Název diplomové práce:

VZÁJEMNÁ ZÁVISLOST ZÁKLADNÍCH BIOCHEMICKÝCH PARAMETRŮ U PACIENTŮ S DIABETES MELLITUS 2.TYPU

Interrelationship of basic biochemical parameters in patients of type II diabetes mellitus

Vedoucí katedry: Prof. MUDr. Zdeněk Fendrich, CSc.
Pověřený vedoucí diplomové práce: Mgr. Přemysl Mladěnka
Vypracovala: Bc. Monika Mazurová
Prohlašuji, že tato práce je mým původním autorským dílem, které jsem vypracovala samostatně. Veškerá literatura a další zdroje, z nichž jsem při zpracování čerpala, jsou uvedeny v seznamu literatury a v práci řádně citovány.
Na tomto místě bych ráda poděkovala všem, kteří mi pomohli s touto diplomovou prací. Mě poděkování patří především Mgr. Přemyslu Mladěnkovi za věcné připomínky a odborné vedení celé práce.
Obsah

I. ÚVOD ..3
II. TEORETICKÁ ČÁST ..4
 1. DEFINICE ... 4
 2. PREVALENCE A INCIDENCE ... 4
 3. ROZDĚLENÍ DIABETU ... 5
 4. DIABETES MELLITUS 1. TYPU ... 6
 4.1. PODTYPY DIABETU 1.type .. 7
 4.1.1. autoimunně podmíněný .. 7
 4.1.2. idiopatický DM 1. typu .. 7
 4.2. KLINICKÉ PROJEVY ... 8
 4.3. KOMPLIKACE .. 8
 4.4. LÉČBA .. 9
 4.4.1. Nežádoucí účinky inzulinoterapie ... 9
 5. DIABETES MELLITUS 2. TYPU .. 10
 5.1. ETIOLOGIE ... 10
 5.1.1. Porucha sekrece inzulínu .. 10
 5.1.2. Inzulinová rezistence (IR): .. 11
 5.2. MODY ... 12
 5.3. KLINICKÉ PROJEVY ... 13
 5.4. KOMPLIKACE .. 13
 5.4.1. Akutní komplikace diabetu .. 14
 5.4.2. Chronické komplikace ... 16
 5.4.3. Nespecifické komplikace .. 17
 5.5. LÉČBA .. 17
 5.5.1. Nefarmakologická léčba ... 19
 5.5.2. Farmakologická léčba .. 19
 6. GESTAČNÍ DIABETES MELLITUS .. 20
 7. DIABETES MELLITUS JAKO SOUČÁST JINÝCH ONEMOCNĚNÍ ČI STAVŮ (SEKUNDÁRNÍ DIABETES) .. 21
 8. LABORATORNÍ METODY U DM .. 21
 8.1. GLUKÓZA .. 23
 8.1.1. Glykémie nalačno - (FPG, Fasting Plasma Glucose) 26
 8.1.2. Glykémie po jídle (postprandiální glykémie, PPG) 27
 8.2. ORÁLNÍ GLUKÓZOVÝ TOLERANČNÍ TEST (oGTT) .. 28
 8.3. INTRAVENÓZNÍ GLUKÓZOVÝ TOLERANČNÍ TEST 30
 8.4. GLYKOVANÝ HEMOGLOBIN (GHb) ... 31
 8.5. FRUKTÓZAMIN .. 34
 8.6. GLYKOSURIE = glukóza v moči ... 35
 8.7. KETONURIE = ketolátky v moči ... 37
 8.8. ALBUMIN V MOČI ... 39
 8.9. AUTOPROTIILÁTKY .. 41
 8.10. INZULÍN, C-PEPTID .. 42
 III. CÍL PRÁCE ... 44
 IV. PRAKTICKÁ ČÁST ... 45
 1. MATERIÁL A METODA ... 45
 1.1. Materiál ... 45
 1.2. Přístroj ... 45
 1.3. Pacienti ... 45
I. ÚVOD

Diabetes mellitus 2. typu je závažné civilizační onemocnění a počty pacientů s tímto typem diabetu stále narůstají. Již v současnosti představuje toto onemocnění významnou socioekonomickou zátěž pro společnost. Z tohoto pohledu bychom se měli věnovat nejen prevenci a včasné diagnóze, ale také správnosti, účelnosti a nezbytnosti laboratorních vyšetření.
II. TEORETICKÁ ČÁST

1. DEFINICE

Diabetes mellitus (DM) je chronická metabolická porucha projevující se hyperglykémii v důsledku absolutního (typ 1) či relativního (charakteristické pro typ 2) nedostatku inzulínu. Je to onemocnění nevyléčitelné, ale vhodnou životosprávou a medikací je možné dlouhodobě tlumit jeho projevy a následky.(65)

2. PREVALENCE A INCIDENCE

Počet registrovaných diabetiků každoročně vzrůstá. Více než 90 % diabetiků jsou diabetici 2. typu (Tab.1). Prevalenci diabetu 2. typu výrazně pozitivně ovlivňuje vyšší věk a zvyšující se prevalence obezity.

Podobně jako počty diabetiků, vzrůstají také počty diabeticických komplikací a náklady na léčbu těchto pacientů. Jen Všeobecná zdravotní pojišťovna vyplatila za léčivé přípravky, výkony a zdravotnické prostředky v diabetologii v minulém roce 2,5 miliardy korun.(66)

V průběhu roku 2007 zemřelo 22,9 tis. osob s diabetickým onemocněním. Diabetes jako příčina úmrtí byl uveden ve 2 430 případech, jednalo se o osoby ve věku od 20 let. (65) Blížší charakteristika diabetiků, včetně komplikací je zobrazena v Tab.2.

<table>
<thead>
<tr>
<th>Onemocnění</th>
<th>Primární diabetes</th>
<th>Sekundární diabetes</th>
<th>Porucha glukózové tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. typu</td>
<td>2. typu</td>
<td>počet</td>
</tr>
<tr>
<td>Muži</td>
<td>25 760</td>
<td>7,4</td>
<td>317 922</td>
</tr>
<tr>
<td>Ženy</td>
<td>23 053</td>
<td>8,7</td>
<td>374 152</td>
</tr>
<tr>
<td>Celkem</td>
<td>52 813</td>
<td>7,0</td>
<td>692 074</td>
</tr>
</tbody>
</table>

Tab. 1. Počet diabetiků v roce 2007 podle Ústavu zdravotnických informací a statistiky v ČR (ÚZIS, 65)
Tab. 2. Charakteristika diabetiků a jejich komplikací (nerozděleno podle typu diabetu) podle ÚZIS (65)
PAD – perorální antidiabetika

3. ROZDĚLENÍ DIABETU

Klasifikace podle Světové zdravotnické organizace (WHO) z r. 1985 se ukázala být z více důvodů nedostatečnou. Za hlavní problém se pokládalo rozdělování nejčastějších dvou typů diabetu na inzulin-dependenční a non-inzulin-dependenční diabetes, což vychází z potřeb léčby pacienta, ale nevyjadřuje dostatečně různorodou etiopatogenezu jednotlivých typů diabetu. Z těchto důvodů r. 1997 výbor expertů pro diagnostiku
a klasifikaci diabetes mellitus Americké diabetologické společnosti (ADA) podal návrh nové klasifikace DM. Ta byla sjistými úpravami přijata, nejprve Americkou diabetologickou společností a následně i Mezinárodní federací pro diabetes (IDF). K této klasifikaci se přihlásila i Česká diabetologická společnost (ČDS), a proto se používá rovněž v České republice. (Tab.3)

<table>
<thead>
<tr>
<th>I. Diabetes mellitus 1. typu</th>
<th>II. Diabetes mellitus 2. typu</th>
<th>III. Jiné specifické typy diabetes mellitus</th>
<th>IV. Gestáční diabetes mellitus</th>
</tr>
</thead>
</table>

Tab.3. Klasifikace diabetes mellitus podle etiologie, převzato z Martinka, 1999 (32)

Tato klasifikace DM podle etiologie rozlišuje 4 druhy DM, které označuje římskými číslicemi (I.-IV.) a vychází z jejich etiologické různorodosti. Samotné typy diabetu jsou již označeny číslicemi arabskými (1. a 2. = změna oproti klasifikaci dle WHO). (51)

4. DIABETES MELLITUS 1. TYPU

Diabetes 1. typu představuje jedno z nejzávažnějších a nejčastějších chronických onemocnění diagnostikovaných v dětském věku. Onemocnění vzniká jako důsledek destrukce β-buněk Langerhansových ostrůvků pankreatu autoimunním procesem. Riziko rozvoje onemocnění je vyšší u mladých lidí (zejména u dětí), než u populace starší. (51)

Při rozvoji onemocnění se uplatňuje kombinace genetických faktorů a vnějších vlivů:
- **Genetické faktory**: zvláště geny HLA (Human Leukocyte Antigen) II. třídy (DR3/DR4, DQ2/DQ8), dále gen inzulínu a řada dalších. Nositelé HLA-DR3 nebo DR4 alely mají 5-8x vyšší riziko rozvoje autoimunitního diabetu. Heterozygoti HLA-DR3/4 mají dokonce 20-40x vyšší riziko.
- **Vnější faktory**: víry (Coxsackie B, rubeolla, cytomegalovirus), kravské mléko, nedostatek zinku, toxiny, léky a chemikálie, fyzičky a psychický stres atd. (8,33)
Příbuzní diabetiků 1. typu mají několikanásobně vyšší riziko vzniku tohoto onemocnění než běžná populace. (14)

4.1. PODTYPY DIABETU 1. typu

4.1.1. autoimmunně podmíněný

Genetická predispozice kombinovaná s vnějšími faktory může navodit prediabetickou fázi onemocnění, která trvá i několik let. V této době dochází k pomalé destrukci β-buněk Langerhansových ostrůvků zprostředkované aktivovanými T-lymfoцитy a cytokiny, která se projevuje jako inzulitis (lymfoцитová infiltrace ostrůvkových buněk, zánět). Inzulitis postupně snižuje počet funkčních β-buněk, a způsobuje tak poruchy syntézy a sekrece inzulínu. (33) Autoprotilátky samy pravděpodobně nemají destrukční účinek a jejich přesná úloha v patogenezi autoimmunního diabetu 1. typu zatím zůstává nejasná. (15)

Zatímco nezbytnou podmínkou k manifestaci diabetu 1. typu v dětství je destrukce 70-80 % buněk ostrůvků pankreatu, ke klinické manifestaci diabetu 1. typu u dospělých stačí destrukce podstatně menšího počtu β-buněk. Se zvyšujícím se věkem se zvyšuje i inzulínová rezistence, takže srovnatelná hladina volného plazmatického inzulínu vyvolává u dospělých menší metabolický efekt než u dětí. (56)

Pomalu progredující forma inzulitidy trvá léta či desetiletí a vede obvykle k manifestaci diabetu až v dospělosti. Tento typ cukrovky bývá také označován jako LADA (latent autoimmune diabetes in adults). Neprojevuje se typickými příznaky DM 1. typu, nemá sklon ke ketoacidóze a bývá často zaměňen za DM 2. typu. (33)

4.1.2. idiopatický DM 1. typu

Na rozdíl od autoimmunního DM jsou hodnoty markrů autoimunní inzulitidy – protilátky proti Langerhansovým ostrůvkům (ICA), protilátky proti glutamatdekarboxyláze (GADA), protilátky proti tyrozinfosfatáze (IA2), protilátky proti inzulínu (IAA) v krvi pacienta po celou dobu průběhu onemocnění nízké, až nulové (nemá autoimmunní podklad) a také nevykazuje žádnou vazbu s alelami HLA.

Pro europoidní populaci je velmi vzácný, postihuje zejména etnikum africké a asijské a u našich pacientů se s ním téměř nesetkáváme. (51)
K lepšímu odlišení obou podtypů diabetu 1. typu je autoimunní diabetes někdy nazývan Diabetess mellitus typ 1A a idiopatický Diabetes mellitus typ 1B.

4.2. KLINICKÉ PROJEVY

Pro DM 1. typu jsou charakteristické následující klinické projevy:

- **Polydipsie.** Ta je způsobena hyperglykémii, která zvyšuje extracelulární osmolaritu. Výsledkem je zvýšené uvolňování vody z buněk (intracelulární dehydratace) a stimulace centra žízně v hypotalamu.

- **Polyurie.** Hyperglykémie vede k osmotické diuréze. Při překročení renálního prahu pro reabsorpci glukózy v proximálním tubulu, zůstává glukóza v močových cestách, kde svým osmotickým efektem vede k sekreci vody a tím zvýšenému množství finální moči.

- **Polyfagie**. Deplece buněčných zásob cukrů, tuků a proteinů vedou ke zvýšení pocitu hladu.

- **Hubnutí.** Z důvodu využívání zásobní tukové tkáně jako zdroje energie, event. také z důvodu dehydratace pokud pacient není schopen nahradit ztráty vody při polyurii.

- **Únava** z nedostatku intracelulární glukózy jako zdroje energie. (30)

Manifestace DM1 bývá rychlá, zvláště u dětí jsou to hodiny až dny, u dospělých většinou několik týdnů. (8)

4.3. KOMPLIKACE

Rozlišujeme komplikace akutní a chronické. Detailněji jsou tyto komplikace popsány v kapitole č. 5.4. (komplikace DM 2.typu).

Mezi typické akutní komplikace provázející diabetes 1. typu patří diabetická ketoacidóza, která může vyústit až v hyperglykémické koma. Z chronických komplikací se nejvíce uplatňuje mikroangiopatie, zj. retinopatie (rozvíjí se u 90 % nemocných s DM1), neuropatie a poškození ledvin. (8,39)
4.4. LÉČBA

Pro oba podtypy – jak 1A, tak 1B – je typická absolutní a doživotní závislost pacienta na exogenně aplikovaném inzulíně (s výjimkou pacientů po úspěšné transplantaci pankreatu). Jednou správnou léčbou (ať už se onemocnění manifestuje v dětství či v dospělosti) je proto od počátku léčba inzulínem - inzulinoterapie. Inzulinoterapie může zpomalit destrukci β-buněk a prodloužit období, kdy je alespoň částečně zachovalá vlastní sekrece inzulínu, která spolu s dobrou kompenzací diabetu (udržením normoglykémie) oddaluje rozvoj chronických komplikací diabetu. Časné zahájení léčby inzulínem může přispět k pozdějšímu metabolicky stabilnějšímu průběhu onemocnění. U dětí je někdy dokonce pozorována přechodná (obvykle několik měsíců trvající) obnova sekrece inzulínu (tzv. honeymoon period), která vyžaduje snížení dávek inzulínu na minimum.

Oproti tomu terapie perorálními antidiabetiky typu inzulinových sekretagog (= deriváty sulfonylurey, glinidy) u pacientů mylně klasifikovaných jako DM 2. typu může svým stimulation vlivem na β-buňku urychlit její autoimunní destrukci. (9)

Nedílnou součástí léčby je dieta a pohybová aktivita. (51,59)

4.4.1. Nežádoucí účinky inzulinoterapie

Nejzávažnější komplikací léčby inzulínem je hypoglykémie, která může vyústit až hypoglykémická koma. Hypoglykémie je lékařský termín vztahující se k patologickému stavu, který je vyvolán nízkou hladinou krevního cukru (pod 3,5 mmol/l).

Manifestace hypoglykémie je velmi rychlá – v průběhu minut. Jejím hlavním nebezpečím je nedostatečné energetické zásobení mozku ("neuroglykopenie") s následkem smrti. (33)

Nejvíce jsou ohroženi diabeticí 1. typu v souvislosti s léčbou inzulínem, ale také diabeticí 2. typu léčení perorálními antidiabetiky (sulfonylureou) nebo inzulínem. (33)

Hypoglykémie je nejčastěji navozena nížším příjemem potravy než odpovídá aplikované dávce inzulínu nebo PAD. Pokles glykémie může být také důsledkem těžké fyzické náročnosti, abúzu alkoholu (zejména při hladovění) nebo interakce s léky snižujícími hladinu glukózy v krvi. (39)

Jestliže máme diferenciálně-diagnostické rozpaky, nesmíme v žádném případě ani zkusmo aplikovat inzulín. Pro pacienta s hypoglykémii by mohla být aplikace fatální.
5. DIABETES MELLITUS 2. TYPU

Diabetes mellitus 2. typu nahrazuje dřívější termín non-inzulín dependentní diabetes mellitus. Jedná se převážně o onemocnění středního a vyššího věku. 60-90% diabetiků tohoto typu trpí obezitou. Jak bylo uvedeno výše, tento typ cukrovky v naší populaci převládá.(63)

5.1. ETIOLOGIE

Etiologie se od diabetu 1. typu značně liší. Je zde vždy vyjádřena v různém poměru se vyskytující inzulínová rezistence (porucha citlivosti periferních tkání k účinku inzulínu) a porucha sekrece inzulínu β-buňkou. Obě poruchy mají genetický podklad a plně se rozvinou pod vlivem určitých nepříznivých vnějších faktorů.(8,51,59)

Při rozvoji onemocnění se uplatňuje řada faktorů, přičemž za rozhodující můžeme považovat vrozenou predispozici (polygenní typ dědičnosti) (30), věk a nadváhu (obězní mají až 10x vyšší riziko než neobězní). Dále se uplatňuje malá fyzická aktivita, stres, kouření, a další faktory. (8) Zhoršení metabolismu glukózy mohou způsobit také některá léčiva (glukokortikoidy, diazoxid, β-blokátory nebo thiazidy).

5.1.1. Porucha sekrece inzulínu

Někteří autoři považují poruchu sekrece inzulínu β-buňkou při vzniku DM 2. typu za dominantní. (50) V ostrůvcích diabetiků 2. typu dochází k určitým morfologickým změnám, zvláště k akumulaci amyloidu. Ten se nachází i v ostrůvcích nediabetiků staršího věku, ale u diabetiků 2. typu je přítomen v daleko větší míře.

Spolu s inzulínom je ze sekrečních granulí uvolňován amylin, což je hormonálně aktivní peptid, který pravděpodobně tlumí sekreci inzulínu a snižuje jeho účinky v periférii. Kumulace amylinu v ostrůvcích vede k jeho přeměně na amyloid, který velmi pravděpodobně také narušuje funkci β-buňek a může časem vést i k částečné destrukci ostrůvků a k absolutnímu poklesu sekrece inzulínu. Množství amyloidu v ostrůvcích koreluje s věkem, délku trvání a závažností diabetu.(8)
5.1.2. Inzulínová rezistence (IR):

Řada autorů se domnívá, že inzulínová rezistence je tou primární poruchou, která vede k rozvoji diabetu 2. typu.(13)

Hlavním rizikovým faktorem IR je obezita, která vede k down regulaci inzulínových receptorů a tedy k určitému stupni inzulínové rezistence. Ne u všech obézních se však rozvíí diabetes. Down regulace sama o sobě k rozvoji diabetu nestačí. U geneticky predisponovaných jedinců dochází k rozvoji těžší inzulínové rezistence a diabetu v důsledku kombinace receptorových a zvláště postreceptorových poruch.

Pohyb a hubnutí vedou úspěšně ke snížení inzulínové rezistence.

Příčiny IR:
(a) prereceptorová - abnormální inzulín, přítomnost protilátek proti inzulínu
(b) receptorová - down-regulace inzulínových receptorů (snižení jejich počtu)
- poruchy inzulínového receptoru (snižená afinita receptorů pro inzulín)
(c) postreceptorové poruchy - abnormální transdukce signálu, zvláště porucha aktivace receptorové tyrosinkinázy, abnormální průběh fosforylace (33)

Stupeň inzulínové nedostatečnosti je odrazem postupné ztráty schopnosti β-buněk reagovat na glukózu. Tělo se snaží inzulinovou rezistenci překonat a slinivka vyplavuje do krve stále více a více inzulínu.

V první fázi proto dochází ke zvýšené hladině inzulínu v krvi (kompenzatorní hyperinzulinémie). Glykémie je udržována v normálních mezích. Kompenzatorně zvýšená sekrece inzulínu postupně vyčerpává β–buňky (svou roli obvykle hrají i funkční, geneticky podmiňené defekty β-buněk), což vede k rozvoji dysfunkce β-buněk s poruchou sekrece inzulínu. Hyperinzulinémie je také škodlivá sama o sobě - urychluje aterosklerózu a tak u obézních zvyšuje riziko infarktů myokardu, iktů a dalších komplikací aterosklerózy.

V druhé fázi se inzulínová rezistence zhoršuje. I přesto, že koncentrace inzulínu je zvýšena, vzniká postprandiální hyperglykémie (buňky v pankreatu nestačí vyhovět nepřiměřeným nárokům).

Ve třetí fázi se inzulínová rezistence nemíní, ale snížená sekrece inzulínu β–buňkami způsobuje hyperglykémii i nalačno a rozvíí se manifestní diabetes.

Chronická hyperglykémie působí toxicky na β-buňky (dále zhoršuje jejich funkci a sekreci inzulínu) a v periferních tkáních dále prohlušuje inzulínovou rezistenci
(tzv. glukotoxicita). Stejný efekt má také zvýšená hladina mastných kyselin (tzv. lipotoxicita). (8)

V krvi pacienta můžeme obvykle detekovat hyperinzulinémii (vysokou hodnotu imunoreaktivního inzulínu IRI), vysoký C-peptid nalačno i po stimulaci jídlem a nepřítomnost markrů autoimunní inzulitidy, či jejich velmi nízkou (normální) hodnotu. (50,51)

DM 2. typu je často součásti METABOLICKÉHO SYNDROMU. Jedná se o soubor různých klinických, biochemických a humorálních abnormailit, které vznikají v souvislosti s poruchou účinku inzulínu v metabolismu glukózy:
- IR, hyperinzulinémie
- centrální typ nadváhy či obezita (obvod pasu ≥ 80 cm u žen a ≥ 94 cm u mužů)
- esenciální hypertenze (krevní tlak > 130/85)
- dyslipidémie (hypertriglyceridémie, snížení HDL-cholesterolu, naopak zvýšení LDL-cholesterolu)
- porušená glukózová tolerance (PGT) nebo diabetes mellitus 2. typu
- často také hyperurikémie, sklon k trombofilii a hyperkoagulaci, mikroalbuminurie, zvýšení markrů zánětu a další odchylky

Metabolický syndrom je spojen s výraznou akcelerací aterosklerózy a z toho vyplývajícími komplikacemi (ischemická choroba srdeční, cívní mozková příhoda, atd.). (35,36,50)

5.2. MODY

Specifickou formou diabetu II. typu je MODY (Maturity Onset Diabetes of the Young).

Jde o diabetes adultního typu vyskytující se u mladistvých (před 25. rokem). (7)

Projevuje se mírnou hyperglykémii bez sklonu ke ketoacidóze.

MODY diabetes patří mezi monogenní, autozomálně dominantní formy diabetu. Jedná se o geneticky heterogenní skupinu onemocnění, způsobenou mutacemi šesti genů na dlouhých raménkách chromozomů: 20, 12, 13, 17, 2 a na krátkém raménku chromozomu 7 (Tab. 4.). Pět z těchto genů kódůjí transkripční faktory – tato skupina MODY diabetů je označována jako MODY transkripčních faktorů. Jeden gen kóduje enzym glukokinázou, jejíž mutace způsobuje typ MODY 2 diabetu s odlišným (benigním) průběhem ve srovnání s MODY transkripčních faktorů (pankreatická glukokináza je
klíčovým enzymem pro metabolismus glukózy v β-buňkách pankreatických ostrůvků, kde působí jako “glukózový senzor” tj. reguluje sekreci inzulínu podle hladiny glukózy).

Vzhledem ke skutečnosti, že asi u pěti MODY rodní nejsou ve známých lokusech mutace zjištěny, ještě pravděpodobně minimálně 1 lokus na své objevení dosud čeká.(11,20)

<table>
<thead>
<tr>
<th>lokus</th>
<th>MODY 1</th>
<th>MODY 2</th>
<th>MODY 3</th>
<th>MODY 4</th>
<th>MODY 5</th>
<th>MODY 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>gen</td>
<td>HNF-4 alfa</td>
<td>glukokináza</td>
<td>HNF-1 alfa</td>
<td>IPF 1</td>
<td>HNF-1 beta</td>
<td>NEUROD1</td>
</tr>
<tr>
<td>funkce</td>
<td>jaderný receptor</td>
<td>enzym</td>
<td>TF</td>
<td>TF</td>
<td>TF</td>
<td>TF</td>
</tr>
<tr>
<td>výskyt (%MODY rodně)</td>
<td>vzácný</td>
<td>10-63%</td>
<td>21-64%</td>
<td>vzácný</td>
<td>častý?</td>
<td>vzácný</td>
</tr>
<tr>
<td>věk v době diagnózy</td>
<td>po pubertě</td>
<td>dětství</td>
<td>po pubertě</td>
<td>po pubertě</td>
<td>různý</td>
<td>po pubertě</td>
</tr>
<tr>
<td>hyperglykémie</td>
<td>závažná</td>
<td>mírná</td>
<td>závažná</td>
<td>mírná?</td>
<td>různá</td>
<td>závažná?</td>
</tr>
<tr>
<td>mikrovaskulární komplikace</td>
<td>časté</td>
<td>vzácné</td>
<td>časté</td>
<td>vzácné?</td>
<td>není známo</td>
<td>není známo</td>
</tr>
</tbody>
</table>

Tab.4. Typy MODY diabetu upraveno podle Timist, 2005 (53)

5.3. KLINICKÉ PROJEVY

Příznaky tohoto onemocnění mohou být někdy vyjádřeny výraznou hyperglykémii a pak jsou podobné jako u diabetu 1. typu. Mnohem častěji jsou však dlouho nespecifické a diabetes je řadu let nerozpoznán, diagnostikován náhodně (viz akutní komplikace 5.4.1.), nebo se manifestuje chronickými komplikacemi diabetu. Manifestuje se zpravidla až po 40. roce věku.(8)

5.4. KOMPLIKACE

Komplikace provázející diabetes mellitus představují velkou zátěž pro pacienta a výrazně ovlivňují kvalitu i délku jeho života. Obvykle je rozdělujeme na akutní a chronické.

Klinický význam akutních komplikací ustoupil v poslední době do pozadí, zejména díky správné edukaci nemocných a možnosti domácího selfmonitoringu. S výskytem
onemocnění však narůstá počet diabetiků, u nichž se rozvinuly pozdní následky, označované jako chronické komplikace diabetu, vedoucí k narůstající morbiditě a mortalitě diabetické populace. (Obr. 1)

![Graph showing trends in diabetes treatment and complications](image)

Obr. 1. Léčení diabetici a komplikace diabetu; převzato z ÚZIS (65)

Index rok 2000 = 100%

5.4.1. Akutní komplikace diabetu

Mezi akutní komplikace řadíme **hyperglykemické stavy** (diabetickou ketoacidózu a hyperosmolální neketotickou hyperglykémii) a laktátovou acidózu, které jsou důsledkem metabolické dekompenzace.
A) Diabetická ketoacidóza

Pro diabetickou ketoacidózu je typická metabolická acidóza při vzestupu ketolátek (dostávají se i do moče), hyperglykémie a deficit vody a minerálů. (39)

B) Hyperosmolární hyperglykemický stav

Pro hyperosmolární hyperglykemický stav je charakteristická těžká hyperglykémie (35-50 mmol/l) bez ketózy, s výraznou dehydratací a vysokou plazmatickou osmolalitou. (39)

Vyskytuje se u diabetiků 2. typu se špatně kompenzovaným diabetem.

Hyperosmolární hyperglykemický stav je často (až v 60 %) prvním projevem diabetu. Další příčinou může být nedodržování léčebných opatření, stres, interkurentní onemocnění, nedostatečný příjem tekutin, či užívání některých léků (např. diuretik).

Stav se vyvíjí obvykle dny až týdny. Bez odborného lékařského zásahu končí stav bezvědomím a smrtí. (8)

C) Laktátová acidóza

Laktátová acidóza je metabolická acidóza se zvýšenou hodnotou aniontové mezery. Hladina laktátu v plazmě je vyšší než 6 mmol/l a pH pod 7,35. (39)

Mechanismus vzniku laktátové acidózy u diabetu není jasný. Může komplikovat jak diabetickou ketoacidózu, tak hyperosmolární kóma, eventuálně se vyskytne u diabetu spontánně. Laktátovou acidózu mohou také snadno vyvolat biguanidy. (33)

Počáteční příznaky jsou nespecifické (celková nevůle, nevolnost, zvracení, dezorientace, oběhová nestabilita a hyperventilace). Pokud není laktátová acidóza včas
rozpoznána, rozvíjí se těžká metabolická acidóza se vzestupem laktátu. Jedná se o život ohrožující stav. (39)

5.4.2. Chronické komplikace

Hlavním patofyziologickým mechanismem rozvoje chronických komplikací diabetu je hyperglykémie. Chronická hyperglykémie vede v organismu k extra- i intracelulárním patologickým procesům. Intracelulárně dochází k tvorbě sorbitolu a fruktózy, extracelulárně k neenzymatické glykosylaci proteinů.

Tvorba sorbitolu a fruktózy: glukóza je uvnitř buněk, do kterých vstupuje bez působení inzulínu, přeměněna enzymem aldosoreductázou na sorbitol, který je dále oxidován na fruktózu. Intracelulární kumulace těchto osmoticky aktivních látek se podílí na rozvoji diabetické neuropatie a mikroaneurysmat.

Neenzymatická glykosylace: navázání glukózy na aminoskupiny proteinů vede postupně k vytváření ireverzibilních produktů zvaných „advanced glycosylation end products“ (AGE produkty). Ty jsou příčinou řady změn v organismu, které vedou k rozvoji angiopatie na všech úrovních arteriálního řečiště. Obvykle rozlišujeme mikro- a makroangiopatie.

A) Diabetické mikroangiopatie

Tento pojem zahrnuje diabetickou retinopatii, nefropatii a polyneurupatii. Mikrovaskulární komplikace jsou specifické pro diabetes a nemůže k nim dojít bez dlouhodobé hyperglykémie. (8)

- **Diabetická retinopatie**

Rozvíjí se přibližně u 25% nemocných s DM2. Poškozením malých cév v sítnici dochází ke vzniku malých aneurysmat (mikroaneurysma) a nových křehkých cév (neovaskularizace). Spontánní krvácení z těchto křehkých cév může vést k jizvení sítnice a tím k zhoršení vidění. Diabetická retinopatie je ve vyspělých zemích ve skupině populace do 60 let věku nejčastější příčinu slepoty. (34) Diabetickou retinopatii zhoršuje špatná kompenzace diabetu, hypertenze a kouření.

- **Diabetická nefropatie**

V časné fázi se projevuje zvýšenou mikroalbuminurii, později ledviny ztrácejí svou schopnost čistit a filtrovat krev. Diabetická nefropatie patří v naší republice (v rozvinutých zemích obecně) mezi hlavní indikace k zařazení do chronické dialyzační terapie. (34)
Diabetické neuropatie

Vývoj a stupeň je rovněž závislý na trvání diabetu a na jeho kompenzaci. Nejčastěji se rozvíjí periferní senzomotorická polynéuropatie. Časným příznakem je snížená citlivost senzorických nervových zakončení. Později se projevuje parestéziemi na dolních končetinách, bolestmi, ztrátou citlivosti (zj. na teplo a bolest), svalovou atrofií či areflexií. Motorické poruchy se objevují až v pokročilých stádiích. Druhou nejčastější formou je autonomní diabetická neuropatie charakterizovaná kardiovaskulární manifestací, gastroparézou (zpomalené vyprázdnování žaludku), stěvními poruchami (průjem nebo zácpa), poruchami močového měchýře (inkontinence), impotencí.

Diabetická neuropatie je společně s diabetickou angioptázií hlavním mechanismem vzniku SYNDROMU DIABETICKÉ NOHY. Tento syndrom je podle WHO definován jako ulcerace nebo destrukce tkání na nohou u diabetiků spojená s neuropatií, s různým stupněm ischemické choroby dolních končetin (ICHDK) a často i s infekcí. Zevními vyvolávacími příčinami ulcerací bývají otlaky nejčastěji z nesprávné obuvi, spáleniny, drobné úrazy a dekubity, ragády, plíšové infekce a panaritia.(59)

B) diabetické makroangiopatie

Jako makroangiopatie se označuje postižení větších cév aterosklerózou. Progresi aterosklerotického procesu výrazně akceleruje nejen tvorba AGE produktů, ale také dislipoproteinémie, hypertenze a hyperinzulinémie.(8,38) Makroangiopatie je příčinou závažných kardiovaskulárních komplikací, mezi které řadíme ICHS s rizikem infarktu mozkového, mozkovou příhodou (3. nejčastější příčinou smrti diabetiků), cévní mozkovou příhodou (3. nejčastější příčinou smrti) a ICHDK.

5.4.3. Nespecifické komplikace

DM vede k nespecifickým poruchám imunitní odpovědi, což je důvodem zvýšené náchylnosti diabetiků k infekcím. Nejčastěji jsou to kožní, respirační (včetně TBC) a močové infekce. Často se u diabetiků setkáváme se špatným hojením ran. (8)

5.5. LÉČBA

Z celkového počtu léčených diabetiků je dieta dostávající prostředkem léčby pouze pro 29,6%. Jejich podíl každoročně mírně klesá a narůstá podíl pacientů léčených
perorálními antidiabetiky (45,4 \%) nebo inzulinem (16,7 \%), případně kombinovanou léčbou (8,2 \%) - Obr.2.

Obr. 2. Léčba diabetu v roce 2007 převzato z ÚZIS (65)

Léčba hyperglykémie je u nemocného s diabetem 2. typu součástí komplexních opatření, která zahrnují i léčbu hypertenze, dyslipidemie, obezity a dalších projevů metabolického syndromu. Cílem je dosáhnout cílových hodnot glykémii, ideálně při nepřítomnosti závažných hypoglykémii a bez hmotnostních přírůstků (případně s hmotnostním úbytkem).

Léčebný plán má být stanoven tak, aby se dosáhlo optimální kompenzace diabetu s přihlédnutím k věku, zaměstnání, fyzické aktivitě, přítomnosti komplikací, přidruženým chorobám, sociální situaci a osobnosti nemocného. (59) Primárním ukazatelem glykemické kontroly je hodnota glykovávaného hemoglobinu (HbA1c).
V nedávné době byly uveřejněny výsledky studie ADVANCE, která sledovala vztah intenzivní kompenzace a kardiovaskulárních komplikací u pacientů s diabetes mellitus 2. typu. Tato studie prokázala, že snaha o těsnou kompenzaci (HbA₁c nižší nebo rovný 6,5 % podle kalibrace Diabetes Control and Complications Trial /DCCT/) je při zvolení správné léčebné strategie nejen bezpečná (ve vztahu k hypoglykémii), ale také přínosná, neboť snižuje riziko závažných mikrovaskulárních komplikací. Naopak předchozí studie VADT a ACCORD zhodnotili intenzivní kompenzaci jako vysoce rizikovou. Studie ACCORD byla dokonce pro zvýšení mortality u intenzivně léčených pacientů (pravděpodobně z důvodů těžkých hypoglykémii) předčasně zastavena. (1)

5.5.1. Nefarmakologická léčba

Tvoří základ léčby diabetu 2. typu. Zahrnuje volbu individuálně stanovených dietních opatření a fyzické aktivity.

Doporučována je dieta diabetická (s příslušným limitem sacharidů), u obézních jedinců dieta redukční s ohledem na stupeň nadváhy. (59) Pokles tělesné hmotnosti je u diabetiků 2. typu prakticky vždy provázen snížením glykémie. Zvýšená tělesná aktivita navíc zlepšuje lipidový profil, snižuje hodnoty krevního tlaku a redukuje celkové kardiovaskulární riziko.

Třebaže se jedná o nejbezpečnější, nejlevnější a velmi účinný přístup, jehož výsledky se dostavují již během několika týdnů, dlouhodobá spolehlivost takových programů je velmi nízká a v drtivé většině případů je nezbytné přistoupit k farmakologické intervenci.

5.5.2. Farmakologická léčba

Léčba je vedena tak, aby se výsledky co nejvíce přibližily cílovým hodnotám a to vždy s nejmenší dávkou farmaka a při respektování všech kontraindikací léčby. Při léčbě se klade důraz na postprandiální glykémie, které jsou rizikem rozvoje aterosklerotických komplikací.

Léčba inzulínem se doporučuje obvykle až tehdy, pokud se neuspěje s dvojkombinací perorálních antidiabetik (PAD). (59)

Dělení PAD podle mechanismu účinku :

1. Inzulínová sekretagoga: preparáty, které přímým působením na β-buňky pankreatu stimulují sekreci inzulínu. Patří sem dlouho známé deriváty sulfonylurey, zvyšující

2. Inzulinové senzitizéry: léky, které zlepšují citlivost k inzulínu. Sem patří biguanidy (metformin) a thiazolidindiony (glitazony). Výjimečnost této lékové skupiny tkví v tom, že ovlivňují nejen glykémii, ale zlepšením IR v různé míře i všechny ostatní složky metabolického syndrому.

3. Ostatní perorální antidiabetika: problém nedostatečné postprandinální sekrece inzulínu spojené s hyperglykémii po jídle je u některých nemocných možné řešit zpomalením resorpce glukózy z gastrointestinálního traktu (GIT) pomocí inhibitoru glukosidáz akarbózy (inhibitory α-glukosidáz). V širším slova smyslu lze mezi perorální antidiabetika řadit také antiobezitika.

6. GESTAČNÍ DIABETES MELLITUS

Gestační diabetes mellitus (dále GDM) je definován jako jakýkoli stupeň intolerance sacharidů vznikající poprvé v průběhu gravidity. Jde o nejčastější metabolickou poruchu v těhotenství, která může mít závažné krátkodobé i dlouhodobé následky pro matku i dítě. (59) Na rozvoji onemocnění se podílí genetická predispozice, nadměrné přibývání na váze (rozvoj inzulinové rezistence) a zvýšená hladina kontraregulačních hormonů.

Incidence GDM je v literatuře udávána v rozmezí 0,5-15 % a to v závislosti na způsobu diagnostiky (zda je prováděn rutinní screening, či je indikováno vyšetření tolerance sacharidů pouze při přítomnosti rizikových faktorů GDM). (59)
7. DIABETES MELLITUS JAKO SOUČÁST JINÝCH ONEMOCNĚNÍ ČI STAVŮ (SEKUNDÁRNÍ DIABETES)

Do této skupiny se řadí diabetes doprovázející definovaná onemocnění genetická, endokrinní, zánětlivá, diabetes vyvolaný podáváním léků apod. (Tab. 5.) Ze všech uvedených stavů je nejčastější DM při onemocněních exokrinní funkce pankreatu, dále léky a chemikáliemi indukovaný DM. Léky indukovaný diabetes nejčastěji vzniká při podávání glukokortikoidů (tzv. steroidní diabetes). (57) Vzhledem k přítomnosti základního onemocnění nebývá většinou stanovení diagnózy problematické. (51)

| Genetické defekty funkce β-buněk (nejčastěji MODY diabetes) |
|---|---|
| Genetická porucha účinku inzulínu (např. A-typ inzulinové rezistence) |
| Nemoci exokrinní funkce pankreatu (např. pankreatitis, neoplasma, pankreatektomie, fibróza) |
| Endokrinopatie (např. akromagálie. Cushingův syndrom, thyreotoxikóza,...) |
| Léky a chemikáliemi indukovaný DM (např. glukokortikoidy, thiazyd,...) |
| Infekce (např. kongenitální rubecula, cytomegalovirus) |
| Zřídka formy autoimmunního DM (např. proti látky proti receptořům pro inzulín) |
| Jiné genetické syndromy s občasným výskytěm DM (např. Dow-nův, Klinefelterův syndrom) |

Tab. 5. Jiné specifické typy diabetes mellitus, převzato z Martinka E. 1999 (32)

8. LABORATORNÍ METODY U DM

Biochemické vyšetření diabetika sleduje tyto hlavní cíle:
- určení kompenzace glukózového metabolismu
- pomoc při diferenciální diagnostice typů a určení stádia choroby
- stanovení příměřené terapie a monitorování její účinnosti
- včasné odhalení komplikací
Vyhledávání (screening) diabetu

K vyhledávání diabetu se používá hodnocení glykémie, kdežto vyšetření moče (glykosurie) nepostačuje a bylo ze screeningu vyloučeno. Glykémie se provádí v plné kapilární krvi nebo v žilní plazmě.

Provádí se:
- jednou za dva roky u nerizikových jedinců jako součást preventivních prohlídek
- jednou ročně u osob se zvýšeným rizikem (nemocní s kardiovaskulární příhodou v anamnéze, věk nad 40 let, obezita, arteriální hypertenze, dislipidémie či hyperlipoproteinémie, výskyt poruchy glukózové tolerance v anamnéze, gestační diabetes či porod plodu o hmotnosti nad 4 kg)
- okamžitě u osob se zjevnými příznaky

Screening diabetu z důvodu vyššího věku je předmětem diskuse. Jedná se však o velmi závažný rizikový faktor a proto je screening i v tomto případě žádoucí. Mluví pro to i vysoké procento nediagnostikovaných diabetiků ve vyšších věkových kategoriích (až 50 %). (59)

Diagnostika diabetu

Při podezření na diabetes mellitus je třeba potvrdit diagnózu onemocnění standardním postupem. O diagnóze diabetu svědčí:
- přítomnost klinické symptomatologie provázené náhodnou glykémii vyšší než 11,0 mmol/l a následně glykémii v žilní plazmě nalačně vyšší než 7,0 mmol/l (stačí jedno stanovení)
- při nepřítomnosti klinických projevů a nálezů glykémie v žilní plazmě nalačně vyšší než 7,0 mmol/l po osmihodinovém lačnění (ověřit alespoň 2x)
- nález glykémie za dvě hodiny při orálním glukózovém testu (oGTT) vyšší nebo rovné 11,1 mmol/l (2,4,5,48,59,60)

Průběžná vyšetření

Frekvence návštěv je závislá na dosažené metabolické kompenzaci, změnách terapeutického režimu, přítomnosti komplikací a celkovém zdravotním stavu pacienta. Průběžná vyšetření se opět opírají o anamnézu, fyzikální vyšetření a laboratorní vyšetření.

Laboratorní vyšetření:
- glykémie nalačně či postprandiálně
- glykovaný hemoglobin jednou ročně u všech pacientů, u pacientů léčených inzulinem
jednou za čtvrt roku, u pacientů léčených PAD jednou za čtvrt až půl roku
- vyšetření, u nichž byla zjištěna patologická hodnota
- moč semikvantitativně (cukr, bílkovina, ketony)
- albuminurie kvantitativně (u diabetiků mladších 70 let jednou ročně při negativním nálezu, při patologických hodnotách je třeba postupovat individuálně)
 Jednou ročně je diabetik vyšetřen komplexně.(59)

8.1. GLUKÓZA

Základní biochemickou informací sacharidového metabolismu je stanovení koncentrace glukózy v krvi.

Koncentrace glukózy v krvi (glykémie) je udržována v konstantním rozmezí hormonálně: inzulín glykémii snižuje, glukagon, adrenalin, kortizol a růstový hormon ji zvyšují. Fyziologicky se koncentrace glukózy v plazmě zvyšuje po jídle (postprandiálně), klesá při hladovění.

Bez inzulínu se glukóza do buněk nedostává a zůstává ve zvýšeném množství v krvi, popř. je vylučována močí.

Rozdíly glykémii v séru a plazmě: plné, kapilární a venózní krvi

Z dostupných dat nelze zcela jednoznačně určit, zda mezi hodnotami koncentrace glukózy v séru a plazmě jsou významné systematické rozdíly.(64) Naprosto většina literárních dat považuje obě hodnoty za rovnocenné. Doporučení WHO a ADA však jednoznačně zmiňují pouze použití plazmy a vůbec nezmiňují krevní sérum. (60)

Koncentrace glukózy v plné krvi je nižší než její koncentrace v plazmě (největší rozdíly sledujeme u novorozenců). Tento rozdíl je dán rozdílným obsahem vody v obou materiálech, resp. hematokritem, protože koncentrace glukózy v erytrocytech je nižší než v plazmě. Rozdíl koncentrací glukózy je u vzorků s normálním hematokritem průměrně 11%. (64)

Průměrný rozdíl koncentrace glukózy mezi kapilární a venózní krvi je nalačno 0,1 mmol/l a postprandiálně 1,7 mmol/l (vyšší koncentrace je v kapilární krvi).(64)
Analytické podmínky

Koncentrace glukózy v plazmě se stanovuje především enzymaticky (fotometrie, reflektometrie, ampérometrie). (64)

Původní nespecifické metody byly založeny na oxidoreduktákních vlastnostech glukózy v alkalickém prostředí a patří historii: oxidace glukózy roztokem kyseliny pikrové na červenou kyselinu pikraminovou, oxidace hexakynoželezitanem a stanovení jeho nadbytku titračně jodometricky nebo fotometricky přes berlínskou modř, apod.

Z chemických metod má význam pro svou specifitu jedině stanovení glukózy o-toluidinem. Podobně reagují i cukry galaktóza a manóza, protože ale nejsou v biologických tekutinách obsaženy, je stanovení pro glukózu v séru, plazmě, moči a likvoru specifické. Tato metoda poskytuje výsledky prakticky shodné s enzymovými metodami a v případě nouze by je mohla nahradit.

Chemické metody byly plně nahrazeny rychlými enzymatickými metodami, a to zejména s hexokinázou (HK) a glukóza-6-fosfátdehydrogenázou (G6PD), nejčastěji ale glukózaoxidazou (GOD) a peroxidazou (POD).

Principy metod:

A) Stanovení glukózy o-toluidinem

Provádí se v prostředí ledové kyseliny octové, kdy o-toluidin (o-aminotoluen) kondenzuje s glukózou za zvýšené teploty na glykosylamin, který se stabilizuje odštěpením vody na Schiffůvou bázi.

\[
\begin{align*}
CH_3\text{–}R_1\text{–}NH_2 + O=CH\text{–}R_2 &\quad \rightarrow \quad CH_3\text{–}R_1\text{–}N=CH\text{–}R_2 + H_2O \\
H^+, t &
\end{align*}
\]

R1 je benzenové jádro o-toluidinu, R2 je glukózový zbytek – \((C_5H_{11}O_5)\)

Měří se zeleně zbarvený produkt při 630 nm.

Krev, sérum/plazmu je nutné před vlastní analýzou deproteinovat, např. kyselinou trichloroctovou a k analýze použít supernatant. (26)

B) Stanovení s glukózadehydrogenázou

Glukóza se oxiduje NAD\(^+\) za enzymové katalýzy na kyselinu D-glukuronovou (\(\delta\)-D-glukonolakton):
C) Stanovení s glukózaoxidázou (GOD) a peroxidázou (POD) oudační kopulací

Principem je oxidace glukózy na D-glukonolakton a peroxid vodíku, který se využívá buď k oxidaci některých leukobází (aromatické diaminy typu o-tolidin, o-dianisidin, aj.) nebo častěji k oudační kopulaci 4-aminoantipyrinu (AAP) s fenolem na chinoniminové barvivo:

\[
\begin{align*}
R-CH=O + O_2 + H_2O & \xrightarrow{GOD} R-COOH + H_2O_2 \\
R-NH_2 + C_6H_5OH + 2 H_2O_2 & \xrightarrow{POD} R-N=C_6H_4=O + 4 H_2O
\end{align*}
\]

Měří se změna absorbance za minutu nebo výsledné zbarvení inkubační směsi po 15 minutách v pásu kolem 500 nm. Intenzita zbarvení je úměrná koncentraci glukózy. Reakce je rušena redukujícími látkami (vzhledem k poměrně vysoké koncentraci glukózy v plazmě endogenní vitamin C prakticky analýzu neruší).

D) Stanovení s hexokinázou a glukóza-6-fosfátdehydrogenázou

Je vysoce specifické a proto je základem referenční metody (s deproteinací). V praxi se používá bez deproteinace.

\[
\begin{align*}
glukóza + ATP & \xrightarrow{HK} glukóza-6-fosfát + ADP \\
glukóza-6-fosfát + NADP^+ & \xrightarrow{G6PD} glukonolakton-6-fosfát + NADPH + H^+
\end{align*}
\]

G6PD - glukóza-6-fosfátdehydrogenáza
Měří se absorbance v pásu kolem 340 nm. V praxi se někdy místo NADP⁺ používá NAD⁺.

(26)

E) Stanovení speciálními analyzátorů určenými jen pro analýzu glukózy (také některé glukometry). Principem je enzymatické stanovení s GOD kotvené na síťce nebo v reakční zóně nasávkového proužku. Vznikající peroxid vodíku se stanovuje ampérometricky. Měří se elektrodová oxidace peroxidu na platinové elektrodě (Clarkova elektroda) (26)

\[
H_2O_2 \rightarrow 2 H^+ + O_2 + 2 e^-
\]

8.1.1. Glykémie nalačno - (FPG, Fasting Plasma Glucose)

Význam a role

Stanovení glykémie nalačno má nezastupitelnou úlohu při určení diagnózy diabetu mellitu. Dále se využívá k vyhledávání osob se zvýšeným rizikem diabetu mellitu.

Preanalytické podmínky

Krev se odebírá po hladovění (lačnění) přes noc, minimálně však po dobu 8 hodin. Jakákoli fyzická námaha musí být vyloučena, stejně jako kouření. Pacient má být při odběru v klidové poloze (v sedě). Vzorek žilní krve se odebírá do odběrové nádobky s obsahem inhibitory glykolýzy obvykle v obvodykou kombinací je směs fluoridu sodného a EDTA (ethylendiamintetraoctová kyselina)

Plazma musí být oddělena od krevních elementů do 60 minut. Pokud je vzorek odebrán do zkumavek bez stabilizátorů glykolýzy, měl by být separován do 30 minut. Stabilita glukózy ve vzorku závisí na teplotě, skladování, bakteriální kontaminaci a glykolýze : 8 hodin při 20 – 25 °C; 72 hodin při 4 – 8 °C a ve fluoridové plazmě je stabilita 24 hodin při 20 - 25 °C. (48,49,60)

Diagnostická kritéria pro FPG přijatá Českou společností klinické biochemie (ČSKB) a Českou diabetologickou společností (ČDS) byla v červenci 2005 převzatá od Americké asociace pro diabetes (ADA). Tato kritéria jsou uvedena v následující tabulce (Tab..6.).
Tab. 6. diagnostická kritéria

<table>
<thead>
<tr>
<th>vyloučení Diabetu mellitu</th>
<th>< 5,6 mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>porušená glukózová tolerance</td>
<td>≥ 5,6 mmol/l až < 7,0 mmol/l</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>≥ 7,0 mmol/l (nutno potvrdit opakovaným měřením)</td>
</tr>
</tbody>
</table>

Zvýšené riziko diabetu je charakterizováno intervalem hodnot 5,6 - 6,99 mmol/l. Pro tento stav, označovaný ADA jako Impaired Fasting Glucose (IFG) nebo také prediabetes, je navržen český termín „Hraniční Glukóza Nalačno“ (HGL). (2,4,5,37,48,60,64)

8.1.2. Glykémie po jídle (postprandiální glykémie, PPG)

PPG je koncentrace glukózy v krvi v době mezi 60. – 120. minutou po požití jídla. Toto rozpětí souvisí s odlišnou dobou maxima u různých osob. U zdravého jedince dosahuje glykémie po jídle maximální hodnoty v době okolo jedné hodiny po jídle, u pacienta s diabetem 2. typu je to naopak v době blížící se 120. minutě po jídle. U zdravých jedinců nepřesahuje hodnota PPG po běžném jídle 6,8 mmol/l.

Význam a role

Základní indikací k měření PPG je potřeba rozhodnutí o léčebné strategii u pacientů s diabetem 2. typu, nesrovnalost mezi glykémii nalačno a HbA1c, nově vzniklé či rychle progredující mikrovaskulární komplikace.

Preanalytické podmínky

Krev se odebírá nejčastěji hodinu (popř. ještě po 2 hodinách) po jídle do vhodných zkumavek s protisrážlivým činidlem. Ostatní podmínky jsou stejné jako u stanovení FPG.(37,60)
8.2. ORÁLNÍ GLUKÓZOVÝ TOLERANČNÍ TEST (oGTT)

Význam a role

Orální glukózový toleranční test se používá k potvrzení diagnózy diabetes mellitus v případě, že diagnóza není jednoznačně potvrzena nálezem FPG vyšší než 7,0 mmol/l. Jde jednak o stavy s hraniční glukózou nalačno (IFG, 5,6 - 6,99 mmol/l), jednak v situacích s FPG nižší než 5,6 mmol/l, při nichž bylo vysloveno podezření na poruchu tolerance glukózy z předchozích vyšetření nebo jedná-li se o jedince se zvýšeným rizikem vzniku diabetu. (doporučení WHO). Při nálezu porušené glukózové tolerance (PGT) se oGTT opakuje ve dvouletých intervalech.

WHO i ADA doporučují použít oGTT k diagnóze gestačního diabetu mellitu. Používá se v těhotenství u skupin se zvýšeným rizikem vzniku diabetu. V tomto případě se test provádí ve 24. - 28. týdnu gravidity.

Preanalytické vlivy

K dosažení potřebné diagnostické správnosti oGTT se požaduje lačnění před odběrem po dobu 8 - 14 hodin, předchozí třídní dieta se zvýšeným přísunem sacharidů v potravě v množství minimálně 150 g za den a neomezovaná fyzická aktivita ve stejném období. Malabsorpcie, nausea a kouření ovlivňují výsledek oGTT. Snížení obsahu sacharidů v dietě sníží diagnostickou senzitivitu oGTT. (60)

Analytické podmínky

Biologickým materiálem pro oGTT je plazma (sérum) žilní krve.

1. Odebere se vzorek krve před podáním roztoku glukózy a změří se FPG. Tato hodnota by měla být pod 8 mmol/l. Při vyšší glykémii se roztok glukózy nepodává z důvodu příliš vysoké zátěže pro organismus. U těhotných je tato hranice 5,6 mmol/l.

2. Podá se 75 g glukózy v 250-350 ml vody a vypije se během 5-15 minut. Během pokusu pacient nesmí kouřit, jíst, pokud možno nebrat léky, které ovlivňují výsledek testu a nevykonávat žádnou fyzickou aktivitu.

3. Odebere se vzorek krve za 2 hodiny (v některých případech i za 1 hodinu), kde se hodnotí glykémie. Průběh změn glykémie je zobrazen na Obr.3. Současně s odběrem krve je požadována také moč ke sledování glykosurie a ketonurie.
Tab. 7. Diagnostická kriteria

Rozhodovací limit oGTT pro diagnózu diabetu mellitu je definován jako hodnota plazmatické glukózy v žilní krvi ve druhé hodině po zátěži ≥ 11,1 mmol/l (Tab.7). K vyslovení diagnózy musí být překročení tohoto rozhodovacího limitu potvrzeno opakovaně.

Gestační diabetes je laboratorně diagnostikován, je-li dosaženo alespoň jednoho ze dvou uvedených kritérií:

- FPG ≥ 5,6 mmol/l
- glukóza ve 120. minutě po zátěži ≥ 7,8 mmol/l

Obr. 3. Průběh perorální glukózové křivky, převzato z Paulev, 2000 (41)
Průběh vícebodové perorální glykemické křivky po zátěži glukózou (nebo sacharidy) lze rozdělit do tří úseků:

a) Rychlost resorpce glukózy ze střeva udává tvar vzestupné části křivky. Tato část může být strmá při hypertyroidismu (zvýšené prokrvení trávicího ústrojí - rychlejší resorpce glukózy do krve) nebo naopak může být plochá při malabsorpci – hypotyroidismu.

b) Vrcholová část křivky je závislá na dobré funkci jater (tvorba jaterního glykogenu) a na účinku inzulínu v játrech. Za normálních okolností je 80% vstřebané glukózy přeměněno v játrech na glykogen. V krvi venae portae je koncentrace až 22,2 mmol/l, zatímco do periferního oběhu se dostane maximálně 11,1 mmol/l. Vzestup glykémie provokuje exkreci inzulínu do krevního oběhu. Vrcholu glykémie je dosaženo za 45-60 minut. U začínajícího diabetu 1. typu, kdy nastává snížení exkrece inzulínu, není glukóza přeměněna v játrech do glykogene a vrhol glykémie glykemické křivky přesahuje hodnotu 11,1 mmol/l a jeho maximum bývá i později než za 60 minut. Při onemocnění jater kapacita jaterních buněk nestačí vstřebanou glukózu metabolizovat nebo se do periferního oběhu přes portokavální zkraty dostane více glukózy. Vrhol rovněž převyší hranici hodnotu; vrcholová hodnota přetrvává i déle než 60 minut, ale návrat ve 120 minut je již normální (utilizace není porušena - zvonový tvar křivky). U hypertyroézy rychlé vstřebání glukózy způsobí, že je rovněž převyšena hranice glykémie 11,1 mmol/l, ale návrat k výchozí hodnotě je rychlý (gotický tvar křivky).

c) Sestupná část křivky je závislá na účinku inzulínu a je mírou utilizace glukózy. Její zpomalený a nedostatečný návrat k normě je klasickým projevem diabetu. (33,44,64)

8.3. INTRAVENÓZNÍ GLUKÓZOVÝ TOLERANČNÍ TEST

Používá se tam, kde je porušená absorpce glukózy ze střeva. Na rozdíl od perorálního testu však u něho chybí stimulace sekrece inzulínu enterohormony.

Glukóza se podává intravenózně v dávce 0,33 nebo 0,5 g/kg. Krev se odebírá 6krát po 10 minutách po aplikaci.

Počítá se tzv. asimilační koeficient pro glukózu (K), který je nepřímo úměrný době, za kterou klesne glykémie z nejvyšší hodnoty na polovinu (biologický poločas T1/2 v minutách). K udává procentuální pokles glykémie za jednu minutu.
Hodnocení

Asimilační koeficient pro glukózu je fyziologicky vyšší než 1,2. Pro diabetes svědčí hodnota méně než 1.(44)

8.4. GLYKOVAŇ HEMOGLOBIN (GHb)

Glykace molekuly hemoglobinu vzniká neenzymovou reakcí glukóza-6-fosfátu nebo glukózy s NH₂-skupinou terminálního valinu β-řetězce hemoglobinu. Nejprve vzniká Schiffova báze (aldimin), která je labilní a snadno disociovatelná; přesmykuje se na stabilní ketoamin. Z reakční rovnováhy vyplývá, že podíl glykována hemoglobinu tvořený in vivo je úměrný koncentraci volné glukózy. Proto u pacientů s diabetes mellitus, u kterých je hladina glukózy trvale zvýšena, se vytvoří větší množství glykována hemoglobinu. Reakce probihá pomalu a postupně. Hemoglobin je umístěn v erytrocytech, takže děje, které se na jeho molekule odehrávají, jsou vázány na dobu života červené krvinky (tj. 120 dní). Stanovení GHb ukazuje na průměrný stav glykémie za dobu 4-8 týdnů. Hodnota glykována hemoglobinu nemusí být stálá a může kolívat i během glykemické křivky. Je to způsobeno tím, že některé metody nedokáží odlišit formu labilní (Schiffovu bázi - odráží situaci za 24 hodin) od formy stabilní (ketoamin - odráží střední hodnotu glykémie za 4-6 týdnů).

Uříjetými metodami lze oddělit jednotlivé deriváty a podskupiny hemoglobinu (Hb). Bylo prokázáno, že u diabetiků se zvyšuje frakce A₁c (HbA₁c). Přesněji se jedná o N-(1-deoxyfrotos-1-yl) hemoglobin beta, neboli DOF hemoglobin. V organismu při dlouhodobém zvýšení glykémie podléhají glykaci i jiné bílkoviny. To souvisí s poškozením některých orgánů a tkání (viz. chronické komplikace). (12, 19,22,23,33,47,,64)
Význam a role

Jedná se o rutinní a nejvíce efektivní nástroj monitorování průběhu terapie diabetu a nejlépe způsob kontroly dlouhodobého stavu koncentrace glukózy v krvi pacientů. V blízké perspektivě též další nástroj laboratorní diagnózy a screeningu diabetu. (60,64)

Indikace stanovení glykovaného hemoglobínu

- labilní diabetes (velké výkyvy glykémie)
- "problermový" pacient
- nový pacient bez informace o předcházejících výsledcích
- pacient s interkurentním onemocněním (např. bronchopneumonie)
- potvrzení a správného vedení samokontroly
- objasnění "stresové" hyperglykémie (např. při akutním infarktu myokardu, po těžším chirurgickém výkonu).(33)

<table>
<thead>
<tr>
<th>IFCC %</th>
<th>IFCC mmol/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>vyloučení diabetu 2,8-4,0</td>
<td>28-40</td>
</tr>
<tr>
<td>výborná kompenzace < 4,5</td>
<td>< 45</td>
</tr>
<tr>
<td>uspokojivá komp. 4,5-6,0</td>
<td>45-60</td>
</tr>
<tr>
<td>neuspokojivá komp. > 6,0</td>
<td>> 60</td>
</tr>
</tbody>
</table>

Tab. 8 Referenční hodnoty podle IFCC

<table>
<thead>
<tr>
<th>DCCT %</th>
<th>IFCC mmol/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>vyloučení diabetu 4,0-6,0</td>
<td>20-42</td>
</tr>
<tr>
<td>uspokojivá kompenzace < 7,0</td>
<td>< 53</td>
</tr>
<tr>
<td>neuspokojivá kom. > 8,0</td>
<td>> 64</td>
</tr>
</tbody>
</table>

Tab. 9 Referenční hodnoty podle DCCT

Problémem zůstávají dvě uznávané kalibrace, ze kterých se odvozují výsledné hodnoty GHb (Tab. 8. a 9.). Podle nového doporučení EASD, ADA, IDF, IFCC mají být výsledky měření vázané na referenční metodu IFCC.

Doporučení dále stanovuje nové jednotky měření: mmol HbA1c /mol Hb (celkový hemoglobin) (64):

- Převod výsledků z DCTT na IFCC: % DCCT = (0,915 * % IFCC) + 2,15
- Převod výsledků z % na novou jednotku měření: % IFCC * 10 = mmol/mol HbA1c
Preanalytické podmínky

Plná krev odebraná ze žíl y, nebo kapilární krev odebraná po vpichu z prstu do odběrové nádobky obsahují antikoagulační činidlo, obvykle EDTA, popř. heparin.

Stabilita HbA1c:
3 dny při 15 - 25°C
1 týden při 4°C

minimálně 1 rok při -70°C a nižší teplotě

Pro skladování při -20°C se uvádějí kontroverzní literární údaje o stabilitě a proto není tento způsob skladování doporučen.\(^{(60,64)}\)

Analytické podmínky

Hlavní metody analýzy jsou většinou založeny na oddělení frakce hemoglobinu A1c od ostatních některou z uvedených separačních technik nebo chemickým stanovením v oddělených a promytých erytrocytech přes 5-hydroxymetyl-2-furaldehyd s kyselinou 2-thiobarbiturovou (fotometrické stanovení). Lze užít i radioimunoanalýzu RIA s antisérem proti lidskému GHb.

Používané separační techniky: chromatografie na mikrokolonách s vhodným katexem (dnes převažuje), elektroforéza na agarózovém gelu, HPLC (vysokoúčinná kapalinová chromatografie), isoelektrická fokusace na polyakrylamidovém gelu, afinitní gelová chromatografie.

Chromatografické stanovení na mikrokolonách

Příkladem afinitní chromatografie je kolona plněná agarózou s kovalentně navázanou kyselinou aminofenylboritou (trihydroxyaminofenylboranem). Ta má specifickou afinitu ke ketoформě GHb, s níž vytváří komplex. Ostatní neglykované frakce Hb kolonou protečou.

Imunochemické stanovení

Za přítomnosti HbA1c ve vzorku dochází ke kompetici o protilátku na latexových částicích s aglutinačním činidlem a tím ke zpomalení aglutinace. Rychlost aglutinace
Interference

Falešná negativita: u stavů se zkráceným přežíváním erytrocytů – např. hemolytická onemocnění, hemoglobinopatie, výrazná nebo chronická ztráta krve, těhotenství, zvýšené hladiny celkového bilirubinu, časté hypoglykémie.

Falešná pozitivita: hypochromní anémie, urémi, zvýšená hladina sérových lipidů. (44)

Výpočet střední koncentrace glukózy z hodnot HbA1C

Střední koncentrace glukózy (mmol/l) = 1,73 * HbA1C + 0,20

Každá změna hladiny HbA1C o 1 % odpovídá změně střední koncentrace glukózy o 1,7 mmol/l (33)

8.5. FRUKTÓZAMIN

Není součástí rutinního souboru vyšetření diagnosy a terapie diabetiků.

Stanovení fruktózaminu lze doporučit jen v případech, kdy není možné spolehlivé měření HbA1c (hemoglobinopatie, anémie), ale nelze je považovat za rovnocennou náhradu stanovení HbA1c (2,31). Poločas fruktózaminu je pouze 10 - 14 dní, zatímco u HbA1c je 6 týdnů. (44,60) V případě použití je nutno měření opakovat 1x měsíčně (zatímco měření HbA1c se doporučuje provádět 3 - 4x ročně).

Ketoaminy sérových proteinů (zejména pak albuminu) redukují v slabě alkalickém prostředí (pH 10,35) nitrotetrazoliovou modř (NTB) na formazany, jejichž množství se měří fotometricky.

Hodnota 285 μmol/l je považována za horní hranici referenčního intervalu.

Při stanovení interferuje kyselina askorbová, kyselina močová, bilirubin a methylidopa. (46) Snížená proteosyntéza v játrech a zvýšená renální clearence proteinů při zánětlivých chorobách působí sníženou koncentraci fruktózaminu v séru.
8.6. GLYKOSURIE = glukóza v moči

Glykosurie je výsledkem glomerulární filtrace většího množství glukózy, než ledvinné tubuly mohou absorbovat. Malé množství glukózy se dostane do moči u každého zdravého jedince (0,11 mmol/l). Termín glykosurie je používán pro patologicky zvýšené množství glukózy v moči. Abnormálně zvýšená glykosurie je výsledkem buď zvýšené hladiny glukózy v plazmě nebo snížené renální glukózové absorpční kapacity, popř. se mohou kombinovat obě poruchy. (33)

Za normálního stavu ledvinné tubuly reabsorbuji téměř všechnu glukózu, která je filtrována v glomerulech. Většina přefiltrované glukózy se reabsorbuje ve stočeném proximálním ledvinném tubulu. (58) Při vzestupu hladiny glukózy v plazmě se zvyšuje filtrační nálož a renální tubulární reabsorpce glukózy stoupá lineárně až dosáhne hodnoty maximální resorpční kapacity. (27) Ta je 0,9 – 2,0 mmol/min a je konstantní pro každého jedince. (27)

Pokud je kapacita ledvinných tubulů pro reabsorpci glukózy porušena, může dojít ke glykosurii i při normální glykémii. Koncentrace glukózy v plazmě, která se projeví glykosurii se označuje jako „renální práh pro glukózu“. Ten se obvykle udává jako hladina glykémie 10 mmol/l po dobu 15 minut. Při posuzování výsledků je však nutné mít na paměti, že renální práh pro glukózu má značné interindividuální a intraindividuální kolísání (v krajních případech od 2, 8 do 19, 4 mmol/l). (33)

Věk, srdeční selhání, ledvinné onemocnění (např. diabetická glomeruloskleróza), a chronická hyperglykémie renální práh pro glukózu zvyšují. Těhotenství, hyperthyreoidismus, horečka a cvičení ho snižují. (55)

Role a význam

Kvalitativní ani kvantitativní zkoušky průkazu či měření glukózy v moči nejsou řazeny mezi základní nástroje diagnózy diabetu ani sledování jeho stavu. (2,5,46,48)

Sledování glukózy v moči může sloužit pouze jako nedokonalá náhrada za sledování glukózy v krvi osobními glukometry, např. u pacientů, kteří nejsou schopni/ochotní dosáhnout akceptovatelné kvality práce s glukometrem. U diabetiků 2. typu (na inzulínu nezávislých - léčených dietou nebo dietou a PAD), kteří nemají možnost sledování cukru v krvi, je sledování glykosurie považováno za důležitou informaci, která může upozornit na možné zhoršení kompenzace cukrovky. Sledování cukru v moči testovacími proužky je doporučováno diabetikům 2. typu většinou 2-3 hodiny po jídle (možno měřit i nalačno
spolu s ketolátkami). Rozhodně se nelze podle močových nálezů orientovat v úpravách dávek inzulínu.\(60,61\)

Preanalytické podmínky

Moč je vhodné odebrat do tmavé nádobky. Glukóza při sběru moč může být konzervována přidáním 5 ml ledové kyseliny octové do nádobky před začátkem sběru. V močových vzorcích bez konzervace může obsah glukózy po 24 hodinách při pokojové teplotě klesnout až o 40%. Proto je vhodné uchovávat během sběru vzorky na ledu.\(62\)

Falešně negativní výsledky způsobují redukční látky (zejména pak kyselina askorbová), naopak falešně pozitivní výsledky dávají látky s oxidačními účinky (peroxidové látky, chlornany). \(60,61\)

Analytické podmínky

Vyšetření moč je metoda jednoduchá a bezbolestná. Pro ekonomickou nenáročnost je preferována i ze strany zdravotních pojišťoven.

Materiál: glykosurii můžeme měřit ze středního proudu ranní moči, nebo častěji z moč sbírané. Sbírá se 24 hodin. Důležitý je záznam o množství nasbírané moči, který slouží pro přepočet denních ztrát glukózy moči (fu-glu).

Semikvantitativní stanovení diagnostickými proužky

Princip stanovení:

Většina technik pro měření glykosurie jsou založeny na oxidaci glukózy. Indikační proužek obsahuje enzym glukózaoxidázu v jejíž přítomnosti se glukóza oxiduje vzdušným kyslíkem na glukonolakton a zároveň vzniká peroxid vodíku. Peroxid vodíku oxiduje, za přítomnosti enzymu (křenové peroxidázy), chromogenní látku (ortotoluidin) na modrozelený nebo hnědočervený produkt. Míra zbarvení je hodnocena. \(18\)

Specifita: Glukózaoxidázová reakce je prakticky specifická pro glukózu (jiné cukry reagují mnohonásobně méně).\(33\)

Kvantitativní stanovení

Pro kvantitativní zhodnocení je nutné použít příslušný analyzátor. Princip stanovení je stejný jako u stanovení glukózy v séru či plasmě. \(62\)
Fyziologické hodnoty:

| moč | 0.3-1.1 mmol/l |
| sbíraná moč za 24 hodin | 0.3 - 0.96 mmol/l |

Nálež cukru v moči na rozdíl od ketolátek není alarmujícím ukazatelem. (62)

Ztráty glukózy moči (fu-glu)

Tato hodnota se získává výpočtem podle vztahu:

\[\text{objem moči za 24 hodin (l) \times glukóza v moči (mmol/l)} \]

8.7. KETONURIE = ketolátky v moči

Ketolátky jsou intermediární metabolity zahrnující acetocovou kyselinu, \(\beta \)-hydroxymáseľnou kyselinu a aceton. (33)

Za normálního stavu jsou kyselina acetocová a \(\beta \)-hydroxymáseľná přítomny v krvi a moči v ekvimolárních množstvích. Poměr mezi acetátem a \(\beta \)-hydroxybutyrátem (normálně 1: 3) je dán stavem oxidačně-redukčních reakcí v organismu. (6,60)

Význam a role

Zvýšené vylučování ketolátek moči u diabetu indikuje začínající dekompenzaci pro nedostatečnou utilizaci glukózy (nedostatek inzulínu).

Ketolátky mají být stanovovány u všech diabetických pacientů s hodnotou glukózy nad 16,7 mmol/l a též při výskytu klinických symptomů diabetické ketoacidózy. (60)

Preanalytické podmínky

Falešné pozitivní výsledky při stanovení v moči mohou být způsobeny:

- silným zbarvením vzorků
- některými léky (například inhibitory acetylcholinesterázy)
- poškozením proužků nevhodným zacházením (expozice ovzduší, teplotou a pod.)
- lačněním nebo sníženým kalorickým příjmem (redukční dieť)
- těhotenstvím (u asi 30 % případů)
Falešně negativní výsledky mohou být způsobeny:

- velmi nízkým pH moči
- vysokým přítjem kyseliny askorbové
- mikrobiálním rozkladem a následným únikem těkavého acetonu

Analytické podmínky

V praxi jsou nejčastěji ketolátky hodnoceny v moči (tzv. ketonurie) pomocí diagnostických proužků.

Princip diagnostických proužků:

Ketolátky (především acetocová kyselina) tvoří s nitroprusidem v alkalickém prostředí za přítomností síranu amonného růžové až fialové zbarvení; β – hydroxymáselná kyselina tuto reakci nedává, aceton reaguje s mnohem menší intenzitou.

Citlivost a specifita:

Reakci je možno zachytit 0, 45 mmol/l (50 mg/l) acetocové kyseliny.

Reakce specifická pro ketoskupiny v enolové formě. Rušit může vyšší koncentrace fenylpyruvátu (při fenylketonurii), který dává oranžové zbarvení. Alkalické prostředí dává zbarvení s některými léky (laxancia obsahující fenolftalein) nebo diagnostiky (bromsulfoftalein), které reakci překrývá.

Fyziologické hodnoty ketonurie: do 0, 19 mmol/l (20 mg/l).

Při diabetické ketoacidóze dochází ke tkáňové hypoxii, která vede ke zvýšení β-hydroxymáselné kyseliny. Proto má pro diagnostiku diabetické ketoacidózy mnohem větší význam stanovení β-hydroxymáselné kyseliny než klasické stanovení ketolátek standardními diagnostickými proužky.(6,60)

Stanovení kyseliny β – hydroxymáselné

Měření ketonémie, tedy kvantitativně přesné hodnoty β-hydroxybutyrátu v krvi se provádí pomocí testačních proužků na ketonometru. Pro finanční náročnost je doporučeno zatím jen u dětí, těhotných žen a při léčbě inzulínovou pumpou.

Měření se provádí alternativně v krvi, séru nebo plasmě. V případě použití plasmy používají různí výrobci různých antikoagulantii. V séru/plasmě je stabilita analytu 1 týden při 4°C a několik týdnů, skladuje-li se vzorek při -20°C. Validní data o analytických znacích metody a ukazatelích analytické kvality nejsou dosud k disposici nebo jsou kontroverzní. (60)
8.8. ALBUMIN V MOČI

Denně proteče ledvinami 40 kg albuminu. Do moče se za fyziologického stavu vyloučí průměrně 10 mg albuminu za den. (28) Pokud diabetik vylučuje za 24 hodin 30–300 mg albuminu močí, hovoříme o mikroalbuminurii (Tab. 10). Mikroalbuminurii lze požadovat za prokázanou, jestliže je překročení uvedených kritérií dosaženo ve dvou ze tří po sobě následujících vzorcích moči analyzovaných v intervalu 3-6 měsíců. (3) Potřeba zvýšeného počtu měření je dána vysokou hodnotou intrindividální biologické variace albuminu v moči.

Význam a role

Měření koncentrace albuminu v moči diabetiků vykazuje významnou schopnost časné predikce diabetické nefropatie. Zvýšená koncentrace albuminu v moči je také významným rizikovým faktorem srdečních chorob. (64)

Preanalytické podmínky

U diabetiků nevykazuje albumin v moči diurnální variabilitu. Vyšetření je nutné provádět za stabilizovaného klinického stavu. (24) Koncentraci albuminu v moči ovlivňuje dekompenzovaný diabetes, dekompenzovaná hypertenze, akutní chorobné stavy, infekce močových cest a zvýšená fyzická námaha. (60,24,43)

Analytické podmínky

Jsou dva způsoby vyšetření mikroalbuminurie. Prvním způsobem je stanovení poměru albumin : kreatinin v ranní moči nebo v náhodném vzorku moče. Druhým způsobem je měření vyloučeného albuminu v mg/den nebo μg/min ve sbírané moči za 12 až 24 hodin (Tab.10).

První způsob vyšetření silně doporučuje již mnoho let ve svých guidelines Americká diabetologická asociace a také US National Kidney Foundation. Albumin i kreatinin jsou sloučeniny dobře rozpustné ve vodě a tedy i v moči. Díky této vlastnosti optimálně reagují na pitný režim pacienta (pokud pacient hodně pije, obě látky jsou ve stejném poměru naředěny, a obráceně, pokud pije málo). Také nebylo prokázáno, že by sbírání moče vedlo k většímu záchytu pozitivních pacientů. Sběr moče má navíc řadu nevýhod: délkou dispenzarizace klesá kvalita sběru moče, pacienti neměří objem moče přesně (odměrným
válcem), v močovém měchýři zůstává reziduum moči, které při sběru není započítáno, s rostoucí délkou života přibývá inkontinentních pacientů a vzrostá riziko rozlití materiálu, například při měření objemu moči.

Národní doporučení dává přednost 2. rannímu vzorku moči nebo stanovení ve sběru moči získaném během nočního odpočinku. Vyšetření v moči sbírané za 24 hodin se v ČR nedoporučuje.

Albumin je v moči stabilní minimálně 1 týden při teplotě 4 - 20°C. Zatímco během skladování při -20°C lze pozorovat mírné snižování koncentrace albuminu v moči, při teplotě -70°C a nižší k poklesu koncentrace nedochází ani po 6 měsících uskladnění.

<table>
<thead>
<tr>
<th>typ vzorku</th>
<th>mikroalbuminurie</th>
</tr>
</thead>
<tbody>
<tr>
<td>sběr moči</td>
<td>30 – 299 mg/24hod</td>
</tr>
<tr>
<td>časovaný vzorek</td>
<td>20 – 199 μg/min</td>
</tr>
<tr>
<td>náhodný vzorek</td>
<td>2,8 – 28 mg/mmol kreatininu</td>
</tr>
</tbody>
</table>

Tab. 10. Kriteria detekce mikroalbuminurie

Hodnoty uvedených kriterií byly verifikovány a potvrzeny řadou studií. Klinická citlivost, zjištěná na bázi velké meta analytické studie (80), dosáhla hodnoty 91 %. Hodnoty přesahující horní intervaly uvedené v Tab. 10. jsou označovány jako proteinurie. Hodnocení proteinurie testovacími proužky je pro sledování diabetické neuropatie nedostatečně. (2,3,34,46,64)

Principy metod:

Celosvětově se dnes stanovení albuminu v moči provádí imunoturbidimetricky nebo imunonefelometricky za použití polyclonální protitěkan proti lidskému albuminu. Poslední dobou se ovšem ukazuje, že imunochemické metody hrubě podhodnocují koncentraci albuminu v moči. Příčinou je fragmentace albuminu v moči a ztráta části imunoreaktivnosti (nonimunoreaktivní albumin). Za spolehlivou metodou se považuje pouze HPLC, která dává o 20 – 30% vyšší výsledky. (16,24)

Dále jsou používány screeningové testovací proužky. Všechny takto vyšetřené pozitivní vzorky mají být verifikovány kvantitativní metodou. (64) Při pozitivitě celkového proteinu v moči diagnostickým proužkem se stanovení mikroalbuminurie neprovádí (je překročen pracovní rozsah měření).(43,60)

U diabetiků se doporučuje provádět vyšetření jednou ročně. Pozitivní výsledek je nutné potvrdit následným druhým, případně třetím měřením v intervalu 3 až 6 měsíců. (64)
8.9. AUTOPROTILÁTKY

Jak bylo uvedeno dříve, je DM 1. typu autoimunním onemocněním. V krvi těchto pacientů tedy můžeme stanovit řadu protilátek.

Význam a role

Stanovení protilátek slouží k potvrzení diagnózy DM 1. typu a hodnocení stádia onemocnění.

V klinické praxi u dospělých diabetiků nejčastěji stanovujeme protilátky proti dekarboxyláze kyseliny glutamové (GADA - Antibodies to Glutamic Acid Decarboxylase). U člověka existují dvě izoformy tohoto enzymu - GAD65 a GAD67. Pro diabetes mellitus je relevantní pouze izoforma GAD65, proti níž jsou namířeny protilátky vyskytující se při inzulitidě. Výskyt protilátek proti GAD65 však není omezen pouze na diabetes, ale lze je nalézt také u thyreoiditid, adrenalitid a dalších onemocnění. Naopak další později objevené autoprotilátky proti buňkám ostrůvků pankreatu 2 (IA2 - Islet Cell Antibodies 2) jsou vysoce specifické pro diabetes a u jiných autoimunních chorob se vyskytují podstatně méně než GADA.

Zcela výlučné postavení mají další protilátky-protilátky proti inzulínu (IAA - Inzulin Auto-Antibodies) pro specificku inzulín jako autoantigenu pro β-buňky pankreatu, zatímco všechy ostatní známé antény se vyskytují mimo β-buněk ještě v jiných tkáních. (48)

Jednotlivé protilátky se v krvi pacienta obvykle neobjevují zároveň, ale postupně. Jako první se u dospělých většinou vyskytují GADA, naopak u nejmladších dětí IAA. Objevivší se IA2 jsou patrně markrem rychlé progrese inzulitidy. ICA po nástupu klinických známek onemocnění, ve srovnání s výše uvedenými protilátkami, v krvi pacienta rychle klesají, což omezuje jejich využitelnost u pacientů s pomalejším průběhem onemocnění. V případě silných akutních zevních vlivů se však všechny protilátky mohou objeven i současně. Protilátky lze v krvi pacienta tedy detekovat již před klinickým nástupem DM, jelikož se začínají tvořit se začátkem procesu autoimunní inzulitidy. Jejich hodnota v průběhu onemocnění kolísá a s dovršením procesu destrukce β-buněk pankreatu dochází k jejich poklesu až vymizení. (32)
Analytické podmínky

Autoprotilátky jsou nejčastěji stanovovány imunochemickou metodou ELISA. Vhodným materiálem je sérum získané centrifugací srážlivé krve.(54)

8.10. INZULÍN, C-PEPTID

Biosyntéza a sekrece inzulínu

Inzulín je syntetizován v β- buňkách pankreatu ve formě tzv. proinzulínu, tj. prekurzoru inzulínu. Před sekrecí je proinzulín proteolytickým řešením na dvou místech. Uvolní se tak vlastní inzulín (Obr. 4) a část, která původně spojovala oba polypeptidické řetězce inzulínu, tzn. C-peptid. Po odštěpení C-peptidu inzulín precipituje s ionty zinku za vzniku mikrokrystalů inzulínu, skladovaných v sekrečních granulech.

Obr.4. Stuktura inzulínu, podle Huang 1996 (25)

Význam a role

Stanovení inzulínu a C-peptidu slouží k odlišení 1. a 2. typu diabetu a k monitorování produkce inzulínu u stavů vyúžívajících podání exogenního inzulínu.

Jednorázové stanovení hladiny inzulínu nalačená nemá velkou diagnostickou cenu a proto se běžně neprovádí. U diabetiků léčených inzulínem dochází k interferenci s endogenním inzulínem a stanovení také ovlivňují eventuálně přítomné protilátky proti inzulínu.

Skutečnou endogenní sekreci inzulínu lépe odráží stanovení C-peptidu. V případě diabetu 1. typu jsou koncentrace C-peptidu nízké, na rozdíl od normálních (popř. zvýšených v důsledku IR) koncentrací v případě diabetu 2. typu. Kromě toho při stanovení C-peptidu neinterferuje endogenní inzulín.
Preanalytické podmínky

Hodnocení hladin inzulínu i C-peptidu se nejčastěji provádí po provokaci glukózou. Příprava pacienta, dávka glukózy i časy odběrů jsou stejné jako u o-GTT. Provádí se 4-bodová (krev se odebrá ještě za 3 hod.) nebo 7-bodová zátěžová křivka. Můžeme provádět současně s vyšetřením glykemické zátěžové křivky.

Na vyšetření inzulínu (IRI = imunoreaktivní inzulin) a C-peptidu se odebrá srážlivá žilní krev (vyšetření ze séra).

Pro stanovení C-peptidu platí přísné preanalytické zásady: krev je nutno vložit do ledové tříště a ihned doručit do laboratoře. Lépe provádět odběry přímo v laboratoři.

Hodnotu koncentrace inzulínu a C-peptidu výrazně zkreslí případná hemolýza; je třeba dodržovat všechny zásady správného odběru a hemolýze se vyhnout. Vyšetření nelze hodnotit u nemocných s renální insuficiencí. (33,44)

Stanovení inzulínu ani C-peptidu nehraje významnou roli při rutinním sledování ani diagnostice u diabetických pacientů. (64)
III. CÍL PRÁCE

Hlavním cílem práce bylo zhodnotit případnou vzájemnou závislost biochemických parametrů stanovovaných v rámci pravidelných kontrol u diabetiků 2. typu.
IV. PRAKTICKÁ ČÁST

1. MATERIÁL A METODA

1.1. Materiál

Krev byla odebrána do 2 typů zkumavek Vacuette (Dialab, Německo) podle typu stanovení: s antikoagulačním přípravkem K₃EDTA pro změření glykovaného hemoglobinu a druhý typ bez antikoagulačního přípravku pro glykémii.

Reagencie potřebné pro stanovení glukózy (v séru i moči) a pro glykovaný hemoglobin byly zakoupeny od firmy Roche (Německo).

1.2. Přístroj

Analyzátor Cobas integra 800 od firmy Roche (Německo) pracuje na čtyřech základních principech: absorpční fotometrie; fluorescenční polarimetre; turbidimetrie a potenciometre. Pro měření glukózy v séru i v moči byla použita enzymatická metoda s hexokinázou. Ztráty glukózy moči (fu-glu) je vypočítaná hodnota z glykosurie a objemu nasírané moči za 24 hodin: \(fu-glu = \text{objem moče za } 24 \text{ h (l)} \times \text{glukóza v moči (mmol/l)}. \)

Pro stanovení HbA₁c byla použita imunochemická metoda založená na turbidimetrické inhibici v hemolyzované plné krvi.

1.3. Pacienti

Data od 24 žen ve věku 50 – 86 let a 30 mužů ve věku 40 – 82 let trpících diabetem 2. typu byla získána z databáze laboratoře. Jedná se o pacienty pravidelně kontrolované v diabetologické poradně.

1.4. Statistická analýza

Pearsonův korelační koeficient byl stanoven za pomoci programu GraphPad Prism verze 4.00 pro Windows, GraphPad Software (San Diego California USA). Za minimální hladinu statistické významnosti byla považována hodnota \(p < 0,05. \)
2. VÝSLEDKY

2.1. Vzájemné závislosti základních biochemických ukazatelů

Nejdříve byly stanoveny korelační koeficienty mezi všemi měrenými veličinami (Obr.5-14). Vysoký korelační koeficient byl nalezen mezi glukózou v séru a glukózou v moči, glukózou v séru a ztrátami glukózy močí za 24 hodin, glukózou v moči a jejími ztrátami moči za 24 hodin a mezi glykovaným hemoglobinem a glukózou v séru (Obr. 5, 6, 8, 14). Naopak mezi glukózou v séru a objemem moči, objemem moči a glukózou v moči, objemem moči a ztrátami glukózy močí za 24 hodin, objemem moči a GHb, GHb a glukózou v moči, GHb a ztrátami glukózy močí za 24 hodin nebyla nalezena statisticky významná závislost (Obr. 7, 9, 10, 11, 12, 13).

![Diagram showing correlation between serum glucose and urine glucose](image-url)
Obr. 6 Závislost mezi glukózou v séru a ztrátami glukózy močí za 24 hodin.

Obr. 7 Vztah mezi glukózou v séru a objemem moči sbírané 24 hodin. Korelační koeficient byl nízký (-0,02) bez statistické významnosti.
Obr. 8 Závislost mezi glukózou naměřenou ve vzorku moči a ztrátami glukózy močí za 24 hodin.

Obr. 9 Vztah mezi glukózou v moči a objemem moče sbírané za 24 hodin. Korelační koeficient byl nízký (0,007) a nebyl statisticky významný.
Obr. 10 Vztah mezi objemem moče sbírané za 24 hodin a ztrátami glukózy močí. Korelační koeficient byl nízký (0,15) a statistická významnost malá (0,03).

Obr. 11 Vztah mezi objemem moče sbírané za 24 hodin a glykovaným hemoglobinem. Korelační koeficient byl nízký (0,085) a nebyl statisticky významný.
Obr. 12 Vztah mezi glykovaným hemoglobinem a glukózou v moči. Korelační koeficient byl nízký (0,24) a statistická významnost malá (0,04).

Obr. 13 Vztah mezi glykovaným hemoglobinem a ztrátami glukózy moči za 24 hodin. Korelační koeficient byl nízký (0,25) a nebyl statisticky významný.
Obr.14 Závislost mezi glykovaným hemoglobinem a glukózou v séru. Porovnání hodnot glukózy v séru změřené a vypočítané ve vztahu ke glykovanému hemoglobinu (střední koncentrace glukózy (mmol/l) = 1,73 x HbA1C + 0,20).

2.2. Korelace GHb a glukózy v séru podle časového rozmezí

V této části byl sledován rozdíl mezi vzájemnou závislostí glykémie (glukózy v séru) a GHb měřeného v odlišných časových rozmezích. Byly zanalyzovány výsledky, kde byl GHb změřen do 3 měsíců (tj. do 90ti dnů) od měření příslušné glykémie a výsledky GHb změřeného do 5ti měsíců (tj.150 dnů) od měření glykémie (Obr 15. a 16).
Obr. 15 Závislost mezi glykovaným hemoglobinem změřeným do 5ti měsíců a glukózou v séru.

Obr. 16 Závislost mezi glykovaným hemoglobinem změřeným do 3 měsíců a glukózou v séru.
2.3. Korelace u glykémí nad 7 mmol/l

V této části jsou zobrazeny závislosti jednotlivých biochemických ukazatelů ke glykémíim, které potvrzují diagnózu diabetu - tedy s hodnotami nad 7 mmol/l. (Obr.17 až 20).

Obr.17 Závislost mezi glukózou v séru a glukózou v moči.

Obr.18 Vztah mezi glukózou v séru a objemem moči sbírané za 24 hodin. Korelační koeficient byl nízký (-0,008) bez statistické významnosti.
Obr. 29 Závislost mezi glukózou v séru a ztrátami glukózy moči za 24 hodin.

Obr. 20 Závislost mezi glykovaným hemoglobinem a glukózou v séru.
2.4. Korelace glukózy v moči

V poslední části jsou zobrazeny závislosti biochemických ukazatelů ve vztahu ke glukóze měřené v moči. Pro toto hodnocení byly použity vzorky s glykémii nad 10 mmol/l., neboť tato hodnota je nejčastěji uváděna v souvislosti s překročením renálního prahu pro glukózu a následnou glykosurií (Obr.21 až 24).

![Diagram 21: Závislost mezi glukózou v moči a glukózou v séru.](image1)

![Diagram 22: Závislost mezi glukózou v moči a objemem moči sbírané za 24 hodin.](image2)

Obr. 21 Závislost mezi glukózou v moči a glukózou v séru.

Obr. 22 Závislost mezi glukózou v moči a objemem moči sbírané za 24 hodin. Korelační koeficient byl nízký (0,16) a nebyl statisticky významný.
Obr.23 Závislost mezi glukózou v moči a ztrátami glukózy močí za 24 hodin.

Obr.24 Závislost mezi glukózou v moči a glykovaným hemoglobinem. Korelační koeficient byl nízký (0,05) a nebyl statisticky významný.
3. DISKUSE

Diagnóza a hodnocení léčby pacientů s DM se provádějí zejména hodnocením biochemických parametrů, ke kterým patří glukóza v séru (plazmě), glukóza v moči a glykovaný hemoglobin. Měření glykémie je vhodné k určení diagnózy a k posouzení aktuální hladiny glukózy v krvi, glykovaný hemoglobin se naopak využívá ke sledování dlouhodobé kompenzace pacienta a účinnosti léčby.

Výsledky získané v této studii ukazují na některé statisticky významné korelace mezi zmíněnými parametry. Nejvyšší korelační koeficient byl nalezen mezi glukózou měřenou v ranní moči a jejími ztrátami moči za 24 hodin. Zatěžovat pacienty celodenním sběrem moče pro měření glykosurie je tedy zbytečné. Skladování moče navíc vede k znehodnocení materiálu a zkreslení výsledků. Sbíraná moč měla být konzervována přidávkem 5 ml ledové kyseliny octové do nádobky před začátkem sběru. V močových vzorcích bez konzervace může obsah glukózy po 24 hodinách při pokojové teplotě klesnout až o 40%. (62)

Statisticky významné korelace byly zjištěny také mezi glukózou v séru a glukózou v moči, či ztrátami glukózy moči za 24 hodin a mezi glukózou v séru a glykovaným hemoglobinem. Naopak objem moče nekoreloval s žádným ze zmíněných parametrů.

Zvyšující se glykémie zvyšuje korelací mezi glukózou v séru a glukózou v moči. Toto zjištění není náhodné a odpovídá renálnímu prahu pro glukózu. Při glykémii pod 10 mmol/l nenacházíme v moči žádné nebo minimální hladiny glukózy. (64) Naopak z výsledků této studie lze usoudit, že při glykémii přes 10 mmol/l hladiny glukózy v moči lineárně stoupají právě v závislosti na glykémii. Při posuzování výsledků je však nutné mít na paměti, že renální práh pro glukózu má značné interindividuální a intraindividuální kolisání (v krajních případech od 2, 8 do 19, 4 mmol/l). Renální práh pro glukózu významně ovlivňuje také věk, těhotenství a řada onemocnění. (55)

Jak bylo uvedeno, glykémie nad 10 mmol/l je spojena se zvýšenou koncentrací vylučované glukózy v moči. Při zvýšené koncentraci glukózy v moči se předpokládá i zvýšené vylučování vody. Tyto ztráty vody asi nejsou v běžných případech příliš vysoké, jak ukázala naprostá absence statisticky významných korelací mezi objemem moče a měřenými parametry. Statisticky významný vztah mezi parametry glykémie a objemem moče by byl asi nalezen jen v případě hyperglykemického komatu, který je spojeno s dehydratací. (8)
Korelace mezi glykémii a GHb změřeným do 3 měsíců je lepší než u glykovaného hemoglobinu změřeného po 5ti měsících. Tyto výsledky potvrzují informace uváděné v literatuře. (70, 84) Glykace hemoglobinu a ostatních bílkovin je dlouhodobý děj závisící na glykémii. I mírně zvýšená glykémie přetrvávající delší dobu vede k zvýšení GHb, naopak krátkodobý výkyv glykémie hladinu GHb neovlivní. Konečné produkty glykace (AGE produkty) mají již zcela odlišné vlastnosti od původních bílkovin a jsou odpovědné za pozdní komplikace cukrovky. (44) V případě hemoglobinu dochází k rozpadu molekuly po 3 měsících od jejího vzniku. Měřením GHb lze získat zpětně informace o hodnotách glykémii za posledních 6 týdnů. To je doba, která odpovídá plazmatickému poločasu hemoglobinu.

Byly porovnány také výsledky glykémii získané měřením s vypočitanou hodnotou střední koncentrace glukózy v krvi ve vztahu ke GHb podle vzorce \(c(glu) = 1,73 c(GHb) + 0,20 \). Vypočítané hodnoty glykémii byly ve většině případů vyšší, než hodnoty glykémii získané měřením. Jak se dalo předpokládat, byly koncentrace GHb měřeného do 3 měsíců nejbliže vypočteným hodnotám. Podle literatury odpovídá každá změna hladiny HbA1C o 1 % změně střední koncentrace glukózy o 1,7 mmol/l (33), v naší studii byl naměřen rozdíl 1,3 mmol/l (při korelací do 3 měsíců od změření glykémie). Je ale nutno dodat, že výsledky korelace mezi glukózou v séru a glykovaným hemoglobinem byly pravděpodobně zkresleny malým počtem vzorků.
V. ZÁVĚR

Stanovení glykémie je základním ukazatelem pro určení diagnózy i sledování stavu diabetiků a její vyšetření je nezastupitelné a účelné. Tato DP v souladu s nálezy znovu poukázala na závislost mezi GHb a glykémii, která je vyšší při stanovení GHb po třech měsících od měření glykémie. Podobně byla potvrzena korelace mezi glykémii a glukózou v moči, která byla vyšší u vzorků s glykémii nad 10mmol/l, zdůrazňující tak na význam renálního prahu pro vylučování glukózy. Hlavním poznatkem vyplývajícím z této studie je fakt, že pro kvantitativní stanovení glukózy v moči plně postačuje jednorázový vzorek ranní moči a není tedy nutné pacienta zatěžovat celodenním sběrem moči.
ABSTRAKT

Diabetes mellitus 2. typu je závažné a v naší populaci velmi časté civilizační onemocnění charakterizované zvýšenou glykémii v krvi (hyperglykémii) a přítomnosti dalších metabolických abnormalit. K diagnostice onemocnění se využívá stanovení glykémie v plazmě (séru). Ukazatelem dlouhodobé kompenzace diabetu je glykovaný hemoglobin.

V této práci byly sledovány případné závislosti mezi biochemickými ukazateli běžně stanovovanými u diabetických pacientů. Byla zpětně vyhodnocena data od 54 diabetických pacientů ve věku od 40 – 82 let pravidelně kontrolovaných v diabetické poradně. Vzorky byly analyzovány na Analyzátoru Cobas integra 800 od firmy Roche (Německo). Pro měření glukózy v séru i v moči byla použita enzymatická metoda s hexokinázou a pro stanovení HbA1c imunochemická metoda založená na turbidimetrické inhibici v hemolyzované plně krvi. Pro zhodnocení závislostí mezi veličinami byl použit Pearsonův korelační koeficient.

Nejvyšší korelační koeficient byl nalezen mezi glukózou měřenou v ranní moči a jejimi ztrátami moči za 24 hodin. Statisticky významné korelace byly zjištěny také mezi glukózou v séru a glukózou v moči, či ztrátami glukózy moči za 24 hodin a mezi glukózou v séru a glykovaným hemoglobinem. Byla stanovena lineární závislost mezi glykémii a glykovaným hemoglobinem. Asi vzhledem k relativně nízkému počtu vzorků nebyla tato závislost zcela v souladu s literárními údaji. Podle předpokladu byla tato závislost nejблиž v případě lineární regrese mezi akutní glykémii a hodnotami glykovaného hemoglobinu měřeného v období zhruba 1 měsíce předem. Objem sbírané moči nekoreloval s žádným ze sledovaných biochemických parametrů. Korelace nebyla prokázána ani mezi glykovaným hemoglobinem a glukózou v moči, či ztrátami glukózy moči za 24 hodin.

Výsledky této práce potvrdily závislost mezi GHb a glykémii, která je vyšší při stanovení GHb po třech měsících od měření glykémie. Podobně byla potvrzena korelace mezi glykémii a glukózou v moči, která byla vyšší u vzorků s glykémii nad 10mmol/l, zdůrazňující tak na význam renálního prahu pro vylučování glukózy. Hlavním poznatkem vyplňujícím z této studie je fakt, že pro kvantitativní stanovení glukózy v moči plně postačuje jednorázový vzorek ranní moče.
ABSTRACT

Diabetes mellitus 2nd type is a heavy and very frequent civilizing disease in our population. The disease is characterized by hyperglycemia and other metabolism abnormalities are present. Assessment of glycemia in plasma (serum) is used for diagnostics of the disease. Indicator of long-term compensation of diabetes is glycosylated haemoglobin.

There were monitored possible dependencies between biochemical indicators in this work that are assessed to diabetic patients commonly. The dates were analysed from 54 diabetic patients between the ages of 40 to 82 who visit a diabetic clinic periodically. The samples were analyzed by Cobas Integra 800 analyzer by Roche (Germany). Glucose in serum and in urine was analyzed by enzymatic method with hexokinase and glycosylated haemoglobin was analyzed by immunochromatographic method based on turbidimetric inhibition in haemolysed blood. Pearson’s correlative coefficient was used for appreciation of dependencies between variables.

The highest correlative coefficient was found between glucose measuring in morning urine and glucosic losses by urine for 24 hours. Statistically important correlation were also found between glucose in serum and in urine or glucosic losses by urine for 24 hours and between glucose in serum and glycosylated haemoglobin. Because of relatively few samples this dependence wasn’t fully in keeping with literature dates. According to premise the dependence was closest in the case of linear regression between acute glycemia and the values of glycosylated haemoglobin which was measured approximately 3 months before. The volume of collected urine not correlate with no monitored biochemical parameter. Correlation wasn’t prove between glycosylated haemoglobin and glucose in urine or glucosic losses by urine for 24 hours.

The results of this work confirm dependence between glycosylated haemoglobin and glycemia, which is higher in assessment of glycosylated hemoglobin after 3 months from measuring of glucose. Correlation was also confirm between glycemia and glucose in urine, which was higher when glycemia was over 10 mmol/l which is a renal treshold for excretion of glucose. The main piece of knowledge resulting of this study is the fact that for quantitative analysis of glucose in urine is fully sufficient one-shot sample of morning urine.
<table>
<thead>
<tr>
<th>Abreviačia</th>
<th>Obrázka</th>
<th>Obrázka</th>
<th>Obrázka</th>
<th>Obrázka</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>Americká diabetologická společnost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADP</td>
<td>adenozindifosfát</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGE produkty</td>
<td>advanced glycosylation end products, konečné produkty glykosylace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALP</td>
<td>alkalická fosfatáza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT</td>
<td>alaninaminotransferáza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>adenozintrifosfát</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST</td>
<td>aspartáaminotransferáza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>vápník</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>chloridy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ČDS</td>
<td>Česká diabetologická společnost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ČSKB</td>
<td>Česká společnost klinické biochemie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCCT</td>
<td>Diabetes Control and Complications Trial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOF hemoglobin</td>
<td>N-(1-deoxyfroktos-1-yl) hemoglobin beta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPP4</td>
<td>dipeptidyl peptidáza 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EASD</td>
<td>Evropská asociace pro studium diabetu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>ethyldiamintetraoctová kyselina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>heterogenní enzymimunoanalýza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPG</td>
<td>glykémie nalačno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fu-glu</td>
<td>ztráty glukózy močí</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GADA</td>
<td>protilátky proti glutamátdekarboxyláze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCI</td>
<td>glykemický kontrolní index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDM</td>
<td>gestační diabetes mellitus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GHb</td>
<td>glykovaný hemoglobin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLP-1</td>
<td>glukagon-like peptid 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLUT-protein</td>
<td>membránový proteinový přenašeč pro glukózu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMT</td>
<td>glutamyltransferáza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOD</td>
<td>glukózaoxidáza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G6PD</td>
<td>glukóza-6-fosfádtdehydrogenáza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c</td>
<td>frakce glykovaného hemoglobinu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL</td>
<td>cholesterol o vysoké hustotě</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HGL hraniční glukóza naláčno
HK hexokináza
HLA Human Leukocyte Antigen
HPLC vysokoučinná kapalinová chromatografie
IA2 protilátky proti tyrozinosfatáze
IAA protilátky proti inzulínů
ICA protilátky proti Langerhansovým ostrůvkům
IDF Mezinárodní federace pro diabetes
IFCC Mezinárodní federace pro klinickou chemii a laboratorní medicínu
IFG porušená glykémie naláčno
ICHDK ischemická choroba dolních končetin
ICHS ischemická choroba srdeční
IR inzulinová rezistence
IRI imunoreaktivní inzulin
K draslík
LADA Latent autoimmune diabetes in adults
LDL cholesterol o nízké hustotě
MODY Maturity Onset Diabetes of the Young
Na sodík
NADH nikotinamid adenin dinukleotid
NADPH nikotinamid adenin dinukleotid fosfát
NTB nitrotetrazoliová modř
oGTT orální glukózový tolerantní test
PAD perorální antidiabetika
PGT porušená glukózová tolerance
POD peroxidáza
PPG postprandiaální glykémie
RIA radioimunoanalýza
TBC tuberkulóza
TSH thyreotropin
WHO Světová zdravotnická organizace
LITERÁRNÍ ODKAZY

u dětských prvostupňových příbuzných diabetických pacientů. Časopis lékařů českých 2001;140 : 492-496.

34. Mottl R, Diabetes mellitus s vaskulárními komplikacemi. Interní medicína pro praxi 2001;12:559-561
42. Poulsen PL, Hansen B, Amby T, Terkelsen T, Mogensen CE, Evaluation of dipstick test for microalbuminuria in three different clinical settings including the correlation with urinary albumin excretion rate. Diabetes Metab 1992;18:395-400
50. Svačina Š, Owen K, Syndrom inzulinové rezistence. Triton, Praha 2003; 182
51. Szabó M, Význam markerů autoimunní inzulitidy pro klasifikaci, predikaci a prevenci diabetes mellitus. DMEV 2004; 2:77-82
54. Ústav klinické imunologie a alergologie FN HK, Laboratorní vyšetření v klinické imunologii. Garamon, Hradec Králové 2004;50-51
59. oficiální stránky České diabetologické společnosti: www.diab.cz
60. Oficiální stránky České společnosti klinické biochemie: http://www.cskb.cz/
61. Oficiální stránky Institutu biostatistiky a analýz Lékařské a Přírodovědecké fakulty Masarykovy univerzity: http://www.iba.muni.cz/
62. Oficiální stránky firmy Roche: www.roche.cz
63. Oficiální stránky Svazu diabetiků České republiky: www.diazivot.cz
64. Oficiální stránky společnosti Systém externí kontroly kvality: www.sekk.cz
65. Oficiální stránky Ústavu zdravotnických informací a statistiky: http://www.uzis.cz
66. Oficiální stránky Všeobecné zdravotní pojišťovny: http://www.vzp.cz