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Introduction

Computational fluid dynamics (CFD) as a branch of fluid dynamics, plays an im-
portant role in many technical disciplines - airplane industry, bladed devices (tur-
bines, compressors, pumps), civil engineering (stability of bridges, landing stages,
oil platforms), medicine (blood flow in vessels, air flow in vocal chords) etc. An-
alytical methods are capable of computing a solution only for general and not
too complicated problems. In real applications however, there is a need for more
complex models that describe real situations more closely. There exist commercial
pieces of software, designed to solve such problems numerically (ANSYS, NAS-
TRAN, FLUENT, etc.). For the numerical simulation carried out and described in
this work, we use FEMFLUID [9] software developed by doc. RNDr. Petr Sváček,
Ph.D from the Faculty of Mechanical Engineering of Czech Technical University.

Mathematical model of flow, represented by the system of partial differential
equations, is described in Chapter 1, which closely follows [1], [2]. In order to
handle time-dependency of a computational domain, the arbitrary Lagrangian-
Eulerian method is described and applied to the system of equations describing the
fluid flow in Chapter 2. For the viscous incompressible model, derived in Chapter
3, this system consists of the Navier-Stokes equations and the continuity equation.
The discretization of the ALE formulation of this system is thoroughly described
in Chapter 4.

From the range of numerical techniques that can be applied to solve this prob-
lem, we opt for the finite element method (FEM) for the space discretization and
the finite difference method (FDM) for the time discretization, which turns out to
be suitable approach for a problem with complicated geometry and mixed bound-
ary conditions. Among other techniques that can be successfully applied we can
mention e.g. the spectral method or the finite volume method. Since our model
example is the flow around a moving airfoil, where the Reynolds number (described
in Section 3.3) can be rather high, we need to employ suitable stabilization into
our discrete model.

Application of the stabilized FEM to the system of equations describing the
viscous incompressible flow in the ALE formulation leads to a system of nonlinear
algebraic equations. However, the process of linearization known as Oseen’s itera-
tive process is applied in order to obtain a sequence of systems of linear algebraic
equations. These equations are then solved by a sufficiently fast linear solver.

In our model example we limit ourselves to a lower Reynolds number in order to
make the computation possible on an average personal computer. Graphic outputs
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from the computation are presented at the end of the work in Chapter 5 and on
the attached DVD.
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Chapter 1

Equations describing the flow

We consider a time interval (0, T ) and space domain Ωt ⊂ R3 occupied by a fluid
at time t. By M the space-time domain in consideration is denoted:

M = {(x , t) ; x ∈ Ωt, t ∈ (0, T )} . (1.1)

Moreover we assume that M is an open set.

1.1 Description of the flow

In Computational Fluid Dynamics there exist two classical approaches to the
description of the flow, the Lagrangian description and the Eulerian description.
Third, more modern approach, the so-called arbitrary Lagrangian-Eulerian de-
scription, combines the two above, making use of their respective advantages, while
diminishing their drawbacks.

The idea of the Lagrangian description is to monitor each fluid particle along
its pathline (i.e. the curve which the particle traverses in time). If we wanted to
set a computational mesh using this description, it would mean to firmly connect
nodes of the mesh with certain particles (i.e. the node and the particle would have
to share their space coordinates) and move the mesh accordingly to the motion of
the fluid as to preserve the node - corresponding particle connection at each time
instant. The obvious drawback is the necessity of perform re-meshing operations
very frequently, especially when dealing with large distortion of the fluid.

The Eulerian description focuses on fluid particles that move through fixed points
within a computational domain. In other words, whereas in the Lagrangian descrip-
tion the particle was fixed and the point in space it was currently occupying was
changing, now it is the point in space that holds still and the particle in considera-
tion is changing and is always corresponding to the one that is currently occupying
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the considered point in space. From this idea it follows that a computational mesh
for this description would be fixed with respect to time.

It is not difficult to imagine that formulation of some basic mechanical princi-
ples could be easier for the moving particle, that is using the Lagrangian approach.
However, the Eulerian description is used for the formulation of conservation laws
as will be seen in the following sections. Lastly, using this approach, large distor-
tions of fluid domain can be handled with relative ease.

The suitable description for our purposes is the arbitrary Lagrangian-Eulerian
one, but we shall proceed now with basics of the Lagrangian and the Eulerian
descriptions and their relation. We shall present the equations describing the flow
derived from conservation laws in their integral forms using the Eulerian approach,
which is then easy to reformulate using the arbitrary Lagrangian-Eulerian descrip-
tion in the next chapter.

Lagrangian description

We specify the particle in consideration using the mapping

ϕ (X, t0; t) (1.2)

which determines the current (at time t) position x ∈ Ωt of the particle that
occupies the point X at time t0, i.e.

x = ϕ (X, t0; t) , X ∈ Ωt0 , (1.3)

where we can omit the reference time t0 and write

x = ϕ (X, t) . (1.4)

Customarily the components X1, X2, X3 of the reference point X are called the
Lagrangian coordinates and the components x1, x2, x3 of the point x in the current
configuration Ωt are called the Eulerian coordinates. The velocity and acceleration
of the particle given by the reference point X are defined as

v̂ (X, t) =
∂ϕ

∂t
(X, t0; t) , (1.5)

â (X, t) =
∂2ϕ

∂t2
(X, t0; t) , (1.6)

provided the above derivatives exist.
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Eulerian description

Using once again the mapping ϕ defined in (1.2), relation (1.4) and Lagrangian
definition of velocity (1.5), we can express the velocity of the fluid particle passing
through the point x at time t:

v (x, t) = v̂ (X, t) =
∂ϕ

∂t
(X, t) , (1.7)

where x = ϕ (X, t) .
We shall demand the following regularity from the velocity function:

v ∈
[

C1 (M)
]3
. (1.8)

We can pass to the Eulerian coordinates from the Lagrangian ones by solving the
following initial value problem:

∂x

∂t
= v (x, t) , x (t0) = X. (1.9)

Under assumption (1.8), the problem (1.9) has exactly one maximal solution
ϕ (X, t0, t) for each (X, t0) ∈ M defined for t from a certain subinterval of (0, T ).
Moreover, in its domain of definition, the mapping ϕ has continuous first order
derivatives with respect to X1, X2, X3, t0, t and continuous second order deriva-
tives ∂2ϕ/∂t∂Xi, ∂

2ϕ/∂t0∂Xi, i = 1, 2, 3. These statements result from theory of
classical solutions of ordinary differential equations.

Under assumption (1.8), the acceleration of the particle passing through the
point x at time t can be expressed as

a (x, t) =
∂v

∂t
(x, t) +

3
∑

i=1

vi (x, t)
∂v

∂xi
(x, t) . (1.10)

This, written in a short form reads

a =
∂v

∂t
+ (v · grad) v =

∂v

∂t
+ (v · ∇) v, (1.11)

where the differentiation represented by the symbol ∇ is with respect to the spatial
variables x1, x2, x3.

1.2 The Transport theorem

We wish to study some physical quantity which is transported by fluid particles
in our space-time domain M. Let a function F = F (x, t) : M −→ R represent
some physical quantity in the Eulerian coordinates, and let us consider a system
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of fluid particles filling a bounded domain V (t) ⊂ Ωt at time t. By F we denote
the total amount of the quantity represented by the function F contained in V (t):

F (t) =

∫

V(t)

F (x, t) dx. (1.12)

For the formulation of fundamental equations describing the flow we need to cal-
culate the rate of change of the quantity F bound on the system of particles
considered. In other words we shall be interested in the derivative

dF (t)

dt
=

d

dt

∫

V(t)

F (x, t) dx. (1.13)

In the following we shall suppose that (1.8) holds.

Lemma 1.1

Let t0 ∈ (0, T ) ,V (t0) be a bounded domain and let V (t0) ⊂ Ωt0
. Then there exist

an interval (t1, t2) ⊂ (0, T ), t0 ∈ (t1, t2) such that the following conditions are
satisfied:

a) The mapping ’t ∈ (t1, t2) ,X ∈ V (t0) −→ x = ϕ (X, t0; t) ∈ V (t)’ has
continuous first order derivatives with respect to t, X1, X2, X3 and continuous
second order derivatives ∂2ϕ/∂t∂Xi, i = 1, 2, 3.

b) The mapping ’X ∈ V (t0) −→ x = ϕ (X, t0; t) ∈ V (t)’ is for all t ∈ (t1, t2)
a continuously differentiable one-to-one mapping of V (t0) onto V (t) with
continuous and bounded Jacobian J (X, t) which satisfies the condition

J (X, t) > 0 ∀X ∈ V (t0) , ∀t ∈ (t1, t2) .

c) The inclusion
{

(x, t) ; t ∈ [t1, t2] , x ∈ V (t)
}

⊂ M

holds and therefore the mapping v has continuous and bounded first order
derivatives on {(x, t) ; t ∈ (t1, t2) , x ∈ V (t)} with respect to all variables.

d) v (ϕ (X, t0; t) , t) = ∂ϕ

∂t
(X, t0; t) ∀X ∈ V (t0) , ∀ t ∈ (t1, t2) .

For proof, see [1].

Theorem 1.2 - The transport theorem

Let conditions from Lemma 1.1, a)-d) be satisfied and let the function F = F (x, t)
have continuous and bounded first order derivatives on the set
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{(x, t) ; t ∈ (t1, t2) , x ∈ V (t)}. Let F (t) =
∫

V(t)
F (x, t) dx.

Then for each t ∈ (t1, t2) there exists a finite derivative

dF

dt
(t) =

d

dt

∫

V(t)

F (x, t) dx

=

∫

V(t)

[

∂F

∂t
(x, t) + div (Fv) (x, t)

]

dx. (1.14)

For proof, see [2].

1.3 The continuity equation

The density of fluid is a function

ρ : M −→ (0,+∞)

which allows us to determine the mass m (V; t) of the fluid contained in any sub-
domain V ⊂ Ωt :

m (V; t) =

∫

V

ρ (x, t) dx. (1.15)

Assumptions 1.3

In what follows, let ρ ∈ C1 (M) and as before let v ∈ [C1 (M)]
3
. We shall consider

an arbitrary time instant t0 ∈ (0, T ) and a moving piece of fluid formed by the
same particles at each time instant and filling at time t0 a bounded domain V ⊂
V ⊂ Ωt0 with a Lipschitz-continuous boundary ∂V called the control volume in
the domain Ωt0 . By V (t) we denote the domain occupied by this piece of fluid at
time t ∈ (t1, t2), where (t1, t2) is a sufficiently small interval containing t0 with
properties from Lemma 1.1.

Since the domain V (t) is formed by the same particles at each time instant, the
conservation of mass can be formulated in the following way: The mass of the piece
of fluid represented by the domain V (t) does not depend on time t. This means
that

dm (V (t) ; t)

dt
= 0, t ∈ (t1, t2) , (1.16)

where with respect to (1.15) we have

m (V (t) ; t) =

∫

V(t)

ρ (x, t) dx. (1.17)
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From Theorem 1.2 for a function F := ρ we get the identity

∫

V(t)

[

∂ρ

∂t
(x, t) + div (ρv) (x, t)

]

dx = 0, t ∈ (t1, t2) . (1.18)

If we substitute t := t0 and take into account that V (t0) = V, we conclude that

∫

V

[

∂ρ

∂t
(x, t0) + div (ρv) (x, t0)

]

dx = 0 (1.19)

for an arbitrary t0 ∈ (0, T ) and an arbitrary control volume V ⊂ Ωt0 . We use the
following Lemma in order to derive the differential form of the law of conservation
of mass:

Lemma 1.4

Let Ω ⊂ RN be an open set and let f ∈ C (Ω). Then the following holds:

f ≡ 0 in Ω if and only if
∫

V
f (x) dx = 0 for any bounded open set V ⊂ V ⊂ Ω.

Now we use Lemma 1.4 and obtain the differential form of the law of conservation
of mass called the continuity equation:

∂ρ

∂t
(x, t) + div (ρ (x, t) v (x, t)) = 0, x ∈ Ωt, t ∈ (0, T ) . (1.20)

1.4 The equations of motion

We proceed by deriving basic dynamical equations describing flow motion from the
law of conservation of momentum which can be formulated in this way:

The rate of change of the total momentum of a piece of fluid formed by the same
particles at each time and occupying the domain V (t) at time instant t is equal to
the force acting on V (t) .

Let assumptions 1.3 be satisfied. The total momentum of particles contained in
V (t) is given by

H (V (t)) =

∫

V(t)

ρ (x, t) v (x, t) dx. (1.21)

Moreover, denoting by F (V (t)) the force acting on the volume V, the law of
conservation of momentum reads

dH (V (t))

dt
= F (V (t)) , t ∈ (t1, t2) . (1.22)
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Using Theorem 1.2 for functions F := ρvi, i = 1, 2, 3, we get

∫

V(t)

[

∂

∂t
(ρ (x, t) vi (x, t)) + div (ρ (x, t) vi (x, t) v (x, t))

]

dx = Fi (V (t)) , (1.23)

i = 1, 2, 3, t ∈ (t1, t2) .

Taking into account that t0 ∈ (0, T ) is an arbitrary time instant and Vt0 = V ⊂
V ⊂ Ωt0 , where V is an arbitrary control volume, we get the law of conservation of
momentum in the form where we write t instead of t0:

∫

V

[

∂

∂t
(ρ (x, t) vi (x, t)) + div (ρ (x, t) vi (x, t) v (x, t))

]

dx = Fi (V; t) , (1.24)

i = 1,2,3, for an arbitrary t ∈ (0, T ) and an arbitrary control volume V ⊂ V ⊂ Ωt.

According to [1], the components Fi (V; t) , i = 1, 2, 3, of the vector F (V; t) can
be expressed as

Fi (V; t) =

∫

V

ρ (x, t) fi (x, t) dx+

∫

∂V

3
∑

j=1

τji (x, t)nj (x) dS, i = 1, 2, 3, (1.25)

assuming that τij ∈ C1 (M) and fi ∈ C (M) , (i, j = 1, 2, 3). Here τji are compo-
nents of the stress tensor T and fi are components of the density of the volume
force f. Substituting this into (1.24), we get

∫

V

[

∂

∂t
(ρ (x, t) vi (x, t)) + div (ρ (x, t) vi (x, t) v (x, t))

]

dx = (1.26)

∫

V

ρ (x, t) fi (x, t) dx+

∫

∂V

3
∑

j=1

τji (x, t)nj (x) dS, i = 1, 2, 3, (1.27)

for each t ∈ (0, T ) and an arbitrary control volume V in Ωt. Moreover, applying
Green’s theorem and Lemma 1.4, we obtain the desired equation of motion of a
general fluid in the differential conservative form

∂

∂t
(ρvi) + div (ρviv) = ρfi +

3
∑

j=1

∂τji
∂xj

, i = 1, 2, 3. (1.28)

This can be written as

∂

∂t
(ρv) + div (ρv⊗ v) = ρf + div T , (1.29)
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where ⊗ denotes the tensor product :

a⊗ b =





a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3



 ,

and div (a⊗ b) is a vector quantity:

div (a⊗ b) =

(

3
∑

i=1

∂

∂xi

aib1,
3
∑

i=1

∂

∂xi

aib2,
3
∑

i=1

∂

∂xi

aib3

)T

.

1.5 The Navier-Stokes equations

The relation between the stress tensor and other quantities describing fluid flow,
the velocity and its derivatives in particular, represent the so-called rheological
equations of the fluid. For the derivation of the Navier-Stokes equations we shall
use

T = (−p + λdivv) I + 2µD (v) , (1.30)

where D is the deformation velocity tensor:

D = D (v) = (dij)
3
i,j=1 , dij =

1

2

(

∂vi

∂xj
+
∂vj

∂xi

)

, (1.31)

λ, µ are constants or scalar functions of thermodynamical quantities, λ and µ are
called the first and the second viscosity coefficient respectively. For the assump-
tions under which we can write (1.30) see [1]. Altough viscosity coefficients can be
functions of thermodynamical quantities (most important of which is θ, the abso-
lute temperature) we shall treat them as if they were constants. Let assumptions
1.3 be satisfied and let us assume that

∂v

∂t
∈ [C (M)]3 ,

∂2v

∂xi∂xj
∈ [C (M)]3 (i, j = 1, 2, 3) . (1.32)

Now let us substitute relation (1.30) into the general equations of motion (1.29)
with the assumption of constant viscosity coefficients and assumptions (1.32). We
come to the Navier-Stokes equations in the form

∂(ρv)

∂t
+ div (ρv⊗ v) = ρf −∇ p+ µ△v + (µ+ λ) ∇div v. (1.33)

For details see [2].
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1.6 The energy equation

Now let us derive a differential equation equivalent to the law of conservation of
energy. As in the preceding sections, we consider a piece of fluid represented by a
control volume V (t) satisfying assumptions 1.3. The law of conservation of energy
can be formulated as follows:

The rate of change of the total energy of the fluid particles, occupying the domain
V (t) at time t, is equal to the sum of powers of the volume force acting on the
volume V (t) and the surface force acting on the surface ∂V (t), and of the amount
of heat transmitted to V (t).
Now let us denote by E (V (t)) the total energy of the fluid particles contained in
the domain V (t) and by Q (V (t)) the amount of heat transmitted to V (t) at time
t. Taking into account the character of volume and surface forces involved, we get
the identity representing the law of conservation of energy:

d

dt
E (V (t)) =

∫

V(t)

ρ (x, t) f (x, t) · v (x, t) dx (1.34)

+

∫

∂V(t)

3
∑

i,j=1

τji (x, t) nj (x) vi (x, t) dS + Q (V (t)) .

Following relations hold:

a) E (V (t)) =

∫

V(t)

E (x, t) dx, (1.35)

b) E = ρ

(

e+
|v|2

2

)

,

c) Q (V (t)) =

∫

V(t)

ρ (x, t) q (x, t) dx−

∫

∂V(t)

φq (x, t) · n (x) dS.

Here E is the total energy, e is the density of the specific internal energy
(related to the unit mass) associated with molecular and atomic behavior, |v|2 /2
is the density of the kinetic energy, q represents the density of heat sources (again
related to the unit mass) and φq is the heat flux.

Let assumptions 1.3 hold and further let τij ,
(

φq

)

i
∈ C1 (M) and fi, q ∈ C (M)

(i, j = 1, 2, 3) . Using this, relations (1.35) a)-c), Theorem 1.2, Green’s theorem
and Lemma 1.4, we derive from (1.34) the differential energy equation, where we
take advantage of (1.30):

∂E

∂t
+ div (Ev) = ρf · v − div (pv) + div (λv divv) + div (2µD (v) v) + ρq − divφq.

(1.36)
For details see [2].
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1.7 Thermodynamical relations

In order to complete the equations describing the flow, some other relations shall
be added. The system now contains seven unknown quantities: v1, v2, v3, ρ, e, θ, p,
but only 5 equations (scalar continuity equation, vector Navier-Stokes equations
and scalar energy equation), i.e. (1 + 3 + 1) = 5.
From this we see, that additional two equations should to be included.

Basic Thermodynamical Quantities

The absolute temperature θ, the density ρ and the pressure p are called the state
variables. All these quantities are positive scalar functions. We consider only the
so-called perfect gas or ideal gas whose state variables satisfy the following equation
of state

p = Rθρ, (1.37)

where R is the gas constant, which is defined as

R = cp − cv. (1.38)

Here cp denotes the specific heat at constant pressure, i.e. the ratio of the increment
of the amount of heat related to the unit mass, to the increment of temperature
at constant pressure. Analogously cv denotes the specific heat at constant volume.
Experiments show that cp > cv, so thatR > 0, and that cp and cv can be treated like
constants for a relatively large range of temperature. The internal energy related
to the unit mass is defined by

e = cvθ, (1.39)

which explains the meaning of the internal energy: it is the amount of heat it
would have to be transmitted out of the fluid so that its temperature would reach
(absolute) zero, volume being kept constant during the whole process.

With respect to the above relations, we can express the internal energy as

e = cpθ − Rθ. (1.40)

Another important characteristic of the flow is so-called Mach number, which is
defined as

M =
|v|

a
, (1.41)

where v is the flow velocity and a is the speed of sound.
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The complete system of equations describing the flow

The complete system now reads

∂ρ

∂t
+ div (ρv) = 0, (1.42)

∂(ρv)

∂t
+ div (ρv ⊗ v) = ρf −∇ p+ µ△v + (µ+ λ) ∇div v, (1.43)

∂E

∂t
+ div (Ev) = ρf · v − div (pv) + div (λv divv) + (1.44)

+ div (2µD (v) v) + ρq − divφq,

p = (cp/cv − 1)
(

E − ρ |v|2 /2
)

, (1.45)

θ =
(

E/ρ− |v|2 /2
)

/cv. (1.46)

This system is simply called the compressible Navier-Stokes equations for a heat-
conductive perfect gas. Equations (1.45) and (1.46) follow from (1.37) - (1.40)
and (1.35).
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Chapter 2

Formulation of the problem in a

time-dependent domain

In this chapter we shall be concerned with the arbitrary Lagrangian-Eulerian
(ALE) method proposed in [5] to reformulate the above equations in time-dependent
domain. Henceforth, the symbol Ω0 shall represent the space domain occupied by
a fluid at time 0.

2.1 The ALE method

Let us denote by Ωref a suitably chosen domain, which will be further referred
to as the reference domain or the reference configuration. We can introduce the
family of diffeomorphic mappings At for t ∈ [0, T ):

At : Ωref ⊂ R
3 onto
−−→ Ωt ⊂ R

3, x = x (y, t) = At (y) ∈ Ωt, y ∈ Ωref . (2.1)

This means that for each t ∈ [0, T ) we have

∀y ∈ Ωref ∃ ! x ∈ Ωt, x = At (y) , (2.2)

∀x ∈ Ωt ∃ ! y ∈ Ωref , y = A−1
t (x) ,

At ∈
[

C1
(

Ωref

)]3
,

A−1
t ∈

[

C1
(

Ωt

)]3
.

Further, we assume that for all t ∈ [0, T ) the mapping At possesses the following
two properties:

∂At/∂t ∈ C
(

Ωref

)

(2.3)

and
At (∂Ωref ) = ∂Ωt. (2.4)

The mapping At thus specified is called the arbitrary Lagrangian-Eulerian (ALE)
mapping.
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Figure 2.1: The ALE mapping

The Jacobian matrix JAt
of the ALE mapping At exists and

JAt
(y) = det (JAt

(y)) ,where JAt
(y) =







∂x1

∂y1

∂x1

∂y2

∂x1

∂y3
∂x2

∂y1

∂x2

∂y2

∂x2

∂y3
∂x3

∂y1

∂x3

∂y2

∂x3

∂y3






(y, t) (2.5)

is the Jacobian determinant of the mapping At. We define the domain velocity ŵ

as

ŵ (y, t) =
∂x (y, t)

∂t
, y ∈ Ωref , t ∈ [0, T ) . (2.6)

It can be expressed in terms of current domain coordinates, using the inverse
mapping A−1

t (x) : Ωt → Ωref , as

w (x, t) = ŵ
(

A−1
t (x) , t

)

=
∂x

∂t

(

A−1
t (x) , t

)

, x ∈ Ωt, t ∈ [0, T ) . (2.7)

We define the ALE trajectory Ty for every y ∈ Ωref as

Ty = {x (y, t) , t ∈ [0, T )} .

Let f : {(x , t) ; x ∈ Ωt, t ∈ [0, T )} → R. In what follows we shall denote by f̂ the
corresponding function defined in the ALE reference domain, i.e.

f̂ : Ωref × [0, T ) → R, f̂ (y, t) = f (At (y) , t) . (2.8)

We define the ALE derivative of the function f as the time derivative along Ty

DA

Dt
f (x, t) :=

∂

∂t
f̂
(

A−1
t (x) , t

)

, x ∈ Ωt, t ∈ [0, T ) , (2.9)
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provided the derivative on the right-hand side exists. By the chain rule we get

DA

Dt
f (x, t) =

∂

∂t
f (x, t) + ∇f (x, t) ·

∂x
(

A−1
t (x) , t

)

∂t
(2.10)

=
∂

∂t
f (x, t) +

3
∑

i=1

∂f

∂xi
(x, t)wi (x, t)

=
∂

∂t
f (x, t) + w · ∇f (x, t) .

The important relation between the Jacobian determinant JAt
and the domain

velocity w is given by the following theorem.

Theorem 2.1

Let the domain velocity ŵ (y, t) have continuous first order derivatives with respect
to y1, y2, y3 for y ∈ Ωref , t ∈ [0, T ). Then the function JAt

(y) has a continuous
partial derivative ∂JAt

(y) /∂t for y ∈ Ωref , t ∈ [0, T ) and

1

JAt
(y)

∂JAt

∂t
(y) = divw (x, t) , where x = At (y) , (2.11)

holds for all y ∈ Ωref , t ∈ [0, T ).

Proof

The Jacobian determinant JAt
can be expanded by its i-th row:

JAt
(y) =

3
∑

α=1

∂xi

∂yα
(y, t) Di,α (y, t) , (2.12)

where Di,α denotes the co-factor of the element ∂xi/∂yα. As the co-factors of el-
ements on the i-th row do not depend on any other element on the i-th row,
from (2.12) we get

∂JAt
(

∂xi

∂yα

) = Di,α. (2.13)

In order to calculate the derivative ∂JAt
/∂t, we use (2.12), where the derivatives

∂xi/∂yα depend on t:

∂JAt

∂t
=

3
∑

i,α=1

∂JAt

∂
(

∂xi

∂yα

)

∂

∂t

(

∂xi

∂yα

)

=

3
∑

i,α=1

Di,α
∂2xi

∂yα∂t
. (2.14)

Now, using (2.6), (2.7) and the assumption, we can write the following:

∂2xi

∂yα∂t
(y, t) =

∂

∂yα
wi (At (y) , t)

=
3
∑

j=1

∂wi

∂xj

(At (y) , t)
∂xj

∂yα

(y, t) .
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Substituting into (2.14), we have

∂JAt

∂t
=

3
∑

i,α=1

Di,α

3
∑

j=1

∂xj

∂yα

∂wi

∂xj
=

3
∑

i,j=1

(

3
∑

α=1

∂xj

∂yα
Di,α

)

∂wi

∂xj
.

In view of (2.12), from the theory of determinants we obtain

3
∑

α=1

∂xj

∂yα

Di,α = JAt
δij ,

and finally

∂JAt

∂t
= JAt

3
∑

i,j=1

δij
∂wi

∂xj
= JAt

3
∑

i=1

∂wi

∂xi
= JAt

divw. (2.15)

2

In the following, we shall assume that conditions of Theorem 2.1 are fulfilled, i.e.
that the domain velocity ŵ (y, t) has continuous first order derivatives with respect
to y1, y2, y3 for y ∈ Ωref , t ∈ [0, T ).

2.2 Equations describing the flow in the ALE

form

In what follows, we shall set Ωref = Ω0, and the ALE mapping At for t = 0 shall
be chosen as the identity mapping of Ω0 onto itself. This allows us to prove the
following lemma:

Lemma 2.2

For all y ∈ Ω0 and t ∈ (0, T )
JAt

(y) > 0.

Proof

Since we choose the ALE mapping at time t = 0 to be the identity mapping of Ω0

onto itself, we have
JAt

(y) = 1, y ∈ Ω0, t = 0.

The domain velocity ŵ (y, t) has continuous first order derivatives with respect to
y1, y2, y3 for y ∈ Ωref , t ∈ [0, T ). From this it follows that the Jacobian JAt

is
continuous with respect to time for t ∈ [0, T ). This means that it is sufficient to
show that

JAt
(y) 6= 0, y ∈ Ω0, t ∈ (0, T ) .

But since the ALE mapping At is a diffeomorphism for each t ∈ (0, T ), the Jacobi
matrix JAt

(y) has for y ∈ Ω0 full rank and thus the previous holds.
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2

The following theorem is the ALE version of Theorem 1.2.

Theorem 2.3 - The ALE transport theorem

Let t ∈ (0, T ) , V0 ⊂ V0 ⊂ Ω0 be a bounded domain, and let V (t) ⊂ Ωt be its image
under the mapping At. Let a function f : M → R be continuously differentiable
with respect to both variables in its domain of definition. Then

d

dt

∫

V(t)

f (x, t) dx =

∫

V(t)

(

DAf

Dt
+ fdivw

)

(x, t) dx. (2.16)

Proof

First we use the substitution theorem with the ALE mapping At:

∫

V(t)

f (x, t) dx =

∫

V0

f (At (y) , t)JAt
(y) dy. (2.17)

Then, having fixed reference domain V0, we can use the theorem on differentiation
of an integral with respect to a parameter:

d

dt

∫

V(t)

f (x, t) dx =

∫

V0

[(

∂f

∂t
(At (y) , t) +

3
∑

i=1

∂f

∂xi
(At (y) , t)

∂xi

∂t
(y, t)

)

×

× JAt
(y) + f (At (y) , t)

∂JAt

∂t
(y)

]

dy.

Now, using (2.7) and Theorem 2.1, we get

d

dt

∫

V(t)

f (x, t) dx =

∫

V0

[(

∂f

∂t
(At (y) , t) + fdivw (At (y) , t) +

+ w · ∇f (At (y) , t))JAt
(y)] dy.

We adjust the expression on the right-hand side using (2.10), and to the result we
shall apply the inverse substitution theorem obtaining

d

dt

∫

V(t)

f (x, t) dx =

∫

V(t)

(

DAf

Dt
+ fdivw

)

(x, t) dx.

2

We shall proceed now with the derivation of equations describing the flow in the
ALE form. Till the end of this chapter, the independent variables are omitted for
readability.
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The ALE form of the continuity equation

In Section 1.3 we derived the continuity equation in the form (1.20), which can be
rewritten using (2.10) in the following way:

DAρ

Dt
+ div (ρv) −w · ∇ρ = 0 (2.18)

We want, however, to get rid of the convective derivative (w · ∇ρ) in order to
obtain the equation in the conservative form. By an easy manipulation we get

DAρ

Dt
+ div (ρ (v−w)) + ρ div w = 0. (2.19)

We shall inspect this relation a little closer, by presenting its physical context.
First, relation (2.19) holds in Ωt, therefore we can consider a set V (t) ⊂ Ωt, an
image of a bounded domain V0 ⊂ V0 ⊂ Ω0 under the ALE mapping At. Then we
can integrate both sides of the equation (2.19) over V (t):

∫

V(t)

DAρ

Dt
+ div (ρ (v−w)) + ρ div w dx = 0. (2.20)

We continue by using Theorem 2.3. In view of assumptions 1.3, ρ meets the re-
quirements of the regularity. Thus,

0 =

∫

V(t)

DAρ

Dt
+ ρ div wdx +

∫

V(t)

div (ρ (v−w)) dx (2.21)

=
d

dt

∫

V(t)

ρ dx +

∫

V(t)

div (ρ (v−w)) dx. (2.22)

Rewriting the obtained equality with the aid of Green’s formula, we get

d

dt

∫

V(t)

ρ dx = −

∫

∂V(t)

ρ (v−w) · n dS. (2.23)

From the physical point of view, the derived relation can be formulated in the
following way:

The rate of change of the mass of the fluid piece represented by the domain
V (t)is equal to the physical flux of the mass through the boundary ∂V (t) inwards,
diminished by the non-physical flux induced by moving of the boundary ∂V (t) via
the ALE mapping.
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The ALE form of the Navier-Stokes equations

Now we want to reformulate (1.33) in the ALE reference frame. For now, we shall
use the equations in the form (1.29) in order not to have too complicated expres-
sions on the right-hand side. The similarity with the derivation of the continuity
equation in the ALE form can be seen easier when operating with scalar equations
( i.e. (1.29) written componentwise ):

∂

∂t
(ρvi) + div (ρviv) = ρfi + (divT )i , i = 1, 2, 3. (2.24)

As in the previous, we shall use (2.10) for rewriting the above equations with the
ALE derivative:

DA (ρvi)

Dt
−w · ∇ (ρvi) + div (ρviv) = ρfi + (divT )i , i = 1, 2, 3. (2.25)

By a manipulation we get

DA (ρvi)

Dt
+ div (ρvi (v−w)) + (ρvi) divw = ρfi + (divT )i , i = 1, 2, 3. (2.26)

Going back to the vector notation, we obtain

DA (ρv)

Dt
+ div (ρv⊗ (v−w)) + (ρv) divw = ρf + divT , (2.27)

which is the vector equation of motion in the conservative ALE form. If we express
the right-hand side as in Section 1.5, we get the Navier-Stokes equations in the
conservative ALE form:

DA (ρv)

Dt
+ div (ρv⊗ (v−w)) + (ρv) divw = ρf−∇ p+ µ△v + (µ+ λ) ∇div v.

(2.28)

The ALE form of the energy equation

Derivation of the conservative ALE form of the energy equation again follows the
same principle used in the derivation of the continuity equation and the Navier-
Stokes equations in the ALE form. The right-hand side does not change, only the
left-hand one does, and the resulting equation reads

DAE

Dt
+ div (E (v−w)) + E div w = ρf · v − div (pv) + div (λv divv) + (2.29)

+div (2µD (v) v) + ρq − divφq.
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Complete system of equations of heat-conductive perfect gas in the ALE

form

Since the relations from thermodynamics presented in Section 1.7 are state equa-
tions, i.e. do not contain time derivatives, they do not change under the ALE
mapping. Therefore the full system consists of the following equations:

DAρ

Dt
+ div (ρ (v−w)) + ρ div w = 0, (2.30)

DA (ρv)

Dt
+ div (ρv ⊗ (v −w)) + (ρv) divw = ρf−∇ p+ µ△v +

+ (µ+ λ) ∇div v, (2.31)

DAE

Dt
+ div (E (v −w)) + E div w = ρf · v − div (pv) (2.32)

+div (λv divv) + div (2µD (v) v) + ρq − divφq,

p = (γ − 1)
(

E − ρ |v|2 /2
)

, (2.33)

θ =
(

E/ρ− |v|2 /2
)

/cv, (2.34)

which all hold for x ∈ Ωt and t ∈ (0, T ).
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Chapter 3

Simplified model specification

In what follows, we shall confine our considerations to the case of two-dimensional
flow. This means that we shall assume that for t ∈ [0, T ) we have Ωt ⊂ R2 and
v3 (x, t) = w3 (x, t) = 0, x ∈ Ωt. Furthermore we have ∂/∂x3 = 0 and all functions
depend on x1, x2, t only.

3.1 Derivation of incompressible viscous model

In the previous chapter we have derived the system of equations of compressible
heat-conductive perfect gas in the ALE formulation. As a special case we shall
consider incompressible fluid flow with neglected volume force f and neglected
heat transfer. This model can be used for the simulation of flow of liquids, but
also for gas flow under the assumption that the velocity of the gas is not too high.
There is an experience that the incompressible model can be used for compressible
flow, if the Mach number (see Section 1.7) does not exceed 0.4. Mathematically,
our assumptions can be summarized in this way:

∂ρ

∂t
(x, t) = 0, (3.1)

∂ρ

∂xi
(x, t) = 0, i = 1, 2, (3.2)

fi (x, t) = 0, i = 1, 2, (3.3)

q (x, t) = 0, (3.4)

(φq (x, t))i = 0, i = 1, 2, (3.5)

x ∈ Ωt, t ∈ (0, T ) . (3.6)

From the first two of the above assumptions, we can see that the density ρ is a
constant, independent of time and space variables.

With these assumptions, the system of equations becomes simpler. We do not
need the thermodynamical relations any more, because the absolute temperature is
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superfluous for our considerations, and for the remaining variables (components of
velocity v and the pressure p) we have full number of equations using the Navier-
Stokes equations together with the continuity equation. Therefore, we can omit
the energy equation as well.

With ρ being a positive constant, we can rewrite the equation (2.30) in the form

div v = 0. (3.7)

Note that the independent variables in this section are omitted for the sake of read-
ability where possible. Since ρ is a positive constant, the Navier-Stokes equations
in the ALE form (2.31) can be written as

ρ

[

DAv

Dt
+ div (v⊗ (v−w)) + vdivw

]

= ρf−∇ p+ µ△v + (µ+ λ) ∇div v.

Now using (3.3) and (3.7) we have

ρ

[

DAv

Dt
+ div (v⊗ (v −w)) + vdivw

]

= −∇ p+ µ△v. (3.8)

Passing now to the kinematic pressure, i.e. the dynamic pressure p divided by the
density ρ of the fluid, which will be henceforth denoted by p and to the kinematic
viscosity ν, again the dynamic viscosity µ divided by the density of the fluid, we
come to the system of equations composed by the conservative ALE form of the
continuity equation and the Navier-Stokes equations:

∇ · v = 0 (3.9)

DAv

Dt
+ div (v ⊗ (v−w)) + v divw + ∇ p− ν△v = 0, (3.10)

which describes the incompressible flow.

For discretization however, the non-conservative form offers easier manipulation.
We can write

div (v⊗ (v−w)) + vdivw = − (w · ∇) v + div (v ⊗ v)

= [(v−w) · ∇] v, (3.11)

and thus we get

∇ · v (x, t) = 0

DAv (x, t)

Dt
+ [(v (x, t) −w (x, t)) · ∇] v (x, t) + ∇ p (x, t) − ν△v (x, t) = 0

∀x ∈ Ωt, ∀t ∈ (0, T ) . (3.12)
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3.2 Initial and Boundary conditions

We need to complete our problem by the specification of appropriate boundary
and initial conditions.

Boundary conditions

We divide the boundary of the computational domain into several mutually disjoint
parts (see Figure 3.1):

a) ΓD representing the inlet and the fixed part of the boundary.

b) ΓO representing the outlet, i.e. the part of the boundary where the fluid
generally leaves the domain Ωt.

c) ΓWt
representing the moving part of the boundary, in our case a moving

airfoil, at time t.

Figure 3.1: Parts of the boundary

On ΓD we prescribe the Dirichlet boundary condition

v|ΓD
= vD, (3.13)

where vD : ΓD → R2 is a prescribed function.
On ΓWt

we assume that the fluid velocity corresponds with the domain velocity:

v|ΓWt
= w|ΓWt

. (3.14)

Finally, on the outlet part ΓO we prescribe the ’do-nothing’ boundary condition:

− (p− pref)n + ν
∂v

∂n
= 0, (3.15)

where pref is a prescribed value of the reference pressure. This boundary condition
turns out to be suitable for the description of the flow on the outlet.
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Initial condition, pressure conditions

We set up the Dirichlet initial condition for the velocity:

v (x, 0) = v0 (x) , x ∈ Ω0. (3.16)

Noteworthy is the fact, that we have not explicitly prescribed any boundary or
initial conditions for the pressure. Since only its gradient is accounted for in the
Navier-Stokes equations, the pressure is determined by the reference do-nothing
condition for the velocity on ΓO.

3.3 Reynolds number

Often the goal is to compare two flows with different parameters such as sizes and
material characteristics. For this objective, the important constant turns out to be
the Reynolds number, which can be expressed in the following way:

Re =
U L

ν
,

where U is a reference speed (e.g. magnitude of the far field velocity or the average
speed on the ’inlet’ part of the boundary), L is a reference length, e.g. in our
case the length of the chord of the airfoil and ν is the kinematic viscosity. Brief
explanation of the origin of this constant follows.

Let us take a look at the following simple form of the Navier-Stokes equations

∂v

∂t
+ (v · ∇) v = −∇ p+ ν△v. (3.17)

Each term in this equation has its own physical unit, but we would like to render
this equation dimensionless. We can set

v′ =
v

U
, p′ =

p

U2
,

∂

∂t′
=
L

U

∂

∂t
, ∇′ = L∇, (3.18)

where we multiplied each term by a factor with inverse units and so we can rewrite
the equation (3.17) in the dimensionless form

∂v′

∂t′
+ (v′ · ∇′) v′ = −∇′ p′ +

1

Re
△′v′, (3.19)

where (△′v′)i = div (∇′vi), i = 1, 2, 3. It can be seen now, that for two flows with
the same Reynolds number, in domains geometrically similar, we have formally the
same problems and having a solution of equation (3.17), the solution of (3.19) can
be obtained by the scaling given by (3.18).
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Chapter 4

Discretization of the problem

Let us summarize our problem, which we are about to solve numerically. Methods
of discretization described in this chapter were used e.g. in [6], [7].
We want to find v and p satisfying the equations

∇ · v (x, t) = 0,

DAv (x, t)

Dt
+ [(v (x, t) −w (x, t)) · ∇] v (x, t) + ∇ p (x, t) − ν△v (x, t) = 0,

x ∈ Ωt, t ∈ (0, T ) ,

where w (x, t) is defined in (2.7) and the ALE derivative DA

Dt
is defined in (2.10).

This system is equipped with initial and boundary conditions

v (x, 0) = v 0 (x) , x ∈ Ω0, (4.1)

v (x, t) = vD (x, t) , x ∈ ΓD, (4.2)

v (x, t) = w (x, t) , x ∈ ΓWt
, (4.3)

− (p (x, t) − pref)n (x) + ν
∂v (x, t)

∂n
= 0, x ∈ ΓO, (4.4)

t ∈ (0, T ) ,

where v 0 : Ω0 → R2, vD : ΓD → R2 are known functions and pref is a prescribed
value of the reference pressure.
We shall discretize this problem separately in time and then in space.

4.1 Time discretization

We use the finite difference method for the time discretization. Let us consider
a partition 0 = t0 < t1 < · · · < tN−1 < tN = T̃ , tn = nτ with a step 0 <

τ = T̃
N

of the time interval [0, T̃ ] ⊂ [0, T ). We shall approximate the solution
v (x, tn+1) , p (x, tn+1) at time tn+1 by vn+1 (x) , pn+1 (x) defined in Ωtn+1

, n =
0, ..., N − 1. At time t0 = 0 we use the initial condition (4.1).
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Now we shall approximate the ALE derivative, which is defined by

DAv (x, tn+1)

Dt
=

∂

∂t
v̂ (X, tn+1) , X = A−1

tn+1
(x) , x ∈ Ωtn+1

.

In derivation of the finite difference scheme, we shall use the Taylor expansion:
For a function ϕ ∈ [C3 ([tn−1, tn+1])]

2
, n = 1, ..., N − 1 we have

ϕ (tn) = ϕ (tn+1) − τ
∂ϕ

∂t
(tn+1) + τ 2∂

2ϕ

∂t2
(tn+1) +O

(

τ 3
)

ϕ (tn−1) = ϕ (tn+1) − 2τ
∂ϕ

∂t
(tn+1) + 4τ 2∂

2ϕ

∂t2
(tn+1) +O

(

τ 3
)

.

Multiplying the first equation by 4 and subtracting the second one from the result,
we obtain

4ϕ (tn) − ϕ (tn−1) = 3ϕ (tn+1) − 2τ
∂ϕ

∂t
(tn+1) +O

(

τ 2
)

,

which yields the approximation

∂ϕ

∂t
(tn+1) =

3ϕ (tn+1) − 4ϕ (tn) + ϕ (tn−1)

2τ
+O

(

τ 2
)

.

Omitting the last term, writing ≈ instead of = and using this approximation for
our problem, we come to the implicit second order accurate two-step backward
difference formula

∂

∂t
v̂ (X, tn+1) ≈

3v̂n+1 (X) − 4v̂n (X) + v̂n−1 (X)

2τ
.

Thus,

DAv (xn+1, tn+1)

Dt
≈

3v̂n+1 (X) − 4v̂n (X) + v̂n−1 (X)

2τ
(4.5)

=
3vn+1 (xn+1) − 4vn (xn) + vn−1 (xn−1)

2τ
,

where we use the notation xn = Atn (X). This result leads us to the implicit back-
ward scheme for the unknown functions vn+1 : Ωtn+1

→ R2 and pn+1 : Ωtn+1
→ R:

3vn+1 (xn+1) − 4vn (xn) + vn−1 (xn−1)

2τ
+ (4.6)

+
((

vn+1
(

xn+1
)

−wn+1
(

xn+1
))

· ∇
)

vn+1
(

xn+1
)

−

−ν△vn+1
(

xn+1
)

+ ∇pn+1
(

xn+1
)

= 0

∇ · vn+1
(

xn+1
)

= 0, (4.7)
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where wn+1 (x) ≈ w (x, tn+1). Function vn+1 has to satisfy the boundary condi-
tions (4.2) - (4.4).
We consider the above equations for all n = 1, ..., N − 1. In order to completely
transform equations into the domain Ωtn+1

we recall the following property of the
ALE mapping:

Atn+1

(

A−1
ti

(

x i
))

∈ Ωtn+1
, i = n− 1 , n. (4.8)

Therefore we can define ṽ i = v i◦Ati◦A
−1
tn+1

, i = n−1 , n, and write the transformed
equations:

3vn+1 (xn+1) − 4ṽn (xn+1) + ṽn−1 (xn+1)

2τ
+ (4.9)

+
((

vn+1
(

xn+1
)

−wn+1
(

xn+1
))

· ∇
)

vn+1
(

xn+1
)

−

−ν△vn+1
(

xn+1
)

+ ∇pn+1
(

xn+1
)

= 0,

∇ · vn+1
(

xn+1
)

= 0, ∀xn+1 ∈ Ωtn+1
.

(4.10)

Again this system is equipped with the boundary conditions (4.2) - (4.4). For
obtaining the solution at the first time level t1 we use a simple one-step backward
finite difference scheme, where we use the initial condition (4.1).

4.2 Weak formulation

For simplicity, in what follows, we shall write v, w, p, t, Ω instead of vn+1, wn+1,
pn+1, tn+1, Ωtn+1

.
As we want to employ the finite element method for the space discretization, we
need to reformulate equations (4.9), (4.10), considered in the domain Ω, in a weak
sense. We need to set up appropriate function spaces of test functions and also the
spaces in which the solution will be sought. The Dirichlet conditions on the parts
ΓD, ΓWt

of the boundary tell us that the test functions from the velocity space will
be set zero in the sense of traces on these parts of the boundary. Since we have a
second order problem with respect to the velocity and the first order problem with
respect to the pressure, we shall use the following spaces.
The pressure space is defined by

Q = L2 (Ω) =

{

q : Ω → R; q Lebesgue measurable,

∫

Ω

|q (x) |2dx <∞

}

The velocity spaces are defined as

V =
[

H1 (Ω)
]2
, H1 (Ω) =

{

v ∈ L2 (Ω) ;
∂v

∂xi
∈ L2 (Ω) , i = 1, 2

}

,

Y =
{

y ∈ V ; y|ΓD∪ΓWt
= 0
}

.
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Derivatives in definition of the Sobolev space H1 are weak derivatives.
Now we can proceed with multiplying the equation (4.9) by a function y ∈ Y and
the equation (4.10) by a function q ∈ Q. We get

3v− 4ṽn + ṽn−1

2τ
· y + (((v−w) · ∇) v) · y + ∇ p · y− ν△v · y = 0,

(∇ · v) q = 0.

Integration over the domain Ω yields

∫

Ω

3v− 4ṽn + ṽn−1

2τ
· y dx +

∫

Ω

(((v−w) · ∇) v) · y dx + (4.11)

+

∫

Ω

∇ p · y dx − ν

∫

Ω

△v · y dx = 0,
∫

Ω

(∇ · v) q dx = 0. (4.12)

Using Green’s theorem and the boundary condition (4.4), we obtain

−ν

∫

Ω

△v · y dx = −ν

∫

∂Ω

∂v

∂n
· ydS + ν

∫

Ω

∇v · ∇y dx

= −ν

∫

ΓO

∂v

∂n
· y dS + ν

∫

Ω

∇v · ∇y dx

= −

∫

ΓO

(p− pref)n · y dS + ν

∫

Ω

∇v · ∇y dx

∫

Ω

∇ p · y dx =

∫

∂Ω

p (n · y) dS −

∫

Ω

p (∇ · y) dx

=

∫

ΓO

p (n · y) dS −

∫

Ω

p (∇ · y) dx,

where
∫

Ω
∇v · ∇y dx =

∑2
i=1

∫

Ω
∇vi · ∇yi dx. These relations imply that

3

2τ

∫

Ω

v · y dx +

∫

Ω

(((v−w) · ∇) v) · y dx −

∫

Ω

p (∇ · y) dx +

+ ν

∫

Ω

∇v · ∇y dx +

∫

Ω

(∇ · v) q dx =

=
1

2τ

∫

Ω

(

4ṽn − ṽn−1
)

· ydx−

∫

ΓO

pref (n · y) dS,

where we have summed up the equations (4.11) and (4.12). Now we shall introduce
the weak formulation of our problem. We want to find V = (v, p) ∈ V × Q such
that

a (V, V, Y ) = f (Y ) ∀Y = (y, q) ∈ Y ×Q, (4.13)
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where

a (V ∗, V, Y ) =
3

2τ

∫

Ω

v · y dx +

∫

Ω

(((v∗ −w) · ∇) v) · y dx− (4.14)

−

∫

Ω

p (∇ · y) dx + ν

∫

Ω

∇v · ∇y dx +

∫

Ω

(∇ · v) q dx,

f (Y ) =
1

2τ

∫

Ω

(

4ṽn − ṽn−1
)

· ydx −

∫

ΓO

pref (n · y) dS,

V ∗ = (v∗, p) ∈ V ×Q, and v satisfies the boundary conditions (4.2) and (4.3).
Then we call V = (v, p) ∈ V×Q the weak solution of the problem (4.9), (4.10), (4.2)
- (4.4).

4.3 Space discretization - finite element method

Triangulation

First step in the process of the finite element discretization is to divide the compu-
tational domain Ω = Ωtn+1

into finite number of subsets with properties described
below. These subsets form the set, further denoted by Th, called the triangulation
of the domain Ω. The parameter h > 0 of the triangulation usually represents
maximum of diameters of all elements K ∈ Th.
Properties of Th:

a) Each K ∈ Th is closed and connected with its interior K◦ 6= ∅.

b) Each K ∈ Th has a Lipschitz boundary.

c) ∪K∈Th
K = Ω

d) If K1, K2 ∈ Th, K1 6= K2, then K◦
1 ∩ T ◦

2 = ∅.

In our case of the two-dimensional problem, we assume that the domain Ω is
obtained as a polygonal approximation of the original computational domain (also
denoted by Ω), and the triangulation is chosen accordingly to the following at-
tributes:

A) Each K ∈ Th is a closed nondegenerate triangle

B) For K1, K2 ∈ Th, K1 6= K2 we have either K1 ∩K2 = ∅ or K1, K2 share one
side or K1, K2 share one vertex.

C) ∪K∈Th
K = Ω.
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Finite element spaces

Let us assume that for h > 0 we have a given triangulation Th. This means that
objects introduced in the following sections depending on h depend also on this
triangulation Th. The next step is to construct finite dimensional function spaces
Qh,Vh,Yh which would approximate spaces Q,V, Y . We shall consider the so-called
conforming finite element method, in which the approximate spaces are subspaces
of the spaces from the continuous problem, i.e. Qh ⊂ Q, Vh ⊂ V, Yh ⊂ Y . In our

case we even have Qh ⊂ C
(

Ω
)

, Vh ⊂
[

C
(

Ω
)]2

, Yh ⊂
[

C
(

Ω
)]2

and also we have
Yh ⊂ Vh. Since Vh,Yh are spaces of two dimensional vector-valued functions, we
shall write Vh = Ṽh × Ṽh, Yh = Ỹh × Ỹh, where Ṽh and Ỹh are spaces of scalar
functions.

On each element K of triangulation Th we define the so-called finite element
(K,PK ,ΣK), where PK is a finite dimensional set of functions defined on K and
ΣK is a set of functionals over PK , which is called the set of degrees of freedom.
Every function p ∈ PK must be fully determined by its values (φ (p) , φ ∈ ΣK).
This property is called PK-unisolvence.

The inf-sup condition

In order to develop a stable FEM scheme, the couple of test function spaces
(Yh,Qh) has to satisfy the Babuška-Brezzi (BB, inf-sup) condition:

∃ β > 0 : β ≤ sup
06=y∈Yh

| (q,∇ · y) |

|y |H1(Ω) ||q||L2(Ω)

, ∀ 0 6= q ∈ Qh, (4.15)

where (·, ·) stands for the scalar product in L2 (Ω) and | · |H1(Ω) for the seminorm

in H1 (Ω): |f |H1(Ω) =
(∫

Ω
|∇ f |2 dx

)1/2
.

Construction of the spaces

In our case we choose PK = Pk (K), i.e. the spaces of polynomial functions up to
a degree k ∈ N defined on an element K.

We now derive the set ΣK for our needs. For k ∈ N, and for an element K with
vertices a1, a2, a3 we define the set

Lk (K) =

{

x : x =

3
∑

i=1

λiai; λi ∈

{

0,
1

k
, ...,

k − 1

k
, 1

}

, i = 1, 2, 3;

3
∑

i=1

λi = 1

}

,

(4.16)
and the set

Σk (K) = {φx : Pk (K) → R, φx (p) = p (x) , x ∈ Lk (K)} . (4.17)
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E.g. for k = 1 the set Lk (K) consists of vertices a1,a2,a3 of K as can be seen on
Figure 4.1

Figure 4.1: Visualization of the sets Lk (K)

It is possible to check that

dim (Pk (K)) = dim (Lk (K)) = dim (Σk (K)) ,

and that every function p ∈ Pk (K) is uniquely determined by the values
(φ (p) , φ ∈ Σk (K)). Then we can create the basis of Pk (K) ’dual’ to Σk (K) :

{pi : φi (pi) = 1, φj (pi) = 0, i 6= j; φi, φj ∈ Σk (K)}dim(Σk(K))
i=1 .

Linear independence is obvious, the fact that it is a basis follows from the equality
between dimensions.

We consider k = 1, 2 and for each K ∈ Th we get finite elements (K,P1 (K) ,
Σ1 (K)) and (K,P2 (K) ,Σ2 (K)).
We shall denote Mk

h =
⋃

K∈Th
Lk (K) , k = 1, 2 (for k = 1 this is the set of vertices

of all triangles forming the triangulation Th, for k = 2 it includes midpoints of their

sides as well) and we can write dim
(

Mk
h

)

= N k
h , M

k
h = {zi}

N k

h

i=1 , k = 1, 2 and for
zi ∈ Mk

h, k = 1, 2 it is possible to define the set of all elements of triangulation
sharing the node zi:

T i
h = {K ∈ Th; zi ∈ K} .
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The finite element spaces can be now defined as

Qh = {vh ∈ L2 (Ω) ; vh|K ∈ P1 (K) ∀K ∈ Th; vh|K1 (zi) = vh|K2 (zi)

∀K1, K2 ∈ T i
h , i = 1, ...,N 1

h}.

Ṽh = {vh ∈ L2 (Ω) ; vh|K ∈ P2 (K) ∀K ∈ Th; vh|K1 (zi) = vh|K2 (zi)

∀K1, K2 ∈ T i
h , i = 1, ...,N 2

h}.

It can be shown that the resulting spaces can be summarized in this way:

Qh =
{

qh ∈ C
(

Ω
)

; qh|K ∈ P1 (K) ∀K ∈ Th

}

,

Ṽh =
{

vh ∈ C
(

Ω
)

; vh|K ∈ P2 (K) ∀K ∈ Th

}

,

Vh = Ṽh × Ṽh,

=
{

vh ∈
[

C
(

Ω
)]2

; vh|K ∈ [P2 (K)]2 ∀K ∈ Th

}

,

Yh =
{

yh ∈ Vh : yh|ΓD∪ΓWt
= 0
}

.

This defines the so-called Taylor-Hood P2/P1 elements, for which the couple (Yh,Qh)
satisfies the BB condition. See, e.g. [3], Corollary 4.1.
In order to construct bases of these function spaces we can proceed in a similar
way in which we have constructed the basis of the space Pk (K) dual to Σk (K) on
one element of triangulation. We can put

pi, i = 1, ...,N k
h : pi (zj) = δij , zj ∈ Mk

h, j = 1, ...,N k
h , k = 1, 2.

The functions pi, i = 1, ...,N k
h now form the basis of the space Qh for k = 1 and

the basis of the space Ṽh for k = 2 respectively. The basis of Vh will be constructed
from the basis of Ṽh in this way: being

{

ṽ1, ..., ṽN
2
h

}

the basis of Ṽh, the functions
{

(

ṽ1, 0
)

, ...,
(

ṽN
2
h , 0
)

,
(

0, ṽ1
)

, ...,
(

0, ṽN
2
h

)}

,

will form the basis of Vh.

At the end of this section let us define the approximate solution:
The pair Vh = (vh, ph) ∈ (Vh ×Qh) is an approximate solution of (4.9), (4.10) with
the boundary conditions (4.2) - (4.4), if

a (Vh, Vh, Yh) = f (Yh) ∀Yh = (yh, qh) ∈ Yh ×Qh, (4.18)

and vh fulfills the following approximations of the boundary conditions (4.2) and
(4.3):

vh (z) = vD (z, t) , ∀ z ∈ M2
h ∩ ΓD, (4.19)

vh (z) = w (z) , ∀ z ∈ M2
h ∩ ΓWt

,

t = tn+1.
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This discrete problem has two major difficulties to handle. First, for large Rey-
nolds numbers (see Section 3.3), as 105 − 106, which appear e.g. in aerodynam-
ics of airplanes, the standard discretization suffers from the so-called Gibbs phe-
nomenon, manifested by the presence of nonphysical spurious oscillations. More-
over, the flow characterized by such high Reynolds number is usually turbulent,
but in this work we are concerned with classical Navier-Stokes equations without
any turbulence model. The second problem is the nonlinearity of the convective
term (((v −w) · ∇) v), which restrains us from direct transformation of the prob-
lem into systems of linear equations. We shall deal with these problems in the next
two sections.

4.4 Stabilization of FEM

In order to diminish the effects of the Gibbs phenomenon, we can employ the
suitable stabilization to our discrete scheme. Following [4], [6], [7] we use the
streamline-upwind/Petrov-Galerkin (SUPG, streamline-diffusion) method combined
with the div-div stabilization that both consist of adding certain terms to our dis-
crete equation (4.18). The stabilization terms are defined as

Lh (V ∗, V, Y ) =
∑

K∈Th

δK

(

3

2τ
v− ν△v + (w · ∇) v + ∇ p, (w · ∇) y

)

K

, (4.20)

Fh (Y ) =
∑

K∈Th

δK

(

1

2τ

(

4ṽn − ṽn−1
)

, (w · ∇)y

)

K

, (4.21)

Ph (V, Y ) =
∑

K∈Th

τK (∇ · v,∇ · y)K , (4.22)

where V = (v, p) , V ∗ = (v∗, p) , Y = (y, q), (·, ·)K represents both the scalar prod-

uct in L2 (K) and in [L2 (K)]
2

and w = v∗−w is the transport velocity appearing
in the convective terms. Further, δK ≥ 0, τK ≥ 0 are suitable parameters.

The stabilized discrete problem now reads: Find Vh = (vh, ph) ∈ (Vh ×Qh) such
that vh satisfies the approximations of the boundary conditions (4.2) and (4.3)
given by (4.19) and the following holds:

a (Vh, Vh, Yh) + Lh (Vh, Vh, Yh) + Ph (Vh, Yh) = f (Yh) + Fh (Yh) (4.23)

∀Yh = (yh, qh) ∈ (Yh ×Qh) .

For the choice of parameters δK , τK , extensive theoretical analysis of the problem
at hand is necessary. Here we limit ourselves to a choice according to [4], [7] in the
following fashion:

δK = δ∗
hK

2 ||w ||L∞(K)

ξ
(

Rew
)

; τK = τ ∗, (4.24)
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where

Rew =
hK ||w ||L∞(K)

2ν
(4.25)

is the local Reynolds number, hK is the size of element K measured in the direction
of w and || · ||L∞(K) stands for the norm in the space L∞ (K):

||w||L∞(K) = ess sup
x∈K

|w (x) |.

The factor ξ
(

Rew
)

is defined as

ξ
(

Rew
)

= min

(

Rew

6
, 1

)

,

and δ∗, τ ∗ ∈ (0, 1] are additional free parameters. For P2/P1 elements it is possible
to set τ ∗ = 1.

4.5 Linearization of the problem - Oseen itera-

tions

In our stabilized discrete problem (4.23) we have two terms which contain the
nonlinear convective term (((v−w) · ∇) v). We can define a sequence of linear
problems, so that the solutions of these problems will gradually tend to the solution
of (4.23). We define the sequence of problems for j ∈ N0 in the following way:
Find a solution V j+1

h =
(

v
j+1
h , pj+1

h

)

such that v
j+1
h satisfies the approximations of

the boundary conditions (4.2) and (4.3) given by (4.19) and

a
(

V j
h , V

j+1
h , Yh

)

+ Lh

(

V j
h , V

j+1
h , Yh

)

+ Ph

(

V j+1
h , Yh

)

= f (Yh) + Fh (Yh) (4.26)

∀Yh = (yh, qh) ∈ (Yh ×Qh) .

The initial approximation V 0
h can be set as the solution from the previous time

level:
V 0

h =
(

v0
h, p

0
h

)

= (ṽn
h, p̃

n
h) ,

or as an extrapolation from the two previous time levels:

V 0
h =

(

2ṽn
h − ṽn−1

h , 2p̃n
h − p̃n−1

h

)

,

where we shall remind the notation

ṽi = vi ◦ Ati ◦ A
−1
tn+1

, p̃i = pi ◦ Ati ◦ A
−1
tn+1

i = n− 1, n.

Numerical experiments show that only a few iterations of (4.26) have to be com-
puted at each time level.
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4.6 Algebraic interpretation

Now we want to transform the linearized problem with the approximation of the
boundary conditions into the system of algebraic equations. First, let us denote by
vh the function from the space Vh, approximating the boundary conditions in the
following way:

vh (z) = vD (z, t) , ∀ z ∈ M2
h ∩ ΓD, t = tn+1,

vh (z) = w (z) , ∀ z ∈ M2
h ∩ ΓWt

,

vh (z) = 0, ∀ z ∈ M2
h\ (ΓD ∪ ΓWt

) .

Then, due to the linearity of (4.26), we can write

v
j+1
h = vh + u

j+1
h , u

j+1
h ∈ Yh, (4.27)

where V j+1
h =

(

v
j+1
h , pj+1

h

)

is the solution of (4.26). Moreover, since we have pre-
viously constructed the bases of the spaces Yh and Qh (see Section 4.3), we can
write:

u
j+1
h =

R
∑

α=1

uαy
∗
α (4.28)

pj+1
h =

S
∑

β=1

pβq
∗
β, (4.29)

where R = 2N 2
h , {y∗

α}
R
α=1 is the basis of Yh, S = N 1

h and
{

q∗β
}S

β=1
is the basis of

Qh.
Taking into account linearity of the forms appearing in (4.26), we can use solely
the basis functions as test functions in (4.26). By substituting the function Yh =
(y∗

i , q
∗
k), i ∈ {1, ..., R} , k ∈ {1, ..., S} and relations (4.27), (4.28) and (4.29)
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into (4.26), we get

a
(

V j
h , V

j+1
h , Yh

)

=
3

2τ

R
∑

α=1

(y∗
α, y

∗
i )uα + ν

R
∑

α=1

((y∗
α, y

∗
i )) uα +

+

R
∑

α=1

((

w
j
h · ∇

)

y∗
α, y

∗
i

)

uα −
S
∑

β=1

(qβ ,∇ · y∗
i ) pβ +

+

R
∑

α=1

(∇ · y∗
α, q

∗
k)uα +

3

2τ
(vh, y

∗
i ) + ν ((vh, y

∗
i )) +

+
((

w
j
h · ∇

)

vh, y
∗
i

)

+ (∇ · vh, q
∗
k) ,

Lh

(

V j
h , V

j+1
h , Yh

)

=

=
∑

K∈Th

δK

[

R
∑

α=1

(

3

2τ
y∗

α − ν△y∗
α +

(

w
j
h · ∇

)

y∗
α,
(

w
j
h · ∇

)

y∗
i

)

K

uα

]

+

+
∑

K∈Th

δK

[

S
∑

β=1

(

∇q∗β ,
(

w
j
h · ∇

)

y∗
i

)

K
pβ

]

+

+
∑

K∈Th

δK

(

3

2τ
vh − ν△vh +

(

w
j
h · ∇

)

vh,
(

w
j
h · ∇

)

y∗
i

)

K

,

f (Yh) =
1

2τ

(

4ṽn − ṽn−1, y∗
i

)

−

∫

ΓO

pref (n · y∗
i ) dS,

Fh (Yh) =
∑

K∈Th

δK

(

1

2τ

(

4ṽn − ṽn−1
)

,
(

w
j
h · ∇

)

y∗
i

)

K

,

Ph

(

V j+1
h , Yh

)

=
∑

K∈Th

τK

[

R
∑

α=1

(∇ · y∗
α,∇ · y∗

i )K uα

]

+

+
∑

K∈Th

τK (∇ · vh,∇ · y∗
i )K ,
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where w
j
h =

(

v
j
h −w

)

and the symbol ((f, g)) stands for (∇f,∇g). Now we can set

aiα =
3

2τ
(y∗

α, y
∗
i ) + ν ((y∗

α, y
∗
i )) +

((

w
j
h · ∇

)

y∗
α, y

∗
i

)

+

+
∑

K∈Th

δK

(

3

2τ
y∗

α − ν△y∗
α +

(

w
j
h · ∇

)

y∗
α,
(

w
j
h · ∇

)

y∗
i

)

K

+

+
∑

K∈Th

τK (∇ · y∗
α,∇ · y∗

i )K ,

biβ = −
(

q∗β,∇ · y∗
i

)

,

ciβ =
∑

K∈Th

δK
(

∇ q∗β,
(

w
j
h · ∇

)

y∗
i

)

K
,

Fi =
1

2τ

(

4ṽn − ṽn−1, y∗
i

)

−

∫

ΓO

pref (n · y∗
i ) dS +

+
∑

K∈Th

δK

(

1

2τ

(

4ṽn − ṽn−1
)

,
(

w
j
h · ∇

)

y∗
i

)

K

−

−
∑

K∈Th

δK

(

3

2τ
vh − ν△vh +

(

w
j
h · ∇

)

vh,
(

w
j
h · ∇

)

y∗
i

)

K

−

−
3

2τ
(vh, y

∗
i ) − ν ((vh, y

∗
i )) +

−
((

w
j
h · ∇

)

vh, y
∗
i

)

−
∑

K∈Th

τK (∇ · vh,∇ · y∗
i )K ,

Gm = (∇ · vh, q
∗
m) .

We obtain the following system of linear algebraic equations for the unknown
constants uα, α = 1, ..., R, pβ, β = 1, ..., S, where we split the equation (4.26),
derived by summing and manipulating the equations (4.11) and (4.12), to get:

R
∑

α=1

aiαuα +
S
∑

β=1

(biβ + ciβ) pβ = Fi, i = 1, ..., R, (4.30)

R
∑

α=1

bαmuα = Gm, m = 1, ..., S. (4.31)
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We can introduce the notation

U = (u1, ..., uR) ,

P = (p1, ..., pS) ,

A = (aij)
R
i,j=1 ,

B = (bij)i=1,...,R, j=1,...,S ,

C = (cij)i=1,...,R, j=1,...,S ,

F = (F1, ..., FR) ,

G = (G1, ..., GS) ,

with the aid of which we can rewrite the system of equations (4.30), (4.31) in the
matrix form:

(

A B + C
BT 0

) (

U
P

)

=

(

F
G

)

. (4.32)

This sparse linear system is then solved in our case by the direct solver UMF-
PACK [11] and thus one iteration step of an approximation of the solution of the
stabilized discretized problem is obtained.
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Chapter 5

Description of the numerical

experiment

We shall solve the problem by means described in Chapter 4 implemented in the
software FEMFLUID [9]. The main goal is to get acquainted with the software,
to show the applicability of the developed method and to present a solution of a
model example. We shall be concerned with the case when the movement of the
modified airfoil NACA0012 is prescribed. The airfoil NACA0012 is modified in
the sense of splitting the original airfoil into two parts separated by a slot - see
Figure 5.2. Let us remind that the reference domain of the ALE mapping in our
case coincides with the initial domain, i.e. Ωref = Ω0. Figure 5.1 shows Ω0.

Figure 5.1: Reference domain Ωref = Ω0

We shall describe the position of the airfoil ΓWt
at time t by two parameters,

displacement H (t) and rotation angle γ (t). We shall set up a point E (t) = (x̂E1 (t) ,
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x̂E2 (t)) within the interior of the airfoil ΓWt
, around which the airfoil rotates and

which also has constant x̂E1 (t) coordinate in dependence on time. We shall call
this point the elastic axis. As can be seen from Figure 5.2, we have x̂E1 (t) = 0.2.
We denote E (0) = (x̂E1 (0) , x̂E2 (0)) by E0 = (x̂E01, x̂E02). Let us now set H (t) =
x̂E2 (t) − x̂E02. The parameter γ (t) represents the angle (measured in positive
direction, i.e. counterclockwise) between the axis of symmetry of ΓWt

and the axis
of symmetry of ΓW0

(see Figure 5.2). As can be seen we have x̂E02 = 0 and the
axis of symmetry of ΓW0

coincides with a part of the bisector given by x2 = 0.

Figure 5.2: Airfoil position at t = 0 and shifted and rotated airfoil.

5.1 Mesh generation

The basic input for the computational process using FEM is the triangulation Th

(see Section 4.3) of the reference domain Ω0. We have to keep in mind that the
suitable triangulation should have sufficient amount of elements in order to obtain
a good approximation of the solution. On the other hand, with the increasing
number of elements the complexity and computational time increases as well.
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There are several approaches to the construction of a triangulation Th. The idea
used for generation of the mesh used in our simulation is to create a simple initial
triangulation Th0

consisting of possibly hundreds of elements. On this initial trian-
gulation Th0

we can compute or approximate (e.g. from the empirical knowledge of
how the fluid behaves) the solution for several time instants very fast. Knowledge
of this solution or approximation can be used for the refinement of the triangula-
tion Th0

in a suitable non-uniform way. In a real implementation this means to add
more elements where the solution grows steeply and vice versa. On such refined
triangulation, another approximate solution can be computed, the mesh can again
be refined where appropriate, etc.

With this iterative process we can continue until the refined triangulation fits our
needs, i.e. it is refined sufficiently to capture the solution and does not consist of
too many elements. Software used for refining of the triangulation used in our case
was ANGENER [8]. Examples of triangulations of the domain Ω0 with various
numbers of elements are shown in Figures 5.3 - 5.6 (output from ANGENER
plotted by GNUPLOT).

Figure 5.3: Number of elements ≈ 200.
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Figure 5.4: Number of elements ≈ 4 000.

Figure 5.5: Number of elements ≈ 8 000.
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Figure 5.6: Number of elements = 12 248.

In Figure 5.6 we can see the final triangulation that was used for the actual
computation. In Figures 5.7 and 5.8 we can see details of the triangulation around
the slot between the two parts of the airfoil and behind the airfoil respectively.

Figure 5.7: Detail of the triangulation in the slot.
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Figure 5.8: Detail of the triangulation behind the profile.

5.2 Construction of the ALE mapping

For the construction of the ALE mapping the following approach can be used. Let
the displacement H (ti) and the rotation angle γ (ti) be known for i = 0, ..., n+ 1.
We want to construct the ALE mapping Atn+1

: Ω0 → Ωtn+1
. To this end,

we consider two circles C1, C2 ⊂ Ω0 with center at the elastic axis and radii
R1, R2, 0 < R1 < R2 such that ΓWt

lies inside C1. The ALE mapping is con-
structed in such a way that the inner circle C1 moves together with the airfoil ΓWt

as a solid body, whereas the exterior Ω0\C2 of the outer circle C2 is not deformed.
First for t = tn+1 we introduce the mapping Ht (x̂1, x̂2) , X̂ = (x̂1, x̂2) ∈ Ω0, de-
scribing the motion of the airfoil:

Ht (x̂1, x̂2) =

(

cos (γ (t)) sin (γ (t))
− sin (γ (t)) cos (γ (t))

)

·

(

x̂1 − x̂E01

x̂2 − x̂E02

)

+

(

x̂E01

x̂E02

)

+

(

0
H (t)

)

.

Denoting by Id the identical mapping, the ALE mapping can be defined as

Atn+1
(x̂1, x̂2) = θHtn+1

(x̂1, x̂2) + (1 − θ)Id (x̂1, x̂2) . (5.1)

Here

θ = θ (r̂) =
cos (ψ (r̂)) + 1

2
, (5.2)

ψ (r̂) = min

(

max

(

0,
r̂ − R1

R2 − R1

)

, 1

)

,

48



and

r̂ = r̂ (x̂1, x̂2) =

√

(x̂1 − x̂E01)
2 + (x̂2 − x̂E02)

2. (5.3)

From this construction one can see that the ALE mapping is smooth in the domain
Ω0. The knowledge of the ALE mapping at time instants tn−1, tn, tn+1 allows us
to approximate the domain velocity wn+1 with the aid of the difference scheme
previously used for the velocity v as

wn+1 (x) =
3x− 4Atn

(

A−1
tn+1

(x)
)

+ Atn−1

(

A−1
tn+1

(x)
)

2τ
, x ∈ Ωtn+1

. (5.4)

5.3 Data

In the computation carried out with the aid of the FEMFLUID software we used
the following data for our problem:

v0 (x) = (v1 (x) , v2 (x)) = (1, 0) , x ∈ Ω0,

vD (x) = (v1 (x) , v2 (x)) = (1, 0) , x ∈ ΓD,

pref = 0,

τ = 2 · 10−4 s,

T = 2 s,

T̃ = 1.998 s,

ν = 10−4,

L = 1m,

U = 1m/s,

H (t) = Hmax sin (2πfHt) , Hmax = 0.03m, fH = 3Hz

γ (t) = γmax sin (2πfγt) , γmax = 3◦, fγ = 3Hz.

5.4 Results

In the numerical experiment, 3-5 Oseen’s iterations were computed at each time
level. This iterative process at each time level is designed to stop when the difference
between two successive solutions drops below a prescribed value. Software used for
the visualization of outputs from the FEMFLUID software was ParaView [10]. On
the attached DVD many more outputs can be found.

Velocity field around the flap

In the following Figures we can observe the development of some characteristic
features of the velocity field v around the flap and around the slot between the
flap and the main part of the airfoil. Specific to this model of an airfoil is that the
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fluid can move ’through’ the airfoil. From the following figures one can see that
even for such a small amplitudes of the airfoil’s motion the distortion of the fluid
in the slot is observable.

t = 0.02s, γ = −1.10◦, H =
−11.04mm.

t = 0.04 s, γ = −2.05◦, H =
−20.54mm.

t = 0.06s, γ = −2.71◦, H =
−27.14mm.

t = 0.08 s, γ = −2.99◦, H =
−29.94mm.
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t = 0.1s, γ = −2.85◦, H =
−28.53mm.

t = 0.12 s, γ = −2.31◦, H =
−23.12mm.

t = 0.14s, γ = −1.45◦, H =
−14.45mm.

t = 0.16 s, γ = −0.38◦, H =
−3.76mm.

t = 0.18s, γ = 0.75◦, H = 7.46mm. t = 0.2 s, γ = 1.76◦, H = 17.63mm.
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t = 0.22s, γ = 2.53◦, H = 25.33mm. t = 0.24 s, γ = 2.95◦, H = 29.47mm.

t = 0.22s, γ = 2.95◦, H = 29.47mm. t = 0.24 s, γ = 2.53◦, H = 25.33mm.

t = 0.22s, γ = 1.76◦, H = 17.63mm. t = 0.24 s, γ = 0.75◦, H = 7.46mm.
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Isolines of the first component of the velocity

Development of characteristic features of the first component of the velocity in a
broader view.

v1 isolines; t = 0.06 s, γ = −2.71◦, H = −27.14mm.

v1 isolines; t = 0.32 s, γ = 0.75◦, H = 7.46mm.

v1 isolines; t = 0.76 s, γ = −2.95◦, H = −29.47mm.
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v1 isolines; t = 0.96 s, γ = 2.05◦, H = 20.54mm.

v1 isolines; t = 1.2 s, γ = 1.76◦, H = 17.63mm.

v1 isolines; t = 1.46 s, γ = −2.05◦, H = −20.54mm.

Isolines of the second component of the velocity

As in the previous Figures we can see that an interesting vortex formation appears
in the flow past the moving airfoil.
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v2 isolines; t = 0.06 s, γ = −2.71◦, H = −27.14mm.

v2 isolines; t = 0.32 s, γ = 0.75◦, H = 7.46mm.

v2 isolines; t = 0.76 s, γ = −2.95◦, H = −29.47mm.
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v2 isolines; t = 0.96 s, γ = 2.05◦, H = 20.54mm.

v2 isolines; t = 1.2 s, γ = 1.76◦, H = 17.63mm.

v2 isolines; t = 1.46 s, γ = −2.05◦, H = −20.54mm.

Isolines of the pressure

Development of characteristic features of the pressure in a broader view. Here
the pressure p is not a thermodynamical quantity, which explains why it attains
negative values.
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p isolines; t = 0.06 s, γ = −2.71◦, H = −27.14mm.

p isolines; t = 0.32 s, γ = 0.75◦, H = 7.46mm.

p isolines; t = 0.76 s, γ = −2.95◦, H = −29.47mm.

p isolines; t = 0.96 s, γ = 2.05◦, H = 20.54mm.
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p isolines; t = 1.2 s, γ = 1.76◦, H = 17.63mm.

p isolines; t = 1.46 s, γ = −2.05◦, H = −20.54mm.
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Conclusion

An Overview of equations describing the fluid flow was presented, as well as widely
used approach to handle time-dependency of a computational domain using the
ALE method. Discretization procedure for simplified model of viscous incompress-
ible flow in time-dependent domain using finite element and finite difference meth-
ods (for the space discretization and the time discretization respectively) was de-
scribed. Possible solutions of problems arising from the mathematical model under
consideration (nonlinearity, instability) were described. A numerical simulation
with the aid of available software was carried out in order to complement the the-
oretical matter. The model problem was the moving airfoil with two degrees of
freedom. Nevertheless, the experiment described in Chapter 5 serves only for illus-
trative purposes. Real simulation would require higher Reynolds number as well as
a model taking into account effects of turbulency. Another topic is the interaction
between the fluid and the moving boundary. All these amendments require greater
computational performance and longer computational time.
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