325</td>
</tr>
<tr>
<td>1976</td>
<td>4 715</td>
<td>2 379</td>
</tr>
<tr>
<td>1990</td>
<td>4 034</td>
<td>2 449</td>
</tr>
<tr>
<td>2004</td>
<td>3 805</td>
<td>2 401</td>
</tr>
</tbody>
</table>

Zdroj: Kučerová (2008)

Vzhledem k tomu, že v některých obcích se nachází více škol, což analýza dostupnosti v této práci nezohledňuje, je další důležitou proměnnou počet obcí, ve kterých se nacházela...
alespoň jedna škola (Tabulka 6). Vývoj počtu obcí se ZŠ se v základních rysech shoduje s vývojem počtu ZŠ. V počtu obcí se ZŠ tedy dochází k neustálému poklesu, nejvýraznějšímu mezi lety 1961 a 1976. Počet obcí s úplnou ZŠ je po celé sledované období velmi podobný, rozdíl mezi nejvyšší a nejnižší hodnotou je opět velmi nízký, asi 5,5 %. Absolutní hodnoty jsou samozřejmě něžší než čísla, týkající se počtu škol, díky již zmíněnému většímu množství škol v některých obcích.

Tabulka 6: Vývoj počtu obcí s alespoň jednou ZŠ v ČR

<table>
<thead>
<tr>
<th>Rok</th>
<th>obce se ZŠ</th>
<th>obce s úplnou ZŠ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>4 797</td>
<td>1 441</td>
</tr>
<tr>
<td>1976</td>
<td>3 440</td>
<td>1 384</td>
</tr>
<tr>
<td>1990</td>
<td>2 636</td>
<td>1 367</td>
</tr>
<tr>
<td>2004</td>
<td>2 591</td>
<td>1 361</td>
</tr>
</tbody>
</table>

Zdroj: Kučerová (2008), výpočet autora

Zatím byl hodnocen pouze vývoj v ČR jako celku, nyní se zaměříme také na prostorové rozmístění ZŠ na území republiky, konkrétně v jednotlivých ORP. Vzhledem k nestejné ploše těchto územních celků je počet škol vždy vztažen na plochu, je tedy hodnoceno, kolik plochy připadá na jednu ZŠ (Příloha 1,2).

Rozmístění úplných ZŠ nebylo ani v roce 1961 tak rovnoměrné, jako tomu bylo u všech ZŠ. Nejvyšší koncentrace těchto zařízení byla tradičně v největších městech, ale kromě výše jmenovaných čtyř největších do této kategorie spadají i další větší města po celém území ČR, například Teplice, Ústí nad Labem, Liberec, Kladno či Zlín. Všechna tato města se vyskytují v severních Čechách nebo na Moravě. To proto, že jih a západ Čech je opět územím s velmi nízkou hustotou sítě základních škol. Jedinou výjimkou zde představuje město Plzeň, naopak jihozápadní pohraničí Šumavy a Českého lesa vykazuje nejnižší hodnoty v celé ČR. Vzhledem
k tomu, že počet úplných základních škol se mezi lety 1961 a 2004 měnil jen minimálně, dá se předpokládat, že tyto školy stojí stále na stejných místech, což dokazuje i velmi podobné rozložení hustoty úplných základních škol v průběhu dřuhol poloviny 20. století.

4.2 Vývoj dostupnosti do všech ZŠ

Tato kapitola popisuje vývoj dostupnosti do všech (úplných i malotřídních) základních škol. Jelikož byla hodnocena dostupnost vzdálenostní i časová, budou tyto dva typy dostupnosti popsány ve zvláštních podkapitolách. Nejprve je zhodnocena problematika dostupnosti vzdálenostní (Příloha 3-10), která bere v potaz pouze vzdálenost po silniční síti, poté problematika dostupnosti časové (Příloha 11-18), která kalkuluje i s rozdílnými rychlostmi na jednotlivých třídách silnic. Tato metoda by měla mít větší výkoprovodící hodnotu, neboť časové hodnoty jsou pro člověka snáze představitelné než pouhá vzdálenost. V obou případech je vyhodnocováno, jaký podíl území, obcí a populace spadá do jednotlivých zón dostupnosti ve sledovaných letech.

4.2.1 Vzdálenostní dostupnost

V kapitole 2.1 bylo zmíněno, že v polovině 20. století měla téměř každá obec svou základní školu. Toto se odráží i v dostupnosti do ZŠ v tomto roce. Téměř 70 % území, na kterém leželo 5 868 obcí z celkového počtu 6248 (téměř 94 %), se nacházelo ve vzdálenosti do 3 km po silniční síti od nejbližší základní školy (Tabulky 7,8). Dalších 345 obcí se nacházelo ve vzdálenosti od 3 do 5 km od nejbližší ZŠ a 34 obcí ve vzdálenosti mezi 5 a 10 km. Pouze jediná obec v tomto roce ležela dále než 10 km od nejbližší ZŠ. Jednalo se o obec Prášily, ležící v NP Šumava blízko jihozápadní hranice ČR. Obec tedy ležela v jednom z regionů, které byly označeny jako regiony s nejnižší hustotou sítě škol (kapitola 4.1). Regiony s nejhorší dostupností (nad 10 km) byly obecně v této době lokalizovány právě v regionech s nejnižší hustotou ZŠ, tedy na jihozápadě Čech a severu Moravy. Díky nejvyššímu počtu ZŠ je tedy dostupnost do těchto institucí v roce 1961 nejlepší za sledovanou periodu.

<table>
<thead>
<tr>
<th>rok</th>
<th>0-3 km</th>
<th>3-5 km</th>
<th>5-10 km</th>
<th>10-15 km</th>
<th>15 < km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>5 868</td>
<td>345</td>
<td>34</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1976</td>
<td>4 691</td>
<td>1 156</td>
<td>396</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1990</td>
<td>3 918</td>
<td>1 631</td>
<td>692</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>2004</td>
<td>3 845</td>
<td>1 619</td>
<td>772</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

Mezi lety 1961 a 1976 došlo k nejprudšemu poklesu počtu ZŠ a s tím i k velkému snížení plochy území, které se nacházelo v tříkilometrové zóně dostupnosti. V této zóně se v roce 1976 nacházelo necelých 55 % území, na kterém leželo zhruba 75 % obcí ČR. Snížení stavů v této zóně dostupnosti logicky znamenalo současně zvýšení podílu plochy i počtu obcí ve všech
ostatních zónách. Tento přesun byl nejvýraznější v jižní polovině Čech a v severní části Moravy, kde se výrazně zvýšil podíl zastoupení zón od 3 do 5 km a od 5 do 10 km. Počet obcí nad 10 km ovšem nestoupl nijak výrazně, v těchto větších vzdálenostech se nacházel pouze pět obcí, Český Jiřetín a Moldava, ležící u severozápadní hranice ČR, Prášily, ležící u jihozápadní hranice ČR, tedy obce ležící v periferních oblastech, a dále dvě obce, které svou polohou zastupují tzv. vnitřní periferii, Ralsko na Českolipsku a Lipec na Kolínsku. Severočeské obce sice neležely v území s nejnižšími hustotami síť ZŠ, jejich špatnou dostupnost ovšem zapříčiněla jejich výrazně periferní poloha.

Tabulka 8: Podíl plochy ČR v zónách vzdálenostní dostupnosti, všechny ZŠ [%]

<table>
<thead>
<tr>
<th>rok</th>
<th>0-3 km</th>
<th>3-5 km</th>
<th>5-10 km</th>
<th>10-15 km</th>
<th>15 < km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>69,0</td>
<td>22,4</td>
<td>8,0</td>
<td>0,4</td>
<td>0,1</td>
</tr>
<tr>
<td>1976</td>
<td>54,8</td>
<td>30,4</td>
<td>14,1</td>
<td>0,6</td>
<td>0,1</td>
</tr>
<tr>
<td>1990</td>
<td>45,5</td>
<td>33,8</td>
<td>19,6</td>
<td>0,9</td>
<td>0,1</td>
</tr>
<tr>
<td>2004</td>
<td>44,4</td>
<td>33,3</td>
<td>20,8</td>
<td>1,2</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

V letech 1990 a 2004 došlo opět ke snížení počtu škol, které už však nebylo tak výrazné, jako v předchozím období. Proto ani změny v jednotlivých zónách dostupnosti nebyly tak velké. Došlo v podstatě ke stejné struktuře změn jako mezi lety 1961 a 1976, jen méně výrazně. Opět ubylo plochy a obcí v zóně do 3 km a zvětšila se plocha zón 3-5 km a 5-10 km. Obcí, které ležely dále než 10 km od školy, bylo v letech 1990 a 2004 71, respektive 122. Tyto obce opět ležely převážně na území NP Šumava a v severozápadním pohraničí ČR, kde se společně se severní Moravou obecně nacházel největší podíl území s horší dostupností (více než 5 km od ZŠ). Nejvíce lokalit s kvalitní vzdálenostní dostupností (zóny 0-3 km a 3-5 km) se táhlo v pásu od jižní Moravy na severozápad do východních, středních a části severních Čech.

Pro lepší představu o výsledku byl u let 1990 a 2004 zjištěn i počet obyvatel v jednotlivých zónách dostupnosti (Tabulka 9). Jeho vývoj mezi těmito lety odpovídal vývoji podílu plochy a počtu obcí, mírně tedy klesal počet obyvatel v zóně do 3 km a naopak mírně stoupal ve všech ostatních zónách. Jelikož jsou základní školy službou pro obyvatelstvo, je rozložení populace v jednotlivých zónách nejdůležitějším ukazatelem dostupnosti. V roce 1990 i 2004 zílo v první zóně dostupnosti (do 3 km) okolo 94 % obyvatel ČR, ve druhé (3-5 km) pak cca 4,5 % a ve třetí (5-10 km) kolem 1,5 %. Na zóny vzdálenější vice než 15 km od ZŠ tak zbyly hodnoty v řádech setin procent. Můžeme tedy konstatovat, že v letech 1990 a 2004 mělo téměř 99 % populace ČR základní školu blíže než 5 km od místa bydliště. Dále než 10 km od nejbližší ZŠ naopak žila pouze 1-2 setiny populace. Tato disproporice je logická, uvědomíme-li si, že méně obcích s větším počtem obyvatel má většinou alespoň jednu základní školu, ty naopak chybí v obcích s nízkými stavy populace.

1 Český Jiřetín, Jickovice, Moldava, Ošelín, Prášily, Ralsko, Zdobnice
2 Český Jiřetín, Hora Svatého Šebestiána, Horská Kvilda, Jickovice, Kalek, Křimov, Místo, Moldava, Nemanice, Prášily, Výsluní, Zdobnice
Tabulka 9: Počet obyvatel v zónách vzdálenostní dostupnosti, všechny ZŠ

<table>
<thead>
<tr>
<th>rok</th>
<th>0-3 km</th>
<th>3-5 km</th>
<th>5-10 km</th>
<th>10-15 km</th>
<th>15 < km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>9693 509</td>
<td>450 279</td>
<td>157 122</td>
<td>1 255</td>
<td>50</td>
</tr>
<tr>
<td>2004</td>
<td>9634 828</td>
<td>486 101</td>
<td>172 299</td>
<td>1 609</td>
<td>478</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

Přestože se vzdálenostní dostupnost po celou dobu zhoršovala, je stále relativně dobrá a většina obyvatel má trvalé bydliště velmi blízko základním školám. Vzdálenostní dostupnost je, a ve druhé polovině 20. století vždy byla, nejhorší v územích, kde je nejnižší koncentrace ZŠ.

4.2.2 Časová dostupnost

Analýza vývoje časové dostupnosti zohledňuje kromě vývoje sítě základních škol a prosté vzdálenosti po silniční sítě také průměrné rychlosti jednotlivých úseků, které jsou ovlivněny vývojem silniční sítě a vozového parku. Vzhledem k tomu, že tyto faktory se v průběhu času zlepšují (rychlosti se zvyšují), působí tak protichůdně ke snižování počtu základních škol a mohou vývoj dostupnosti značně korigovat.

V roce 1961 je opět rozložení území ČR a obcí do jednotlivých časových zón dostupnosti velmi nerovnoměrné (Tabulka 10). Vzhledem k vysokému počtu základních škol se největší počet obcí (86 %) nachází v zóně do 5 minut od nejbližší ZŠ. Relativně vysoký počet ZŠ rovnoměrně rozmístěných na území ČR také zapříčinuje, že pouze asi 12,5 % plochy se nachází dál než 10 minut jízdy od základní školy (Tabulka 11). Tato území leží převážně v horských oblastech při hranicích, případně v některých vnitřních periferiích, častěji v české části republiky. Pouze 7 obcí3, ve kterých žilo 1 717 obyvatel, leželo dále než 15 minut jízdy k nejbližší ZŠ. Všechny tyto obce leží v západní, tedy české části republiky.

Tabulka 10: Počet obcí v zónách časové dostupnosti, všechny ZŠ

<table>
<thead>
<tr>
<th>rok</th>
<th>0-5 minut</th>
<th>5-10 minut</th>
<th>10-15 minut</th>
<th>15-20 minut</th>
<th>20-25 minut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>5 369</td>
<td>811</td>
<td>61</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1976</td>
<td>4 184</td>
<td>1 649</td>
<td>365</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>1990</td>
<td>3 931</td>
<td>2 034</td>
<td>262</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>2004</td>
<td>4 052</td>
<td>1 963</td>
<td>214</td>
<td>18</td>
<td>1</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

Mezi lety 1961 a 1976 došlo k tomu samému, k čemu došlo u vzdálenostní dostupnosti, tedy k výraznému snížení (o cca 20 %) počtu obcí v zóně do 5 minut a k zvýšení počtu ve všech ostatních. Počet obcí dále než 15 minut od ZŠ se zvýšil na 50.

V dalších letech už tento trend nepokračuje, počet obcí v zóně do 5 minut je v letech 1990 a 2004 velmi podobný jako v roce 1976, zvyšuje se počet obcí v zóně od 5 do 10 minut a v dalších zónách s horší dostupností počet obcí klesá. Mezi lety 1976 a 2004 tedy pozorujeme

3 Hvozd, Chobot, Káraný, Lukov, Pláně, Prášily, Rovná
asi 3% růst počtu obcí do 10 minut od ZŠ. Vzhledem k tomu, že tato doba cesty se dá považovat za velmi přijatelnou, můžeme říci, že časová dostupnost se v tomto období mírně zlepšila. Je zde tedy patrný vliv zlepšování infrastruktury a vozového parku, které bylo mezi lety 1976 a 2004 velmi znatelné.

Tabulka 11: Podíl plochy ČR v zónách časové dostupnosti, všechny ZŠ [%]

<table>
<thead>
<tr>
<th>rok</th>
<th>0-5 minut</th>
<th>5-10 minut</th>
<th>10-15 minut</th>
<th>15-20 minut</th>
<th>20-25 minut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>48,2</td>
<td>39,4</td>
<td>9,3</td>
<td>2,4</td>
<td>0,6</td>
</tr>
<tr>
<td>1976</td>
<td>42,3</td>
<td>42,5</td>
<td>12,1</td>
<td>2,6</td>
<td>0,5</td>
</tr>
<tr>
<td>1990</td>
<td>47,1</td>
<td>42,2</td>
<td>9,1</td>
<td>1,3</td>
<td>0,3</td>
</tr>
<tr>
<td>2004</td>
<td>50,0</td>
<td>41,0</td>
<td>7,7</td>
<td>1,1</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

Toto mírné zlepšení na konci 20. století dokazuje i fakt, že v roce 1990 žilo v zóně do 10 minut od ZŠ 99,4 % české populace a v roce 2004 to bylo již 99,56 % (Tabulka 12). Necelých 95 % populace žilo v obou těchto letech dokonce do 5 minut od nejbližší ZŠ a pouze nepatrná minorita populace (asi 0,03 % populace) měla dojezdovou dobu do ZŠ delší než 15 minut. To dokazuje, že dostupnost do všech základních škol je v České republice na velmi dobré úrovni i přes snižování počtu těchto institucí.

Tabulka 12: Počet obyvatel v zónách časové dostupnosti, všechny ZŠ

<table>
<thead>
<tr>
<th>rok</th>
<th>0-5 minut</th>
<th>5-10 minut</th>
<th>10-15 minut</th>
<th>15-20 minut</th>
<th>20-25 minut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>9 708 005</td>
<td>532 048</td>
<td>59 165</td>
<td>2 824</td>
<td>173</td>
</tr>
<tr>
<td>2004</td>
<td>9 697 116</td>
<td>552 392</td>
<td>43 072</td>
<td>2 591</td>
<td>144</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

4.3 Vývoj dostupnosti do úplných ZŠ

Tato část práce si klade za cíl zhodnotit vývoj dostupnosti do úplných (devítiletých) základních škol. Počet těchto škol byl výrazně nižší než u souboru všech základních škol, proto je i rozložení zón dostupnosti značně odlišné. Síť úplných škol ale také neprošla tak výrazným vývojem, jejich počet byl po celé sledované období velmi podobný. Proto i dostupnost do nich byla více ovlivněna vývojem infrastruktury a vozového parku než samotným vývojem počtu úplných ZŠ.

4.3.1 Vzdálenostní dostupnost

Díky menšímu počtu cílových míst, tedy úplných základních škol, bylo rozložení plochy a počtu obcí v jednotlivých zónách dostupnosti výrazně rovnoměrnější než u všech ZŠ (Tabulky 13, 14). V roce 1961 v zóně do 3 km asi 28 % procent plochy ČR, v zóně 3-5 km to pak bylo
zhruba 34,5 % a v zóně 5-10 km cca 33,5 %. Přes 96 % plochy tedy leželo do 10 km od nejbližší ZŠ, na zbytek pak připadla necelá 4 %. Tato nejvzdálenější území ležela převážně na jihozápadní hranici v oblasti Šumavy a Českého lesa, a dále v severozápadním pohraničí ČR a také na severu Moravy, v oblasti Jeseníků. Jedná se tedy o řídce osídlená horská území. Šumava, Český les a Jeseníky se vyznačují velmi nízkou hustotou sítě úplných ZŠ, špatná dostupnost v těchto regionech je tak logicky odůvodněna. Trochu jinak je tomu v severozápadních Čechách. Zdejší příhraniční regiony vykazují poměrně vysoký podíl škol na plochu, je zde však velký rozdíl mezi řídce osídlenými horskými oblastmi a hustě osídlenými průmyslovým podhůřím, které zvyšuje podíl škol celému regionu. Špatnou dostupnosti do ZŠ zde trpí pouze úzký příhraniční pás.

Tabulka 13: Počet obcí v zónách vzdálenostní dostupnosti, úplné ZŠ

<table>
<thead>
<tr>
<th>rok</th>
<th>0-3 km</th>
<th>3-5 km</th>
<th>5-10 km</th>
<th>10-15 km</th>
<th>15 < km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>2 414</td>
<td>2 087</td>
<td>1 699</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td>1976</td>
<td>2 322</td>
<td>2 055</td>
<td>1 801</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>1990</td>
<td>2 291</td>
<td>2 055</td>
<td>1 838</td>
<td>57</td>
<td>7</td>
</tr>
<tr>
<td>2004</td>
<td>2 284</td>
<td>2 031</td>
<td>1 863</td>
<td>63</td>
<td>7</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

Podobné procentuální rozložení jako u plochy můžeme pozorovat i u obcí. Přes 99 % obcí, rozdělených přibližně po třetinách, spadá do prvních tří zón, na zbytek zóny, vzdálenější než 10 km od ZŠ, zbývá pouhých 48 obcí. Z toho jen 8 leží na Moravě a z těch zbylých se většina nachází v oblastech Šumavy a Krušných hor.

Tabulka 14: Podíl plochy ČR v zónách vzdálenostní dostupnosti, úplné ZŠ [%]

<table>
<thead>
<tr>
<th>rok</th>
<th>0-3 km</th>
<th>3-5 km</th>
<th>5-10 km</th>
<th>10-15 km</th>
<th>15 < km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>28,0</td>
<td>34,6</td>
<td>33,6</td>
<td>2,9</td>
<td>0,9</td>
</tr>
<tr>
<td>1976</td>
<td>26,9</td>
<td>33,7</td>
<td>35,1</td>
<td>3,3</td>
<td>1,0</td>
</tr>
<tr>
<td>1990</td>
<td>26,5</td>
<td>33,6</td>
<td>35,5</td>
<td>3,3</td>
<td>1,0</td>
</tr>
<tr>
<td>2004</td>
<td>26,3</td>
<td>33,3</td>
<td>35,8</td>
<td>3,5</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

Jak již bylo naznačeno, vývoj dostupnosti do úplných základních škol v podstatě neproběhl a v roce 2004 můžeme pozorovat rozložení zón dostupnosti téměř shodné s rokem 1961. Pokud bylo rozložení plochy a počtu obcí do jednotlivých zón dostupnosti relativně rovnoměrné, rozhodně to nemůžeme říci o rozmístění populace v těchto zónách (Tabulka 15). Úplných ZŠ je méně než všech ZŠ, proto je procento obyvatelstva, žijící v první zóně (do 3 km), nižší než u všech škol. Úplné základní školy se však nacházejí ve větších a populárně silnějších obcích, proto i v tomto případě se velká většina populace (kolem 86 %) nacházela v letech 1990 a 2004 v zóně s nejlepší dostupností. Další zhruba 8 % populace se potom nachází mezi 3 a 5 km od ZŠ. Na nejzazší zóny (více než 15 km od ZŠ) pak zbývá pouhá jedna čtvrtina populace.
Dostupnost do devítiletých základních škol se tedy ve druhé polovině 20. století nijak výrazně neměnila. Dostupnost do těchto škol vykazuje vyšší podíl ploch a počtu obcí, nacházejících se ve vzdálenějších zónách, než je tomu u všech škol. I přes to však 97 % populace žije do 5 km od ZŠ, což značí všeobecně dobrou dostupnost. Jsou zde ale i obce, které leží až do 25 km od nejbližší ZŠ, je jich však nepatrná minorita.

4.3.2 Časová dostupnost

Vzdálenostní dostupnost devítiletých základních škol se nijak výrazně neměnila a modely silničních sítí pro jednotlivé roky jsou nastaveny tak, že se v průběhu času zvyšuje průměrná rychlost všech tříd silnic. Když vezmeme v potaz ještě vylepšování a stavění nové dopravní infrastruktury, musí se časová dostupnost do devítiletých základních škol mezi lety 1961 a 2004 nutně zlepšovat, což se také dělo.

Již v kapitole 4.2.2 bylo řečeno, že časová dostupnost do ZŠ do 10 minut, která zahrnuje zóny 0-5 a 5-10 minut, je dobrá. A právě podíl plochy a počtu obcí v těchto dvou zónách mezi lety 1961 a 2004 stále roste, ve všech zónách s horší dostupností naopak klesá (Tabulky 16, 17).

Tabulka 15: Počet obyvatel v zónách vzdálenostní dostupnosti, úplné ZŠ

<table>
<thead>
<tr>
<th>rok</th>
<th>0-3 km</th>
<th>3-5 km</th>
<th>5-10 km</th>
<th>10-15 km</th>
<th>15 < km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>8 829 889</td>
<td>836 941</td>
<td>619 652</td>
<td>14 912</td>
<td>821</td>
</tr>
<tr>
<td>2004</td>
<td>8 825 461</td>
<td>835 535</td>
<td>613 044</td>
<td>20 378</td>
<td>897</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

Tabulka 16: Počet obcí v zónách časové dostupnosti, úplné ZŠ

<table>
<thead>
<tr>
<th>rok</th>
<th>0-5 minut</th>
<th>5-10 minut</th>
<th>10-15 minut</th>
<th>15-20 minut</th>
<th>20-25 minut</th>
<th>25-30 minut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>1 718</td>
<td>2 240</td>
<td>1 668</td>
<td>506</td>
<td>91</td>
<td>25</td>
</tr>
<tr>
<td>1976</td>
<td>1 829</td>
<td>2 541</td>
<td>1 465</td>
<td>342</td>
<td>57</td>
<td>14</td>
</tr>
<tr>
<td>1990</td>
<td>2 331</td>
<td>2 943</td>
<td>865</td>
<td>92</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>2004</td>
<td>2 506</td>
<td>2 956</td>
<td>712</td>
<td>64</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

V roce 1961 se v zóně do 5 minut od ZŠ nacházelo 1 718 (27,5 %) obcí na 14,5 % plochy republiky. Většina plochy i obcí se v tomto roce nacházel v zónách 5-10 a 10-15 minut. Vše než 600 obcí se však nacházelo od ZŠ dále než 15 minut a více než 100 obcí dokonce dále než 20 minut. Obce, ze kterých doba cesty do ZŠ přesahuje 20 minut, už se dají považovat za obce se špatnou dostupností do ZŠ. Tyto obce se nacházely opět především v horských oblastech (Šumava, Krušné hory, Jeseníky), ale také ve vnitřních periferiích, především poblíž hranic Středočeského kraje. V případě vnitřních periferií se jedná konkrétně o ORP Kralovice, Milevsko, Týn nad Vltavou, případně ještě Česká Lípa, která patří mezi území s nejnižším počtem úplných ZŠ na jednotku plochy, což je také hlavním důvodem špatné dostupnosti do těchto škol.
Vzhledem ke zvyšující se průměrné rychlosti na silnicích se v každém dalším sledovaném roce zvětšuje dojezdová vzdálenost za určené časové mezí a dochází tím ke zvětšování plochy prvních dvou zón dostupnosti. Na ty zbylé pak zbývá méně místa, tudíž se zmenšují.

Tento trend trvá po celé sledované období, proto se v roce 2004 nachází v zónách dostupnosti do 10 minut již přes 80 % plochy a 5 462 (87,4 %) obcí. Výrazně se také snížil počet obcí s dobou cesty do školy delší než 20 minut, a to na pouhých 10⁴, ve kterých žilo celkem 1 647 obyvatel. V této době se již tyto obce nacházely výhradně v oblastech příhraničních. Oblasti vnitřních periferií mají totiž hustší silniční síť, proto se zde více projevily změny rychlostí a tyto oblasti se tak dostaly do lépe dostupných zón i přes to, že zde byl stále poměrně nízký podíl ZŠ na plochu.

Vyjádříme-li zóny dostupnosti počtem obyvatel, zjistíme, že v první zóně (do 5 minut) se v letech 1990 a 2004 nacházelo kolem 86 % populace ČR, v zóně od 5 do 10 minut pak dalších cca 11 %. Vice než 97 % populace tedy mělo devítiletou ZŠ blíže než 10 minut jízdy osobním automobilí. Do zón se špatnou dostupností nad 20 minut spadalo pouze 0,3 % (1990), respektive 0,2 % (2004) populace (Tabulka 18).

Tabulka 17: Podíl plochy ČR v zónách časové dostupnosti, úplné ZŠ [%]

<table>
<thead>
<tr>
<th>rok</th>
<th>0-5 minut</th>
<th>5-10 minut</th>
<th>10-15 minut</th>
<th>15-20 minut</th>
<th>20-25 minut</th>
<th>25-30 minut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>14,6</td>
<td>38,5</td>
<td>30,1</td>
<td>11,6</td>
<td>3,3</td>
<td>2,1</td>
</tr>
<tr>
<td>1976</td>
<td>18,2</td>
<td>42,5</td>
<td>27,2</td>
<td>8,3</td>
<td>2,3</td>
<td>1,6</td>
</tr>
<tr>
<td>1990</td>
<td>28,0</td>
<td>48,0</td>
<td>18,5</td>
<td>3,7</td>
<td>1,1</td>
<td>0,7</td>
</tr>
<tr>
<td>2004</td>
<td>30,8</td>
<td>49,3</td>
<td>15,9</td>
<td>2,8</td>
<td>0,8</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

4.4 Dostupnost do ZŠ veřejnou dopravou

Cílem této podkapitoly je zhodnotit vývoj dostupnosti do ZŠ veřejnou dopravou, a to prostřednictvím zvoleného modelového území. Po úvaze bylo vybráno ORP Chomutov.

ORP Chomutov se nachází v severozápadních Čechách (Obrázek 1) a dá se rozdělit na dvě části s velmi odlišnými charakteristikami. Jižní část leží v průmyslové Mostecké pánev i tvoří jakési centrum. Severní část naopak tvoří odlehlé obce ležící v krušnohorském pohraničí, ve kterém se často nacházely obce s nejhorší dostupnosti do ZŠ. V ORP Chomutov leží 25 obcí, z toho pouze 2 města s počtem obyvatel vyšším než 5 000 (Chomutov, Jirkov). ORP prošlo

Tabulka 18: Počet obyvatel v zónách časové dostupnosti, úplné ZŠ

<table>
<thead>
<tr>
<th>rok</th>
<th>0-5 minut</th>
<th>5-10 minut</th>
<th>10-15 minut</th>
<th>15-20 minut</th>
<th>20-25 minut</th>
<th>25-30 minut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>8 857 135</td>
<td>1 137 852</td>
<td>278 827</td>
<td>25 405</td>
<td>2 789</td>
<td>207</td>
</tr>
<tr>
<td>2004</td>
<td>8 901 475</td>
<td>1 160 226</td>
<td>214 700</td>
<td>17 304</td>
<td>1 501</td>
<td>109</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

 Arnoltice, Český Jiřetín, Horní Lomná, Horská Kvilda, Kalek, Kvilda, Labská Stráň, Modrava, Stožec, Zblovice

Na vývoj dostupnosti do ZŠ veřejnou dopravou je nutné nahlížet dvěma způsoby, zprvu je ovlněný vývojem sítě ZŠ, zadrhuhé potom změnami ve veřejné dopravě. Obecně se dostupnost kvůli klesajícímu počtu ZŠ snižuje, protože ubývá obcí, které mají vlastní ZŠ. Proto se místním obyvatelům prodlužuje doba cestování do školy. U linek, které jsou ve více sledovaných letech stejně, však platí trend zkracování doby cesty a stagnace či mírného nárůstu počtu spojů mezi jednotlivými sledovanými roky. Můžeme zde tedy stejně jako u dostupnosti osobní dopravou pozorovat dva protichůdné vlivy na dostupnost do ZŠ.

Vzhledem k tomu, že obce nečastěji spádují k největším městům, Chomutovu, případně Jirkovu, která se nachází v centrální části ORP, doba cesty do školy hodně závisí na vzdálenosti obce od těchto měst, případně od jiné spádové obce se ZŠ. Podobně je i rozložení obcí z hlediska frekvence spojů. Vzhledem k tomu, že Chomutov a Jirkov jsou největšími dopravními uzly ORP, nejvíce spojů vede právě přes tato města. Proto obce v těsném okolí vykazují vyšší hodnoty počtu spojů do/ze ZŠ. Naopak vzdálenější a především pohraniční obce mají často pouze jediný spoj v ranních a jeden v odpoledních hodinách.

Vývoj dostupnosti do všech ZŠ byl také značně odlišný od vývoje dostupnosti do úplných ZŠ. Můžeme konstatovat, že dostupnost do těch úplných se díky malému poklesu jejich počtu (z osmi na pět) přišla neměnila a byla více než tímto poklesem ovšemně vývojem veřejné dopravy, proto se zlepšovala. Dostupnost do všech ZŠ, tedy včetně malotřídních škol, se naopak během let změnila značně k horšímu, a to především díky poklesu jejich počtu (z 23 na 7). Zkracování času jízdy na jednotlivých trasách v tomto případě představovalo jen drobné korekce. Toto tvrzení dokazuje i součet doby trvání cesty do školy všech obcí v ORP v daných letech (Tabulka 19). Tato veličina v případě souboru všech škol výrazně stoupá, což znamená, že se dostupnost zhoršuje. Pro soubor úplných škol naopak klesá nebo stagnuje, dostupnost pro tento typ ZŠ se tedy zlepšuje.

Tabulka 19: Suma doby trvání cesty do školy všech obcí ORP Chomutov

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>všechny ZŠ</td>
<td>27 min</td>
<td>137 min</td>
<td>221 min</td>
<td>282 min</td>
</tr>
<tr>
<td>úplné ZŠ</td>
<td>394 min</td>
<td>356 min</td>
<td>291 min</td>
<td>295 min</td>
</tr>
</tbody>
</table>

Zdroj: výpočet autora

Můžeme tedy říci, že dostupnost do ZŠ veřejnou dopravou se vyvíjela do značné míry analogicky s vývojem dostupnosti osobní dopravou, stejně jako rozdíly v dostupnosti mezi všemi a úplnými ZŠ.
Obrázek 1: Poloha ORP Chomutov v ČR

Zdroj: ArcDATA (2003); autor
KAPITOLA 5
Diskuze výsledků

V kapitole 2 bylo uvedeno, že se z dostupných zdrojů nepodařilo najít žádnou podobně zaměřenou studii, proto není možné výsledky analýz porovnat s žádným externím zdrojem. Je tedy nutné provést kritické zhodnocení výsledků na základě použitých dat a metod.

Je nutné připomenout, že analýza dostupnosti do ZŠ osobní automobilovou dopravou nebyla analýzou reálné situace, ale analýzou pomocí modelu této situace. Proto její výsledky zcela závisí na vstupních datech a nastavení tohoto modelu.

U vstupních dat, silniční sítě a ště základních škol, je podstatná především jejich polohová přesnost. Poloha základních škol byla abstrahována polohou obce, v níž se tato škola nachází. Toto deformuje výsledek především v oblasti velkých měst. Dostupnost do ZŠ ve velkých městech se však dá považovat obecně za velmi dobrou, proto vyjádření celé plochy města bodem bylo shledáno pro tuto analýzu jako dostatečné. Pro přesnější analýzy by však jistě bylo vhodnéji pracovat s bodovou vrstvou všech škol, podle jejich adres. Toto by ale kromě zvýšení přesnosti znamenalo značné zvýšení náročnosti, což je druhý důvod, proč byla upřednostněna vybraná metoda.

Dalším krokem, který výrazně ovlivňoval dosažené výsledky, je nastavení rychlostí silničních úseků pro jednotlivé roky. Opět je nutné zdůraznit, že se jedná pouze o model a není možné, aby byl totožný s reálnou, která je značně proměnlivá. Dostupná literatura se věnuje průměrným rychlostem v modelech silničních sítí pouze po roce 2000, případně v 90. letech 20. století. V modelech silniční sítě pro tuto dobu bylo tedy možné rychlosti, použité v práci, o tuto literaturu opřít. Pro starší data však nebyly žádné podklady nalezeny a zvolené rychlosti jsou tak čistě výpočtem autora a je nutné zmínit, že v případě jejich větších odchytek od reality mohou výsledky analýz poněkud zkreslovat.
Výsledky jsou ovlivněny i samotným nastavením analýzy. Zaprvé se jedná o nastavení typu vytvářených polygonů. Po úvaze byly nakonec zvoleny polygony generalizované, a to ze dvou důvodů. Prvním z nich bylo přihlédnutí k míře přesnosti vstupních dat. Tím druhým byla výpočetní rychlost, která byla pro takto obsáhlý soubor i při této volbě poměrně nízká a při volbě detailních polygonů by se ještě výrazně zvýšila.

Druhým a větším problémem při nastavení analýzy byly volby mezních hodnot zón dostupnosti. Škála hodnot byla totiž relativně široká, ale četnosti pro jednotlivé hodnoty byly značně nerovnoměrné. Proto bylo uvažováno, zda výběr mezních hodnot více podřídit struktuře dat, či rovnoměrnosti intervalů. Po několika úvahách a pokusech byl zvolen částečný kompromis, který ovšem kladl větší důraz na rovnoměrnost intervalů.

Analýza vývoje dostupnosti veřejnou dopravu vycházela více z reálné situace, proto nepřinášela tolik nejasností a nutností volby. Jedním problémem byla volba vhodného modelového území, které bylo vybráno s ohledem na jeho polohu a dostatečné změny ve struktuře sítě ZŠ. Větší vypovídací hodnoty by pravděpodobně bylo dosaženo při porovnání více území z různých míst ČR, toto však nebylo v této práci provedeno, a to proto, že se jednalo pouze o vedlejší cíl práce. To je také důvodem toho, proč výsledky uvedené v této kapitole jsou jen jakýmsi nástinem situace, která vyžaduje hlubší zkoumání. Tyto výsledky také nejsou příliš srovnatelné z metodického hlediska s výsledky z předchozích kapitol.

I přes výše diskutované problémy je nutné poznat, že dosažené výsledky jsou konzistentní, sledují určité vývojové trendy a nevykazují žádné na první pohled patrné nepřesnosti. Jejich skutečnou přesnost však není možné stoprocentně určit bez porovnání s dalšími analýzami a výzkumy.
KAPITOLA 6
Závěr

SEZNAM ZDROJŮ INFORMACÍ

Vyhláška federálního ministerstva vnitra č. 100/1975 Sb. o pravidlech silničního provozu.

Zákon č. 561/2004 Sb. ze dne 1. ledna 2005 o předškolním, základním, středním, vyšším odborném a jiném vzdělávání (školský zákon).

Příloha 1 Vývoj hustoty sítí všech ZŠ v ORP ČR 1961 - 2004
Příloha 2 Vývoj hustoty sítí úplných ZŠ v ORP ČR 1961 - 2004
Příloha 3 Vzdálenostní dostupnost do všech ZŠ v ČR v roce 1961
Příloha 4 Vzdálenostní dostupnost do všech ZŠ v ČR v roce 1976
Příloha 5 Vzdálenostní dostupnost do všech ZŠ v ČR v roce 1990
Příloha 6 Vzdálenostní dostupnost do všech ZŠ v ČR v roce 2004
Příloha 7 Vzdálenostní dostupnost do úplných ZŠ v ČR v roce 1961
Příloha 8 Vzdálenostní dostupnost do úplných ZŠ v ČR v roce 1976
Příloha 9 Vzdálenostní dostupnost do úplných ZŠ v ČR v roce 1990
Příloha 10 Vzdálenostní dostupnost do úplných ZŠ v ČR v roce 2004
Příloha 11 Časová dostupnost do všech ZŠ v ČR v roce 1961
Příloha 12 Časová dostupnost do všech ZŠ v ČR v roce 1976
Příloha 13 Časová dostupnost do všech ZŠ v ČR v roce 1990
Příloha 14 Časová dostupnost do všech ZŠ v ČR v roce 2004
Příloha 15 Časová dostupnost do úplných ZŠ v ČR v roce 1961
Příloha 16 Časová dostupnost do úplných ZŠ v ČR v roce 1976
Příloha 17 Časová dostupnost do úplných ZŠ v ČR v roce 1990
Příloha 18 Časová dostupnost do úplných ZŠ v ČR v roce 2004
Příloha 19 Základní školy v ORP Chomutov v letech 1961 a 2004
Příloha 20 CD s elektronickou verzí práce
Příloha 1

HUSTOTA SÍTĚ VŠECH ZŠ v ORP ČR v roce 1961

HUSTOTA SÍTĚ VŠECH ZŠ v ORP ČR v roce 1976
Zdroj: Kučerová (2008), ArcDATA (2003), výpočty autora
Příloha 2

HUSTOTA SÍTĚ ÚPLNÝCH ZŠ
v ORP ČR v roce 1961

HUSTOTA SÍTĚ ÚPLNÝCH ZŠ
v ORP ČR v roce 1976
Zdroj: Kučerová (2008), ArcDATA (2003), výpočty autora
Příloha 3

Vzdálenostní dostupnost do všech ZŠ v ČR v roce 1961

Zóny vzdálenostní dostupnosti (km):
- 15 <
- 10,01 - 15
- 5,01 - 10
- 3,01 - 5
- ≤ 3

Krajské město
Obec se ZŠ
Silnice I. třídy
Silnice II. třídy

Zdroj: Kučerová (2008), ArcDATA (2003), CEDA (2008), výpočty autora
Vzdálenostní dostupnost do všech ZŠ v ČR v roce 1976

Zóny vzdálenostní dostupnosti [km]
- 15 <
- 10,01 - 15
- 5,01 - 10
- 3,01 - 5
- ≤ 3

Příloha 5

VZDÁLENOSTNÍ DOSTUPNOST DO VŠECH ZŠ
v ČR v roce 1990

zóny vzdálenostní dostupnosti [km]
- 15 <
- 10,01 - 15
- 5,01 - 10
- 3,01 - 5
- ≤ 3

Krajské město
Obec se ZŠ
dálnice a rychlostní silnice
Silnice I. třídy
Silnice II. třídy

Příloha 6

VZDÁLENOSTNÍ DOSTUPNOST DO VŠECH ZŠ v ČR v roce 2004

zóny vzdálenostní dostupnosti [km]
- 15 +
- 10,01 - 15
- 5,01 - 10
- 3,01 - 5
- ≤ 3

Příloha 7

ČASOVÁ DOSTUPNOST DO VŠECH ZŠ
v ČR v roce 1961

zóny časové dostupnosti [min]

- 20 <
- 15,01 - 20
- 10,01 - 15
- 5,01 - 10
- ≤ 5

ČASOVÁ DOSTUPNOST DO VŠECH ZŠ
v ČR v roce 1976

zóny časové dostupnosti [min]
- 20 <
- 15,01 - 20
- 10,01 - 15
- 5,01 - 10
- ≤ 5

Příloha 8
ČASOVÁ DOSTUPNOST DO VŠECH ZŠ
v ČR v roce 1990
ČASOVÁ DOSTUPNOST DO VŠECH ZŠ
v ČR v roce 2004

zářady časové dostupnosti [min]
- 20 <
- 15,01 - 20
- 10,01 - 15
- 5,01 - 10
- ≤ 5

Příloha 12

VZDÁLENOSTNÍ DOSTUPNOST DO ÚPLNÝCH ZŠ
v ČR v roce 1976

zóny vzdálenostní dostupnosti [km]
- 15 <
- 10,01 - 15
- 5,01 - 10
- 3,01 - 5
- ≤ 3

Krajské město
obec se ZŠ
dálnice a rychlostní silnice
silnice I. třídy
silnice II. třídy

Příloha 13

VZDÁLENOSTNÍ DOSTUPNOST DO ÚPLNÝCH ZŠ v ČR v roce 1990

záONY VZDÁLENOSTNÍ DOSTUPNOSTI [KM]

15 <
10,01 - 15
5,01 - 10
3,01 - 5
≤ 3

Příloha 14

VZDÁLENOSTNÍ DOSTUPNOST DO ÚPLNÝCH ZŠ v ČR v roce 2004

Zóny vzdálenostní dostupnosti [km]
- 15 <
- 10,01 - 15
- 5,01 - 10
- 3,01 - 5
- ≤ 3

ČASOVÁ DOSTUPNOST DO ÚPLNÝCH ZŠ
v ČR v roce 1961

zóny časové dostupnosti [min]

- 25 <
- 20,01 - 25
- 15,01 - 20
- 10,01 - 15
- 5,01 - 10
- ≤ 5

ČASOVÁ DOSTUPNOST DO ÚPLNÝCH ZŠ
v ČR v roce 1976

ČASOVÁ DOSTUPNOST DO ÚPLNÝCH ZŠ
v ČR v roce 1990

Zóny časové dostupnosti [min]
- 25 <
- 20,01 - 25
- 15,01 - 20
- 10,01 - 15
- 5,01 - 10
- ≤ 5

ČASOVÁ DOSTUPNOST DO ÚPLNÝCH ZŠ
v ČR v roce 2004

zóny časové dostupnosti [min]

- 25 <
- 20,01 - 25
- 15,01 - 20
- 10,01 - 15
- 5,01 - 10
- ≤ 5

Příloha 18

Zdroj: Kučerová (2008), ArcDATA (2003), CEDA (2009), výpočty autora
Příloha 19

ZÁKLADNÍ ŠKOLY v ORP Chomutov v letech 1961 a 2004

Zdroj: Kučerová (2008), ArcDATA (2003), autor