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Tereza Klimošová
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Chapter 1

Introduction

The main topic of the thesis is classifying obstructions for the class of apexes of partial
2-trees, an open problem raised by Bogdan Oporowski during the BIRS graph minor
workshop held in Banff, AB, in September 2008. In the thesis, we present structural
results that allow us to list all obstructions for the class of apexes of K4-minor-
free graphs except for some special types of obstructions with path-width three, but
these remaining obstructions can be easily generated by a computer and thus the
presented results form one part of a complete solution of Oporowski’s problem. The
list of obstructions we have identified is given in Figures 1.1 and 1.2.

The class of apexes of partial 2-trees is minor closed. Many natural graph classes
are minor closed, for example planar and outerplanar graphs, graphs embeddable on
surfaces, graphs with bounded tree-width etc. Partial 2-trees form an intermediate
class between outerplanar and planar graphs. Apexes of planar graphs play an impor-
tant role because of their relation to deep open problems in graph theory, Hadwiger’s
conjecture, in particular. Since the classification of obstructions for apexes of planar
graphs is a long-standing open problem, Oporowski asked to classify obstructions for
apexes of some simpler subclasses of planar graphs.

Graph minors and minor closed graph classes were studied in the series of papers
by Robertson and Seymour [4]. One of the many results contained in the series is
the proof of Wagner’s conjecture, that every infinite set of finite graphs contains two
graphs such that one of them contains the other one as a minor. For minor closed
graph classes the following corollary of this theorem is very important. Every minor
closed class can be characterized by a finite set of obstructions, i.e., graphs that are
not contained in the class, but all their proper minors are contained in the class.
Hence, the number of obstructions for the class of apexes of partial 2-trees is finite.

Let us give some examples of classification results for other minor closed classes
of graphs. The set of obstructions for the class of planar graphs consists of the
complete graph K5 on five vertices and the complete bipartite graph K3,3 with par-
tities of size three (this statement is equivalent to Kuratowski’s theorem). The set
of obstructions for outerplanar graphs consists of the complete graph K4 on four
vertices and the complete bipartite graph K2,3 with partities of size two and three.
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Figure 1.1: Obstructions with tree-width 4.
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Figure 1.2: Obstructions with tree-width 3.
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The set of obstructions for the class of the graphs embeddable on projective plane
was classified by Archdeacon in [1]. There exists only one obstruction for the class
of partial 2-trees—the complete graph K4 on four vertices.

An explicit knowledge of a set of obstructions for a particular minor closed class
of the graphs is also important from the algorithmic point of view. Another result
from the graph minor series [6] asserts that it can be tested in a cubic time whether
an input graph contains a fixed graph as a minor. In particular, every minor-closed
class of graphs can be recognized in polynomial time and the explicit knowledge of
the obstructions often leads to an algorithm with a better running time.

1.1 Basic definitions

In this section, we survey basic definitions, notation and some theorems from graph
theory in particular, there related to graph minors and tree-width, which are used
throughout the thesis. Most of these topics are described in more detail, e.g., in
Diestel’s book [3].

Definition 1. A graph G is a pair (V (G), E(G)), where V (G) is a set of vertices
and E(G) ⊆ (V (G)

2

)
is a set of edges.

A graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) is a subgraph of G.
An edge e = {u, v} is usually denoted as uv and the vertices u end v are called

end-vertices of the edge e. Two vertices u, v ∈ V (G) are adjacent if there exists an
edge e = uv in E(G). Vertices adjacent to v are also called neighbors of v and the
set of all vertices adjacent to v is the neighborhood of v.

We say that a vertex v has degree k if v is contained in k edges in G.

Definition 2. Graphs G and H are isomorphic if there exists a bijection ϕ : V (G)→
V (H) such that uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H).

In the thesis, we consider isomorphic graphs to be equal and graph classes to be
closed under isomorphism.

Definition 3. A graph with an edge between every two vertices, i.e. (V,
(

V
2

)
), is

called a complete graph and is denoted Kn, where n = |V |.
Definition 4. A path P of length n is a graph with n + 1 vertices v0, . . . , vn and
edges ei = vivi+1 for i = 0, . . . , n − 1. The vertices v0 and vn are ends of the path
P and the vertices v1, . . . , vn−1 are internal vertices of the path. A path in a graph
G between vertices u and v or from u to v is a subgraph of G which is a path with
ends u and v.

Definition 5. A cycle C of length n, where n ≥ 3, is comprised of a path of length
n− 1 with ends u and v and an edge uv.

7



Definition 6. A graph obtained from G by subdividing an edge uv ∈ V (G) is the
graph obtained by adding a vertex w into V (G) and replacing the edge uv by edges
uw and vw. A graph H is a subdivision of a graph G, if H can be obtained from G
by none, one or more subdividing of its edges.

Definition 7. Let G = (V, E) be a graph, e = uv an edge and w a vertex in G. Then
the graph obtained from G by deleting the edge e is the graph G\ e = (V, E \ e). The
graph obtained from G by deleting the vertex w is the graph G \ w = (V \ {w}, E ∩(

V \{w}
2

)
).

Definition 8. A graph obtained from a graph G by contracting an edge e = uv is
a graph obtained by deleting the edge e and identifying the vertices u and v. The
resulting vertex uv is adjacent to all the vertices which are adjacent to u or to v in
G \ e.

Definition 9. A graph H is a minor of a graph G, if H can be obtained from G by
a sequence of vertex deletions, edge deletions and edge contractions. If this sequence
is nonempty, H is a proper minor of G.

Throughout our considerations we often use the word minor in the context when
some of the vertices of graphs G and H are distinguished; we then require that the
components of G containing the distinguished vertices correspond to the appropriate
distinguished vertices of H

A class of graphs G is minor-closed if every minor of every graph G ∈ G belongs
to G.

An obstruction for a minor-closed class of graphs G is a graph G such that G /∈ G
but every proper minor of G is contained in G.

Definition 10. A graph G is connected if there exists a path between any two vertices
in G. Maximal connected subgraphs of a graph G are called connected components.

A vertex cut in a connected graph G is a set W of vertices of G, such that graph
G \W obtained from G by deleting vertices of W is not connected. A vertex cut W
is called a k-cut if its size is k, i.e., |W | = k. The only vertex in 1-cut is called an
articulation. G is called k-connected if its minimum vertex cut has size at least k.
The connectivity of a graph G is the size of its minimum vertex cut.

Definition 11. Let G be a graph, W a vertex cut in G and C any connected
component of the graph G\W . Then the graph M = (V (W )∪V (C), E(G)∩(V (M)

2

)
)

is a bridge in the graph G produced by the vertex cut W . Note that this definition
is different from the standard definition of a bridge, which does not include edges
between vertices of the vertex cut in the bridge.

Menger’s theorem is a well-known result about connectivity of graphs. There exist
several versions of the theorem. In the thesis the following version is used.
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Theorem 1 (Menger,1927). Let G be a finite k-connected graph. Then for any pair
of vertices u and v, there exist at least k (internally) vertex-disjoint paths between u
and v.

Corollary 2. If G is a graph of connectivity k, W = {w1, . . . wk} is a minimum
vertex cut and v a vertex not contained W , then there exists a path Pi between vertex
v and every vertex wi ∈ W for i = 1, . . . , k such that paths P1, . . . , Pk are internally
vertex-disjoint.

Proof. The graph G \W has at least 2 connected components. Let u be a vertex
in G \W which belongs to a different connected component than v. By Menger’s
theorem, there exist k internally vertex-disjoint paths between u and v. Because u
and v are in different components of G \W , every path between u and v contains at
least one vertex of W . Thus, if there are k internally vertex-disjoint paths, each of
them contains one of the k vertices in W .

Definition 12. A tree is a connected graph that does not contain a cycle as a
subgraph.

Definition 13 (Robertson & Seymour [5]). A tree decomposition of a graph G is a
pair (T,V) where T is a tree (a decomposition tree) and V = {Vt}t∈V (T ) is a system
of subsets Vt ⊆ V (G) with the following properties:

• ⋃t∈V (T ) Vt = V (G)

• for every edge uv ∈ E(G) there exists t ∈ V (T ) such that {u, v} ⊆ Vt

• Vt ∩ Vt′ ⊆ Vt′′ , if t, t′, t′′ ∈ V (T ) and t′′ is on the path between t and t′

To distinguish between the vertices of a graph and the vertices of its tree decom-
position, we call vertices of the tree decomposition nodes. Though, we do not strictly
distinguish between a node t ∈ V (T ) and the associated set Vt.

The width of a tree decomposition (T,V) is the size of the largest set Vt in the
tree decomposition decreased by 1, i.e., maxt∈V (T )(|Vt| − 1).

The tree-width of a graph G is the minimum width of a tree decomposition of G.
The path-width of a graph G is the minimum with of a tree decomposition of G

such that its decomposition tree is a path.

Definition 14. Graphs with tree-width at most k are called partial k-trees. The
class of partial k-trees is denoted by Tk.

The following proposition shows a relation between tree-width of a graph and
tree-width of its minors.

Proposition 3 (Robertson & Seymour [5]). If a graph H is a minor of a graph G,
then the graph H has tree-width smaller or equal than tree-width of G.
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Proof. We prove that an edge contraction, an edge deletion and a vertex deletion can-
not increase tree-width. Let (T,V) be a tree decomposition of G with the minimum
width, uv an edge in E(G) and w a vertex in V (G). Then, the tree decomposition
(T,V) is also a tree decomposition of G \ uv, the tree decomposition (T,V ′) where
the vertices u and v in the nodes of (T,V) are replaced the by vertex uv is a tree
decomposition of G with the edge uv contracted, and (T,V ′′) where the vertex w in
the nodes of (T,V) is deleted is a tree decomposition of G \ w. The decompositions
(T,V ′) and (T,V ′′) do not have greater width than (T,V).

The proposition gives us the following result for the class of partial k-trees:

Corollary 4. The class Tk of partial k-trees is minor closed for every k.

Definition 15. Let G be a class of graphs. A graph H is contained in the class
of graphs Gapex if there exists an apex vertex a in H such that the graph H \ a is
contained in G. We say that the graph H is an apex of H \ a.

Observation 5. If a class of graphs G is minor closed then G ⊆ Gapex.

Proof. If G is a graph in G, then G\v is in G for any vertex v ∈ V (G), because G\v
is minor closed. Therefore G is in Gapex.

Observation 6. If a graph class G is minor closed, then the class Gapex is minor
closed.

Proof. Let G be a graph in Gapex and a an apex vertex in G. As G is minor closed,
the vertex a is an apex vertex in every graph G′ obtained from G by deleting a vertex
in G\a or deleting or contracting an edge in G\a, because G′ \a is a minor of G\a.

Let v be a vertex adjacent to a in G. Then the vertex a is an apex vertex in every
graph obtained by deleting the edge av, because (G \ av) \ a = G \ a. In the graph
G′′ obtained by contracting the edge av, the vertex av is an apex vertex because the
graph G′′ \ av equals (G \ a) \ v which is in G. Because the graph G \ a is in G, it is
in Gapex, by Observation 5.

1.2 Overview

In the thesis, we present structural results that allows us to list all obstructions for
T apex

2 except for some special types of them with path-width three. By the following
proposition, the class T apex

2 is equivalent to the class of apexes of K4-minor-free
graphs.

Proposition 7. [3] A graph has tree-width smaller than 3 if and only if it does not
contain K4 as a minor.

Lemma 8. The class T apex
2 is minor closed.
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Proof. Follows from Corollary 4 and Observation 6.

Since the class T apex
2 is minor closed, the following theorem guarantees that the

set of obstructions for T apex
2 is finite although it does not give any estimate on the

number of the obstructions. The theorem is one of many results contained in the
graph minor series of Robertson and Seymour [4].

Theorem 9 (Robertson & Seymour[7]). The set of obstructions for every minor
closed class of graphs is finite.

We prove that T apex
2 and their obstructions have tree-width bounded by 4 (see

observations below). Because all graphs with tree-width two are, by Observation 5,
in T apex

2 , all obstructions have tree-width either three or four. This two cases are
discussed in following two chapters. In Chapter 2 we describe all obstructions with
tree-width 4 from the known set of obstructions for the class of partial 3-trees.
Chapter 3 deals with obstructions with tree-width three. Since graphs with bounded
tree-width have bounded connectivity, we classify obstructions by their connectivity.

The following two observations provide us upper bounds on tree-width of graphs
in T apex

2 and obstructions for T apex
2 .

Observation 10. Every graph in T apex
2 has tree-width at most 3.

Proof. If a graph G is contained in T apex
2 , it has an apex vertex a such that H \ a is

in T2. Let (T, (Vt)t∈V (T )) be a tree decomposition of G\a with width at most 2. Then
(T, (V ′t )t∈V (T )), where V ′t = Vt ∪ {a} for every t ∈ V (T ), is a tree decomposition of
the graph G with width at most 3.

Observation 11. Obstructions for T apex
2 have tree-width at most 4.

Proof. We first prove that a vertex deletion decreases tree-width of a graph G at
most by one. Suppose that the graph G has tree-width k and there exists a vertex
v ∈ V (G) such that G \ v has tree-width at most k − 2. Then there exists a tree
decomposition of G \ v with width at most k− 2. By adding the vertex v into every
node of this decomposition, we obtain a tree decomposition of G with width at most
k − 1. That contradicts the assumption that G has tree-width k.

By successive deleting a vertex we can decrease tree-width of any graph to 0.
Thus, every graph G with tree-width greater than four has a proper minor H with
tree-width 4. The graph H is not in T apex

2 because tree-width of all graphs in T apex
2

is at most 3. Then, G cannot be an obstruction for T apex
2 .
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Chapter 2

Obstructions with tree-width 4

In this chapter, we describe all obstruction for T apex
2 of tree-width 4. By Obser-

vation 11, this is the maximum tree-width for obstructions for T apex
2 . Every such

obstruction is also an obstruction for the class T3 of partial 3-trees as states the
following observation.

Observation 12. Every obstruction G of T apex
2 with tree-width 4 is also an obstruc-

tion for the class T3.

Proof. After any deletion or contraction, G becomes an apex of a K4–minor–free
graph and therefore a graph with tree-width at most 3. Hence, G must be an ob-
struction for T3.

The set of all obstructions for graphs of tree-width 3 (Figure 2.1) has been clas-
sified by Arnborg, Proskurowski and Corneil [2]. All we need to do, looking for the
obstructions for T apex

2 with tree-width 4, is to check whether any of the four obstruc-
tions for T4 is also an obstruction for T apex

2 .

Lemma 13. The graphs K5, M6 and M8 are obstructions for T apex
2 . The graph M10

is not.

Proof. While checking all the possible deletions and contractions, we can omit dele-
tions of a vertex because if a graph becomes an apex of a K4-minor-free graph after
deleting an edge uv, it becomes an apex after deleting either u or v, too.

K5 M8 M10M6

Figure 2.1: Obstructions for the class T4.
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contraction

deletion

u v

removing
an apex vertex

removing
an apex vertex

Figure 2.2: Maximal proper minors of K5.

In what follows, we will use the observation: If a graph G has less than four
vertices of degree at least 3, then G is K4-minor-free.

In the following pictures we exhibit all maximal proper minors of K5, M6 and M8.
Deletions and contractions of dotted edges are shown and an apex vertex is marked
with a cross.

• Since any graph H obtained from K5 by contracting an edge has at most four
vertices, removing any vertex from H results into a 3-vertex graph which cannot
contain K4 as a minor. Hence, we focus on minors obtained by deleting an edge.
After deletion of an edge uv, we have to choose the apex vertex carefully—as a
vertex not adjacent to the end-vertex of the deleted edge. The graph G obtained
from K5 by deleting the edge uv and the apex vertex has four vertices and an
edge between two of them is missing (see Figure 2.2). Thus G does not contain
K4 as a minor.

contraction

deletion
u v

u v

uv

removing
an apex vertex

removing
an apex vertex

Figure 2.3: Maximal proper minors of M6.

• Since M6 is edge-transitive (i.e. for every two edges uv and u′v′ in M6, there
is an isomorphism ϕ : M6 → M6, such that ϕ(u)ϕ(v) = u′v′), it is enough to
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check its minors obtained by contracting or deleting a fixed edge. The graph
obtained by deleting an edge uv in M6 has four vertices of degree 4 and two
vertices of degree 3 (u and v). If we choose as the apex vertex one of two
vertices adjacent to both the vertices of degree 3 (see Figure 2.3), the graph
G obtained from M6 by deleting the edge uv and the apex vertex contains
two vertices of degree 2 and only three vertices of degree at least 3. Hence, G
cannot contain K4 as a minor.

The graph H obtained by contracting the edge uv has three vertices of degree
four and two vertices of degree three (because every two adjacent vertices in
M6 have two common neighbors). Then the vertex uv has degree 4 and we can
choose it is an apex vertex in H. Since H \ uv contains only two vertices of
degree 3, it does not contain K4 as a minor.

contraction

deletion

removing
an apex vertex

removing
an apex vertex

contraction

deletion

removing
an apex vertex

removing
an apex vertex

Figure 2.4: Maximal proper minors of M8.

• All the vertices of the graph M8 have degree 3. Therefore a graph G obtained
by deleting an edge uv in M8 contains 6 vertices of degree 3. Choose a vertex
of degree 3 as the apex vertex. As shown in Figure 2.4, a graph obtained from
G by deleting the apex vertex contains only 3 vertices of degree 3. Hence, M8

becomes after deleting an edge an apex of a K4-minor-free graph.

In the case of a contraction of an edge there arises one vertex of degree 4 and
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the degrees of the other 6 vertices remain 3. Choose the new vertex obtained by
contraction to be the apex vertex. After deleting the apex vertex, the degree
of four of the remaining vertices decreases and there will be only 2 vertices
of degree 3. In Figure 2.4 the situation for two asymmetric types of edges is
shown.

• Unlike the three previous graphs, M10 is not an obstruction for T apex
2 : after

deleting an edge, the graph is not an apex of a K4-minor-free graph. In other
words after removing any vertex, the graph still contains K4 as a minor—this
is obvious for the vertices adjacent to the removed edge; other two cases, up
to symmetry, are depicted in Figure 2.5.

removing
a vertex

removing
a vertex

Figure 2.5: The graph M10 after deleting an edge.

At this point, we have found all obstructions for T apex
2 with tree-width 4. We

present a proof that K5, M6 and M8 are obstructions for T apex
2 by checking all

possible edge deletions and contractions. Because this checking is rather mechanical
and for some graphs it can be quite tedious, we do not provide this verification in
the rest of the thesis (although these proofs are necessary and we did them), hoping
that the reader could do it himself if he wishes.
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Chapter 3

Obstructions with tree-width 3

In this chapter, we search for obstructions with tree-width at most three. We discuss
several cases according to the vertex-connectivity of obstructions, using the following
proposition and observations:

Proposition 14. [3] Let H be a graph with maximum degree at most 3. Then if a
graph G contains H as a minor, G contains a subdivision of H as a subgraph.

In particular, if a graph G contains K4 as a minor, G contains a subdivision of
K4 as a subgraph. This fact is frequently used throughout the thesis. Since K4 is
the only obstruction for the class T2, every obstruction for T apex

2 must contain a
subdivision of K4 after removing any vertex.

Observation 15. If G is an obstruction for T apex
2 , every vertex and every edge in

G is contained in at least one subdivision of K4.

Proof. Suppose that a vertex v in G is not contained in any subdivision of K4. Then
G\v is an apex of a K4-minor-free graph, i.e., there exists an apex vertex a, which is
contained in every subdivision of K4 in G\v. But since every subdivision of K4 in G is
contained in G\v, too, all subdivisions of K4 in G contain the vertex a. Therefore, G
is an apex of a K4-minor free graph with a as the apex vertex. Hence, the obstruction
G does not contain any vertex that is not contained in any subdivision of K4. The
proof that the obstruction G does not have any edge that is not contained in any
subdivision of K4 is similar.

Observation 16. Every graph of treewidth 3 is at most 3-connected.

Observation 17. There exists exactly one disconnected obstruction for T apex
2 , which

consists of two disjoint K4’s.

Proof. Each connected component of an obstruction G has to contain K4 as a minor.
If G /∈ T apex

2 contains a component G′ that does not contain K4 as a minor, then
G \G′ /∈ T apex

2 . Hence, G cannot be an obstruction for T apex
2 .
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This implies, that any graph which is not equal to 2K4 contains two disjoint
subdivisions of K4 is not an obstruction for T apex

2 (because it contains 2K4 as a
proper minor). Besides, the intersection of all subdivisions of K4 in an obstruction
G for T apex

2 have to be empty (any vertex in this intersection would be an apex
vertex in G). Using this facts we obtain the following two observations for connected
obstructions:

Observation 18. Every two subdivisions of K4 in a connected obstructions have at
least one common vertex and there are at least 3 distinct subdivisions of K4 in every
connected obstruction.

Observation 19. Every connected obstruction for T apex
2 is 2-connected.

Proof. Suppose that G is an connected obstruction for T apex
2 that contains an articu-

lation w. Because every subdivision of K4 is 2-connected, every subdivision of K4 in
G is whole contained in one of the bridges produced by w. By the Observation 18 any
two of subdivisions of K4 in G intersect. Therefore, if there exist subdivisions of K4

in at least two different bridges, all subdivisions of K4 in G contain the articulation
vertex. But then, G is an apex of a K4-minor-free graph with the articulation being
an apex vertex. Thus, all subdivisions of K4 in G are in the same bridge. But as the
vertex-cut w produces at least two bridges, at least one of them does not contain
any subdivision of K4 and therefore, by Observation 15, G is not an obstruction for
T apex

2 . Hence, connected obstructions for T apex
2 with 1-cuts do not exist.

3.1 Obstructions of connectivity 2

For the reminder of this section, let G be a 2-connected obstruction for T apex
2 with

a vertex cut {x, y}. Let K̃4 be a subdivision of K4. The intersection of K̃4 with
the vertex cut {x, y} is denoted as an upper index. For example K̃∅4 means that
a subdivision of K4 does not contain any of the vertices x, y, K̃x

4 means that a
subdivision of K4 contains the vertex x and does not contain the vertex y. K̃xy

4

contains both the vertices x and y. We say that a bridge M contains K̃xy
4 if M

contains all vertices of degree three of this subdivision of K4.
In the following two observations, we introduce some of basic properties of ob-

structions G that are used in several lemmas further in the section.

Observation 20. There exists at least one K̃4 in G that does not contain x and at
least one K̃4 in G that does not contain y.

Proof. Otherwise G is an apex of a K4-minor-free graph with x or y being an apex
vertex.

Observation 21. Every bridge of the obstruction G contains at least one K̃4.
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Proof. Suppose that G has a bridge M that does not contain any K̃4. As M is
connected, it contains a path between x and y thus, it contains an edge xy as a
proper minor (recall that M \ {x, y} is a nonempty graph). Therefore, a graph H
obtained from G by replacing the bridge M by an edge between x and y is an apex
of a K4-minor-free graph. Let a be an apex vertex in H. The graph G \ a does not
contain any K̃∅4 , K̃x

4 or K̃y
4 , because every such subdivision of K4 is contained in

H \a, too. If there exists K̃xy
4 in G\a, then, in H \a, there exists K̃xy

4 with the same
vertices of degree 3, that contains the edge xy instead of some path in M . Thus, G
does not have any bridge that does not contain any K̃4.

The following lemma describe two possible types of bridges produced by the 2-cut
{x, y} in an obstruction G. In the reminder of the chapter we study an arrangement
of K̃4’s in these bridges in detail.

Lemma 22. There exists exactly one bridge M0 in G that contains K̃∅4 or both K̃x
4

and K̃y
4 . Consequently, there exists at least one bridge M1 in G such that every K̃4

in M1 contains both x and y.

Proof. Let us consider a bridge M0 that contains K̃∅4 , K̃x
4 or K̃y

4 . There exists at least
one such bridge in G, otherwise x and y are apex vertices.

If M0 contains K̃∅4 , every K̃4 in any other bridge must contain both x and y:
otherwise, it is disjoint with K̃∅4 in M0. By Observation 20, there exist K̃4 that does
not contain x and K̃4 that does not contain y. Thus, if G does not contain any
K̃∅4 , it contains K̃x

4 and K̃y
4 . Suppose that M0 contains K̃x

4 . Then every K̃y
4 has to be

contained in M0 as well (otherwise K̃x
4 and K̃y

4 are disjoint). It follows that all K̃x
4 are

contained in M0. Hence, any other bridge can contain only K̃xy
4 ’s. By Observation 21,

every such bridge contains at least one K̃xy
4 .

The bridge containing K̃∅4 or K̃x
4 and K̃y

4 is denoted by M0. Any other bridge
contains only K̃xy

4 ’s and is denoted M1. Let M1 be one such bridge.
We first focus on a bridge M1. Let bridges shown in Figures 3.1a and 3.1b be

denoted by and respectively. We show that M1 is isomorphic to or and
there is only one bridge different from M0 in the obstruction G.

Observation 23. or is a minor of a bridge M1.

x

y

x

y

Figure 3.1: The only possible bridges isomorphic to M1.
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Lemma 24. If is a minor of a bridge M1, then M1 is equal to .

Proof. If is a proper minor of M1, replacing M1 by produces an apex of a K4-
minor-free graph. An apex vertex has to be in M0 \ {x, y} eliminate all K̃∅4 ’s, K̃x

4 ’s

and K̃y
4 ’s in M0, but at the same time, an apex vertex has to eliminate K4 in ,

which is not possible. Thus, is not a proper minor of M1.

Lemma 25. If is not a minor of a bridge M1, then M1= .

Proof. By Lemma 23, a bridge M1 contains as a minor. Suppose that is a
proper minor of M1. Then the graph G′ obtained by replacing M1 in G by ,is an
apex of a K4-minor-free graph (as G is an obstruction). An apex vertex has to be in
M0 \ {x, y}, because M0 contains K̃∅4 or K̃x

4 and K̃y
4 . An apex vertex has to cut off

all paths between x and y in M0, otherwise exists K̃4 consisting of a path between x

and y and . But if there exists such an apex vertex, its removal eliminates all K̃4

in the original bridge M1 and thus it eliminates all K̃4 in G. This contradicts that
G is an obstruction for T apex

2 .

Lemma 26. A graph G contains 2 bridges.

Proof. We observed that the bridge M0 is unique and all other bridges are either
or (all of them are of the same type). Let us suppose there are at least two such
bridges, M1 and M ′

1. Then by replacing M ′
1 by an edge xy, we obtain an apex of a

K4-minor-free graph. But as M1 with the edge xy compose K̃4 and M0 contains K̃∅4
or K̃x

4 and K̃y
4 , there cannot be any apex vertex. Therefore the graph G contains

only one bridge or in addition to M0.

Keeping the preceding notation, in the following two lemmas we describe the
only obstruction that has the bridge M1 equal to and in the rest of the section we
investigate the obstructions with M1 equal to .

Lemma 27. If M1 equals , then M0 contains K̃x
4 and K̃y

4 and has an cut-vertex.

Proof. As G does not contain two disjoint K̃4, M0 cannot contain K̃∅4 , therefore it has
to contain K̃x

4 and K̃y
4 . Suppose that M0 is 2-connected. Then G is not an obstruction,

because G without the edge xy is not an apex of a K4-minor-free graph—since G
contains K̃x

4 and K̃y
4 in M0, no vertex in M1 (including x and y) can be an apex

vertex. Since M0 is 2-connected, after deleting any vertex in M0 except x,y, there
remains a path between x and y in M0. This path and M1 composes K̃4.

Lemma 28. The graph G in Figure 3.2 is the only obstruction with the bridge M1

equal to .

Proof. The graph G from Figure 3.2 is the minimal graph containing M1 equal to
and satisfying conditions on M0 from Lemma 27. Thus, it is a minor of every

obstruction for T apex
2 with M1 equal to . Since G is an obstruction for T apex

2 , it
is not a proper minor of any other obstruction for T apex

2 . Therefore, G is the only

obstruction with M1 equal to .
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Figure 3.2: The only obstruction with the xy.

Lemma 29. If M1 equal to and M0 contains K̃∅4 , there are exactly two disjoint
paths from x to y in M0.

Proof. If there are more than two paths from x to y, after deleting an edge containing
x or y in one of these paths, there remain at least two paths from x to y and we
cannot cut off all of them by a single apex vertex in M0. Thus every apex vertex has
to be in M1 to eliminate K̃4 consisting of M1 and one of the paths between x and y
in M0. At the same time every apex vertex has to be in M0 \{x, y}, to eliminate K̃∅4 .

If there exists only one path between x and y in M0, there is an articulation
vertex z 6= x, y in M0. As G is 2-connected, z divides M0 into two parts: the part M0x

containing x and the part M0y containing y. Suppose that without loss of generality,
K̃∅4 is in the part M0x. Then, if we consider the vertex cut {x, z} instead {x, y}
and apply Lemma 22, we get that as M0x contains K̃∅4 or K̃z

4 , the other bridge

consisting of M1 equal to and M0y contains only K̃xz
4 and equals to or , which

is impossible.

Lemma 29 gives us four possible minors of obstructions in Figure 3.3, i.e., every
graph satisfying Lemma 29 have at least one of the graphs in Figure 3.3 as a minor.
None of these four graphs is a K4-minor-free graph, but in the case a) the graph is
not an obstruction—we can remove the dashed edge and the resulting graph is not an
apex of a K4-minor-free graph. The graphs in Figures 3.3b, c and d are obstructions.

a) b) c) d)

Figure 3.3: Obstructions of connectivity 2 with K̃∅4 .
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Now we are going to describe obstructions with M1 equal to that do not contain
K̃∅4 . They have more complex structure than those containing K̃∅4 . Although there
exist only five such obstructions, it takes several pages to describe all of them and
prove that no other obstruction exists.

Lemma 30. If G consists of M1 equal to and M0 that does not contain K̃∅4 (and
therefore it contains K̃x

4 and K̃y
4 ), M0 is 2-connected and every two K̃x

4 and K̃y
4 share

at least two vertices.

Proof. If there is an articulation vertex z in M0, it is contained in both K̃x
4 and K̃y

4

(they must not be disjoint). It is also contained in every path from x to y in M0 and
consequently in every K̃xy

4 , thus z is contained in all K̃4 of the graph G. But then G
is not an obstruction. Hence, M0 is 2-connected.

K̃x
4 and K̃y

4 must share at least one vertex. If they share exactly one vertex z, by
Menger’s theorem there exists a path P from a vertex u 6= z in K̃x

4 to a vertex v 6= z
in K̃y

4 avoiding K̃x
4 and K̃y

4 (i.e. inner vertices of P are not in any of the graphs K̃x
4

and K̃y
4 ). In fact, the path P has to be only an edge because if we replace P by an

edge uv, the graph G does not become an apex of a K4-minor-free graph. Then we
have to distinguish the following cases: If the edge uv = xy, then M1 is equal to
(which the lemma asserts not to be the case). If u 6= x and v 6= y, the graph obtained
from G by contracting the edge uv is not an apex of a K4-minor-free graph.

If the edge uv equals xv, we can consider the vertex cut {x, z} with bridges M ′
0

and M ′
1. The vertex y has to be in M ′

0 thus M ′
1 = K̃x

4 , then M ′
1 is necessarily and

the graph is the known obstruction in Figure 3.2. For the edge uy, we obtain the
same conclusion using symmetric arguments.

x x

q1

q2

q3

q4

q1 q2 q3

a) b)

Figure 3.4: Possible types of a structure of K̃x
4 in an obstruction.

The vertices x in K̃x
4 and y in K̃y

4 have degrees 2 or 3, i.e. the obstruction G has
one of the graphs in Figure 3.4 as a minor.

In the following lemmas, G is an obstruction such that M1 equals , M0 does not
contain K̃∅4 and the vertex x has degree 2 in every K̃x

4 (see Figure 3.4a). The case
that x has degree three in K̃x

4 is dealt later.
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Observation 31. For every K̃x
4 (with vertices denoted as in Figure 3.4a) and K̃y

4

in G, K̃y
4 contains at least one vertex of the path between q1 and x and at least one

vertex of the path between q3 and x.

Proof. Suppose that K̃y
4 does not contain any vertex of the path between x and q1,

or q3 respectively. Then the graph H obtained from G by contracting the whole path
between x and q1 or q3 (but only one of them) into x is not a member of T apex

2 :
neither K̃x

4 nor K̃y
4 was eliminated by the contraction. Since any vertex of the K̃y

4

was not contracted into x, K̃x
4 and K̃y

4 share at least 2 vertices. Thus, the bridge M0

in H is 2-connected. Therefore there cannot exist any vertex that eliminates K̃x
4 , K̃y

4

and cuts off all paths between x and y in M0 at the same time. Hence, the graph H
does not have any apex vertex.

Lemma 32. Let vertices of some K̃x
4 in G be denoted as in Figure 3.4a. The vertices

x, q2 and q4 divide K̃x
4 into three connected components (see Figure 3.5). Every path

between vertices of different components in M0 contains at least one of the vertices
x, y, q2, q4 (otherwise, G contains K̃∅4). Moreover, there exist internally vertex-disjoint
paths from y to vertices in at least two of the components of K̃x

4 \ {x, q2, q4} in M0.

x

q1

q2

q3

q4

Figure 3.5: Vertices x, q2 and q4 divide K̃x
4 into three components.

Proof. Suppose that all paths between y and vertices of K̃x
4 in M0 that avoid K̃x

4 ,
i.e., do not have any internal vertex in K̃x

4 , have their ends in the same component
C1 or in q2 or q4. By Observation 31, there are vertices of K̃y

4 in the paths between
x and q1 and between x and q3, thus vertices of K̃y

4 occurs in at least two different
components of K̃x

4 \ {x, q1, q2}. Every path between different components contains
x, y, q2 or q4, because we consider an obstruction G that does not contain K̃∅4 . Thus,
vertices q2 and q4 form 2-cut in K̃y

4 , because K̃y
4 does not contain the vertex x and

we suppose that there does not exist paths avoiding K̃x
4 between y and vertices of

different components of K̃x
4 \ {x, q2, q4}.

The 2-cut {q2, q4} yields two bridges in K̃y
4 . Observe that neither of these bridges

contains vertices of more than one component of K̃x
4 \ {x, q2, q4}. All vertices of

degree 3 in K̃y
4 are in the same bridge B1. The other bridge B2 consists only of a

path between q2 and q4. The vertex y and vertices of K̃y
4 in C1 are contained the
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bridge B1: y and vertices of K̃y
4 in C1 must be in the same bridge and if they are in

B2, there exists K̃∅4 consisting of B1 and a path between q2 and q4 in C1.
The bridge B1 does not contain any vertex in two of the components of K̃x

4 \
{x, q2, q4}, C2 and C3, different from C1. Since the both components C2 and C3

contain a path between the vertices q2 and q4, there exist K̃y
4 avoiding C2 and K̃y

4

avoiding C3 in G. Thus, there exists K̃y
4 avoiding the component containing the

vertex q1 (and internal vertices of the path between q1 and x) or K̃y
4 avoiding the

component containing q3. That contradicts the previous observation.

Every graph satisfying the conclusion of Lemma 32 contains one of the graphs in
Figure 3.6 as a minor. Both of the graphs in Figure 3.6 are obstructions and these
are all obstructions without K̃∅4 that contains K̃x

4 with x of degree 2 or K̃y
4 with y

of degree 2.

Figure 3.6: Obstructions that contain K̃x
4 with x of degree two.

In what follows, we assume that G is an obstruction such that M1 is equal to ,
M0 does not contain K̃∅4 and vertices x or y have degree 3 in K̃x

4 or K̃y
4 respectively

(see Figure 3.4b). Vertices of degree 3 in K̃x
4 except x are denoted by q1, q2 and q3 as

in Figure 3.4b. The path between the vertices x and qi in K̃x
4 , that does not contain

any of the remaining two vertices of degree 3, is denoted Qi. Let K̃
y\x
4 denote graph

K̃y
4 without edges contained in K̃x

4 .

Observation 33. K̃
y\x
4 in G contains a graph in Figure 3.7a, Figure 3.7d or Fig-

ure 3.7e as a minor.

Proof. As K̃x
4 and K̃y

4 share at least two vertices, there exist at least two internally
vertex-disjoint paths P1 and P2 from y to distinct vertices p1 and p2 in K̃x

4 . Because
y has degree 3 in K̃y

4 and K̃y
4 is 2-connected, there exists a path P3 from y to a vertex

p3 in K̃x
4 (Figure 3.7a) or in one of paths P1, P2 (without loss of generality suppose

P2)—as shown in Figures 3.7b and c. Note that the graph in Figure 3.7c contains
the graph in the Figure 3.7b as a minor.

Suppose that p3 is in P2. Because K̃4 does not contain parallel edges, there has
to exist a path P4 avoiding P1, P2, P3 and K̃x

4 with ends u and v of the following
properties: The vertex u is an internal vertex of P3 or an internal vertex of the
subpath of P2 between y and p3. Without loss of generality, suppose that u is in the
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K̃x
4

y

P1
P2 P3

K̃x
4

y
P1

P2
P3

a)

K̃x
4

y

P1

P2 P3

K̃x
4

y

P1

P2 P3

p1
p2

p3

b) d) e)

K̃x
4

y

P1
P2

P3

c)

Figure 3.7: Possible minors of K̃
y\x
4 .

path P2. The vertex v is either in K̃x
4 , in P3 or in P1 and then K̃

y\x
4 in G contains

Figure 3.7a, d or e respectively as a minor.

In the following lemmas, we classify obstructions containing the graphs in Fig-
ures 3.7a, d and e as a minors of K̃

y\x
4 . When deciding whether a minor-minimal

graph that contains a particular minor of K̃
y\x
4 is an obstruction, we use the fact

that if a graph contains an obstruction as a proper minor, the graph is not an ob-
struction.

Lemma 34. There are two minor-minimal graphs containing the graph from Fig-
ure 3.7e as a minor of K̃

y\x
4 . These are the two graphs depicted in Figure 3.8. None

of these graphs is contained in T apex
2 . The first graph (given in Figure 3.8a), is not

an obstruction (it is possible to delete the dashed edge) and the second graph is an
obstruction.

a) b)

y

x

q1

q2q3

x

y

q1 q2

q3

Figure 3.8: Obstructions that contain the graph in Figure 3.7e as a minor of K̃
y\x
4 .

Proof. If the vertices p1 and p2 belong to the same path Qi, we obtain the graph
in Figure 3.8b. In all other cases it is possible to contract vertices p1 and p2 into
two distinct vertices among the vertices q1, q2 and q3, which results in the graph in
Figure 3.8a with the dashed edge present.
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Lemma 35. There are three minimal graphs containing the graph from Figure 3.7d
as a minor of K̃

y\x
4 . These are the two graphs depicted in Figure 3.9 and the graph

from Figure 3.8b. None of these graphs is contained in T apex
2 . The graph in Fig-

ure 3.9a is not an obstruction (by deleting of the dashed edges, we obtain the first
obstruction in Figure 3.6). The graph in Figure 3.9b is an obstruction.

x

y

q1

q2

a)

q3
x

y

q1

q2

q3

b)

Figure 3.9: Obstructions that contain the graph in Figure 3.7d as a minor of K̃
y\x
4 .

Proof. If the vertices p1 and p2 belong to the same path Qi between qi and x in K̃x
4 ,

we obtain one of the graphs in Figure 3.9, in all other cases it is possible to contract
vertices p1 and p2 into two distinct vertices among the vertices q1, q2 and q3, which
results to graphs isomophic to the graph in Figure 3.8b.

Lemma 36. There are two minor-minimal graphs containing the graph from Fig-
ure 3.7a as a minor of K̃

y\x
4 , such that no two of the vertices p1, p2 and p3 are

contained in the same path Qi in K̃x
4 . These are the two graphs depicted in Fig-

ure 3.10. The graph in Figure 3.10a is not an obstruction (by deleting dashed edges
and contracting crossed edge we obtain K5). The graph in Figure 3.10b is an obstruc-
tion.

a) b)

Figure 3.10: Obstructions that contain the graph in Figure 3.7d as a minor of K̃
y\x
4 .
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Proof. Consider an obstruction G the graph from Figure 3.7a as a minor of K̃
y\x
4 ,

such that no two of the vertices p1, p2 and p3 are contained in the same path Qi

in K̃x
4 . If the vertex pi is contained in the path Qj, we contract pi into qj. If some

of the vertices p1, p2 and p3 is not contained in any of the paths Q1, Q2 and Q3,
they are contained in the cycle q1q2q3. We contract edges of this cycle as long as it
is possible to keep vertices p1, p2 and p3 distinct, and vertices q1, q2 and q3 distinct.
By the contractions, we obtain one the graphs in Figure 3.10.

In the following lemmas, we suppose that an obstruction G contains the graph
from Figure 3.7a as a minor of K̃

y\x
4 and at least two paths from y end on the same

path Qi. Without loss of generality, paths P1 and P2 end on Q1, p1 is nearer to x
than p2 (see Figure 3.11a). If P3 ends on Q1, p3 is nearer to q1 than both p1 and p2.

T denotes the part of the obstruction G that consists of the path P1 without the
vertex y and the subpath of the path Q1 between x and p2 without its ends. This
part is marked by dots in Figure 3.11b. In the following observation and two lemmas,
we show some properties of paths between vertices of T and vertices of M0\T . Later,
we use this properties for identifying obstructions that satisfy assumptions above.

xy

p2

p3

rest of K̃x
4

p1

Q1

x

q1
q2 q3

y

p1

p2

P3

a) b)

Figure 3.11:

Observation 37. If a graph contain three internally disjoint paths between two ver-
tices and an path between internal vertices in two of these three paths, the graph
contains K4 as a minor.

Lemma 38. Every path in K̃y
4 from a vertex in P2 to M0 \ T contains the vertex y

or p2.

Proof. Otherwise it is possible to contract vertices p1 and p2 into a single vertex,
eliminating neither K̃x

4 nor K̃y
4 . Then, the resulting graph is not an apex of a K4-

minor-free graph (see Figure 3.11b and apply the observation above to three paths
between x and p2).
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Lemma 39. There exists a path R between the vertex p1 and a vertex in M0 \ T
avoiding T , which does not contain any of vertices p2, y and x.

Proof. There must exist a path R′ between a vertex in T and a vertex in M0 \ T
which does not contain any of vertices p2, y, x, otherwise vertices p2 and y form a
2-cut which divides K̃y

4 into three components, such that inner vertices of each of
the paths P1, P2 and P3 are contained in different component (note that x is not in
K̃y

4 ). Two of these components have to represent the same edge in K4. Therefore it is
possible to delete edges and inner vertices of one of the paths P1, P2 and P3 without
eliminating K̃y

4 .
The path R′ must have a subpath R avoiding T . The end of the path R in T has

to be the vertex p1, otherwise it can be contracted into vertex p1 without yielding
an apex of a K4-minor-free graph.

In the following two lemmas deal with obstructions such that they contain the
graph from Figure 3.7a as a minor of K̃

y\x
4 and the vertices p1 and p2 are contained in

the path Q1. Note that that these obstructions must satisfy conclusions of Lemma 38
and Lemma 39. We classify the obstructions by the position of the vertex p3 in K̃x

4 .

y

x

q1

q2q3

Figure 3.12: Obstructions that contain the graph in Figure 3.7a as a minor of K̃
y\x
4

with the vertices p1, p2 and p3 on Q1.

Lemma 40. There are two minor-minimal graphs containing the graph from Fig-
ure 3.7a as a minor of K̃

y\x
4 , such that the vertices p1, p2 and p3 are contained in the

path Q1. These are the two graphs depicted in Figure 3.12. The first graph is an ob-
struction which we have already identified (see Figure 3.8b). The second graph is not
an obstruction (after deleting the dashed edges, we obtain the obstruction depicted in
Figure 3.6).

Proof. Note that none of the graphs in Figure 3.13 is contained in T apex
2 thus, they

are not proper minors of an obstruction. By Lemma 39, there exists a path R from
the vertex p1 to a vertex u in M0\T avoiding T and the vertices x, y and p2. If u is an
inner vertex of the path P2, G contains the first of the graphs depicted in Figure 3.12
as a minor (obtained by contracting p2 and p3 into q1). If u is not contained in P2, it
equals to one of the vertices q1, q2 and q3, otherwise it is possible to contract u into
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one of the vertices q1, q2 and q3 and the graph obtained by such contraction contains
as a minor one of the graphs depicted in Figure 3.12.

Lemma 41. There are three minor-minimal graphs containing the graph from Fig-
ure 3.7a as a minor of K̃

y\x
4 , such that the vertices p1 and p2 are contained in the

path Q1 and p3 is not contained in Q1. These are the three graphs depicted in Fig-
ure 3.13. The first graph, Figure 3.13a, is an obstruction. The remaining two graphs
are not obstructions (by deleting the dashed edges in Figure 3.13b, we obtain the first
obstruction in Figure 3.6 and by contracting the dashed edge in Figure 3.13c, we
obtain the first obstruction in Figure 3.10).

Proof. Note that none of the graphs in Figure 3.13 is contained in T apex
2 thus, they

are not proper minors of an obstruction.
Suppose first that p3 = q2. By Lemma 39, there exists a path R from the vertex

p1 to a vertex u in M0 \ T avoiding T and the vertices x, y and p2. Then, if the
vertex u is contained in the path P2, G contains the graph depicted in Figure 3.13a
as a minor. If u is not contained in P2, it is equal to q2 or q3, otherwise u can be
contracted into one of these vertices and the graph obtained by such contraction is
contains one of the graphs in Figures 3.13b and 3.13c as a minor.

For p3 = q3 we obtain isomorphic results. Because we suppose that p3 is not equal
to q1, p3 is always equal to q2 or q3, otherwise it can be contracted into q2 or q3, and
the resulting graph contains one of the graphs in Figure 3.13 as a minor.

x

y

q1

q2

a)

q3

b)

x

y

q1

q2

q3

x

y

q1

q2

q3

c)

Figure 3.13: Obstructions that contain the graph in Figure 3.7a as a minor of K̃
y\x
4

with not all the vertices p1, p2 and p3 on Q1.
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3.2 Obstructions of connectivity 3

In this section we assume that the graph G is a 3-connected obstruction for T apex
2

with a vertex-cut {x, y, z}. Subdivisions of K4 are denoted in the same way as in
Section 3.1.

The following two observations show some basic properties of 3-connected ob-
structions. Note that the second observation is analogical to Observation 20 for
2-connected obstructions. In fact, they are both special cases of a more general ob-
servation, that there exists K̃4 that does not contain v for every vertex v in an
obstruction.

Observation 42. In every obstruction G, there exists at least one K̃4 that does not
contain x, at least one K̃4 that does not contain y and at least one K̃4 that does not
contain z.

Proof. Otherwise G is an apex of a K4-minor-free graph with x,y or z being an apex
vertex.

x

y

z

x

y

z

a) a trivial bridge b) a minor of a nontrivial bridge

Figure 3.14: Minors of bridges in 3-connected obstruction.

We say that a bridge that consists of only four vertices, i.e., vertices x, y and z
and one more vertex (see Figure 3.14a), is trivial.

Observation 43. Every bridge in G contains a trivial bridge as a minor. Every
nontrivial bridge in G contains the graph from Figure 3.14b as a minor.

Proof. Every bridge contains at least one vertex v different from the vertices x, y
and z. By Corollary 2, it contains tree internally vertex-disjoint paths between the
vertex v and the vertices x, y and z. By contracting each of these paths into a single
edge (and deleting all other vertices and edges) we obtain the trivial bridge.

If a bridge B is not trivial, it contains at least two vertices different from x, y and
z. Let v1 be one such vertex. By Corollary 2, B contains tree internally vertex-disjoint
paths Px, Py and Pz between the vertex v1 and the vertices x, y and z respectively.
Suppose first that at least one of the paths Px, Py and Pz, without loss of generality
Px, has length at least 2. Then, there must exist a path between an internal vertex
of Px and a vertex u in Py \ v1 or Pz \ v1 avoiding Px, otherwise the vertices v1 and
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x form a 2-cut in G. By contracting u into the vertex y or z we obtain a subdivision
of the graph depicted in Figure 3.14b.

Suppose that all the paths Px, Py and Pz have length one. Then, there exist a
vertex v2 in B, distinct from the vertices x, y, z and v1. By Corollary 2, there exist
tree internally vertex-disjoint paths P ′x, P ′y and P ′z between the vertex v2 and the
vertices x, y and z respectively. If the vertex v1 is contained in one of these paths, B
contains the graph from Figure 3.14b as a minor. Suppose that v1 is not contained in
any of the paths P ′x, P ′y and P ′z. Since B \ {x, y, z} is connected, there exists a path
Q between the vertices v1 and v2 in B \ {x, y, z}. Let Q′ be a subpath of Q avoiding
the paths P ′x, P ′y and P ′z between the vertex v1 and a vertex w contained in one of
the paths P ′x, P ′y and P ′z, without loss of generality in P ′x. Then, B after contracting
the vertex w into v2, contains a subdivision of the graph depicted in Figure 3.14b as
a subgraph.

M0

M2

M1

x

y

z

Figure 3.15: A nontrivial bridge forms K̃xyz
4 with a trivial bridge, even after con-

tracting the dotted edge.

Lemma 44. If the 3-cut in the obstruction G yields more than 2 bridges, only one
of them is nontrivial.

Proof. Suppose that the 3-cut {x, y, z} in G yields three bridges M0, M1 and M2,
and M0 and M1 are nontrivial. We first prove that every K̃4 contains at least two
vertices of the 3-cut.

Any two bridges form a K̃4 containing {x, y, z} if at least one of them is not
trivial (see Figure 3.15 and Observation 43). Thus, every K̃4 in G contains at least
one vertex of the 3-cut (otherwise there exist two disjoint K̃4).

Suppose that there is K̃4 containing only one vertex of the 3-cut, without loss of
generality, let K̃x

4 be in M0. Because G \ x still contains K̃4, there exists K̃y
4 , K̃z

4 or
K̃yz

4 and it has to be in M0, too (otherwise there exist two disjoint K̃4). But then
G is not an obstruction, because M2 contains two edges between vertices x, y and
z, for example edges xy and xz, as a proper minor (because it contains a trivial
bridge as a minor) and the nontrivial bridge M1 forms with these two edges K̃xyz

4

(see Figure 3.15).
Thus, every K̃4 in G contain at least two of the vertices x, y, and z. Then,

by Observation 42, G has to contain K̃xy
4 , K̃xz

4 and K̃yz
4 , otherwise x, y or z is an

apex vertex. These three K̃4 cannot be in the same bridge, argue as in the previous
paragraph. Suppose that each of K̃xy

4 , K̃xz
4 and K̃yz

4 is contained in different bridge,
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without loss of generality, K̃xy
4 in M0, K̃xz

4 in M1 and K̃yz
4 in M2. Then, by deleting

edges containing x in M2, we obtain the 2-connected graph H with 2-cut {y, z}, that
is not an apex of K4-minor-free graph: there exists a path between x and y in M1

and a path between x and z in M0 thus K̃xy
4 and K̃xz

4 are not eliminated by the
deletion. Since there are two disjoint paths from y to z in M0 and M1, H contains
K̃yz

4 in M2 and there does not exist any apex vertex in H (H contains the graph in
Figure 3.16a as a minor).

x

y

z

x

y

z

K̃xy
4

K̃xz
4

a) b)

Figure 3.16: Proper minors of the graphs discussed in the proof of Lemma 44.

The only remaining possibility is that two of K̃xy
4 , K̃xz

4 and K̃yz
4 , without loss of

generality K̃xy
4 and K̃xz

4 are contained in the same bridge, suppose in M0 and K̃yz
4 in

an other bridge, say in M1. But then, the graph G′ obtained by contracting the whole
bridge M2 to edges xy and xz is not contained in T apex

2 —the M1 with the edges xy
and xz form K̃4, thus if there exists an apex vertex in G′, it must be contained in
M1. The only vertex in M1 that eliminates K̃xy

4 and K̃yz
4 in M0 is the vertex x. Since

there exists a path between y and z in M0 that does not contain x (otherwise {xy}
or {xz} is a 2-cut), the graph G′ \ x contains K̃yz

4 (see Figure 3.16b).

Lemma 45. Every 3-cut in G yields at most 3 bridges.

Proof. Suppose that there are at least four bridges. Let M0 be the nontrivial one.
Let us contract an edge in one of trivial bridges, without loss of generality, an edge
containing the vertex z. In the graph G′ obtained from G by this contraction there
exists an apex vertex. The apex vertex has to be one of the vertices x, y and z: any
two bridges with an edge xz or yz form K̃4 in G′ (see Figure 3.17a).

x

z

y

x

z

y

M0

a) b)

Figure 3.17: Impossible positions of an apex vertex in the graph G′.
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But if an apex vertex is any of the vertices x, y, z, that vertex is an apex vertex
in the original graph G, too. Suppose that the vertex x is an apex vertex in G′.
Then M0 does not contain any K̃∅4 , K̃y

4 , K̃z
4 and K̃yz

4 but then, all K̃4 in G contain
x. Hence, x is an apex vertex.

In the following part, we classify obstructions by the maximal degree of a node in
their tree decompositions. For this purpose, we consider a tree decomposition (T,V)
with width 3 with the smallest maximal degree of a node, the smallest number of
nodes of maximal degree and the smallest number of all nodes, where Vt 6= Vt′ for
every two nodes t, t′ ∈ V (T ).

Observation 46. In every tree decomposition of a 3-connected graph of treewidth 3,
every two adjacent nodes contain three common vertices.

Proof. If two adjacent nodes in a tree decomposition share 2 or less vertices, then
the vertices form a 2(or less)-cut in the graph.

Lemma 47. Let G be an obstruction with maximal degree in its tree decomposition
T at least 3. Let t be a node with maximal degree in a tree decomposition of G. Then
every two nodes adjacent to t share at most 2 vertices.

wxyz

uxyz vxyz

wxyz

uxyz

vxyza trivial bridge

t

t′ t′′

t

t′

t′′

Figure 3.18: Two neighbors of a node cannot share three vertices.

Proof. By the definition of the tree-width, every vertex that is contained in at least
two neighbors of t is also contained in t. Since every node contains at most 4 vertices
and we suppose that every two different nodes contain different sets of vertices, any
two nodes cannot share more than 3 vertices. Suppose that two neighbors t′ and t′′ of
t share 3 vertices x, y, z. Then the vertices x, y, z form a 3-cut in G that produces 3
bridges (by Lemma 45 it cannot produce more bridges). The vertices of every bridge
are contained in a different component of T \ {tt′′, tt′′}.

By Lemma 44, only one of these three bridges is nontrivial, therefore at least
one of the nodes t′ and t′′, without loss of generality suppose that t′, contains only
vertices of the trivial bridge and has degree one in T . Then, the tree decomposition
T ′ obtained from T by replacing the edge tt′′ by t′t′′ (as shown in Figure 3.18) is
a tree decomposition of G, that has smaller number of vertices of maximal degree.
That contradicts our choice of T .
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Observation 48. The maximal degree of a node in a tree decomposition of an ob-
struction G is at most 4.

Proof. Suppose that there exists a node t of degree greater than 4. Since any two
adjacent nodes share three vertices and node t contains at most four vertices, there
exist at least two neighbors of t that share the same triple of vertices. By Lemma 47,
this is impossible.

Lemma 49. If a tree decomposition of an obstruction G contains a node of degree
4, G is isomorphic to the graph in Figure 3.19b.

wxyz

∗xyz w ∗ yz

wx ∗ z wxy∗

w

x

y

z

a) b)

Figure 3.19: The obstruction with a node of degree 4 in its tree decomposition.

Proof. Let t be a node of degree 4 and Vt = {wxyz}. By Lemma 47, every neighbor
of the node t contains a different triple of vertices w, x, y, z. Thus triples {w, x, y},
{w, x, z}, {w, y, z} and {x, y, z} are 3-cuts in G. Then G contains the graph in
Figure 3.19b as a minor. This graph is an obstruction for T apex

2 .

We are now going to study obstructions such that the maximal degree of a node
in their tree decompositions is 3. In the following lemmas, let t be a node of degree 3
of a tree decomposition of an obstruction G, Vt = {w, x, y, z} and the neighborhood
of t is as shown in Figure 3.20. Observe that the vertices x, y and z are in symmetric.
Therefore the next lemmas hold for every permutation of x, y and z.

wxyz

wxy∗ wx ∗ z

w ∗ yz

Figure 3.20: A neighborhood of a node of degree 3.
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Lemma 50. If xy is not an edge in G and the vertex cut {w, x, y} yields only two
bridges, then the bridge B given by the 3-cut {w, x, y} such that B does not contain
z is not trivial or equal to the bridge depicted in Figure 3.21b.

Proof. Since there is no edge between vertices x and y, they do not have to occur in
the same node. Therefore if B is trivial or equal to the graph depicted in Figure 3.21b,
it is possible to rearrange vertices contained in the bridge B into several nodes of
degree two as shown in Figures 3.21a and 3.21b. The tree decomposition T ′ of G
obtained from T by rearranging has smaller number of vertices of degree three than
T . That contradicts out choice of T .

x

w

y

v1

v2

vk

v

x

w

y

wx ∗ z

vwxz

vwyz

w ∗ yz

wx ∗ z

v1wxz

v1v2wz

vivi+1wz

vkwyz

w ∗ yz

a) b)

Figure 3.21: Vertices of the 3-cut that yields these bridges do not have to be in the
same node of a tree decomposition.

Lemma 51. Let B be a bridge in G produced by the 3-cut {w, x, y} such that B does
not contain z. If the vertex cut {w, x, y} produces only two bridges, B contains the
graph depicted in Figure 3.22 as a minor.

x

w

y

Figure 3.22: A minor of a bridge in G with a node of degree 3 in a tree decomposition.

Proof. Suppose that B does not contain . Then B does not contain an edge xy,
because B has a trivial bridge as a minor and this minor with the edge xy form .
Because B does not contain the edge xy, B must be nontrivial by the previous lemma.
Thus, B contains at least one of the graphs in Figures 3.23a, c and d as a minor. The
graph is a minor of the graphs in Figures 3.23c and 3.23d (obtained by contracting
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the dashed edge), thus B does not contain any of the graphs in Figures 3.23c and d
as a minor. Then B contains the graph in Figure 3.23a as a minor. By Lemma 50, B
is not equal. Moreover, B does not contain the graph in Figure 3.23b as a minor (the
graph in Figure 3.23b contains as a minor obtained by contracting the dashed
edges).

x

w

y

x

w

y

x

w

y

a) c) d)

x

w

y

b)

v1

v2

Figure 3.23: Some of possible minors of the bridge B that contains the graph as
a minor.

Thus, B contains a subgraph M that is a subdivision of the graph in Figure 3.23a.
Denote Pv1x the path in M between x and v1, Pv1v2 the path in M between v1 and
v2 that does not contain w and similarly Pv1w, Pv2w and Pv2y.

Suppose that there exists u that is an inner vertex of the path Pv1x. From the
3-connectivity of G and Corollary 2, there exist three interally vertex-disjoint paths
between u and vertices w, x and y. Since u has degree 2 in M , there exists a path P
between u and some vertex u′ ∈M \Pv1x avoiding M , i.e., all inner vertices of P are
in B \M (P can be also a path with no inner vertices—an edge). The vertex u′ is not
equal to y or v2 and is not an inner vertex of paths Pv2y, Pv1v2 and Pv2w, otherwise
B contains one of the graph in Figures 3.23b and c as a minor. The vertex u′ cannot
be an inner vertex of Pv1w, because otherwise B would contain as a minor (see
Figure 3.24a). Thus, the only possibility is, that u′ = w.

Similarly, if there exists u that is an inner vertex of the path Pv2y, there exists
a path from u to w avoiding M and there is no such path to any other vertex in
M \ Pv2y.

x

w

y

v1

v2

x

w

y

v1

v2

x

w

y

v1

v2

a) b) c)

Figure 3.24: If B has an internal vertex in the path Pv1w, it contains as a minor.

Suppose that there exists u that is an inner vertex of Pv1w. Then there exists a
path from u to u′ ∈M \ Pv1w avoiding M . By the previous reasoning, we know that
u′ cannot be an inner vertex of Pv1x or Pv2y, because otherwise B contains one of the
graphs in Figures 3.23b and 3.23c as a minor. By the same argument u′ 6= y. If u′

is v2, an inner vertex of Pv1v2 , Pv2w or y, B contains as a minor (see Figure 3.24).
Therefore such a vertex u exist. Similarly, there is no inner vertex of Pv2w.
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Suppose that there exists u that is an inner vertex of Pv1v2 . By the previous
reasoning, we know that there exists a path from u to u′ ∈M \Pv1v2 avoiding M and
u′ is not an inner vertex of any of the paths Pv1w, Pv2w, Pv1x and Pv2y. If u′ equals x
of y, B contains one of the graphs in Figures 3.23b and 3.23c as a minor, thus the
only possibility is u′ = w.

We conclude that there are no inner vertices in Pv1w and Pv2w and the only
possible paths from inner vertices of Pv1v2 , Pv2y and Pv1x avoiding M , are paths to
the vertex w and paths with both ends in the same path. Consequently, there must
exist at least one vertex u in B \M , because otherwise B is equal to the graph in
Figure 3.21b (which is impossible by the previous lemma). By Corollary 2 there exist
internally vertex-disjoint paths from the vertex u to w, x and y in B, thus there exist
internally vertex-disjoint paths P1, P2, P3 from u to distinct vertices u1, u2, u3 ∈ M
respectively, such that all inner vertices of the paths P1, P2, P3 are in B \M .

The set {u1, u2, u3} cannot be equal to {w, x, y}, otherwise u is not a part of
the bridge B and the the 3-cut {w, x, y} produces 3 bridges. Note that paths P1, P2

and P3 create paths between u1 and u2, u1 and u3 and u2 and u3, that avoids M .
Therefore any two of the vertices u1, u2 and u3 cannot be equal to v1 and y or to v2

and x (otherwise B contains the graph in Figure 3.23b or the graph in Figure 3.23c
as a minor). Thus, if none of u1, u2 and u3 is an inner vertex of the path Pv1v2 , Pv2y

or Pv1x, they are equal to x, v1 and w, to v2, y and w or to v1, v2 and w. Then B
contains as a minor, as demonstrated in Figures 3.25a and b.

x

w

y

v1

v2

x

w

y

v1

v2

x

w

y

v1

v2

a) b) c)

x

w

y

v1

v2

d)

u

u

Figure 3.25: If B contains a vertex u, it has as a minor.

Without loss of generality, we assume that u1 is an inner vertex of one of the
paths Pv1v2 , Pv2y and Pv1x and the vertices u2 and u3 are either contained in the
same path or equal to w. Then, if u3 = w, the vertices u1 and u2 are, in the same
path. By contracting them into distinct ends of the path, we obtain one of the cases
already analyzed (see Figures 3.25a,b). Thus, B contains as a minor.

The only remaining possibility is, that all the three vertices u1, u2 and u3 are
contained in the same path P which is one of the paths Pv1v2 , Pv2y and Pv1x. Without
loss of generality, suppose that vertex u2 is between vertices u1 and u3 in the path P .
Then there must exist an inner vertex w′ in the path between u1 and u3, and a path
from w′ to w avoiding M , otherwise ends of P form a 2-cut. But then B contains

as a minor: We can contract vertices w′ and u2 into single vertex and vertices u1
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and u2 to the ends of P and then, by contractions shown in Figures 3.25c and d, we
obtain .

So we proved that bridge B must contain the graph as a minor.

Observation 52. If the vertex cut {w, x, y} produces three bridges, then two of them
that do not contain the vertex z form the a subgraph that contains the graph in
Figure 3.22 as a minor.

Proof. One bridge contains the trivial bridge as a minor and the other contains the
edge xy as a minor. These substructures form the graph .

Lemma 53. Let B be a bridge in G produced by the 3-cut {w, x, y} such that B does
not contain z. If B contains K̃4 avoiding the vertex w, i.e., B contains K̃∅4 , K̃x

4 , K̃y
4

or K̃xy
4 , B contains the graph H in Figure 3.26 as a minor.

x

w

y

Figure 3.26: A minor of a bridge with K̃4 that not containing w.

Proof. Suppose first that B contains K̃xy
4 . Consider K̃xy

4 with vertices of degree
three denoted v1, v2, v3 and v4 and the paths between x and v1 and between y and
v3 denoted Px and Py respectively, such that sum of lengths of paths Px and Py is
minimal. Let the subgraph of K̃xy

4 consisting of the vertices v1, v2, v3 and v4 and paths
between them that do not contain vertices x and y be denoted C ′ (see Figure 3.27).

There is no path between a vertex in C ′ \ v1 and a vertex v′1 on Px \ v1 avoiding
K̃xy

4 , otherwise there exists K̃xy
4 with v′1 as a vertex of degree 3 instead of the vertex

v1 (see Figure 3.28). Such K̃xy
4 cannot exist by the choice of K̃xy

4 (the subpath of Px

v1

v2

v3

v4

x

y

Px

Py

C ′

Figure 3.27: Notation used in the proof of Lemma 53 for K̃xy
4 .
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1

v1

v2

v3

v4

x

y

Px

Py

v′
1

Figure 3.28: A path between the vertex v′1 and a vertex in C ′ yields K̃xy
4 with shorter

path from x.

between v′1 and x is shorter than Px). A symmetric argument yields that there is no
path between a vertex in C ′ \v3 and a vertex v′3 on Py \v3 avoiding K̃xy

4 . Thus, there
exists a path from w to a vertex u′ ∈ C ′ \ {v1, v3} avoiding K̃xy

4 , otherwise vertices
v1 and v3 form a 2-cut. But then, by contracting the whole paths Px and Py into
vertices x and y respectively and contracting u into one of the vertices v2 and v4, we
obtain a subdivision of the graph depicted in Figure 3.26.

Suppose that the bridge B contains K̃∅4 . Let the vertices of degree 3 of K̃∅4 be
denoted v1, v2, v3 and v4 as shown in Figure 3.29, let Pvivj

denote a path between

vi and vj in K̃∅4 corresponding to the edge between vi and vj in K̃∅4 . Since G is 3-
connected, from Corollary 2, it follows that there exist paths Pw, Px and Py from
vertices w, x and y respectively to three distinct vertices in K̃∅4 , such that Px, Py and
Pw avoid K̃∅4 . If there exist Pw, Px and Py such that the vertices their ends are not
in the same path Pvivj

, it is possible to contract the ends of Pw, Px and Py in K̃∅4
into three distinct vertices among the vertices v1, v2, v3 and v4. Then, by contracting
paths Px and Py we obtain a subdivision of H depicted in Figure 3.26.

Now suppose that B does not contain any K̃∅4 such that there exist paths Pw, Px

and Py, that do not have their ends in the same path Pvivj
in K̃∅4 .

Then, all paths from vertices x, y and w to a vertex in K̃∅4 avoiding K̃∅4 have
their ends in the same path Pvivj

. Without loss of generality suppose that in Pv1v2 .

v1

v2

v3

v4

Px

Py

Pw

Figure 3.29: Notation used in the proof of Lemma 53 for K̃∅4 .
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u1

v1

v2

v3

v4

u2

u1

v1

v2

u2 = v3 v4

a) b)

Figure 3.30: Three internally vertex disjoint paths to v3.

Since there must exist internally vertex disjoint paths from w, x and y to the vertex
v3, by Corollary 2, there exists a path Q from a vertex u1 in Pv1v2 to a vertex u2

in K̃∅4 \ Pv1v2 avoiding K̃∅4 . Moreover, there exists at least one path Pw, Px, or Py

with an end e1 6= u1 in the subpath of Pv1v2 between v1 and u1. Symmetrically, there
exists at least one path Pw,Px, or Py with an end e2 6= u1 in the subpath of Pv1v2

between v2 and u1 (see Figure 3.30a). Then the ends of the paths Pw,Px, and Py can
be contracted into distinct vertices among v1, v2 and u1. Note that vertex u2 can
always be contracted into v3 or v4. Without loss of generality suppose, that u2 = v3.
Then there exists K̃∅4 such that the ends of the paths Pw, Px and Py are not in the
same path Pvivj

, as shown in Figure 3.30b.
Observe that if you consider only one path Px consisting of a single vertex x or

Py consisting of y in the proof for K̃∅4 , i.e., the K4-minor is K̃x
4 or K̃y

4 , the same
conclusion can be obtained.

Lemma 54. If a tree decomposition of an obstruction G contains a node of degree
3, G is isomorphic to the graph G shown in Figure 3.31.

Figure 3.31: The only obstruction with a node of degree 3 in its tree decomposition
and its (more symmetric) redrawing.
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x
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z

x

y
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w

a) 2-cuts in the graph G \ w. b) A minor of the bridge produced by {w, x, y}.

Figure 3.32:

Proof. The graph G is an obstruction for T apex
2 . It is enough to prove that every

obstruction G for T apex
2 with a node of degree 3 in its tree decomposition contains G

as a minor, because an obstruction cannot contain another obstruction as a proper
minor.

Since G is an obstruction, the graph G′ obtained from G by deleting the vertex
w contains K̃4. Vertices x and y, x and z and y and z form 2-cuts in G′, every K̃4

in G′ has all vertices of degree 3 in the same bridge produced by one of these 2-cuts
that does not contain all three vertices x, y and z (see Figure 3.32a). Without loss of
generality, suppose that K̃4 is contained in the bridge not containing z determined by
2-cut {x, y}. Then the bridge B not containing z determined by the 3-cut {w, x, y},
contains K̃4 that does not contain the vertex w. By Lemma 53, B contains the graph
given in Figure 3.26 as a minor. By Lemma 51 and Observation 52 applied to the
bridges given by the cuts {w, x, z} and {w, y, z}, the bridge not containing z given
the by 3-cut {w, x, y} has the graph in Figure 3.32b as a minor. Thus, G contains G
as a minor.

Figure 3.33: Structure of 3-connected obstructions with path-width three.

At this point, we have classified all 3-connected obstructions with nodes of de-
gree greater than two in a tree decomposition. Thus, all remaining obstructions have
path-width three. Moreover, it can be shown that such obstructions are comprised of
three vertex-disjoint paths with some chords between them such that the paths inter-
connect triangles or two vertices of degree 3 (see Figure 3.33). All such obstructions
can be generated by a computer.
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We have found the three 3-connected obstructions with path-width three depicted
in Figure 3.34, but we have neither an independent program to verify the correctness
nor a computer-free proof.

Figure 3.34: Found 3-connected obstructions with path-width three.
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